WO2024093669A1 - 车辆的放电系统及其控制方法、车辆 - Google Patents

车辆的放电系统及其控制方法、车辆 Download PDF

Info

Publication number
WO2024093669A1
WO2024093669A1 PCT/CN2023/125037 CN2023125037W WO2024093669A1 WO 2024093669 A1 WO2024093669 A1 WO 2024093669A1 CN 2023125037 W CN2023125037 W CN 2023125037W WO 2024093669 A1 WO2024093669 A1 WO 2024093669A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
charging
switch
power
charged
Prior art date
Application number
PCT/CN2023/125037
Other languages
English (en)
French (fr)
Inventor
饶俊威
张安伟
朱永明
周文太
黄河
关佳景
Original Assignee
广州汽车集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222907274.1U external-priority patent/CN218678522U/zh
Priority claimed from CN202211355878.8A external-priority patent/CN115693881A/zh
Application filed by 广州汽车集团股份有限公司 filed Critical 广州汽车集团股份有限公司
Publication of WO2024093669A1 publication Critical patent/WO2024093669A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle

Definitions

  • the present application relates to the technical field of vehicle charging, and in particular to a vehicle discharge system and a control method thereof, and a vehicle.
  • Electric vehicles are equipped with large-capacity energy storage devices.
  • the vehicle can be regarded as a mobile energy storage power source.
  • Vehicles with external discharge function can provide electricity for home or emergency rescue loads, namely V2L (vehicle-to-load); they can provide charging services for other electric vehicles, namely V2V (vehicle-to-vehicle). Consumers have higher and higher requirements for automobile user experience.
  • V2V DC discharge function can solve problems such as road rescue and thus enhance the use value of the car.
  • V2V equipment through which the power transfer between two electric vehicles can be realized.
  • V2V equipment takes up a lot of space, which is not conducive to users to carry it with them.
  • One purpose of this application is to provide a vehicle discharge system to improve the convenience of external discharge sex.
  • the present application provides a discharge system for a vehicle, comprising:
  • An engine and a generator wherein the engine is used to drive the generator to generate electricity
  • a motor controller connected to the power output terminal of the generator, the motor controller comprising a power conversion module, the power conversion module being used to convert the alternating current output by the generator into a specific direct current;
  • the first discharge control circuit is connected between the output end of the motor controller and the power output port of the vehicle to control the on-off of the charging path between the motor controller and the power output port.
  • the first discharge control circuit includes a first total positive switch and a first total negative switch
  • the first total positive switch is connected between the positive pole of the motor controller output end and the positive pole of the power output port; the first total negative switch is connected between the positive pole of the motor controller output end and the negative pole of the power output port.
  • the first discharge control circuit further includes a first pre-charging circuit, and the first pre-charging circuit includes a first pre-charging switch and a first current limiting device;
  • the first pre-charge switch is connected in series with the first current limiting device, and the first pre-charge switch is connected in series with the first current limiting device and then connected in parallel with the first total positive switch.
  • the discharge system of the vehicle further includes a power battery and a second discharge control circuit
  • the power battery is connected in parallel to both ends of the motor controller, and a switch is connected in series to the branch where the power battery or the motor controller is located;
  • the second discharge circuit is connected between the output end of the power battery and the power output port of the vehicle to control the on-off of the charging path between the power battery and the power output port.
  • the second discharge control circuit includes a second total positive switch and a second total negative switch
  • the second main positive switch is connected to the positive electrode of the power battery and the output terminal of the motor controller.
  • the second total negative switch is connected between the negative electrode of the power battery and the negative electrode of the output end of the motor controller;
  • the second discharge control circuit further includes a second pre-charging circuit, wherein the second pre-charging circuit includes a second pre-charging switch and a second current limiting device;
  • the second pre-charge switch is connected in series with the second current limiting device, and the second pre-charge switch is connected in series with the second current limiting device and in parallel with the second total positive switch.
  • the discharge system of the vehicle also includes a charging control switch, which is connected to the path between the positive pole of the motor controller output terminal and the second total positive switch, and is located on the path between the first total positive switch and the second total positive switch.
  • the power output port is a standard fast charging port or a standard slow charging port of the vehicle.
  • a vehicle includes a vehicle body and a vehicle discharge system as described above, which is arranged in the vehicle body; the vehicle body is provided with an electric energy output port, and the vehicle discharge system charges the vehicle to be charged through the electric energy output port.
  • a control method of a vehicle discharge system is used for the vehicle discharge system; the method comprises:
  • the charging device identity information is sent to the vehicle to be charged so as to be identified as a charging device by the vehicle to be charged;
  • the output power of the vehicle discharge system is controlled to output electric energy to the vehicle to be charged.
  • the vehicle discharge system includes an engine, a motor, and a motor controller;
  • the charging demand information of the vehicle to be charged includes the charging power allowed to be input by the vehicle to be charged;
  • the output of the vehicle discharge system is controlled Power, so as to output electric energy to the vehicle to be charged, comprising:
  • the operation of the engine and the generator is controlled according to the smaller value between the allowed input charging power of the vehicle to be charged and the allowed output charging power of the vehicle; and the first discharge control circuit is controlled to be turned on.
  • the first discharge control circuit includes a first total positive switch, a first total negative switch, and a first pre-charge switch
  • the controlling the first discharge control circuit to be turned on comprises:
  • the first pre-charging switch and the first total negative switch are turned on, so that the power output by the motor controller is used to pre-charge the vehicle to be charged;
  • the first pre-charging circuit is disconnected, and the first main positive switch is turned on, so that the power output by the motor controller is input to the vehicle to be charged through the first main positive switch.
  • the vehicle discharge system includes a power battery;
  • the charging demand information of the vehicle to be charged includes the charging power allowed to be input by the vehicle to be charged;
  • the controlling the output power of the vehicle discharge system based on the charging demand information of the vehicle to be charged so as to output electric energy to the vehicle to be charged includes:
  • the power battery is controlled to output electric energy; and the second discharge control circuit is controlled to be turned on.
  • the second discharge control circuit includes a second total positive switch, a second total negative switch, and a second pre-charge switch
  • the controlling the second discharge control circuit to be turned on comprises:
  • the second pre-charging switch the second total negative switch, the first total positive switch, A first total negative switch enables the power battery to pre-charge the vehicle to be charged;
  • the second pre-charging switch is disconnected, the second main positive switch is opened, and the first main positive switch and the first main negative switch are kept open, so that the electric energy output by the power battery is input into the vehicle to be charged through the second main positive switch.
  • the present application utilizes the existing engine and generator in the vehicle to generate electricity, and by integrating an electric energy conversion module in the motor controller, the AC power generated by the generator can be converted into DC power that can be received by the vehicle to be charged, thereby realizing charging of the vehicle to be charged. Therefore, the present application eliminates the need for the vehicle to be additionally equipped with a V2V charger, which effectively improves the convenience of charging.
  • the present application utilizes the advantages of the existing engine, generator, and motor controller in the vehicle, and utilizes the existing communication interaction function to realize charging of other vehicles, effectively reducing production costs while enabling the vehicle itself to be equipped with a charging function.
  • FIG. 1 is a block diagram showing electrical connections between a vehicle discharging system and a vehicle to be charged according to an embodiment.
  • FIG. 2 is a circuit connection diagram of a vehicle discharge system according to an embodiment.
  • FIG. 3 is a flow chart showing a method for controlling a vehicle discharge system according to an embodiment.
  • FIG. 4 is a flow chart showing step S44 in FIG. 3 according to an embodiment.
  • FIG. 5 is a flow chart showing step S44 in FIG. 3 according to another embodiment.
  • Vehicle 1. Vehicle; 10. Engine; 11. Vehicle controller; 12. Generator; 13. Motor controller; 14. Generator management system; 15. Battery management system (inside the discharging vehicle); 16. Power battery; 171. First total positive switch; 172. First total negative switch; 173. First pre-charge switch; 174. First current limiting device; 175. Charging control switch; 181. Second total positive switch; 182. Second total negative switch; 183. Second pre-charge switch switch; 184, second current limiting device; 19, power output port;
  • Vehicle to be charged 21. Battery management system (inside the vehicle to be charged); 22. Battery; 23. Charging port;
  • the indications of directions (such as up, down, left, right, front and back) used to explain the structure and movement of various elements of the present application are not absolute but relative. These descriptions are appropriate when these elements are in the positions shown in the drawings. If the description of the positions of these elements changes, the indications of these directions also change accordingly.
  • the present application proposes a discharge system for a vehicle.
  • the type of vehicle may be a plug-in hybrid electric vehicle (PHEV) or an extended-range vehicle.
  • PHEV plug-in hybrid electric vehicle
  • the present application does not limit the driving mode of the hybrid system in the plug-in hybrid electric vehicle, which may be a series hybrid system, a parallel hybrid system, or a series-parallel hybrid system.
  • the discharge system of the vehicle in the present application can charge other vehicles or other energy storage devices, which is not limited here.
  • the vehicle in the present application is referred to as a discharge vehicle, and the device to be charged is an example of a vehicle to be charged.
  • the discharge system of the discharge vehicle 1 includes an engine 10, a generator 12, a motor controller 13 and a first discharge control circuit.
  • the engine 10 is used to drive the generator 12 to generate electricity;
  • the motor controller 13 is connected to the power output end of the generator 12, and the motor controller 13 includes a power conversion module 131, which is used to convert the alternating current output by the generator 12 into a specific direct current;
  • the first discharge control circuit is connected between the output end of the motor controller 13 and the power output port 19 of the discharge vehicle 1 to control the on and off of the charging path between the motor controller 13 and the power output port 19.
  • the engine 10, the generator 12, and the motor controller 13 are all existing components in the discharge vehicle 1.
  • the engine 10 can directly output power to drive the discharge vehicle 1 to travel.
  • the engine 10 can also generate electricity by driving the generator 12.
  • the electric energy generated by the generator 12 can be partially used to drive the drive motor in the discharge vehicle 1 to travel, and can also be stored in the power battery 16.
  • the electric energy output by the generator 12 is converted by the motor controller 13 and output to the vehicle 2 to be charged.
  • the motor controller 13 is used to invert the DC high voltage power input from the power battery 16 into frequency-adjustable three-phase AC power for supplying the matching drive motor.
