CN114908368A - 一种NiFe基水氧化催化剂及其制备方法 - Google Patents

一种NiFe基水氧化催化剂及其制备方法 Download PDF

Info

Publication number
CN114908368A
CN114908368A CN202210437976.XA CN202210437976A CN114908368A CN 114908368 A CN114908368 A CN 114908368A CN 202210437976 A CN202210437976 A CN 202210437976A CN 114908368 A CN114908368 A CN 114908368A
Authority
CN
China
Prior art keywords
nife
preparation
catalyst
oxidation catalyst
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210437976.XA
Other languages
English (en)
Inventor
吴秀娟
李维佳
冯璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202210437976.XA priority Critical patent/CN114908368A/zh
Publication of CN114908368A publication Critical patent/CN114908368A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/054Electrodes comprising electrocatalysts supported on a carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/067Inorganic compound e.g. ITO, silica or titania
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种NiFe基水氧化催化剂及其制备方法,属于电化学技术领域。该制备方法选择泡沫铜为基底,先通过化学氧化反应生成氢氧化铜纳米线,再通过一步水热法,以不同比例的六水合硝酸镍和九水合硝酸铁在2‑甲基咪唑的甲醇溶液中进行反应,最终得到NiFe基水氧化催化剂。该种制备方法所选原料价格低廉,制作方法简单,且所制得的催化剂比表面积大,稳定性好,可作为一种优异的催化剂,应用于高效的电催化水氧化反应体系。

