WO2024050656A1 - 供电装置、方法和系统 - Google Patents

供电装置、方法和系统 Download PDF

Info

Publication number
WO2024050656A1
WO2024050656A1 PCT/CN2022/116976 CN2022116976W WO2024050656A1 WO 2024050656 A1 WO2024050656 A1 WO 2024050656A1 CN 2022116976 W CN2022116976 W CN 2022116976W WO 2024050656 A1 WO2024050656 A1 WO 2024050656A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
power supply
storage unit
power
remaining
Prior art date
Application number
PCT/CN2022/116976
Other languages
English (en)
French (fr)
Inventor
宫新光
Original Assignee
航霈科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 航霈科技(深圳)有限公司 filed Critical 航霈科技(深圳)有限公司
Priority to CN202280003218.5A priority Critical patent/CN115668686B/zh
Priority to PCT/CN2022/116976 priority patent/WO2024050656A1/zh
Publication of WO2024050656A1 publication Critical patent/WO2024050656A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the present application relates to the technical field of power supply, and more specifically, to a power supply device, method and system.
  • the energy storage power supply device is a power supply device connected between the key equipment load and the AC power supply. It is used to provide continuous power supply to the load through the AC power supply when the AC power supply is working normally, and when the AC power supply is interrupted or insufficient.
  • the load is powered through the energy storage unit.
  • energy storage power supply systems are usually equipped with the same type of energy storage batteries to supply large current or small current to the load according to the AC power supply.
  • embodiments of the present application provide a power supply device, method and system to at least partially solve the above problems.
  • a power supply device is provided.
  • the power supply device and the input power supply jointly supply power to the load loop.
  • the power supply device includes: at least a first energy storage unit, at least a second energy storage unit. unit, and at least one power supply bus coupling the at least one first energy storage unit and the at least one second energy storage unit; if the power supply bus voltage is less than a first threshold, and the required output of the power supply bus If the power is greater than the second threshold, the input power supply stops supplying power to the power supply bus, causing the at least one first energy storage unit and the at least one second energy storage unit to supply power to the power supply bus according to their respective remaining battery power. powered by.
  • a power supply method is provided, which is applied to a power supply device.
  • the power supply device and the input power supply jointly supply power to the load loop.
  • the power supply device includes: at least one first energy storage unit, at least a second energy storage unit, and at least one power supply bus coupling the at least one first energy storage unit and the at least one second energy storage unit, wherein the power supply method includes: obtaining the power supply bus voltage and The output power required by the power supply bus; if the voltage of the power supply bus is less than the first threshold, and the output power required by the power supply bus is greater than the second threshold, control the input power supply to stop supplying power to the power supply bus; The at least one first energy storage unit and the at least one second energy storage unit are controlled to supply power to the power supply bus according to their respective remaining battery capacities.
  • a power supply system including: at least two second energy storage units, an energy storage module and at least two uninterruptible power supply devices, wherein the uninterruptible power supply device includes a third An input end, a second input end, an output end, and a power supply bus. The first input end, the second input end, and the output end are connected through the power supply bus.
  • Each of the uninterruptible power supply devices includes The power supply bus; the first input end of each uninterruptible power supply device is connected to the input power supply, and the output end of each uninterruptible power supply device is connected to the load; the second energy storage unit The output terminals are respectively connected to the second input terminals of each of the uninterruptible power supply devices, and the second energy storage units correspond to the uninterruptible power supply devices in one-to-one correspondence; the energy storage module includes at least two first Energy storage unit, the output end of each first energy storage unit is connected in parallel with the second input end of each uninterruptible power supply device; for any of the uninterruptible power supply devices, if the uninterruptible power supply device If the power supply bus voltage in the intermittent power supply device is less than a first threshold and the output power required by the power supply bus is greater than a second threshold, the input power supply is stopped to supply power to the power supply bus, and each of the second The energy storage unit and the energy storage module supply power to the power supply bus according to their respective remaining battery capacities.
  • the input power supply and all energy storage units supply power to the load through the power supply bus.
  • each first energy storage unit and each second energy storage unit can be controlled to supply power to the load.
  • the power supply through the combination of the first energy storage unit and the second energy storage unit can be adapted to discharge modes with different characteristics, and at least one first energy storage unit and at least one second energy storage unit can provide power to the battery according to their respective remaining battery power.
  • the bus power supply can make it possible that when one of the first energy storage unit or the second energy storage unit has insufficient power supply, the other's electric energy can be used as a supplement. That is, the first energy storage unit and the second energy storage unit supplement each other, so it can The power supply performance of the first energy storage unit and the second energy storage unit is improved.
  • Figure 1 is a schematic diagram of a power supply device provided by an embodiment of the present application.
  • Figure 2 is a circuit diagram of a power supply device provided by an embodiment of the present application.
  • FIG. 3 is a circuit diagram of another power supply device provided by an embodiment of the present application.
  • Figure 4 is a flow chart of a method for controlling the discharge of an energy storage unit provided by an embodiment of the present application
  • Figure 5 is a comparison chart of discharge curves provided by the embodiment of the present application.
  • Figure 6 is another discharge curve comparison chart provided by the embodiment of the present application.
  • Figure 7 is a flow chart of a power supply method provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of a power supply system provided by an embodiment of the present application.
  • first, second, third, etc. may be used in this application to describe various information, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • word “if” as used herein may be interpreted as "when” or “when” or “in response to determining.”
  • FIG. 1 is a schematic diagram of a power supply device provided by an embodiment of the present application. As shown in Figure 1, the power supply device 100 and the input power supply 103 jointly supply power to the load loop 105.
  • the power supply device 100 includes: at least one first energy storage unit 101, At least one second energy storage unit 102, and at least one power supply bus 104 coupling at least one first energy storage unit 101 and at least one second energy storage unit 102.
  • the input power supply 103 stops supplying power to the power supply bus 104, causing at least one first energy storage unit 101 and At least one second energy storage unit 102 supplies power to the power supply bus 104 according to the remaining battery power of each.
  • the controller can be used to determine whether the voltage of the power supply bus 104 is less than a first threshold, determine whether the output power required by the power supply bus 104 is greater than a second threshold, and control the input power supply 103 to stop supplying power to the power supply bus 104 , and causing at least one first energy storage unit 101 and at least one second energy storage unit 102 to supply power to the power supply bus 104 according to their respective remaining battery capacities.
  • the AC-DC converter 206 and the DC-AC converter 207 can also be used to determine whether the voltage of the power supply bus 104 is less than the first threshold and whether the required output power of the power supply bus 104 is greater than the second threshold. threshold, and control the input power supply 103 to stop supplying power to the power supply bus 104, and use the DC/DC transformer circuit (DC chopper) 205 to make at least one first energy storage unit 101 and at least one second energy storage unit 102 operate according to their respective The remaining power of the battery supplies power to the power supply bus 104 .
  • DC chopper DC/DC transformer circuit
  • the power supply bus 104 is respectively connected to at least one first energy storage unit 101, at least one second energy storage unit 102, the load circuit 105 and the input power supply 103.
  • the load loop 105 can be powered through the power supply bus 104 .
  • a first threshold corresponding to voltage and a second threshold corresponding to power are preset.
  • the first threshold corresponding to the voltage is used to define the lowest supply voltage of the power supply bus 104
  • the second threshold corresponding to the power is used to define the lowest power output by the power supply bus 104 to the load loop 105 .
  • the input power supply 103 supplies power to the load circuit 105 through the power supply bus 104, and the voltage of the power supply bus 104 is greater than the first threshold.
  • the power supply bus 104 is connected to the load circuit 105, and the output power required by the power supply bus 104 is the power supply required by the load circuit 105.
  • the voltage of the power supply bus 104 is less than the first threshold and the required output power is greater than the second
