WO2023050790A1 - 一种加热系统、加热方法及装置、用电设备 - Google Patents

一种加热系统、加热方法及装置、用电设备 Download PDF

Info

Publication number
WO2023050790A1
WO2023050790A1 PCT/CN2022/089535 CN2022089535W WO2023050790A1 WO 2023050790 A1 WO2023050790 A1 WO 2023050790A1 CN 2022089535 W CN2022089535 W CN 2022089535W WO 2023050790 A1 WO2023050790 A1 WO 2023050790A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
switch
battery
heating
heating system
Prior art date
Application number
PCT/CN2022/089535
Other languages
English (en)
French (fr)
Inventor
陈新伟
但志敏
刘成勇
张伟
侯贻真
黄显
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP22747234.7A priority Critical patent/EP4184664A4/en
Priority to KR1020227027723A priority patent/KR102521442B1/ko
Priority to JP2022548493A priority patent/JP7430810B2/ja
Priority to US18/148,126 priority patent/US11876160B2/en
Publication of WO2023050790A1 publication Critical patent/WO2023050790A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/25Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by controlling the electric load
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/30Automatic controllers with an auxiliary heating device affecting the sensing element, e.g. for anticipating change of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0202Switches
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • H05B1/0227Applications
    • H05B1/023Industrial applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a heating system, a heating method and device, and electrical equipment.
  • the present application aims to provide a heating system, a heating method and device, and electrical equipment, which can lower the requirements on the heating power supply and have better practicability.
  • the present application provides a heating system
  • the heating system includes a first input terminal, a second input terminal, a first battery pack, a second battery pack, a first switch, a second switch and a control unit , wherein the first input terminal and the second input terminal are used to connect to an external input power supply.
  • the first switch is connected between the first end of the first battery pack and the first end of the second battery pack
  • the second end of the first battery pack is connected to the second end of the second battery pack
  • the second switch is connected to the second end of the second battery pack.
  • the second input end is connected to the first end of the first battery pack.
  • the polarity of the first terminal of the first battery pack is the same as that of the first terminal of the second battery pack
  • the polarity of the second terminal of the first battery pack is the same as that of the second terminal of the second battery pack.
  • the control unit is connected with the first switch and the second switch, and the control unit is used to control the first switch and the second switch to be turned on or off, so as to heat the first battery pack and the second battery pack through the input power.
  • the first battery pack and the second battery pack are reversely connected when charging the first battery pack and the second battery pack.
  • the voltages at both ends of the first battery group and the voltage at both ends of the second battery group cancel each other out, that is, the overall voltage of the first battery group and the second battery group is zero or close to zero. Therefore, in this case, the heating process of the first battery pack and the second battery pack can be realized through the low-voltage power supply or the power grid, that is, the requirement for input power is low, so that the heating system can be applied to various application scenarios , better practicability.
  • the implementation difficulty of the present application is relatively low, and the cost is also low.
  • the first end of the second battery pack is connected to the first end of the load through the first main switch, and the second end of the second battery pack is connected to the second end of the load through the second main switch .
  • the first main switch is the second switch.
  • a first main switch and a second main switch are usually arranged between the battery pack and the load to control the power on or off of the load. Then, when the heating system is connected to a load, the first main switch can be used as the second switch, which can reduce the number of second switches and is beneficial to save costs.
  • the voltage across the first battery pack is equal to the voltage across the second battery pack.
  • the voltage of the first battery pack By setting the voltage of the first battery pack to be equal to the voltage of the second battery pack, after the first battery pack and the second battery pack are reversed, the voltage at both ends of the first battery pack is the same as the voltage at both ends of the second battery pack. cancel each other out, that is, the overall voltage of the first battery pack and the second battery pack is 0.
  • the heating process of the first battery pack and the second battery pack can be realized through the low-voltage power supply or the power grid, that is, the requirement for input power is low, so the heating system can be applied to various application scenarios and is practical. Sex is better.
  • both the first battery pack and the second battery pack include N battery packs.
  • the N battery packs in the first battery pack are connected in parallel, and the N battery packs in the second battery pack are connected in parallel.
  • the voltage of the first battery pack and the voltage of the second battery pack are the voltage of one battery pack. Therefore, by setting the voltage of each battery pack to be the same or close to the same, it is helpful to make the overall voltage of the first battery pack and the second battery pack be 0 or close to 0 when the first battery pack and the second battery pack are heated. , so that the requirement on the input power can be reduced, which is beneficial to improve the practicability.
  • control unit is specifically configured to: control the first switch to be turned off, and control the second switch to be turned on and off through a control signal with a duty cycle, so as to provide the first battery pack with an input power supply. Heating with the second battery pack.
  • control signal with a duty ratio is used to make the effective value of the output current of the input power supply smaller than the effective value of the first current threshold.
  • both the first battery group and the second battery group have current flowing, and the first battery group and the second battery group Due to their own internal resistance characteristics, the internal heat of the first battery pack and the second battery pack heats up, thereby realizing the heating process.
  • controlling the current flowing through the first battery pack and the second battery pack to be less than the effective value of the first current threshold can protect the first battery pack and the second battery pack and reduce the The battery pack may have risks such as explosion, which is beneficial to prolonging the service life of the first battery pack and the second battery pack.
  • control unit after heating the first battery pack and the second battery pack through input power, is further configured to: if the temperatures of the first battery pack and the second battery pack are both greater than or equal to the first temperature threshold, the second switch is controlled to be turned off, and after the second switch is turned off for a predetermined time, the first switch is controlled to be turned on.
  • the temperatures of the first battery pack and the second battery pack need to be detected in real time.
  • the heating is completed, and at this time, the second switch should be controlled to be turned off, so as to disconnect the connection with the input power.
  • the pressure difference between the first battery pack and the second battery pack decreases to less than the first voltage difference threshold within the predetermined time when the second switch is turned off.
  • control the first switch to turn on after the second switch is turned off for a predetermined time. Therefore, the loop current that may be generated can be reduced to protect the electrical components in the heating system, which is beneficial to improve the stability of the heating system.
  • the present application provides a heating method applied to a heating system.
  • the heating system includes a first battery pack, a second battery pack, a first switch, a second switch, a first input terminal, and a second input terminal, wherein, The first input terminal and the second input terminal are used for connecting an external input power supply.
  • the first switch is connected between the first end of the first battery pack and the first end of the second battery pack, the second end of the first battery pack is connected to the second end of the second battery pack, and the second switch is connected to the second end of the second battery pack. Between one input end and the first end of the second battery pack, the second input end is connected to the first end of the first battery pack.
  • the polarity of the first terminal of the first battery pack is the same as that of the first terminal of the second battery pack
  • the polarity of the second terminal of the first battery pack is the same as that of the second terminal of the second battery pack.
  • Heating is performed after receiving the heating request signal, which can reduce the probability of false heating, and is beneficial to protect the first battery pack and the second battery pack, so as to prolong the service life of the first battery pack and the second battery pack .
  • the heating process of the first battery pack and the second battery pack can be realized through a low-voltage power supply or a power grid, so that the heating system can be applied to various application scenarios and has better practicability.
  • the implementation difficulty and cost of the present application are relatively low.
  • controlling the switching states of the first switch and the second switch to heat the first battery pack and the second battery pack includes: controlling the first switch to be turned off, and having a duty cycle
  • the control signal controls the second switch to be turned on and off, so as to heat the first battery pack and the second battery pack.
  • the control signal with a duty ratio is used to make the effective value of the output current of the input power supply smaller than the effective value of the first current threshold.
  • both the first battery pack and the second battery pack have current flowing, and the first battery pack and the second battery pack are due to their internal According to the resistance characteristic, the internal heat of the first battery pack and the second battery pack heats up, thereby realizing the heating process.
  • controlling the effective value of the current flowing through the first battery pack and the second battery pack to be smaller than the effective value of the first current threshold can protect the first battery pack and the second battery pack and reduce the
  • the second battery pack has risks such as explosion, which is beneficial to prolonging the service life of the first battery pack and the second battery pack.
  • the method further includes: if the temperatures of the first battery pack and the second battery pack are both greater than or equal to the first temperature threshold, controlling The second switch is turned off, and after the second switch is turned off for a predetermined time, the first switch is controlled to be turned on.
  • the temperatures of the first battery pack and the second battery pack need to be detected in real time.
  • the heating is completed, and at this time, the second switch should be controlled to be turned off, so as to disconnect the connection with the input power.
  • the pressure difference between the first battery pack and the second battery pack decreases to less than the first voltage difference threshold within the predetermined time when the second switch is turned off.
  • control the first switch to turn on after the second switch is turned off for a predetermined time. Therefore, the loop current that may be generated can be reduced to protect the electrical components in the heating system, which is beneficial to improve the stability of the heating system.
  • the present application provides an electric device, including: the above-mentioned heating system.
  • the electric device is an electric vehicle.
  • the heating system provided by the present application is provided with a first switch between the first end of the first battery pack and the first end of the second battery pack, and between the first input end and the first end of the second battery pack.
  • a second switch is arranged between the first ends of the two battery packs. Furthermore, by controlling the conduction or disconnection of the first switch and the second switch, it can be realized that the first battery pack and the second battery pack are reversely connected when charging the first battery pack and the second battery pack.
  • the implementation difficulty of the present application is relatively low, and the cost is also low.
  • Fig. 1 is a schematic structural view of a vehicle disclosed in an embodiment of the present application
  • Fig. 2 is a schematic structural view of a heating system disclosed in an embodiment of the present application.
  • Fig. 3 is a schematic structural view of a heating system disclosed in another embodiment of the present application.
  • Fig. 4 is a schematic structural view of a heating system disclosed in another embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a heating system disclosed in another embodiment of the present application.
  • Fig. 6 is a flow chart of a heating method disclosed in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an implementation of step 61 shown in FIG. 6 disclosed in an embodiment of the present application.
  • Fig. 8 is a flow chart of method steps performed after heating the first battery pack and the second battery pack disclosed in an embodiment of the present application;
  • Fig. 9 is a schematic diagram of a heating curve disclosed in an embodiment of the present application.
  • Fig. 10 is a schematic structural view of a heating device disclosed in an embodiment of the present application.
  • Fig. 11 is a schematic structural diagram of a battery management system disclosed in another embodiment of the present application.
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • the battery is the core of electric vehicles, and it is also a comprehensive embodiment of automotive engineering and power engineering technology.
  • the common heating scheme is to use an external high-voltage power supply to allow the battery to quickly switch between charging and discharging.
  • the internal heat of the battery is directly generated and heated up, thereby realizing the battery heating process.
  • the applicant has designed a heating system, which can realize the heating process of the battery on the basis of reducing the requirements on the heating power supply, such as using a low-voltage power supply or the grid as the heating power supply. Therefore, the heating system can be applied to various application scenarios and has good practicability.
  • the batteries in the embodiments of the present application may be solid-state batteries, lithium-ion batteries, lithium metal batteries, lead-acid batteries, nickel batteries, nickel-metal hydride batteries, lithium-sulfur batteries, lithium-air batteries or sodium-ion batteries, etc., which are not limited here .
  • the battery in this embodiment of the application can be a single battery cell, or a battery module or battery pack, which is not limited here.
  • the battery can be used in power devices such as automobiles and ships. For example, it can be applied to electric vehicles to supply power to the motors of electric vehicles as the power source of electric vehicles. The battery can also supply power to other electrical devices in electric vehicles, such as in-car air conditioners and car players.
