WO2021184370A1 - 金属线栅偏振器及其制备方法、显示装置 - Google Patents

金属线栅偏振器及其制备方法、显示装置 Download PDF

Info

Publication number
WO2021184370A1
WO2021184370A1 PCT/CN2020/080475 CN2020080475W WO2021184370A1 WO 2021184370 A1 WO2021184370 A1 WO 2021184370A1 CN 2020080475 W CN2020080475 W CN 2020080475W WO 2021184370 A1 WO2021184370 A1 WO 2021184370A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal wire
base substrate
wire grid
layer
binding
Prior art date
Application number
PCT/CN2020/080475
Other languages
English (en)
French (fr)
Inventor
李海旭
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202080000331.9A priority Critical patent/CN115668042A/zh
Priority to PCT/CN2020/080475 priority patent/WO2021184370A1/zh
Priority to US17/260,911 priority patent/US11675227B2/en
Publication of WO2021184370A1 publication Critical patent/WO2021184370A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells

Definitions

  • the embodiments of the present disclosure relate to the field of display technology, and in particular, to a metal wire grid polarizer and a manufacturing method of the metal wire grid polarizer, and a display device including the metal wire grid polarizer.
  • the large-screen devices that we can come into contact with in our daily life are nothing more than TV products, and with the change of consumers' consumption concepts, TVs have begun to develop in the direction of smart and large screens.
  • 55-inch TVs may be standard, but more and more manufacturers have begun to introduce 65-inch or even 75-inch, 80-inch large-screen TVs, which can foresee the increasing trend of TV screen area.
  • the production capacity of large-size LCD screens continues to rise, and market competition is becoming more intense.
  • the embodiments of the present disclosure provide a metal wire grid polarizer, a method for manufacturing the metal wire grid polarizer, and a display device including the metal wire grid polarizer, which can achieve binding accuracy.
  • a metal wire grid polarizer which includes:
  • the base substrate has multiple binding areas and multiple binding alignment areas
  • a plurality of metal wire grids are arranged on the base substrate, and the plurality of metal wire grids are arranged parallel to each other, and the orthographic projection of the plurality of metal wire grids on the base substrate and the plurality of binding There is no overlap between the fixed area and the plurality of binding alignment areas.
  • the metal wire grid whose orthographic projection extends to the binding area and the binding alignment area includes at least two sub-metal wire grids arranged at intervals, and the metal wire grids are polarized
  • the device also includes:
  • a plurality of transparent wire grids are arranged on the same surface of the base substrate as a plurality of the metal wire grids, and the plurality of transparent wire grids are arranged in parallel with the metal wire grids. Two ends of at least one of the sub-metal wire grids are respectively connected to the two sub-metal wire grids located on the same straight line.
  • the metal wire grid polarizer further includes:
  • a plurality of first shielding portions are located on the light emitting side of the metal wire grid, and the edge of the binding area is located in the orthographic projection of the first shielding portion on the base substrate;
  • a plurality of second shielding portions are located on the light emitting side of the metal wire grid, and the edge of the binding and alignment area is located in the orthographic projection of the second shielding portion on the base substrate.
  • the metal wire grid is an aluminum wire grid
  • the transparent wire grid is a transparent resin wire grid
  • a method for manufacturing a metal wire grid polarizer which includes:
  • the base substrate having a plurality of bonding regions and a plurality of bonding alignment regions
  • a plurality of metal wire grids are formed on the base substrate, and the plurality of metal wire grids are arranged in parallel to each other, and the orthographic projection of the plurality of metal wire grids on the base substrate and the plurality of binding There is no overlap between the fixed area and the plurality of binding alignment areas.
  • forming a plurality of metal wire grids on the base substrate includes:
  • the metal layer is patterned to remove part of the metal layer, so that the orthographic projection of the remaining metal layer on the base substrate does not intersect the binding area and the binding alignment area Stack
  • the metal layer is patterned again to form a plurality of metal wire grids.
  • the preparation method further includes:
  • the transparent resin layer is patterned to form a plurality of transparent wire grids.
  • forming a plurality of metal wire grids on the base substrate includes:
  • the metal layer and the protective layer are patterned to remove part of the metal layer and part of the protective layer, so that the remaining metal layer and the remaining protective layer are on the base substrate.
  • the orthographic projection does not overlap with the binding zone and the binding alignment zone;
  • the metal layer and the protective layer are patterned again to form a plurality of metal wire grids.
  • the preparation method further includes:
  • a transparent resin layer is formed in the via hole formed by removing the metal layer and the protective layer of the base substrate, and the thickness of the transparent resin layer is the sum of the thickness of the metal layer and the thickness of the protective layer same;
  • the transparent resin layer is patterned to form a plurality of transparent wire grids.
  • forming a plurality of metal wire grids on the base substrate includes:
  • a patterning process is performed on a plurality of the metal wire grids to remove part of the metal wire grid, so that the orthographic projection of the remaining metal wire grid on the base substrate and the binding area and the There is no overlap in the binding counterpoint area.
  • the preparation method further includes:
  • a first shielding portion and a second shielding portion are formed on the light-emitting side of the metal wire grid, and the edge of the binding area is located in the orthographic projection of the first shielding portion on the base substrate, and the binding The edge of the alignment area is located in the orthographic projection of the second shielding portion on the base substrate.
  • a display device which includes:
  • a display panel including the aforementioned metal wire grid polarizer
  • the light control panel includes the above-mentioned metal wire grid polarizer
  • the display panel is located on the light emitting side of the light control panel.
  • the display panel further includes:
  • the first array substrate is arranged on the side of the base substrate away from the metal wire grid or the side of the metal wire grid away from the base substrate;
  • the first liquid crystal layer is provided on a side of the first array substrate away from the base substrate;
  • the color filter substrate is arranged on the side of the first liquid crystal layer away from the array substrate.
  • the light control panel further includes:
  • the second array substrate is arranged on the side of the base substrate away from the metal wire grid or the side of the metal wire grid away from the base substrate;
  • the second liquid crystal layer is arranged on the side of the second array substrate away from the base substrate.
  • the multiple binding areas and multiple binding alignment areas of the display panel and the multiple binding areas and multiple binding alignment areas of the light control panel are located at the same location.
  • FIG. 1 is a schematic structural diagram of an exemplary embodiment of a metal wire grid polarizer of the present invention
  • Fig. 2 is a partial enlarged schematic diagram of the part indicated by H in Fig. 1;
  • Fig. 3 is a schematic cross-sectional view taken along the line I-I in Fig. 1;
  • FIG. 4 is a schematic block diagram of the flow of an exemplary embodiment of a method for manufacturing a metal wire grid polarizer according to the present invention
  • FIG. 6 is a schematic diagram of the microstructure of the metal wire grid formed when the transparent resin layer is not filled;
  • Fig. 7 is a schematic cross-sectional view of Fig. 6;
  • FIG. 8 is a schematic diagram of the microstructure of a metal wire grid formed after filling a transparent resin layer
  • Fig. 9 is a schematic cross-sectional view of Fig. 8.
  • FIG. 10 is a schematic structural diagram of an exemplary embodiment of a display device of the present invention.
  • Metal wire grid polarizer 11. Base substrate; 12, metal wire grid; 13, transparent wire grid; 14, binding area; 15, binding alignment area; 16, metal layer; 17, transparent resin layer 18, the first shielding part; 19, the second shielding part;
  • Display panel 21, first array substrate; 22, first liquid crystal layer; 23, color film substrate;
  • the present invention first provides a metal wire grid polarizer.
  • the metal wire grid polarizer 1 may include a liner.
  • the base substrate 11 has a plurality of bonding regions 14 and a plurality of bonding alignment regions 15;
  • a plurality of metal wire grids 12 are provided on the substrate
  • a plurality of the metal wire grids 12 are arranged in parallel to each other, and the orthographic projection of the plurality of metal wire grids 12 on the base substrate 11 and the plurality of binding regions 14 and the plurality of None of the binding alignment regions 15 overlap.
  • the orthographic projection of the plurality of metal wire grids 12 on the base substrate 11 may be that the plurality of metal wire grids 12 are on the plurality of bonding regions 14 and the plurality of bonding pairs of the base substrate 11.
  • the orthographic projection of the plurality of metal wire grids 12 on the base substrate 11 does not overlap with the plurality of bonding regions 14 and the plurality of bonding alignment regions 15. In this way, the metal wire grid 12 is prevented from blocking light during the binding process, so that the alignment process can proceed smoothly, and the accuracy of the binding can be achieved.
  • the base substrate 11 may be a glass substrate.