  • the motor controller 13 is mainly composed of an interface circuit, a control mainboard, an IGBT module, a housing, and a cooling water channel.
  • the AC power generated by the generator 12 can be converted into DC power by integrating the power conversion module 131.
  • the power conversion module 131 includes at least an AC-DC conversion circuit, and may also include a step-down or step-up circuit, so that the power The machine controller 13 generates the power or voltage required by the vehicle 2 to be charged under the control of the vehicle controller 11 .
  • the present application integrates an electric energy conversion module 131 in the motor controller 13, so that the existing engine 10 and generator 12 in the discharge vehicle 1 can be used to generate electricity, and the generated AC power can be converted into DC power that can be received by the to-be-charged vehicle 2, so as to charge the to-be-charged vehicle 2. Therefore, the present application makes it unnecessary to configure an additional V2V charger for the discharge vehicle 1, which effectively improves the convenience of charging.
  • the discharge vehicle 1 of the present application utilizes the advantages of the existing engine 10, generator 12, and motor controller 13, and utilizes the existing communication interaction function in the discharge vehicle 1 to realize charging of other vehicles, which effectively reduces the production cost under the premise that the discharge vehicle 1 itself is equipped with a charging function.
  • the motor controller 13 may be controlled by the vehicle controller 11 (Vehicle Control Unit, assembly controller). Under the control of the vehicle controller 11, the power conversion module 131 of the motor controller 13 converts the AC power input by the generator 12 into a specific DC power.
  • vehicle controller 11 Vehicle Control Unit, assembly controller.
  • the power conversion module 131 of the motor controller 13 converts the AC power input by the generator 12 into a specific DC power.
  • the first discharge control circuit is used to control the on and off of the power transmission path between the output end of the motor controller 13 and the power output port 19 of the discharge vehicle 1.
  • the transmission path of the power is a loop, and the output end of the motor controller 13 has a positive pole and a negative pole. The current flows out from the positive pole of the output end and returns from the negative pole of the output end.
  • the first discharge control circuit includes a first total positive switch 171 and a first total negative switch 172; the first total positive switch 171 is connected between the positive pole of the output end of the motor controller 13 and the positive pole of the power output port 19; the first total negative switch 172 is connected between the negative pole of the output end of the motor controller 13 and the negative pole of the power output port 19.
  • the first total positive switch 171 and the first total negative switch 172 can be relays, and are controlled by the vehicle controller 11 or the battery management system 15 (Battery Management System, referred to as BMS) of the discharge vehicle 1.
  • BMS Battery Management System
  • the first discharge control circuit also includes a first pre-charging circuit
  • the first pre-charging circuit includes a first pre-charging switch 173 and a first current limiting device 174; the first pre-charging switch 173 is connected in series with the first current limiting device 174, and the first pre-charging switch 173 and the first current limiting device 174 are connected in series with the first The total positive switch 171 is connected in parallel.
  • the first current limiting device 174 may be a current limiting resistor.
  • the number of current limiting resistors may be one or more, and the connection mode may be a series connection.
  • the first pre-charge switch 173 may be a relay, and is controlled by the vehicle controller 11 or the battery management system 15 of the discharging vehicle 1.
  • the first total positive switch 171, the first total negative switch 172 and the first pre-charge switch 173 can all be turned on, so that at least part of the DC power output by the motor controller 13 flows through the first current limiting device 174, thereby achieving the effect of reducing the charging current.
  • the first total positive switch 171 can be turned off, the first total negative switch 172 and the first pre-charge switch 173 can be turned on, so that all the DC power output by the motor controller 13 flows through the first current limiting device 174, thereby reducing the charging current to the greatest extent.
  • the energy transmission path is the engine 10, the generator 12, the motor controller 13, and the power battery 16 of the vehicle to be charged 2 in sequence.
  • the discharge vehicle 1 of the present application is a hybrid vehicle
  • the discharge vehicle 1 is also equipped with a power battery 16, which is also used to provide electrical energy for the drive motor of the discharge vehicle 1. Therefore, the discharge system of the present application can also charge the vehicle to be charged 2 based on the electrical energy output by the power battery 16.
  • the discharge system of the discharge vehicle 1 also includes a power battery 16 and a second discharge control circuit; the power battery 16 is connected in parallel to both ends of the motor controller 13, and a switching switch 176 is connected in series to the branch where the power battery 16 or the motor controller 13 is located; the second discharge circuit is connected between the output end of the power battery 16 and the power output port 19 of the discharge vehicle 1 to control the on and off of the charging path between the power battery 16 and the power output port 19.
  • the switch 176 may be a relay and is controlled by the vehicle controller 11 or the battery management system 15 of the discharging vehicle 1.
  • the switch 176 is connected in series with the motor controller 13 and then connected in parallel to both ends of the power battery 16.
  • the vehicle controller 11 may choose to use the engine 10, the generator 12, and the motor controller 13 to charge the vehicle 2 to be charged or use the power battery 16 to charge the vehicle 2 to be charged according to specific needs.
  • the second discharge circuit is used to control the on/off of the charging path between the power battery 16 and the vehicle 2 to be charged.
  • the second discharge control circuit includes a second total positive switch 181 and a second total negative switch 182; the second total positive switch 181 is connected between the positive electrode of the power battery 16 and the positive electrode of the power output port 19;
  • the second total negative switch 182 is connected between the negative electrode of the power battery 16 and the negative electrode of the power output port 19;
  • the second discharge control circuit also includes a second pre-charging circuit, the second pre-charging circuit includes a second pre-charging switch 183 and a second current limiting device 184; the second pre-charging switch 183 is connected in series with the second current limiting device 184, and the second pre-charging switch 183 is connected in series with the second current limiting device 184 and connected in parallel with the second total positive switch 181.
  • the power battery 16 has a positive electrode and a negative electrode
  • the second total positive switch 181 controls the electric energy outflow path of the power battery 16
  • the second total negative switch 182 is used to control the battery return path of the power battery 16. Therefore, by connecting the second total positive switch 181 to the positive electrode of the power battery 16 and connecting the second total negative switch 182 to the negative electrode of the power battery 16, the safety and reliability of the power output of the power battery 16 can be improved.
  • the second total positive switch 181, the second total negative switch 182, and the second pre-charge switch 183 can all be relays, and are controlled by the vehicle controller 11 or the battery management system 15 of the discharge vehicle 1.
  • the second current limiter can be a current limiting resistor.
  • the number of current limiting resistors can be one or more, and the connection method can be a series connection.
  • the discharge system of the discharge vehicle 1 may also include a charge control switch 175, which is connected to the path between the positive pole of the output terminal of the motor controller 13 and the second total positive switch 181, and is located on the path between the first total positive switch 171 and the second total positive switch 181. Therefore, the charge control switch 175 is connected to the first charge control circuit and the second charge control circuit at the same time. Only when the charge control switch 175 is turned on, the first charge control circuit and the second charge control circuit can be turned on. Therefore, by setting the charge control switch 175, the probability of the first charge control circuit and the second charge control circuit being mis-conducted can be effectively reduced.
  • the switch control needs to be disconnected.
  • the second total positive switch 181 is closed; the second pre-charging switch 183, the charging control switch 175, the first total positive relay, the first total negative relay, and the second total negative switch 182 are closed to pre-charge the vehicle to be charged first.
  • the second pre-charging switch 183 is disconnected, and the second total positive relay is closed at the same time, and the vehicle 2 to be charged continues to be charged.
  • the first charging control circuit can be independently provided from the second charging control circuit.
  • the first total positive switch 171 is connected in series on the path between the second total positive switch 781 and the positive end of the power output port 19; the first total negative switch 172 is connected in series on the path between the second total negative switch 182 and the negative end of the power output port 19.
  • the power battery 16 is conventionally charged and discharged through the second charging control circuit. Therefore, in the present embodiment, the first charging control circuit can be formed by adding the first total positive switch 171, the first total negative switch 172, and the first pre-charging switch 173 to the existing charging and discharging circuit of the power battery 16, thereby effectively reducing the risk of increased costs and circuit instability due to circuit improvements.
  • the discharge vehicle 1 of the present application is usually provided with a standard fast charging port or a standard slow charging port.
  • one end of the charging connection device 3 is used to connect to the standard fast charging port or the standard slow charging port of the discharge vehicle 1, and the other end of the charging connection device 3 is connected to the standard slow charging port of the vehicle to be charged 2.
  • the discharge vehicle 1 is used to increase the simulation charging pile message sending logic on the basis of the original national standard DC charging protocol, so that the battery management system 15 of the charging vehicle recognizes the discharge vehicle as a fast charging pile, and then controls and manages the charging process based on the national standard DC charging protocol, without the need to re-establish a new charging protocol, which effectively reduces the software development cost.
  • the present application also proposes a vehicle, comprising a vehicle body and a vehicle discharge system as in the above embodiment arranged in the vehicle body; the vehicle body is provided with an electric energy output port 19, and the vehicle discharge system charges the vehicle 2 to be charged through the electric energy output port 19. Since the vehicle has the vehicle discharge system in the above embodiment, it has all the beneficial effects possessed by the vehicle discharge system, which will not be described in detail here.
  • the present application also proposes a control method for a vehicle discharge system, which is applied to the vehicle discharge system in the above embodiment; since the vehicle in the present application is used to discharge the to-be-charged vehicle 2 during the charging process, in the following embodiment, the vehicle of the present method is referred to as a discharge vehicle 1 to distinguish it from the to-be-charged vehicle 2.
  • the control method for the vehicle discharge system includes:
  • Step S41 identifying the type of the charging connection device 3 inserted into the power outlet 19 on the vehicle;
  • the charging connection device 3 has two ends, one end is connected to the power output port 19 of the discharge vehicle 1 of the present application, and the other end is connected to the charging port of the vehicle to be charged 2.
  • the discharge vehicle 1 of the present application is usually provided with a standard fast charging port or a standard slow charging port. Both the standard fast charging port or the standard slow charging port can be used as the power output port 19, and of course a separate power output port 19 can also be provided.