  • the power supply power at the threshold value proves that the power provided by the input power supply 103 cannot meet the load demand. Therefore, it can be determined that the input power supply 103 is faulty and cannot provide sufficient power for the power supply bus 104, and the power supply of the input power supply 103 is stopped.
  • the input unit 103 cannot provide the power that the power supply bus 104 needs to provide to the load circuit 105. Then at least one first energy storage unit 101 and at least one second energy storage unit 102 are allowed to supply power to the power supply bus 104 according to their respective remaining battery capacities.
  • first energy storage unit 101 and the second energy storage unit 102 may be a single battery, or may be composed of multiple battery cells connected in series and/or in parallel.
  • the first energy storage unit 101 and the second energy storage unit The types of energy storage batteries in 102 are different, and different batteries are suitable for different scenarios.
  • the first energy storage unit 101 can be suitable for long-term discharge of small current
  • the second energy storage unit 102 can be suitable for short-term discharge of large current.
  • the power supply bus 104 of the power supply device 100 is connected to at least one first energy storage unit 101, at least one second energy storage unit 102, the load circuit 105 and the input power supply 103.
  • the input power supply 103 and all storage units are connected to each other.
  • the energy unit supplies power to the load circuit 105 through the power supply bus 104.
  • each first storage device can be controlled.
  • the energy unit 101 and each second energy storage unit 102 supply power to the load circuit 105 .
  • the power supply through the combination of the first energy storage unit 101 and the second energy storage unit 102 can be adapted to discharge modes with different characteristics, and the at least one first energy storage unit 101 and the at least one second energy storage unit 102 can be configured according to their respective batteries.
  • the remaining electric power supplies power to the power supply bus 104, so that when one of the first energy storage unit 101 or the second energy storage unit 102 is insufficient in power supply, the electric energy of the other one can be used as a supplement, that is, the first energy storage unit 101 and the second energy storage unit 102 can supplement the power supply.
  • the energy units 102 complement each other, so the power supply performance of the first energy storage unit 101 and the second energy storage unit 102 can be improved.
  • control at least one first energy storage unit and at least one second energy storage unit according to The remaining battery power of each supplies power to the power supply bus.
  • the voltage of the power supply bus is less than the first threshold, it is determined whether the input power power of the power supply bus is zero, thereby determining whether the output power supply is faulty. If the input power power of the power supply bus is zero, it is determined that the output power supply is faulty, and each control unit can be controlled. The first energy storage unit and each second energy storage unit provide power to the power supply bus according to their remaining battery power.
  • each first energy storage unit and each second energy storage unit are controlled based on the comparison result and the judgment result.
  • the energy storage unit supplies power to the load, which enables the output power of the energy storage unit to be adjusted when the input power supply is disconnected, improves the fault tolerance of the power supply device when supplying important equipment, and improves the applicability of the power supply device.
  • the battery capacity of the first energy storage unit is greater than the battery capacity of the second energy storage unit.
  • the battery of the first energy storage unit and the second energy storage unit The battery models and capacities of the energy units are different.
  • the battery capacity of the first energy storage unit is greater than the battery capacity of the second energy storage unit, so that the batteries in the energy storage unit are differentiated, and the first energy storage unit and the second energy storage unit can be controlled.
  • the unit provides combined power supply for different power supply needs, which improves the applicability of the power supply device.
  • the third energy storage unit and the fourth energy storage unit may To supply power to the power supply bus, the third energy storage unit is the first energy storage unit whose remaining battery power is greater than the lowest value of the first discharge remaining power, and the fourth energy storage unit is the second energy storage unit whose remaining battery power is greater than the lowest value of the second discharge remaining power. energy unit.
  • the minimum value of the remaining power of the first discharge and the minimum value of the remaining power of the second discharge are preset, and the size of each first energy storage unit and the minimum value of the remaining power of the first discharge, the battery capacity of each second energy storage unit and the value of the second discharge are determined.
  • the size of the minimum value of the remaining power, the first energy storage unit with a battery capacity greater than the minimum value of the first discharge remaining power is set as the third energy storage unit, and the second energy storage unit with a battery capacity greater than the minimum value of the second discharge remaining power is set
  • the fourth energy storage unit controls the third energy storage unit and the fourth energy storage unit to supply power to the load.
  • first energy storage unit is greater than the lowest value of the first remaining discharge power or the battery capacity of the second energy storage unit is greater than the second lowest value of the remaining discharge power, it means that the first energy storage unit or the second energy storage unit has Sufficient power discharge, if the first energy storage unit is greater than the minimum value of the first discharge remaining power or the battery capacity of the second energy storage unit is greater than the second minimum value of the remaining discharge power, it means that the first energy storage unit or the second energy storage unit The unit has insufficient power, and the energy storage unit with insufficient power does not participate in discharge.
  • each first energy storage unit is compared with the lowest value of the first discharge remaining power, and the battery capacity of each second energy storage unit is compared with the minimum value of the second remaining discharge power, thereby controlling the first energy storage unit according to the comparison result.
  • the energy storage unit and the second energy storage unit supply power to the load loop, avoiding power supply interruption due to insufficient power in the energy storage unit and ensuring the stability of the load loop power supply.
  • the output voltages of the third energy storage unit and the fourth energy storage unit can be adjusted respectively to control their output power. Match the remaining battery power of each.
  • the remaining power of the third energy storage unit and the fourth energy storage unit can be obtained in real time, and the output voltage of the third energy storage unit and the fourth energy storage unit can be adjusted according to the size of the remaining power to adjust the output power. For example: If the SOC of the remaining power of the third energy storage unit is 80% and the SOC of the remaining power of the fourth energy storage unit is 60%, that is, the remaining power of the third energy storage unit is more than the remaining power of the fourth energy storage unit, then Adjust the output voltage of the third energy storage unit and the fourth energy storage unit to control the third energy storage unit to supply power at 100kw and the fourth energy storage unit to supply power at 50kw.
  • the SOC of the remaining power of the third energy storage unit is 40%
  • the SOC of the remaining power of the fourth energy storage unit is 40%, that is, the remaining power of the third energy storage unit is equal to the remaining power of the fourth energy storage unit
  • the output voltage is used to control both the third energy storage unit and the fourth energy storage unit to be powered by 75kw.
  • the specific method of adjusting the voltage please refer to the relevant technology of the energy storage unit, which will not be described again here.
  • the power supply power of each energy storage unit is adjusted according to the remaining power of the third energy storage unit and the fourth energy storage unit, so that the output power of each energy storage unit can be adjusted so that the energy storage unit with high battery capacity Outputting high-power current allows the energy storage unit with low battery capacity to output low-power current, optimizing the power supply rules and making the power supply rules more reasonable, thus achieving good power supply performance.
  • FIG. 2 is a circuit diagram of a power supply device 200 provided by an embodiment of the present application.
  • the power supply device 200 includes: a first energy storage unit 201, a second energy storage unit 202, an input power supply 203 and a load circuit 204.
  • Each of the first energy storage unit 201 and the second energy storage unit 202 includes at least one energy storage battery.
  • FIG 3 is a circuit diagram of another power supply device 200 provided by an embodiment of the present application.
  • the power supply device includes: an energy storage module 301, an input power supply 203 and a load circuit 204.
  • the energy storage module 301 includes a first energy storage unit 201 and a second energy storage unit 202.
  • Each of the first energy storage unit 201 and the second energy storage unit 202 includes at least one energy storage battery.
  • Figure 3 integrates the first energy storage unit and the second energy storage unit into an energy storage module 301.
  • the load loop 204 includes: a DC load, or an AC load and a DC-AC converter 207 connected to the AC load.
  • the load can be a DC load or an AC load.
