WO2021184601A1 - 泡沫镍基多孔NiFe水滑石纳米片及其制备和应用 - Google Patents

泡沫镍基多孔NiFe水滑石纳米片及其制备和应用 Download PDF

Info

Publication number
WO2021184601A1
WO2021184601A1 PCT/CN2020/100830 CN2020100830W WO2021184601A1 WO 2021184601 A1 WO2021184601 A1 WO 2021184601A1 CN 2020100830 W CN2020100830 W CN 2020100830W WO 2021184601 A1 WO2021184601 A1 WO 2021184601A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
nife
preparation
foamed nickel
based porous
Prior art date
Application number
PCT/CN2020/100830
Other languages
English (en)
French (fr)
Inventor
郎建平
赵中胤
黄小青
倪春燕
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Publication of WO2021184601A1 publication Critical patent/WO2021184601A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the invention relates to the technical field of nano-material preparation and electrocatalysis, and in particular to a foamed nickel-based porous NiFe hydrotalcite nano-sheet and its preparation and application.
  • NiFe LDH (hydrotalcite) ultra-thin nanosheets have received more and more attention because of their unique physical and electronic structure, which is recognized as an excellent OER catalyst. (YFZhao,X.Zhang,XDJia,GINWaterhouse,R.Shi,XRZhang,F.Zhan,Y.Tao,LZWu,C.-H.Tung,D.O'Hare,TRAdv.EnergyMater .2018,8,1703585.).
  • CN 108554413 A discloses a method for preparing a three-dimensional multi-level structure high-dispersion nickel-based electrocatalytic material.
  • the foamed nickel is used as the conductive substrate and the nickel source required for the reaction is provided.
  • the urea is used as the precipitation agent and the ammonium fluoride is used as the etching agent.
  • In situ growth of NiAl-LDH/NF precursor on the surface of the foamed nickel skeleton structure, the anion H 2 PO 4- and B(OH) 4- are introduced into the hydrotalcite layer by the ion exchange method, and the water containing the anion After high temperature reduction of the talc intermediate, a highly dispersed nickel-based material with a three-dimensional hierarchical structure is obtained.
  • CN 108950596A discloses a method for synthesizing inexpensive nickel-iron nanoplate array electrocatalysts under normal temperature and normal pressure. It uses foamed nickel to react with iron salt to obtain nickel-iron nanosheet array electrocatalyst.
  • CN 109201060 A provides a method for preparing a foamed nickel-nickel-iron oxide composite oxygen evolution catalyst. A mixed aqueous solution containing nickel salt, ferrous salt and urea is hydrothermally reacted with foamed nickel to grow nickel-iron on the foamed nickel Hydroxide to obtain a composite oxygen evolution catalyst precursor; and then calcinate the obtained composite oxygen evolution catalyst precursor to obtain a foamed nickel-nickel iron oxide composite oxygen evolution catalyst.
  • CN 110354862 A discloses a method for in-situ modification of three-dimensional nickel-iron hydrotalcite electrocatalytic oxygen evolution electrode with cerium ion on the surface of foamed nickel substrate, which uses nickel nitrate hexahydrate and ferric nitrate nonahydrate as iron source, nickel source, and cerium nitrate hexahydrate respectively
  • the auxiliary synthesizer, urea as the hydrolyzing agent, and foamed nickel as the conductive substrate adopts the hydrothermal method to synthesize the three-dimensional nickel-iron hydrotalcite nanosheet material in situ on the surface of the foamed nickel conductive substrate in one step.
  • the purpose of the present invention is to provide a foamed nickel-based porous NiFe hydrotalcite (LDH) nanosheet and its preparation and application.
  • the hydrogen peroxide corrodes the surface of the hydrotalcite, and the prepared foamed nickel-based porous NiFe LDH nanosheets have a visible mesoporous structure.
  • the preparation method of foamed nickel-based porous NiFe hydrotalcite nanosheets of the present invention includes the following steps:
  • the foamed nickel into the reaction liquid, which includes divalent nickel salt, trivalent iron salt, urea, ammonium fluoride, hydrogen peroxide and water, and under airtight conditions, at 100-120°C (preferably 120°C) After the reaction is completed, the foamed nickel-based porous NiFe hydrotalcite nanosheets are obtained.
  • the reaction liquid which includes divalent nickel salt, trivalent iron salt, urea, ammonium fluoride, hydrogen peroxide and water, and under airtight conditions, at 100-120°C (preferably 120°C)
  • the divalent nickel salt is selected from one or more of nickel chloride, nickel nitrate and nickel sulfate (preferably nickel chloride); in the reaction solution, the concentration of the divalent nickel salt is 0.025-0.054 mol/L (Preferably 0.045 mol/L).
  • the divalent nickel salt is selected from nickel chloride hexahydrate.
  • the ferric salt is selected from ferric chloride and/or ferric nitrate (preferably ferric chloride); in the reaction solution, the concentration of the ferric salt is 0.006-0.025 mol/L (preferably 0.015 mol/L) .
  • the trivalent iron salt is selected from ferric chloride hexahydrate.
  • the concentration of urea is 0.415 mol/L; in the reaction solution, the concentration of ammonium fluoride is 0.16 mol/L.
  • the concentration of hydrogen peroxide in the reaction solution is 0.01-0.15 mol/L.
  • the preparation method of the reaction solution includes the following steps:
  • the divalent nickel salt, trivalent iron salt, urea, and ammonium fluoride are dissolved in water, and then a hydrogen peroxide solution is added thereto.
  • the nickel foam was cut into a size of 2.8 ⁇ 2cm 2 , and after ultrasonic cleaning in 6M HCl for 30 minutes to remove the surface oxide layer, it was washed with absolute ethanol and deionized water and dried.
  • reaction was carried out in a stainless steel reactor containing a polytetrafluoroethylene lining.
  • reaction time is 10-24h, preferably 16h.
  • reaction after the reaction is completed, it also includes the steps of natural cooling to room temperature, centrifugation, washing and drying of the product.
  • washing is alternately washed with deionized water and absolute ethanol for 3 times; the centrifugation step is centrifugation at a speed of 10000 rpm for 2 minutes; and drying refers to drying in a blast drying oven at 60° C. for 12 hours.
  • foamed nickel is used as a conductive substrate and provides the nickel source required for the reaction, urea is used as a precipitating agent, ammonium fluoride is used as an etchant, and divalent nickel salt and trivalent iron salt are used as the nickel source for the synthesis of hydrotalcite nanosheets.
  • the iron source, hydrogen peroxide has strong oxidizing properties, which oxidize the divalent nickel ions on the surface to form trivalent nickel ions and form oxygen vacancies.
  • the trivalent nickel ions can be used as active sites to improve the catalytic performance.
  • the invention also discloses a foamed nickel-based porous NiFe hydrotalcite nanosheet prepared by the above-mentioned preparation method, which includes foamed nickel and several NiFe hydrotalcite nanosheets on the surface of the foamed nickel. There are several porous structures distributed on the NiFe hydrotalcite nanosheets .
  • the thickness of the NiFe hydrotalcite nanosheets is 1-5 nm, preferably 1-2 nm.
  • the invention also discloses the application of the foamed nickel-based porous NiFe hydrotalcite nanosheet as an electrocatalytic hydrogen evolution reaction catalyst.
  • the invention also discloses an electrocatalytic hydrogen evolution reaction catalyst, including the foamed nickel-based porous NiFe hydrotalcite nanosheet prepared by the above preparation method of the invention
  • the present invention has at least the following advantages:
  • the foamed nickel-based porous NiFe hydrotalcite nanosheets can be obtained in one step through the solvothermal reaction method, with simple operation, low cost, high efficiency, strong repeatability and easy further industrial production.
  • the foamed nickel-based porous NiFe hydrotalcite nanosheets obtained in the present invention have uniform morphology and obvious porous structure.
  • the foamed nickel-based porous NiFe LDH nanosheet material obtained in the present invention has excellent catalytic performance.
  • the value of OER overpotential is only 170mV, and the Tafel slope is also as low as 39.3mV ⁇ dec -1 .
  • the foamed nickel-based porous NiFe LDH nanosheet material obtained in the present invention exhibits high stability during the electrocatalytic process.
  • Figure 1(a) is the scanning electron microscope (SEM) image of NiFe LDHMs/NF-200, the scale is 2 ⁇ m;
  • Figure 1(b), (c) is the transmission electron microscope (TEM) image of NiFe LDHMs/NF-200, the scale is 100nm and 20nm;