  • the vehicle controller 11 of the discharge vehicle 1 will identify the type of gun head inserted into the power output port 19.
  • the types of gun heads are divided into three types: fast charging gun, slow charging gun, and discharge gun.
  • the vehicle controller 11 can automatically enter the discharge process after identifying the gun head type as a fast charging gun.
  • the user can further issue a control instruction to control the discharge system of the discharge vehicle 1 to enter the discharge process.
  • a button or a touch screen interface can be set on the main console inside the discharge vehicle 1, and the user can confirm the entry into the discharge process by operating the button or the touch screen interface, provided that the discharge vehicle 1 self-checks without abnormality.
  • Step S42 when the gun head type of the charging connection device 3 is a discharge gun, the charging device identity information is sent to the vehicle to be charged 2, so as to be identified as a charging device by the vehicle to be charged 2;
  • Both the discharging vehicle 1 and the charging vehicle 2 are equipped with a battery management system 15.
  • the core function of the battery management system 15 is to collect data such as voltage, temperature, current, resistance, etc. of the power battery 16 system, and then analyze the data status and battery use environment to monitor and control the charging and discharging process of the battery system.
  • the main functions of the battery management system 15 include battery status analysis, battery safety protection, battery energy management, communication and fault diagnosis, etc.
  • step S42 the battery management system 15 of the discharging vehicle 1 can add a simulated charging pile message sending logic based on the original national standard DC charging protocol, so that the battery management system 15 of the vehicle to be charged can identify the discharging vehicle as a fast charging pile, and then manage and control the charging process based on the existing national standard DC charging protocol, without the need to re-establish a new charging protocol, effectively reducing software development costs.
  • Step S43 obtaining charging requirement information of the vehicle 2 to be charged.
  • the charging vehicle 2 After the discharging vehicle 1 and the charging vehicle have a communication handshake, the charging vehicle 2 will The power demand information is sent to the discharging vehicle 1.
  • the charging demand information may include the allowed charging power and/or charging voltage of the vehicle to be charged 2.
  • the allowed charging power may be the maximum charging power allowed by the vehicle to be charged 2 or the most suitable charging power range for the vehicle to be charged 2, which is not limited here.
  • the battery management system 15 of the vehicle to be charged 2 identifies its own battery pack SOC and battery temperature information, and calculates the allowed charging power or suitable charging power at this time by looking up the table. Then the battery management system 21 of the vehicle to be charged 2 communicates with the battery management system 15 of the discharge vehicle 1, thereby sending the charging demand information of the vehicle to be charged 2 to the battery management system 15 of the discharge vehicle 1. If the communication protocol supports it, the battery management system 21 of the vehicle to be charged 2 can also communicate with the vehicle controller 11 of the discharge vehicle, thereby sending the charging demand information of the vehicle to be charged 2 to the vehicle controller 11 of the discharge vehicle 1.
  • Step S44 based on the charging demand information of the vehicle 2 to be charged, the output power of the vehicle discharge system is controlled to output electric energy to the vehicle 2 to be charged.
  • the discharge system of the discharge vehicle 1 in this embodiment has two discharge paths.
  • the first discharge path is: the engine 10 of the discharge vehicle 1 drives the generator 12 to generate electricity, and the generated electric energy is converted from AC to DC by the motor controller 13, and then charged through the first discharge control circuit to the vehicle to be charged 2.
  • the second discharge path is that the power battery 16 of the discharge vehicle 1 charges the vehicle to be charged 2 through the second discharge control circuit.
  • step S44 includes: the discharging vehicle 1 includes an engine 10 , an electric motor and a motor controller 13 ; the charging demand information of the vehicle to be charged 2 includes the allowed input charging power of the vehicle to be charged 2 .
  • the process of controlling the output power of the vehicle discharge system based on the charging demand information of the vehicle 2 to be charged in step S44 to output electric energy to the vehicle 2 to be charged may include:
  • Step S441 obtaining the energy allowed to be output by the engine 10 and the power allowed to be output by the generator 12;
  • Step S442 determining the charging power allowed to be output by the vehicle based on the energy allowed to be output by the engine 10 and the power allowed to be output by the generator 12;
  • Step S443 according to the smaller value between the allowed input charging power of the vehicle 2 to be charged and the allowed output power of the vehicle, the operation of the engine 10 and the generator 12 is controlled; and the first discharge control circuit is controlled to be turned on.
  • the battery management system 15 of the vehicle to be charged 2 identifies the SOC and temperature information of its own battery 22, calculates the charging power allowed to be input at this time by looking up the table, and sends the relevant information to the battery management system 15 of the discharging vehicle 1, and sends a charging request to the vehicle controller 11 of the discharging vehicle 1.
  • the battery management system 15 of the vehicle to be charged 2 can also directly send the relevant information to the vehicle controller 11 of the discharging vehicle.
  • step S442 the vehicle controller 11 is electrically connected to the engine 10 management system and the motor controller 13 for communication, and can obtain the energy allowed to be output by the engine 10 from the engine 10 management system and the power allowed to be output by the generator 12 from the motor controller 13.
  • the charging power allowed to be output by the discharge system is comprehensively determined.
  • the vehicle controller 11 further compares the allowed input charging power of the vehicle to be charged 2 and the allowed output charging power of the discharging vehicle 1, and takes the smaller value of the two as the target output power of the discharging system to avoid overloading of the motor controller 13, the generator 12 or the engine 10.
  • the vehicle controller 11 sends the target output power to the engine management system 14 and the motor controller 13.
  • the engine management system 14 controls the engine 10 to generate the corresponding power with the best efficiency.
  • the motor controller 13 controls the generator 12 to generate the corresponding power.
  • the motor controller 13 itself converts the AC power output by the generator 12 into DC power, thereby converting the AC power output by the generator 12 into the DC power required by the battery management system 21 of the vehicle 2 to be charged.
  • the vehicle controller 11 controls the relevant relays in the first discharge control loop to open, so that the DC power output by the motor controller 13 can be transmitted to the vehicle 2 to be charged.
  • the vehicle controller 11 or the battery management system 15 controls the first pre-charge switch 173 to be turned on, and turns on the first total negative switch 173.
  • Switch 172 and at the same time close the switching switch 176, disconnect the second total positive switch 181, the second total negative switch 182, the second pre-charging switch 183, and the first total positive switch 171; the motor controller 13 supplies power to the vehicle 2 to be charged through the first pre-charging circuit; after the initial charging is completed, the first pre-charging switch 173 is disconnected, and the first total positive switch 171 is opened, and the states of other switches remain unchanged, so that the motor controller 13 supplies power to the vehicle 2 to be charged through the first total positive switch 171.
  • the battery management system 21 of the vehicle to be charged 2 sends a relevant signal to the battery management system 15 of the discharging vehicle, and the battery management system 15 of the discharging vehicle sends a signal to disconnect the relay switch in the first discharging control circuit.
  • the console in the discharging vehicle prompts that charging is completed (the charging completion information can be displayed on the display screen in the vehicle).
  • the discharge system of the discharge vehicle 1 includes a power battery 16 ; and the charging demand information of the vehicle to be charged 2 includes the charging power allowed to be input by the vehicle to be charged 2 .
  • the process of controlling the output power of the vehicle discharge system based on the charging demand information of the vehicle to be charged 2 in step S44 to output electric energy to the vehicle to be charged 2 may include:
  • Step S445 obtaining the charging power allowed to be output by the power battery 16;
  • Step S446 controlling the power battery 16 to output electric energy according to the smaller value between the allowed input charging power of the vehicle 2 to be charged and the allowed output power of the power battery 16; and controlling the second discharge control circuit to be turned on.
  • the vehicle controller 11 and the battery management system 15 of the discharging vehicle 1 communicate with the battery management system 21 of the vehicle to be charged 2; schematically, the battery management system 15 of the vehicle to be charged 2 identifies the SOC and temperature information of its own battery pack, calculates the charging power allowed to be input at this time through a table lookup, and informs the battery management system 15 of the discharging vehicle of the allowed charging power, and sends a charging request to the vehicle controller 11 of the discharging vehicle.
  • the battery management system 15 of the discharging vehicle sends the power allowed to be output by the power battery 16 to the vehicle controller 11 by detecting the SOC, temperature and other related parameters of the power battery 16 in the vehicle.
  • the vehicle controller 11 of the discharging vehicle 1 compares the charging power allowed to be input by the charging vehicle 2 and the power battery 16. The smaller value between the two is taken as the target output power of the discharge system, and the vehicle controller 11 sends the target output power to the battery management system 15 in the vehicle, so that the battery management system 15 controls the power battery 16 to output the corresponding power.
  • the vehicle controller 11 and the battery management system 15 control the relevant relays in the second discharge control loop to open, so that the DC power output by the power battery 16 can be transmitted to the vehicle 2 to be charged.
  • the second discharge control circuit includes a second total positive switch 181 and a second total negative switch 182; the discharge system of the discharge vehicle 1 also includes a second pre-charging circuit; when the discharge vehicle 1 starts to charge the to-be-charged vehicle 2, the switching switch can be turned off to ensure that the output end of the motor controller 13 does not output electrical energy to the outside.
  • the vehicle controller 11 or the battery management system 15 of the discharge vehicle 1 controls the second discharge control circuit to be turned on.
  • the vehicle controller 11 or the battery management system 15 disconnects the switching switch 176 and the second total positive switch 181; closes the second pre-charging switch 183, the charging control switch 175, the first total positive switch 171, the first total negative switch 172, and the second total negative switch 182, and pre-charges the vehicle 2 to be charged first.
  • the second pre-charging switch 183 is disconnected, and the second total positive switch 181 is closed at the same time, and the vehicle 2 to be charged continues to be charged.
  • the battery management system 21 of the vehicle to be charged 2 sends a charging end request signal to the battery management system 15 of the discharging vehicle, and the battery management system 15 of the discharging vehicle 1 sends a control signal to disconnect the relay switch in the second discharging control circuit.
  • the console in the discharging vehicle prompts that charging is completed (the charging completion information can be displayed on the display screen in the vehicle).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供了一种车辆的放电系统及其控制方法、车辆。车辆的放电系统包括发动机、发电机、电机控制器、第一放电控制电路;所述发动机用于驱动所述发电机发电;电机控制器连接于所述发电机的电能输出端,所述电机控制器包括电能转换模块,所述电能转换模块用于将所述发电机输出的交流电转换成特定直流电;第一放电控制电路连接在所述电机控制器的输出端以及车辆的电能输出口之间,以控制所述电机控制器与所述电能输出口之间充电路径的通断。因此本申请方案使得车辆无需额外配置V2V充电机,有效的提高了充电的便利性。

