WO2023246073A1 - V2v充电控制方法、装置、系统、设备和介质 - Google Patents

V2v充电控制方法、装置、系统、设备和介质 Download PDF

Info

Publication number
WO2023246073A1
WO2023246073A1 PCT/CN2022/143726 CN2022143726W WO2023246073A1 WO 2023246073 A1 WO2023246073 A1 WO 2023246073A1 CN 2022143726 W CN2022143726 W CN 2022143726W WO 2023246073 A1 WO2023246073 A1 WO 2023246073A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
vehicle
range extender
discharge
control system
Prior art date
Application number
PCT/CN2022/143726
Other languages
English (en)
French (fr)
Inventor
张连新
阎全忠
Original Assignee
上海洛轲智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海洛轲智能科技有限公司 filed Critical 上海洛轲智能科技有限公司
Publication of WO2023246073A1 publication Critical patent/WO2023246073A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/40Control modes
    • B60L2260/44Control modes by parameter estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the purpose of this application is to provide a V2V charging control method, device, system, equipment and medium.
  • this application provides a V2V charging control method.
  • the V2V charging control method is applied to the discharge vehicle-side control system on the discharge vehicle.
  • the discharge vehicle-side control system includes a range extender system and a first device connected to the range extender system.
  • CDU system the first CDU system is equipped with a precharge circuit;
  • the V2V charging control method includes: when detecting the connection between the discharging vehicle and the charging vehicle, determining the current charging mode based on the voltage signal; if the current charging mode is the V2V mode, starting the range extension
  • the range extender system precharges the precharging circuit, and then the charging vehicle is charged through the range extender system.
  • the method further includes: obtaining charging demand data requested by the charging vehicle side control system; the charging demand data at least includes the amount to be charged, the charging current and Charging voltage; the output power is determined based on the charging demand data so that the range extender system charges the charging vehicle based on the output power.
  • the method further includes: charging the first power battery through the range extender system.
  • the method further includes: when detecting a change in the charging voltage and/or charging current, adjusting the output voltage and output current of the range extender system based on the changed charging voltage and/or charging current.
  • the method further includes: controlling the range extender system to stop during the charging process when an abnormal voltage signal, a vehicle high voltage fault, the first power battery being fully charged or the second power battery being fully charged is detected. Power output.
  • the discharging vehicle-side control system also includes a first vehicle controller and a first battery management system
  • the charging vehicle-side control system includes a second vehicle controller and a second battery management system
  • the method when detecting After the discharging vehicle is connected to the charging vehicle and it is determined that the current charging mode is the V2V mode, the method also includes: controlling the A+A-wire harness-driven electronic lock of the discharging vehicle through the first vehicle controller to lock, and determining that the electronic lock of the discharging vehicle is in Locked state, and obtain the status information of the locked state after the electronic lock of the charging vehicle is driven and locked by the second vehicle controller; when the electronic lock of the discharged vehicle is in the locked state and the electronic lock of the charging vehicle is locked In the state, the first battery management system and the second battery management system are connected through S+/S- communication.
  • the voltage signal includes a CC1 voltage signal and a CC2 voltage signal; determining the current charging mode based on the voltage signal includes: when the CC2 voltage signal is a 4V signal, determining that the current charging mode is the V2V mode; when the CC1 voltage signal When the signal is 6V, it is determined that the current charging mode is the national standard mode.
  • this application provides a V2V charging control device.
  • the V2V charging control device is applied to the discharge vehicle-side control system on the discharge vehicle.
  • the discharge vehicle-side control system includes a range extender system and a first device connected to the range extender system.
  • CDU system the first CDU system is provided with a precharge circuit;
  • the V2V charging control device includes: a determination module, used to determine the current charging mode based on the voltage signal after detecting that the discharge vehicle is connected to the charging vehicle; the charging module is used to determine if The current charging mode is V2V mode, the range extender system is started, and after the range extender system precharges the precharge circuit, the charging vehicle is charged through the range extender system.
  • this application provides a V2V charging control system.
  • the V2V charging control system includes a discharge vehicle-side control system on the discharge vehicle, a charge-discharge connection device, and a charging vehicle-side connection device connected to the discharge vehicle-side control system through the charge-discharge connection device. Control System.
  • the present application provides an electronic device, including: a processor, a memory, and a bus.
  • the memory stores machine-readable instructions executable by the processor.
  • the processor and the The memories communicate through the bus, and the machine-readable instructions are executed by the processor to execute the steps of the V2V charging control method.
  • the present application provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium, and the computer program executes the steps of the V2V charging control method when run by a processor.
  • FIG. 2 is a flow chart of a V2V charging control method provided by an embodiment of the present application.
  • FIG. 3 is a structural diagram of a V2V charge and discharge control circuit provided by an embodiment of the present application.
  • Figure 4 is a structural diagram of a specific V2V charge and discharge control circuit provided by an embodiment of the present application.
  • BEV Also referred to as “EV”, the full English name is “BaiBattery Electrical Vehical”, which is a pure electric vehicle;
  • Range extender system that is, increasing the cruising range of pure electric vehicles, supplies power to the motor through the range extender system (ie, generator);
  • embodiments of the present application provide a V2V charging control method, device, system, equipment and medium, which can directly charge other vehicles through the range extender system, avoiding the complexity of the control logic of multiple controllers and the need for multiple The problem of the risk of controller failure; while improving charging efficiency and reducing energy consumption during charging, it ensures the stability of DC vehicle charging.
  • Figure 1 shows the structural diagram of a V2V charge and discharge control circuit, which is applied to the charge and discharge connection device.
  • the discharge vehicle side control system and the charging vehicle side control system are connected through the charge and discharge connection device.
  • the discharge vehicle side control system includes a range extension
  • the first CDU system is connected to the range extender system and the first CDU system is provided with a precharge circuit.
  • the discharging vehicle is a range-extended electric vehicle (REEV).
  • the charging vehicle may include a pure electric vehicle (BEV/EV), a range-extended electric vehicle (REEV) or a hybrid electric vehicle (PHEV/MHEV).
  • BEV/EV pure electric vehicle
  • REEV range-extended electric vehicle
  • PHEV/MHEV hybrid electric vehicle
  • the discharging vehicle and the charging vehicle are connected through a charging and discharging connection device.
  • the charging and discharging connection device includes a first fast charging plug and a second fast charging plug, wherein the first fast charging plug is used to connect the fast charging port of the discharging vehicle, and the second fast charging plug The charging plug is used to connect to the fast charging port of the charging vehicle.
  • the voltage signal may include a CC1 voltage signal and a CC2 voltage signal.
  • the current charging mode is determined to be the V2V mode; when the CC1 voltage signal is detected to be a 6V signal, the current charging mode is determined to be the national standard mode.
  • Step S204 if the current charging mode is the V2V mode, start the range extender system, and after the range extender system precharges the precharge circuit, charge the charging vehicle through the range extender system.
  • the V2V charging control method provided by the embodiment of the present application can directly charge the charging vehicle from the discharging vehicle through the range extender system. There is no need to set up multiple controllers on the connection line for charging logic control, avoiding the control of multiple controllers. Complex logic and the risk of failure of multiple controllers; and during the charging process, precharging is carried out through the precharging loop set up in the first CDU system connected to the range extender system to achieve charging buffering, which improves charging efficiency and While reducing energy consumption during charging, it ensures the stability of DC vehicle charging.
  • the discharging vehicle-side control system includes a first power battery, and correspondingly, the charging vehicle-side control system includes a second power battery, as shown in FIG. 3 .
  • methods also include:
  • Step 1.1 determine whether the current power of the first power battery meets the starting power requirement of the range extender system
  • Step 1.2 if yes, use the first power battery to support the range extender system to start;
  • Step 1.3 if not, determine whether the power of the second power battery of the charging vehicle side control system meets the starting power demand of the range extender system;
  • Step 1.4 if yes, perform reverse start control on the range extender system through the second power battery.
  • the first CDU system can be precharged through the range extender system and then discharged to the charging vehicle to charge the charging vehicle.
  • step 1.3 since the power demand for starting the range extender is usually not large, if the first power battery cannot meet the starting power demand of the range extender system, you can check whether the power of the second power battery of the charging vehicle is sufficient. Meet the starting power demand of the range extender system, so that the charging vehicle can perform reverse start control of the range extender system of the discharging vehicle.
  • this embodiment also includes the start control of the range extender, that is, the embodiment of the present application can realize the discharge control of the discharging vehicle to the charging vehicle (that is, the discharging vehicle charges the charging vehicle. ), and the activation control of the range extender system of the discharging vehicle from the charging vehicle.
  • the discharge vehicle is REEV and the charging vehicle is BEV.
  • Figure 4 shows a schematic structural diagram of a charging and discharging vehicle after connection. On the basis of the connection structure, the charging control from REEV to BEV and the reverse start control from BEV to REEV are explained respectively.
  • the discharge vehicle side control system includes the first vehicle controller (VDU/MDCU) and the first battery management system (BMS).