  • the load is a DC load
  • the DC power on the power supply bus can be directly received.
  • the load is an AC load
  • the AC load is connected to a DC-AC converter 207, that is, an inverter circuit.
  • the load circuit 204 includes a DC load or an AC load and a DC-AC converter 207, which can supply power to a variety of loads, thereby improving the applicability of the power supply device.
  • the input power supply 203 includes: an AC power supply and an AC-DC converter 206 .
  • the input power supply 203 may be an AC power supply and an AC-DC converter 206 connected to the AC power supply, that is, a rectifier circuit.
  • the input power supply 203 includes: AC power supply and an AC-DC converter 206, which can convert the AC power output by the AC power supply into DC power, thereby supplying power to the load circuit 204 through the power supply bus, ensuring the stability of the power supply. .
  • each first energy storage unit 201 and each second energy storage unit 202 include a DC/DC transformer circuit 205 .
  • Each energy storage unit is connected to the power supply bus through a DC/DC transformer circuit 205.
  • the DC/DC transformer circuit 205 can control the power output by each energy storage unit and deliver it to the power supply bus. It can also transfer the power output by the power supply bus. The power is controlled and delivered to each energy storage unit. It can also play an isolation role to prevent the power supply bus from affecting the energy storage unit.
  • each first energy storage unit 201 and each second energy storage unit 202 include a DC/DC transformer circuit 205, so that the power output by the energy storage unit to the power supply bus and the power input by the power supply bus into the energy storage unit It is more stable and improves the stability of the power supply of the power supply device.
  • the following describes a solution in which at least one first energy storage unit and the at least one second energy storage unit supply power to the power supply bus and charge through the power supply bus according to their respective remaining battery capacities.
  • Figure 4 is a flow chart of a method for controlling the discharge of an energy storage unit provided by an embodiment of the present application. As shown in Figure 4, the method includes the following steps 401-406.
  • Step 401 Calculate the first remaining power and the first remaining discharge time when the third energy storage unit reaches the first limit discharge voltage, and calculate the second remaining power and the second remaining time when the fourth energy storage unit reaches the second limit discharge voltage. Discharge time.
  • the first limit discharge voltage is the lowest voltage used to ensure that the third energy storage unit performs high-power discharge
  • the second limit discharge voltage is the lowest voltage used to ensure that the fourth energy storage unit performs high-power discharge
  • the third energy storage unit or the fourth energy storage unit is used to discharge large current for a short time. If the third energy storage unit is used to discharge a large current for a short time, the output power of the fourth energy storage unit is determined by the load. The difference between the required power and the output power of the third energy storage unit is controlled, that is, the fourth energy storage unit follows the third energy storage unit for control.
  • the situation in which the fourth energy storage unit is used to discharge large current for a short time is similar to the above, and will not be described again here.
  • Step 402 Determine whether the second remaining discharge time is greater than the first remaining discharge time. If so, perform step 403; otherwise, perform step 405.
  • Step 403 Determine whether the second remaining power is lower than the lowest value of its remaining discharge power. If so, perform step 4041; otherwise, perform step 4042.
  • the second remaining discharge time is greater than the first remaining discharge time, it proves that the discharge output power of the third energy storage module is too high. At this time, it is determined according to the evaluation result whether the second remaining power of the fourth energy storage unit is lower than its remaining discharge power. .
  • the remaining discharge power is the preset necessary power for uninterrupted power supply to the output load. If the remaining power is lower than the remaining discharge power, it means that the battery has been discharged too much and a large amount of discharge needs to be avoided; if the remaining power is less than the remaining discharge power, it means that The battery can also be discharged.
  • Step 4041 Maintain the output power of the third energy storage unit and end the current process.
  • Step 4042 Reduce the output power of the third energy storage unit, increase the output power of the fourth energy storage unit, and end the process.
  • the second remaining power is higher than the lowest value of its discharged remaining power, since the discharge output power of the third energy storage module is too high, the output power of the third energy storage unit is reduced and the output power of the fourth energy storage unit is increased. Ensure battery power supply.
  • Step 405 Determine whether the first remaining power is lower than the lowest value of its remaining discharge power. If so, perform step 4061; otherwise, perform step 4062.
  • the second remaining discharge time is less than the first remaining discharge time, it proves that the discharge output power of the fourth energy storage module is too high. At this time, it is determined according to the evaluation result whether the first remaining power of the third energy storage unit is lower than its remaining discharge power. .
  • Step 4061 Maintain the output power of the fourth energy storage unit and end the current process.
  • Step 4062 Increase the output power of the third energy storage unit, decrease the output power of the fourth energy storage unit, and end the process.
  • the discharge output power of the fourth energy storage module is too high, so the output power of the fourth energy storage unit is reduced and the output power of the third energy storage unit is increased to ensure Battery power supply.
  • the discharge of the battery in the energy storage unit is balanced, and by comparing the remaining power of the battery in each energy storage unit with the discharge of the battery
  • the minimum value of the remaining power controls the power supply of the energy storage unit, which avoids the occurrence of insufficient power supply due to the battery being lower than the preset minimum power, prolongs the discharge time of the energy storage unit to the load, and improves the stability of the power supply device. ity and applicability.
  • the output voltages of the third energy storage unit and the fourth energy storage unit are respectively adjusted to control their output power to match their respective remaining battery capacities, if the second remaining discharge time is equal to the first remaining During the discharge time, the output power of the third energy storage unit and the fourth energy storage unit is maintained.
  • the output power of the third energy storage unit and the fourth energy storage unit remains unchanged. , maintaining the stability of power supply.
  • Figure 5 is a discharge curve comparison chart provided by an embodiment of the present application. As shown in Figure 5, the ordinate in the discharge curve comparison chart is the discharge voltage, the abscissa is the discharge time, and Vi is the first energy storage unit and the second energy storage unit.
  • V1 is the first limit discharge voltage of the third energy storage unit
  • Ve2 is the second limit discharge voltage of the fourth energy storage unit
  • curve 501 is the discharge curve of the fourth energy storage unit
  • curve 502 is the discharge curve of the third energy storage unit
  • curve 503 is the discharge curve of the third energy storage unit using the prior art
  • T1 is the discharge time for the third energy storage unit using the prior art to reach the first limit voltage
  • T2 It is the discharge time for the third energy storage unit applying the solution of this application to reach the first limit voltage.
  • the third energy storage unit and the fourth energy storage unit work alternately to supply power to the power supply bus together with the input power supply.
  • the third energy storage unit and the fourth energy storage unit are controlled to use the small current power supply mode to alternately supply power to the power supply bus. To ensure that the power supplied meets the power required by the load.
  • the cut-off voltages of the third energy storage unit and the fourth energy storage unit are preset.
  • the power supply voltage of the third energy storage unit is less than the corresponding cut-off voltage of the third energy storage unit, the power supply is stopped and switched to the fourth energy storage unit. For example, it takes 60 minutes for the power supply voltage of the third energy storage unit to reach the cut-off voltage, then the fourth energy storage unit is switched to supply power to the load at the 60th minute, and then the fourth energy storage unit continues to supply power to the load. 10 minutes.
  • the cut-off voltage of the energy storage unit is the voltage at which the SOC capacity of the remaining battery in the energy storage unit satisfies the backup power supply time corresponding to the maximum power of the load when the input power fails. This can avoid the sudden failure of the input power causing insufficient power supply to the load. occur.
  • the third energy storage unit and the fourth energy storage unit alternately supply power, ensuring that the power of the battery in the energy storage unit is greater than the power corresponding to the cut-off voltage. If the input power supply is damaged, immediately It can enter the high-power power supply mode to avoid insufficient power supply to the load due to damage to the input power supply and ensure the stability of the power supply of the power supply device.
  • the third energy storage unit and the fourth energy storage unit work alternately, the third energy storage unit is made to work until its remaining power reaches the lowest value of the first discharge remaining power, and the fourth energy storage unit is made to work. unit work.