  • An embodiment of the present application provides an electric device including the heating system in the embodiment of the present application.
  • Electrical equipment can be, but not limited to, mobile phones, tablets, laptops, electric toys, electric tools, battery cars, electric vehicles, ships, spacecraft, etc.
  • electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • a vehicle 10 is taken as an example of an electric device in an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles.
  • the interior of the vehicle is provided with the socket 11 and the heating system in any embodiment of the present application.
  • the socket 11 is used to access the input power, which can be a low-voltage power supply or grid, etc., and transmit the input power to the heating system, so as to heat the battery pack 12 in the heating system through the input power.
  • the heating system includes 2K battery packs 12, wherein K of the 2K battery packs 12 are connected in parallel, and the other K battery packs 12 are connected in parallel, and K is a positive integer.
  • the battery pack 12 can be arranged at the bottom or the head or tail of the vehicle.
  • the battery pack 12 includes at least one battery cell, which is used for charging or discharging, and can be recharged repeatedly in a rechargeable manner.
  • the battery pack 12 can be used for power supply of the vehicle 10 , for example, the battery pack 12 can be used as an operating power source of the vehicle 10 .
  • the battery pack 12 can not only be used as an operating power source for the vehicle 10 , but can also be used as a driving power source for the vehicle 10 to provide driving power for the vehicle 10 instead of or partially replacing fuel oil or natural gas.
  • the present application does not limit the usage scenarios of the heating system, and the heating system in the embodiment of the present application can realize the heating process of the battery pack 12 under any necessary circumstances.
  • the heating system 100 of the embodiment of the present application includes a first input terminal 101, a second input terminal 102, a first battery pack 103, a second battery pack 104, a first switch 105, a second switch 106 and a control Unit 107.
  • the first input terminal 101 and the second input terminal 102 are used to connect the external input power source 200
  • the first switch 105 is connected between the first terminal of the first battery pack 103 and the first terminal of the second battery pack 104
  • the second end of the first battery pack 103 is connected to the second end of the second battery pack 104
  • the second switch 106 is connected between the first input end 101 and the first end of the second battery pack 104
  • the second input end 102 It is connected with the first end of the first battery pack 103
  • the control unit 107 is connected with the first switch 105 and the second switch 106 .
  • both the first battery pack 103 and the second battery pack 104 include at least one battery cell.
  • the polarity of the first terminal of the first battery group 103 is the same as that of the first terminal of the second battery group 104
  • the polarity of the second terminal of the first battery group 103 and the second terminal of the second battery group 104 is the same. Specifically, if the first terminal of the first battery pack 103 is a positive pole, and the second terminal of the first battery pack 103 is a negative pole, then the first terminal of the second battery pack 104 is a positive pole, and the second terminal of the second battery pack 104 is a positive pole.
  • first end of the first battery pack 103 is a negative pole
  • second end of the first battery pack 103 is a positive pole
  • first end of the second battery pack 104 is a negative pole
  • second end of the second battery pack 104 is a negative pole. The two ends are positive.
  • the heating system shown in FIG. 2 is taken as an example below for illustration, and the working principle of the heating system shown in FIG. 3 is the same as that of the heating system shown in FIG. 2 , and will not be repeated here.
  • both the first switch 105 and the second switch 106 are controlled by the control unit 107, that is, the control unit 107 can output a control signal to control the first switch 105 to be on or off, and to control the second switch 106 to be on or off. disconnect to heat the first battery pack 103 and the second battery pack 104 through the input power source 200 .
  • the input power source 200 outputs current
  • the current flows through the first battery pack 103 and the second battery pack 104 . Due to the internal resistance of the first battery pack 103 and the second battery pack 104, the inside of the first battery pack 103 and the second battery pack 104 will generate heat and heat up due to the flow of current, and the first battery pack 103 and the second battery pack 104 will in a heated state.
  • the loop between the input power source 200 and the first battery pack 103 and the second battery pack 104 is disconnected, and the first battery pack 103 and the second battery pack 103
  • the current on the battery pack 104 decreases to 0, and the process of heating the first battery pack 103 and the second battery pack 104 through the input power source 200 ends.
  • the heating of the first battery pack 103 and the second battery pack 104 is completed, and the first battery pack 103 and the second battery pack 104 can be used as power sources to supply power to loads.
  • the first battery pack 103 and the second battery pack 104 are in a state of reverse connection, that is, the voltage at both ends of the first battery pack 103 and The voltages across the second battery pack 104 cancel each other out. That is, the overall voltage of the first battery pack 103 and the second battery pack 104 is zero or close to zero. In this case, the overall voltage of the first battery pack 103 and the second battery pack 104 can be equivalent to a resistance. Therefore, the heating of the first battery pack 103 and the second battery pack 104 can be realized through a low-voltage power supply or power grid without using a specific power supply as in the related art.
  • the heating system 100 has relatively low requirements on the input power supply 200 . Therefore, the heating system 100 can be applied to many application scenarios and has better practicability. Moreover, the implementation difficulty and cost are also reduced. In addition, since the first battery pack 103 and the second battery pack 104 can be heated at the same time, it is also beneficial to improve the heating efficiency.
  • the voltage across the first battery pack 103 is equal to the voltage across the second battery pack 104 .
  • the voltage of the first battery pack 103 By setting the voltage of the first battery pack 103 to be equal to the voltage of the second battery pack 104, after the first battery pack 103 and the second battery pack 104 are reversed, the voltage at both ends of the first battery pack 103 is the same as that of the second battery pack 104. The voltages at both ends of the battery pack 104 cancel each other out, that is, the overall voltage of the first battery pack 103 and the second battery pack 104 is zero.
  • the heating process of the first battery pack 103 and the second battery pack 104 can be realized through a low-voltage power supply or power grid, that is, the requirement for input power is low, so that the heating system can be applied to various application scenarios , better practicability.
  • each switch in the embodiment of the present application can be any power electronic component that can function as a switch, such as a field effect transistor MOSFET, an insulated gate dual Pole transistor IGBT, thyristor SCR, gate turn-off thyristor GTO, power transistor GTR, etc.
  • a switch such as a field effect transistor MOSFET, an insulated gate dual Pole transistor IGBT, thyristor SCR, gate turn-off thyristor GTO, power transistor GTR, etc.
  • can also be any common switch, such as contactor, relay, delay switch, photoelectric switch, light touch switch, proximity switch, etc. can also be a variety of combinations of the above types.
  • the first end of the second battery pack 104 is connected to the first end of the load 300 through the first main switch 400, and the second end of the second battery pack 104 is connected through the second main switch. 500 is connected to the second end of the load 300 .
  • the first main switch 400 can be used as the second switch 106 shown in FIG. 2 or FIG. 3 , that is, the first main switch 400 can function as the second switch 106 .
  • the second switch 106 is connected between the first input terminal 101 and the first terminal of the second battery pack 104, then the first main switch 400 should also be connected between the first input terminal 101 and the second battery pack 104. between the first ends of the battery pack 104 .
  • both the first end of the first battery pack 103 and the first end of the second battery pack 104 are positive, and the second end of the first battery pack 103 and the second end of the second battery pack 104 The second terminals are all negative poles, so the first main switch 400 should be connected to the positive pole of the load. And if the first end of the first battery pack 103 and the first end of the second battery pack 104 are both negative poles, and the second end of the first battery pack 103 and the second end of the second battery pack 104 are both positive poles, then The first main switch 400 should be connected to the negative pole of the load.
  • a first main switch 400 and a second main switch 500 are arranged between the heating system 100 and the load 300 to control the power on or off of the load 300 .
  • the first main switch 400 can be used as the second switch 106 in the above embodiment to reduce the number of second switches 106 , which is beneficial to reduce the cost of the heating system 100 .
  • the heating system 100 can be applied to new energy vehicles.
  • the new energy vehicle is provided with a battery (corresponding to the first battery pack 103 and the second battery pack 104 in the above-mentioned embodiment), and a main positive switch is arranged between the positive pole of the battery and the positive pole of the load, and between the negative pole of the battery and the positive pole of the load.
  • a main negative switch is arranged between the negative poles of the load.
  • the main positive switch can correspond to the first main switch 400 in the above embodiment, then the main negative switch can correspond to the second main switch 500 in the above embodiment, or the main negative switch can also correspond to the above embodiment.
  • the first main switch 400 and the main positive switch correspond to the second main switch 500 in the above embodiment. Therefore, the main positive switch or the main negative switch on the new energy vehicle can be used as the second switch 106 to reduce the cost.
  • the hardware structure of the heating system 100 shown in FIG. 2 , FIG. 3 or FIG. 4 is only an example, and the heating system 100 may have more or fewer components than those shown in the figure , two or more components may be combined, or may have different component configurations, the various components shown in the figure may be implemented in hardware, software, including one or more signal processing and/or application specific integrated circuits or a combination of hardware and software.
  • the first battery pack 103 and the second battery pack 104 both include N battery packs, any battery pack includes at least one battery cell, and N is a positive integer .
  • the first battery pack 103 includes a battery pack A1 , a battery pack A2 . . . a battery pack AN
  • the second battery pack 104 includes a battery pack B1 , a battery pack B2 . . . a battery pack BN.
  • battery pack A1 , battery pack A2 . . . battery pack AN are connected in parallel
  • battery pack B1 , battery pack B2 . . . battery pack BN are connected in parallel.
  • the voltage across the two ends of the first battery pack 103 is the voltage across any battery pack in the battery pack A1, battery pack A2 ... battery pack AN
  • the voltage across the two ends of the second battery pack 104 is the voltage across the battery pack B1, battery pack B2 ...the voltage across any battery pack in pack BN.
  • each battery pack it is helpful to make the overall voltage of the first battery pack 103 and the second battery pack 104 be 0 when the first battery pack 103 and the second battery pack 104 are heated. Or close to 0, so that the requirement on the input power can be reduced, which is beneficial to improve the practicability.
  • the first battery pack 103 and the second battery pack 104 are two cell module sets with the same voltage under one battery pack, and the module set can be a plurality of modules connected in series or multiple modules in parallel.
  • the first battery pack 103 and the second battery pack 104 may also be two cell sets with equal voltages, and the cell set may be a plurality of cells connected in series or a plurality of cells connected in parallel.
  • control unit 107 is specifically configured to control the first switch 105 to be turned off, and control the second switch 106 to be turned on and off through a control signal with a duty cycle, so that the input power 200 heats the first battery pack 103 and the second battery pack 104 .
  • the duty ratio is a preset duty ratio, and the duty ratio can be determined by an effective value of the first current threshold, and the effective value of the first current threshold is a preset current effective value.
  • the effective value of the first current threshold may correspond to the effective value of the maximum value that the current can reach during the heating process of the first battery pack 103 and the second battery pack 104 . Then, the corresponding duty cycle is obtained according to the effective value of the first current threshold, and is recorded as the maximum duty cycle.
  • the duty cycle smaller than the maximum duty cycle
  • the risk of damage to the first battery pack 103 and the second battery pack 104 due to excessive current can be reduced, so as to protect the first battery pack 103 and the second battery pack 103 from being damaged due to excessive current.
  • the second battery pack 104 plays a protective role, which is beneficial to prolong the service life of the first battery pack 103 and the second battery pack 104 .
  • control signal with a duty cycle can be used to make the effective value of the output current of the input power source 200 (ie, the current flowing through the first battery pack 103 and the second battery pack 104 ) smaller than the effective value of the first current threshold , so as to protect the first battery pack 103 and the second battery pack 104 .
  • the effective value of the first current threshold can be the current effective value preset by the user according to the actual application situation.
  • each electrical component in the heating system can be combined
  • the effective value of the maximum current that can flow is used to determine the first current threshold, so as to protect each electrical component.
  • it may also be the current effective value automatically set by the control unit 107 according to the type or material of the battery, which is not limited in this embodiment of the present application.
  • the control unit 107 is further configured to: if the temperatures of the first battery pack 103 and the second battery pack 104 are both greater than or is equal to the first temperature threshold, the second switch 106 is controlled to be turned off, and after the second switch 106 is turned off for a predetermined time, the first switch 105 is controlled to be turned on.
  • the first temperature threshold may be a temperature value preset by the user, or a temperature value automatically set by the control unit 107 according to the type or material of the battery, which is not limited in this embodiment of the present application.