  • the base substrate 11 has a display area and a non-display area.
  • Two binding areas 14 and two binding alignment areas 15 are provided in the non-display area.
  • the two binding areas 14 are located between the two binding alignment areas 15
  • the area of the two binding regions 14 is larger than the area of the two binding alignment regions 15.
  • the binding area 14 is used for binding with a circuit board or a flexible circuit board
  • the binding alignment area 15 is used for setting an alignment mark.
  • the base substrate 11 may be a flexible substrate.
  • the number and size of the binding area 14 and the binding alignment area 15 can be set as required.
  • a plurality of metal wire grids 12 are provided on the side of the base substrate 11 opposite to the plurality of bonding regions 14 and the plurality of bonding alignment regions 15, and the width of the metal wire grids 12 is nanometer level.
  • the length of the metal wire grid 12 is of the macroscopic order and can be polarized.
  • the metal wire grid 12 may be an aluminum wire grid. That is to say, the plurality of metal wire grids 12 and the plurality of bonding regions 14 and the plurality of bonding alignment regions 15 are arranged on opposite sides of the base substrate 11.
  • the orthographic projection of the metal wire grid 12 on the base substrate 11 does not overlap with the multiple bonding areas 14 and the multiple bonding alignment areas 15, that is, in the multiple bonding areas 14 and the multiple bonding alignment areas 15
  • a plurality of transparent wire grids 13 are also provided on the same surface of the base substrate 11 where the plurality of metal wire grids 11 are provided, and the plurality of transparent wire grids 13 are arranged parallel to the metal wire grid 11, and the transparent wire
  • the two ends of the grid 13 are connected between the two sub-metal wire grids located on the same straight line, that is, the transparent wire grid 13 reconnects the above-mentioned truncated sub-metal wire grids located on the same straight line to form a wire grid.
  • the transparent wire grid 13 may be a transparent resin wire grid.
  • the metal wire grid 12 and the bonding area 14 and the bonding alignment area 15 may be arranged on the same surface.
  • the metal wire grid 12 is not provided in the multiple binding areas 14 and the multiple binding alignment areas 15, and multiple transparent wires may also be provided in the multiple binding areas 14 and the multiple binding alignment areas 15.
  • the wire grid 13 is connected to two sub-metal wire grids located on the same straight line at both ends of the transparent wire grid 13.
  • the metal wire grid polarizer may further include a plurality of first shielding portions 18 and a plurality of second shielding portions 19, and the number of the first shielding portions 18 is equal to the number of the binding regions 14.
  • the number of second shielding portions 19 is equal to the number of binding alignment areas 15, so that the edge of each binding area 14 is shielded by a first shielding portion 18, and the edge of each binding alignment area 15 is also Both are blocked by a second blocking portion 19.
  • the first shielding portion 18 and the second shielding portion 19 may be provided on the side of the base substrate 11 away from the metal wire grid 12, that is, the first shielding portion 18, the second shielding portion 19 and the metal wire grid 12 are provided on the base substrate 11 Opposite sides.
  • Both the first shielding portion 18 and the second shielding portion 19 are arranged in a ring shape.
  • the edge of the binding area 14 is located in the orthographic projection of the first shielding portion 18 on the base substrate 11, and the edge of the binding alignment area 15 is located in the orthographic projection of the second shielding portion 19 on the base substrate 11; and
  • the edge of the fixed area 14 may be located at the middle position of the width direction of the orthographic projection of the first shielding portion 18 on the base substrate 11, and the edge of the binding alignment area 15 may be located at the position of the second shielding portion 19 on the base substrate 11.
  • the width of the first shielding portion 18 and the second shielding portion 19 is approximately 5 microns.
  • the first shielding portion 18 and the second shielding portion 19 remove the abnormal shielding caused by the edge metal wire grid 12 of the binding area 14 and the binding alignment area 15, so as to avoid the uneven light caused by the abnormality of the metal wire grid 12.
  • the first shielding portion 18 and the second shielding portion 19 may also be arranged at The side of the metal wire grid 12 facing away from the base substrate 11.
  • the first shielding portion 18 and the second shielding portion 19 may be arranged on the metal wire grid 12 and the substrate. Between the substrate 11.
  • the abnormal shielding caused by the edge metal wire grid 11 of the binding area 14 and the binding alignment area 15 can be removed. Avoid uneven light caused by abnormal metal wire grid 12.
  • the present invention also provides a method for manufacturing a metal wire grid polarizer.
  • a method for manufacturing a metal wire grid polarizer Refer to the schematic block diagram of the process of an exemplary embodiment of the method for manufacturing a metal wire grid polarizer of the present invention shown in FIG. 4.
  • the manufacturing method of the metal wire grid polarizer may include the following steps:
  • step S10 a base substrate 11 is provided, and the base substrate 11 has a plurality of bonding regions 14 and a plurality of bonding alignment regions 15.
  • Step S20 forming a plurality of metal wire grids 12 on the base substrate 11, the plurality of metal wire grids 12 are arranged in parallel with each other, and the plurality of metal wire grids 12 are arranged on the base substrate 11
  • the orthographic projection has no overlap with the plurality of binding areas 14 and the plurality of binding alignment areas 15.
  • step S10 a base substrate 11 is provided, and the base substrate 11 has a plurality of bonding regions 14 and a plurality of bonding alignment regions 15.
  • a base substrate 11 is provided.
  • the base substrate 11 is provided with a display area and a non-display area located at the periphery of the display area, and two bonding areas 14 and two bonding pairs are provided in the non-display area.
  • Step S20 forming a plurality of metal wire grids 12 on the base substrate 11, the plurality of metal wire grids 12 are arranged in parallel with each other, and the plurality of metal wire grids 12 are arranged on the base substrate 11
  • the orthographic projection has no overlap with the plurality of binding regions 14 and the plurality of binding alignment regions 15.
  • the metal layer 16 is formed by deposition, sputtering or evaporation on the opposite side of the base substrate 11 where the binding area 14 and the binding alignment area 15 are provided, and the metal layer 16 is an aluminum layer.
  • the thickness of the metal layer 16 is approximately 200 nm.
  • photolithography is performed on the metal layer 16 to remove part of the metal layer 16 so that the orthographic projection of the remaining metal layer on the base substrate 11 does not overlap with the binding area 14 and the binding alignment area 15. In this way, the shielding of light by the metal wire grid 12 in the subsequent bonding process is avoided, so that the alignment process is smoothly performed, and the accuracy of the bonding is realized.
  • the metal layer 16 may be formed on the side of the base substrate 11 where the bonding area 14 and the bonding alignment area 15 are provided, and then the metal layer 16 may be lithographically removed to remove part of it.
  • the metal layer 16 ensures that the orthographic projection of the remaining metal layer on the base substrate 11 does not overlap with the binding area 14 and the binding alignment area 15. In this way, the shielding of light by the metal wire grid 12 in the subsequent bonding process is avoided, so that the alignment process is smoothly performed, and the accuracy of the bonding is realized.
  • a transparent resin layer 17 is formed on the side of the base substrate 11 where the metal layer is formed, and the transparent resin layer 17 is only filled in the via hole formed after part of the metal layer 16 is removed.
  • the thickness of the transparent resin layer 17 is the same as the thickness of the metal layer 16, and is approximately 200 nm.
  • the transparent resin layer 17 has certain rigidity and can withstand the subsequent temperature of about 150°C.
  • the metal wire grid 12 After the metal layer is removed, there is a step difference between the metal layer 16 on the base substrate 11 and the base substrate 11. Due to the finer process conditions of nanoimprinting itself, a slight step difference can cause line defects in a larger area around the edge. Eventually, the metal wire grid 12 will fall and be missing. Referring to the schematic diagrams of the microstructure of the metal wire grid formed when the transparent resin layer is not filled as shown in FIG. 6 and FIG. The filling of the transparent resin layer 17 does not affect the transmittance of light, and provides a better substrate for nanoimprinting to avoid the subsequent fall and loss of the metal wire grid 12. Referring to the schematic diagrams of the microstructures of the metal wire grid formed after filling the transparent resin layer shown in FIGS. 8 and 9, it can be seen from the figure that the metal wire grid 12 is neither flat nor missing.
  • a Hard Mask (hard mask) is deposited on the metal layer 16 and the transparent resin layer 17.
  • the hard mask is an inorganic thin film material generated by CVD (Chemical Vapor Deposition). Its main components usually include TiN, SiN, SiO2 and so on.
  • Embossing on the Hard Mask to form a laminated printing glue using a soft template to imprint and curing the printing glue, so that a number of parallel strip grooves are formed on the printing glue; for Hard Mask that is not covered by the printing glue