  • the first CC2 harness of the discharge vehicle is provided with the first lock switch S1 and
  • the first resistor includes a third resistor and a fourth resistor in the same circuit as the first lock switch, that is, the first resistor is the equivalent resistance of the parallel connection of the third resistor R8 and the fourth resistor R7.
  • the method When it is detected that the discharge vehicle is connected to the charging vehicle and it is determined that the current charging mode is the V2V mode, the method also includes: controlling the A+A-wire harness-driven electronic lock of the discharge vehicle through the first vehicle controller to lock, and determining the location of the discharge vehicle.
  • the electronic lock is in the locked state, and the status information of the locked state after the electronic lock of the charging vehicle is driven and locked by the second vehicle controller is obtained; when the electronic lock of the discharged vehicle is in the locked state and the electronic lock of the charging vehicle When in the locked state, the first battery management system and the second battery management system are connected through S+/S- communication.
  • relays K12 and K13 are provided on the first A+/A- wire harness of the discharge vehicle, where relay K12 is provided on the A+ wire harness and relay K13 is provided on the A- wire harness. After recognizing that the charging and discharging connection device is successfully connected, the first vehicle controller controls relays K12 and K13 to close to drive the first locking switch S1 to be in a locked state.
  • the third resistor R8 and the fourth resistor R7 are connected in parallel, and the first detection point on the first CC2 harness (that is, detection point 1 in Figure 4) detects the current CC2 signal status representation.
  • detection point 1 in Figure 4 detects the current CC2 signal status representation.
  • the difference between this embodiment and the national standard is that the lock switch is arranged on the CC2 signal circuit, and S1 is arranged on the first CC2 wire harness , and connect R7 and R8 in parallel to the signal circuit when S1 is closed.
  • the lock switch is arranged on the CC2 signal circuit
  • S1 is arranged on the first CC2 wire harness , and connect R7 and R8 in parallel to the signal circuit when S1 is closed.
  • it can be set that when the nominal value of the CC2 signal state on the first CC2 wire harness is a 4V state, it can be determined that the current state is in the V2V mode.
  • the voltage range representing the CC2 signal state that is currently in the V2V mode may be 3.2V-4.8V.
  • the charging vehicle side control system also includes a second vehicle controller (VDU/MDCU) and a second battery management system (BMS).
  • the second CC2 harness of the charging vehicle is provided with a second lock switch S2 and a second lock switch S2.
  • the second resistor includes a fifth resistor R4 and a sixth resistor R5 connected to the same line as the second lock switch, that is, the fifth resistor is R4, the sixth resistor is R5, and the second resistor is the fifth resistor R4.
  • the equivalent resistance after being connected in parallel with the sixth resistor R5.
  • the second A+/A- wire harness of the charging vehicle is provided with relays K14 and K15, wherein relay K14 is provided on the A+ wire harness and relay K15 is provided on the A- wire harness.
  • the second vehicle controller controls relays K14 and K15 to close to drive the second locking switch S2 to be in a locked state.
  • the fifth resistor R and the sixth resistor R5 are connected in parallel, and the second detection point on the second CC2 harness detects the current CC2 signal state to indicate that it is currently in the V2V mode.
  • the CC2 signal state on the second CC2 wire harness is a 4V state
  • this embodiment provides a V2V charging control guidance circuit parameter table, wherein the table shows the possible value range of the above-mentioned resistor and the detection point voltage range.
  • the discharge vehicle side control system also includes a first battery management system. See the BMS (BATTERY MANAGEMENT SYSTEM, battery management system) of the discharge vehicle side control system shown in Figure 4.
  • the charging vehicle side control system also includes a second battery management system. , refer to the BMS (BATTERY MANAGEMENT SYSTEM, battery management system) of the charging vehicle side control system shown in Figure 4.
  • the first battery management system and the second battery management system communicate via CAN through the S+/S- harness.
  • the above describes how to set the resistor and lock switch on the CC2 wire harness, and set the relay on the A+/A- wire harness for control.
  • the CC2 signal status is used to determine whether it is currently in V2V mode, and when it is in V2V mode, it is controlled through the range extender system.
  • the charging vehicle can be buffered and protected without the need for settings such as
  • the controller composed of electronic parts has a simpler structure and the probability of failure is also reduced accordingly.
  • the first power battery of the discharging vehicle, the range extender system and the first CDU system (that is, the CDU/PMS in the figure, where PMS is another name for CDU) are connected, and the third power battery of the charging vehicle is connected.
  • the second CDU system (that is, CDU/PMS in the figure, where PMS is another name for CDU) is connected to the second power battery.
  • the charge and discharge connection device is successfully connected, the first CDU system and the second CDU system pass DC+/DC- harness connection. Therefore, during specific implementation, this embodiment is suitable for vehicles that support fast charging.
  • the first power battery can also be charged through the range extender system to complete charging of the own vehicle.
  • CAN communication is carried out through the BMS to report the real-time battery voltage, current, temperature and other data of the charging vehicle to the discharge vehicle side control system in real time.
  • the output voltage and output current of the range extender system are adjusted based on the changed charging voltage and/or charging current.
  • the fast charging positive relay K6 and the PMS fast charging negative relay K7 of the second UDC system are closed, and the relays are turned on.
  • the status and the vehicle status of the charging vehicle are sent to the CAN network through S+/S-; and, after the precharge of the discharging vehicle is completed, the battery pack main positive relay K9 and the battery pack main negative relay K10 of the charging vehicle are closed to enter charging.
  • the charging phase of the vehicle is the vehicle.
  • the discharge vehicle control system adjusts the range extender system according to the charging voltage and current requested by the charging vehicle control system (i.e., the discharge vehicle side control system). Output voltage and current values.
  • the discharge vehicle control system stops the power output of the range extender system.
  • the charging control system detects that the current is less than 5A, it disconnects the PMS fast charge positive relay K4 and the PMS fast charge negative relay K5.
  • the discharge vehicle control system disconnects the PMS fast charge positive relay K7 and the fast charger when the current value information detected by the charging control system is less than 5A.
  • Negative relay K8 the charging car control system disconnects K12 and K13, unlocks the electronic lock switch S2, the discharge car control system disconnects K14 and K15, unlocks the electronic lock switch S1, and pulls out the fast charging gun (that is, disconnects the charger) Discharge connection device) to complete the charging control process of V2V discharge vehicle REEV to charging vehicle BEV.
  • the vehicle controller VCU (also called MDCU) included in the discharge vehicle control system reports information data such as power, current, voltage, vehicle precharge time and other information required to start the range extender system.
  • the charging vehicle control system controls the entire vehicle. After the device VCU (also called MDCU) confirms that it can meet the needs of the discharging vehicle, it closes the main negative relay K10 of the battery pack and closes the precharge relay K11 to enter the precharge process of the charging vehicle. After the precharge cut-off conditions are met, the main negative relay of the battery pack is closed. Positive relay K9 disconnects precharge relay K11 to complete the precharge process of the charging vehicle.
  • S1 connect the discharging vehicle side control system and the charging vehicle side control system through the charging and discharging connection device. Specifically, when it is recognized that the charging vehicle side fast charging plug is inserted into the discharging vehicle side fast charging socket, the charging vehicle side fast charging plug is inserted. into the fast charging socket on the side of the charging car, or insert any fast charging plug into the fast charging socket. At this time, ensure that the high and low voltage signals of the charging vehicle control system and the discharge vehicle control system are connected.
  • the VCU of the charging vehicle control system and the VCU of the discharging vehicle control system are awakened by the CC2 signal at the same time to perform vehicle self-check status.
  • the VCU of the charging car control system and the VCU of the discharging car control system use hard letter 12V to connect all other high-voltage components of the charging car and discharging car to the battery management system BMS, OBC/DCDC three-in-one (that is, the above-mentioned first CDU system), Wake up the drive motor controller MCU, thermal management system, etc.
  • VCU of the charging vehicle control system determines the charging mode through the voltage value of detection point 1. If the voltage value of detection point 1 is 4V, the V2V charging process is performed. If so 6V enters the national standard fast charging process. National standard fast charging is still charged according to the existing method. This application focuses on the V2V charging mode; and, the VCU of the discharge car control system passes the voltage value of detection point 2 of 4V to perform the V2V charging process. If it is 6V, it enters the national standard fast charging process. , the same as discharge vehicles.
  • the battery management system BMS of the charging vehicle control system and the battery management system BMS of the discharging vehicle control system can perform CAN communication handshakes through S+/S- for communication protocol interaction.
  • the precharging circuit is the circuit set up in the OBC/DCDC three-in-one system included in the charging vehicle control system and connected to the range extender system.
  • the precharging process firstly, after confirming through the VCU of the discharge vehicle control system that the charging vehicle needs can be met, the battery pack main negative relay K2 is closed, the precharge relay K3 is closed, and the precharge process of the discharge vehicle is entered.
  • the discharge vehicle control system starts the range extender system and controls it to enter idle mode.
  • the discharge vehicle control system disconnects the main negative relay K2 of the battery pack and the main positive relay K1 of the battery pack.