Description

一种NiFe基水氧化催化剂及其制备方法
技术领域
本发明涉及电化学技术领域,具体为一种用于电催化分解水的水氧化催化剂及其制备方法。
背景技术
受能源危机和环境污染的影响,开发新型清洁能源成为了绿色发展的首要任务。氢能燃烧值高,且燃烧产物为水,是世界上最干净的能源,电解水制氢也是一种常用的方法。电解水制氢的过程主要分为析氢反应(HER)和析氧反应(OER)两个过程。OER过程需要四个电子和四个质子的复杂转移过程,是电解水制氢的限速步,因此开发高效的水氧化催化剂是提高电解水制氢的关键。
在OER催化剂的研究中,贵金属催化剂(如:Ru,Ir)由于其价格昂贵,储量较少的原因,不能大规模工业化使用。因此非贵金属催化剂(如:Co,Fe,Ni等)由于其自身优异的催化活性及丰富的储量,成为了研究的一大热点。
在非贵金属催化剂的研究中,NiFe基催化剂由于二者之间存在着一定的协同作用,因此对OER的催化性能最好。关于NiFe基催化剂的研究很多,通过不同的方法(如:元素掺杂,形貌构建等)来进一步提高其催化活性。鉴于此,本发明提供一种新型NiFe基催化剂的合成方法,用于合成NiFeOx(OH)y催化剂。本发明也为NiFe基催化剂的合成与发展提供了一个新的方向。
发明内容
本发明提供一种在氢氧化铜纳米线上生长的NiFe基氧化物电催化水氧化材料的制备方法。
本发明的技术方案:一种在氢氧化铜纳米线上生长的NiFe基水氧化催化剂的制备方法,包括如下步骤:将泡沫铜基底在氢氧化钠和过硫酸铵的溶液中反应,得到表面生成氢氧化铜纳米线的泡沫铜;
将2-甲基咪唑和表面生成氢氧化铜纳米线的泡沫铜依次放入溶解镍盐和铁盐的甲醇溶液中,在高压釜中加热反应得到所述的NiFe基水氧化催化剂。
本发明提供一种NiFe基水氧化催化剂,采用上述方法制备得到。
本发明提供所述的一种NiFe基水氧化催化剂在催化水氧化中的应用。
在一些具体制备方法中,将在高压釜中通过加热反应得到的NiFe基水氧化催化剂采用真空干燥方法干燥,比如采用真空干燥箱干燥。真空干燥的温度可具体为40~70℃,干燥时间可具体为0.5~3 h。
在一些具体制备方法中,所述的泡沫铜在反应前分别用丙酮和盐酸依次清洗,除去表面的油脂和有机物。
在一些具体制备方法中,所述的镍盐为硝酸盐或者乙酸盐中一种,铁盐为氯化盐、硫酸盐或者硝酸盐中的一种。更具体的,所述的镍盐为六水合硝酸镍或者四水合乙酸镍,铁盐为六水合氯化铁、无水硫酸铁或者九水合硝酸铁。
在一些具体制备方法中,所述的铁盐和镍盐的摩尔比为1:1~7。
在一些具体制备方法中,高压釜中的反应温度为40~150℃,反应时间为4~24 h。
在一些具体制备方法中,所述铁盐和镍盐的摩尔总量与2-甲基咪唑的摩尔量比为1:1~10。
在一些具体制备方法中,铁盐和镍盐的摩尔比为1:3。
在一些具体制备方法中,金属盐的总量与2-甲基咪唑的摩尔比为1:3.75。
在一些具体制备方法中,在高压釜中水热反应的温度为110℃。
在一些具体制备方法中,在高压釜中水热反应的反应时间为6 h。
Cu(OH)2纳米线的一种具体制备方法:称取一定量的氢氧化钠(NaOH)和过硫酸铵((NH4)2S2O8)加入去离子水中,超声溶解,并将处理好的CF放入混合溶液中静置15~25 min,取出并用去离子水冲洗,干燥备用。更具体的,氢氧化钠溶液浓度为2~6M,过硫酸铵溶液浓度为0.1~0.3 M。
NiFeOx(OH)y-Cu(OH)2的一种具体制备方法:称取一定量的六水合硝酸镍(Ni(NO3)2·6H2O)、九水合硝酸铁(Fe(NO3)3·9H2O)溶于25~45 ml甲醇中搅拌,待全部溶解后,称取一定量的2-甲基咪唑倒入溶液中,继续搅拌,充分溶解后,将溶液转移至聚四氟乙烯的内胆中,加入已干燥的Cu(OH)2纳米线,密封于高压釜中进行加热反应。
与现有技术相比,本发明有如下有益效果:本发明提供一种NiFe基水氧化催化剂及其制备方法,选择CF为基底,通过化学氧化法和水热法制备了纳米片叠加的纳米棒状的NiFeOx(OH)y-Cu(OH)2催化剂。氢氧化铜纳米线能够明显扩大催化活性表面积,暴露更多的活性位点,同时还能够更好地与电解液接触,进而促进物质的运输与传递。该制备方法操作简单,所需原材料价格低廉且储量丰富,且催化剂具有较好的催化活性和稳定性。而对于Ni、Fe比为3:1的催化剂,在1 M KOH溶液中,仅需要226mV的过电位即可达到10 mA/cm2的电流密度,其塔菲尔斜率为39.49 mF/dec,电化学阻抗也明显减小。在稳定性的测试中,在恒电流10 mA/cm2下能保持55 h稳定,在阶梯电流中也能保持很好的稳定性。
附图说明
图1为实施例1中所制得催化剂的电镜图。
其中,(a)为扫描电镜图(SEM),(b)为元素分布图(EDX)。