  • the Mask performs dry etching to remove the Hard Mask layer that is not covered by the embossing glue to form a Hard Mask mask; the metal layer 16 and the transparent resin layer 17 that are not covered by the Hard Mask mask are etched to make the metal layer 16 forms a plurality of metal wire grids 12, and the transparent resin layer 17 forms a transparent wire grid 13.
  • the metal wire grid 12 can also be formed by the following method.
  • the metal layer 16 is formed on the opposite side of the base substrate 11 where the binding area 14 and the binding alignment area 15 are provided by deposition, sputtering or evaporation.
  • the metal layer 16 is an aluminum layer, and the thickness of the metal layer 16 is approximately 200nm.
  • a protective layer is formed on the side of the metal layer 16 away from the base substrate 11, and the thickness of the protective layer is about 100 nm.
  • the protective layer may be a silicon oxide layer, a silicon nitride layer, or the like.
  • the metal layer 16 may be formed on the side of the base substrate 11 where the bonding area 14 and the bonding alignment area 15 are provided, and on the side of the metal layer 16 that faces away from the base substrate 11.
  • Form a protective layer and perform photolithography on the metal layer 16 and the protective layer to remove part of the metal layer 16 and part of the protective layer, so that the remaining metal layer 16 and the remaining protective layer are in the orthographic projection and binding area on the base substrate 11 There is no overlap between 14 and the binding alignment zone 15. In this way, the shielding of light by the metal wire grid 12 in the subsequent bonding process is avoided, so that the alignment process is smoothly performed, and the accuracy of the bonding is realized.
  • a transparent resin layer 17 is formed on the side of the base substrate 11 where the metal layer is formed, and the transparent resin layer 17 is only filled in the via hole formed after removing part of the metal layer 16 and part of the protective layer.
  • the thickness of the transparent resin layer 17 is the same as the sum of the thickness of the metal layer 16 and the thickness of the protective layer, and is approximately 300 nm.
  • the transparent resin layer 17 has certain rigidity and can withstand the subsequent temperature of about 150°C.
  • the protective layer and the transparent resin layer 17 are embossed to form a laminated printing glue, and a soft template is used to imprint and solidify the printing glue, so that a plurality of parallel-arranged patterns are formed on the printing glue.
  • the metal wire grid 12 can also be formed by the following method.
  • a metal layer 16 is formed on the opposite side of the base substrate 11 where the binding area 14 and the binding alignment area 15 are provided by deposition, sputtering or evaporation.
  • the metal layer 16 is an aluminum layer, and the thickness of the metal layer 16 is approximately 200nm.
  • a SiO2 layer is formed on the metal layer 16; the thickness of the SiO2 layer is about 100 nm.
  • a laminated printing glue is formed on the SiO2 layer; the soft template is used to imprint and solidify the printing glue, so that a plurality of parallel strip grooves are formed on the printing glue; the SiO2 layer that is not covered by the printing glue is processed Dry etching to remove the SiO2 layer not covered by the embossing paste to form a SiO2 mask; etching the metal layer 16 not covered by the SiO2 mask to form multiple metal wire grids 12, and then remove the SiO2 mask membrane.
  • the multiple metal wire grids 12 are patterned to remove a part of the metal wire grid 12, so that the orthographic projection of the remaining metal wire grid 12 on the base substrate 11 and the binding area 14 and the binding alignment area 15 There is no overlap.
  • the patterning process can be dry etching or photolithography. In this way, the shielding of light by the metal wire grid 12 in the subsequent bonding process is avoided, so that the alignment process is smoothly performed, and the accuracy of the bonding is realized.
  • the metal wire grid 12 may be formed on the side of the base substrate 11 where the bonding region 14 and the bonding alignment region 15 are provided, and then the metal wire grid 12 is lithographically Some sections of the metal wire grid 12 are removed, so that the orthographic projection of the remaining metal wire grid 12 on the base substrate 11 does not overlap with the binding area 14 and the binding alignment area 15. In this way, the shielding of light by the metal wire grid 12 in the subsequent bonding process is avoided, so that the alignment process is smoothly performed, and the accuracy of the bonding is realized.
  • the light is set to be incident from the opposite side of the base substrate 11 where the bonding area 14 and the bonding alignment area 15 are provided.
  • the above-mentioned preparation method of the metal wire grid polarizer may further include: A shielding material layer is formed on one side of the metal wire grid 12, and then the shielding material layer is patterned to form a first shielding portion 18 and a second shielding portion 19. Both the first shielding portion 18 and the second shielding portion 19 are arranged in a ring shape. The first shielding portion 18 and the second shielding portion 19 are both located on the light-emitting side of the metal wire grid 12. The light enters the metal wire grid 12, after being polarized by the metal wire grid 12, it strikes the base substrate 11 and passes through the base substrate. 11 shoots to the first shielding portion 18 and the second shielding portion 19.
  • the edge of the binding area 14 is located in the orthographic projection of the first shielding portion 18 on the base substrate 11, and the edge of the binding alignment area 15 is located in the orthographic projection of the second shielding portion 19 on the base substrate 11, and the binding
  • the edge of the fixed area 14 may be located at the middle position of the width direction of the orthographic projection of the first shielding portion 18 on the base substrate 11, and the edge of the binding alignment area 15 may be located at the position of the second shielding portion 19 on the base substrate 11.
  • the middle position in the width direction of the orthographic projection The width of the first shielding portion 18 and the second shielding portion 19 is approximately 5 microns.
  • the first shielding portion 18 and the second shielding portion 19 respectively remove the abnormal shielding caused by the edge metal wire grids of the binding region 14 and the binding alignment region 15 to avoid uneven light caused by abnormal metal wire grids.
  • the first shielding portion 18 and the second shielding portion 19 and the metal wire grid 12 are arranged on opposite sides of the base substrate 11. Therefore, the first shielding portion 18 and the second shielding portion 19 can also be formed first and then Then the metal wire grid 12 is formed.
  • the first shielding portion 18 and the second shielding portion 19 may be formed on the metal wire.
  • the metal wire grid 12 needs to be formed first and then the first shielding portion 18 and the second shielding portion 19 are formed.
  • the first shielding portion 18 and the second shielding portion 19 may be formed on the metal wire grid 12 and the substrate.
  • the first shielding portion 18 and the second shielding portion 19 need to be formed first, and then the metal wire grid 12 is formed. In this way, it can be ensured that the first shielding portion 18 and the second shielding portion 19 are located on the light emitting side of the metal wire grid 12.
  • the present invention also provides a display device.
  • the display device may include a display panel 2 and a light control panel 3.
  • the light-emitting side of the control panel 3 is specifically: the display panel 2 is located on the side of the second liquid crystal layer 32 facing away from the second array substrate 31, and the first liquid crystal layer 22 of the display panel 2 is farther from the light control panel than the first array substrate 21.
  • the display panel 2 includes the metal wire grid polarizer 1 described above.
  • the structure of the metal wire grid polarizer 1 has been described in detail above, so it will not be repeated here.
  • the display panel 2 may further include a first array substrate 21, a first liquid crystal layer 22, and a color filter substrate 23; the first array substrate 21 may be provided on the base substrate 11 away from the metal wire grid 12 The first array substrate 21 and the metal wire grid 12 are provided on opposite sides of the base substrate 11; the first liquid crystal layer 22 is provided on the side of the first array substrate 21 facing away from the base substrate 11; The substrate 23 is disposed on the side of the first liquid crystal layer 22 facing away from the array substrate.
  • the first array substrate 21 may be provided on the side of the metal wire grid 12 facing away from the base substrate 11, that is, the metal wire grid 12 is provided on the base substrate 11 and the first array substrate 21. between.
  • An insulating layer may also be provided between the metal wire grid 12 and the first array substrate 21.
  • the light control panel 3 includes the metal wire grid polarizer 1 described above.
  • the structure of the metal wire grid polarizer 1 has been described in detail above, so it will not be repeated here.
  • the light control panel 3 may further include a second array substrate 31 and a second liquid crystal layer 32; the second array substrate 31 may be provided on a side of the base substrate 11 away from the metal wire grid 12, That is, the second array substrate 31 and the metal wire grid 12 are provided on opposite sides of the base substrate 11; the second liquid crystal layer 32 is provided on the side of the second array substrate 31 away from the base substrate 11.
  • the second array substrate 31 may be provided on the side of the metal wire grid 12 facing away from the base substrate 11, that is, the metal wire grid 12 is provided on the base substrate 11 and the second array substrate 31. between.
  • An insulating layer may also be provided between the metal wire grid 12 and the second array substrate 31.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