  • Figure 1(d) is a high-resolution electron microscope (HRTEM) image of NiFe LDHMs/NF-200 nanosheets, with a scale of 2nm;
  • Figure 1(e) is an element distribution map of NiFe LDHMs/NF-200 nanosheets , The scale is 100nm;
  • Figure 1(f) is an atomic force microscope image of NiFe LDHMs/NF-200 nanosheets;
  • Figure 1(g) is X-ray powder diffraction of NiFe LDHMs/NF-200 and p-NiFe LDHs/NF (PXRD) graph;
  • Figure 2(a) is a histogram of the pore size distribution of NiFe LDHMs/NF-200;
  • Figure 2(b) is a selected area electron diffraction (SAED) image of NiFe LDHMs/NF-200;
  • Figure 2(c) is a graph of NiFe LDHMs/ The Tyndall phenomenon of NF-200 nanosheets dispersed in ethanol solution under laser irradiation;
  • Figure 3(a) and (b) are transmission electron microscopy (TEM) images of p-NiFe LDHs/NF nanosheets, the scales are 100nm and 20nm;
  • Figure 3(c) is the high resolution of p-NiFe LDHs/NF nanosheets Electron microscope (HRTEM) image, the scale is 2nm;
  • Figure 3 (d1)-(d4) is the element distribution diagram of p-NiFe LDHs/NF nanosheets, the scale is 20nm;
  • Figure 4 shows the (a) polarization curve when the prepared sample is catalyzed in 1M KOH for OER; (b) the histogram of the overpotential and current density during the reaction; (c) the Tafel slope diagram; (d1)-(d2) Electrochemical impedance (EIS) diagram;
  • Figure 5(a)(b) are the polarization curves and Tafel slope diagrams of foamed nickel in 1M KOH catalyzing OER;
  • Figure 6 shows the OER polarization curve of the sample after surface area normalization
  • Figure 7(a) shows the polarization curve of NiFe LDHMs/NF-200 sample before and after 1000 CV cycles;
  • Figure 7(b) shows the NiFe LDHMs/NF-200 sample in the OER reaction, the current density is 10mA cm -2 chronopotential picture.
  • the foamed nickel (NF) used is processed by the following method:
  • the cut size of foamed nickel is 2.8 ⁇ 2cm 2. After ultrasonic cleaning in 6M HCl for 30 minutes to remove the surface oxide layer, it is cleaned with absolute ethanol and deionized water and dried for later use.
  • Example 1 Preparation of porous NiFe LDH ultra-thin nanosheet material based on foamed nickel (NiFe LDHMs/NF-200)
  • NiFe LDH ultra-thin nanosheets After the reaction, cool to room temperature naturally. Take out the reaction solution and centrifuge at 10000rpm for 2 minutes. Use deionized water and Alternate washing with water and ethanol for 3 times, and finally drying in a blast drying oven at 60°C for 12 hours to obtain porous NiFe LDH ultra-thin nanosheets, abbreviated as NiFe LDHMs/NF-200.
  • NiFe LDHMs/NF-200 nanosheets grow uniformly on the foamed nickel.
  • Figure 1(b) and Figure 1(c) are low-power and high-power transmission electron microscopy (TEM) images of NiFe LDHMs/NF-200, respectively. It can be clearly seen from the figure that NiFe LDHMs/NF-200 nanosheets are porous.
  • Figure 1(d) is a high-resolution electron microscope (HRTEM) image of NiFe LDHMs/NF-200 nanosheets.
  • HRTEM high-resolution electron microscope
  • Figure 1(e1)-(e4) is the element distribution diagram of NiFe LDHMs/NF-200
  • Figure 1(e1) is the merge diagram
  • Figure 1(e2)-(e4) is the element distribution diagram of Ni, Fe, and O in sequence It can be seen from the figure that Ni, Fe and O are uniformly distributed on the nanosheet
  • Figure 1(f) is the NiFe LDHMs/NF-200 nanosheet is an atomic force microscope image.
  • FIG. 1(g) shows the X-ray powder diffraction (PXRD) graphs of NiFe LDHMs/NF-200 and p-NiFe LDHs/NF. It can be seen from the figure that no new diffraction peaks appear after adding hydrogen peroxide.
  • the hole size on the surface of NiFe LDHMs/NF-200 nanosheets is 8.3nm;
  • Figure 2(b) Selected Area Electron Diffraction (SAED) pattern of NiFe LDHMs/NF-200 nanosheets. It can be seen from this figure that the corresponding crystal planes are (012) and (110) crystal planes.
  • Figure 2(c) shows that NiFe LDHMs/NF-200 nanosheets are dispersed in ethanol solution and show Tyndall phenomenon under laser irradiation. This phenomenon shows that NiFe LDHMs/NF-200 nanosheets have good dispersibility and uniformity.
  • Comparative Example 1 Preparation of NiFe LDH ultra-thin nanosheet material based on foamed nickel (p-NiFe LDHs/NF)
  • NiFe LDH ultra-thin Nanosheet After the end, cool to room temperature naturally, take out the reaction solution and centrifuge at 10000rpm for 2min, wash the obtained product alternately with deionized water and absolute ethanol for 3 times, and finally dry it in a blast drying oven at 60°C for 12h to obtain NiFe LDH ultra-thin Nanosheet, abbreviated as p-NiFe LDHs/NF.
  • Figure 3(a) and Figure 1(b) without the addition of hydrogen peroxide, the surface of p-NiFe LDHs/NF nanosheets is smooth and no holes appear;
  • Figure 3(c) is p-NiFe LDHs/NF The high-resolution electron microscopy (HRTEM) image of the nanosheets, from the figure, the lattice spacing is 0.25nm, and the corresponding crystal plane is (012);
  • Figure 3(d1)-(d4) are p-NiFe LDHs/NF nanosheets
  • Figure 3(d1) is the merge diagram
  • Figure 3(d2)-(d4) are the distribution diagrams of Ni, Fe, O in sequence. From the figure, it can be seen that Ni, Fe and O are uniformly distributed on the nanosheet .
  • Example 2 Preparation of porous NiFe LDH ultra-thin nanosheet material based on foamed nickel (NiFe LDHMs/NF-20)
  • NiFe LDH ultra-thin nanosheets After the reaction, cool to room temperature naturally. Take out the reaction solution and centrifuge at 10000rpm for 2 minutes. Use deionized water and Alternate washing with water and ethanol for 3 times, and finally drying in a blast drying oven at 60°C for 12 hours to obtain porous NiFe LDH ultra-thin nanosheets, abbreviated as NiFe LDHMs/NF-20.
  • Example 3 Preparation of porous NiFe LDH ultra-thin nanosheet material based on foamed nickel (NiFe LDHMs/NF-60)
  • NiFe LDH ultra-thin nanosheets After the reaction, cool to room temperature naturally. Take out the reaction solution and centrifuge at 10000rpm for 2 minutes. Use deionized water and Alternate washing with water and ethanol for 3 times, and finally drying in a blast drying oven at 60°C for 12 hours to obtain porous NiFe LDH ultra-thin nanosheets, abbreviated as NiFe LDHMs/NF-60.
  • Example 4 Preparation of porous NiFe LDH ultra-thin nanosheet material based on foamed nickel (NiFe LDHMs/NF-300)
  • NiFe LDH ultra-thin nanosheets After the reaction, cool to room temperature naturally. Take out the reaction solution and centrifuge at 10000rpm for 2 minutes. Use deionized water and Alternate washing with water and ethanol for 3 times, and finally drying in a blast drying oven at 60°C for 12 hours to obtain porous NiFe LDH ultra-thin nanosheets, abbreviated as NiFe LDHMs/NF-300.
  • the entire electrocatalytic test is carried out under a standard three-electrode system.
  • the foamed nickel-based composite materials prepared in the above examples and comparative examples are used as the working electrode.
  • the immersion ineffective electrolysis area is 1 ⁇ 0.5cm 2
  • the reference electrode is Ag. /AgCl (saturated chlorine KCl solution) electrode
  • the auxiliary electrode is a platinum wire electrode.
  • the electrolyte solution used for linear sweep voltammetry (LSV) test is saturated 1M KOH, the scanning range of potential is 1.0 ⁇ 1.9V vs RHE, and the scanning speed is 5mV/s.
  • Electrochemical impedance (EIS) is performed under the conditions of 1.54V vs RHE voltage, 10mV amplitude, and frequency range of 100kHz-0.01Hz. The data is compensated by 95% iR.
  • NiFe LDHMs/NF-200 exhibits excellent OER electrocatalytic performance.
  • a current density 10mA ⁇ cm -2 the value of the overpotential of 170mV only, Tafel slope as low as 39.3mV ⁇ dec -1, NiFe LDHMs / Tafel slope NF-20 was 74.39mV ⁇ dec - 1.
  • the Tafel slope of NiFe LDHMs/NF-60 is 70.57mV ⁇ dec -1
  • the Tafel slope of NiFe LDHMs/NF-300 is 42.58mV ⁇ dec -1
  • the Tafel slope of p-NiFe LDHs/NF The slope is 78.21mV ⁇ dec -1 .
  • NiFe LDHMs/NF-200 exhibits the smallest semicircular radius, indicating that the charge transfer resistance is small.
  • the reference electrode, auxiliary electrode and working electrode were inserted into a saturated 1.0 M KOH solution to perform a chronopotentiometric test, and the current density of the test was constant at 10 mA cm -2 .
  • NiFe LDHMs/NF-200 showed excellent stability. After 1000 CV cycles, the polarization curves almost overlapped. In the constant current chronopotentiometric test, after 40h , There is no significant decrease in electrocatalytic performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种泡沫镍基多孔NiFe水滑石纳米片及其制备和应用。其中,泡沫镍基多孔NiFe水滑石纳米片的制备方法包括以下步骤:将泡沫镍浸入反应液中,反应液中包括二价镍盐、三价铁盐、尿素、氟化铵、过氧化氢和水,并在密闭条件下,于100-120℃下反应,反应完全后得到泡沫镍基多孔NiFe水滑石纳米片。