Description

车辆的放电系统及其控制方法、车辆
本申请要求于2022年11月1日提交中国专利局、申请号为202211355878.8、发明名称为“车辆的放电系统及其控制方法、车辆”的中国专利申请的优先权,以及要求于2022年11月1日提交中国专利局、申请号为202222907274.1、专利申请名称为“车辆的放电系统及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆充电技术领域,具体涉及一种车辆的放电系统及其控制方法、车辆。
背景技术
电动汽车搭载了大容量的电能存储装置,当电动汽车具备对车外的电能输出功能时,车辆可视作为可移动的储能电源。具备对外放电功能的车辆,可为家庭或紧急救援的负荷提供电能,即V2L(vehicle-to-load);可为其他电动汽车提供充电服务,即V2V(vehicle-to-vehicle)。消费者对汽车用户体验要求越来越高,开发V2V直流放电功能可以解决道路救援等问题,进而提升汽车的使用价值。
目前市面上常见的做法是在增加V2V设备,通过V2V设备,可以实现将两辆电动汽车之间电能转移。然而,V2V设备占用空间大,不利于用户随车携带使用。
在所述背景技术部分公开的上述信息仅用于加强对本申请的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本申请的一个目的在于提出一种车辆的放电系统,以提高对外放电的便利 性。
为解决上述技术问题,本申请采用如下技术方案:
根据本申请的一个方面,本申请提供一种车辆的放电系统,包括:
发动机以及发电机,所述发动机用于驱动所述发电机发电;
电机控制器,连接于所述发电机的电能输出端,所述电机控制器包括电能转换模块,所述电能转换模块用于将所述发电机输出的交流电转换成特定直流电;
第一放电控制电路,连接在所述电机控制器的输出端以及车辆的电能输出口之间,以控制所述电机控制器与所述电能输出口之间充电路径的通断。
根据本申请一实施例,所述第一放电控制电路包括第一总正开关、第一总负开关;
所述第一总正开关连接于所述电机控制器输出端的正极与所述电能输出口的正极之间;所述第一总负开关连接于所述电机控制器输出端的正极与所述电能输出口的负极之间。
根据本申请一实施例,所述第一放电控制电路还包括第一预充电路,所述第一预充电路包括第一预充开关以及第一限流器件;
所述第一预充开关与所述第一限流器件串联连接,且所述第一预充开关与所述第一限流器件串联后与所述第一总正开关并联连接。
根据本申请一实施例,所述车辆的放电系统还包括动力电池以及第二放电控制电路;
所述动力电池并联于所述电机控制器的两端,且所述动力电池或所述电机控制器所在的支路上串联有切换开关;
所述第二放电电路连接在所述动力电池的输出端以及车辆的电能输出口之间,以控制所述动力电池与所述电能输出口之间充电路径的通断。
根据本申请一实施例,所述第二放电控制电路包括第二总正开关、第二总负开关;
所述第二总正开关连接于所述动力电池的正极与所述电机控制器的输出端 正极之间;所述第二总负开关连接于所述动力电池的负极与所述电机控制器输出端的负极之间;
所述第二放电控制电路还包括第二预充电路,所述第二预充电路包括第二预充开关以及第二限流器件;
所述第二预充开关与所述第二限流器件串联连接,所述第二预充开关与所述第二限流器件串联与所述第二总正开关并联连接。
根据本申请一实施例,所述车辆的放电系统还包括充电控制开关,所述充电控制开关连接在所述电机控制器输出端正极与所述第二总正开关之间的路径上,且位于所述第一总正开关和所述第二总正开关之间的路径上。
根据本申请一实施例,所述电能输出口为所述车辆的标准快充口或者标准慢充口。
根据本申请另一方面,一种车辆包括车体以及设置在车体内,如所述的车辆放电系统;所述车体上设有电能输出口,所述车辆放电系统通过所电能输出口为待充电车辆充电。
根据本申请另一方面,车辆的放电系统的控制方法,用于所述的车辆放电系统;所述方法包括:
识别插入至所述车辆上的电能输出口的充电连接装置枪头的类型;
当所述充电连接装置的枪头类型为放电抢时,向待充电车辆发送充电装置身份信息,以用于被所述待充电车辆识别为充电装置;
获取待充电车辆的充电需求信息;
基于所述待充电车辆的充电需求信息,控制所述车辆放电系统的输出功率,以向所述待充电车辆输出电能。
根据本申请一实施例,所述车辆放电系统包括发动机、电动机以及电机控制器;所述待充电车辆的充电需求信息包括所述待充电车辆的允许输入的充电功率;
所述基于所述待充电车辆的充电需求信息,控制所述车辆放电系统的输出 功率,以向所述待充电车辆输出电能,包括:
获取所述发动机所允许输出的能量,以及所述发电机所允许输出的功率;
基于所述发动机所允许输出的能量以及所述发电机所允许输出的功率,确定所述车辆所允许输出的充电功率;
根据所述待充电车辆的所允许输入的充电功率以及所述车辆所允许输出的充电功率之间的较小值,控制所述发动机以及所述发电机的工作;并且控制第一放电控制电路导通。
根据本申请一实施例,所述第一放电控制电路包括第一总正开关、第一总负开关、第一预充开关;
所述控制第一放电控制电路导通包括:
在充电初期,打开第一预充开关以及第一总负开关,使所述电机控制器输出的功率为所述待充电车辆预充电;
预充电结束后,断开第一预充电路,打开所述第一总正开关,使所述电机控制器输出的功率通过所述第一总正开关输入至所述待充电车辆。
根据本申请一实施例,所述车辆放电系统包括动力电池;所述待充电车辆的充电需求信息包括所述待充电车辆所允许输入的充电功率;
所述基于所述待充电车辆的充电需求信息,控制所述车辆放电系统的输出功率,以向所述待充电车辆输出电能,包括:
获取所述动力电池所允许输出的充电功率;
根据所述待充电车辆的所允许输入的充电功率以及所述动力电池所允许输出的功率之间的较小值,控制所述动力电池输出电能;并且控制第二放电控制电路导通。
根据本申请一实施例,所述第二放电控制电路包括第二总正开关、第二总负开关,第二预充开关;
所述控制第二放电控制电路导通,包括:
在充电初期,打开所述第二预充开关、所述第二总负开关、第一总正开关、 第一总负开关,使所述动力电池为所述待充电车辆预充电;
预充电结束后,断开所述第二预充开关,打开所述第二总正开关,并保持所述第一总正开关、所述第一总负开关打开,使所述动力电池输出的电能通过所述第二总正开关输入至所述待充电车辆。
本申请方案利用车辆内现有的发动机、发电机进行发电,并通过在电机控制器内集成电能转换模块,从而可以发电机发出的交流电能转换成待充电车辆可以接收的直流电能,实现对待充电车辆的充电。因此本申请方案使得车辆无需额外配置V2V充电机,有效的提高了充电的便利性。并且,本申请方案的利用车辆内既有的发动机、发电机、电机控制器的优势,并利用已有的通讯交互功能以实现对其他车辆的充电,在使车辆自身配置充电功能的前提下,有效降低了生产成本。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
通过参照附图详细描述其示例实施例,本申请的上述和其它目标、特征及优点将变得更加显而易见。
图1是根据一实施例示出的车辆放电系统与待充电车辆的电气连接框图。
图2是根据一实施例示出的车辆放电系统的电路连接示意图。
图3是根据一实施例示出的车辆放电系统控制方法的流程图。
图4是根据一实施例示出的图3中步骤S44的流程图。
图5是根据另一实施例示出的图3中步骤S44的流程图。
附图标记说明如下:
1、车辆;10、发动机;11、车辆控制器;12、发电机;13、电机控制器;14、发电机管理系统;15、电池管理系统(放电车辆内);16、动力电池;171、第一总正开关;172、第一总负开关;173、第一预充开关;174、第一限流器件;175、充电控制开关;181、第二总正开关;182、第二总负开关;183、第二预充 开关;184、第二限流器件;19、电能输出口;
2、待充电车辆;21、电池管理系统(待充电车辆内);22、电池;23、充电口;
3、充电连接装置。
具体实施方式
尽管本申请可以容易地表现为不同形式的实施方式,但在附图中示出并且在本说明书中将详细说明的仅仅是其中一些具体实施方式,同时可以理解的是本说明书应视为是本申请原理的示范性说明,而并非旨在将本申请限制到在此所说明的那样。
由此,本说明书中所指出的一个特征将用于说明本申请的一个实施方式的其中一个特征,而不是暗示本申请的每个实施方式必须具有所说明的特征。此外,应当注意的是本说明书描述了许多特征。尽管某些特征可以组合在一起以示出可能的系统设计,但是这些特征也可用于其他的未明确说明的组合。由此,除非另有说明,所说明的组合并非旨在限制。
在附图所示的实施方式中,方向的指示(诸如上、下、左、右、前和后)用于解释本申请的各种元件的结构和运动不是绝对的而是相对的。当这些元件处于附图所示的位置时,这些说明是合适的。如果这些元件的位置的说明发生改变时,则这些方向的指示也相应地改变。
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些示例实施方式使得本申请的描述将更加全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。附图仅为本申请的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
以下结合本说明书的附图,对本申请的较佳实施方式予以进一步地详尽阐述。
本申请提出一种车辆的放电系统。车辆的类型可以是插电式混合动力汽车(Plug-in hybrid electric vehicle,简称PHEV),也可以是增程式汽车。对于插电式混合动力汽车车型,在本申请中并不限定插电式混合动力汽车内混合动力系统的驱动模式,其可以是串联式混合动力系统,也可以是并联式混合动力系统,还可以是混联式混合动力系统。