  • the remaining power of the third energy storage unit can only meet the power required for uninterrupted power supply to the load.
  • the fourth energy storage unit is switched to provide power.
  • the fourth energy storage unit when the third energy storage unit operates until its remaining power reaches the minimum value of the first discharge remaining power, the fourth energy storage unit is switched to provide power, which ensures that the energy storage unit is switched in time when the energy storage unit has insufficient power. Power supply avoids insufficient power supply to the load and improves the stability of the power supply device.
  • FIG 6 is another discharge curve comparison chart provided by the embodiment of the present application.
  • the ordinate in the discharge curve comparison chart is the discharge voltage
  • the abscissa is the discharge time
  • Vi is the first energy storage unit and the second energy storage unit.
  • the discharge voltage of the energy storage unit at the starting moment Ve1 is the first limit discharge voltage of the third energy storage unit
  • Ve2 is the second limit discharge voltage of the fourth energy storage unit
  • curve 601 is the discharge curve of the fourth energy storage unit
  • Curve 602 is the discharge curve of the third energy storage unit.
  • T3 is the discharge time using the prior art
  • T4 is the discharge time in the embodiment of the present application.
  • the discharge time of the third energy storage unit using the prior art is shorter than the discharge time of the second energy storage unit using the embodiment of the present application, and thus is much shorter than that provided by the embodiment of the present application.
  • the discharge time of the third energy storage unit and the fourth energy storage unit therefore, the embodiment of the present application can improve the discharge time of the energy storage unit, thereby improving the power supply performance.
  • At least one fifth energy storage unit and at least one of the at least one second energy storage unit that are not fully charged are charged.
  • a sixth energy storage unit is charged.
  • the power supply bus voltage is greater than or equal to the first threshold, it proves that the output power of the input power supply can meet the input power required by the load. At this time, it is detected whether the remaining power of the battery of each energy storage unit is greater than the charging SOC value. , that is, whether the battery is fully charged, the first energy storage unit that is not fully charged is determined as the fifth energy storage unit, the second energy storage unit that is not fully charged is determined as the sixth energy storage unit, and each fifth energy storage unit is unit and each sixth energy storage unit are charged.
  • the energy storage unit that is not fully charged among the first energy storage unit and the second energy storage unit is charged, so that the energy storage unit can be charged.
  • the unit stores energy, thereby keeping the battery of the energy storage unit in a state of sufficient charge.
  • the output power of the input power supply is adjusted for peak shaving according to the preset peak power price time period and valley power price time period. If it is within the peak power price time period, the output power of the input power supply is reduced. Make at least one first energy storage unit and/or at least one second energy storage unit and the input power supply supply power to the load at the same time; if it is in the valley power price period, increase the output power of the input power supply so that the input power supply supplies power to the load at the same time. , charging each energy storage unit.
  • the energy storage unit and the input power supply are used to supply power at the same time. Under the same output current, peak shaving is achieved and peak power usage is reduced.
  • the valley price period other than the peak power price the first energy storage unit and/or the second energy storage unit are charged through the input power supply, thereby saving electricity costs.
  • the power output of the input power supply is adjusted for peak shaving through a preset time period, and the power supply of the input power supply is reduced within the time period corresponding to the peak power price.
  • the energy storage circuit and the input power supply are used to simultaneously load the load. Power supply, while supplying power to the load circuit at night, the energy storage circuit is charged at the same time, which reduces the electricity consumption during peak power prices, thereby reducing the electricity cost when the power supply device supplies power to the load.
  • FIG 7 is a flow chart of a power supply method provided by an embodiment of the present application.
  • the power supply method is used for a power supply device.
  • the power supply device and the input power supply jointly supply power to the load loop.
  • the power supply device includes: at least one first energy storage unit, at least one The second energy storage unit, and at least one power supply bus coupling at least one first energy storage unit and at least one second energy storage unit, as shown in Figure 7, the power supply method includes the following steps 701-706.
  • Step 701 Obtain the power supply bus voltage and the output power required by the power supply bus.
  • Step 702 Determine whether the power supply bus voltage is less than the first threshold. If yes, execute step 703, otherwise end the process.
  • Step 703 determines whether the output power required by the power supply bus is greater than the second threshold. If so, execute step 704; otherwise, execute step 705.
  • Step 704 Control the input power supply to stop supplying power to the power supply bus, and control at least one first energy storage unit and at least one second energy storage unit to supply power to the power supply bus according to their respective remaining battery capacities, and end the process.
  • Step 705 Determine whether the input power power of the power supply bus is zero. If so, execute step 706. Otherwise, the process ends.
  • Step 706 Control at least one first energy storage unit and at least one second energy storage unit to supply power to the power supply bus according to their respective remaining battery capacities, and end the process.
  • each first energy storage unit and each second energy storage unit can be controlled to supply power to the load.
  • the energy storage battery models in the first energy storage unit and the second energy storage unit are different.
  • the combined power supply of the first energy storage unit and the second energy storage unit can be adapted to both large current short-time discharge and small current long-term discharge. mode, thus improving the power supply performance of the energy storage unit.
  • FIG 8 is a schematic diagram of a power supply system provided by an embodiment of the present application.
  • the power supply system includes at least two second energy storage units 801, an energy storage module 802 and at least two uninterrupted power supply devices (Uninterrupted Power Supply, UPS) 803, wherein the uninterruptible power supply device includes a first input terminal, a second input terminal, an output terminal, and a power supply bus.
  • UPS Uninterrupted Power Supply
  • the first input terminal, the second input terminal, and the output terminal are connected through the power supply bus, and each does not
  • the intermittent power supply devices all include a power supply bus, the first input end of each UPS803 is connected to the input power supply, the output end of each UPS803 is connected to the load, and the output end of each second energy storage unit 801 is respectively connected to the second input end of each UPS803.
  • the second energy storage unit 801 corresponds to the UPS 803 one-to-one.
  • the energy storage module 802 includes at least two first energy storage units 804. The output end of each first energy storage unit 804 is connected in parallel with the second input end of each UPS 803.
  • each second energy storage unit is 801 and energy storage module 802 supply power to the power supply bus according to their respective remaining battery power.
  • a plurality of first energy storage units 804 are connected in parallel to form an energy storage module 802.
  • the energy storage module 802 is connected to a plurality of UPSs 803 to provide power to the UPSs 803.
  • Each UPS 803 is also connected to a second energy storage unit 801. When the AC input of the UPS 803 fails, uninterrupted power supply is provided to the load through the second energy storage unit 801 and the energy storage module 802 .
  • the second energy storage module 802 may also include multiple DC/DC transformer circuits 805, and multiple series and/or parallel battery groups are connected to the input terminals of the UPS 803 through multiple DC/DC transformer circuits 805. , wherein the input terminals of different UPS 803 are connected to different DC/DC transformer circuits 805, and the output power of the second energy storage module can be controlled through the DC/DC transformer circuit.
  • the control method of the energy storage power supply system 800 can be applied to the control method of the power supply device in any of the above embodiments, and will not be described again here.
  • first energy storage units 804 are connected in parallel to form an energy storage module 802.
  • the second energy storage unit 801 and the energy storage module 802 are connected to the UPS 803 to realize uninterrupted power supply to the load.
  • the energy storage module 802 can be arranged outdoors to reduce indoor space occupation, and if a single first energy storage unit 804 fails, it will not affect the energy storage module 802's power supply to the UPS 803, further improving the stability of the power supply system's power supply to the load and ensuring important power supplies. Uninterrupted power supply for equipment.
  • each component/step described in the embodiments of this application can be split into more components/steps, or two or more components/steps or partial operations of components/steps can be combined into New components/steps to achieve the purpose of the embodiments of this application.