Description

泡沫镍基多孔NiFe水滑石纳米片及其制备和应用 技术领域
本发明涉及纳米材料制备和电催化技术领域,尤其涉及一种泡沫镍基多孔NiFe水滑石纳米片及其制备和应用。
背景技术
随着全球能源危机和环境污染的加剧,人们认为高效的电解水催化剂是实现清洁、可持续能源转化和储存系统的重要途径并对其进行了深入研究。然而在阳极反应中,由于涉及四个电子转移以及在高电位下O-O键的形成,使得在电解过程中,热力学以及缓慢电催化氢气析出反应(OER)动力学往往限制了体系的整体效率。目前,贵金属氧化物(氧化铱和氧化钌)是最好的OER催化剂,虽然催化活性较高,但是贵金属资源稀缺且成本较高等缺点极大限制了它们的工业化。因此,开发活性高、价格低廉且资源丰富的非贵金属电解水OER催化剂具有重要意义。
近年来,人们致力于研究开发过渡金属氧化物、氢氧化物、氮化物、磷化物和钙钛矿氧化物用作OER催化剂。其中,NiFe LDH(水滑石)超薄纳米片因其独特的物理和电子结构,被公认为是一种优良的OER催化剂而受到越来越多的关注。(Y.F.Zhao,X.Zhang,X.D.Jia,G.I.N.Waterhouse,R.Shi,X.R.Zhang,F.Zhan,Y.Tao,L.Z.Wu,C.-H.Tung,D.O’Hare,T.R.Adv.Energy Mater.2018,8,1703585.)。然而,它的有限比表面积和较差的导电性阻碍了进一步改善OER性能。众所周知,催化反应发生在催化剂表面,这说明电催化活性与催化剂的表面纳米结构密切相关。为了提高催化剂催化活性,一种方法是掺杂第三种元素(G.B.Chen,T.Wang,J.Zhang,P.Liu,H.J.Sun,X.D.Zhuang,M.W.Chen,X.L.Feng,Adv.Mater.2018,30,1706279.);另外一种方法在催化剂表面引入多孔结构,增加其表面积,缩短电子或离子的转移途径(J.Rosen,G.S.Hutchings,F.Jiao,J.Am.Chem.Soc.2013,135,4516-4521.)。但是目前来说,在不改变催化剂组分的情况下引入多孔结构实验难度较大。另一方面,催化剂的电子结构在OER过程中也起着重要作用。通过调节催化剂的电子结构,可以有效地优化中间产物的吸附能,显著提高催化活性。
CN 108554413 A公开了一种三维多级结构高分散镍基电催化材料的制备方法,以泡沫镍为导电基体并提供反应所需要的镍源,以尿素为沉淀剂,以氟化铵为刻蚀剂,在泡沫镍骨架结构表面原位生长NiAl-LDH/NF前体,通过离子交换法,将阴离子H 2PO 4-,B(OH) 4-引入到 水滑石层间,含该阴离子的水滑石中间体高温还原后得到具有三维多级结构的高分散镍基材料。CN 108950596A公开了一种常温常压下合成廉价的镍铁纳米片阵列电催化剂的方法。其利用泡沫镍与铁盐反应,得到镍铁纳米片阵列电催化剂。CN 109201060 A提供了一种泡沫镍-镍铁氧化物复合析氧催化剂的制备方法,将含有镍盐、亚铁盐和尿素的混合水溶液与泡沫镍进行水热反应,在泡沫镍上生长镍铁氢氧化物,得到复合析氧催化剂前驱体;再将所得到的复合析氧催化剂前驱体进行煅烧,得到泡沫镍-镍铁氧化物复合析氧催化剂。CN 110354862 A公开了泡沫镍基质表面铈离子辅助原位修饰三维镍铁水滑石电催化析氧电极的方法,分别以六水合硝酸镍与九水合硝酸铁为铁源和镍源、六水合硝酸铈为辅助合成剂、尿素为水解剂、泡沫镍为导电基体,采用水热法,在泡沫镍导电基体表面上,一步原位合成三维镍铁水滑石纳米片状材料。以上方法所构建的材料,有些不具备多孔结构,有些形成多孔结构的方法较复杂。
因此,如何以快速、简便和绿色的方式精确构建NiFe LDH超薄纳米片多孔结构,并精确地调整表面阳离子的电子构型,仍然是一个巨大的挑战。
发明内容
为解决上述技术问题,本发明的目的是提供一种泡沫镍基多孔NiFe水滑石(LDH)纳米片及其制备和应用,本发明的方法工艺操作简便,生产成本低,易实现规模化,采用双氧水对水滑石表面进行侵蚀,所制备的泡沫镍基多孔NiFe LDH纳米片具有可见的介孔结构。
本发明的一种泡沫镍基多孔NiFe水滑石纳米片的制备方法,包括以下步骤:
将泡沫镍浸入反应液中,反应液中包括二价镍盐、三价铁盐、尿素、氟化铵、过氧化氢和水,并在密闭条件下,于100-120℃(优选120℃)下反应,反应完全后得到泡沫镍基多孔NiFe水滑石纳米片。
进一步地,二价镍盐选自氯化镍、硝酸镍和硫酸镍中的一种或几种(优选为氯化镍);反应液中,二价镍盐的浓度为0.025-0.054mol/L(优选为0.045mol/L)。优选地,二价镍盐选自六水合氯化镍。
进一步地,三价铁盐选自氯化铁和/或硝酸铁(优选为氯化铁);反应液中,三价铁盐的浓度为0.006-0.025mol/L(优选为0.015mol/L)。优选地,三价铁盐选自六水合氯化铁。
进一步地,反应液中,尿素的浓度为0.415mol/L;反应液中,氟化铵的浓度为0.16mol/L。
进一步地,反应液中,过氧化氢的浓度为0.01-0.15mol/L。
进一步地,反应液的配制方法包括以下步骤:
将二价镍盐、三价铁盐、尿素和氟化铵溶于水,然后向其中加入双氧水溶液。
进一步地,泡沫镍在浸入反应液之前,经过以下步骤处理:
将泡沫镍剪裁为2.8×2cm 2大小,在6M HCl中超声清洗30min去除表面氧化层后,再分别用无水乙醇和去离子水清洗并干燥。
进一步地,反应在含有聚四氟乙烯内衬的不锈钢反应釜中进行。
进一步地,反应时间为10-24h,优选为16h。
进一步地,反应结束后,还包括自然冷却至室温,离心、洗涤并干燥产物的步骤。
进一步地,洗涤是采用去离子水和无水乙醇交替洗涤3次;离心步骤是在转速为10000rpm下离心2min;干燥是指在鼓风干燥箱中60℃干燥12h。
本发明中,泡沫镍作为导电基体并提供反应所需要的镍源,尿素作为沉淀剂,氟化铵作为刻蚀剂,二价镍盐和三价铁盐作为合成水滑石纳米片的镍源和铁源,过氧化氢具有强氧化性,以此氧化表面的二价镍离子使其形成三价镍离子,并形成氧空位,三价镍离子可以作为活性位点来提高催化性能。