本申请中的车辆的放电系统可以为其他车辆充电,也可以为其他储能设备充电,此处不做限定。在下述实施例中,以本申请中的车辆为放电车辆指代,并且以待充电设备为待充电车辆为例进行说明。
在一实施例中,放电车辆1的放电系统包括发动机10、发电机12、电机控制器13以及第一放电控制电路。发动机10用于驱动发电机12发电;电机控制器13连接于发电机12的电能输出端,电机控制器13包括电能转换模块131,电能转换模块131用于将发电机12输出的交流电转换成特定直流电;第一放电控制电路接在电机控制器13的输出端以及放电车辆1的电能输出口19之间,以控制电机控制器13与电能输出口19之间充电路径的通断。
其中,发动机10、发电机12、以及电机控制器13均为放电车辆1内的既有部件。在不同的运行模式下,发动机10可以直接输出动力驱动放电车辆1行驶。发动机10也可以通过驱动发电机12发电,发电机12发出的电能可以一部分驱动放电车辆1内的驱动电机行驶,也可以存储在动力电池16内。在本实施例中,当放电车辆1需要对其他待充电的车辆进行充电时,发电机12输出的电能经过电机控制器13的转换而输出至待充电车辆2。
发动机10在常规使用中,电机控制器13中用于将动力电池16输入的直流高压电逆变成频率可调的三相交流电,供给配套的驱动电机使用。示意性的,电机控制器13主要由接口电路、控制主板、IGBT模块、壳体以及冷却水道组成。
在本实施例中,基于放电车辆1内已有的电机控制器13,通过集成电能转换模块131,从而能够将发电机12发出的交流电能转换成直流电能。电能转换模块131至少包括AC-DC转换电路,并且还可以包括降压或升压电路,使得电 机控制器13在车辆控制器11的控制下发出待充电车辆2所需求的功率或电压。
本申请方案通过在电机控制器13内集成电能转换模块131,从而可以利用放电车辆1内现有的发动机10、发电机12进行发电,并将发出的交流电能转换成待充电车辆2可以接收的直流电能,实现对待充电车辆2的充电。因此本申请方案使得放电车辆1无需额外配置V2V充电机,有效的提高了充电的便利性。并且,本申请方案的放电车辆1利用内既有的发动机10、发电机12、电机控制器13的优势,并利用放电车辆1内已有的通讯交互功能以实现对其他车辆的充电,在使放电车辆1自身配置充电功能的前提下,有效降低了生产成本。
在本实施例中,电机控制器13可以受控于车辆控制器11(Vehicle Control Unit,总成控制器)。在车辆控制器11的控制下,电机控制器13的电能转换模块131将发电机12输入的交流电能转换成某一特定的直流电能。
第一放电控制电路用于控制电机控制器13的输出端与放电车辆1的电能输出口19之间的电能传输路径的通断。在一实施例中,应当理解,电能的传输路径是回路,电机控制器13的输出端具有正极和负极。电流从输出端正极流出,从输出端负极返回。第一放电控制电路包括第一总正开关171、第一总负开关172;第一总正开关171连接于电机控制器13的输出端的正极与电能输出口19的正极之间;第一总负开关172连接于电机控制器13的输出端的负极与电能输出口19的负极之间。在此第一总正开关171、第一总负开关172可以是继电器,且受控于放电车辆1的车辆控制器11或电池管理系统15(Battery Management System,简称BMS)。通过在电机控制器13的输出端正极设置第一总正开关171、在输出端负极上设置第一总负开关172,能够提高电机控制器13输出电能的安全性和可靠性。
为了防止直接上电瞬间,充电电流过大,而对待充电车辆2内的电子器件造成冲击,因此在一实施例中,第一放电控制电路还包括第一预充电路,第一预充电路包括第一预充开关173以及第一限流器件174;第一预充开关173与第一限流器件174串联连接,且第一预充开关173与第一限流器件174串联后与第一 总正开关171并联连接。在此第一限流器件174可以是限流电阻。限流电阻的数量可以是一个或多个,连接方式可以是串联连接。第一预充开关173可以是继电器,且受控于放电车辆1的车辆控制器11或电池管理系统15。
在充电初期,可以使第一总正开关171、第一总负开关172以及第一预充开关173均打开,使电机控制器13输出的直流电能至少部分流经第一限流器件174,从而达到降低充电电流的作用。也可以在充电初期,使第一总正开关171关闭、第一总负开关172以及第一预充开关173打开,使电机控制器13输出的直流电能全部流经第一限流器件174,从而最大程度上降低充电电流。
在上述实施例中,能量的传输路径依次是发动机10、发电机12、电机控制器13、待充电车辆2的动力电池16。当本申请的放电车辆1为混合动力汽车时,放电车辆1内还配置有动力电池16,动力电池16也同时用于为放电车辆1的驱动电机提供电能。因此本申请的放电系统还可以基于动力电池16输出的电能,为待充电车辆2充电。
具体的,在一实施例中,放电车辆1的放电系统还包括动力电池16以及第二放电控制电路;动力电池16并联于电机控制器13的两端,且动力电池16或电机控制器13所在的支路上串联有切换开关176;第二放电电路连接在动力电池16的输出端以及放电车辆1的电能输出口19之间,以控制动力电池16与电能输出口19之间充电路径的通断。
切换开关176可以是继电器,且受控于放电车辆1车辆控制器11或电池管理系统15。在一示例中,切换开关176与电机控制器13串联连接后,并联于动力电池16的两端。车辆控制器11可以根据具体需求,选择利用发动机10、发电机12以及电机控制器13对待充电车辆2进行充电或利用动力电池16对待充电车辆2进行充电。
第二放电电路用于控制动力电池16与待充电车辆2之间充电路径的通断。在一实施例中,第二放电控制电路包括第二总正开关181、第二总负开关182;第二总正开关181连接于动力电池16的正极与电能输出口19的正极之间;第 二总负开关182连接于动力电池16的负极与电能输出口19的负极之间;第二放电控制电路还包括第二预充电路,第二预充电路包括第二预充开关183以及第二限流器件184;第二预充开关183与第二限流器件184串联连接,且第二预充开关183与第二限流器件184串联与第二总正开关181并联连接。
在此,应当理解,动力电池16具有正极和负极,第二总正开关181控制动力电池16的电能流出路径,第二总负开关182用于控制动力电池16的电池回流路径。因此通过在电动力电池16的正极连接第二总正开关181、在动力电池16的负极连接第二总负开关182能够提高动力电池16输出电能的安全性和可靠性。在此,第二总正开关181、第二总负开关182、第二预充开关183可以均是继电器,且受控于放电车辆1的车辆控制器11或电池管理系统15。第二限流器可以是限流电阻。限流电阻的数量可以是一个或多个,连接方式可以是串联连接。
进一步的,还可以设置放电车辆1的放电系统还包括充电控制开关175,充电控制开关175连接在电机控制器13输出端正极与第二总正开关181之间的路径上,且位于第一总正开关171和第二总正开关181之间的路径上。因此充电控制开关175同时连接在第一充电控制电路和第二充电控制电路上,只有当充电控制开关175打开,第一充电控制电路和第二充电控制电路才可以导通,因此通过设置充电控制开关175,可以有效的降低第一充电控制电路和第二充电控制电路误导通的概率。
基于上述实施例,可以看出,当本申请方案采用发电机12发电模式时,在开关控制上,需要闭合切换开关176、断开第二总正开关181、第二总负开关182、第二预充继电器、以及第一总正开关171;闭合第一预充开关173、第一负继电器以及充电控制开关175,先对待充电车辆2进行预充充电。在对待充电车辆2预充完成后,断开第一预充开关173,同时闭合第一总正继电器,对待充电车辆2继续进行充电。
当本申请方案采用电池发电模式时,在开关控制上,需要断开切换开关、第 二总正开关181;闭合第二预充开关183、充电控制开关175、第一总正继电器、第一总负继电器、第二总负开关182,先对待充电车进行预充充电。在对待充电车辆2预充完成后,断开第二预充开关183,同时闭合第二总正继电器,对待充电车辆2继续进行充电。
需要说明的是,第一充电控制电路可以与第二充电控制电路独立设置。然而在本申请中,第一总正开关171串联在第二总正开关781与电能输出口19正极端的路径上;第一总负开关172串联在第二总负开关182与电能输出口19负极端的路径上。动力电池16通过第二充电控制回路进行常规的充放电。因此,本实施例可以在已有的动力电池16的充放电电路上,通过增设第一总正开关171、第一总负开关172、第一预充开关173即可以构成第一充电控制电路,有效的减少了因电路改进带来的成本增高以及电路不稳定的风险。
在本申请的放电车辆1上通常设置有标准快充口或者标准慢充口,在对待充电车辆2进行充电时,充电连接装置3的一端用于连接放电车辆1的标准快充口或者标准慢充口,充电连接装置3的另一端连接待充电车辆2的标准慢充口。在通讯上,用于放电车辆1在原有国标直流充电协议的基础上,增加模拟充电桩报文发送逻辑,使得充电车的电池管理系统15将放电车识别为快充充电桩,进而得以基于国标直流充电协议进行充电过程的控制和管理,无需重新建立新的充电协议,有效的降低了软件开发成本。
本申请还提出一种车辆,包括车体以及设置在车体内如上述实施例的车辆放电系统;车体上设有电能输出口19,车辆放电系统通过所电能输出口19为待充电车辆2充电。由于车辆内具有上述实施例中的车辆放电系统,因此具有车辆放电系统所具备的所有有益效果,此处不再赘述。