  • the charging control system closes the main positive relay K9 of the battery pack and the main negative relay K10 of the battery pack to enter vehicle charging.
  • the discharge vehicle control system adjusts the output voltage and current value of the range extender system according to the charging voltage and current requested by the charging vehicle control system.
  • the discharge vehicle control system disconnects the PMS fast charging positive relay K7 and the fast charging negative relay K8 when the current value information detected by the charging control system is less than 5A.
  • the charging control of the extended-range electric vehicle to other electric vehicles can be completed.
  • the VCU of the charging vehicle control system and the discharging vehicle control system are awakened by the CC2 signal at the same time to perform vehicle self-check status.
  • the battery management system BMS of the charging vehicle control system and the battery management system BMS of the discharging vehicle control system can perform CAN communication handshakes through S+/S- for communication protocol interaction.
  • the discharge vehicle control system closes the main negative relay K2 of the battery pack and the main positive relay K1 of the battery pack, and enters the charging mode of the range extender system for the discharged vehicle.
  • the charging control system executes the execution actions of the battery pack main positive relay K9 and the battery pack main negative relay K10 according to the vehicle mode requirements.
  • the user can pull out the fast charging gun 1, disconnect the charging and discharging connection device, and complete the start control process of the V2V charging vehicle BEV to the discharging vehicle REEV.
  • the method embodiments provided in this application realize the charging of other types of electric vehicles (because they are pure electric vehicles) by the extended-range electric vehicle through the V2V charge and discharge control circuit, and use the circuit structure to perform the charging in the extended-range electric vehicle.
  • other electric vehicles are used to perform start-up control of the extended-range system, which not only improves charging efficiency and reduces energy consumption during charging, but also ensures the stability of DC vehicle charging.
  • the V2V charging control device provided in the embodiment of the present application precharges the precharging circuit in the first CDU system corresponding to the discharging vehicle through the range extender system, and then can directly discharge to the connected charging vehicle to complete the charging of the vehicle. Charging, thereby avoiding the complexity of the control logic of multiple controllers, and the control circuit structure provided by this embodiment is simpler, which can further avoid potential faults and energy consumption due to controllers composed of multiple electronic components during V2V charging, and improve Charging efficiency.
  • the discharge vehicle-side control system includes a first power battery; the above-mentioned device further includes: a starting power determination module configured to: before starting the range extender system, determine the power of the first power battery. Whether the current power meets the starting power requirement of the range extender system; if so, use the first power battery to support the start of the range extender system; if not, determine the second power requirement of the charging vehicle side control system Whether the power of the power battery meets the starting power requirement of the range extender system; if so, reverse start control of the range extender system is performed through the second power battery.
  • a starting power determination module configured to: before starting the range extender system, determine the power of the first power battery. Whether the current power meets the starting power requirement of the range extender system; if so, use the first power battery to support the start of the range extender system; if not, determine the second power requirement of the charging vehicle side control system Whether the power of the power battery meets the starting power requirement of the range extender system; if so, reverse start control of
  • the above device further includes: a charging data acquisition module configured to acquire the charging demand data requested by the charging vehicle side control system after the first power battery supports the startup of the range extender system;
  • the charging demand data at least includes an amount to be charged, a charging current and a charging voltage; the output power is determined based on the charging demand data, so that the range extender system charges the charging vehicle based on the output power.
  • the above device further includes: an output adjustment module configured to adjust the range extender system based on the changed charging voltage and/or charging current when a change in the charging voltage and/or charging current is detected. of output voltage and output current.