本发明还公开了一种采用上述制备方法所制备的泡沫镍基多孔NiFe水滑石纳米片,包括泡沫镍及位于泡沫镍表面的若干NiFe水滑石纳米片,NiFe水滑石纳米片上分布有若干多孔结构。
进一步地,NiFe水滑石纳米片的厚度为1-5nm,优选为1-2nm。
本发明还公开了泡沫镍基多孔NiFe水滑石纳米片作为电催化析氢反应催化剂的应用。
本发明还公开了一种电催化析氢反应催化剂,包括本发明以上制备方法所制备的泡沫镍基多孔NiFe水滑石纳米片
借由上述方案,本发明至少具有以下优点:
1.本发明通过溶剂热反应法一步即可得到泡沫镍基多孔NiFe水滑石纳米片,操作简单,成本较低、效率高、可重复性强且易于进一步工业化生产。
2.本发明得到的泡沫镍基多孔NiFe水滑石纳米片形貌均一,具有明显的多孔结构。
3.本发明得到的泡沫镍基多孔NiFe LDH纳米片材料具有优异的催化性能。在1.0M KOH溶液中,当电流密度为10mA·cm -2时,OER过电势的值仅为170mV,塔菲尔斜率也低至39.3mV·dec -1
4.本发明得到的泡沫镍基多孔NiFe LDH纳米片材料在电催化过程中展现出高稳定性。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合详细附图说明如后。
附图说明
图1(a)为NiFe LDHMs/NF-200的扫描电镜(SEM)图,标尺为2μm;图1(b)、(c)为NiFe LDHMs/NF-200的透射电镜(TEM)图,标尺为100nm和20nm;图1(d)为NiFe LDHMs/NF-200纳米片的高分辨率电镜(HRTEM)图,标尺为2nm;图1(e)为NiFe LDHMs/NF-200纳米片的元素分布图,标尺为100nm;图1(f)为图NiFe LDHMs/NF-200纳米片为原子力显微镜图;图1(g)为NiFe LDHMs/NF-200与p-NiFe LDHs/NF的X-射线粉末衍射(PXRD)图;
图2(a)为NiFe LDHMs/NF-200的孔径分布柱状图;图2(b)为NiFe LDHMs/NF-200的选区电子衍射(SAED)图;图2(c)图示了NiFe LDHMs/NF-200纳米片分散在乙醇溶液中并在激光照射下的丁达尔现象图;
图3(a)、(b)为p-NiFe LDHs/NF纳米片的透射电镜(TEM)图,标尺为100nm和20nm;图3(c)为p-NiFe LDHs/NF纳米片的高分辨率电镜(HRTEM)图,标尺为2nm;图3(d1)-(d4)为p-NiFe LDHs/NF纳米片的元素分布图,标尺为20nm;
图4为制备样品在1M KOH中催化OER时的(a)极化曲线;(b)反应时过电势和电流密度的柱状图;(c)塔菲尔斜率图;(d1)-(d2)电化学阻抗(EIS)图;
图5(a)(b)分别为泡沫镍在1M KOH中催化OER时的极化曲线和塔菲尔斜率图;
图6为样品在进行表面积归一化之后的OER极化曲线;
图7(a)为NiFe LDHMs/NF-200样品1000圈CV循环前后的极化曲线;图7(b)为NiFe LDHMs/NF-200样品在OER反应时,电流密度为10mA cm -2计时电势图。
具体实施方式
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明以下实施例和对比例中,所使用的泡沫镍(NF)通过以下方法进行处理:
泡沫镍剪裁规格大小为2.8×2cm 2,将其在6M HCl中超声清洗30min去除表面氧化层后,再分别用无水乙醇和去离子水清洗并干燥待用。
实施例1:泡沫镍基多孔NiFe LDH超薄纳米片材料的制备(NiFe LDHMs/NF-200)
称取0.214g(0.9mmol)的六水合氯化镍、0.081g(0.3mmol)的六水合氯化铁、0.498g(8.3mmol)的尿素和0.118g(3.2mmol)氟化铵溶于20mL去离子水中,搅拌形成均一溶液。向上述溶液中逐滴滴加200μL的双氧水溶液(双氧水溶液的浓度为0.0979mol/L),然 后将其转入50mL含有聚四氟乙烯内衬的不锈钢反应釜中,并将处理后的泡沫镍浸入到以上制备的反应液中,密封后置于烘箱中,在120℃下反应16h,反应结束后自然冷却至室温,取出反应液在10000rpm下离心2min,将得到的产物用去离子水和无水乙醇交替洗涤3次,最后在60℃鼓风干燥箱中干燥12h后得到多孔NiFe LDH超薄纳米片,简记为NiFe LDHMs/NF-200。
如图1(a)所示,NiFe LDHMs/NF-200纳米片均匀地长在泡沫镍上。图1(b)和图1(c)分别为NiFe LDHMs/NF-200的低倍和高倍透射电镜(TEM)图,从图中可以明显看出NiFe LDHMs/NF-200纳米片为多孔结构。图1(d)为NiFe LDHMs/NF-200纳米片的高分辨率电镜(HRTEM)图,与以下对比例1制备的p-NiFe LDHs/NF纳米片对比可知,在加入双氧水后,晶格间距仍为0.25nm,对应的晶面为(012)。图1(e1)-(e4)为NiFe LDHMs/NF-200的元素分布图,图1(e1)为merge图,图1(e2)-(e 4)依次为Ni、Fe、O元素分布图,从该图中可以看出Ni、Fe和O均匀分布在纳米片上;图1(f)为NiFe LDHMs/NF-200纳米片为原子力显微镜图,从该图中可以看出纳米片的厚度极薄,约为1.8nm。图1(g)为NiFe LDHMs/NF-200与p-NiFe LDHs/NF的X-射线粉末衍射(PXRD)图,从图中可以看出,在加入双氧水后,并无新的衍射峰出现。
如图2(a)所示,NiFe LDHMs/NF-200纳米片表面上的孔洞大小为8.3nm;图2(b)NiFe LDHMs/NF-200纳米片的选区电子衍射(SAED)图。从该图可以看出所对应的晶面为(012)和(110)晶面。图2(c)为NiFe LDHMs/NF-200纳米片分散在乙醇溶液中并在激光照射下显现出丁达尔现象,此现象说明NiFe LDHMs/NF-200纳米片具有良好的分散性和均一性。
对比例1:泡沫镍基NiFe LDH超薄纳米片材料的制备(p-NiFe LDHs/NF)