图2为实施例1中所制得催化剂的透射电镜(TEM)。
其中,(a)、(b)和(c)为不同尺度下的透射电镜(TEM)图,(d)为选区区域电子衍射(SEAD)图。
图3为实施例1中所制得催化剂的X射线衍射图(XPS)。
图4为实施例及对比例所制得催化剂的极线曲线(LSV)图。其中,横坐标为电势,纵坐标为电流密度。
图5为实施例及对比例所制得催化剂在不同电流密度下的过电位比较图。
图6为实施例1及对比例所制得催化剂的塔菲尔斜率(Tafel)对比图。
图7为实施例1及对比例所制得催化剂的双层电容 (C dl) 比较图。
图8为实施例1及对比例所制得催化剂的电化学阻抗(EIS)的对比图。
图9为实施例1中所制得催化剂的稳定性测试图。
具体实施方案
下面结合具体的实施方案对本发明进行详细的描述说明。此处描述的具体实施方案仅用于说明和解释本发明,并不用于限制本发明。本发明中,没有特殊说明的情况下,表示浓度的M均代表mol/L,例如1M盐酸表示1 mol/L的盐酸溶液。
实施例1:NiFeOx(OH)y-Cu(OH)2(NiFe-3:1)
(1)CF的处理:剪取一块长2 cm×宽2 cm×厚1.0 mm的CF,分别用丙酮,1 M 盐酸各清洗5 min,去除表面的杂质。最后将处理好的CF用去离子水冲洗后,迅速放入含2 gNaOH和0.57 g (NH4)2S2O8的20 ml水溶液中,静置20min后,取出,并用去离子水冲洗,放入真空干燥箱中,60℃烘干备用。
(2)NiFeOx(OH)y-Cu(OH)2的制备:称取 0.6 mmol Ni(NO3)2·6H2O,0.2 mmol Fe(NO3)3·9H2O,加入30 mL甲醇溶液中,搅拌溶解。待完全溶解后,称取3 mmol 2-甲基咪唑,置于溶液中,搅拌30min后,将溶液转移至50 mL聚四氟乙烯的内胆中,加入制备好的Cu(OH)2纳米线基底,密封于高压釜中,110℃恒温6 h。待反应结束后,反应釜自然冷却至室温,取出基底,用去离子水冲洗后,置于真空干燥箱里60℃干燥2 h,备用。
实施例2:NiFe-1:1
本实例按照实例1的制备方法进行制备,不同的是在步骤(2)中Ni(NO3)2·6H2O和Fe(NO3)3·9H2O各称取0.4 mmol。
实施例3: NiFe-5:1
本实例按照实例1的制备方法进行制备,不同的是在步骤(2)中Ni(NO3)2·6H2O和Fe(NO3)3·9H2O各称取0.666 mmol和0.133mmol。
实施例4: NiFe-7:1
本实例按照实例1的制备方法进行制备,不同的是在步骤(2)中Ni(NO3)2·6H2O和Fe(NO3)3·9H2O各称取0.7mmol和0.1 mmol。
实施例5
1) CF的处理:剪取一块长2 cm×宽2 cm×厚1.0 mm的CF,分别用丙酮,1 M 盐酸各清洗5 min,去除表面的杂质。最后将处理好的CF用去离子水冲洗后,迅速放入含2 gNaOH和0.57 g (NH4)2S2O8的20 ml水溶液中,静置20min后,取出,并用去离子水冲洗,放入真空干燥箱中,60℃烘干备用。
2) NiFe基水氧化催化剂的制备:称取 0.6 mmol Ni(NO3)2·6H2O,0.2 mmol Fe(NO3)3·9H2O,加入30 mL甲醇溶液中,搅拌溶解。待完全溶解后,称取3 mmol 2-甲基咪唑,置于溶液中,搅拌30min后,将溶液转移至50 mL聚四氟乙烯的内胆中,加入制备好的Cu(OH)2纳米线基底,密封于高压釜中,110℃恒温6 h结束。待反应后,反应釜自然冷却至室温,取出基底,用去离子水冲洗后,置于真空干燥箱里60℃干燥2 h,备用。
实施例6
制备方法参照实施例5,不同的是步骤(2)中2-甲基咪唑的用量为0.8mmol。
实施例7
制备方法参照实施例5,不同的是步骤(2)中2-甲基咪唑的用量为5.6mmol。
实施例8
制备方法参照实施例5,不同的是步骤(2)中2-甲基咪唑的用量为8mmol。
实施例9
制备方法参照实施例5,不同的是步骤(2)的反应温度为40℃,反应时间为18h。
实施例10
制备方法参照实施例5,不同的是步骤(2)的反应温度为150℃,反应时间为4h。
实施例11
制备方法参照实施例5,不同的是步骤(2)中甲醇的体积为45ml。
实施例12
制备方法参照实施例5,不同的是步骤(2)中镍盐为四水合乙酸镍,铁盐为六水合氯化铁。
实施例13
制备方法参照实施例5,不同的是步骤(2)中镍盐为四水合乙酸镍,铁盐为硫酸铁。
对比例1: Ni-ZIF- Cu(OH)2
对比样1的制备按照实例1的制备方法进行制备,不同的是在步骤(2)中,Ni(NO3)2·6H2O和Fe(NO3)3·9H2O选择上,只称取0.8 mmol的Ni(NO3)2·6H2O,而不添加Fe(NO3)3·9H2O。