  • the above device further includes: a stop output control module configured to, during the charging process, when an abnormality of the voltage signal, vehicle high voltage failure, first power battery is fully charged, or the second power battery is detected. When fully charged, the range extender system is controlled to stop power output.
  • the discharging vehicle side control system also includes a first vehicle controller and a first battery management system
  • the charging vehicle side control system includes a second vehicle controller and a second battery management system
  • the device also includes: a vehicle-to-vehicle communication module configured to control the A+A-wire harness of the discharge vehicle through the first vehicle controller to drive the electronic lock for locking, and determine that the electronic lock of the discharge vehicle is in a locked state, and , obtain the status information that the electronic lock of the charging vehicle is in the locked state after being driven and locked by the second vehicle controller; when the electronic lock of the discharge vehicle is in the locked state and the electronic lock of the charging vehicle is in the locked state In the stop state, the first battery management system and the second battery management system are connected through S+/S- communication.
  • the voltage signal includes a CC2 voltage signal; the above-mentioned determination module is further configured to: when the CC2 voltage signal is a 4V signal, determine that the current charging mode is the V2V mode; when the CC2 voltage signal is 6V When the signal is received, it is determined that the current charging mode is the national standard mode.
  • FIG. 6 a schematic structural diagram of an electronic device 500 is provided for an embodiment of the present application, including: a processor 510, a memory 520 and a bus 530.
  • the memory 520 stores the processor 510 Executable machine-readable instructions.
  • the processor 510 and the memory 520 communicate through the bus 530.
  • the machine-readable instructions are executed by the processor 510 when the processor 510 is running.
  • the steps of the V2V charge and discharge control method as described in any of the above embodiments.
  • the current charging mode is determined based on the voltage signal; if the current charging mode is the V2V mode, the range extender system is started, and the precharge circuit is preset in the range extender system. After charging, the charging vehicle is charged through the range extender system.
  • This V2V charging control method can charge the charging vehicle directly from the discharging vehicle through the range extender system, avoiding the problems of complex control logic of multiple controllers and the risk of failure of multiple controllers; and during the charging process, through
  • the precharging circuit installed in the first CDU system connected to the range extender system performs precharging to achieve charging buffering, which not only improves charging efficiency and reduces energy consumption during charging, but also ensures the stability of DC vehicle charging.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the steps of the V2V charge and discharge control method provided by the above embodiments are executed. .
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a non-volatile computer-readable storage medium that is executable by a processor.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .
  • the terms "setting”, “installation”, “connecting” and “connecting” should be understood in a broad sense.
  • it can be a fixed connection, It can also be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the specific meanings of the above terms in this application can be understood on a case-by-case basis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本申请提供了一种V2V充电控制方法、装置、系统、设备和介质,涉及电动汽车技术领域,该V2V充电控制方法应用于放电车辆上的放电车侧控制系统,放电车侧控制系统包括增程器系统和与增程器系统连接的第一CDU系统,第一CDU系统中设置有预充回路;V2V充电控制方法包括:当检测到放电车辆与充电车辆连接后,基于电压信号确定当前充电模式;如果当前充电模式为V2V模式,启动增程器系统,并在增程器系统对预充回路进行预充后,通过增程器系统对充电车辆进行充电。本申请避免了多个控制器的控制逻辑复杂,以及多个控制器的故障风险的问题,在提升充电效率和减少充电时能量消耗的同时,保证了直流车车充电的稳定性。

Description

V2V充电控制方法、装置、系统、设备和介质
相关申请的交叉引用
本申请要求于2022年06月23日提交的申请号为2022107261967、发明名称为“V2V充电控制方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动汽车技术领域,尤其是涉及一种V2V充电控制方法、装置、系统、设备和介质。
背景技术
目前,随着新能源汽车的快速发展,直流车车互充的需求日益增高。相关技术中,通过增程式电动汽车给其他车辆进行充电时,是通过增程器首先对自身电池充电,然后由增程式电动汽车的电池向待充电电动汽车的电池进行充电,且在通过电池进行充电时,需要若干控制器进行逻辑控制以完成整个充电过程。然而,这种方式导致充电效率不高、能效利用率较低。
申请内容
本申请的目的在于提供一种V2V充电控制方法、装置、系统、设备和介质。
第一方面,本申请提供一种V2V充电控制方法,V2V充电控制方法应用于放电车辆上的放电车侧控制系统,放电车侧控制系统包括增程器系统和与增程器系统连接的第一CDU系统,第一CDU系统中设置有预充回路;V2V充电控制方法包括:当检测到放电车辆与充电车辆连接后,基于电压信号确定当前充电模式;如果当前充电模式为V2V模式,启动增程器系统,并在增程器系统对预充回路进行预充后,通过增程器系统对充电车辆进行充电。
在可选的实施方式中,放电车侧控制系统包括第一动力电池;在启动增程器系统之前,方法还包括:判断第一动力电池的当前电量是否满足增程器系统的启动电量需求;如果是,则通过第一动力电池支持增程器系统进行启动;如果否,判断充电车侧控制系统的第二动力电池的电量是否满足增程器系统的启动电量需求;如果是,则通过第二动力电池对增程器系统进行反向启动控制。