一种金属线栅偏振器(1)及制备方法、显示装置,金属线栅偏振器(1)包括衬底基板(11)和多根金属线栅(12);衬底基板(11)具有多个绑定区(14)和多个绑定对位区(15);多根金属线栅(12)设于衬底基板(11)之上,多根金属线栅(12)相互平行布置,且多根金属线栅(12)在衬底基板(11)上的正投影与多个绑定区(14)和多个绑定对位区(15)无交叠。避免在绑定过程中金属线栅(12)对光线的阻挡,使得对位过程顺利进行,实现绑定的准确性。

Description

金属线栅偏振器及其制备方法、显示装置 技术领域
本公开实施例涉及显示技术领域,特别涉及一种金属线栅偏振器及金属线栅偏振器的制备方法、包括该金属线栅偏振器的显示装置。
背景技术
我们日常生活中所能接触到的大屏设备,莫过于电视产品,而随着消费者消费观念的转变,电视已经开始向智能、大屏方向发展。对于许多消费者来说55英寸电视或许是标配,但已经有越来越多的厂商开始推出65英寸甚至是75英寸、80英寸的大屏电视,可以预见电视屏幕面积的提升趋势。大尺寸液晶屏幕产能不断攀升,市场竞争更加激烈。
目前,当在进行电路板及柔性电路板与显示基板或光控基板绑定时,由于显示基板或光控基板背面的金属线栅偏振器的存在,使得对位过程无法进行,较难实现绑定的准确性。
发明内容
本公开实施例提供一种金属线栅偏振器及金属线栅偏振器的制备方法、包括该金属线栅偏振器的显示装置,可实现绑定的准确性。
在本公开的一种实施例中,提供了一种金属线栅偏振器,其中,包括:
衬底基板,具有多个绑定区和多个绑定对位区;
多根金属线栅,设于所述衬底基板上,多根所述金属线栅相互平行布置,且多根所述金属线栅在所述衬底基板上的正投影与多个所述绑定区和多个所述绑定对位区均无交叠。
在本公开的一种实施例中,正投影延伸至所述绑定区和所述绑定对位区的所述金属线栅包括间隔设置的至少两条子金属线栅,所述金属线 栅偏振器还包括:
多根透明线栅,与多根所述金属线栅设于所述衬底基板的同一面,且多根所述透明线栅与所述金属线栅平行设置,所述多根透明线栅中的至少一根的两端分别连接位于同一直线上的两根所述子金属线栅。
在本公开的一种实施例中,所述金属线栅偏振器还包括:
多个第一遮挡部,位于所述金属线栅的出光侧,所述绑定区的边缘位于所述第一遮挡部在所述衬底基板上的正投影内;
多个第二遮挡部,位于所述金属线栅的出光侧,所述绑定对位区的边缘位于所述第二遮挡部在所述衬底基板上的正投影内。
在本公开的一种实施例中,所述金属线栅为铝线栅,所述透明线栅为透明树脂线栅。
在本公开的一种实施例中,提供了一种金属线栅偏振器的制备方法,其中,包括:
提供一衬底基板,所述衬底基板具有多个绑定区和多个绑定对位区;
在所述衬底基板之上形成多根金属线栅,多根所述金属线栅相互平行布置,且多根所述金属线栅在所述衬底基板上的正投影与多个所述绑定区和多个所述绑定对位区均无交叠。
在本公开的一种实施例中,在所述衬底基板之上形成多根金属线栅,包括:
在所述衬底基板之上形成金属层;
对所述金属层进行图案化处理以去除部分所述金属层,使剩余的所述金属层在所述衬底基板上的正投影与所述绑定区和所述绑定对位区无交叠;
再次对所述金属层进行图案化处理以形成多根所述金属线栅。
在本公开的一种实施例中,去除部分所述金属层后,所述制备方法还包括:
在所述衬底基板的去除所述金属层形成的过孔内形成透明树脂层,所述透明树脂层的厚度与所述金属层的厚度相同;
在再次对所述金属层进行图案化处理以形成多根金属线栅的同时, 对所述透明树脂层进行图案化处理以形成多根透明线栅。
在本公开的一种实施例中,在所述衬底基板之上形成多根金属线栅,包括:
在所述衬底基板之上形成金属层;
在所述金属层的背离所述衬底基板的一面形成保护层;
对所述金属层和所述保护层进行图案化处理以去除部分所述金属层和部分所述保护层,使剩余的所述金属层和剩余的所述保护层在所述衬底基板上的正投影与所述绑定区和所述绑定对位区无交叠;
再次对所述金属层和所述保护层进行图案化处理以形成多根所述金属线栅。
在本公开的一种实施例中,去除部分所述金属层和部分所述保护层后,所述制备方法还包括:
在所述衬底基板的去除所述金属层和所述保护层形成的过孔内形成透明树脂层,所述透明树脂层的厚度与所述金属层的厚度和所述保护层的厚度之和相同;
在再次对所述金属层和所述保护层进行图案化处理以形成多根金属线栅的同时,对所述透明树脂层进行图案化处理以形成多根透明线栅。
在本公开的一种实施例中,在所述衬底基板之上形成多根金属线栅,包括:
在所述衬底基板之上形成金属层;
对所述金属层进行图案化处理以形成多根金属线栅;
对多根所述金属线栅进行图案化处理以去除部分所述金属线栅的部分段,使剩余所述金属线栅在所述衬底基板上的正投影与所述绑定区和所述绑定对位区无交叠。
在本公开的一种实施例中,所述制备方法还包括:
在所述金属线栅的出光侧形成第一遮挡部和第二遮挡部,所述绑定区的边缘位于所述第一遮挡部在所述衬底基板上的正投影内,所述绑定对位区的边缘位于所述第二遮挡部在所述衬底基板上的正投影内。
在本公开的一种实施例中,提供了一种显示装置,其中,包括:
显示面板,包括上述所述的金属线栅偏振器;
光控面板,包括上述所述的金属线栅偏振器;
所述显示面板位于所述光控面板的出光侧。
在本公开的一种实施例中,所述显示面板还包括:
第一阵列基板,设于所述衬底基板的背离所述金属线栅的一侧或所述金属线栅的背离所述衬底基板的一侧;
第一液晶层,设于所述第一阵列基板的背离所述衬底基板的一侧;
彩膜基板,设于所述第一液晶层的背离所述阵列基板的一侧。
在本公开的一种实施例中,所述光控面板还包括:
第二阵列基板,设于衬底基板的背离所述金属线栅的一侧或所述金属线栅的背离所述衬底基板的一侧;
第二液晶层,设于第二阵列基板的背离所述衬底基板的一侧。
在本公开的一种实施例中,所述显示面板的多个绑定区和多个绑定对位区与所述光控面板的多个绑定区和多个绑定对位区位于所述显示装置的相对两侧。
附图说明
附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。通过参考附图对详细示例实施例进行描述,以上和其它特征和优点对本领域技术人员将变得更加显而易见,在附图中:
图1为本发明金属线栅偏振器一示例实施方式的结构示意图;
图2为图1中H所指部分的局部放大示意图;
图3为按照图1中的I-I剖切的剖视示意图;
图4为本发明金属线栅偏振器的制备方法一示例实施方式的流程示意框图;
图5为在衬底基板上形成透明树脂层后的剖视图;
图6为未填充透明树脂层时形成的金属线栅的显微结构示意图;
图7为图6的剖面示意图;
图8为填充透明树脂层后形成的金属线栅的显微结构示意图;
图9为图8的剖面示意图;
图10为本发明显示装置一示例实施方式的结构示意图。
图中主要元件附图标记说明如下:
1、金属线栅偏振器;11、衬底基板;12、金属线栅;13、透明线栅;14、绑定区;15、绑定对位区;16、金属层;17、透明树脂层;18、第一遮挡部;19、第二遮挡部;
2、显示面板;21、第一阵列基板;22、第一液晶层;23、彩膜基板;
3、光控面板;31、第二阵列基板;32、第二液晶层。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本发明将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
虽然本说明书中使用相对性的用语,例如“上”“下”来描述图标的一个组件对于另一组件的相对关系,但是这些术语用于本说明书中仅出于方便,例如根据附图中所述的示例的方向。能理解的是,如果将图标的装置翻转使其上下颠倒,则所叙述在“上”的组件将会成为在“下”的组件。当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。