称取0.214g(0.9mmol)的六水合氯化镍、0.081g(0.3mmol)的六水合氯化铁、0.498g(8.3mmol)的尿素和0.118g(3.2mmol)氟化铵溶于20mL去离子水中,搅拌形成均一溶液。然后将其转入50mL含有聚四氟乙烯内衬的不锈钢反应釜中,并将处理后的泡沫镍浸入到以上制备的反应液中,密封后置于烘箱中,在120℃下反应16h,反应结束后自然冷却至室温,取出反应液在10000rpm下离心2min,将得到的产物用去离子水和无水乙醇交替洗涤3次,最后在60℃鼓风干燥箱中干燥12h后得到NiFe LDH超薄纳米片,简记为p-NiFe LDHs/NF。
如图3(a)和图1(b)所示,在无双氧水加入的情况下,p-NiFe LDHs/NF纳米片表面光滑,无孔洞出现;图3(c)为p-NiFe LDHs/NF纳米片的高分辨率电镜(HRTEM)图,从 图中可以晶格间距为0.25nm,对应的晶面为(012);图3(d1)-(d4)为p-NiFe LDHs/NF纳米片的元素分布图,图3(d1)为merge图,图3(d2)-(d4)依次为Ni、Fe、O元素分布图,从图中可以看出Ni、Fe和O均匀分布在纳米片上。
实施例2:泡沫镍基多孔NiFe LDH超薄纳米片材料的制备(NiFe LDHMs/NF-20)
称取0.214g(0.9mmol)的六水合氯化镍、0.081g(0.3mmol)的六水合氯化铁、0.498g(8.3mmol)的尿素和0.118g(3.2mmol)氟化铵溶于20mL去离子水中,搅拌形成均一溶液。向上述溶液中逐滴滴加20μL的双氧水溶液(双氧水溶液的浓度为0.0979mol/L),然后将其转入50mL含有聚四氟乙烯内衬的不锈钢反应釜中,并将处理后的泡沫镍浸入到以上制备的反应液中,密封后置于烘箱中,在120℃下反应16h,反应结束后自然冷却至室温,取出反应液在10000rpm下离心2min,将得到的产物用去离子水和无水乙醇交替洗涤3次,最后在60℃鼓风干燥箱中干燥12h后得到多孔NiFe LDH超薄纳米片,简记为NiFe LDHMs/NF-20。
实施例3:泡沫镍基多孔NiFe LDH超薄纳米片材料的制备(NiFe LDHMs/NF-60)
称取0.214g(0.9mmol)的六水合氯化镍、0.081g(0.3mmol)的六水合氯化铁、0.498g(8.3mmol)的尿素和0.118g(3.2mmol)氟化铵溶于20mL去离子水中,搅拌形成均一溶液。向上述溶液中逐滴滴加60μL的双氧水溶液(双氧水溶液的浓度为0.02937mol/L),然后将其转入50mL含有聚四氟乙烯内衬的不锈钢反应釜中,并将处理后的泡沫镍浸入到以上制备的反应液中,密封后置于烘箱中,在120℃下反应16h,反应结束后自然冷却至室温,取出反应液在10000rpm下离心2min,将得到的产物用去离子水和无水乙醇交替洗涤3次,最后在60℃鼓风干燥箱中干燥12h后得到多孔NiFe LDH超薄纳米片,简记为NiFe LDHMs/NF-60。
实施例4:泡沫镍基多孔NiFe LDH超薄纳米片材料的制备(NiFe LDHMs/NF-300)
称取0.214g(0.9mmol)的六水合氯化镍、0.081g(0.3mmol)的六水合氯化铁、0.498g(8.3mmol)的尿素和0.118g(3.2mmol)氟化铵溶于20mL去离子水中,搅拌形成均一溶液。向上述溶液中逐滴滴加300μL的双氧水溶液(双氧水溶液的浓度为0.14685mol/L),然后将其转入50mL含有聚四氟乙烯内衬的不锈钢反应釜中,并将处理后的泡沫镍浸入到以上制备的反应液中,密封后置于烘箱中,在120℃下反应16h,反应结束后自然冷却至室温,取出反应液在10000rpm下离心2min,将得到的产物用去离子水和无水乙醇交替洗涤3次,最后在60℃鼓风干燥箱中干燥12h后得到多孔NiFe LDH超薄纳米片,简记为NiFe LDHMs/NF-300。
实施例5:OER性能测试
整个电催化测试都是在标准的三电极体系下进行,将以上实施例和对比例所制备的泡沫镍基复合材料作为工作电极,浸没有效电解面积为1×0.5cm 2,参比电极为Ag/AgCl(饱和氯KCl溶液)电极,辅助电极为铂丝电极。用于线性扫描伏安法(LSV)测试的电解质溶液为饱和的1M KOH,电势的扫描范围为1.0~1.9V vs RHE,扫描速度为5mV/s。电化学阻抗(EIS)是在1.54V vs RHE电压下,振幅为10mV,频率范围为100kHz-0.01Hz的条件下进行。数据都经过95%iR的补偿。
如图4(a)-(d2)和图5(图4(d2)为(d1)的部分区间放大图),NiFe LDHMs/NF-200表现出优异的OER电催化性能。在10mA·cm -2的电流密度下,过电势的值仅为170mV,塔菲尔斜率也低至39.3mV·dec -1,NiFe LDHMs/NF-20的塔菲尔斜率为74.39mV·dec -1,NiFe LDHMs/NF-60的塔菲尔斜率为70.57mV·dec -1,NiFe LDHMs/NF-300的塔菲尔斜率为42.58mV·dec -1,p-NiFe LDHs/NF的塔菲尔斜率为78.21mV·dec -1。同时在电化学阻抗(EIS)图中,NiFe LDHMs/NF-200呈现出最小的半圆半径,表明电荷转移电阻较小。同时在图4(d2)中可明显看出,NiFe LDHMs/NF-200、NiFe LDHMs/NF-300、NiFe LDHMs/NF-60、NiFe LDHMs/NF-20、p-NiFe LDHs/NF的半圆半径依次增大。在进行表面积归一化之后,如图6所示,NiFe LDHMs/NF-200仍然表现出优异的OER电催化性能。
实施例6:OER稳定性能测试
在标准的三电极体系下(参考实施例5),将参比电极,辅助电极和工作电极插入饱和的1.0M KOH溶液,进行计时电位测试,测试的电流密度恒定为10mA cm -2
如图7(a)和(b),NiFe LDHMs/NF-200表现出优异的稳定性,在经过1000次CV循环前后,其极化曲线几乎重合,在恒电流计时电位测试时,经过40h后,电催化性能没有明显的下降。
以上仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

  1. 一种泡沫镍基多孔NiFe水滑石纳米片的制备方法,其特征在于,包括以下步骤:
    将泡沫镍浸入反应液中,所述反应液中包括二价镍盐、三价铁盐、尿素、氟化铵、过氧化氢和水,并在密闭条件下,于100-120℃下反应,反应完全后得到所述泡沫镍基多孔NiFe水滑石纳米片。
  2. 根据权利要求1所述的制备方法,其特征在于,所述二价镍盐选自氯化镍、硝酸镍和硫酸镍中的一种或几种;所述反应液中,二价镍盐的浓度为0.025-0.054mol/L。
  3. 根据权利要求1所述的制备方法,其特征在于,所述三价铁盐选自氯化铁和/或硝酸铁;所述反应液中,三价铁盐的浓度为0.006-0.025mol/L。
  4. 根据权利要求1所述的制备方法,其特征在于,所述反应液中,尿素的浓度为0.415mol/L;所述反应液中,氟化铵的浓度为0.16mol/L。
  5. 根据权利要求1所述的制备方法,其特征在于,所述反应液中,过氧化氢的浓度为0.01-0.15mol/L。
  6. 根据权利要求1所述的制备方法,其特征在于,反应时间为10-24h。
  7. 一种权利要求1-6中任一项所述的制备方法所制备的泡沫镍基多孔NiFe水滑石纳米片,其特征在于,包括泡沫镍及位于泡沫镍表面的若干NiFe水滑石纳米片,所述NiFe水滑石纳米片上分布有若干多孔结构。
  8. 根据权利要求7所述的泡沫镍基多孔NiFe水滑石纳米片,其特征在于,所述NiFe水滑石纳米片的厚度为1-5nm。
  9. 权利要求7所述的泡沫镍基多孔NiFe水滑石纳米片作为电催化析氢反应催化剂的应用。
  10. 一种电催化析氢反应催化剂,其特征在于,包括权利要求7所述的泡沫镍基多孔NiFe水滑石纳米片。
PCT/CN2020/100830 2020-03-20 2020-07-08 泡沫镍基多孔NiFe水滑石纳米片及其制备和应用 WO2021184601A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010202643.XA CN111229232B (zh) 2020-03-20 2020-03-20 泡沫镍基多孔NiFe水滑石纳米片及其制备和应用
CN202010202643.X 2020-03-20