对比例2: Fe-ZIF- Cu(OH)2
对比样2的制备按照实例1的制备方法进行制备,不同的是在步骤(2)中,Ni(NO3)2·6H2O和Fe(NO3)3·9H2O选择上,只称取0.8 mmol的Fe(NO3)3·9H2O,而不添加Ni(NO3)2·6H2O。
对比例3: NiFeOx(OH)y-CF
对比例3的制备按照实例1的制备方法进行制备,不同的是在步骤(1)CF的处理中,将CF用丙酮和盐酸清理后,不经过NaOH和(NH4)2S2O8溶液的氧化,直接作为基底用于步骤(2)的水热反应中。
测试实施例
催化剂的表征
选用SEM (NOVA Nano SEM 450)及能量色散X光谱仪(EDX)表征手段,对实施例1的催化剂NiFeOx(OH)y-Cu(OH)2表面形貌及元素分布进行观察。在测试之前,需要对要测试的样品进行制样:将样品用导电胶粘在样品台上,最后用氮气枪轻轻吹扫,吹掉附着在样品台表面的粉末以及检测样品是否粘结牢固。如图1所示,NiFeOx(OH)y-Cu(OH)2催化剂呈现出片状连接的结构,垂直生长在氢氧化铜纳米线上,整体呈现出柱状结构,能够提供更大的催化活性表面积,暴露出更多的活性位点,且各个元素分布的也较为均匀。
选用TEM (FEI TF30)表征手段,对实施例1的催化剂(NiFeOx(OH)y-Cu(OH)2)表面的亚显微结构进行观察。测试之前,将粉末样品从基底上刮涂下来,将收集的粉体放入乙醇中进行超声,超声均匀后,将溶液滴涂在铜网上进行测试。如图2所示,NiFeOx(OH)y-Cu(OH)2表面的片状结构更为明显。在更大的尺寸观察下,其表面没有明显的晶格条纹,且选区区域电子衍射也证明该催化剂为无定形的非晶结构。
选用XPS (D/max-2400)表征手段,对实施例1的催化剂(NiFeOx(OH)y-Cu(OH)2)表面元素分布及其价态的进行表征。直接剪取0.5 cm × 0.5 cm大小的样品,进行测试。在XPS能谱中(如图3),可以清晰地看出Ni主要呈现为+2价,Fe为+3价,且O的XPS能谱也证明了结构中有金属氧化物及氢氧化物的存在。
电化学测试
下述所有的电化学测试在上海辰华CHI 760E电化学工作站上进行,均采用三电极体系:将制备好的催化剂材料剪取成1cm× 1 cm大小,直接作为工作电极,Pt丝为对电极,Hg/HgO(0.098 V vs.RHE,可逆氢电极)为参比电极,电解液为1 M KOH溶液。
针对实施例1-4的催化剂与对比例1-3的材料进行电化学性能对比,采用LSV得到几种催化剂和对比材料的极线曲线图,其扫描速率为10 mV/s,电压范围为0.9-1.7 Vvs.RHE。由图4可以看出,Ni、Fe采用不同比例时,NiFe基催化剂都具有较好的催化效果,当NiFe的比例为3:1时,其过电位最小,催化效果最好。当电流密度分别为10 mA/cm2和100mA/cm2时,其(NiFe的比例为3:1)过电位分别为226 mV和280 mV,相较于其他催化剂,具有更高的催化活性。
图5为实施例1-4的催化剂与对比例1-3的材料在不同电流密度下的过电位柱状比较图,其数值大小直接由LSV测试结果得来。通过柱状图更能直观的比较各催化剂在相同电流密度下的过电位的大小。如图5所示,在相同的电流密度下,NiFe基催化剂都具有较低的过电位。
图6为实施例1及对比例所制得催化剂的Tafel对比图。催化剂的Tafel斜率直接由相应的极化曲线获得,其值越小表明其反应动力学越快。由图可知,NiFeOx(OH)y-Cu(OH)2的Tafel斜率值为39.49 mV/dec,小于其它样品,证明该催化剂的产氧动力学速率高于其他对比例。
对实施例1及对比例所制得催化剂进行C dl比较,双层电容值的大小能直接反应电催化活性表面积的大小。在测试时,选取的测试电位为1.0~1.1 V vs.RHE,扫描速率为20,40,60,80,100,120 mV/s。如图7所示,催化剂NiFeOx(OH)y-Cu(OH)2相比于其它材料具有较大的催化活性表面积。
对实施例1及对比例所制得催化剂进行EIS的对比。EIS的测试电压为1.53 V vs.RHE(开路电压),测试频率为10-2~105Hz。电化学阻抗曲线的圆弧半径值直接反应EIS值的大小,EIS值越小,表明在催化过程中电子转移速率越快。从图8可知,催化剂NiFeOx(OH)y-Cu(OH)2相比于对比样具有较快的电子转移速率。
对实施例1制备的催化剂进行稳定性测试。稳定性测试采用恒电流电解的测试方法。如图9所示,在10 mA/cm2的电流密度下,电解55 h后,电压没有明显的波动,表明该催化剂具有较好的稳定性。