本发明首先提供了一种金属线栅偏振器,参照图1、图2和图3所示的本发明金属线栅偏振器一示例实施方式的结构示意图,该金属线栅偏振器1可以包括衬底基板11、多根金属线栅12和多根透明线栅13;衬底基板11具有多个绑定区14和多个绑定对位区15;多根金属线栅12设于所述衬底基板11之上,多根所述金属线栅12相互平行布置,且多根所述金属线栅12在所述衬底基板11上的正投影与多个所述绑定区14和多个所述绑定对位区15均无交叠。
在本示例实施方式中,多根所述金属线栅12在衬底基板11上的正投影可以是多根金属线栅12在衬底基板11的多个绑定区14和多个绑定对位区15所在平面上的正向投影。
多根金属线栅12在衬底基板11上的正投影与多个绑定区14和多个绑定对位区15均无交叠。从而避免在绑定过程金属线栅12对光线的阻挡,使得对位过程顺利进行,实现绑定的准确性。
在本示例实施方式中,衬底基板11可以为玻璃基板。衬底基板11具有显示区域和非显示区域,在非显示区域设置有两个绑定区14和两个绑定对位区15,两个绑定区14位于两个绑定对位区15之间,两个绑定区14的面积大于两个绑定对位区15的面积。绑定区14用于与电路板或柔性电路板绑定,绑定对位区15用于设置对位标识。当然,在本发明的其他示例实施方式中,衬底基板11可以为柔性基板。绑定区14和绑定对位区15的个数以及大小均可以根据需要进行设置。
在本示例实施方式中,在衬底基板11的与多个绑定区14和多个绑定对位区15相对的一面设置有多根金属线栅12,金属线栅12的宽度为纳米级,金属线栅12的长度为宏观量级,能够进行偏光。金属线栅12可以为铝线栅。也就是说多根金属线栅12与多个绑定区14和多个绑定对位区15设置在衬底基板11的相对两侧。金属线栅12在衬底基板11的正投影与多个绑定区14和多个绑定对位区15无交叠,即在多个绑定区14和多个绑定对位区15内没有金属线栅12在衬底基板11上的正投影,使正投影延伸至多个绑定区14和多个绑定 对位区15的金属线栅12被截断而形成两条子金属线栅、三条子金属线栅、四条子金属线栅或更多条子金属线栅。
在本示例实施方式中,在衬底基板11的设置多根金属线栅11的同一面还设置有多根透明线栅13,多根透明线栅13与金属线栅11平行设置,且透明线栅13的两端连接于位于同一直线上的两根子金属线栅之间,即透明线栅13将上述截断的位于同一直线上的子金属线栅重新连接形成一根线栅。透明线栅13可以为透明树脂线栅。需要说明的是,一根金属线栅12有两处截断形成三条子金属线栅的情况下,有两个透明线栅13将三条子金属线栅连接形成一条线栅。同理,有三处截断的情况下,需要三个透明线栅13来连接。透明线栅13不会影响光的透过性,而且避免金属线栅12的倒伏和缺失。
另外,在本发明的其他示例实施方式中,金属线栅12与绑定区14和绑定对位区15可以设置在同一面。在此情况下,在多个绑定区14和多个绑定对位区15不设置金属线栅12,也可以在多个绑定区14和多个绑定对位区15设置多根透明线栅13,且透明线栅13的两端连接位于同一直线上的两根子金属线栅。
在本示例实施方式中,金属线栅偏振器还可以包括多个第一遮挡部18和多个第二遮挡部19,第一遮挡部18的个数与绑定区14的个数相等。第二遮挡部19的个数与绑定对位区15的个数相等,使每个绑定区14的边缘均有一个第一遮挡部18遮挡,每个绑定对位区15的边缘也均有一个第二遮挡部19遮挡。第一遮挡部18和第二遮挡部19可以设于衬底基板11的背离金属线栅12一面,即第一遮挡部18和第二遮挡部19与金属线栅12设置在衬底基板11的相对两侧。第一遮挡部18和第二遮挡部19均设置为环状。绑定区14的边缘位于第一遮挡部18在衬底基板11上的正投影内,绑定对位区15的边缘位于第二遮挡部19在衬底基板11上的正投影内;且绑定区14的边缘可以位于第一遮挡部18在衬底基板11上的正投影的宽度方向的中间位置,绑定对位区15的边缘可以位于第二遮挡部19在衬底基板11上的正投影的宽度方向的中间位置。第一遮挡部18和第二遮挡部19的宽度大约为5微米。通过第一遮挡部18和第二遮挡部19将绑定区 14和绑定对位区15的边缘金属线栅12去除导致的异常遮蔽,规避因金属线栅12异常导致的光线不均。
当然,需要说明的是,在金属线栅12与绑定区14和绑定对位区15设置在衬底基板11的同一侧时,第一遮挡部18和第二遮挡部19也可以设置在金属线栅12的背离衬底基板11的一面。在金属线栅12与绑定区14和绑定对位区15设置在衬底基板11的相对两侧时,第一遮挡部18和第二遮挡部19可以设置在金属线栅12和衬底基板11之间。总之,只要第一遮挡部18和第二遮挡部19设置在金属线栅12的出光侧,即可将绑定区14和绑定对位区15的边缘金属线栅11去除导致的异常遮蔽,规避因金属线栅12异常导致的光线不均。
进一步的,本发明还提供了一种金属线栅偏振器的制备方法,参照图4所示的本发明金属线栅偏振器的制备方法一示例实施方式的流程示意框图。该金属线栅偏振器的制备方法可以包括以下步骤:
步骤S10,提供一衬底基板11,所述衬底基板11具有多个绑定区14和多个绑定对位区15。
步骤S20,在所述衬底基板11之上形成多根金属线栅12,多根所述金属线栅12相互平行布置,且多根所述金属线栅12在所述衬底基板11上的正投影与多个所述绑定区14和多个所述绑定对位区15均无交叠。
下面对本发明金属线栅偏振器的制备方法的各个步骤进行详细说明。
步骤S10,提供一衬底基板11,所述衬底基板11具有多个绑定区14和多个绑定对位区15。
在本示例实施方式中,提供一衬底基板11,衬底基板11设置有显示区域和位于显示区域周边的非显示区域,在非显示区域设置有两个绑定区14和两个绑定对位区15。
步骤S20,在所述衬底基板11之上形成多根金属线栅12,多根所述金属线栅12相互平行布置,且多根所述金属线栅12在所述衬底基板11上的正投影与多个所述绑定区14和多个所述绑定对位区15 均无交叠。
在本示例实施方式中,在衬底基板11的设置绑定区14和绑定对位区15的相对侧通过沉积、溅射或蒸镀等工艺形成金属层16,金属层16为铝层,金属层16的厚度大约为200nm。然后,对金属层16进行光刻以去除部分金属层16,使剩余的金属层在衬底基板11上的正投影与绑定区14和绑定对位区15均无交叠。从而避免后续绑定过程金属线栅12对光线的遮挡使得对位过程顺利进行,实现绑定的准确性。
当然,在本发明的其他示例实施方式中,可以在衬底基板11的设置绑定区14和绑定对位区15的一面形成金属层16,然后,对金属层16进行光刻以去除部分金属层16,使剩余的金属层在衬底基板11上的正投影与绑定区14和绑定对位区15均无交叠。从而避免后续绑定过程金属线栅12对光线的遮挡使得对位过程顺利进行,实现绑定的准确性。
在去除部分金属层后,参照图5所示,在衬底基板11的形成金属层的一面形成透明树脂层17,且透明树脂层17仅填充在去除部分金属层16后形成的过孔内。透明树脂层17的厚度与金属层16的厚度相同,大约为200nm。透明树脂层17具有一定的刚性,可耐受后续大约150℃温度。
去除金属层后,导致衬底基板11之上的金属层16与衬底基板11之间存在段差,因纳米压印本身工艺条件较精细,轻微段差可导致周围边部较大区域产生线不良,最终导致金属线栅12的倒伏和缺失。参照图6和图7所示的未填充透明树脂层时形成的金属线栅的显微结构示意图,从该图中可以看到金属线栅12有倒伏和缺失严重。填充透明树脂层17不会影响光的透过性,而且为纳米压印提供较好的基底避免后续金属线栅12的倒伏和缺失。参照图8和图9所示的填充透明树脂层后形成的金属线栅的显微结构示意图,从该图中可以看到金属线栅12没有倒伏也没有缺失。
在金属层16和透明树脂层17上沉积Hard Mask(硬掩模),硬掩 模是一种通过CVD(Chemical Vapor Deposition,化学气相沉积)生成的无机薄膜材料。其主要成分通常有TiN、SiN、SiO2等。在Hard Mask上压印形成一层压印胶,采用软模板对压印胶进行压印固化,使压印胶上形成多个平行布置的条状凹槽;对未被压印胶覆盖的Hard Mask进行干刻蚀,以除去未被压印胶覆盖的Hard Mask层,以形成Hard Mask掩膜;对未被Hard Mask掩膜覆盖的金属层16和透明树脂层17进行刻蚀,使金属层16形成多根金属线栅12,透明树脂层17形成透明线栅13。
金属线栅12也可以通过以下方法形成。
在衬底基板11的设置绑定区14和绑定对位区15的相对侧通过沉积、溅射或蒸镀等工艺形成金属层16,金属层16为铝层,金属层16的厚度大约为200nm。
在金属层16的背离衬底基板11的一侧形成保护层,保护层的厚度大约为100nm。保护层可以为氧化硅层、氮化硅层等等。
对金属层16和保护层进行光刻以去除部分金属层16和部分保护层,使剩余的金属层16和剩余的保护层在衬底基板11上的正投影与所定区14和绑定对位区15均无交叠。从而避免后续绑定过程金属线栅12对光线的遮挡使得对位过程顺利进行,实现绑定的准确性。
当然,在本发明的其他示例实施方式中,可以在衬底基板11的设置绑定区14和绑定对位区15的一面形成金属层16,在金属层16的背离衬底基板11的一面形成保护层,并对金属层16和保护层进行光刻以去除部分金属层16和部分保护层,使剩余的金属层16和剩余的保护层在衬底基板11上的正投影与绑定区14和绑定对位区15无交叠。从而避免后续绑定过程金属线栅12对光线的遮挡使得对位过程顺利进行,实现绑定的准确性。
在去除部分金属层后,在衬底基板11的形成金属层的一面形成透明树脂层17,且透明树脂层17仅填充在去除部分金属层16和部分保护层后形成的过孔内。透明树脂层17的厚度与金属层16的厚度和保护层的厚度之和相同,大约为300nm。透明树脂层17具有一定 的刚性,可耐受后续大约150℃温度。
去除金属层16和保护层后,同样会导致衬底基板之上的保护层与衬底基板之间存在段差,因纳米压印本身工艺条件较精细,轻微段差可导致周围边部较大区域产生线不良,最终导致金属线栅12的倒伏和缺失。填充透明树脂层17后可以为纳米压印工艺提供较为平整的基底,使后续形成的金属线栅12避免倒伏和缺失。
形成所述透明树脂层17后,在保护层和透明树脂层17上压印形成一层压印胶,采用软模板对压印胶进行压印固化,使压印胶上形成多个平行布置的条状凹槽;对未被压印胶覆盖的保护层进行干刻蚀,以除去未被压印胶覆盖的保护层,以形成保护层掩膜;对未被保护层掩膜覆盖的金属层16和透明树脂层17进行刻蚀,使金属层16形成多根金属线栅12,透明树脂层17形成透明线栅13。
金属线栅12还可以通过以下方法形成。
在衬底基板11的设置绑定区14和绑定对位区15的相对侧通过沉积、溅射或蒸镀等工艺形成金属层16,金属层16为铝层,金属层16的厚度大约为200nm。在金属层16上制作一层SiO2层;SiO2层的厚度大约为100nm。在SiO2层上形成一层压印胶;采用软模板对压印胶进行压印固化,使压印胶上形成多个平行布置的条状凹槽;对未被压印胶覆盖的SiO2层进行干刻蚀,以除去未被压印胶覆盖的SiO2层,以形成SiO2掩膜;对未被SiO2掩膜覆盖的金属层16进行刻蚀以形成多根金属线栅12,然后可以去除SiO2掩膜。
对多根金属线栅12进行图案化处理以去除部分金属线栅12的部分段,使剩余的金属线栅12在衬底基板11上的正投影与绑定区14和绑定对位区15均无交叠。图案化处理可以为干刻或光刻等等。从而避免后续绑定过程金属线栅12对光线的遮挡使得对位过程顺利进行,实现绑定的准确性。
当然,在本发明的其他示例实施方式中,可以在衬底基板11的设置绑定区14和绑定对位区15的一面形成金属线栅12,然后,对金属线栅12进行光刻以去除部分金属线栅12的部分段,使剩余的金 属线栅12在衬底基板11上的正投影与绑定区14和绑定对位区15均无交叠。从而避免后续绑定过程金属线栅12对光线的遮挡使得对位过程顺利进行,实现绑定的准确性。
在本示例实施方式中,将光线设置为从衬底基板11的设置绑定区14和绑定对位区15的相对侧入射。
另外,在衬底基板11的设置绑定区14和绑定对位区15的相对侧形成金属线栅12以后,上述的金属线栅偏振器的制备方法还可以包括,在衬底基板的背离金属线栅12一侧形成遮挡材料层,然后对遮挡材料层进行图案化处理形成第一遮挡部18和第二遮挡部19。第一遮挡部18和第二遮挡部19均设置为环状。第一遮挡部18和第二遮挡部19均位于金属线栅12的出光侧,光线射入金属线栅12,经过金属线栅12的偏光后,射至衬底基板11,透过衬底基板11射至第一遮挡部18和第二遮挡部19。
绑定区14的边缘位于第一遮挡部18在衬底基板11上的正投影内,绑定对位区15的边缘位于第二遮挡部19在衬底基板11上的正投影内,且绑定区14的边缘可以位于第一遮挡部18在衬底基板11上的正投影的宽度方向的中间位置,绑定对位区15的边缘可以位于第二遮挡部19在衬底基板11上的正投影的宽度方向的中间位置。第一遮挡部18和第二遮挡部19的宽度大约为5微米。通过第一遮挡部18和第二遮挡部19分别将绑定区14和绑定对位区15的边缘金属线栅去除导致的异常遮蔽,规避因金属线栅异常导致的光线不均。另外,上述结构中第一遮挡部18和第二遮挡部19与金属线栅12设置在衬底基板11的相对两侧,因此,还可以先形成第一遮挡部18和第二遮挡部19然后再形成金属线栅12。
需要说明的是,当金属线栅12形成在衬底基板11的设置绑定区14和绑定对位区15的一侧时,第一遮挡部18和第二遮挡部19可以形成在金属线栅12的背离衬底基板11的一侧,此时需要先形成金属线栅12然后再形成第一遮挡部18和第二遮挡部19。当金属线栅12形成在衬底基板11的设置绑定区14和绑定对位区15的相对侧时, 第一遮挡部18和第二遮挡部19可以形成在金属线栅12和衬底基板11之间,此时需要先形成第一遮挡部18和第二遮挡部19然后再形成金属线栅12。这样就能保证第一遮挡部18和第二遮挡部19位于金属线栅12的出光侧。
进一步的,本发明还提供了一种显示装置,参照图10所示的本发明显示装置一示例实施方式的结构示意图,该显示装置可以包括显示面板2和光控面板3,显示面板2位于光控面板3的出光侧,具体为:显示面板2位于第二液晶层32的背离第二阵列基板31的一面,且显示面板2的第一液晶层22相较于第一阵列基板21远离光控面板3。
该显示面板2包括上述所述的金属线栅偏振器1。金属线栅偏振器1的结构上述已经进行了详细说明,因此,此处不再赘述。
在本示例实施方式中,所述显示面板2还可以包括第一阵列基板21、第一液晶层22和彩膜基板23;第一阵列基板21可以设于衬底基板11的背离金属线栅12的一侧,即第一阵列基板21和金属线栅12设于衬底基板11的相对两侧;第一液晶层22设于第一阵列基板21的背离衬底基板11的一侧;彩膜基板23设于第一液晶层22的背离阵列基板的一侧。
当然,在本发明的其他示例实施方式中,第一阵列基板21可以设于金属线栅12的背离衬底基板11的一面,即金属线栅12设于衬底基板11和第一阵列基板21之间。金属线栅12和第一阵列基板21之间还可以设置绝缘层。
该光控面板3包括上述所述的金属线栅偏振器1。金属线栅偏振器1的结构上述已经进行了详细说明,因此,此处不再赘述。
在本示例实施方式中,所述光控面板3还可以包括第二阵列基板31和第二液晶层32;第二阵列基板31可以设于衬底基板11的背离金属线栅12的一侧,即第二阵列基板31和金属线栅12设于衬底基板11的相对两侧;第二液晶层32设于第二阵列基板31的背离衬底基板11的一侧。
当然,在本发明的其他示例实施方式中,第二阵列基板31可以设于金属线栅12的背离衬底基板11的一面,即金属线栅12设于衬底基板11和第二阵列基板31之间。金属线栅12和第二阵列基板31之间还可以设置绝缘层。
本领域技术人员在考虑说明书及实践这里公开的内容后,将容易想到本公开的其他实施例。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。

Claims (15)

  1. 一种金属线栅偏振器,其中,包括:
    衬底基板,具有多个绑定区和多个绑定对位区;
    多根金属线栅,设于所述衬底基板上,多根所述金属线栅相互平行布置,且多根所述金属线栅在所述衬底基板上的正投影与多个所述绑定区和多个所述绑定对位区均无交叠。
  2. 根据权利要求1所述的金属线栅偏振器,其中,正投影延伸至所述绑定区和所述绑定对位区的所述金属线栅包括间隔设置的至少两条子金属线栅,所述金属线栅偏振器还包括:
    多根透明线栅,与多根所述金属线栅设于所述衬底基板的同一面,且多根所述透明线栅与所述金属线栅平行设置,所述多根透明线栅中的至少一根的两端分别连接位于同一直线上的两根所述子金属线栅。
  3. 根据权利要求1或2所述的金属线栅偏振器,其中,所述金属线栅偏振器还包括:
    多个第一遮挡部,位于所述金属线栅的出光侧,且所述绑定区的边缘位于所述第一遮挡部在所述衬底基板上的正投影内;
    多个第二遮挡部,位于所述金属线栅的出光侧,所述绑定对位区的边缘位于所述第二遮挡部在所述衬底基板上的正投影内。
  4. 根据权利要求2所述的金属线栅偏振器,其中,所述金属线栅为铝线栅,所述透明线栅为透明树脂线栅。
  5. 一种金属线栅偏振器的制备方法,其中,包括:
    提供一衬底基板,所述衬底基板具有多个绑定区和多个绑定对位区;
    在所述衬底基板之上形成多根金属线栅,多根所述金属线栅相互平行布置,且多根所述金属线栅在所述衬底基板上的正投影与多个所述绑定区和多个所述绑定对位区均无交叠。
  6. 根据权利要求5所述的金属线栅偏振器的制备方法,其中,在所述衬底基板之上形成多根金属线栅,包括:
    在所述衬底基板之上形成金属层;
    对所述金属层进行图案化处理以去除部分所述金属层,使剩余的所述金属层在所述衬底基板上的正投影与所述绑定区和所述绑定对位区无交叠;
    再次对所述金属层进行图案化处理以形成多根所述金属线栅。
  7. 根据权利要求6所述的金属线栅偏振器的制备方法,其中,去除部分所述金属层后,所述制备方法还包括:
    在所述衬底基板的去除所述金属层形成的过孔内形成透明树脂层,所述透明树脂层的厚度与所述金属层的厚度相同;
    在再次对所述金属层进行图案化处理以形成多根金属线栅的同时,对所述透明树脂层进行图案化处理以形成多根透明线栅。
  8. 根据权利要求5所述的金属线栅偏振器的制备方法,其中,在所述衬底基板之上形成多根金属线栅,包括:
    在所述衬底基板之上形成金属层;
    在所述金属层的背离所述衬底基板的一面形成保护层;
    对所述金属层和所述保护层进行图案化处理以去除部分所述金属层和部分所述保护层,使剩余的所述金属层和剩余的所述保护层在所述衬底基板上的正投影与所述绑定区和所述绑定对位区无交叠;
    再次对所述金属层和所述保护层进行图案化处理以形成多根所述金属线栅。
  9. 根据权利要求8所述的金属线栅偏振器的制备方法,其中,去除部分所述金属层和部分所述保护层后,所述制备方法还包括:
    在所述衬底基板的去除所述金属层和所述保护层形成的过孔内形成透明树脂层,所述透明树脂层的厚度与所述金属层的厚度和所述保护层的厚度之和相同;
    在再次对所述金属层和所述保护层进行图案化处理以形成多根金属线栅的同时,对所述透明树脂层进行图案化处理以形成多根透明线栅。
  10. 根据权利要求5所述的金属线栅偏振器的制备方法,其中,在所述衬底基板之上形成多根金属线栅,包括:
    在所述衬底基板之上形成金属层;
    对所述金属层进行图案化处理以形成多根金属线栅;
    对多根所述金属线栅进行图案化处理以去除部分所述金属线栅的部分段,使剩余所述金属线栅在所述衬底基板上的正投影与所述绑定区和所述绑定对位区无交叠。
  11. 根据权利要求5~9任意一项所述的金属线栅偏振器的制备方法,其中,所述制备方法还包括:
    在所述金属线栅的出光侧形成第一遮挡部和第二遮挡部,所述绑定区的边缘位于所述第一遮挡部在所述衬底基板上的正投影内,所述绑定对位区的边缘位于所述第二遮挡部在所述衬底基板上的正投影内。
  12. 一种显示装置,其中,包括:
    显示面板,包括权利要求1~4任意一项所述的金属线栅偏振器;
    光控面板,包括权利要求1~4任意一项所述的金属线栅偏振器;
    所述显示面板位于所述光控面板的出光侧。
  13. 根据权利要求12所述的显示装置,其中,所述显示面板还包括:
    第一阵列基板,设于所述衬底基板的背离所述金属线栅的一侧或所述金属线栅的背离所述衬底基板的一侧;
    第一液晶层,设于所述第一阵列基板的背离所述衬底基板的一侧;
    彩膜基板,设于所述第一液晶层的背离所述阵列基板的一侧。
  14. 根据权利要求12所述的显示装置,其中,所述光控面板还包括:
    第二阵列基板,设于衬底基板的背离所述金属线栅的一侧或所述金属线栅的背离所述衬底基板的一侧;
    第二液晶层,设于第二阵列基板的背离所述衬底基板的一侧。
  15. 根据权利要求12所述的显示装置,其中,
    所述显示面板的多个绑定区和多个绑定对位区与所述光控面板的多个绑定区和多个绑定对位区位于所述显示装置的相对两侧。
PCT/CN2020/080475 2020-03-20 2020-03-20 金属线栅偏振器及其制备方法、显示装置 WO2021184370A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080000331.9A CN115668042A (zh) 2020-03-20 2020-03-20 金属线栅偏振器及其制备方法、显示装置
PCT/CN2020/080475 WO2021184370A1 (zh) 2020-03-20 2020-03-20 金属线栅偏振器及其制备方法、显示装置
US17/260,911 US11675227B2 (en) 2020-03-20 2020-03-20 Metal wire grid polarizer and manufacturing method thereof, display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080475 WO2021184370A1 (zh) 2020-03-20 2020-03-20 金属线栅偏振器及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2021184370A1 true WO2021184370A1 (zh) 2021-09-23