Publications (1)

Publication Number Publication Date
WO2021184601A1 true WO2021184601A1 (zh) 2021-09-23

Family

ID=70862288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100830 WO2021184601A1 (zh) 2020-03-20 2020-07-08 泡沫镍基多孔NiFe水滑石纳米片及其制备和应用

Country Status (2)

Country Link
CN (1) CN111229232B (zh)
WO (1) WO2021184601A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114351177A (zh) * 2022-01-14 2022-04-15 西北工业大学 一种基于超声化学表面重构的自支撑电极的制备方法
CN114804045A (zh) * 2022-05-19 2022-07-29 武汉科技大学 一种构成电容器材料的磷化铁镍纳米片制备方法及应用
CN114908368A (zh) * 2022-04-25 2022-08-16 大连理工大学 一种NiFe基水氧化催化剂及其制备方法
CN114959773A (zh) * 2022-04-27 2022-08-30 湖北大学 一种NiFeZn LDHs/NF及其制备方法和应用
CN115106086A (zh) * 2022-06-07 2022-09-27 重庆工商大学 双缺陷镍铁类水滑石光催化剂的制备方法及其产品和应用
CN115125564A (zh) * 2022-06-07 2022-09-30 北京大学深圳研究生院 一种晶态-非晶态纳米片电催化剂及其制备方法
CN115505949A (zh) * 2022-08-31 2022-12-23 武汉工程大学 一种铱掺杂金属有机框架衍生材料及其制备方法与电催化析氧方面的应用
CN115896836A (zh) * 2022-11-29 2023-04-04 同济大学 一种镍基一体化电催化剂及其制备方法与应用
CN116119725A (zh) * 2023-01-16 2023-05-16 河北师范大学 一种还原型含铁水滑石材料的制备方法
CN116180102A (zh) * 2021-12-03 2023-05-30 青岛绿色发展研究院有限公司 一种负载型镍铁基析氧电极及其制备方法与应用
CN116426951A (zh) * 2023-03-17 2023-07-14 湘南学院 一种叶状阵列非晶相镍氧化物/镍泡沫电极及其制备方法和应用
CN115125564B (zh) * 2022-06-07 2024-06-04 北京大学深圳研究生院 一种晶态-非晶态纳米片电催化剂及其制备方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111229232B (zh) * 2020-03-20 2023-10-31 苏州大学 泡沫镍基多孔NiFe水滑石纳米片及其制备和应用
CN111628180A (zh) * 2020-06-09 2020-09-04 澳门大学 一种电极、其制备方法和包含该电极的钠–空气电池
CN112044442B (zh) * 2020-09-04 2022-12-13 郑州大学 具有原子缺陷的β相镍铁氢氧化物/碳纳米管复合物的制备方法及其应用
CN112663084B (zh) * 2020-11-12 2022-07-29 南京大学 一种超快速绿色室温合成镍铁氧析出电催化剂及制备方法
CN112481640B (zh) * 2020-12-01 2022-02-15 北京师范大学 NiFe-LDH@CoSx/NF复合材料及其制备方法和应用
CN113026045B (zh) * 2021-02-09 2022-09-06 中国科学院宁波材料技术与工程研究所 一种泡沫镍负载Ni(OH)2/FeOOH纳米花材料制备方法
CN113351212B (zh) * 2021-06-04 2022-04-22 湘潭大学 一种氧空位丰富的镍掺杂类水滑石及其制备方法和应用
CN114392748B (zh) * 2022-03-09 2023-07-18 中国科学院生态环境研究中心 一种整体式催化剂在催化分解臭氧中的应用
CN114832843B (zh) * 2022-03-24 2023-09-01 北京化工大学 一种丁腈橡胶加氢插层水滑石催化剂及其制备方法和应用
CN115094446B (zh) * 2022-05-10 2023-08-11 昆明理工大学 一种基于双功能催化剂的便携式过氧化氢反应器及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150368811A1 (en) * 2014-06-18 2015-12-24 California Institute Of Technology Highly active mixed-metal catalysts made by pulsed-laser ablation in liquids
CN105964262A (zh) * 2016-06-12 2016-09-28 常州大学 一种磁性复合氧化镍催化剂的制备方法
CN108283926A (zh) * 2018-01-10 2018-07-17 青岛大学 一种原位生长在泡沫镍上具有片状结构的镍铁双金属氢氧化物制备方法
CN109136977A (zh) * 2018-08-16 2019-01-04 北京科技大学广州新材料研究院 NiFe-LDH析氧电催化材料的制备方法及应用
CN110354862A (zh) * 2019-08-14 2019-10-22 福州大学 泡沫镍基质表面铈离子辅助原位修饰三维镍铁水滑石电催化析氧电极的方法
WO2020034007A1 (en) * 2018-08-16 2020-02-20 Newsouth Innovations Pty Limited Trimetallic layered double hydroxide composition
CN111229232A (zh) * 2020-03-20 2020-06-05 苏州大学 泡沫镍基多孔NiFe水滑石纳米片及其制备和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449422B (zh) * 2013-08-26 2015-07-01 合肥工业大学 一种高效快速回收化学镀镍废液中镍和磷的方法
CN108615610A (zh) * 2018-04-23 2018-10-02 上海应用技术大学 一种以泡沫镍为基底原位生长钴锰双金属氢氧化物复合材料的方法
CN108716007A (zh) * 2018-05-30 2018-10-30 天津大学 通过氧空位工程提高氢氧化物电催化析氢反应性能的方法
CN109201103A (zh) * 2018-10-17 2019-01-15 大连理工大学 一种整体式多孔双效非贵金属全电解水催化剂及合成方法
CN109234755B (zh) * 2018-10-30 2020-11-03 江苏大学 一种层状双金属氢氧化物复合结构电催化剂及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150368811A1 (en) * 2014-06-18 2015-12-24 California Institute Of Technology Highly active mixed-metal catalysts made by pulsed-laser ablation in liquids
CN105964262A (zh) * 2016-06-12 2016-09-28 常州大学 一种磁性复合氧化镍催化剂的制备方法
CN108283926A (zh) * 2018-01-10 2018-07-17 青岛大学 一种原位生长在泡沫镍上具有片状结构的镍铁双金属氢氧化物制备方法
CN109136977A (zh) * 2018-08-16 2019-01-04 北京科技大学广州新材料研究院 NiFe-LDH析氧电催化材料的制备方法及应用
WO2020034007A1 (en) * 2018-08-16 2020-02-20 Newsouth Innovations Pty Limited Trimetallic layered double hydroxide composition
CN110354862A (zh) * 2019-08-14 2019-10-22 福州大学 泡沫镍基质表面铈离子辅助原位修饰三维镍铁水滑石电催化析氧电极的方法
CN111229232A (zh) * 2020-03-20 2020-06-05 苏州大学 泡沫镍基多孔NiFe水滑石纳米片及其制备和应用