Abstract

本申请实施例提供一种供电装置、方法和系统,所述供电装置与输入电源共同向负载回路供电,该供电装置包括:至少一第一储能单元,至少一第二储能单元,以及耦接所述至少一第一储能单元和所述至少一第二储能单元的至少一供电母线;若所述供电母线电压小于第一阈值,且所述供电母线所需的输出功率大于第二阈值,则所述输入电源停止向所述供电母线供电,令所述至少一第一储能单元和所述至少一第二储能单元根据各自的电池剩余电量向所述供电母线供电。本申请实施例提供的供电装置具有良好的供电性能。

Description

供电装置、方法和系统 技术领域
本申请涉及电源供电技术领域,更具体地,涉及一种供电装置、方法和系统。
背景技术
储能供电装置是连接在关键设备负载与交流电源之间的供电设备,用于在交流电源正常工作时通过交流电源给负载提供持续的供电,以及在交流电源供电中断或供电不足的情况下,通过储能单元对负载进行供电。
目前,储能供电系统通常是搭载同一类型的储能电池,根据交流电源的情况对负载进行大电流供电或小电流供电。
但是,同一储能电池的放电特性单一,由于大电流供电和小电流供电这两种供电模式对电池配置要求并不相同,使用同一种类型电池供电的性能较差。
发明内容
有鉴于此,本申请实施例提供一种供电装置、方法和系统,以至少部分解决上述问题。
根据本申请实施例的第一方面,提供了一种供电装置,所述供电装置与输入电源共同向负载回路供电,所述供电装置包括:至少一第一储能单元,至少一第二储能单元,以及耦接所述至少一第一储能单元和所述至少一第二储能单元的至少一供电母线;若所述供电母线电压小于第一阈值,且所述供电母线所需的输出功率大于第二阈值,则所述输入电源停止向所述供电母线供电,令所述至少一第一储能单元和所述至少一第二储能单元根据各自的电池剩余电量向所述供电母线供电。
根据本申请实施例的第二方面,提供了一种供电方法,应用于供电装置,所述供电装置与输入电源共同向负载回路供电,所述供电装置包括:至少一第一储能单元,至少一第二储能单元,以及耦接所述至少一第一储能单元和所述至少一第二储能单元的至少一供电母线,其中,所述供电方法包括:获取所述供电母线电压和所述供电母线所需的输出功率;若所述供电母线电压小于第一阈值,且所述供电母线所需的输出功率大于第二阈值,则控制所述输入电源停止向所述供电母线供电;控制所述至少一第一储能单元和所述至少一第二储能单元根据各自的电池剩余电量向所述供电母线供电。
根据本申请实施例的第三方面,提供了一种供电系统,包括:至少两个第二储能单元、储能模块和至少两个不间断供电装置,其中,所述不间断供电装置包括第一输入端、第二输入端、输出端、供电母线,所述第一输入端、所述第二输入端和所述输出端通过供电母线相连接,每个所述不间断供电装置均包括所述供电母线;各所述不间断供电装置的所述第一输入端与输入电源相连接,各所述不间断供电装置的所述输出端与负载相 连接;各所述第二储能单元的输出端分别与各所述不间断供电装置的所述第二输入端相连接,所述第二储能单元与所述不间断供电装置一一对应;所述储能模块包括至少两个第一储能单元,各所述第一储能单元的输出端相并联后与各所述不间断供电装置的所述第二输入端相连接;针对任一所述不间断供电装置,若所述不间断供电装置中的所述供电母线电压小于第一阈值且所述供电母线所需的输出功率大于第二阈值,则令所述输入电源停止向所述供电母线供电,以及令各所述第二储能单元和所述储能模块根据各自的电池剩余电量向所述供电母线供电。
在本申请实施例中,输入电源和所有储能单元通过供电母线对负载进行供电,在应用该供电装置时,通过对比供电母线电压和第一阈值,供电母线所需的输出功率和第二阈值,可以控制各第一储能单元和各第二储能单元对负载进行供电。通过第一储能单元和第二储能单元的组合供电可以适应于具有不同特点的放电模式,并且令至少一个第一储能单元和至少一个第二储能单元根据各自的电池剩余电量向供电母线供电,可以使得当第一储能单元或者第二储能单元中的一个供电不足时,另一个的电能能够作为补充,即第一储能单元和第二储能单元互为补充,因此可以使第一储能单元和第二储能单元的供电性能提升。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种供电装置的示意图;
图2是本申请实施例提供的一种供电装置的电路图;
图3是本申请实施例提供的另一种供电装置的电路图;
图4是本申请实施例提供的一种控制储能单元放电方法的流程图;
图5是本申请实施例提供的一种放电曲线对比图;
图6是本申请实施例提供的另一种放电曲线对比图;
图7是本申请实施例提供的一种供电方法的流程图;
图8是本申请实施例提供的一种供电系统的示意图。
具体实施方式
为了使本领域的人员更好地理解本申请实施例中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请实施例一部分实施例,而不是全部的实施例。基于本申请实施例中的 实施例,本领域普通技术人员所获得的所有其他实施例,都应当属于本申请实施例保护的范围。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本申请可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
图1是本申请实施例提供的一种供电装置的示意图,如图1所示,供电装置100与输入电源103共同向负载回路105供电,供电装置100包括:至少一个第一储能单元101,至少一个第二储能单元102,以及耦接至少一个第一储能单元101和至少一个第二储能单元102的至少一个供电母线104。在应用本装置时若供电母线104电压小于第一阈值,且供电母线104所需的输出功率大于第二阈值,则输入电源103停止向供电母线104供电,令至少一个第一储能单元101和至少一个第二储能单元102根据各自的电池剩余电量向供电母线104供电。
本申请的一种实现方式中,可以通过控制器判断供电母线104电压是否小于第一阈值、判断供电母线104所需的输出功率是否大于第二阈值,并控制输入电源103停止向供电母线104供电,以及令至少一个第一储能单元101和至少一个第二储能单元102根据各自的电池剩余电量向供电母线104供电。
本申请的另一种实现方式中,也可以使用交流-直流转换器206、直流-交流转换器207判断供电母线104电压是否小于第一阈值、判断供电母线104所需的输出功率是否大于第二阈值,并控制输入电源103停止向供电母线104供电,以及使用DC/DC变压电路(直流斩波器)205令至少一个第一储能单元101和至少一个第二储能单元102根据各自的电池剩余电量向供电母线104供电。
供电母线104分别与至少一个第一储能单元101、至少一个第二储能单元102、负载回路105和输入电源103相连接,输入电源103、第一储能单元101以及第二储能单元102可以通过供电母线104对负载回路105进行供电。
预设有对应于电压的第一阈值和对应于功率的第二阈值。对应于电压的第一阈值用于限定供电母线104的最低供电电压,对应于功率的第二阈值用于限定供电母线104输出到负载回路105的最低功率。
正常情况下,输入电源103通过供电母线104对负载回路105进行供电,供电母线104的电压大于第一阈值。
应理解,供电母线104与负载回路105相连接,供电母线104所需的输出功率为负载回 路105所需的供电功率,当供电母线104的电压小于第一阈值且所需的输出功率大于第二阈值时供电功率,证明输入电源103提供的功率不能满足负载需求,从而可以判断输入电源103故障,不能为供电母线104提供足够的电量,则停止输入电源103的供电。
因此,本实施例中,当供电母线104的电压小于第一阈值,但供电母线104所需的输出功率大于第二阈值,即输入单元103无法提供供电母线104需要向负载回路105提供的电量,则令至少一个第一储能单元101和至少一个第二储能单元102根据各自的电池剩余电量向供电母线104供电。
还应理解,第一储能单元101和第二储能单元102可以为单个的电池,或者可以由多个电池单体串联和/或并联组成,第一储能单元101和第二储能单元102中的储能电池型号不同,不同的电池适用的场景不同,示例的,第一储能单元101可以适用于小电流长时间放电,第二储能单元102可以适用于大电流短时间放电。
在本申请实施例中,供电装置100的供电母线104分别与至少一个第一储能单元101、至少一个第二储能单元102、负载回路105和输入电源103相连接,输入电源103和所有储能单元通过供电母线104对负载回路105进行供电,在应用该供电装置时,通过对比供电母线104电压和第一阈值,供电母线104所需的输出功率和第二阈值,可以控制各第一储能单元101和各第二储能单元102对负载回路105进行供电。通过第一储能单元101和第二储能单元102的组合供电可以适应于具有不同特点的放电模式,并且令至少一个第一储能单元101和至少一个第二储能单元102根据各自的电池剩余电量向供电母线104供电,可以使得当第一储能单元101或者第二储能单元102中的一个供电不足时,另一个的电能能够作为补充,即第一储能单元101和第二储能单元102互为补充,因此可以使第一储能单元101和第二储能单元102的供电性能提升。
可选地,在一种可能的实现方式中,若供电母线电压小于第一阈值,且供电母线的输入电源功率为零,则控制至少一个第一储能单元和至少一个第二储能单元根据各自的电池剩余电量向供电母线供电。
当供电母线电压小于第一阈值时,判断供电母线的输入电源功率是否为零,从而可以确定输出电源是否故障,若供电母线的输入电源功率为零,则确定输出电源发生故障,并可以控制各第一储能单元和各第二储能单元根据各自的电池剩余电量向供电母线供电。