Family

ID=77767986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080475 WO2021184370A1 (zh) 2020-03-20 2020-03-20 金属线栅偏振器及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US11675227B2 (zh)
CN (1) CN115668042A (zh)
WO (1) WO2021184370A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090109369A1 (en) * 2007-10-26 2009-04-30 Mitsubishi Electric Corporation Liquid crystal display device
CN104102383A (zh) * 2014-07-15 2014-10-15 京东方科技集团股份有限公司 彩膜基板、液晶模组及触控显示装置
CN105242342A (zh) * 2015-11-09 2016-01-13 武汉华星光电技术有限公司 偏光板和透明显示器
CN105892177A (zh) * 2016-06-17 2016-08-24 京东方科技集团股份有限公司 一种显示面板及显示装置
CN110646969A (zh) * 2019-09-25 2020-01-03 京东方科技集团股份有限公司 一种显示面板的制备方法、显示面板及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180032726A (ko) * 2016-09-22 2018-04-02 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
JP7467220B2 (ja) * 2020-04-28 2024-04-15 株式会社ジャパンディスプレイ 表示システム及び車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090109369A1 (en) * 2007-10-26 2009-04-30 Mitsubishi Electric Corporation Liquid crystal display device
CN104102383A (zh) * 2014-07-15 2014-10-15 京东方科技集团股份有限公司 彩膜基板、液晶模组及触控显示装置
CN105242342A (zh) * 2015-11-09 2016-01-13 武汉华星光电技术有限公司 偏光板和透明显示器
CN105892177A (zh) * 2016-06-17 2016-08-24 京东方科技集团股份有限公司 一种显示面板及显示装置
CN110646969A (zh) * 2019-09-25 2020-01-03 京东方科技集团股份有限公司 一种显示面板的制备方法、显示面板及显示装置

Also Published As

Publication number Publication date
CN115668042A (zh) 2023-01-31
US11675227B2 (en) 2023-06-13
US20220137456A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
US9065001B2 (en) Light-emitting display backplane, display device and manufacturing method of pixel define layer
US8692258B2 (en) Array substrate of TFT-LCD including a black matrix and method for manufacturing the same
JP4805587B2 (ja) 液晶表示装置とその製造方法
WO2020173178A1 (zh) 阵列基板及其制作方法、显示装置、掩模板
TWI734074B (zh) 顯示面板及其製作方法
WO2017071233A1 (zh) 制作阵列基板的方法和阵列基板
JP2007171951A (ja) フォトマスク及びこれを利用した液晶表示装置用アレイ基板の製造方法
WO2017117835A1 (zh) 液晶显示面板、阵列基板及其制造方法
TWI390286B (zh) 可撓式液晶顯示面板及其製造方法
JPH10307305A (ja) アレイ基板、液晶表示装置及びそれらの製造方法
WO2020052097A1 (zh) 阵列基板及显示面板
KR101250316B1 (ko) 액정표시장치 및 그 제조 방법
WO2014015617A1 (zh) 阵列基板及显示装置
JP5637629B2 (ja) 表示装置
WO2015043315A1 (zh) 阵列基板及其制造方法、显示装置
WO2013023561A1 (zh) 阵列基板及其制作方法、显示装置
WO2021184370A1 (zh) 金属线栅偏振器及其制备方法、显示装置
JP4954868B2 (ja) 導電層を備えた基板の製造方法
JP3597769B2 (ja) 電子部品の製造方法
KR101878188B1 (ko) 스페이서 및 범프 패턴을 포함하는 액정 표시 장치 및 그의 제조 방법
TWI400524B (zh) 一種液晶顯示製程面板與形成配向膜的方法
TWI743680B (zh) 偏光基板及其製造方法
KR101302550B1 (ko) 액정표시장치 및 그 제조 방법
US8368865B2 (en) Display panel and method of manufacturing the same
US10497725B2 (en) Method of producing display panel board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925799

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20925799

Country of ref document: EP

Kind code of ref document: A1