  • first battery pack 103 and the second battery pack 104 it is necessary to detect the temperature of the first battery pack 103 and the second battery pack 104 in real time, so as to reduce damage to the first battery pack 103 and the second battery pack due to excessive temperature. Group 104 odds.
  • the temperatures of the first battery pack 103 and the second battery pack 104 reach the first temperature threshold, the heating is completed. At this time, firstly control the second switch 106 to be turned off, so as to disconnect the connection with the input power source 200 .
  • the pressure difference between the first battery pack 103 and the second battery pack 104 can be reduced to less than the first voltage difference threshold within the predetermined time when the second switch 106 is turned off. And control the first switch 105 to turn on after the second switch 106 is turned off for a predetermined time.
  • the heating process of the first battery pack 103 and the second battery pack 104 is completed, and the first battery pack 103 and the second battery pack 104 can be used as a power source to provide a working voltage for the load.
  • the first duration may be set according to a specific application scenario, which is not limited in this embodiment of the present application. For example, in one embodiment, the first duration may be set to 10 minutes.
  • the first pressure difference threshold may be set according to the material or type of the battery, and/or a specific application scenario, which is not limited in this embodiment of the present application.
  • the loop current between the first battery pack 103 and the second battery pack 104 affects the electrical components in the heating system
  • the pressure difference between the second battery pack 104 is set as a first pressure difference threshold.
  • the impact of the possible loop current on the electrical components can be reduced or It has no effect, so as to protect the electrical components in the heating system and help to improve the stability of the heating system.
  • FIG. 6 is a flow chart of the heating method provided by the embodiment of the present application.
  • the heating method comprises the following steps:
  • Step 61 If a heating request signal is received, control the switching states of the first switch and the second switch to heat the first battery pack and the second battery pack.
  • the switch state includes on or off.
  • the heating request signal may be an artificially given signal, that is, the user sends the heating request signal by operating a button or the like.
  • the heating request signal may also be a heating request signal actively output when the control unit detects that the temperature of the first battery pack or the second battery pack is low and needs to be heated. At the same time, heating is performed after receiving the heating request signal, which can reduce the probability of false heating, and is beneficial to protect the first battery pack and the second battery pack, so as to prolong the life of the first battery pack and the second battery pack. service life.
  • the heating system after receiving the heating request signal, it can first detect the current state of the first main switch, the second main switch, and the input power, and determine the current state of the first main switch And after the second main switch is in the off state and the heating system is connected to the input power, the heating process of the first battery pack and the second battery pack is performed.
  • the first battery group and the second battery group are in a state of reverse connection, and the voltages at both ends of the first battery group and the voltage at both ends of the second battery group cancel each other out. That is, the overall voltage of the first battery pack and the second battery pack is zero or close to zero. In this case, the entirety of the first battery pack and the second battery pack can be equivalent to a resistance. Therefore, the heating of the first battery pack and the second battery pack can be realized through a low-voltage power supply or power grid, without using a specific power supply as in the related art. It can be seen that the heating system has relatively low requirements on input power. Therefore, the heating system can be applied to more application scenarios and has better practicability. Moreover, the implementation difficulty and cost are also reduced. In addition, since the first battery pack and the second battery pack can be heated simultaneously, it is also beneficial to improve the heating efficiency.
  • the process of controlling the switching states of the first switch and the second switch in step 61 to heat the first battery pack and the second battery pack includes the following steps:
  • Step 71 Control the first switch to be turned off, and control the second switch to be turned on and off through a control signal with a duty cycle, so as to heat the first battery pack and the second battery pack.
  • the duty ratio is a preset duty ratio, and the duty ratio can be determined by an effective value of the first current threshold, and the effective value of the first current threshold is a preset current effective value.
  • the effective value of the first current threshold may correspond to the effective value of the maximum value that the current can reach during the heating process of the first battery pack and the second battery pack.
  • the corresponding duty cycle can be obtained through the effective value of the first current threshold, and recorded as the maximum duty cycle. Therefore, in practical applications, by setting the duty cycle to be smaller than the maximum duty cycle, the risk of the first battery pack and the second battery pack being damaged due to excessive current can be reduced, so that the first battery pack and the second battery pack are damaged.
  • the battery pack plays a protective role, which is beneficial to prolonging the service life of the first battery pack and the second battery pack.
  • control signal with a duty cycle can be used to make the effective value of the output current of the input power source (ie, the current flowing through the first battery pack and the second battery pack) smaller than the effective value of the first current threshold. value to reduce the risk of damage to the first battery pack and the second battery pack.
  • the heating method further includes the following steps:
  • Step 81 If the temperatures of the first battery pack and the second battery pack are greater than or equal to the first temperature threshold, control the second switch to turn off, and control the first switch to turn on after the second switch is turned off for a predetermined time.
  • the heating process of the first battery pack and the second battery pack it is necessary to detect the temperature of the first battery pack and the second battery pack in real time, so as to reduce the possibility of damage to the first battery pack and the second battery pack due to overheating.
  • the temperatures of the first battery pack and the second battery pack reach the first temperature threshold, the heating is completed.
  • firstly control the second switch to be turned off, so as to disconnect the connection with the input power supply and stop heating.
  • the pressure difference between the first battery pack and the second battery pack can be reduced to less than the first voltage difference threshold within the predetermined time when the second switch is turned off. And control the first switch to turn on after the second switch is turned off for a predetermined time.
  • the heating process of the first battery pack and the second battery pack is completed, and the first battery pack and the second battery pack can be used as power sources to provide a working voltage for the load.
  • FIG. 9 shows the temperature change process of the first battery pack and the second battery pack during the heating process of the first battery pack and the second battery pack using the heating method provided by the present application.
  • the first battery pack and the second battery pack are composed of the same battery cells in the same number, so that the temperature change curve of the first battery pack is the same as the temperature change curve of the second battery pack.
  • the curve L1 may be the temperature change curve of the first battery pack, or the temperature change curve of the second battery pack.
  • the abscissa represents time, and the unit is minutes (min); the ordinate represents temperature, and the time is Celsius (° C.).
  • the first battery pack is taken as an example for description. As shown in Figure 9, the initial temperature of the first battery pack was about 29°C. At 0.5 min, the first switch is controlled to be turned off, and the second switch is controlled to be turned on and off by a control signal having a duty ratio.
  • the input power supply outputs current to the first battery pack, so that the first battery pack is heated through its internal resistance, and the temperature of the first battery pack begins to rise. And because the internal resistance of the first battery pack decreases as the temperature rises, the temperature rise rate tends to be gentle gradually, that is, the slope of the curve L1 presents a gradually decreasing trend. Until the 12th minute or so, when the temperature of the first battery pack is greater than or equal to the first temperature threshold, the second switch is controlled to be turned off to disconnect the input power, stop heating the first battery pack, and the temperature of the first battery pack drops again .
  • the heating process of the first battery pack and the second battery pack can be realized through the heating method provided in the embodiment of the present application.
  • the input power may be a low-voltage power source or an AC power source, such as a grid power source, which can be applied to many application scenarios and has better practicability.
  • the heating system is applied in an electric vehicle, and the first battery pack, the second battery pack and the first switch form a battery pack.
  • the battery pack also includes a battery management system (Battery Management System, BMS), and the electric vehicle also includes a vehicle controller (Vehicle Control Unit, VCU), that is, the control unit in the above embodiment includes a BMS and a VCU.
  • BMS Battery Management System
  • VCU Vehicle Controller Unit
  • the BMS can collect status information of the battery pack, such as battery temperature, state of charge (SOC), voltage signal, current signal, etc., and determine whether the battery pack needs to be heated according to the status information.
  • the BMS can send a heating request signal to the VCU.
  • the VCU determines whether to turn on the heating system to heat the battery pack.
  • the BMS controls the first switch to be turned off, and the VCU controls the second switch to be turned on and off at a preset duty cycle to heat the battery pack.
  • the VCU can control the second switch to turn off, and send a stop heating signal to the BMS, so that the BMS controls The first switch is turned on. That is, the VCU controls the heating system to stop the heating process of the battery pack.
  • the BMS of the battery pack can also monitor whether the temperature of the battery pack is abnormal.
  • the BMS can send information about the abnormal temperature to the VCU, and the VCU controls the heating system to stop the heating process of the battery pack.
  • FIG. 10 shows a schematic structural diagram of a heating device provided by an embodiment of the present application.
  • the heating device 1000 is applied to a heating system.
  • the structure of the heating system can refer to the above-mentioned specific descriptions for FIGS. 2 to 5 . I won't go into details here.
  • the heating device 1000 includes: a switch state switching unit 1001 .
  • the switch state switching unit 1001 is configured to control the switch state of the first switch and the second switch to heat the first battery pack and the second battery pack if a heating request signal is received, wherein the switch state includes on or off.
  • the above-mentioned product can execute the method provided by the embodiment of the present application shown in FIG. 6 , and has corresponding functional modules and beneficial effects for executing the method.
  • FIG. 6 For technical details not described in detail in this embodiment, refer to the method provided in the embodiment of this application.
  • FIG. 11 shows a schematic structural diagram of a battery management system provided by an embodiment of the present application.
  • the battery management system 1100 includes one or more processors 1101 and a memory 1102 .
  • one processor 1101 is taken as an example in FIG. 11 .
  • the processor 1101 and the memory 1102 may be connected through a bus or in other ways, and connection through a bus is taken as an example in FIG. 11 .
  • Memory 1102 as a non-volatile computer-readable storage medium, can be used to store non-volatile software programs, non-volatile computer-executable programs and modules, such as program instructions/programs corresponding to the heating method in the embodiment of the present application Module (for example, each unit described in Figure 10).
  • the processor 1101 executes various functional applications and data processing of the heating device by running the non-volatile software programs, instructions and modules stored in the memory 1102, that is, realizes the heating method in the above method embodiment and the above device embodiment functions of each unit.
  • the memory 1102 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • the storage 1102 may optionally include storages that are remotely located relative to the processor 1101, and these remote storages may be connected to the processor 1101 through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the program instructions/modules are stored in the memory 1102, and when executed by the one or more processors 1101, perform the heating method in any of the above-mentioned method embodiments, for example, perform the above-described Fig. 6 and Fig. 7 And each step shown in Fig. 8; Also can realize the function of each unit described in Fig. 10.
  • An embodiment of the present application also provides an electrical device, including the heating system in any one of the above embodiments.
  • the electrical equipment is an electric vehicle.
  • the embodiment of the present application also provides a non-volatile computer storage medium, the computer storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors, which can make the above-mentioned one or more processors
  • the heating method in any of the above method embodiments may be performed. For example, the steps shown in Fig. 6, Fig. 7 and Fig. 8 described above are executed; the functions of the units described in Fig. 10 can also be realized.
  • the device or device embodiments described above are only illustrative, and the unit modules described as separate components may or may not be physically separated, and the components shown as modular units may or may not be physical units , which can be located in one place, or can be distributed to multiple network module units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each embodiment can be implemented by means of software plus a general hardware platform, and of course also by hardware.
  • the essence of the above technical solutions or the part that contributes to related technologies can be embodied in the form of software products, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, disk , optical disc, etc., including several instructions for a computer device (which may be a personal computer, server, or network device, etc.) to execute the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供一种加热系统、加热方法及装置、用电设备,加热系统包括第一输入端、第二输入端、第一电池组、第二电池组、第一开关、第二开关与控制单元,其中,第一输入端与第二输入端用于连接外部的输入电源。第一开关连接于第一电池组的第一端与第二电池组的第一端之间,第一电池组的第二端与第二电池组的第二端连接,第二开关连接于第一输入端与第二电池组的第一端之间,第二输入端与第一电池组的第一端连接。控制单元与第一开关以及第二开关连接,控制单元用于控制第一开关与第二开关的导通或断开,以通过输入电源为第一电池组与第二电池组加热。通过上述方式,能够对加热电源的要求较低,实用性较佳。

Description

一种加热系统、加热方法及装置、用电设备
相关申请的交叉引用
本申请要求享有于2021年9月28日提交的名称为“一种加热系统、加热方法及装置、用电设备”的中国专利申请202111144655.2的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种加热系统、加热方法及装置、用电设备。
背景技术
随着能源问题和环境问题日益严峻,国家对新能源的大力扶持,以及电池技术的日益成熟,电动车辆已经成为未来汽车工业发展新方向。电动车辆的续航里程成为影响电动车辆普及的重要因素。作为关键零部件的电池,是电动车辆的主要动力来源,其产品质量的稳定可靠至关重要。
但是低温环境下电池的使用会受到一定限制。具体地,电池在低温环境下的放电容量会严重衰退,以及电池在低温环境下无法充电。因此,为了能够正常使用电池,需要在低温环境下为电池进行加热。
然而,在相关技术中,通常需要采用特定的电源才能够实现对电池的加热,实用性较差。
发明内容
本申请旨在提供一种加热系统、加热方法及装置、用电设备,能够对加热电源的要求较低,实用性较佳。
为实现上述目的,第一方面,本申请提供一种加热系统,加热系统包括第一输入端、第二输入端、第一电池组、第二电池组、第一开关、第二开关与控制单元,其中,第一输入端与第二输入端用于连接外部的输入电源。第一开关连接于第一电池组的第一端与第二电池组的第一端之间,第一电池组的第二端与第二电池组的第二端连接,第二开关连接于第一输入端与第二电池组的第一端之间,第二输入端与第一电池组的第一端连接。其中,第一电池组的第一端与第二电池组的第一端的极性相同,第一电池组的第二端与第二电池组的第二端的极性相同。控制单元与第一开关以及第二开关连接,控制单元用于控制第一开关与第二开关导通或断开,以通过输入电源为第一电池组与第二电池组加热。
通过控制第一开关与第二开关的导通或断开,能够实现在对第一电池组与第二电池组充电时,使第一电池组与第二电池组反接。此时,第一电池组两端的电压与第二电池组两端的电压互相抵消,即第一电池组与第二电池组的整体电压为0或接近为0。因此,在该种情况下,通过低压的电源或电网均能够实现第一电池组与第二电池组的加热过程,即对输入电源的要求较低,从而该加热系统可适用于多种应用场景,实用性较佳。同时,相对于相关技术中采用特定电源的方案,本申请的实现难度较低,且成本也较低。此外,还能够实现同时对第一电池组与第二电池组进行加热,有利于提高加热的效率。
在一种可选的方式中,第二电池组的第一端通过第一主开关与负载的第一端连接,第二电池组的第二端通过第二主开关与负载的第二端连接。第一主开关为第二开关。
在电池组与负载之间通常设置有第一主开关与第二主开关,以控制负载的得电或失电。继而,当该加热系统与负载连接时,可采用该第一主开关作为第二开关,能够减少第二开关,有利于节约成本。
在一种可选的方式中,第一电池组两端的电压与第二电池组两端的电压相等。
通过将第一电池组的电压与第二电池组的电压设置为相等,可使第一电池组与第二电池组 在反接后,第一电池组两端的电压与第二电池组两端的电压互相抵消,即第一电池组与第二电池组的整体电压为0。在该种情况下,通过低压的电源或电网均能够实现第一电池组与第二电池组的加热过程,即对输入电源的要求较低,从而该加热系统可适用于多种应用场景,实用性较佳。
在一种可选的方式中,第一电池组与第二电池组均包括N个电池包。第一电池组中的N个电池包并联,第二电池组中的N个电池包并联。
当第一电池组与第二电池组中的各电池包均为并联时,第一电池组的电压与第二电池组的电压即为一个电池包的电压。从而,通过设置各电池包的电压相同或接近相同,有助于在对第一电池组与第二电池组加热时,使第一电池组与第二电池组的整体电压为0或接近于0,从而能够降低对输入电源的要求,有利于提高实用性。
在一种可选的方式中,控制单元具体用于:控制第一开关断开,并通过具有占空比的控制信号控制第二开关导通与断开,以通过输入电源为第一电池组与第二电池组加热。其中,具有占空比的控制信号用于使输入电源的输出电流的有效值小于第一电流阈值的有效值。
在第一开关断开,且第二开关以预先设置的占空比进行导通与断开时,第一电池组与第二电池组均有电流流过,第一电池组与第二电池组由于自身内阻特性,第一电池组与第二电池组内部产热升温,从而实现了加热过程。同时,控制流过第一电池组与第二电池组的电流小于第一电流阈值的有效值,能够对第一电池组与第二电池组起到保护作用,降低第一电池组与第二电池组可能出现燃爆等风险,有利于延长第一电池组与第二电池组的使用寿命。
在一种可选的方式中,在通过输入电源为第一电池组与第二电池组加热之后,控制单元还用于:若第一电池组与第二电池组的温度均大于或等于第一温度阈值,则控制第二开关断开,并在第二开关断开预定时间后,控制第一开关导通。
在第一电池组与第二电池组加热过程中,需实时检测第一电池组与第二电池组的温度。在第一电池组与第二电池组的温度达到第一温度阈值时,加热完成,此时应控制第二开关断开,以断开与输入电源的连接。继而,在第二开关断开预定时间内,第一电池组与第二电池组之间的压差降低至小于第一压差阈值。并在在第二开关断开预定时间后再控制第一开关导通。从而,可减少可能产生的环路电流,以对加热系统中各电器元件起到保护作用,有利于提高加热系统工作的稳定性。
第二方面,本申请提供一种加热方法,应用于加热系统,加热系统包括第一电池组、第二电池组、第一开关、第二开关、第一输入端与第二输入端,其中,第一输入端与第二输入端用于连接外部的输入电源。第一开关连接于第一电池组的第一端与第二电池组的第一端之间,第一电池组的第二端与第二电池组的第二端连接,第二开关连接于第一输入端与第二电池组的第一端之间,第二输入端与第一电池组的第一端连接。其中,第一电池组的第一端与第二电池组的第一端的极性相同,第一电池组的第二端与第二电池组的第二端的极性相同。方法包括:若接收到加热请求信号,控制第一开关与第二开关的开关状态,以对第一电池组与第二电池组加热,其中,开关状态包括导通或断开。
在接收到加热请求信号后,才进行加热,能够减少误加热的几率,有利于对第一电池组与第二电池组起到保护作用,以延长第一电池组与第二电池组的使用寿命。继而,通过控制第一开关与第二开关切换开关状态,能够实现在对第一电池组与第二电池组充电时,使第一电池组与第二电池组反接。在该种情况下,通过低压的电源或电网均能够实现第一电池组与第二电池组的加热过程,从而该加热系统可适用于多种应用场景,实用性较佳。同时,相对于相关技术中采用特定电源的方案,本申请的实现难度较低,成本也较低。另外,还能够实现同时对第一电池组与第二电池组进行加热,有利于提高加热的效率。
在一种可选的方式中,控制第一开关与第二开关的开关状态,以对为第一电池组与第二电池组加热,包括:控制第一开关断开,并通过具有占空比的控制信号控制第二开关导通与断开,以对为第一电池组与第二电池组加热。其中,具有占空比的控制信号用于使输入电源的输出电流的有效值小于第一电流阈值的有效值。
在第一开关断开,且第二开关以占空比进行导通与断开时,第一电池组与第二电池组均有电流流过,第一电池组与第二电池组由于自身内阻特性,第一电池组与第二电池组内部产热升温, 从而实现了加热过程。同时,控制流过第一电池组与第二电池组的电流的有效值小于第一电流阈值的有效值,能够对第一电池组与第二电池组起到保护作用,降低第一电池组与第二电池组出现燃爆等存在的风险,有利于延长第一电池组与第二电池组的使用寿命。
在一种可选的方式中,在对第一电池组与第二电池组加热之后,方法还包括:若第一电池组与第二电池组的温度均大于或等于第一温度阈值,则控制第二开关断开,并在第二开关断开预定时间后,控制第一开关导通。
在第一电池组与第二电池组加热过程中,需实时检测第一电池组与第二电池组的温度。在第一电池组与第二电池组的温度达到第一温度阈值时,加热完成,此时应控制第二开关断开,以断开与输入电源的连接。继而,在第二开关断开预定时间内,第一电池组与第二电池组之间的压差降低至小于第一压差阈值。并在第二开关断开预定时间后再控制第一开关导通。从而,可减少可能产生的环路电流,以对加热系统中各电器元件起到保护作用,有利于提高加热系统工作的稳定性。
第三方面,本申请提供一种用电设备,包括:如上所述的加热系统。
在一种可选的方式中,用电设备为电动车辆。
本申请实施例的有益效果是:本申请所提供的加热系统通过在第一电池组的第一端与第二电池组的第一端之间设置第一开关,以及在第一输入端与第二电池组的第一端之间设置第二开关。进而,通过控制第一开关与第二开关的导通或断开,能够实现在对第一电池组与第二电池组充电时,使第一电池组与第二电池组反接。此时,第一电池组两端的电压与第二电池组两端的电压互相抵消,则通过低压的电源或电网即可实现第一电池组与第二电池组的加热过程,从而该加热系统可适用于多种应用场景,实用性较佳。同时,相对于相关技术中采用特定电源的方案,本申请的实现难度较低,且成本也较低。此外,还能够实现同时对第一开关与第二开关进行加热,有利于提高加热的效率。
附图说明
通过阅读对下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在全部附图中,用相同的附图标号表示相同的部件。在附图中:
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的加热系统的结构示意图;
图3是本申请另一实施例公开的加热系统的结构示意图;
图4是本申请又一实施例公开的加热系统的结构示意图;
图5是本申请又一实施例公开的加热系统的结构示意图;
图6是本申请一实施例公开的加热方法的流程图;
图7是本申请一实施例公开的图6中示出的步骤61的一实施方式的示意图;
图8是本申请一实施例公开的对第一电池组与第二电池组加热之后所执行的方法步骤的流程图;
图9是本申请一实施例公开的加热曲线的示意图;
图10是本申请一实施例公开的加热装置的结构示意图;
图11是本申请另一实施例公开的电池管理系统的结构示意图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
近几年,新能源汽车行业迎来了爆发式增长。电池是电动汽车的核心,也是汽车工程与电力工程技术的综合体现。
而由于动力电池的电化学特性,在低温环境下,动力电池的充放电能力被大大限制,严重影响客户冬季用车体验。因此,为了能够正常使用动力电池,需要在低温环境下为动力电池进行加热。
本申请的发明人在实现本申请的过程中,发现:目前,常见的加热方案为利用外部高压电源,让电池在充电与放电之间快速变换,加热电流流过电池后,电池由于自身内阻特性,电池内部直接产热升温,从而实现电池加热过程。
然而,由于电池两端也存在电压,因此对外部高压电源的要求较高,才能够实现对电池的充电过程。换言之,需要设置特定的电源才能够完成电池的加热过程,即只适用于特定的应用场景,导致实用性较差。
基于此,申请人设计了一种加热系统,该加热系统能够在降低对加热电源的要求的基础上,比如能够以低压电源或者电网作为加热电源,实现对电池的加热过程。因此,该加热系统能够适用于多种应用场景,实用性较佳。
本申请实施例中的电池可以为固态电池、锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在此不做限定。从规模而言,本申请实 施例中的电池可以为电芯单体,也可以是电池模组或电池包,在此不做限定。从应用场景而言,该电池可应用于汽车、轮船等动力装置内。例如,可以应用于动力汽车,以为动力汽车的电机供电,作为电动汽车的动力源。该电池还可为电动汽车中的其他用电器件供电,比如为车内空调、车载播放器等供电。
本申请实施例提供一种包括本申请实施例中的加热系统的用电设备。用电设备可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电设备为车辆10为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆的结构示意图。车辆可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆的内部设置有插座11与本申请任一实施例中的加热系统。其中,插座11用于接入输入电源,该输入电源可以为低压的电源或者电网等,并将输入电源传输至加热系统,以通过输入电源为加热系统中的电池包12加热。
该加热系统包括2K个电池包12,其中,2K个电池包12中的K个电池包12并联,另外K个电池包12并联,K为正整数。电池包12可以设置在车辆的底部或头部或尾部。电池包12包括至少一个电芯,电芯用于充电或放电,且可以采用可循环再充电的方式反复充电。电池包12可以用于车辆10的供电,例如,电池包12可以作为车辆10的操作电源。
在本申请一些实施例中,电池包12不仅可以作为车辆10的操作电源,还可以作为车辆10的驱动电源,代替或部分地代替燃油或天然气为车辆10提供驱动动力。
本申请并不限定加热系统的使用场景,本申请实施例的加热系统可以在任何需要的情况下,实现对电池包12的加热过程。
如图2所示,本申请实施例的加热系统100包括第一输入端101、第二输入端102、第一电池组103、第二电池组104、第一开关105、第二开关106与控制单元107。其中,第一输入端101与第二输入端102用于连接外部的输入电源200,第一开关105连接于第一电池组103的第一端与第二电池组104的第一端之间,第一电池组103的第二端与第二电池组104的第二端连接,第二开关106连接于第一输入端101与第二电池组104的第一端之间,第二输入端102与第一电池组103的第一端连接,控制单元107与第一开关105以及第二开关106连接。其中,第一电池组103与第二电池组104均包括至少一个电芯。
其中,第一电池组103的第一端与第二电池组104的第一端的极性相同,第一电池组103的第二端与第二电池组104的第二端的极性相同。具体地,若第一电池组103的第一端为正极,第一电池组103的第二端为负极,则第二电池组104的第一端为正极,第二电池组104的第二端为负极;反之,若第一电池组103的第一端为负极,第一电池组103的第二端为正极,则第二电池组104的第一端为负极,第二电池组104的第二端为正极。
请一并参阅图2与图3,其中,“+”表示正极,“-”表示负极。在图2中以第一电池组103的第一端为正极,第一电池组103的第二端为负极,且第二电池组104的第一端为正极,第二电池组104的第二端为负极为例。在图3中以第一电池组103的第一端为负极,第一电池组103的第二端为正极,且第二电池组104的第一端为负极,第二电池组104的第二端为正极为例。
以下以图2所示的加热系统为例进行说明,而图3所示的加热系统的工作原理与图2所示加热系统相同,这里不再赘述。
在图2中,第一开关105与第二开关106均受控于控制单元107,即控制单元107可输出控制信号控制第一开关105导通或断开,以及控制第二开关106导通或断开,以通过输入电源200为第一电池组103与第二电池组104加热。
具体地,当第一开关105断开,且第二开关106闭合时,输入电源200、第一输入端101、第二开关106、第二电池组104、第一电池组103以及第二输入端102形成了回路,输入电源 200输出电流,且该电流流过第一电池组103与第二电池组104。由于第一电池组103与第二电池组104存在内阻,则第一电池组103与第二电池组104的内部因流过电流而产热升温,第一电池组103与第二电池组104处于被加热状态。
继而,当第一开关105导通,且第二开关106断开时,输入电源200与第一电池组103以及第二电池组104之间的回路被断开,第一电池组103与第二电池组104上的电流减小为0,通过输入电源200为第一电池组103与第二电池组104加热的过程结束。此时,第一电池组103与第二电池组104加热完成,第一电池组103与第二电池组104可作为电源用以为负载供电。
在此实施例中,在对第一电池组103与第二电池组104加热的过程中,第一电池组103与第二电池组104处于反接状态,即第一电池组103两端的电压与第二电池组104两端的电压互相抵消。亦即,第一电池组103与第二电池组104整体的电压为0或接近为0,在该种情况下,可将第一电池组103与第二电池组104的整体等效为电阻。从而,通过低压的电源或电网即可实现对第一电池组103与第二电池组104进行加热,而无需如相关技术中采用特定的电源,可见该加热系统100对输入电源200的要求较低。因此,该加热系统100能够适用于较多的应用场景,实用性较佳。并且,也降低了实现难度与成本。另外,由于能够实现同时对第一电池组103与第二电池组104进行加热,也有利于提高加热的效率。
在一实施例中,第一电池组103两端的电压与第二电池组104两端的电压相等。
通过将第一电池组103的电压与第二电池组104的电压设置为相等,可使第一电池组103与第二电池组104在反接后,第一电池组103两端的电压与第二电池组104两端的电压互相抵消,即第一电池组103与第二电池组104的整体电压为0。在该种情况下,通过低压的电源或电网均能够实现第一电池组103与第二电池组104的加热过程,即对输入电源的要求较低,从而该加热系统可适用于多种应用场景,实用性较佳。
需要说明的是,本申请实施例中的各个开关(比如第一开关105与第二开关106)均可以为任意的可起到开关作用的电力电子元器件,例如场效应晶体管MOSFET、绝缘栅双极晶体管IGBT、晶闸管SCR、门极可关断晶闸管GTO、电力晶体管GTR等类型,也可以是任意的常用开关,例如接触器、继电器、延时开关、光电开关、轻触开关、接近开关等类型,也可以是上述类型的多种组合形式。
在一实施例中,如图4所示,第二电池组104的第一端通过第一主开关400与负载300的第一端连接,第二电池组104的第二端通过第二主开关500与负载300的第二端连接。在该实施例中,可将第一主开关400作为图2或图3中所示的第二开关106使用,即第一主开关400可起到第二开关106的作用。其中,由上述实施例可知,第二开关106连接于第一输入端101与第二电池组104的第一端之间,则第一主开关400也应连接于第一输入端101与第二电池组104的第一端之间。
应理解,在此实施例中,若第一电池组103的第一端与第二电池组104的第一端均为正极,且第一电池组103的第二端与第二电池组104的第二端均为负极,则第一主开关400应连接的是负载的正极。而若第一电池组103的第一端与第二电池组104的第一端均为负极,且第一电池组103的第二端与第二电池组104的第二端均为正极,则第一主开关400应连接的是负载的负极。
当加热系统100与负载300连接时,通常在加热系统100与负载300之间设置有第一主开关400与第二主开关500,以控制负载300的得电或失电。继而,可采用该第一主开关400作为上述实施例中的第二开关106,以减少第二开关106,有利于降低加热系统100的成本。
在一实施例中,可将该加热系统100应用于新能源汽车。在新能源汽车中设置有电池(对应上述实施例中的第一电池组103与第二电池组104),且在电池的正极与负载的正极之间设置有主正开关,在电池的负极与负载的负极之间设置有主负开关。在此实施例中,主正开关可对应上述实施例中的第一主开关400,则主负开关对应上述实施例中的第二主开关500,或主负开关也可对应上述实施例中的第一主开关400,则主正开关对应上述实施例中的第二主开关500。从而,可利用新能源汽车上自带的主正开关或主负开关作为第二开关106使用,以降低成本。
需要说明的是,如图2、图3或图4所示的加热系统100的硬件结构仅是一个示例,并 且,加热系统100可以具有比图中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置,图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
例如,在一实施例中,请一并参阅图2与图5,第一电池组103与第二电池组104均包括N个电池包,任一电池包包括至少一个电芯,N为正整数。其中,第一电池组103包括电池包A1、电池包A2…电池包AN,第二电池组104包括电池包B1、电池包B2…电池包BN。
具体地,电池包A1、电池包A2…电池包AN并联连接,电池包B1、电池包B2…电池包BN并联连接。此时,第一电池组103两端电压即为电池包A1、电池包A2…电池包AN中任一电池包两端的电压,第二电池组104两端的电压即为电池包B1、电池包B2…电池包BN中任一电池包两端的电压。从而,通过设置各电池包的电压相同或接近相同,有助于在对第一电池组103与第二电池组104加热时,使第一电池组103与第二电池组104的整体电压为0或接近于0,从而能够降低对输入电源的要求,有利于提升实用性。
又如,在另一实施例中,第一电池组103与第二电池包104为一个电池包下的两个电压相等的电芯模组集合,模组集合可以是多个模组串联或多个模组并联。再如,在又一实施例中,第一电池组103与第二电池组104还可以为两个电压相等的电芯集合,电芯集合可以是多个电芯串联或多个电芯并联。
在一实施例中,请继续参阅图5,控制单元107具体用于控制第一开关105断开,并通过具有占空比的控制信号控制第二开关106导通与断开,以通过输入电源200为第一电池组103与第二电池组104加热。
其中,第一开关105的初始状态为导通,第二开关106的初始状态为断开。占空比为预先设置的占空比,且该占空比可由第一电流阈值的有效值确定,第一电流阈值的有效值为预先设置的电流有效值。在一实施方式中,第一电流阈值的有效值可对应在第一电池组103与第二电池组104加热过程中,电流可达到的最大值的有效值。继而,根据第一电流阈值的有效值获得其对应的占空比,并记为最大占空比。则在本实施例中,通过设置占空比小于最大占空比,可降低第一电池组103与第二电池组104因电流过大而被损坏的风险,以对第一电池组103与第二电池组104起到保护作用,有利于延长第一电池组103与第二电池组104的使用寿命。
综上可得,具有占空比的控制信号可用于使输入电源200的输出电流(即流过第一电池组103与第二电池组104的电流)的有效值小于第一电流阈值的有效值,以对第一电池组103与第二电池组104起到保护作用。
可以理解的是,在一实施例中,第一电流阈值的有效值可以为用户根据实际应用情况预先设置的电流有效值,比如,在实际应用中,可一并结合该加热系统中各个电器元件可流过的最大电流的有效值以确定第一电流阈值,以对各个电器元件起到保护作用。在另一实施例,也可以为控制单元107根据电池的类型或材料,而自动设置的电流有效值,本申请实施例对此不作限制。
在一实施例中,在通过输入电源200为第一电池组103与第二电池组104加热之后,控制单元107还用于:若第一电池组103与第二电池组104的温度均大于或等于第一温度阈值,则控制第二开关106断开,并在第二开关106断开预定时间后,控制第一开关105导通。
其中,第一温度阈值可以为用户预先设置的温度值,也可以为控制单元107根据电池的类型或材料,而自动设置的温度值,本申请实施例对此不作限制。
在第一电池组103与第二电池组104加热过程中,需实时检测第一电池组103与第二电池组104的温度,以降低因温度过高而损坏第一电池组103与第二电池组104的几率。在第一电池组103与第二电池组104的温度达到第一温度阈值时,加热完成。此时,首先控制第二开关106断开,以断开与输入电源200的连接。
继而,在第二开关106断开预定时间内,第一电池组103与第二电池组104之间的压差能够降低至小于第一压差阈值。并在第二开关106断开预定时间之后再控制第一开关105导通。从而,完成了第一电池组103与第二电池组104的加热过程,第一电池组103与第二电池组104可作 为电源为负载提供工作电压。其中,第一时长可根据具体的应用场景进行设定,本申请实施例对此不作限定。例如,在一实施方式中,第一时长可设置为10分钟。
其中,第一压差阈值可根据电池的材料或类型,和/或具体的应用场景进行设置,本申请实施例对此不作限制。比如,在一实施例,当第一电池组103与第二电池组104之间的环路电流对加热系统中各电器元件的造成影响时,将该环路电流对应的第一电池组103与第二电池组104之间的压差设置为第一压差阈值。在此实施例中,通过使第一电池组103与第二电池组104之间的压差降低至小于第一压差阈值,可使可能产生的环路电流对各电器元件的影响较小或无影响,以对加热系统中各电器元件起到保护作用,有利于提高加热系统工作的稳定性。
请参阅图6,图6为本申请实施例提供的加热方法的流程图。这里,加热系统的结构可以参照上述针对图2至图5的具体描述,这里不再赘述。该加热方法包括以下步骤:
步骤61:若接收到加热请求信号,控制第一开关与第二开关的开关状态,以对第一电池组与第二电池组加热。
其中,开关状态包括导通或断开。
在一实施例中,加热请求信号可以为人为给定的信号,即用户通过操作按钮等方式发送加热请求信号。在另一实施例中,加热请求信号也可以为控制单元检测到第一电池组或第二电池组的温度较低,需要加热时主动输出的加热请求信号。同时,在接收到加热请求信号后,才进行加热,能够减少误加热的几率,有利于对第一电池组与第二电池组起到保护作用,以延长第一电池组与第二电池组的使用寿命。在一实施方式中,若该加热系统设置于电动车辆中,在接收到加热请求信号后,可先检测第一主开关、第二主开关以及输入电源的当前状态,并在确定第一主开关以及第二主开关处于断开状态以及该加热系统已接入输入电源后,再执行对第一电池组与第二电池组的加热过程。
在对第一电池组与第二电池组加热的过程中,第一电池组与第二电池组处于反接状态,第一电池组两端的电压与第二电池组两端的电压互相抵消。即,第一电池组与第二电池组整体的电压为0或接近为0,在该种情况下,可将第一电池组与第二电池组的整体等效为电阻。从而,通过低压的电源或电网即可实现对第一电池组与第二电池组进行加热,而无需如相关技术中采用特定的电源,可见该加热系统对输入电源的要求较低。因此,该加热系统能够适用于较多的应用场景,实用性较佳。并且,也降低了实现难度与成本。另外,由于能够实现同时对第一电池组与第二电池组进行加热,也与利于提高加热的效率。
在一实施例中,如图7所示,步骤61中控制第一开关与第二开关的开关状态,以对第一电池组与第二电池组加热的过程包括如下步骤:
步骤71:控制第一开关断开,并通过具有占空比的控制信号控制第二开关导通与断开,以对第一电池组与第二电池组加热。
其中,第一开关的初始状态为导通,第二开关的初始状态为断开。占空比为预先设置的占空比,且该占空比可由第一电流阈值的有效值确定,第一电流阈值的有效值为预先设置的电流有效值。
在一实施方式中,第一电流阈值的有效值可对应在第一电池组与第二电池组的加热过程中,电流可达到的最大值的有效值。并可通过该第一电流阈值的有效值获得其对应的占空比,并记为最大占空比。从而在实际应用中,通过将占空比设置为小于该最大占空比,能够降低第一电池组与第二电池组因电流过大而被损坏的风险,以对第一电池组与第二电池组起到保护作用,有利于延长第一电池组与第二电池组的使用寿命。
综上,在此实施例中,具有占空比的控制信号可用于使输入电源的输出电流(即流过第一电池组与第二电池组的电流)的有效值小于第一电流阈值的有效值,以降低第一电池组与第二电池组被损坏的风险。
在一实施例中,如图8所示,在执行步骤61或步骤71中对第一电池组与第二电池组加热之后,加热方法还包括以下步骤:
步骤81:若第一电池组与第二电池组的温度均大于或等于第一温度阈值,则控制第二开关断开,并在第二开关断开预定时间后,控制第一开关导通。
在第一电池组与第二电池加热过程中,需实时检测第一电池组与第二电池组的温度,以降低因温度过高而损坏第一电池组与第二电池组的几率。在第一电池组与第二电池组的温度达到第一温度阈值时,加热完成。此时,首先控制第二开关断开,以断开与输入电源的连接,停止加热。
继而,在第二开关断开预定时间内,可使第一电池组与第二电池组之间的压差降低至小于第一压差阈值。并在第二开关断开预定时间后再控制第一开关导通。从而,完成了第一电池组与第二电池组的加热过程,第一电池组与第二电池组可作为电源为负载提供工作电压。
在一实施例中,请参阅图9,图9为利用本申请所提供的加热方法对第一电池组与第二电池组加热的过程中,第一电池组与第二电池组的温度变化过程。其中,第一电池组与第二电池组为数量相同的同一种电芯组成,以使第一电池组的温度变化曲线与第二电池组的温度变化曲线相同。即在图9中,曲线L1可为第一电池组的温度变化曲线,也可以为第二电池组的温度变化曲线。在图9中,横坐标表示时间,单位为分钟(min);纵坐标表示温度,时间为摄氏度(℃)。
以第一电池组为例进行说明。如图9所示,第一电池组的初始温度约为29℃。在第0.5min,通过控制第一开关断开,并通过具有占空比的控制信号控制第二开关导通与断开。输入电源对第一电池组输出电流,以使第一电池组通过其内阻加热,第一电池组的温度开始上升。并且由于温度升高会导致第一电池组的内阻降低,所以温度上升的速率处于逐渐趋于平缓的趋势,即曲线L1的斜率呈现逐渐减小的趋势。直至第12min左右,第一电池组的温度大于或等于第一温度阈值,则控制第二开关断开,以断开输入电源,停止对第一电池组加热,第一电池组的温度又再次降低。
在此实施例中,通过本申请实施例所提供的加热方法可实现第一电池组与第二电池组的加热过程。并且,输入电源可采用低压的电源或者交流电源,例如电网的电源,即能够适用于较多的应用场景,实用性较佳。
在一实施方式中,该加热系统应用于电动车辆中,且第一电池组、第二电池组与第一开关组成电池包。其中,电池包还包括电池管理系统(Battery Management System,BMS),电动车辆还包括整车控制器(Vehicle Control Unit,VCU),即上述实施例中的控制单元包括BMS与VCU。
在该实施方式中,BMS能够采集电池包的状态信息,例如电池温度、荷电状态(State of Charge,SOC)、电压信号、电流信号等,并根据该状态信息确定电池包是否需要加热。当确定需要对电池包进行加热时,BMS可以向VCU发送加热请求信号。VCU根据BMS发送的加热请求信号,确定是否开启加热系统对电池包进行加热。
若VCU确定开启加热系统对电池包进行加热,则BMS控制第一开关断开,且VCU控制第二开关以预先设置的占空比进行导通与断开,以对电池包进行加热。
在电池包加热的过程中,如果电池包中的第一电池组与第二电池组的温度已满足要求,则VCU可以控制第二开关断开,并向BMS发送停止加热信号,以使BMS控制第一开关导通。即VCU控制加热系统停止电池包的加热过程。
同时,在电池包加热的过程中,电池包的BMS还可以监测电池包的温度是否存在异常。当电池包12的温度存在异常时,BMS可以向VCU发送温度异常的信息,则VCU控制加热系统停止电池包的加热过程。
请参见图10,其示出了本申请实施例提供的一种加热装置的结构示意图,加热装置1000应用于加热系统,这里,加热系统的结构可以参照上述针对图2至图5的具体描述,这里不再赘述。加热装置1000包括:开关状态切换单元1001。
开关状态切换单元1001用于若接收到加热请求信号,控制第一开关与第二开关的开关状态,以对第一电池组与第二电池组加热,其中,开关状态包括导通或断开。
上述产品可执行图6所示的本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
请参见图11,其示出本申请实施例提供一种电池管理系统的结构示意图。如图11所示,电池管理系统1100包括一个或多个处理器1101以及存储器1102。其中,图11中以一个处理器1101为例。
处理器1101和存储器1102可以通过总线或者其他方式连接,图11中以通过总线连接为例。
存储器1102作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的加热方法对应的程序指令/模块(例如,附图10所述的各个单元)。处理器1101通过运行存储在存储器1102中的非易失性软件程序、指令以及模块,从而执行加热装置的各种功能应用以及数据处理,即实现上述方法实施例中的加热方法以及上述装置实施例的各个单元的功能。
存储器1102可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器1102可选包括相对于处理器1101远程设置的存储器,这些远程存储器可以通过网络连接至处理器1101。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述程序指令/模块存储在所述存储器1102中,当被所述一个或者多个处理器1101执行时,执行上述任意方法实施例中的加热方法,例如,执行以上描述的图6、图7和图8所示的各个步骤;也可实现附图10所述的各个单元的功能。
本申请实施例还提供一种用电设备,包括上述任一实施例中的加热系统。
在一实施例中,该用电设备为电动车辆。
本申请实施例还提供了一种非易失性计算机存储介质,计算机存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,可使得上述一个或多个处理器可执行上述任意方法实施例中的加热方法。例如,执行以上描述的图6、图7和图8所示的各个步骤;也可实现附图10所述的各个单元的功能。
以上所描述的装置或设备实施例仅仅是示意性的,其中所述作为分离部件说明的单元模块可以是或者也可以不是物理上分开的,作为模块单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络模块单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用于一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (10)