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116180102B (zh) * 2021-12-03 2024-02-23 青岛绿色发展研究院有限公司 一种负载型镍铁基析氧电极及其制备方法与应用
CN116180102A (zh) * 2021-12-03 2023-05-30 青岛绿色发展研究院有限公司 一种负载型镍铁基析氧电极及其制备方法与应用
CN114351177A (zh) * 2022-01-14 2022-04-15 西北工业大学 一种基于超声化学表面重构的自支撑电极的制备方法
CN114351177B (zh) * 2022-01-14 2023-05-26 西北工业大学 一种基于超声化学表面重构的自支撑电极的制备方法
CN114908368A (zh) * 2022-04-25 2022-08-16 大连理工大学 一种NiFe基水氧化催化剂及其制备方法
CN114959773A (zh) * 2022-04-27 2022-08-30 湖北大学 一种NiFeZn LDHs/NF及其制备方法和应用
CN114959773B (zh) * 2022-04-27 2023-12-19 湖北大学 一种NiFeZn LDHs/NF及其制备方法和应用
CN114804045A (zh) * 2022-05-19 2022-07-29 武汉科技大学 一种构成电容器材料的磷化铁镍纳米片制备方法及应用
CN115125564A (zh) * 2022-06-07 2022-09-30 北京大学深圳研究生院 一种晶态-非晶态纳米片电催化剂及其制备方法
CN115106086A (zh) * 2022-06-07 2022-09-27 重庆工商大学 双缺陷镍铁类水滑石光催化剂的制备方法及其产品和应用
CN115125564B (zh) * 2022-06-07 2024-06-04 北京大学深圳研究生院 一种晶态-非晶态纳米片电催化剂及其制备方法
CN115505949A (zh) * 2022-08-31 2022-12-23 武汉工程大学 一种铱掺杂金属有机框架衍生材料及其制备方法与电催化析氧方面的应用
CN115896836A (zh) * 2022-11-29 2023-04-04 同济大学 一种镍基一体化电催化剂及其制备方法与应用
CN116119725A (zh) * 2023-01-16 2023-05-16 河北师范大学 一种还原型含铁水滑石材料的制备方法
CN116426951B (zh) * 2023-03-17 2023-10-27 湘南学院 一种叶状阵列非晶相镍氧化物/镍泡沫电极及其制备方法和应用
CN116426951A (zh) * 2023-03-17 2023-07-14 湘南学院 一种叶状阵列非晶相镍氧化物/镍泡沫电极及其制备方法和应用

Also Published As

Publication number Publication date
CN111229232B (zh) 2023-10-31
CN111229232A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
WO2021184601A1 (zh) 泡沫镍基多孔NiFe水滑石纳米片及其制备和应用
Li et al. Amorphous NiFe oxide‐based nanoreactors for efficient electrocatalytic water oxidation
Yang et al. Iron-doped nickel disulfide nanoarray: A highly efficient and stable electrocatalyst for water splitting
Liu et al. Defect-rich (Co, Fe) 3O4 hierarchical nanosheet arrays for efficient oxygen evolution reaction
Xiong et al. Cerium-incorporated Ni2P nanosheets for enhancing hydrogen production from overall water splitting and urea electrolysis
CN110575836B (zh) 一种Pt负载Fe掺杂α相氢氧化镍纳米片阵列材料、制备方法及应用
Zhang et al. Recent progress in self-supported two-dimensional transition metal oxides and (oxy) hydroxides as oxygen evolution reaction catalysts
CN110292939A (zh) 一种双碳限域的铱纳米团簇及其制备方法和应用
Li et al. Construction of Ni2P-NiFe2O4 heterostructured nanosheets towards performance-enhanced water oxidation reaction
Zhou et al. Boosting oxygen evolution reaction activity and durability of phosphate doped Ni (OH) 2/FeOOH hierarchical microtubes by morphology engineering and reconstruction strategy
Wei et al. Preparation of hierarchical hollow CoFe Prussian blue analogues and its heat-treatment derivatives for the electrocatalyst of oxygen evolution reaction
Qiu et al. Synergistic effect of oxidation etching and phase transformation triggered by controllable ion-bath microenvironments toward constructing ultra-thin porous nanosheets for accelerated industrial water splitting at high current density
Si et al. Hydrophilic NiFe-LDH/Ti3C2Tx/NF electrode for assisting efficiently oxygen evolution reaction
CN110890551A (zh) 一种包覆型催化剂、其制备方法和在燃料电池中的应用
Xie et al. Hierarchical FeCo/C@ Ni (OH) 2 heterostructures for enhanced oxygen evolution activity
Yang et al. Facile synthesis of N and P co-doped NiMoO4 hollow nanowires and electrochemical deposition of NiFe-layered double hydroxide for boosting overall seawater splitting
Wei et al. Modifying acidic oxygen production properties of PbO2 by porous Mn2O3 microspheres for boosting stability
CN112921351B (zh) 一种自支撑型催化电极的制备方法和应用
Cai et al. Recent advances in surface/interface engineering of noble-metal free catalysts for energy conversion reactions
Lai et al. Iron-induced lattice distortion generally boots the graphene-supported nickel phosphide nanoparticles catalysis for efficient overall water splitting
Bao et al. Solution plasma-assisted synthesis of oxyhydroxides for advanced electrocatalytic water splitting
Kitiphatpiboon et al. Facile fabrication of O vacancy rich CuVOx nanobelt@ NiO nanosheet array for hydrogen evolution reaction
Fan et al. Interfacial Electron Regulation and Composition Evolution of NiFe/MoC Heteronanowire Arrays for Highly Stable Alkaline Seawater Oxidation
CN112062230A (zh) 电极材料及其制备方法、用于电容去离子化的电极、应用
Lei et al. Efficient electrocatalyst for solar-driven electrolytic water splitting: Phosphorus (P) and niobium (Nb) co-doped NiFe2O4 nanosheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926254

Country of ref document: EP

Kind code of ref document: A1