在可选的实施方式中,通过第一动力电池支持增程器系统进行启动之后,方法还包括:获取充电车侧控制系统请求的充电需求数据;充电需求数据至少包括待充电量、充电电流和充电电压;基于充电需求数据确定输出功率,以便增程器系统基于输出功率对充电车辆进行充电。
在可选的实施方式中,在通过第二动力电池对增程器系统进行反向启动控制后,方法还包括:通过增程器系统对第一动力电池进行充电。
在可选的实施方式中,方法还包括:当检测到充电电压和/或充电电流发生变化,基于变化后的充电电压和/或充电电流调整增程器系统的输出电压和输出电流。
在可选的实施方式中,方法还包括:在充电过程中,当检测到电压信号异常、整车高压故障、第一动力电池满电或者第二动力电池满电时,控制增程器系统停止功率输出。
在可选的实施方式中,放电车侧控制系统还包括第一整车控制器和第一电池管理系统,充电车侧控制系统包括第二整车控制器和第二电池管理系统;当检测到放电车辆与充电车辆连接并确定当前充电模式为V2V模式后,方法还包括:通过第一整车控制器控制放电车辆的A+A-线束驱动电子锁进行锁止,确定放电车辆的电子锁处于锁止状态,并且,获取充电车辆的电子锁被第二整车控制器驱动锁止后处于锁止状态的状态信息;当放电车辆的电子锁处于锁止状态且充电车辆的电子锁处于锁止状态时,第一电池管理系统与第二电池管理系统通过S+/S-通信连接。
在可选的实施方式中,电压信号包括CC1电压信号和CC2电压信号;基于电压信号确定当前充电模式,包括:当CC2电压信号为4V信号时,确定当前充电模式为V2V模式;当CC1电压信号为6V信号时,确定当前充电模式为国标模式。
第二方面,本申请提供一种V2V充电控制装置,V2V充电控制装置应用于放电车辆上的放电车侧控制系统,放电车侧控制系统包括增程器系统和与增程器系统连接的第一CDU系统,第一CDU系统中设置有预充回路;V2V充电控制装置包括:确定模块,用于当检测到放电车辆与充电车辆连接后,基于电压信号确定当前充电模式;充电模块,用于如果当前充电模式为V2V模式,启动增程器系统,并在增程器系统对预充回路进行预充后,通过增程器系统对充电车辆进行充电。
第三方面,本申请提供一种V2V充电控制系统,V2V充电控制系统包括放电车辆上的放电车侧控制系统、充放电连接装置以及通过充放电连接装置与放电车侧控制系统连接的充电车侧控制系统。
第四方面,本申请提供一种电子设备,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令,当电子设备运行时,所述处理器与所述存储器之间通过所述总线进行通信,所述机器可读指令被所述处理器运行时执行V2V充电控制方法的步骤。
第五方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行V2V充电控制方法的步骤。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种V2V充放电控制电路的结构图;
图2为本申请实施例提供的一种V2V充电控制方法的流程图;
图3为本申请实施例提供的一种V2V充放电控制电路的结构图;
图4为本申请实施例提供的一种具体的V2V充放电控制电路的结构图;
图5为本申请实施例提供的一种V2V充电控制装置的结构图;
图6示出了本申请实施例所提供的一种电子设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
首先,对本申请涉及对名词进行介绍:
(1)REEV:英文全称为“Range Extend Electric Vehicle”,为增程式电动汽车;
(2)BEV:也简称为“EV”,英文全称为“BaiBattery Electrical Vehical”,为纯电动汽车;
(3)PHEV:英文全称为“Plug in Hybrid Electric Vehicle”,为插电式混合动力汽车;
(4)MHEV:英文全称为“Mild Hybrid Electric Vehicle”,为轻混合动力电动汽车;
(5)增程器系统:增程,也即增加纯电动车的续航里程,通过增程器系统(也即发电机)为电机供电;
(6)CDU系统:通常称为三合一系统,包括新能源汽车系统的内置三个单元:车载AC/DC电源充电器(简称OBC,On Board Charger)、车载DC/DC电源转换器(简称DC,Direct Current power)以及车用高压连接集线盒(简称PDU,Power Distribution Unit)。
针对直流车车互充技术,相关技术中,提供了一种V2V应急充电装置,通过该装置提供车辆的控制导引,无需为车辆设计新的控制导引电路即可实现车辆之间的直流互充。然而,该装置必须借助于具有包含功率控制单元和全隔离DCDC单元的缓启动单元、预充控制、充放电管理单元以及高压继电器等多个控制器才能实现车辆的放电。基于此,本申请实施例提供了一种V2V充电控制方法、装置、系统、设备和介质,可以直接通过增程器系统对其他车辆进行充电,避免了多个控制器的控制逻辑复杂,以及多个控制器的故障风险的问题;在提升充电效率和减少充电时能量消耗的同时,保证了直流车车充电的稳定性。
为便于理解,在对V2V充电控制方法进行说明之前,首先对本申请实施例提供的一种V2V充放电控制电路进行说明。图1示出了一种V2V充放电控制电路的结构图,应用于充放电连接装置,通过该充放电连接装置连接放电车侧控制系统和充电车侧控制系统,放电车侧控制系统包括增程器系统和与增程器系统连接的第一CDU系统,第一CDU系统中设置有预充回路。
基于上述结构,应用于放电车辆上的放电车侧控制系统,参见图2所示,本实施例提供的V2V充电控制方法可以包括以下步骤:
步骤S202,当检测到放电车辆与充电车辆连接后,基于电压信号确定当前充电模式。
本实施例应用于快充模式,放电车辆为增程式电动汽车(REEV),充电车辆可以包括纯电动汽车(BEV/EV)、增程式电动汽车(REEV)或混合动力汽车(PHEV/MHEV)。放电车辆与充电车辆通过充放电连接装置进行连接,充放电连接装置包括第一快充插头和第二快充插头,其中,第一快充插头用于连接放电车辆的快充口,第二快充插头用于连接充电车辆的快充口。
电压信号可以包括CC1电压信号和CC2电压信号,当检测到CC2电压信号为4V信号时,确定当前充电模式为V2V模式;当检测到CC1电压信号为6V信号时,确定当前充电模式为国标模式。
步骤S204,如果当前充电模式为V2V模式,启动增程器系统,并在增程器系统对预充回路进行预充后,通过增程器系统对充电车辆进行充电。
如果当前充电模式为V2V模式,则可以确定当前为车车充电模式。当处于V2V模式时,放电车侧控制系统识别放电车辆的电池状态,以便在放电车辆的电量满足放电条件时,通过增程器系统对预充回路进行预充后,向充电车辆进行充电。其中,放电车辆的电量满足放电条件的临界条件可以为放电车辆的电量可以支撑启动增程器系统进行发电,以此临界条件为最低边界作为放电车辆可以对外放电的约束。
现有的直流车车充电通常在增程式电动汽车向纯电动车辆进行充电时,在通过增程器系统连接CDU系统之后,进一步通过控制器(可以包括功率控制单元和全隔离DCDC单元的缓启动单元、预充控制、充放电管理单元以及高压继电器等)才能实现车辆的放电。而本实施例通过增程器系统对放电车辆对应的第一CDU系统中的预充回路进行预充后,则可以直接向连接的充电车辆放电,以完成充电车辆的充电,从而避免了多个控制器的控制逻辑复杂,并且本实施例提供的控制电路结构更加简单,可以进一步避免由于多种电子件构成的控制器在V2V充电时的故障隐患和能量消耗,提升充电效率。
本申请实施例提供的V2V充电控制方法,可以由放电车辆通过增程器系统直接向充电车辆进行充电,在连接线上无需设置多个控制器进行充电逻辑控制,避免了多个控制器的控制逻辑复杂,以及多个控制器的故障风险的问题;并在充电过程中,通过与增程器系统连接的设置于第一CDU系统的预充回路进行预充实现充电缓冲,在提升充电效率和减少充电时能量消耗的同时,保证了直流车车充电的稳定性。
为便于理解,以下对该V2V充电控制方法进行详细说明。
在一可选的实施方式中,放电车侧控制系统包括第一动力电池,相应的,充电车侧控制系统包括第二动力电池,参见图3所示。在启动增程器系统之前,方法还包括:
步骤1.1),判断第一动力电池的当前电量是否满足增程器系统的启动电量需求;
步骤1.2),如果是,则通过第一动力电池支持增程器系统进行启动;
步骤1.3),如果否,判断充电车侧控制系统的第二动力电池的电量是否满足增程器系统的启动电量需求;
步骤1.4),如果是,则通过第二动力电池对增程器系统进行反向启动控制。
针对上述步骤1.2),当通过第一动力电池支持增程器系统进行启动之后,则可以通过增程器系统对第一CDU系统进行预充后,向充电车辆进行放电,以对充电车辆充电。
针对上述步骤1.3),由于增程器启动的电量需求通常不大,因此,如果第一动力电池无法满足增程器系统的启动电量需求,则可以检测充电车辆的第二动力电池的电量是否可以满足增程器系统的启动电量需求,从而可以通过充电车辆对放电车辆的增程器系统的进行反向启动控制。
由于通过增程器系统进行充电之前,本实施例还包括对增程器的启动控制,也即本申请实施例可以实现放电车辆向充电车辆的放电控制(也即由放电车辆对充电车辆进行充电),以及充电车辆对放电车辆的增程器系统的启动控制。由于纯电动汽车并无转换电能的功能,为便于理解具体的实施原理,以放电车辆为REEV,充电车辆为BEV进行说明,图4示出了一种充放电车辆连接后的结构示意图,在该连接结构的基础上,分别对REEV向BEV进行充电控制及BEV向REEV反向启动控制进行说明。
一、REEV向BEV进行充电控制
参见图4所示,放电车侧控制系统包括第一整车控制器(VDU/MDCU)和第一电池管理系统(BMS),放电车辆的第一CC2线束上设置有第一锁止开关S1和第一电阻,第一电阻包括第三电阻和与第一锁止开关处于同一线路的第四电阻,也即第一电阻为第三电阻为R8和第四电阻为R7并联后的等效电阻。
当检测到放电车辆与充电车辆连接并确定当前充电模式为V2V模式后,方法还包括:通过第一整车控制器控制放电车辆的A+A-线束驱动电子锁进行锁止,确定放电车辆的电子锁处于锁止状态,并且,获取充电车辆的电子锁被第二整车控制器驱动锁止后处于锁止状态的状态信息;当放电车辆的电子锁处于锁止状态且充电车辆的电子锁处于锁止状态时,第一电池管理系统与第二电池管理系统通过S+/S-通信连接。
在具体实施时,放电车辆的第一A+/A-线束上设置有继电器K12和K13,其中,继电器K12设置于A+线束上,继电器K13设置于A-线束上。第一整车控制器在识别到充放电连接装置连接成功后控制继电器K12和K13闭合,以驱动第一锁止开关S1处于锁止状态。
当第一锁止开关处于锁止状态时,第三电阻R8与第四电阻R7并联连接,第一CC2线束上的第一检测点(也即图4中检测点1)检测当前CC2信号状态表征当前处于V2V模式。
考虑到国标快充的CC1信号状态为6V,为保证与国标快充的兼容性,本实施例与国标区别项将锁止开关布置于CC2信号电路上,通过将S1布置于第一CC2线束上,并在S1闭合时使R7和R8并联接入信号电路中。在一可选的实施方式中,可以设定当第一CC2线束上的CC2信号状态的标称值为4V状态,此时可以判定当前处于V2V模式。另外,表征当前为V2V模式的该CC2信号状态的电压范围可以为3.2V-4.8V。
相应的,充电车侧控制系统也包括有第二整车控制器(VDU/MDCU)和第二电池管理系统(BMS),充电车辆的第二CC2线束上设置有第二锁止开关S2和第二电阻,第二电阻包括第五电阻R4和与第二锁止开关连接处于同一线路的第六电阻R5,也即第五电阻为R4,第六电阻为R5,第二电阻为第五电阻R4和第六电阻R5并联后的等效电阻。
在具体实施时,充电车辆的第二A+/A-线束上设置有继电器K14和K15,其中,继电器K14设置于A+线束上,继电器K15设置于A-线束上。第二整车控制器在识别到充放电连接装置连接成功后控制继电器K14和K15闭合,以驱动第二锁止开关S2处于锁止状态。
当第二锁止开关处于锁止状态时,第五电阻R和第六电阻R5并联接连,第二CC2线束上的第二检测点检测当前CC2信号状态表征当前处于V2V模式。
在一可选的实施方式中,当第二CC2线束上的CC2信号状态为4V状态时,确定当前处于V2V模式。
在一种实施方式中,本实施例提供了一种V2V充电控制引导电路参数表,其中,该表中示出了上述电阻的可取值范围以及检测点电压范围。
Figure PCTCN2022143726-appb-000001
此外,放电车侧控制系统还包括第一电池管理系统,参见图4所示的放电车侧控制系统的BMS(BATTERY MANAGEMENT SYSTEM,电池管理系统),充电车侧控制系统还包括第二电池管理系统,参见图4所示的充电车侧控制系统的BMS(BATTERY MANAGEMENT SYSTEM,电池管理系统),第一电池管理系统和第二电池管理系统通过S+/S-线束进行CAN通讯。
上述介绍了通过在CC2线束上设置电阻和锁止开关,以及在A+/A-线束上设置继电器进行控制,通过CC2信号状态判定当前是否处于V2V模式,并在处于V2V模式时通过增程器系统对充电车辆进行充电,考虑到开始充电时可能会由于电压、电流、功率等参数突然增大,因此通过在第一UDC系统中设置预充回路,可以对充电车辆进行缓冲保护,同时无需设置诸如电子件构成的控制器,结构更加简单,同时出现故障的几率也相应减小。
参见图4所示,放电车辆的第一动力电池、增程器系统和第一CDU系统(也即图中CDU/PMS,其中,PMS为CDU的另外一种叫法)连接,充电车辆的第二CDU系统(也即图中CDU/PMS,其中,PMS为CDU的另外一种叫法)与第二动力电池连接,当充放电连接装置连接成功时,第一CDU系统和第二CDU系统通过DC+/DC-线束连接。因此,本实施例在具体实施时,适用于支持快充的车辆。
在一可选的实施方式中,预充回路包括预充继电器K8和预充电阻R3,参见图4所示,预充继电器K8在闭合时,将预充电阻接入回路,以使得增程器系统对预充回路进行电量预充,此时K5与K8同时闭合进行该REEV电动汽车的预充,并在预充结束后直接向充电车辆进行充电。预充结束也即放电车侧控制系统满足预充截止条件后,接收到充电车侧控制系统发送的预充成功的CAN信号,此时闭合PMS快充正极继电器K4,断开预充继电器K8,完成放电车辆的预充。此时可以直接由增程器系统向充电车辆进行放电,以通过放电车辆对充电车辆充电。
在一种实施方式中,通过第一动力电池支持增程器系统进行启动之后,上述方法还包括:通过第一电池管理系统获取第二电池管理系统的充电需求数据,该充电需求数据可以包括待充电量、充电电流和充电电压,进而基于充电需求数据确定输出功率,以便增程器系统基于 输出功率对充电车辆进行充电。
在另一种实施方式中,在通过第二动力电池对增程器系统进行反向启动控制后,还可以通过增程器系统对第一动力电池进行充电,以完成自身车辆的充电。
进一步,在车辆充电过程中,通过BMS进行CAN通讯实时向放电车侧控制系统上报充电车辆的实时电池电压、电流、温度等数据。当检测到充电电压和/或充电电流发生变化,基于变化后的充电电压和/或充电电流调整增程器系统的输出电压和输出电流。
此外,为保证充电车辆可以成功充电,在放电车辆进行预充前,当放电车辆启动增程器系统时,第二UDC系统的快充正极继电器K6和PMS快充负极继电器K7闭合,并将继电器状态和充电车辆的整车状态通过S+/S-发送到CAN网络中;并且,在放电车辆预充结束后,闭合充电车辆的电池包主正极继电器K9和电池包主负继电器K10,以进入充电车辆的充电阶段。
在充电过程中,参见图4所示,放电车控制系统(也即放电车侧控制系统)根据充电车控制系统(也即放电车侧控制系统)请求的充电电压及电流调整增程器系统的输出电压及电流值。当充电车控制系统与放电车控制系统判定CC2信号异常、整车其他高压故障、电池包满电截至条件等一切正常、故障、急停信号时,放电车控制系统停止增程器系统功率输出,充电控制系统检测电流小于5A时断开PMS快充正极继电器K4和PMS快充负极继电器K5,放电车控制系统根据充电控制系统检测电流值信息小于5A时断开PMS快充正极继电器K7和快充负极继电器K8,充电车控制系统断开K12和K13,解锁电子锁锁止开关S2,放电车控制系统断开K14和K15,解锁电子锁锁止开关S1,拔取快充枪(也即断开充放电连接装置),完成V2V放电车REEV对充电车BEV充电控制流程。
二、BEV向REEV反向启动控制
考虑到在实际应用时,可能存在放电车辆(也即REEV)电池电量不足以启动增程器系统的情形,本实施例提供了一种BEV向REEV反向启动控制的结构。因此,上述预充回路还用于:如果放电车辆亏电导致增程器系统无法启动,在充电车辆对增程器系统进行反向启动控制时进行电量预充。为便于理解,对该反向启动控制时各个继电器的开闭状态进行说明(反向动控制的电路结构参见上述充电控制的电路结构):
当进入V2V模式并锁止开关S1和S2后,充电车控制系统的电池管理系统BMS与放电车控制系统的电池管理系统BMS可通过S+/S-进行CAN通讯握手,进行通讯协议交互,由于放电车辆动力电池电量亏电无法启动增程器系统,则放电车控制系统发送请求协助启动使能信号,此时进入充电车BEV对放电车REEV启动控制流程。
放电车控制系统所包括的整车控制器VCU(也可称为MDCU)上报启动增程器系统所需的电量、电流、电压、整车预充时间等信息数据,充电车控制系统整车控制器VCU(也可称为MDCU)确认可满足放电车辆需求后,闭合电池包主负继电器K10,闭合预充继电器K11,进入充电车辆的预充流程,满足预充截至条件后,闭合电池包主正继电器K9,断开预充继电器K11,完成充电车辆的预充流程。
充电车控制系统的PMS快充正极继电器K6和PMS快充负极继电器K7,并将继电器状态及整车状态通过S+S-发送到CAN网络中,放电车控制系统的三合一闭合快充负极继电器K5(也称为PMS快充负极继电器K5)和预充继电器K8,进入放电车辆的预充流程,当满足预充截至条件后并接受到放电车控制系统发送的预充成功CAN信号后,闭合PMS快 充正极继电器K4,断开预充继电器K8,完成放电车辆的预充流程。
放电车控制系统启动增程器,并将其控制进入怠速模式,并将增程器启动成功及怠速状态发送到S+S-CAN网络中,放电车控制系统检测电流小于5A时断开PMS快充负极继电器K5和PMS快充正极继电器K4,充电车控制系统检测电流小于5A时断开快充正极继电器K6和PMS快充负极继电器K7,放电车控制系统闭合电池包主负继电器K2及电池包主正继电器K1,进入增程器系统对放电车辆的充电模式。
充电控制系统根据车辆模式需求执行电池包主正继电器K9和电池包主负继电器K10的执行动作,放电车控制系统断开K12和K13,解锁电子锁锁止开关S1,充电车控制系统断开K14和K15,解锁电子锁锁止开关S2,在电子锁解除锁止状态之后,可进行拔取快充枪,完V2V充放电控制成V2V充电车BEV对放电车REEV启动控制流程。
综上,本申请实施例提供的V2V充放电控制电路的电路结构,可以通过增程式电动汽车对其他类型的电动汽车(由于是纯电动汽车)进行车车充电,也可以通过该电路结构在增程式电动汽车电量亏电时通过其他电动车辆进行增程式系统的启动控制,并且该电路结构简单,降低了电子件较多导致的出现故障的概率,同时可以减少布件的难度,在提升充电效率和减少充电时能量消耗的同时,保证了直流车车充电的稳定性。
进一步,为便于对整个过程进行理解,以下提供了一种具体的实施方式:
S1,通过充放电连接装置连接放电车侧控制系统和充电车侧控制系统,具体可以包括当识别到充电车侧的快充插头插入放电车侧快充插座中,将充电车侧快充插头插入充电车侧快充插座中,或者任一快充插头插入快充插座中。此时保证充电车控制系统与放电车控制系统高低压信号相连。
S2,充电车控制系统的VCU与放电车控制系统的VCU同时被CC2信号唤醒,进行车辆自检状态。
S3,充电车控制系统的VCU与放电车控制系统的VCU通过硬信12V将充电车与放电车其他所有高压部件电池管理系统BMS、OBC/DCDC三合一(也即上述第一CDU系统)、驱动电机控制器MCU、热管理系统等唤醒。
S4,根据CC2信号状态判断当前是否处于V2V模式,包括:充电车控制系统的VCU通过检测点1的电压值判断充电方式,如果检测点1的电压值为4V,则进行V2V充电流程,如果是6V则进入国标快充流程。国标快充仍然按照现有方式进行充电,本申请着重介绍V2V充电模式;以及,放电车控制系统的VCU通过检测点2的电压值4V,进行V2V充电流程,如果是6V则进入国标快充流程,同放电车辆。
S5,当识别到放电车辆和第二充电车辆通过充放电连接装置连接后,将放电车辆对应的第一锁止开关和充电车辆对应的第二锁止开关驱动至锁止状态,包括:放电车控制系统闭合K12和K13通过A+A-驱动电子锁锁止开关S1;以及,充电车控制系统闭合K14和K15通过A+A-驱动电子锁锁止开关S2。
S6,执行S5后充电车控制系统的电池管理系统BMS与放电车控制系统的电池管理系统BMS可通过S+/S-进行CAN通讯握手,进行通讯协议交互。
S7,如果当前处于V2V模式,判断放电车辆的电量状态,放电车辆动力电池电量正常可启动增程系统发送CAN信号充电车辆控制系统,此时则进行放电车辆对充电车辆充电控 制流程,在一种示例中,放电车辆为增程式电动汽车REEV,充电车辆可以为纯电动汽车BEV。
S8,如果放电车辆电量正常,则通过放电车辆的第一充放电车侧控制系统获取充电车辆的充电需求数据,包括:充电车控制系统的电池管理系统BMS上报充电需求数据(充电需求数据至少包括待充电量、电流和电压),并实时上报电池电压、电流、温度等数据。
S9,通过增程器系统对预充回路(预充回路为充电车控制系统包括的与增程器系统连接的OBC/DCDC三合系统中设置的回路)进行预充,在该预充过程中,首先通过放电车控制系统的VCU确认可满足充电车辆需求后,闭合电池包主负继电器K2,闭合预充继电器K3,进入放电车辆的预充流程。
S10,满足预充截至条件后,闭合电池包主正继电器K1,断开预充继电器K3,完成放电车辆的预充流程。
S11,放电车控制系统启动增程器系统,并控制其进入怠速模式。
S12,放电车控制系统断开电池包主负继电器K2及电池包主正继电器K1。
S13充电车控制系统的三合一闭合快充正极继电器K6和PMS快充负极继电器K7,并将继电器状态及整车状态通过S+S-发送到CAN网络中。
S14,放电车控制系统的三合一闭合快充负极继电器K5和预充继电器K8,进入充电车辆的预充流程。
S15,满足预充截至条件后并接受到充电车控制系统发送的预充成功CAN信号后,闭合PMS快充正极继电器K4,断开预充继电器K8,完成充电车辆的预充流程。
S16,充电控制系统闭合电池包主正极继电器K9和电池包主负继电器K10进入车车充电。
S17,放电车控制系统根据充电车控制系统请求的充电电压及电流调整增程器系统的输出电压及电流值。
S18,当充电车控制系统与放电车控制系统判定CC2信号异常、或整车其他高压故障、电池包满电截至条件等一切正常、故障、急停信号时,放电车控制系统停止增程器系统功率输出。
S19,充电控制系统检测电流小于预设电流(诸如5A)时断开PMS快充正极继电器K4和PMS快充负极继电器K5。
S20,放电车控制系统根据充电控制系统检测电流值信息小于5A时断开PMS快充正极继电器K7和快充负极继电器K8。
S21,放电车控制系统断开K12和K13,解锁电子锁锁止开关S1,以及,充电车控制系统断开K14和K15,解锁电子锁锁止开关S2。
S22,当是被到用户拔取快充枪时,确定断开充放电连接装置的连接,完成V2V放电车REEV对充电车BEV充电控制流程。
通过上述执行方式,可以完成增程式电动汽车对其他电动汽车的充电控制,同时无需在增程式电动汽车中设置繁杂的控制器系统进行V2V充电控制,在提升充电效率和减少充电 时能量消耗的同时,保证了直流车车充电的稳定性。
进一步,针对由充电车辆向放电车辆进行启动控制,由于是通过充电车辆的自身电池系统的电量对放电车辆的增程器系统进行反向启动控制,进而可以使增程器系统进行工作,在具体实施时,可以通过以下方式执行:
S1,将放电车侧快充插头插入放电车侧快充插座中,将充电车侧快充插头插入充电车侧快充插座中,或者任一快充插头插入快充插座中,保证充电车控制系统与放电车控制系统高低压信号相连。
S2,充电车控制系统与放电车控制系统的VCU同时被CC2信号唤醒,进行车辆自检状态。
S3,充电车控制系统与放电车控制系统的VCU通过硬信12V将充电车与放电车其他所有高压部件电池管理系统BMS、OBC/DCDC三合一、驱动电机控制器MCU、热管理系统等唤醒。
S4,根据CC2信号状态判断当前是否处于V2V模式,包括:放电车控制系统的VCU通过检测点1的电压值4V,进行V2V充电流程,如果是6V则进入国标快充流程;充电车控制系统VCU通过检测点2的电压值4V,进行V2V充电流程,如果是6V则进入国标快充流程。
S5,当识别到放电车辆和第二充电车辆通过充放电连接装置连接后,将放电车辆对应的第一锁止开关和充电车辆对应的第二锁止开关驱动至锁止状态,包括:放电车控制系统闭合K12和K13通过A+A-驱动电子锁锁止开关S1,以及,充电车控制系统闭合K14和K15通过A+A-驱动电子锁锁止开关S2。
S6,充电车控制系统的电池管理系统BMS与放电车控制系统的电池管理系统BMS可通过S+/S-进行CAN通讯握手,进行通讯协议交互。
S7,如果当前处于V2V模式,判断放电车辆的电量状态,如果放电车辆电量亏电导致增程器系统无法启动,放电车控制系统发送请求协助启动使能信号,进入充电车BEV对放电车REEV启动控制流程。
S8,放电车控制系统整车控制器VCU上报启动增程器系统所需的电量、电流、电压、整车预充时间等信息数据,充电车控制系统获取放电车系统启动增程器系统的启动需求数据,该启动需求数据至少包括电量、电流、电压和预充时间。
S9,通过放电车辆的动力电池对预充回路进行预充,并在预充结束后,基于启动需求数据向增程器系统充电,首先,充电车控制系统的整车控制器VCU确认可满足放电车辆需求后,闭合电池包电池包主负继电器K10,闭合预充继电器K11,进入充电车辆的预充流程。
S10,满足预充截至条件后,闭合电池包主正继电器K9,断开预充继电器K11,完成充电车辆的预充流程。
S11,充电车控制系统的三合一闭合快充正极继电器K6和PMS快充负极继电器K7,并将继电器状态及整车状态通过S+S-发送到CAN网络中。
S12,放电车控制系统的三合一闭合快充负极继电器K5和预充继电器K8,进入放电车辆的预充流程。
S13,满足预充截至条件后并接受到放电车控制系统发送的预充成功CAN信号后,闭合PMS快充正极继电器K4,断开预充继电器K8,完成放电车辆的预充流程。
S14,放电车控制系统启动增程器,并将其控制进入怠速模式,并将增程器启动成功及怠速状态发送到S+S-CAN网络中。
S15,放电车控制系统检测电流小于5A时断开PMS快充负极继电器K5和快充正极继电器K4。
S16,充电车控制系统检测电流小于5A时断开快充正极继电器K6和PMS快充负极继电器K7。
S17,放电车控制系统闭合电池包主负继电器K2及电池包主正继电器K1,进入增程器系统对放电车辆的充电模式。
S18,充电控制系统根据车辆模式需求执行电池包主正继电器K9和电池包主负继电器K10的执行动作。
S19,放电车控制系统断开K12和K13,解锁电子锁锁止开关S1,以及,充电车控制系统断开K14和K15,解锁电子锁锁止开关S2。
S20,可通过用户进行拔取快充枪操作1,断开充放电连接装置的连接,完成V2V充电车BEV对放电车REEV启动控制流程。
综上,本申请提供的方法实施例,通过V2V充放电控制电路,实现了增程式电动汽车对其他类型的电动汽车(由于是纯电动汽车)的车车充电,以及通过该电路结构在增程式电动汽车电量亏电时通过其他电动车辆进行增程式系统的启动控制,在提升充电效率和减少充电时能量消耗的同时,保证了直流车车充电的稳定性。
针对上述方法实施例,本申请还提供了一种V2V充电控制装置,参见图5所示,该V2V充电控制装置包括以下部分:
确定模块52,配置成当检测到放电车辆与充电车辆连接后,基于电压信号确定当前充电模式;
充电模块54,配置成如果当前充电模式为V2V模式,启动增程器系统,并在增程器系统对预充回路进行预充后,通过增程器系统对充电车辆进行充电。
本申请实施例提供的V2V充电控制装置,通过增程器系统对放电车辆对应的第一CDU系统中的预充回路进行预充后,则可以直接向连接的充电车辆放电,以完成充电车辆的充电,从而避免了多个控制器的控制逻辑复杂,并且本实施例提供的控制电路结构更加简单,可以进一步避免由于多种电子件构成的控制器在V2V充电时的故障隐患和能量消耗,提升充电效率。
在一些实施方式中,所述放电车侧控制系统包括第一动力电池;上述装置还包括:启动电量判断模块,配置成:在启动所述增程器系统之前,判断所述第一动力电池的当前电量是否满足所述增程器系统的启动电量需求;如果是,则通过所述第一动力电池支持所述增程器系统进行启动;如果否,判断所述充电车侧控制系统的第二动力电池的电量是否满足所述增程器系统的启动电量需求;如果是,则通过所述第二动力电池对所述增程器系统进行反向启动控制。
在一些实施方式中,上述装置还包括:充电数据获取模块,配置成通过所述第一动力电池支持所述增程器系统进行启动之后,获取所述充电车侧控制系统请求的充电需求数据;所述充电需求数据至少包括待充电量、充电电流和充电电压;基于所述充电需求数据确定输出功率,以便所述增程器系统基于所述输出功率对所述充电车辆进行充电。
在一些实施方式中,上述装置还包括:反向启动后充电模块,配置成在通过所述第二动力电池对所述增程器系统进行反向启动控制后,通过所述增程器系统对所述第一动力电池进行充电。
在一些实施方式中,上述装置还包括:输出调整模块,配置成当检测到所述充电电压和/或充电电流发生变化,基于变化后的充电电压和/或充电电流调整所述增程器系统的输出电压和输出电流。
在一些实施方式中,上述装置还包括:停止输出控制模块,配置成在充电过程中,当检测到所述电压信号异常、整车高压故障、第一动力电池满电或者所述第二动力电池满电时,控制所述增程器系统停止功率输出。
在一些实施方式中,所述放电车侧控制系统还包括第一整车控制器和第一电池管理系统,所述充电车侧控制系统包括第二整车控制器和第二电池管理系统;上述装置还包括:车车通信模块,配置成通过所述第一整车控制器控制所述放电车辆的A+A-线束驱动电子锁进行锁止,确定放电车辆的电子锁处于锁止状态,并且,获取所述充电车辆的电子锁被所述第二整车控制器驱动锁止后处于锁止状态的状态信息;当所述放电车辆的电子锁处于锁止状态且充电车辆的电子锁处于锁止状态时,所述第一电池管理系统与所述第二电池管理系统通过S+/S-通信连接。
在一些实施方式中,所述电压信号包括CC2电压信号;上述确定模块,还配置成:当所述CC2电压信号为4V信号时,确定当前充电模式为V2V模式;当所述CC2电压信号为6V信号时,确定当前充电模式为国标模式。
本申请实施例提供的V2V充电控制装置,其实现原理及产生的技术效果和前述方法实施例相同,为简要描述,V2V充电控制装置的实施例部分未提及之处,可参考前述V2V充电控制方法实施例中相应内容。
本申请提供一种V2V充放电控制系统,V2V充放电控制系统包括放电车辆上的放电车侧控制系统、充放电连接装置以及通过所述充放电连接装置与所述放电车侧控制系统连接的充电车侧控制系统,具体结构参见前述表述,此处不再赘述。
基于同一申请构思,参见图6所示,为本申请实施例提供的一种电子设备500的结构示意图,包括:处理器510、存储器520和总线530,所述存储器520存储有所述处理器510可执行的机器可读指令,当电子设备500运行时,所述处理器510与所述存储器520之间通过所述总线530进行通信,所述机器可读指令被所述处理器510运行时执行如上述实施例中任一所述的V2V充放电控制方法的步骤。
本申请实施例中当检测到放电车辆与充电车辆连接后,基于电压信号确定当前充电模式;如果当前充电模式为V2V模式,启动增程器系统,并在增程器系统对预充回路进行预充后,通过增程器系统对充电车辆进行充电。该V2V充电控制方法可以由放电车辆通过增程器系统直接向充电车辆进行充电,避免了多个控制器的控制逻辑复杂,以及多个控制器的故障风险的问题;并在充电过程中,通过与增程器系统连接的设置于第一CDU系统的预充回路进 行预充实现充电缓冲,在提升充电效率和减少充电时能量消耗的同时,保证了直流车车充电的稳定性。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行上述实施例提供的V2V充放电控制方法的步骤。
具体地,所述存储介质能够为通用的存储介质,如移动磁盘、硬盘等,所述存储介质上的计算机程序被运行时,能够执行上述V2V充放电控制方法方法,在提升充电效率和减少充电时能量消耗的同时,保证了直流车车充电的稳定性。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对步骤、数字表达式和数值并不限制本申请的范围。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可执行的非易失的计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
在本申请的描述中,需要说明的是,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (12)

  1. 一种V2V充电控制方法,其特征在于,所述V2V充电控制方法应用于放电车辆上的放电车侧控制系统,所述放电车侧控制系统包括增程器系统和与所述增程器系统连接的第一CDU系统,所述第一CDU系统中设置有预充回路;所述V2V充电控制方法包括:
    当检测到所述放电车辆与充电车辆连接后,基于电压信号确定当前充电模式;
    如果所述当前充电模式为V2V模式,启动所述增程器系统,并在所述增程器系统对所述预充回路进行预充后,通过所述增程器系统对所述充电车辆进行充电。
  2. 根据权利要求1所述的V2V充电控制方法,其特征在于,所述放电车侧控制系统包括第一动力电池;在启动所述增程器系统之前,所述方法还包括:
    判断所述第一动力电池的当前电量是否满足所述增程器系统的启动电量需求;
    如果是,则通过所述第一动力电池支持所述增程器系统进行启动;
    如果否,判断充电车侧控制系统的第二动力电池的电量是否满足所述增程器系统的启动电量需求;
    如果是,则通过所述第二动力电池对所述增程器系统进行反向启动控制。
  3. 根据权利要求2所述的V2V充电控制方法,其特征在于,通过所述第一动力电池支持所述增程器系统进行启动之后,所述方法还包括:
    获取所述充电车侧控制系统请求的充电需求数据;所述充电需求数据至少包括待充电量、充电电流和充电电压;
    基于所述充电需求数据确定输出功率,以便所述增程器系统基于所述输出功率对所述充电车辆进行充电。
  4. 根据权利要求2所述的V2V充电控制方法,其特征在于,在通过所述第二动力电池对所述增程器系统进行反向启动控制后,所述方法还包括:
    通过所述增程器系统对所述第一动力电池进行充电。
  5. 根据权利要求3所述的V2V充电控制方法,其特征在于,所述方法还包括:
    当检测到所述充电电压和/或充电电流发生变化,基于变化后的充电电压和/或充电电流调整所述增程器系统的输出电压和输出电流。
  6. 根据权利要求4所述的V2V充电控制方法,其特征在于,所述方法还包括:
    在充电过程中,当检测到所述电压信号异常、整车高压故障、第一动力电池满电或者所述第二动力电池满电时,控制所述增程器系统停止功率输出。
  7. 根据权利要求2所述的V2V充电控制方法,其特征在于,所述放电车侧控制系统还包括第一整车控制器和第一电池管理系统,所述充电车侧控制系统包括第二整车控制器和第二电池管理系统;当检测到所述放电车辆与所述充电车辆连接并确定当前充电模式为V2V模式后,所述方法还包括:
    通过所述第一整车控制器控制所述放电车辆的A+A-线束驱动电子锁进行锁止,确定放电车辆的电子锁处于锁止状态,并且,获取所述充电车辆的电子锁被所述第二整车控制器驱动锁止后处于锁止状态的状态信息;
    当所述放电车辆的电子锁处于锁止状态且充电车辆的电子锁处于锁止状态时,所述第一电池管理系统与所述第二电池管理系统通过S+/S-通信连接。
  8. 根据权利要求1所述的V2V充电控制方法,其特征在于,所述电压信号包括CC1电压信号和CC2电压信号;基于电压信号确定当前充电模式,包括:
    当所述CC2电压信号为4V信号时,确定当前充电模式为V2V模式;
    当所述CC1电压信号为6V信号时,确定当前充电模式为国标模式。
  9. 一种V2V充电控制装置,其特征在于,所述V2V充电控制装置应用于放电车辆上的放电车侧控制系统,所述放电车侧控制系统包括增程器系统和与所述增程器系统连接的第一CDU系统,所述第一CDU系统中设置有预充回路;所述V2V充电控制装置包括:
    确定模块,配置成当检测到所述放电车辆与充电车辆连接后,基于电压信号确定当前充电模式;
    充电模块,配置成如果所述当前充电模式为V2V模式,启动所述增程器系统,并在所述增程器系统对所述预充回路进行预充后,通过所述增程器系统对所述充电车辆进行充电。
  10. 一种V2V充电控制系统,其特征在于,所述V2V充电控制系统包括放电车辆上的放电车侧控制系统、充放电连接装置以及通过所述充放电连接装置与所述放电车侧控制系统连接的充电车侧控制系统。
  11. 一种电子设备,其特征在于,包括:处理器、存储器和总线,所述存储器存储有所述处理器可执行的机器可读指令,当电子设备运行时,所述处理器与所述存储器之间通过所述总线进行通信,所述机器可读指令被所述处理器运行时执行如权利要求1至8任一所述的V2V充电控制方法的步骤。
  12. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行如权利要求1至8任一所述的V2V充电控制方法的步骤。
PCT/CN2022/143726 2022-06-23 2022-12-30 V2v充电控制方法、装置、系统、设备和介质 WO2023246073A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210726196.7 2022-06-23
CN202210726196.7A CN114954046B (zh) 2022-06-23 2022-06-23 V2v充电控制方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2023246073A1 true WO2023246073A1 (zh) 2023-12-28

Family

ID=82965460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143726 WO2023246073A1 (zh) 2022-06-23 2022-12-30 V2v充电控制方法、装置、系统、设备和介质

Country Status (2)

Country Link
CN (1) CN114954046B (zh)
WO (1) WO2023246073A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114954046B (zh) * 2022-06-23 2022-11-15 上海洛轲智能科技有限公司 V2v充电控制方法、装置和系统
WO2024093669A1 (zh) * 2022-11-01 2024-05-10 广州汽车集团股份有限公司 车辆的放电系统及其控制方法、车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160052134A (ko) * 2014-11-04 2016-05-12 현대자동차주식회사 배터리 충전 장치 및 이를 이용한 차량간 충전 방법
CN112721734A (zh) * 2021-02-01 2021-04-30 潍柴动力股份有限公司 一种充电车辆的控制方法及装置
CN112810470A (zh) * 2021-01-29 2021-05-18 深圳威迈斯新能源股份有限公司 车载充电机v2v快充系统及其控制方法
CN114290923A (zh) * 2021-12-31 2022-04-08 上海洛轲智能科技有限公司 充电方法、装置、设备及计算机可读存储介质
CN114954046A (zh) * 2022-06-23 2022-08-30 上海洛轲智能科技有限公司 V2v充电控制方法、装置和系统
CN217532586U (zh) * 2022-06-23 2022-10-04 上海洛轲智能科技有限公司 V2v充放电控制电路和控制系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107599859B (zh) * 2017-09-01 2018-07-06 苏州达思灵新能源科技有限公司 电动汽车的供电系统、控制方法和电动汽车
CN111452639B (zh) * 2020-03-20 2022-05-31 金龙联合汽车工业(苏州)有限公司 一种基于欧标双枪大功率快充系统及方法
CN111516507A (zh) * 2020-04-29 2020-08-11 湖南麓鹏动力科技有限公司 一种电动汽车增程器控制器
CN111993942B (zh) * 2020-07-15 2022-07-12 合创汽车科技有限公司 电动汽车的充放电控制设备、方法、装置和充电枪
CN112373320B (zh) * 2020-12-04 2022-05-17 东风汽车股份有限公司 基于bms的电动汽车充电上电控制系统及其控制方法
CN112757927B (zh) * 2020-12-30 2022-06-07 重庆金康动力新能源有限公司 一种增程式车辆充放电控制方法及系统
CN113183761B (zh) * 2021-05-21 2022-11-04 岚图汽车科技有限公司 电动汽车高压预充回路、高压预充方法及高压预充系统
CN113386563B (zh) * 2021-06-30 2022-04-29 东风汽车集团股份有限公司 基于全功率电电混合燃料电池汽车的上电控制方法
CN113815440B (zh) * 2021-10-27 2023-06-02 重庆长安新能源汽车科技有限公司 一种车对车充电系统及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160052134A (ko) * 2014-11-04 2016-05-12 현대자동차주식회사 배터리 충전 장치 및 이를 이용한 차량간 충전 방법
CN112810470A (zh) * 2021-01-29 2021-05-18 深圳威迈斯新能源股份有限公司 车载充电机v2v快充系统及其控制方法
CN112721734A (zh) * 2021-02-01 2021-04-30 潍柴动力股份有限公司 一种充电车辆的控制方法及装置
CN114290923A (zh) * 2021-12-31 2022-04-08 上海洛轲智能科技有限公司 充电方法、装置、设备及计算机可读存储介质
CN114954046A (zh) * 2022-06-23 2022-08-30 上海洛轲智能科技有限公司 V2v充电控制方法、装置和系统
CN217532586U (zh) * 2022-06-23 2022-10-04 上海洛轲智能科技有限公司 V2v充放电控制电路和控制系统

Also Published As

Publication number Publication date
CN114954046A (zh) 2022-08-30
CN114954046B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2023246073A1 (zh) V2v充电控制方法、装置、系统、设备和介质
CN107599857B (zh) 一种基于锂电池的纯电动汽车充电系统和充电方法
CN110001430B (zh) 一种电动汽车双枪直流充电控制系统及控制方法
EP4207536A1 (en) Low-voltage battery charging system and method
CN101373904B (zh) 汽车供电系统及其控制方法
US11289920B2 (en) Circuit and charging method for an electrical energy storage system
CN103534135A (zh) 用于组合能源系统中过充电保护和充电平衡的系统和方法
CN103935258A (zh) 车辆的电源系统和包括其的车辆
WO2018205331A1 (zh) 电动汽车的自循环充放电装置和动力总成系统
US10179513B2 (en) Power net system of fuel cell vehicle and method for controlling the same
US11135935B2 (en) Vehicle charging system
CN102712266A (zh) 车辆
CN111546938B (zh) 一种车用混合蓄电池管理系统及方法
CN116572767A (zh) 一种充放电控制方法及控制系统
WO2022068593A1 (zh) 一种混合动力汽车的充电控制方法、装置以及汽车
CN217532586U (zh) V2v充放电控制电路和控制系统
CN113492702A (zh) 双向车载充电机、车载电源系统、充电控制方法及汽车
CN114030368A (zh) 一种电动汽车快充系统及其控制方法
US20210237612A1 (en) Vehicle-to-building power system
CN112297956A (zh) 一种燃料电池氢能汽车soc校准和电芯均衡控制装置
CN211106992U (zh) 一种基于燃料电池的电动汽车高压配电系统
CN112874303B (zh) 一种新能源汽车安全监控方法
CN113765176A (zh) 一种基于boost控制器的充电控制系统、方法及装置
CN112234691A (zh) 一种用于换电柜的集成仓控功能的dcdc变换器
CN218228891U (zh) 一种汽车充配电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22947808

Country of ref document: EP

Kind code of ref document: A1