本申请还提出一种车辆的放电系统的控制方法,应用于上述实施例中的车辆放电系统;由于本申请中的车辆在充电过程中用于对待充电车辆2进行放电,因此在下述实施例中,将本方法的车辆称为放电车辆1,以与待充电车辆2区分。具体的,车辆的放电系统的控制方法包括:
步骤S41,识别插入至车辆上的电能输出口19的充电连接装置3的类型;
在此,充电连接装置3有两端,一端连接至本申请的放电车辆1的电能输出口19,另一端连接至待充电车辆2的充电口。本申请的放电车辆1上通常设置有标准快充口或者标准慢充口。标准快充口或者标准慢充口均可以作为电能输出口19,当然也可以另外设置一个单独的电能输出口19。当有充电连接装置3连接至放电车辆1的电能输出口19时,放电车辆1的车辆控制器11会识别插入至电能输出口19的枪头类型,在此枪头的类型分三种:快充枪、慢充枪、放电枪。
进一步的,车辆控制器11可以在识别枪头类型为快充枪后自动进入放电流程。在另一示例中,也可以在识别枪头类型为快充枪后,进一步通过用户发出控制指令,以控制放电车辆1的放电系统进入放电流程。具体的,可以通过在放电车辆1内部主控台上设置按钮或者屏幕触控界面,用户通过操作按钮或者屏幕触控界面,在放电车辆1自检无异常的前提下,从而确认进入放电流程。
步骤S42,当充电连接装置3的枪头类型为放电抢时,向待充电车辆2发送充电装置身份信息,以用于被待充电车辆2识别为充电装置;
放电车辆1以及待充电车辆2内均具有电池管理系统15,电池管理系统15的核心功能是采集动力电池16系统的电压、温度、电流、电阻等数据,然后分析数据状态和电池使用环境,对电池系统充放电过程进行监测和控制。按照功能,电池管理系统15的主要功能包括电池状态分析、电池安全保护、电池能量管理、通信和故障诊断等等。
在步骤S42中,放电车辆1的电池管理系统15可以基于原有国标直流充电协议增加模拟充电桩报文发送逻辑,从而使得待充电车的电池管理系统15将放电车识别为快充充电桩,进而可以基于现有的国标直流充电协议进行充电过程的管理和控制,无需重新建立新的充电协议,有效的降低了软件开发成本。
步骤S43,获取待充电车辆2的充电需求信息。
在放电车辆1和充电车辆进行通讯握手之后,待充电车辆2会将自身的充 电需求信息发送给放电车辆1。充电需求信息在此可以包括待充电车辆2的所允许的充电功率和/或充电电压。其中,所允许的充电功率可以是待充电车辆2所允许的最大充电功率或者待充电车辆2最适合的充电功率范围,此处不做限定。
示意性的,待充电车辆2的电池管理系统15通过识别自身电池包SOC和电池温度信息,查表计算得到此时所允许的充电的功率或适合的充电功率。进而待充电车辆2的电池管理系统21与放电车辆1的电池管理系统15进行通讯,从而将待充电车辆2的充电需求信息发送给放电车辆1的电池管理系统15。在通讯协议支持的情况下,待充电车辆2的电池管理系统21也可以与放电车辆的车辆控制器11之间进行通信,从而将待充电车辆2的充电需求信息发送给放电车辆1的车辆控制器11。
步骤S44,基于待充电车辆2的充电需求信息,控制车辆放电系统的输出功率,以向待充电车辆2输出电能。
本实施例中的放电车辆1的放电系统有两种放电路径。其中第一个放电路径是:通过放电车辆1的发动机10驱动发电机12进行发电,发出的电能经过电机控制器13进行交直流变换后,通过第一放电控制回路对待充电车辆2进行充电。第二个放电路径是放电车辆1的动力电池16通过第二放电控制回路对待充电车辆2进行充电。
在一实施例中,基于第一种放电路径,步骤S44包括:放电车辆1包括发动机10、电动机以及电机控制器13;待充电车辆2的充电需求信息包括待充电车辆2的允许输入的充电功率。
步骤S44中基于待充电车辆2的充电需求信息,控制车辆放电系统的输出功率,以向待充电车辆2输出电能的过程,可以包括:
步骤S441,获取发动机10所允许输出的能量,以及发电机12所允许输出的功率;
步骤S442,基于发动机10所允许输出的能量以及发电机12所允许输出的功率,确定车辆所允许输出的充电功率;
步骤S443,根据待充电车辆2的所允许输入的充电功率以及车辆所允许输出的功率之间的较小值,控制发动机10以及发电机12的工作;并且控制第一放电控制电路导通。
在此,发动机10、电动机以及电机控制器13的工作过程请参照上述车辆放电系统的实施例,此处不再赘述。
具体的,在该实施例中,待充电车辆2的电池管理系统15通过识别自身电池22的SOC和温度信息,查表计算得到此时所允许输入的充电功率,并将相关信息发送给放电车辆1的电池管理系统15,并向放电车辆1的车辆控制器11发送充电请求。当然,在通讯协议支持的情况下,待充电车辆2的电池管理系统15也可以直接将相关信息发送给放电车量的车辆控制器11。
在步骤S442中,车辆控制器11与发动机10管理系统和电机控制器13电连接,以进行通讯,进而可以从发动机10管理系统获取发动机10所允许输出的能量,从电机控制器13获取发电机12所允许输出的功率。从而综合确定放电系统所允许输出的充电功率。
车辆控制器11进一步将待充电车辆2的所允许输入的充电功率以及放电车辆1所允许输出的充电功率进行比对,从而取两者的较小值作为放电系统的目标输出功率,以避免电机控制器13、发电机12或者发动机10的超负荷工作。
之后,车辆控制器11将该目标输出功率发送至发动机管理系统14(engine management system)以及电机控制器13,发动机管理系统14控制发动机10以最优的效率电发出相应的功率,电机控制器13控制发电机12发出相应的功率,并且电机控制器13自身对发电机12输出的交流电能进行直流变换,从而将发电机12输出的交流电转换成待充电车辆2的电池管理系统21需求的直流电。与此同时,车辆控制器11控制第一放电控制回路中的相关继电器打开,从而使电机控制器13输出的直流电能得以传输至待充电车辆2。
具体的,当放电车辆1开始对待充电车辆2进行充电时,在充电初期,车辆控制器11或电池管理系统15控制第一预充开关173导通,并打开第一总负开 关172,同时闭合切换开关176、断开第二总正开关181、第二总负开关182、第二预充开关183、以及第一总正开关171;使电机控制器13通过第一预充电路为待充电车辆2供电;充电初期结束后,断开第一预充开关173,打开第一总正开关171,其他开关状态不变,使电机控制器13通过第一总正开关171为待充电车辆2供电。
随着充电的进行,当待充电车辆2的SOC达到可用上限时,待充电车辆2的电池管理系统21发送相关信号给放电车电池管理系统15,放电车电池管理系统15发送信号,以断开第一放电控制电路中的继电器开关,此时放电车车内控制台提示充电完成(可以是车内的显示屏进行充电完成信息的显示)。
对于第二个放电路径的放电方案。在一实施例中,放电车辆1的放电系统包括动力电池16;待充电车辆2的充电需求信息包括待充电车辆2的允许输入的充电功率。
步骤S44中基于待充电车辆2的充电需求信息,控制车辆放电系统的输出功率,以向待充电车辆2输出电能的过程,可以包括:
步骤S445,获取动力电池16所允许输出的充电功率;
步骤S446,根据待充电车辆2的所允许输入的充电功率以及动力电池16所允许输出的功率之间的较小值,控制动力电池16输出电能;并且控制第二放电控制电路导通。
具体的,放电车辆1的车辆控制器11以及电池管理系统15均与待充电车辆2的电池管理系统21进行通讯;示意性的,待充电车辆2的电池管理系统15通过识别自身电池包SOC和温度信息,查表计算得到此时所允许输入的充电功率,并将所允许输入的充电功率告知放电车的电池管理系统15,并向放电车车辆控制器11发送充电请求。
进一步的,放电车的电池管理系统15通过检测车内动力电池16的SOC、温度等相关参数,向车辆控制器11发送动力电池16所允许输出的功率。放电车辆1的车辆控制器11比对待充电车辆2的所允许输入的充电功率以及动力电 池16所允许输出的功率,取两者之间的较小值,作为放电系统的目标输出功率,车辆控制器11将该目标输出功率发送至车内的电池管理系统15,从而使电池管理系统15控制动力电池16输出相应的功率。与此同时,车辆控制器11和电池管理系统15控制第二放电控制回路中的相关继电器打开,从而使动力电池16输出的直流电能得以传输至待充电车辆2。
具体的,第二放电控制电路包括第二总正开关181、第二总负开关182;放电车辆1的放电系统还包括第二预充电路;当放电车辆1开始对待充电车辆2进行充电时,可以关断切换开关,以确保电机控制器13的输出端不向外输出电能。在充电初期,放电车辆1的车辆控制器11或者电池管理系统15控制第二放电控制电路打开。
具体的,车辆控制器11或者电池管理系统15断开切换开关176、第二总正开关181;闭合第二预充开关183、充电控制开关175、第一总正开关171、第一总负开关172、第二总负开关182,先对待充电车辆2进行预充充电。在对待充电车辆2预充完成后,断开第二预充开关183,同时闭合第二总正开关181,对待充电车辆2继续进行充电。
随着充电的进行,当待充电车辆2的SOC达到可用上限时,待充电车辆2的电池管理系统21发送充电结束请求信号给放电车的电池管理系统15,放电车辆1的电池管理系统15发送控制信号,以断开第二放电控制电路中的继电器开关,此时放电车车内控制台提示充电完成(可以是车内的显示屏进行充电完成信息的显示)。
虽然已参照几个典型实施方式描述了本申请,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本申请能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施方式不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (13)