  1. 一种加热系统,其特征在于,包括:第一输入端与第二输入端,其中,所述第一输入端与所述第二输入端用于连接外部的输入电源;
    第一电池组、第二电池组、第一开关与第二开关,所述第一开关连接于所述第一电池组的第一端与所述第二电池组的第一端之间,所述第一电池组的第二端与所述第二电池组的第二端连接,所述第二开关连接于所述第一输入端与所述第二电池组的第一端之间,所述第二输入端与所述第一电池组的第一端连接,其中,所述第一电池组的第一端与所述第二电池组的第一端的极性相同,所述第一电池组的第二端与所述第二电池组的第二端的极性相同;和
    控制单元,所述控制单元与所述第一开关以及所述第二开关连接,所述控制单元用于控制所述第一开关与所述第二开关导通或断开,以通过所述输入电源为所述第一电池组与所述第二电池组加热。
  2. 根据权利要求1所述的加热系统,其特征在于,所述第二电池组的第一端通过第一主开关与负载的第一端连接,所述第二电池组的第二端通过第二主开关与所述负载的第二端连接;
    所述第一主开关为所述第二开关。
  3. 根据权利要求1所述的加热系统,其特征在于,
    所述第一电池组两端的电压与所述第二电池组两端的电压相等。
  4. 根据权利要求3所述的加热系统,其特征在于,
    所述第一电池组与所述第二电池组均包括N个电池包,其中,N为正整数;
    所述第一电池组中的N个电池包并联,所述第二电池组中的N个电池包并联。
  5. 根据权利要求1所述的加热系统,其特征在于,所述控制单元具体用于:
    控制所述第一开关断开,并通过具有占空比的控制信号控制所述第二开关导通与断开,以通过所述输入电源为所述第一电池组与所述第二电池组加热;
    其中,具有占空比的所述控制信号用于使所述输入电源的输出电流的有效值小于第一电流阈值的有效值。
  6. 根据权利要求1-5任意一项所述的加热系统,其特征在于,在所述通过所述输入电源为所述第一电池组与所述第二电池组加热之后,所述控制单元还用于:
    若所述第一电池组与所述第二电池组的温度均大于或等于第一温度阈值,则控制所述第二开关断开,并在所述第二开关断开预定时间后,控制所述第一开关导通。
  7. 一种加热方法,其特征在于,应用于加热系统,所述加热系统包括第一电池组、第二电池组、第一开关、第二开关、第一输入端与第二输入端,其中,所述第一输入端与所述第二输入端用于连接外部的输入电源;
    所述第一开关连接于所述第一电池组的第一端与所述第二电池组的第一端之间,所述第一电池组的第二端与所述第二电池组的第二端连接,所述第二开关连接于所述第一输入端与所述第二电池组的第一端之间,所述第二输入端与所述第一电池组的第一端连接,其中,所述第一电池组的第一端与所述第二电池组的第一端的极性相同,所述第一电池组的第二端与所述第二电池组的第二端的极性相同;
    所述方法包括:
    若接收到加热请求信号,控制所述第一开关与所述第二开关的开关状态,以对所述第一电池组与所述第二电池组加热,其中,所述开关状态包括导通或断开。
  8. 根据权利要求7所述的方法,其特征在于,所述控制所述第一开关与所述第二开关的开关状态,以对所述第一电池组与所述第二电池组加热,包括:
    控制所述第一开关断开,并通过具有占空比的控制信号控制所述第二开关导通与断开,以对所述第一电池组与所述第二电池组加热;
    其中,具有占空比的所述控制信号用于使所述输入电源的输出电流的有效值小于第一电流阈值的有效值。
  9. 根据权利要求7或8所述的方法,其特征在于,在所述对所述第一电池组与所述第二电池组加热之后,所述方法还包括:
    若所述第一电池组与所述第二电池组的温度均大于或等于第一温度阈值,则控制所述第二开关断开,并在所述第二开关断开预定时间后,控制第一开关导通。
  10. 一种用电设备,其特征在于,包括:如权利要求1-6任意一项所述的加热系统。
PCT/CN2022/089535 2021-09-28 2022-04-27 一种加热系统、加热方法及装置、用电设备 WO2023050790A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22747234.7A EP4184664A4 (en) 2021-09-28 2022-04-27 HEATING SYSTEM, HEATING METHOD AND DEVICE AND ELECTRICAL DEVICE
KR1020227027723A KR102521442B1 (ko) 2021-09-28 2022-04-27 가열 시스템, 가열 방법 및 장치, 전기 제품
JP2022548493A JP7430810B2 (ja) 2021-09-28 2022-04-27 加熱システム、加熱方法及び装置、電力消費機器
US18/148,126 US11876160B2 (en) 2021-09-28 2022-12-29 Heating system, heating method and apparatus, and electric device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111144655.2A CN115832525B (zh) 2021-09-28 2021-09-28 一种加热系统、加热方法及装置、用电设备
CN202111144655.2 2021-09-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/148,126 Continuation US11876160B2 (en) 2021-09-28 2022-12-29 Heating system, heating method and apparatus, and electric device