Claims (10)

1.一种在氢氧化铜纳米线上生长的NiFe基水氧化催化剂的制备方法,其特征在于,包括如下步骤:
将泡沫铜基底在氢氧化钠和过硫酸铵的溶液中反应,得到表面生成氢氧化铜纳米线的泡沫铜;
将2-甲基咪唑和表面生成氢氧化铜纳米线的泡沫铜依次放入溶解镍盐和铁盐的甲醇溶液中,在高压釜中加热反应得到所述的NiFe基水氧化催化剂。
2.根据权利要求1所述的制备方法,其特征在于,在高压釜中加热反应得到的NiFe基水氧化催化剂采用真空干燥方法干燥。
3.根据权利要求1所述的制备方法,其特征在于,所述的泡沫铜在反应前分别用丙酮和盐酸依次清洗。
4.根据权利要求1-3任意一项所述的制备方法,其特征在于,所述的镍盐为硝酸盐或者乙酸盐中一种,铁盐为氯化盐、硫酸盐或者硝酸盐中的一种。
5.根据权利要求1-3任意一项所述的制备方法,其特征在于,所述的铁盐和镍盐的摩尔比为1:1~7。
6.根据权利要求1-3任意一项所述的制备方法,其特征在于,高压釜中的反应温度为40~150℃,反应时间为4~24 h。
7.根据权利要求1-3任意一项所述的制备方法,其特征在于,所述铁盐和镍盐的摩尔总量与2-甲基咪唑的摩尔量比为1:1~10。
8.根据权利要求2所述的制备方法,其特征在于,干燥的温度为40~70℃,干燥时间为0.5~3 h。
9.根据权利要求1-3任意一项所述的制备方法,其特征在于,所述的镍盐为硝酸镍,铁盐为硝酸铁。
10.一种NiFe基水氧化催化剂,其特征在于,由权利要求1所述的制备方法制备。
CN202210437976.XA 2022-04-25 2022-04-25 一种NiFe基水氧化催化剂及其制备方法 Pending CN114908368A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210437976.XA CN114908368A (zh) 2022-04-25 2022-04-25 一种NiFe基水氧化催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210437976.XA CN114908368A (zh) 2022-04-25 2022-04-25 一种NiFe基水氧化催化剂及其制备方法

Publications (1)

Publication Number Publication Date
CN114908368A true CN114908368A (zh) 2022-08-16