在本申请实施例中,比较供电母线的电压与第一阈值之间的大小后,判断供电母线的输入电源功率是否为零,通过比较结果和判断结果控制各第一储能单元和各第二储能单元对负载进行供电,实现了在输入电源断开的情况下调整储能单元的输出功率,提高了供电装置对重要设备供电时的容错,提高了供电装置的适用性。
在一种可能的实现方式中,第一储能单元的电池容量大于第二储能单元的电池容量。
由于供电母线上供电电压不同和输入电源的功率不同,需要控制第一储能单元和第二储能单元进行组合供电,以适应不同的供电需求,因此第一储能单元的电池和第二储能单元的电池型号和容量不同。
在本申请实施例中,第一储能单元的电池容量大于第二储能单元的电池容量,从而使储 能单元中的电池产生差异化,进而可以控制第一储能单元和第二储能单元对不同的供电需求进行组合供电,提高了供电装置的适用性。
在一种可能的实现方式中,当至少一个第一储能单元和至少一个第二储能单元根据各自的电池剩余电量向供电母线供电时,可以由第三储能单元和第四储能单元向供电母线供电,第三储能单元为电池剩余电量大于第一放电剩余电量最低值的第一储能单元,第四储能单元为电池剩余电量大于第二放电剩余电量最低值的第二储能单元。
预设有第一放电剩余电量最低值和第二放电剩余电量最低值,判断各第一储能单元和第一放电剩余电量最低值的大小、各第二储能单元的电池容量和第二放电剩余电量最低值的大小,将电池容量大于第一放电剩余电量最低值的第一储能单元设置为第三储能单元,将电池容量大于第二放电剩余电量最低值的第二储能单元设置为第四储能单元,控制第三储能单元和第四储能单元对负载供电。
应理解,若第一储能单元大于第一放电剩余电量最低值或第二储能单元的电池容量大于第二放电剩余电量最低值,则说明该第一储能单元或第二储能单元具有充足的电力放电,若第一储能单元大于第一放电剩余电量最低值或第二储能单元的电池容量大于第二放电剩余电量最低值,则说明该第一储能单元或第二储能单元电量不足,电量不足的储能单元不参与放电。
在本申请实施例中,比较各第一储能单元和第一放电剩余电量最低值,各第二储能单元的电池容量和第二放电剩余电量最低值的大小,从而根据比较结果控制第一储能单元和第二储能单元对负载回路进行供电,避免了由于储能单元的电量不足造成供电的中断,保证了负载回路供电的稳定性。
在一种可能的实现方式中,当第三储能单元和第四储能单元向供电母线供电时,可以分别调整第三储能单元和第四储能单元的输出电压以控制其输出的功率匹配各自的电池剩余电量。
具体地,可以实时获取第三储能单元和第四储能单元的剩余电量,根据剩余电量的大小对第三储能单元和第四储能单元的输出电压进行调整,来调整输出功率。例如:若第三储能单元剩余电量的SOC为80%,第四储能单元剩余电量的SOC为60%,即第三储能单元的剩余电量多于第四储能单元的剩余电量,则调整第三储能单元和第四储能单元的输出电压,来控制第三储能单元以100kw供电,第四储能单元以50kw供电,一段时间后,若第三储能单元剩余电量的SOC为40%,第四储能单元剩余电量的SOC为40%,即第三储能单元的剩余电量等于第四储能单元的剩余电量,则调整第三储能单元和第四储能单元的输出电压,来控制第三储能单元和第四储能单元均以75kw供电。具体调整电压的方式可参考储能单元的相关技术,在此不再赘述。
应理解,储能单元中电池剩余电量越大,储能单元的对应的供电功率越高。
在本申请实施例中,根据第三储能单元和第四储能单元的剩余电量调整各储能单元的供电功率,从而可以调整各储能单元的输出功率,使电池容量高的储能单元输出高功率的电流,使电池容量低的储能单元输出低功率的电流,优化了供电规则,使供电规则更加合理,从而 可以达到良好的供电性能。
图2是本申请实施例提供的一种供电装置200的电路图,如图2所示,供电装置200包括:第一储能单元201、第二储能单元202、输入电源203和负载回路204,第一储能单元201和第二储能单元202中均包括至少一个储能电池。
图3是本申请实施例提供的另一种供电装置200的电路图,如图3所示,供电装置包括:储能模块301、输入电源203和负载回路204。储能模块301包括第一储能单元201和第二储能单元202,第一储能单元201和第二储能单元202中均包括至少一个储能电池。
与图2相比图3将第一储能单元和第二储能单元集成为了一个储能模块301。
在一种可能的实现方式中,如图2和图3所示,负载回路204包括:直流负载,或者,交流负载以及与交流负载连接的直流-交流转换器207。
负载可以为直流负载或者交流负载,当负载为直流负载时,可以直接接收供电母线上的直流电,当负载为交流负载时,交流负载连接有直流-交流转换器207,即逆变电路。
在本申请实施例中,负载回路204包括直流负载或者交流负载和直流-交流转换器207,可以对多种负载进行供电,提高了供电装置的适用性。
在一种可能的实现方式中,如图2和图3所示,输入电源203包括:交流电源和交流-直流转换器206。
输入电源203可以为交流电源和与交流电源连接的交流交流-直流转换器206,即整流电路。
在本申请实施例中,输入电源203包括:交流电源和交流-直流转换器206,可以将交流电源输出的交流电转换为直流电,从而通过供电母线对负载回路204进行供电,保证了供电的稳定性。
在一种可能的实现方式中,如图2和图3所示,各第一储能单元201和各第二储能单元202包括DC/DC变压电路205。
各储能单元通过DC/DC变压电路205与供电母线进行连接,DC/DC变压电路205可以对各储能单元输出的功率进行控制,并输送给供电母线,也可以将供电母线输出的功率进行控制,并输送给各储能单元,也可以起到隔离作用,防止供电母线影响储能单元。
在本申请实施例中,各第一储能单元201和各第二储能单元202包括DC/DC变压电路205,使储能单元输出给供电母线的功率和供电母线输入储能单元的功率更加稳定,提高了供电装置供电的稳定性。
下面对至少一第一储能单元和所述至少一第二储能单元根据各自的电池剩余电量向所述供电母线供电以及通过供电母线充电的方案进行说明。
大电流供电模式
图4是本申请实施例提供的一种控制储能单元放电方法的流程图,如图4所示,该方法包括如下步骤401-406。
步骤401、计算第三储能单元达到第一极限放电电压时的第一剩余电量和第一剩余放电时间,计算第四储能单元达到第二极限放电电压时的第二剩余电量和第二剩余放电时间。
第一极限放电电压为用于保证第三储能单元进行大功率放电最低电压,第二极限放电电压为用于保证第四储能单元进行大功率放电最低电压。
根据第三储能单元输出的功率计算第三储能单元到达第一极限放电电压的第一时间和第一电池剩余电量,根据第四储能单元输出的功率计算第四储能单元到达第二极限放电电压的第二时间和第二电池剩余电量。
应理解,第三储能单元或第四储能单元用于进行大电流短时间放电,若第三储能单元用于进行大电流短时间放电,则第四储能单元的输出功率根据负载所需功率和第三储能单元的输出功率的差值进行控制,即第四储能单元跟随第三储能单元进行控制。第四储能单元用于进行大电流短时间放电的情况和上述类似,在此不在赘述。
步骤402、判断第二剩余放电时间是否大于第一剩余放电时间,如果是,执行步骤403,否则执行步骤405。
步骤403、判断第二剩余电量是否低于其放电剩余电量最低值,如果是,执行步骤4041,否则执行步骤4042。
如果第二剩余放电时间大于第一剩余放电时间,则证明第三储能模组放电输出功率过高,此时根据评估结果判断第四储能单元的第二剩余电量是否低于其放电剩余电量。
应理解,放电剩余电量为预设的用于输出负载不间断供电必要电量,若剩余电量低于放电剩余电量,则说明电池放电过多需要避免大量放电;若剩余电量小于放电剩余电量,则说明电池还可以进行放电。
步骤4041、保持第三储能单元输出功率,并结束当前流程。
当第二剩余电量低于其放电剩余电量最低值时,由于第四储能单元不具有充足的电力放电,因此保持第三储能单元输出功率。
步骤4042、降低第三储能单元的输出功率,并提高第四储能单元的输出功率,并结束流程。
当第二剩余电量高于其放电剩余电量最低值时,由于第三储能模组放电输出功率过高,因此降低第三储能单元的输出功率,提高第四储能单元的输出功率,以保证电池的供电。
步骤405、判断第一剩余电量是否低于其放电剩余电量最低值,如果是,执行步骤4061,否则执行步骤4062。
如果第二剩余放电时间小于第一剩余放电时间,则证明第四储能模组放电输出功率过高,此时根据评估结果判断第三储能单元的第一剩余电量是否低于其放电剩余电量。
步骤4061、保持第四储能单元输出功率,并结束当前流程。
当第一剩余电量低于其放电剩余电量最低值时,由于第三储能单元不具有充足的电力放电,因此保持第四储能单元输出功率。
步骤4062、增加第三储能单元的输出功率,并降低第四储能单元的输出功率,并结束流程。
当第一剩余电量高于其放电剩余电量最低值时,第四储能模组放电输出功率过高,因此降低第四储能单元的输出功率,提高第三储能单元的输出功率,以保证电池的供电。
在本申请实施例中,通过对比第三储能单元和第四储能单元的剩余放电时间,平衡储能单元中电池的放电,通过对比各储能单元中电池的剩余电量和该电池的放电剩余电量最低值的大小控制储能单元的供电功率,避免了由于电池低于预设的最低电量导致供电不足的情况的发生,延长了储能单元对负载的放电时间,提高了供电装置的稳定性和适用性。
在一种可能的实现方式中,在分别调整第三储能单元和第四储能单元的输出电压以控制其输出的功率匹配各自的电池剩余电量时,若第二剩余放电时间等于第一剩余放电时间,保持第三储能单元和第四储能单元的输出功率。
当第二剩余放电时间等于第一剩余放电时间时,证明第三储能单元和第四储能单元的供电功率满足需求,保持第三储能单元和第四储能单元的输出功率不变。
在本申请实施例中,当第三储能单元的第一剩余放电时间等于第四储能单元的第二剩余放电时间时,保持第三储能单元和第四储能单元的输出功率不变,保持了供电的稳定性。
下面通过具体的实验结果进行说明。
图5是本申请实施例提供的一种放电曲线对比图,如图5所示,放电曲线对比图中纵坐标为放电电压,横坐标为放电时间,Vi为第一储能单元和第二储能单元起始时刻的放电电压,Ve1为第三储能单元的第一极限放电电压,Ve2为第四储能单元的第二极限放电电压,曲线501为第四储能单元的放电曲线,曲线502为第三储能单元的放电曲线,曲线503为应用现有技术的第三储能单元的放电曲线,T1为应用现有技术的第三储能单元到达第一极限电压的放电时间,T2为应用本申请方案的第三储能单元到达第一极限电压的放电时间。
通过图5可以很直观的看出,应用现有技术的第三储能单元的放电时间远小于应用本申请实施例提供的第三储能单元的放电时间,因此本申请实施例可以提高储能单元的放电时间,因此可以提升供电性能。
小电流供电模式
若供电母线电压小于第一阈值,且供电母线所需的输出功率小于等于第二阈值,则第三储能单元和第四储能单元交替工作,与输入电源共同向供电母线供电。
当供电母线电压小于第一阈值且所需的输出功率小于等于第二阈值时,证明供电母线供电不足,控制第三储能单元和第四储能单元采用小电流供电模式交替对供电母线供电,以保证供电的功率满足负载所需要的功率。
应理解,预设有第三储能单元和第四储能单元的截止电压,当第三储能单元的供电电压小于第三储能单元对应的截止电压时,停止供电,转换至第四储能单元进行供电,例如:第三储能单元的供电电压到达截止电压时用时60分钟,则在第60分钟时切换第四储能单元对负载供电,然后通过第四储能单元继续对负载供电10分钟。
还应理解,储能单元的截止电压为满足输入电源故障时,储能单元中剩余电池SOC容量满足负载最大功率对应的后备供电时间的电压,从而可以避免输入电源突然故障导致负载供电不足的情况发生。
在本申请实施例中,若供电母线供电不足,则第三储能单元和第四储能单元交替供电,保证了储能单元中电池的电量大于截止电压对应的电量,如果输入电源损坏,立刻可以进入 大功率供电模式,避免了由于输入电源的损坏使负载供电不足的现象发生,保证了供电装置供电的稳定性。
在一种可能的实现方式中,当第三储能单元和第四储能单元交替工作时,令第三储能单元工作至其剩余电量达到第一放电剩余电量最低值时,令第四储能单元工作。
当第三储能单元达到第一放电剩余电量最低值时,第三储能单元的剩余电量仅能满足负载不间断供电必要电量,此时切换第四储能单元进行供电。
在本申请实施例中,当第三储能单元工作至其剩余电量达到第一放电剩余电量最低值时切换第四储能单元进行供电,保证了在储能单元电力不足时及时切换储能单元进行供电,避免了负载的供电不足,提高了供电装置供电的稳定性。
下面通过具体的实验结果进行说明。
图6是本申请实施例提供的另一种放电曲线对比图,如图6所示,放电曲线对比图中纵坐标为放电电压,横坐标为放电时间,Vi为第一储能单元和第二储能单元起始时刻的放电电压,Ve1为第三储能单元的第一极限放电电压,Ve2为第四储能单元的第二极限放电电压,曲线601为第四储能单元的放电曲线,曲线602为第三储能单元的放电曲线,本申请中,当第三储能单元到达第一极限放电电压时,可以切换第四储能单元继续进行放电,直至第四储能单元到达第二极限放电电压,以延长放电时间。T3为应用现有技术的放电时间,T4为本申请实施例的放电时间。
通过图6可以很直观的看出,应用现有技术的第三储能单元的放电时间相对于本申请实施例少了第二储能单元的放电时间,从而远小于应用本申请实施例提供的第三储能单元和第四储能单元的放电时间,因此本申请实施例可以提高储能单元的放电时间,进而提升了供电性能。
充电模式
在一种可能的实现方式中,若供电母线电压大于等于第一阈值,则对至少一个第一储能单元和至少一个第二储能单元中未充满电的至少一个第五储能单元和至少一个第六储能单元进行充电。
检测供电母线的供电电压,若供电母线电压大于等于第一阈值,证明输入电源的输出功率可以满足负载所需的输入功率,此时检测各储能单元的电池的剩余电量是否大于充电的SOC值,即电池是否充满电,将未充满电的第一储能单元确定为第五储能单元,将未充满电的第二储能单元确定为第六储能单元,并对各第五储能单元和各第六储能单元进行充电。
应理解,仅当输入电源的输出功率大于负载所需要的输入功率时,对电池进行充电,优先满足负载所需供电,后满足电池充电需求。
在本申请实施例中,若输入电源的输出功率满足负载所需的输入功率,则对第一储能单元和第二储能单元中未充满电的储能单元进行充电,从而可以对储能单元储能,进而使储能单元的电池保持在电量充足的状态。
削峰填谷模式
在一种可能的实现方式中,根据预先设定峰电价时间段和谷电价时间段,对输入电源输 出的功率进行削峰调整,若处于峰电价时间段内,则降低输入电源的输出功率,使至少一个第一储能单元和/或至少一个第二储能单元和输入电源同时对负载供电;若处于谷电价时间段,则提高输入电源的输出功率,使输入电源对负载进行供电的同时,对各储能单元进行充电。
在峰电价格对应的时间段内,使用储能单元和输入电源同时供电,在输出同样电流下,实现削峰,减少峰电使用。在峰电价格外的谷电价时间段,通过输入电源给第一储能单元和/或第二储能单元充电,节约用电成本。
在本申请实施例中,通过预设时间段,对输入电源输出的功率进行削峰调整,在峰电价格对应的时间段内削减输入电源的供电功率,使用储能回路和输入电源同时对负载供电,晚上对负载回路供电的同时对储能回路进行充电,减少了峰电价格时的用电量,从而可以减少供电装置对负载进行供电时的用电成本。
图7是本申请实施例提供的一种供电方法的流程图,该供电方法用于供电装置,供电装置与输入电源共同向负载回路供电,供电装置包括:至少一个第一储能单元,至少一个第二储能单元,以及耦接至少一个第一储能单元和至少一个第二储能单元的至少一个供电母线,如图7所示,供电方法包括如下步骤701-706。
步骤701、获取供电母线电压和供电母线所需的输出功率。
步骤702、判断供电母线电压是否小于第一阈值。如果是,则执行步骤703,否则结束流程。
步骤703判断供电母线所需的输出功率是否大于第二阈值,如果是则执行步骤704,否则执行步骤705。
步骤704、控制输入电源停止向供电母线供电,并控制至少一个第一储能单元和至少一个第二储能单元根据各自的电池剩余电量向供电母线供电,并结束流程。
步骤705、判断供电母线的输入电源功率是否零,如果是,执行步骤706,否则结束流程。
步骤706、控制至少一个第一储能单元和至少一个第二储能单元根据各自的电池剩余电量向供电母线供电,并结束流程。
在本申请实施例中,通过对比供电母线电压和第一阈值,供电母线所需的输出功率和第二阈值,可以控制各第一储能单元和各第二储能单元对负载进行供电。第一储能单元和第二储能单元中的储能电池型号不同,通过第一储能单元和第二储能单元的组合供电可以适应于大电流短时间放电和小电流长时间放电两种模式,因此可以使储能单元的供电性能提升。
图8是本申请实施例提供的一种供电系统的示意图,如图8所示,供电系统包括至少两个第二储能单元801、储能模块802和至少两个不间断供电装置(Uninterrupted Power Supply,UPS)803,其中,不间断供电装置包括第一输入端、第二输入端、输出端、供电母线,第一输入端、第二输入端和输出端通过供电母线相连接,每个不间断供电装置均包括供电母线,各UPS803的第一输入端与输入电源相连接,各UPS803的输出端与负载相连接,各第二储能单元801的输出端分别与各UPS803的第二输入端相连接,第二储能单元801与UPS803一一对应,储能模块802包括至少两个第一储能单元804,各第一储能单元804的输出端相并联后与各UPS803第二输入端相连接,针对任一UPS803, 若UPS803中的供电母线电压小于第一阈值且供电母线所需的输出功率大于第二阈值,则令输入电源停止向供电母线供电,以及令各第二储能单元801和储能模块802根据各自的电池剩余电量向供电母线供电。
多个第一储能单元804相并联组成储能模块802,储能模块802与多个UPS803相连接,为UPS803供电,各UPS803还连接有第二储能单元801。当UPS803的交流输入出现故障时,通过第二储能单元801和储能模块802对负载实现不间断供电。
应理解,第二储能模块802中还可以包含多个DC/DC变压电路805,多组串联和/或并联的电池组通过多个DC/DC变压电路805与UPS803的输入端相连接,其中,不同的UPS803的输入端与不同的DC/DC变压电路805相连接,通过DC/DC变压电路可以控制第二储能模块的输出功率。
储能供电系统800的控制方法可以应用上述任一实施例中供电装置的控制方法,在此不在赘述。
在本申请实施例中,多个第一储能单元804相并联组成储能模块802,第二储能单元801和储能模块802与UPS803连接,实现了对负载的不间断供电,储能模块802可以布置于室外,以减少室内空间占用,且如果单个第一储能单元804故障,不会影响储能模块802对UPS803供电,进一步提高了供电系统对负载供电的稳定性,保证了对重要设备的无间断供电。
需要指出,根据实施的需要,可将本申请实施例中描述的各个部件/步骤拆分为更多部件/步骤,也可将两个或多个部件/步骤或者部件/步骤的部分操作组合成新的部件/步骤,以实现本申请实施例的目的。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及方法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
以上实施方式仅用于说明本申请实施例,而并非对本申请实施例的限制,有关技术领域的普通技术人员,在不脱离本申请实施例的精神和范围的情况下,还可以做出各种变化和变型,因此所有等同的技术方案也属于本申请实施例的范畴,本申请实施例的专利保护范围应由权利要求限定。