  1. 一种车辆的放电系统,其特征在于,包括:
    发动机以及发电机,所述发动机用于驱动所述发电机发电;
    电机控制器,连接于所述发电机的电能输出端,所述电机控制器包括电能转换模块,所述电能转换模块用于将所述发电机输出的交流电转换成特定直流电;
    第一放电控制电路,连接在所述电机控制器的输出端以及车辆的电能输出口之间,以控制所述电机控制器与所述电能输出口之间充电路径的通断。
  2. 根据权利要求1所述的车辆的放电系统,其特征在于,所述第一放电控制电路包括第一总正开关、第一总负开关;
    所述第一总正开关连接于所述电机控制器输出端的正极与所述电能输出口的正极之间;所述第一总负开关连接于所述电机控制器输出端的负极与所述电能输出口的负极之间。
  3. 根据权利要求2所述的车辆的放电系统,其特征在于,所述第一放电控制电路还包括第一预充电路,所述第一预充电路包括第一预充开关以及第一限流器件;
    所述第一预充开关与所述第一限流器件串联连接,且所述第一预充开关与所述第一限流器件串联后与所述第一总正开关并联连接。
  4. 根据权利要求2所述的车辆的放电系统,其特征在于,所述车辆的放电系统还包括动力电池以及第二放电控制电路;
    所述动力电池并联于所述电机控制器的两端,且所述动力电池或所述电机控制器所在的支路上串联有切换开关;
    所述第二放电电路连接在所述动力电池的输出端以及车辆的电能输出口之间,以控制所述动力电池与所述电能输出口之间充电路径的通断。
  5. 根据权利要求4所述的车辆的放电系统,其特征在于,所述第二放电控制电路包括第二总正开关、第二总负开关;
    所述第二总正开关连接于所述动力电池的正极与所述电机控制器的输出端正极之间;所述第二总负开关连接于所述动力电池的负极与所述电机控制器输出端的负极之间;
    所述第二放电控制电路还包括第二预充电路,所述第二预充电路包括第二预充开关以及第二限流器件;
    所述第二预充开关与所述第二限流器件串联连接,所述第二预充开关与所述第二限流器件串联与所述第二总正开关并联连接。
  6. 根据权利要求5所述的车辆的放电系统,其特征在于,所述车辆的放电系统还包括充电控制开关,所述充电控制开关连接在所述电机控制器输出端的正极与所述第二总正开关之间的路径上,且位于所述第一总正开关和所述第二总正开关之间的路径上。
  7. 根据权利要求1至6任意一项所述的车辆的放电系统,其特征在于,所述电能输出口为所述车辆的标准快充口或者标准慢充口。
  8. 一种车辆,其特征在于,包括车体以及设置在车体内,如权利要求1至7任意一项所述的车辆放电系统;所述车体上设有电能输出口,所述车辆放电系统通过所电能输出口为待充电车辆充电。
  9. 一种车辆的放电系统的控制方法,用于如权利要求1至7任意一项所述的车辆放电系统;其特征在于,所述方法包括:
    识别插入至所述车辆上的电能输出口的充电连接装置枪头的类型;
    当所述充电连接装置的枪头类型为放电抢时,向待充电车辆发送充电装置身份信息,以用于被所述待充电车辆识别为充电装置;
    获取待充电车辆的充电需求信息;
    基于所述待充电车辆的充电需求信息,控制所述车辆放电系统的输出功率,以向所述待充电车辆输出电能。
  10. 根据权利要求9所述的方法,其特征在于,所述车辆放电系统包括发动机、电动机以及电机控制器;所述待充电车辆的充电需求信息包括所述待充电车 辆的允许输入的充电功率;
    所述基于所述待充电车辆的充电需求信息,控制所述车辆放电系统的输出功率,以向所述待充电车辆输出电能,包括:
    获取所述发动机所允许输出的能量,以及所述发电机所允许输出的功率;
    基于所述发动机所允许输出的能量以及所述发电机所允许输出的功率,确定所述车辆所允许输出的充电功率;
    根据所述待充电车辆的所允许输入的充电功率以及所述车辆所允许输出的充电功率之间的较小值,控制所述发动机以及所述发电机的工作;并且控制第一放电控制电路导通。
  11. 根据权利要求10所述的方法,其特征在于,所述第一放电控制电路包括第一总正开关、第一总负开关、第一预充开关;
    所述控制第一放电控制电路导通包括:
    在充电初期,打开第一预充开关以及第一总负开关,使所述电机控制器输出的功率为所述待充电车辆预充电;
    预充电结束后,断开第一预充电路,打开所述第一总正开关,使所述电机控制器输出的功率通过所述第一总正开关输入至所述待充电车辆。
  12. 根据权利要求11所述的方法,其特征在于,所述车辆放电系统包括动力电池;所述待充电车辆的充电需求信息包括所述待充电车辆所允许输入的充电功率;
    所述基于所述待充电车辆的充电需求信息,控制所述车辆放电系统的输出功率,以向所述待充电车辆输出电能,包括:
    获取所述动力电池所允许输出的充电功率;
    根据所述待充电车辆的所允许输入的充电功率以及所述动力电池所允许输出的功率之间的较小值,控制所述动力电池输出电能;并且控制第二放电控制电路导通。
  13. 根据权利要求12所述的方法,其特征在于,所述第二放电控制电路包 括第二总正开关、第二总负开关,第二预充开关;
    所述控制第二放电控制电路导通,包括:
    在充电初期,打开所述第二预充开关、所述第二总负开关、第一总正开关、第一总负开关,使所述动力电池为所述待充电车辆预充电;
    预充电结束后,断开所述第二预充开关,打开所述第二总正开关,并保持所述第一总正开关、所述第一总负开关打开,使所述动力电池输出的电能通过所述第二总正开关输入至所述待充电车辆。
PCT/CN2023/125037 2022-11-01 2023-10-17 车辆的放电系统及其控制方法、车辆 WO2024093669A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202222907274.1U CN218678522U (zh) 2022-11-01 2022-11-01 车辆的放电系统及车辆
CN202211355878.8A CN115693881A (zh) 2022-11-01 2022-11-01 车辆的放电系统及其控制方法、车辆
CN202211355878.8 2022-11-01
CN202222907274.1 2022-11-01