Publications (1)

Publication Number Publication Date
WO2023050790A1 true WO2023050790A1 (zh) 2023-04-06

Family

ID=83688813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089535 WO2023050790A1 (zh) 2021-09-28 2022-04-27 一种加热系统、加热方法及装置、用电设备

Country Status (6)

Country Link
US (1) US11876160B2 (zh)
EP (1) EP4184664A4 (zh)
JP (1) JP7430810B2 (zh)
KR (1) KR102521442B1 (zh)
CN (1) CN115832525B (zh)
WO (1) WO2023050790A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190386352A1 (en) * 2017-06-13 2019-12-19 Lg Chem, Ltd. Battery pack temperature control method and device
US20200212520A1 (en) * 2018-12-29 2020-07-02 Contemporary Amperex Technology Co., Limited Battery heating system and control method thereof
US20200207237A1 (en) * 2018-12-29 2020-07-02 Contemporary Amperex Technology Co., Limited Battery heating system and control method thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100613944B1 (ko) * 2004-09-22 2006-08-21 넥스콘 테크놀러지 주식회사 과열방지회로가 내장된 배터리팩
WO2011015974A1 (en) * 2009-08-02 2011-02-10 Steve Carkner Battery self heating system
WO2011092662A1 (en) * 2010-01-28 2011-08-04 Maxwell Technologies, Inc. Battery self-warming
EP2760105A4 (en) * 2011-09-21 2015-01-28 Toyota Motor Co Ltd VEHICLE BATTERY CONTROL DEVICE AND VEHICLE BATTERY CONTROL METHOD
KR101579564B1 (ko) * 2012-12-10 2015-12-22 주식회사 엘지화학 배터리 모듈 가열 시스템 및 방법
JP6179190B2 (ja) * 2013-05-23 2017-08-16 日本電気株式会社 電源システムおよび電池の予熱方法
DE102015012526A1 (de) * 2015-09-26 2016-04-14 Daimler Ag Verfahren zum Erwärmen einer Batterie einer Schaltungsanordnung sowie Schaltungsanordnung
CN206364156U (zh) * 2016-12-07 2017-07-28 深圳瑞隆新能源科技有限公司 一种高能量密度的锂离子电池组加热系统
US11495839B2 (en) * 2017-10-18 2022-11-08 Textron Innovations, Inc. Internal battery heating
CN109256607B (zh) * 2018-09-29 2020-05-22 清华大学 一种电池组分组交流预热方法
CN113270853B (zh) 2018-12-21 2023-07-14 荣耀终端有限公司 电池保护电路、电池保护板、电池和终端设备
CN110116653B (zh) * 2019-04-19 2024-02-09 清华大学 电动汽车驱动系统、驱动电路及电动汽车电池加热方法
CN110137628B (zh) * 2019-05-06 2021-11-23 奇瑞商用车(安徽)有限公司 一种动力电池自加热系统及其加热方法
CN110277607A (zh) * 2019-06-29 2019-09-24 潍柴动力股份有限公司 一种电池自加热的控制系统及方法
CN110336099B (zh) * 2019-07-22 2021-11-23 北京经纬恒润科技股份有限公司 一种电池自加热方法及装置
KR102335019B1 (ko) * 2019-11-04 2021-12-02 삼성에스디아이 주식회사 배터리 팩 및 배터리 팩의 제어방법
CN111029667B (zh) * 2019-11-08 2021-05-18 华为技术有限公司 电池加热系统、电动汽车和车载系统
CN211700508U (zh) * 2020-03-27 2020-10-16 华霆(合肥)动力技术有限公司 电池加热电路及电动汽车
CN212373187U (zh) * 2020-05-29 2021-01-19 比亚迪股份有限公司 电池自加热装置和车辆
CN212229493U (zh) * 2020-05-29 2020-12-25 比亚迪股份有限公司 电池自加热装置和具有其的车辆
US20220113750A1 (en) * 2020-09-14 2022-04-14 Omnitek Partners Llc Methods and Apparatus For Heating and Self-Heating Of Batteries at Low Temperatures
CN112224092A (zh) * 2020-10-16 2021-01-15 广汽本田汽车有限公司 一种电电混动系统及其电池温度提升方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190386352A1 (en) * 2017-06-13 2019-12-19 Lg Chem, Ltd. Battery pack temperature control method and device
US20200212520A1 (en) * 2018-12-29 2020-07-02 Contemporary Amperex Technology Co., Limited Battery heating system and control method thereof
US20200207237A1 (en) * 2018-12-29 2020-07-02 Contemporary Amperex Technology Co., Limited Battery heating system and control method thereof
CN112706657A (zh) * 2018-12-29 2021-04-27 宁德时代新能源科技股份有限公司 控制方法、电池管理模块、电机控制器及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4184664A4 *

Also Published As

Publication number Publication date
JP2023544071A (ja) 2023-10-20
KR102521442B1 (ko) 2023-04-12
JP7430810B2 (ja) 2024-02-13
KR20230047948A (ko) 2023-04-10
CN115832525A (zh) 2023-03-21
EP4184664A4 (en) 2023-11-01
US11876160B2 (en) 2024-01-16
EP4184664A1 (en) 2023-05-24
US20230146978A1 (en) 2023-05-11
CN115832525B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
EP2675001B1 (en) Apparatus and method for controlling connection of battery packs
US11097634B2 (en) Start control system of vehicle and vehicle having the same
CN105048006A (zh) 电池系统及操作电池系统的方法
GB2506468A (en) Rechargeable battery pack management for a vehicle
US11973364B2 (en) Circuit control method, battery and its controller and management system, and electrical apparatus
WO2023050790A1 (zh) 一种加热系统、加热方法及装置、用电设备
US20220239140A1 (en) Charging method and power conversion apparatus
WO2023082270A1 (zh) 一种电池加热电路及其控制方法、电池与电动车辆
WO2023142086A1 (zh) 电池管理装置、系统
CN219303786U (zh) 电池和车辆
TWI695563B (zh) 電動載具儲電裝置
CN220711161U (zh) 一种锂电池动态均衡系统
US11951871B2 (en) Multi-voltage storage system for an at least partly electrically driven vehicle
CN113595201B (zh) 一种动力电池组充电装置及充电控制方法
KR101816040B1 (ko) 배터리 밸런싱 장치
CN116545052A (zh) 一种供电装置及储能系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022548493

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2022747234

Country of ref document: EP

Effective date: 20220809

NENP Non-entry into the national phase

Ref country code: DE