Claims (16)

  1. 一种供电装置,所述供电装置与输入电源共同向负载回路供电,所述供电装置包括:至少一第一储能单元,至少一第二储能单元,以及耦接所述至少一第一储能单元和所述至少一第二储能单元的至少一供电母线;
    若所述供电母线电压小于第一阈值,且所述供电母线所需的输出功率大于第二阈值,则所述输入电源停止向所述供电母线供电,令所述至少一第一储能单元和所述至少一第二储能单元根据各自的电池剩余电量向所述供电母线供电。
  2. 根据权利要求1所述的供电装置,其中,若所述供电母线电压小于第一阈值,且所述供电母线的输入电源功率为零,则令所述至少一第一储能单元和所述至少一第二储能单元根据各自的电池剩余电量向所述供电母线供电。
  3. 根据权利要求2所述的供电装置,其中,所述第一储能单元的电池容量大于所述第二储能单元的电池容量。
  4. 根据权利要求3所述的供电装置,其中,所述至少一第一储能单元和所述至少一第二储能单元根据各自的电池剩余电量向所述供电母线供电,包括:
    第三储能单元和第四储能单元向所述供电母线供电,所述第三储能单元为电池剩余电量大于第一放电剩余电量最低值的第一储能单元,所述第四单元为电池剩余电量大于第二放电剩余电量最低值的第二储能单元。
  5. 根据权利要求4所述的供电装置,其中,所述第三储能单元和第四储能单元向所述供电母线供电,包括:
    分别调整所述第三储能单元和第四储能单元的输出电压以控制其输出的功率匹配各自的电池剩余电量。
  6. 根据权利要求5所述的供电装置,其中,所述分别调整所述第三储能单元和第四储能单元的输出电压以控制其输出的功率匹配各自的电池剩余电量,包括:
    计算所述第三储能单元达到第一极限放电电压时的第一剩余电量和第一剩余放电时间;
    计算所述第四储能单元达到第二极限放电电压时的第二剩余电量和第二剩余放电时间;
    若所述第二剩余放电时间大于所述第一剩余放电时间,则判断所述第二剩余电量是否低于其放电剩余电量最低值;
    若否,则降低所述第三储能单元的输出功率,并提高所述第四储能单元的输出功率,若是,则保持所述第三储能单元输出功率。
  7. 根据权利要求6所述的供电装置,其中,所述分别调整所述第三储能单元和第四储能单元的输出电压以控制其输出的功率匹配各自的电池剩余电量,包括:
    若所述第二剩余放电时间小于所述第一剩余放电时间,则判断所述第一剩余电量是否低于其放电剩余电量最低值;
    若否,则增加所述第三储能单元的输出功率,并降低所述第四储能单元的输出功率,若是,则保持所述第四储能单元输出功率。
  8. 根据权利要求7所述的供电装置,其中,所述分别调整所述第三储能单元和第四储能单元的输出电压以控制其输出的功率匹配各自的电池剩余电量,包括:
    若所述第二剩余放电时间等于所述第一剩余放电时间,保持所述第三储能单元和所述第四储能单元的输出功率。
  9. 根据权利要求4所述的供电装置,其中,若所述供电母线电压小于第一阈值,且所述供电母线所需的输出功率小于等于第二阈值,则所述第三储能单元和所述第四储能单元交替工作,与所述输入电源共同向所述供电母线供电。
  10. 根据权利要求9所述的供电装置,其中,所述第三储能单元和所述第四储能单元交替工作,包括:
    令所述第三储能单元工作至其剩余电量达到所述第一放电剩余电量最低值时,令所述第四储能单元工作。
  11. 根据权利要求4所述的供电装置,其中,若所述供电母线电压大于等于第一阈值,则对所述至少一第一储能单元和所述至少一第二储能单元中未充满电的至少一第五储能单元和至少一第六储能单元进行充电。
  12. 根据权利要求1-10中任一项所述的供电装置,其中,所述负载回路包括:直流负载,或者,交流负载以及与所述交流负载连接的直流-交流转换器。
  13. 根据权利要求11所述的供电装置,其中,所述输入电源包括:交流电源和交流-直流转换器。
  14. 一种供电方法,应用于供电装置,所述供电装置与输入电源共同向负载回路供电,所述供电装置包括:至少一第一储能单元,至少一第二储能单元,以及耦接所述至少一第一储能单元和所述至少一第二储能单元的至少一供电母线,其中,所述供电方法包括:
    若所述供电母线电压小于第一阈值,且所述供电母线所需的输出功率大于第二阈值, 则控制所述输入电源停止向所述供电母线供电;
    控制所述至少一第一储能单元和所述至少一第二储能单元根据各自的电池剩余电量向所述供电母线供电。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:
    若所述供电母线电压小于第一阈值,且所述供电母线的输入电源功率为零,则控制所述至少一第一储能单元和所述至少一第二储能单元根据各自的电池剩余电量向所述供电母线供电。
  16. 一种供电系统,包括:至少两个第二储能单元、储能模块和至少两个不间断供电装置,其中,所述不间断供电装置包括第一输入端、第二输入端、输出端、供电母线,所述第一输入端、所述第二输入端和所述输出端通过供电母线相连接,每个所述不间断供电装置均包括所述供电母线;
    各所述不间断供电装置的所述第一输入端与输入电源相连接,各所述不间断供电装置的所述输出端与负载相连接;
    各所述第二储能单元的输出端分别与各所述不间断供电装置的所述第二输入端相连接,所述第二储能单元与所述不间断供电装置一一对应;
    所述储能模块包括至少两个第一储能单元,各所述第一储能单元的输出端相并联后与各所述不间断供电装置的所述第二输入端相连接;
    针对任一所述不间断供电装置,若所述不间断供电装置中的所述供电母线电压小于第一阈值且所述供电母线所需的输出功率大于第二阈值,则令所述输入电源停止向所述供电母线供电,以及令各所述第二储能单元和所述储能模块根据各自的电池剩余电量向所述供电母线供电。
PCT/CN2022/116976 2022-09-05 2022-09-05 供电装置、方法和系统 WO2024050656A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280003218.5A CN115668686B (zh) 2022-09-05 2022-09-05 供电装置、方法和系统
PCT/CN2022/116976 WO2024050656A1 (zh) 2022-09-05 2022-09-05 供电装置、方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/116976 WO2024050656A1 (zh) 2022-09-05 2022-09-05 供电装置、方法和系统

Publications (1)

Publication Number Publication Date
WO2024050656A1 true WO2024050656A1 (zh) 2024-03-14

Family

ID=85022368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116976 WO2024050656A1 (zh) 2022-09-05 2022-09-05 供电装置、方法和系统

Country Status (2)

Country Link
CN (1) CN115668686B (zh)
WO (1) WO2024050656A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1835329A (zh) * 2006-04-10 2006-09-20 中国科学院电工研究所 一种电梯用混合储能装置及其控制方法
CN102555830A (zh) * 2010-12-29 2012-07-11 上海汽车集团股份有限公司 基于双储能单元的汽车供电系统和汽车供电控制方法
CN104065157A (zh) * 2014-06-09 2014-09-24 深圳微网能源管理系统实验室有限公司 一种改进供电可靠性的不间断电源
CN110571781A (zh) * 2018-06-05 2019-12-13 台达电子工业股份有限公司 直流母线电压控制方法与系统
CN114512976A (zh) * 2022-01-21 2022-05-17 中建科技集团有限公司 直流配电系统
CN114844030A (zh) * 2022-06-09 2022-08-02 国网湖北综合能源服务有限公司 直流微网母线管理方法及能源供给系统
CN114865772A (zh) * 2022-04-19 2022-08-05 广东首航智慧新能源科技有限公司 储能系统及其供电方法
CN115001113A (zh) * 2022-07-19 2022-09-02 航霈科技(深圳)有限公司 一种供电控制方法、装置及供电设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3487035B1 (en) * 2014-09-01 2021-02-17 Vertiv Tech Co., Ltd. Power supply system and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1835329A (zh) * 2006-04-10 2006-09-20 中国科学院电工研究所 一种电梯用混合储能装置及其控制方法
CN102555830A (zh) * 2010-12-29 2012-07-11 上海汽车集团股份有限公司 基于双储能单元的汽车供电系统和汽车供电控制方法
CN104065157A (zh) * 2014-06-09 2014-09-24 深圳微网能源管理系统实验室有限公司 一种改进供电可靠性的不间断电源
CN110571781A (zh) * 2018-06-05 2019-12-13 台达电子工业股份有限公司 直流母线电压控制方法与系统
CN114512976A (zh) * 2022-01-21 2022-05-17 中建科技集团有限公司 直流配电系统
CN114865772A (zh) * 2022-04-19 2022-08-05 广东首航智慧新能源科技有限公司 储能系统及其供电方法
CN114844030A (zh) * 2022-06-09 2022-08-02 国网湖北综合能源服务有限公司 直流微网母线管理方法及能源供给系统
CN115001113A (zh) * 2022-07-19 2022-09-02 航霈科技(深圳)有限公司 一种供电控制方法、装置及供电设备

Also Published As

Publication number Publication date
CN115668686A (zh) 2023-01-31
CN115668686B (zh) 2024-02-02

Similar Documents

Publication Publication Date Title
TWI625912B (zh) 行動終端
EP3018793A1 (en) Systems and methods for battery management
CN202856431U (zh) 避免电池浮充的控制系统及供电系统
US7898110B2 (en) On-line uninterruptible power system
US20060099463A1 (en) Direct current/direct current converter for a fuel cell system
CN104333122A (zh) 供电总线电路
CN106787040A (zh) 直流电源系统
US20220326754A1 (en) Control method and control apparatus for power supply apparatus in data center
CN204497835U (zh) 一种不间断供电的PoE交换机
CN205070433U (zh) 交流/直流供电装置
US20210249896A1 (en) Power supply management system and method for use with one or multiple different utility proxies
CN206698005U (zh) 双输入双启动输出稳压型不间断开关电源
CN212435428U (zh) 不间断电源
WO2024050656A1 (zh) 供电装置、方法和系统
JP2001103679A (ja) 非常用電源装置
CN208127888U (zh) 一种储能备电一体化ups电源系统
CN110932333A (zh) 一种配电系统
TWI807405B (zh) 電能轉換系統
CN215300264U (zh) It设备节能供电系统
CN115313612B (zh) 48v直流储备一体电源系统,其充放电控制方法与应用
CN218005970U (zh) 储能系统及设备
JP3275245B2 (ja) 無停電電源式電気装置
TW202005225A (zh) 雙電壓雙電池行動電力調控系統
CN212210574U (zh) 带电池均衡管理的ups电源
CN112467887B (zh) 一种匹配高压电容取电的电源装置及其控制方法