Publications (1)

Publication Number Publication Date
WO2024093669A1 true WO2024093669A1 (zh) 2024-05-10

Family

ID=90929672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125037 WO2024093669A1 (zh) 2022-11-01 2023-10-17 车辆的放电系统及其控制方法、车辆

Country Status (1)

Country Link
WO (1) WO2024093669A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160052134A (ko) * 2014-11-04 2016-05-12 현대자동차주식회사 배터리 충전 장치 및 이를 이용한 차량간 충전 방법
CN112757927A (zh) * 2020-12-30 2021-05-07 重庆金康动力新能源有限公司 一种增程式车辆充放电控制方法及系统
CN113752867A (zh) * 2021-09-03 2021-12-07 浙江吉利控股集团有限公司 新能源电动汽车的车对车型车载直流充电系统及充电方法
CN113815440A (zh) * 2021-10-27 2021-12-21 重庆长安新能源汽车科技有限公司 一种车对车充电系统及其控制方法
CN114954046A (zh) * 2022-06-23 2022-08-30 上海洛轲智能科技有限公司 V2v充电控制方法、装置和系统
CN115693881A (zh) * 2022-11-01 2023-02-03 广州汽车集团股份有限公司 车辆的放电系统及其控制方法、车辆
CN218678522U (zh) * 2022-11-01 2023-03-21 广州汽车集团股份有限公司 车辆的放电系统及车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160052134A (ko) * 2014-11-04 2016-05-12 현대자동차주식회사 배터리 충전 장치 및 이를 이용한 차량간 충전 방법
CN112757927A (zh) * 2020-12-30 2021-05-07 重庆金康动力新能源有限公司 一种增程式车辆充放电控制方法及系统
CN113752867A (zh) * 2021-09-03 2021-12-07 浙江吉利控股集团有限公司 新能源电动汽车的车对车型车载直流充电系统及充电方法
CN113815440A (zh) * 2021-10-27 2021-12-21 重庆长安新能源汽车科技有限公司 一种车对车充电系统及其控制方法
CN114954046A (zh) * 2022-06-23 2022-08-30 上海洛轲智能科技有限公司 V2v充电控制方法、装置和系统
CN115693881A (zh) * 2022-11-01 2023-02-03 广州汽车集团股份有限公司 车辆的放电系统及其控制方法、车辆
CN218678522U (zh) * 2022-11-01 2023-03-21 广州汽车集团股份有限公司 车辆的放电系统及车辆

Similar Documents

Publication Publication Date Title
CN110525246B (zh) 用于对车辆电池充电的电力转换装置及其控制方法
EP2800228B1 (en) Electric automobile and discharging device thereof
US11142085B2 (en) Battery-to-vehicle charging system
CN103119822B (zh) 蓄电系统以及蓄电系统的控制方法
US8427103B2 (en) Charging device for electric vehicle
US20150375621A1 (en) Vehicle
JP6044460B2 (ja) 車両の電源装置
US11958409B2 (en) Vehicle and method of notifying charging information of vehicle
US11745610B2 (en) Power conversion device and power transfer system
CN104158259A (zh) 基于v2g技术的车载充放电系统及控制方法
JP2010273427A (ja) 電動車両用電源装置および組電池
CN109910678B (zh) 车载双源电池包的能源充电系统、方法、设备及存储介质
EP4059768A1 (en) Electrically powered vehicle and method of controlling charging of electrically powered vehicle
CN218678522U (zh) 车辆的放电系统及车辆
US20190001834A1 (en) Charge/discharge apparatus
CN108001227A (zh) 电动车辆
CN115693881A (zh) 车辆的放电系统及其控制方法、车辆
CN110745022A (zh) 一种用于新能源汽车的多功能控制器及新能源汽车
WO2024093669A1 (zh) 车辆的放电系统及其控制方法、车辆
CN108501725A (zh) 电动车高压仓接触器控制系统及其控制方法
CN113910932A (zh) 一种车载电源总成及其控制方法
JP7517210B2 (ja) 電動車両
CN218343278U (zh) 一种适用于phev车型的拓展充电系统
WO2023141838A1 (zh) 电池管理方法和电池管理装置
CN117246162A (zh) 车载充电连接装置、电动车辆和液冷设备、充电桩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23884601

Country of ref document: EP

Kind code of ref document: A1