Family

ID=82764696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210437976.XA Pending CN114908368A (zh) 2022-04-25 2022-04-25 一种NiFe基水氧化催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN114908368A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021184601A1 (zh) * 2020-03-20 2021-09-23 苏州大学 泡沫镍基多孔NiFe水滑石纳米片及其制备和应用
CN113637999A (zh) * 2021-08-19 2021-11-12 武汉工程大学 一种Cu基纳米阵列复合镍钼氧化物电极材料及其制备方法与应用
CN113981483A (zh) * 2021-11-19 2022-01-28 北京科技大学顺德研究生院 一种铂掺杂铜钴氢氧化物阵列结构的制备方法
CN113981469A (zh) * 2021-11-04 2022-01-28 武汉工程大学 一种有机配体修饰的过渡金属层状氢氧化物电催化材料及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021184601A1 (zh) * 2020-03-20 2021-09-23 苏州大学 泡沫镍基多孔NiFe水滑石纳米片及其制备和应用
CN113637999A (zh) * 2021-08-19 2021-11-12 武汉工程大学 一种Cu基纳米阵列复合镍钼氧化物电极材料及其制备方法与应用
CN113981469A (zh) * 2021-11-04 2022-01-28 武汉工程大学 一种有机配体修饰的过渡金属层状氢氧化物电催化材料及其制备方法与应用
CN113981483A (zh) * 2021-11-19 2022-01-28 北京科技大学顺德研究生院 一种铂掺杂铜钴氢氧化物阵列结构的制备方法

Similar Documents

Publication Publication Date Title
Ma et al. Ultrafine Rh nanocrystals decorated ultrathin NiO nanosheets for urea electro-oxidation
CN110227496B (zh) 一种纳米片组成的微球状Fe掺杂二硫化三镍纳米结构材料、制备方法及应用
CN111921560B (zh) 一种晶格畸变的超薄金属有机框架纳米片催化剂、其制备方法和应用
Feng et al. Controllable synthesis of flower-like Mn-Co-P nanosheets as bifunctional electrocatalysts for overall water splitting
CN110639534A (zh) 一种析氧电催化材料及其制备方法和应用
CN113604838A (zh) 一种镍钴双金属硒化物异质结构电催化剂的制备方法及其应用
CN110538650B (zh) 一种氧化铈负载铋纳米催化剂及其制备方法和应用
Ye et al. A topological chemical transition strategy of bismuth-based materials for high-efficiency electrocatalytic carbon dioxide conversion to formate
CN111001414A (zh) 结构可控的空心钴酸镍纳米线/片状氧化锰核壳阵列材料及制备方法
CN111185206B (zh) 一种过渡金属-磷化物催化剂及其制备方法与应用
US11859294B2 (en) W18O49/CoO/NF self-supporting electrocatalytic material and preparation method thereof
Cui et al. High-efficiency Co6W6C catalyst with three-dimensional ginger-like morphology for promoting the hydrogen and oxygen evolution reactions
Lin et al. In situ formation of nickel sulfide quantum dots embedded into a two-dimensional metal–organic framework for water splitting
CN111777102A (zh) 一种基于金属氧化物的双功能分解水纳米材料及其制备方法
CN113529122B (zh) 一种镍-有机框架纳米片阵列材料及其制备方法和应用
Yang et al. High-valent cobalt active sites derived from electrochemical activation of metal-organic frameworks for efficient nitrate reduction to ammonia
CN110813330A (zh) 一种Co-Fe@FeF催化剂及二维纳米阵列合成方法
CN114164452A (zh) 一种制备超薄钒酸钴纳米片负载金属单原子催化剂的方法
CN113957471A (zh) 一种用于高效电解水的镍铁双层氢氧化物的制备方法
CN111774073B (zh) 一种Ag纳米粒子负载硫化镍纳米片薄膜结构材料及其制备方法和应用
CN115386910A (zh) 异质结构锰钴铁磷双功能电解水电极材料的制备法和用途
CN114672837A (zh) 一种异质结纳米阵列电极材料及其制备方法与应用
CN114908368A (zh) 一种NiFe基水氧化催化剂及其制备方法
CN114214636B (zh) 一种含硒配体制备钴基纳米片自支撑电极的方法及应用
Zhong et al. Effect of different preparation technologies of CuCo2O4 on electrocatalytic activity for oxidation of alcohols

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination