WO2021182452A1 - リチウムの回収方法及びリチウムイオン二次電池の処理方法 - Google Patents

リチウムの回収方法及びリチウムイオン二次電池の処理方法 Download PDF

Info

Publication number
WO2021182452A1
WO2021182452A1 PCT/JP2021/009223 JP2021009223W WO2021182452A1 WO 2021182452 A1 WO2021182452 A1 WO 2021182452A1 JP 2021009223 W JP2021009223 W JP 2021009223W WO 2021182452 A1 WO2021182452 A1 WO 2021182452A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
secondary battery
ion secondary
lithium ion
heat treatment
Prior art date
Application number
PCT/JP2021/009223
Other languages
English (en)
French (fr)
Inventor
千尋 西川
善弘 本間
亮栄 渡邊
正峻 山下
吉基 伊藤
麗生 吉原
Original Assignee
Dowaエコシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021034103A external-priority patent/JP6963135B2/ja
Application filed by Dowaエコシステム株式会社 filed Critical Dowaエコシステム株式会社
Priority to US17/910,214 priority Critical patent/US20230104457A1/en
Priority to EP21768111.3A priority patent/EP4119245A4/en
Priority to KR1020227031918A priority patent/KR20220151627A/ko
Priority to CN202180034027.0A priority patent/CN115552694A/zh
Publication of WO2021182452A1 publication Critical patent/WO2021182452A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/40Destroying solid waste or transforming solid waste into something useful or harmless involving thermal treatment, e.g. evaporation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/20Halides
    • C01F11/22Fluorides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B21/00Obtaining aluminium
    • C22B21/0084Obtaining aluminium melting and handling molten aluminium
    • C22B21/0092Remelting scrap, skimmings or any secondary source aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/02Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • C22B7/003Dry processes only remelting, e.g. of chips, borings, turnings; apparatus used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B2101/00Type of solid waste
    • B09B2101/15Electronic waste
    • B09B2101/16Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for recovering lithium from a lithium ion secondary battery and a method for processing a lithium ion secondary battery.
  • Lithium-ion secondary batteries are lighter, higher capacity, and higher electromotive force secondary batteries than conventional lead storage batteries and Nikkado secondary batteries, and are used as secondary batteries for personal computers, electric vehicles, portable devices, etc.
  • lithium-ion secondary batteries Since the use of lithium-ion secondary batteries is expected to continue to expand in the future, valuable products such as lithium from lithium-ion secondary batteries that are discarded due to defective products generated during the manufacturing process, equipment used, and battery life, etc. It is desired to collect goods from the viewpoint of resource recycling.
  • resource recycling When recovering valuable resources such as lithium from a lithium-ion secondary battery, separating and recovering various metals and impurities used in the lithium-ion secondary battery increases the value of the recovered material. is important.
  • a used lithium ion secondary battery is subjected to a discharge step, and the discharged lithium ion secondary battery is subjected to a thermal decomposition step, a crushing step, and the like.
  • a technique for recovering valuable resources such as copper foil, aluminum foil, active material component, and metal material by performing a sieving step, a wind sorting step, and a magnetic force sorting step has been proposed (see, for example, Patent Document 1). ..
  • the discharged lithium ion secondary battery is subject to heat treatment or processing for selecting valuable resources from the viewpoint of safety and the like.
  • An object of the present invention is to solve various conventional problems and to achieve the following object. That is, an object of the present invention is to provide a method for recovering lithium and a method for processing a lithium ion secondary battery, which eliminates the need for discharging the lithium ion secondary battery and can reduce the energy cost in the heat treatment step. ..
  • a lithium recovery method for recovering lithium from a lithium ion secondary battery A heat treatment process for obtaining a heat-treated product by heat-treating a lithium-ion secondary battery in which a voltage of 80% or more of the rated voltage remains. A crushing step of obtaining a crushed product by crushing the heat-treated product, and A lithium recovery process for recovering lithium from the crushed material, and A method for recovering lithium, which comprises.
  • the heat treatment step includes a treatment of heating the lithium ion secondary battery to 350 ° C. or higher and 550 ° C. or lower.
  • the amount of heat supplied when the lithium ion secondary battery is ignited is changed to 50% or less of the amount of heat supplied before the lithium ion secondary battery is ignited.
  • the heat treatment step after the ignition of the lithium ion secondary battery itself is completed, the lithium ion secondary battery is further heat-treated at 750 ° C. or higher and lower than 1,085 ° C., according to ⁇ 2> to ⁇ 3>. The method for recovering lithium according to any one of them.
  • ⁇ 5> The method for recovering lithium according to any one of ⁇ 1> to ⁇ 4>, wherein in the heat treatment step, the lithium ion secondary battery is housed in a storage container and heat treatment is performed.
  • ⁇ 6> The method for recovering lithium according to ⁇ 5>, wherein the storage container has an opening through which gas can flow.
  • ⁇ 7> The method for recovering lithium according to any one of ⁇ 5> to ⁇ 6>, wherein the storage container has an openable / closable lid for accommodating the lithium ion secondary battery.
  • ⁇ 8> The method for recovering lithium according to any one of ⁇ 5 to ⁇ 7>, wherein the melting point of the storage container is higher than the temperature at which the lithium ion secondary battery is heat-treated.
  • ⁇ 9> The lithium according to any one of ⁇ 5> to ⁇ 8>, wherein in the heat treatment step, the heat treatment is performed so that the flame for heat-treating the lithium ion secondary battery does not hit the storage container. Collection method. ⁇ 10> The method for recovering lithium according to ⁇ 9>, wherein in the heat treatment step, the heat treatment is performed without directing the radiation direction of the flame for heat-treating the lithium ion secondary battery toward the storage container. ⁇ 11>
  • the crushing step includes a classification step of obtaining a coarse-grained product and a fine-grained product by classifying the crushed product.
  • ⁇ 12> The method for recovering lithium according to any one of ⁇ 1> to ⁇ 11>, wherein in the lithium recovery step, a leachate containing lithium is obtained by immersing the crushed material in water.
  • a leachate containing lithium is obtained by immersing the crushed material in water.
  • the leachate is solid-liquid separated into a solution containing lithium and a residue by filtering the leachate.
  • the leachate is sorted into a slurry containing lithium and a non-magnetic deposit and a magnetic deposit containing at least one of cobalt and nickel by performing wet magnetic force sorting on the leachate.
  • the method for recovering lithium according to ⁇ 12> The method for recovering lithium according to ⁇ 12>.
  • ⁇ 15> The method for recovering lithium according to ⁇ 14>, wherein in the lithium recovery step, the slurry is solid-liquid separated into a solution containing lithium and a residue containing non-magnetic deposits by filtering the slurry.
  • calcium hydroxide is added to the solution to solidify the fluorine contained in the solution as calcium fluoride, and then the solution is filtered for solid-liquid separation.
  • the method for recovering calcium according to ⁇ 15> which removes fluorine from the solution.
  • carbon dioxide is added to the solution from which fluorine has been removed to solidify the calcium contained in the solution as calcium carbonate, and then the solution is filtered for solid-liquid separation.
  • a method for treating a lithium ion secondary battery which comprises a heat treatment step of obtaining a heat-treated product by heat-treating a lithium ion secondary battery in which a voltage of 80% or more is left with respect to a rated voltage.
  • the heat treatment step includes a treatment of heating the lithium ion secondary battery to 350 ° C. or higher and 550 ° C. or lower.
  • the amount of heat supplied when the lithium ion secondary battery is ignited is changed to 50% or less of the amount of heat supplied before the lithium ion secondary battery is ignited.
  • the lithium ion secondary battery has an outer case containing aluminum and has an outer case.
  • ⁇ 24> The method for treating a lithium ion secondary battery according to any one of ⁇ 19> to ⁇ 23>, wherein in the heat treatment step, the lithium ion secondary battery is housed in a storage container and heat treatment is performed.
  • the storage container has an opening through which gas can flow.
  • ⁇ 26> The method for treating a lithium ion secondary battery according to any one of ⁇ 24> to ⁇ 25>, wherein the storage container has an openable / closable lid for accommodating the lithium ion secondary battery.
  • ⁇ 27> The method for treating a lithium ion secondary battery according to any one of ⁇ 24> to ⁇ 26>, wherein the melting point of the storage container is higher than the temperature at which the lithium ion secondary battery is heat-treated.
  • ⁇ 28> The lithium ion according to any one of ⁇ 24> to ⁇ 27>, wherein in the heat treatment step, the heat treatment is performed so that the flame for heat-treating the lithium ion secondary battery does not hit the storage container. How to handle the secondary battery.
  • ⁇ 29> The treatment of the lithium ion secondary battery according to ⁇ 28>, wherein in the heat treatment step, the heat treatment is performed without directing the radiation direction of the flame for heat treatment of the lithium ion secondary battery toward the storage container.
  • ⁇ 30> A crushing step of obtaining a crushed product by crushing the heat-treated product, and A classification step of obtaining coarse-grained products and fine-grained products by classifying the crushed product, and The method for treating a lithium ion secondary battery according to any one of ⁇ 19> to ⁇ 28>, further comprising.
  • ⁇ 31> The method for treating a lithium ion secondary battery according to ⁇ 30>, wherein copper is recovered into the coarse-grained product in the classification step.
  • ⁇ 32> The method for treating a lithium ion secondary battery according to any one of ⁇ 30> to ⁇ 31>, further comprising a leaching step of immersing the fine-grained product in water to obtain a leachate containing lithium.
  • wet magnetic force sorting for sorting the leachate into a slurry containing lithium and a non-magnetic deposit and a magnetic deposit containing at least one of cobalt and nickel is further performed.
  • the method for treating a lithium ion secondary battery according to ⁇ 32> which includes.
  • ⁇ 34> The method for treating a lithium ion secondary battery according to any one of ⁇ 19> to ⁇ 33>, wherein the proportion of nickel in the positive electrode active material in the lithium ion secondary battery is 75% or more.
  • a method for recovering lithium and a lithium ion secondary battery that can solve various conventional problems, eliminate the need for discharging the lithium ion secondary battery, and reduce the energy cost in the heat treatment process.
  • a processing method can be provided. Furthermore, according to the present invention, it is possible to provide a method for recovering lithium, which can recover lithium from a lithium ion secondary battery at a high recovery rate.
  • treatment of a lithium ion secondary battery that can be safely, easily and inexpensively treated to detoxify (eg, discharge and remove electrolyte). A method can be provided.
  • FIG. 1 is a diagram showing an example of a processing flow in one embodiment of the lithium recovery method of the present invention.
  • the lithium recovery method of the present invention includes a heat treatment step, a crushing step, and a lithium recovery step, preferably including a classification step, and further includes other steps if necessary.
  • the method for treating a lithium ion secondary battery of the present invention preferably includes a heat treatment step, a crushing step, a classification step, a leaching step, and a wet magnetic force sorting step, and further includes other steps as necessary.
  • the lithium ion secondary battery in which a voltage of 80% or more remains with respect to the rated voltage is heat-treated.
  • the lithium ion secondary battery is used regardless of the residual amount of voltage in the lithium ion secondary battery.
  • the energy efficiency at the time of heat treatment can be improved when the residual amount of voltage in the lithium ion secondary battery is equal to or more than a predetermined amount.
  • the lithium recovery method of the present invention is based on this finding.
  • a heat treatment is performed on a lithium ion secondary battery in a state where a voltage of a predetermined value or more is left. Therefore, during the heat treatment, an exothermic reaction occurs in the lithium ion secondary battery and is stored. The electric energy is converted into heat energy, and the lithium ion secondary battery itself may generate heat. Therefore, in one aspect of the lithium recovery method of the present invention, heat treatment is performed with less energy (heat energy) than in the prior art, that is, the heating temperature is lowered and the heating time is reduced. Can be shorter.
  • a lithium ion secondary battery in which a voltage of 80% or more remains with respect to a rated voltage is heat-treated. More specifically, in the method for treating a lithium ion secondary battery of the present invention, for example, the lithium ion secondary battery is heat-treated at a predetermined temperature (for example, 350 ° C. or higher and 550 ° C. or lower). In the processing method of the lithium ion secondary battery of the present invention, by doing so, combustion (self-combustion) due to heat generation of the lithium ion secondary battery itself is generated and ignited.
  • the binder resin, the electrolytic solution, and the positive electrode active material in the lithium ion secondary battery can be thermally decomposed with less energy than the prior art, and the lithium ion secondary battery can be thermally decomposed. It is possible to easily recover valuable resources such as copper, aluminum, cobalt, and nickel from the battery. In addition, the decomposition of the positive electrode active material makes it easier for lithium to dissolve in water.
  • the lithium ion secondary battery is heat-treated at a predetermined temperature to cause self-combustion of the lithium ion secondary battery and ignite the lithium ion secondary battery. While suppressing the thermal runaway of the secondary battery, the energy derived from the voltage of the lithium ion secondary battery can be used to process the lithium ion secondary battery.
  • the lithium ion secondary battery in this way, it is possible to stably deactivate the lithium ion secondary battery (discharge, removal of electrolyte, etc.) while suppressing the generation of toxic gas and the like. At the same time, the energy required for processing can be suppressed.
  • the lithium recovery method of the present invention is a method for recovering lithium from a lithium ion secondary battery. Further, in the present invention, substances other than lithium may be further recovered, and for example, valuable resources other than lithium contained in the lithium ion secondary battery may be further recovered.
  • the valuable resource means a material that can be traded without being discarded, and examples thereof include various metals. Examples of valuable resources in the lithium ion secondary battery include copper (Cu), aluminum (Al), cobalt (Co), nickel (Ni) and the like.
  • the lithium ion secondary battery is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a defective lithium ion secondary battery generated in the manufacturing process of the lithium ion secondary battery examples thereof include a lithium ion secondary battery that is discarded due to a defective device used, the life of the device used, and a used lithium ion secondary battery that is discarded due to the life of the device.
  • the shape, structure, size, and material of the lithium ion secondary battery are not particularly limited and can be appropriately selected depending on the intended purpose.
  • the shape of the lithium ion secondary battery is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a laminated type, a cylindrical type, a button type, a coin type, a square type and a flat type.
  • the form of the lithium ion secondary battery is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a battery cell, a battery module, and a battery pack.
  • the battery module means that a plurality of battery cells, which are unit batteries, are connected and put together in one housing
  • the battery pack means that a plurality of battery modules are put together in one housing. means.
  • the battery pack may be provided with a control controller and a cooling device.
  • Examples of the lithium ion secondary battery include a positive electrode, a negative electrode, a separator, an electrolytic solution containing an electrolyte and an organic solvent, and an outer container which is a battery case containing the positive electrode, the negative electrode, the separator, and the electrolytic solution. Examples include those equipped with.
  • the lithium ion secondary battery may be in a state where the positive electrode, the negative electrode, and the like have fallen off.
  • the positive electrode is not particularly limited as long as it has a positive electrode active material, and can be appropriately selected depending on the intended purpose. For example, it is preferable to have a positive electrode current collector.
  • the shape of the positive electrode is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a flat plate shape and a sheet shape.
  • Positive electrode current collector The shape, structure, size, material, and the like of the positive electrode current collector are not particularly limited, and can be appropriately selected depending on the intended purpose.
  • Examples of the shape of the positive electrode current collector include a foil shape.
  • Examples of the material of the positive electrode current collector include stainless steel, nickel, aluminum, copper, titanium, and tantalum. Among these, aluminum is preferable.
  • the positive electrode material is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a positive electrode material containing at least a positive electrode active material containing lithium and, if necessary, a conductive agent and a binder resin may be used. Can be mentioned.
  • the positive electrode active material examples include lithium manganate (LiMn 2 O 4 ), lithium cobalt oxide (LiCoO 2 ), lithium cobalt oxide (LiCo 1/2 Ni 1/2 O 2 ), ternary system and NCM system.
  • the conductive agent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include carbon black, graphite, carbon fiber and metal carbide.
  • the binder resin is not particularly limited and may be appropriately selected depending on the intended purpose. For example, homopolymers or copolymers such as vinylidene fluoride, ethylene tetrafluoride, acrylonitrile and ethylene oxide, and styrene-butadiene rubber. And so on.
  • the negative electrode is not particularly limited as long as it has a negative electrode active material, and can be appropriately selected depending on the intended purpose. For example, it is preferable to have a negative electrode current collector.
  • the shape of the negative electrode is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a flat plate shape and a sheet shape.
  • Negative electrode current collector The shape, structure, size, material, and the like of the negative electrode current collector are not particularly limited, and can be appropriately selected depending on the intended purpose. Examples of the shape of the negative electrode current collector include a foil shape. Examples of the material of the negative electrode current collector include stainless steel, nickel, aluminum, copper, titanium, and tantalum. Of these, copper is preferred.
  • the negative electrode active material is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include carbon materials such as graphite and hard carbon, silicon and titanate.
  • the heat treatment step is a step of obtaining a heat-treated product by heat-treating a lithium ion secondary battery in which a voltage of 80% or more remains with respect to a rated voltage.
  • the heat-treated product (roasted product) means a product obtained by heat-treating a lithium ion secondary battery.
  • the lithium-ion secondary battery By heat-treating the lithium-ion secondary battery in which a voltage of a certain amount or more remains in this way, the electric energy in the battery is converted into heat energy, the lithium-ion secondary battery itself generates heat, and the positive electrode active material contains Li (Ni / Co / Mn) O 2 and lithium in LiPF 6 in the electrolyte can be used as an aqueous solution, and lithium such as lithium fluoride (LiF), lithium carbonate (Li 2 CO 3 ) and lithium oxide (Li 2 O) can be used as an aqueous solution. It comes to form a substance in a soluble form.
  • LiPF 6 lithium fluoride
  • Li 2 CO 3 lithium carbonate
  • Li 2 O lithium oxide
  • the rated voltage in the lithium ion secondary battery means the voltage (electromotive force) when the lithium ion secondary battery is used in a normal state, and the lithium ion secondary battery is used as a product. It can be the voltage of time. That is, the rated voltage of the lithium ion secondary battery can be, for example, the voltage between the terminals when the non-deteriorated lithium ion secondary battery is used in a fully charged state, and more specifically. , Can be the nominal voltage in a lithium ion secondary battery.
  • all the lithium ion secondary batteries when a plurality of lithium ion secondary batteries are collectively heat-treated, all the lithium ion secondary batteries may be in a state in which a voltage of 80% or more of the rated voltage remains. However, some lithium ion secondary batteries may have a voltage of 80% or more of the rated voltage. That is, in the present invention, when a plurality of lithium ion secondary batteries are heat-treated at once, a voltage of 80% or more of the rated voltage remains in the lithium ion secondary battery to be treated. It suffices if something is included.
  • a lithium ion secondary battery in a state in which a voltage of 80% or more of the rated voltage with respect to the total number of lithium ion secondary batteries to be heat-treated remains.
  • the ratio of the number of the above 30% or more is preferable, and 60% or more is more preferable.
  • the voltage of the entire pack or module is 80% of the rated voltage of the pack or module.
  • the above voltage may remain, or all the lithium ion secondary battery cells constituting the pack or module may have a voltage of 80% or more of the rated voltage remaining, or the pack may remain.
  • some of the lithium ion secondary battery cells constituting the module may have a voltage of 80% or more with respect to the rated voltage.
  • the lithium ion secondary battery pack or module when the lithium ion secondary battery pack or module is heat-treated, a voltage of 80% or more of the rated voltage remains in the lithium ion secondary battery cells constituting the pack or module. It suffices if the state is included.
  • the lithium ion secondary battery pack or module when the lithium ion secondary battery pack or module is heat-treated, the lithium ion in a state in which a voltage of 80% or more of the rated voltage with respect to the total number of lithium ion secondary battery cells contained in the pack or module remains.
  • the ratio of the number of secondary battery cells is preferably 30% or more, more preferably 60% or more.
  • the voltage (electromotive force) in the lithium ion secondary battery can be measured using, for example, a known tester.
  • the rated voltage of the lithium ion secondary battery can be determined, for example, by checking the voltage information written on the exterior of the lithium ion secondary battery, or when the lithium ion secondary battery is fully charged when it is used for the first time as a product. It can be confirmed by measuring the voltage with a tester or by inquiring the rated voltage from the manufacturer of the lithium-ion secondary battery.
  • the method for performing the heat treatment in the heat treatment step is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the heat treatment can be performed by heating the lithium ion secondary battery in a known roasting furnace. ..
  • the roasting furnace is not particularly limited and may be appropriately selected according to the purpose.
  • a rotary kiln, a fluidized bed furnace, a tunnel furnace, a batch type furnace such as a muffle furnace, a cupola, a stalker furnace, a pusher type continuous furnace, etc. Can be mentioned.
  • a batch type furnace and a pusher type continuous furnace are preferable. It is also preferable to use a batch type furnace and a pusher type continuous furnace in combination.
  • the condition for heat-treating (heating) the lithium-ion secondary battery is that each component of the lithium-ion secondary battery can be separated and crushable in a crushing step described later.
  • heat treatment condition is that each component of the lithium-ion secondary battery can be separated and crushable in a crushing step described later.
  • it can be appropriately selected according to the purpose.
  • the atmosphere used for the heat treatment is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include an atmospheric atmosphere, an inert atmosphere, a reducing atmosphere, and a hypoxic atmosphere. Atmosphere means an atmosphere using air.
  • the inert atmosphere can be exemplified as an atmosphere composed of nitrogen or argon.
  • the reducing atmosphere means an atmosphere containing CO, H 2 , H 2 S, SO 2 and the like in an inert atmosphere such as nitrogen or argon.
  • the hypoxic atmosphere means an atmosphere in which the oxygen partial pressure is 11% or less.
  • the recovery rate and quality of valuable resources derived from the positive electrode current collector (for example, aluminum) and valuable resources derived from the negative electrode current collector (for example, copper) in the lithium ion secondary battery are further improved. It is preferable to use a low oxygen atmosphere because it can be used.
  • the heat treatment step includes a treatment of heating the lithium ion secondary battery to 350 ° C. or higher and 550 ° C. or lower.
  • start ignition self-combustion
  • This self-combustion continues due to a short circuit between the positive electrode and the negative electrode (thermal energy conversion of the voltage) due to the fusing of the separator in the lithium ion secondary battery, and lithium due to the continuation of this self-combustion (thermal energy conversion of the voltage and combustion of the electrolytic solution).
  • the energy required for heat treatment of the ion secondary battery can be reduced. Further, this self-combustion is promoted by the decomposition of the positive electrode material inside the lithium ion secondary battery and the release of oxygen, and is more than the case where the lithium ion secondary battery is heated by using the heat outside the lithium ion secondary battery. It is possible to efficiently solubilize lithium in a lithium ion secondary battery, decompose a binder between copper and carbon, and metallize cobalt and nickel (improve magnetic property).
  • a temperature lowering treatment by blowing air can be used to adjust the heat treatment temperature.
  • the heating temperature in the "treatment of heating the lithium ion secondary battery to 350 ° C. or higher and 550 ° C.
  • the surface temperature of the lithium ion secondary battery When the lithium ion secondary battery is placed in the storage container and heat-treated, the surface temperature of the lithium ion secondary battery may be lower than the temperature inside the furnace.
  • the measurement of the surface temperature of the lithium ion secondary battery can be confirmed, for example, by providing thermocouples on the upper and lower surfaces of the lithium ion secondary battery and taking the average value of the measured temperatures of both. Further, the temperature inside the furnace can be measured by, for example, a thermocouple installed on the wall surface of the exhaust gas outlet provided in the upper part of the furnace.
  • the temperature of the lithium ion secondary battery itself is 700 ° C. or higher and 900 ° C. or lower when the lithium ion secondary battery itself is ignited (for example, combustion due to heat generation of the lithium ion secondary battery itself (self-combustion)). Is preferable, and 700 ° C. or higher and 850 ° C. or lower is more preferable.
  • the temperature of the lithium ion secondary battery itself is 700 ° C. or higher when self-combustion occurs, lithium in Li (Ni / Co / Mn) O 2 in the positive electrode active material and LiPF 6 in the electrolyte can be removed.
  • Lithium can be made into a substance in which lithium is soluble in an aqueous solution, such as lithium carbonate (LiF), lithium carbonate (Li 2 CO 3 ), and lithium oxide (Li 2 O), and lithium is separated from impurities other than fluorine during leaching. be able to. Further, by setting the temperature of the lithium ion secondary battery itself to 700 ° C. or higher when self-combustion occurs, lithium cobalt oxide and lithium nickel oxide contained as positive electrode active materials are thermally decomposed, and cobalt and nickel metals are decomposed. Particles can be formed and can be easily recovered selectively on a magnetically deposited material by magnetic separation.
  • the copper and carbon binders of the negative electrode current collector can be thermally decomposed to facilitate the separation of carbon from copper.
  • the aluminum of the positive electrode current collector can be embrittled. It becomes possible to separate aluminum from copper recovered on the coarse grain product side.
  • the temperature of the lithium ion secondary battery itself can be measured by inserting a thermometer such as a couple or a thermista into the lithium ion secondary battery during the heat treatment temperature.
  • the heat treatment time (time for performing the heat treatment) is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is a time during which the lithium ion secondary battery itself can ignite (self-combustion). It is possible, preferably 1 minute or more and 5 hours or less, more preferably 1 minute or more and 2 hours or less, and particularly preferably 1 minute or more and 1 hour or less.
  • the heat treatment time may be, for example, the time until the lithium ion secondary battery reaches the above heat treatment temperature, and the holding time may be short. When the heat treatment time is 1 minute or more and 5 hours or less, it is advantageous in that the cost required for the heat treatment can be suppressed and the efficiency of the heat treatment can be improved.
  • the heat treatment step for example, it is preferable to weaken the heating of the lithium ion secondary battery after the combustion (self-combustion) due to the heat generation of the lithium ion secondary battery itself is confirmed. By doing so, the energy required for the heat treatment can be particularly reduced, and the thermal runaway of the lithium ion battery can be prevented. More specifically, for example, in the heat treatment step, the amount of heat supplied when the lithium ion secondary battery itself is burned (ignited) due to heat generation is before the lithium ion secondary battery itself is burned due to heat generation. It is preferable to change the amount of heat supplied to 50% or less. Further, the amount of heat supplied in the heat treatment step can be controlled by, for example, changing the amount of fuel to be supplied or adjusting the amount of electric power.
  • ignition self-combustion
  • the binder resin and the electrolytic solution in the lithium ion secondary battery can be sufficiently thermally decomposed.
  • the combustion in the lithium ion secondary battery continues, so that, for example, it is an example of a valuable resource derived from the positive electrode current collector.
  • a certain aluminum can be sufficiently oxidized (brittled), and it can be easily sorted from copper, which is an example of a valuable resource derived from a negative electrode current collector, and the recovery rate and quality of copper and aluminum can be further improved. Can be done.
  • Li (Ni / Co / Mn) O 2 in the positive electrode active material and LiPF 6 in the electrolyte is converted into lithium fluoride (LiF), lithium carbonate (Li 2 CO 3 ) and lithium oxide (Lithium oxide (Li 2 CO 3)).
  • Lithium can be made into a substance in a form soluble in an aqueous solution, such as Li 2 O).
  • the heat treatment step after the combustion (ignition) due to the heat generation of the lithium ion secondary battery is completed, the heat supply amount is increased again to raise the lithium ion secondary battery to 750 ° C. or higher and 1,085 ° C. or higher. Further heat treatment at less than ° C. is preferred.
  • this additional heat treatment aluminum that was not melted only by self-combustion of the lithium ion secondary battery can be melted and separated and recovered.
  • this heat treatment temperature for example, when aluminum is used for the outer container of the lithium ion secondary battery cell or the constituent member of the module or pack, these aluminum are melted. Can be collected.
  • the aluminum contained in the housing of the lithium ion secondary battery and other parts (for example, electrodes) in the lithium ion secondary battery are formed. Can be easily sorted (separated) and the aluminum derived from the housing can be easily recovered.
  • the heat treatment temperature is 750 ° C. or higher and lower than 1,085 ° C.
  • the positive electrode current collector formed of the aluminum foil melts and becomes brittle, and becomes easy to be granulated in the crushing step described later.
  • the negative electrode current collector formed of the copper foil is heat-treated at a temperature lower than the melting point of copper, so that it does not melt. Therefore, the copper in the crushed product obtained by crushing the heat-treated product obtained in the heat treatment step in the crushing step still exists in a shape similar to a foil even after crushing, so that it can be easily recovered as a coarse grain product in the classification step.
  • ⁇ Storage container In the present invention, in the heat treatment step, it is preferable to house the lithium ion secondary battery in the storage container and perform the heat treatment.
  • the lithium ion secondary battery when a lithium ion secondary battery is heat-treated, if a large amount of voltage remains in the lithium ion secondary battery, the lithium ion secondary battery is referred to as "thermal runaway" depending on the heat treatment conditions and the like. May cause a phenomenon.
  • Thermal runaway means "for some reason, a specific part inside the battery heats up, and that heat generation causes a reaction inside the battery, causing further heat generation, and the temperature of the entire battery rises, causing heat generation, ignition, smoke, etc.” It is a phenomenon that "causes” (for example, “About the occurrence event in the safety evaluation test of lithium-ion battery (Traffic Safety and Environment Research Institute Forum Lecture Summary, 135-138, 2012)” (https://www.ntsel.go.jp/ form / 2012files / pt_21.pdf) ”). Further, in the above-mentioned literature, it is exemplified that the lithium ion secondary battery is heated from the outside as a cause of causing thermal runaway.
  • the incinerator used for the heat treatment may be damaged.
  • the lithium ion secondary battery in the heat treatment step, is housed in the storage container and the heat treatment is performed.
  • the degree of temperature rise with respect to the lithium ion secondary battery (such as the atmosphere around the lithium ion secondary battery and the heating temperature) can be controlled more slowly, and the explosion of the lithium ion secondary battery can be suppressed. ..
  • the lithium ion secondary battery in a storage container and performing the heat treatment, even if the lithium ion secondary battery bursts during the heat treatment, damage to the furnace body of the incinerator used for the heat treatment can be suppressed. Can be done.
  • the storage container is not particularly limited as long as it can store a lithium ion secondary battery, and can be appropriately selected according to the purpose. Further, as the storage container, the outer container in the pack or module of the lithium ion secondary battery may be used as it is. Further, the shape of the storage container is not particularly limited and can be appropriately selected depending on the purpose. The shape of the storage container is preferably such that it surrounds the lithium ion secondary battery to be heat-treated. The size of the storage container is not particularly limited as long as it can accommodate the lithium ion secondary battery to be heat-treated, and can be appropriately selected according to the purpose. Further, when a plurality of lithium ion secondary batteries are heat-treated at once, it is preferable that the size is large enough to accommodate all the lithium ion secondary batteries to be processed.
  • the storage container preferably has an opening through which gas can flow.
  • the storage container preferably stores the lithium ion secondary battery so that the gas does not flow in the portion other than the opening. Since the storage container has an opening, the pressure and atmosphere inside the storage container can be controlled.
  • the shape of the opening is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the position of the opening in the storage container is not particularly limited as long as it is a position where gas can flow during the heat treatment, and can be appropriately selected according to the purpose.
  • a plurality of openings may be provided in the storage container.
  • a hole provided in the outer container of the pack or module of the lithium ion secondary battery may be used. Lithium-ion secondary battery packs are usually provided with holes for connecting charging / discharging cables and plugs to the current-carrying parts inside the pack or module, which can be used as openings. Is.
  • the size (area) of the opening is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 12.5% or less with respect to the surface area of the storage container, and is preferably 6.3%. More preferably, it is less than%.
  • the size of the opening is 12.5% or less with respect to the surface area of the storage container, it is possible to suppress the oxidation of valuable resources contained in the current collector during the heat treatment.
  • the area of the opening with respect to the surface area of the storage container may be referred to as an “aperture ratio”.
  • the aperture ratio can be the total area of each opening with respect to the surface area of the storage container.
  • the opening ratio in the storage container is within the above-mentioned preferable range, for example, when the atmosphere outside the storage container is an air atmosphere, the atmosphere inside the storage container at the time of heat treatment is set to a hypoxic atmosphere. be able to. Therefore, since excessive combustion of the lithium ion secondary battery during heat treatment can be suppressed, thermal runaway of the lithium ion secondary battery and bursting due to thermal runaway can be suppressed, and damage to the furnace body of the incinerator can be suppressed. be able to.
  • the storage container a container having an openable / closable lid for accommodating the lithium ion secondary battery is preferable.
  • the lithium ion secondary battery can be easily stored in the storage container, and the heat-treated lithium ion secondary battery (heat-treated product) can be easily taken out after the heat treatment step.
  • the lid portion is not particularly limited and may be appropriately selected depending on the intended purpose. Further, the lid portion may be fixed so as to be openable and closable by, for example, a hinge, or may be opened and closed by removing the lid portion.
  • the material of the storage container is not particularly limited and may be appropriately selected depending on the intended purpose, but a material having a melting point higher than the heat treatment temperature (maximum temperature in the heat treatment) is preferable. That is, in the present invention, it is preferable that the melting point of the storage container is higher than the temperature at which the lithium ion secondary battery is heat-treated. By doing so, it is possible to prevent embrittlement and melting of the storage container during the heat treatment.
  • Specific examples of the material in the storage container include iron and stainless steel. For example, when the heat treatment temperature is 660 ° C. or higher and lower than 1,085 ° C., the melting point of iron and stainless steel is higher than the heat treatment temperature. It is possible to prevent embrittlement and melting of the storage container in the above.
  • the heat treatment step it is preferable to perform the heat treatment so that the flame for heat-treating the lithium ion secondary battery does not hit the storage container. That is, in the present invention, when the heat treatment uses fuel, it is preferable that the heat treatment is performed by heating the gas around the storage container without directly irradiating the storage container with a flame. By doing so, it is possible to prevent the lithium ion secondary battery in the storage container from exploding due to thermal runaway. Further, the specific method for performing the heat treatment so that the flame for heat-treating the lithium ion secondary battery does not hit the storage container is not particularly limited and may be appropriately selected depending on the purpose. It is preferable to perform the heat treatment without directing the radiation direction of the flame toward the storage container. In other words, in the present invention, in the heat treatment step, it is preferable to perform the heat treatment without directing the radiation direction of the flame for heat-treating the lithium ion secondary battery toward the storage container.
  • the crushing step is a step of obtaining a crushed product by crushing a heat-treated product (a heat-treated lithium ion secondary battery).
  • the crushing step is not particularly limited as long as it is a step of crushing a heat-treated product (roasted product) to obtain a crushed product, and can be appropriately selected depending on the intended purpose. Further, the crushed product means a crushed product of the heat-treated product.
  • the crushing step is preferably, for example, a step of crushing the heat-treated product by impact to obtain a crushed product. If the outer container of the lithium-ion secondary battery (including the outer case of the lithium-ion secondary battery pack or module) does not melt during the heat treatment, the heat-treated product is heat-treated by a cutting machine before impacting the heat-treated product. It is more preferable to pre-crush the crushed battery.
  • Examples of the method of crushing by impact include a method of throwing a heat-treated object with a rotating striking plate and hitting it against a collision plate to give an impact, and a method of striking a heat-treated object with a rotating striking element (beater). , Hammer crusher, etc.
  • a method of crushing by impact for example, a method of hitting a heat-treated product with a ball such as ceramic may be used, and this method can be performed by a ball mill or the like.
  • crushing by impact can also be performed by using, for example, a biaxial crusher having a short blade width and a short blade length for crushing by compression.
  • a method of crushing by impact for example, a method of hitting a heat-treated product with two rotated chains to give an impact can be mentioned, and for example, a chain mill or the like can be used.
  • Crushing the heat-treated product by impact promotes crushing of the positive electrode current collector (for example, aluminum), but the negative electrode current collector (for example, copper) whose morphology has not changed significantly has a form such as foil.
  • the negative electrode current collector is only cut, and therefore, in the classification step described later, valuable resources derived from the positive electrode current collector (for example, aluminum) and valuable resources derived from the negative electrode current collector (for example, copper). ) And can be efficiently separated from each other.
  • the crushing time in the crushing step is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the crushing time per 1 kg of the lithium ion secondary battery is preferably 1 second or more and 30 minutes or less, preferably 2 seconds or more. 10 minutes or less is more preferable, and 3 seconds or more and 5 minutes or less is particularly preferable.
  • the combustion in the lithium ion secondary battery continues even after the heating of the lithium ion secondary battery in the heat treatment is completed. Therefore, it is preferable to perform crushing after the combustion of the lithium ion secondary battery is completed.
  • the classification step is a step of obtaining coarse-grained products and fine-grained products by classifying the crushed product.
  • the classification step is not particularly limited as long as it is a step in which the crushed product can be classified to obtain a coarse-grained product (sieving product) and a fine-grained product (sieving product), and is appropriately selected according to the purpose. be able to.
  • the classification method is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a vibrating sieve, a multi-stage vibrating sieve, a cyclone, a standard sieve of JIS Z8801 or the like can be used.
  • copper, iron, aluminum, etc. can be separated into coarse-grained products, and lithium can be concentrated in fine-grained products.
  • the particle size of the classification (classification point, opening of the sieve) is not particularly limited and can be appropriately selected according to the purpose.
  • the particle size of the classification is 0.6 mm or more.
  • 2.4 mm or less is preferable, and 0.85 mm or more and 1.7 mm or less is more preferable.
  • the particle size of the classification is 2.4 mm or less, it is possible to suppress the mixing of copper, iron, aluminum, etc. into the fine-grained product.
  • the particle size of the classification is 0.6 mm or more, it is possible to suppress the mixing of lithium, cobalt, nickel and the like into the coarse grain product.
  • a sieve when used as a classification method, a stainless ball or an alumina ball is placed on the sieve as a crushing accelerator to perform classification, so that a small crushed material adhering to a large crushed material can be made large. By separating from the crushed material, the large crushed material and the small crushed material can be separated more efficiently. By doing so, the quality of the recovered metal can be further improved.
  • the crushing step and the classification step can be performed simultaneously. For example, while crushing the heat-treated product obtained in the heat treatment step, the crushed product may be classified into a coarse-grained product and a fine-grained product as a crushing / classification step (crushing / classification).
  • classification of coarse-grained products and fine-grained products may be repeated multiple times. By this reclassification, the impurity grade of each product can be further reduced.
  • the lithium recovery step in the lithium recovery method of the present invention is a step of recovering lithium from a crushed product or the like.
  • the lithium recovery step is not particularly limited as long as lithium can be recovered from crushed products, fine-grained products, leachates containing lithium, solutions containing lithium, and the like, and can be appropriately selected depending on the intended purpose.
  • the lithium recovery step it is preferable to obtain a leachate containing lithium by immersing the crushed product or fine-grained product in water (recover by leaching lithium into the leachate).
  • the lithium recovery step preferably includes a leaching step of immersing the crushed product or fine-grained product in water to obtain a leachate containing lithium.
  • the leaching step is a step in which lithium is leached into water to obtain a leachate by immersing (immersing, putting in water) the crushed product crushed in the crushing step or the fine-grained product recovered in the classification step. If there is, there is no particular limitation, and it can be appropriately selected according to the purpose. Further, in the leaching step, it is preferable to immerse the fine-grained product recovered in the classification step in water.
  • the leachate is usually a slurry-like liquid (suspension).
  • the water for leaching the crushed product or fine-grained product is not particularly limited and may be appropriately selected depending on the purpose.
  • industrial water tap water, ion-exchanged water, ultrapure water, reverse osmosis water, etc.
  • Examples include pure water such as distilled water and ultrapure water.
  • lithium oxide (Li 2 O) or lithium carbonate (Li 2 CO 3 ) in water, lithium hydroxide (LiOH) or lithium carbonate (Li 2 CO 3 ) can be obtained. It can be leached into water and recovered with high efficiency.
  • the leaching method in the leaching step is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a method in which a crushed product or a fine-grained product is put into water and stirred is preferable.
  • the stirring speed of water in the leaching step is not particularly limited and may be appropriately selected depending on the intended purpose, for example, 200 rpm.
  • the leaching time in the leaching step is not particularly limited and may be appropriately selected depending on the intended purpose, for example, 1 hour.
  • the leachate may be subjected to wet magnetic separation (wet magnetic separation) after the leaching step.
  • wet magnetic separation components derived from positive electrode active materials such as cobalt, nickel and manganese, and components derived from magnetic lithium ion secondary battery members such as iron can be recovered. This is also effective in reducing the load on the subsequent filtration process. That is, in the present invention, in the lithium recovery step, the leachate is sorted into a slurry containing lithium and a non-magnetic deposit and a magnetic deposit containing at least one of cobalt and nickel by performing wet magnetic force sorting on the leachate. It is preferable to do so.
  • the leachate containing lithium is filtered to separate the leachate into a solution containing lithium and a residue (recovering lithium into a solution).
  • the lithium recovery step preferably includes a solid-liquid separation step of separating the leachate into a solution containing lithium and a residue by filtering the leachate containing lithium.
  • the slurry obtained by the wet magnetic force sorting is filtered to separate the slurry into a solution containing lithium and a residue containing a non-magnetic deposit. It is preferable to do so.
  • the method for solid-liquid separation is not particularly limited and may be appropriately selected depending on the intended purpose, but a method for solid-liquid separation of a slurry-like lithium leachate using a filter paper or a filter press is preferable.
  • the method for recovering lithium of the present invention may further include a fluorine removing step of removing fluorine ions in a solution containing lithium after the solid-liquid separation step described above.
  • a fluorine removing step of removing fluorine ions in a solution containing lithium for example, lithium carbonate having a reduced grade of fluorine, which is an impurity, can be crystallized from the lithium solution after the fluorine removing step.
  • calcium hydroxide slaked lime
  • fluorine in the solution can be solidified as calcium fluoride and removed by solid-liquid separation.
  • calcium hydroxide is added to the solution to solidify the fluorine contained in the solution as calcium fluoride, and then the solution is filtered to separate the solution from the solution. It is preferable to remove fluorine.
  • calcium hydroxide By adding calcium hydroxide to a solution containing lithium, calcium fluoride is formed by fluorine and calcium ions, and can be removed by solid-liquid separation. Further, since calcium ions can be easily removed by adding carbon dioxide, which will be described later, impurities in a solution containing lithium (lithium solution) can be further reduced.
  • calcium hydroxide when adding calcium hydroxide to the lithium solution, calcium hydroxide may be added directly, or a compound containing calcium hydroxide or the like may be added.
  • a solid formed of calcium hydroxide may be added to the lithium solution, or a solution in which calcium hydroxide is dissolved may be added.
  • the method of adding a solution in which calcium hydroxide is dissolved is preferable in terms of fluorine removal efficiency.
  • the amount of calcium hydroxide added to the total amount of the lithium solution is preferably an amount that allows calcium hydroxide to react with both fluorine and carbonate ions contained in the lithium solution.
  • X mol of fluorine in the lithium solution X mol of fluorine in the lithium solution.
  • the amount of calcium hydroxide added to (mol) and Y mol (mol) of carbonate ion is preferably 0.5 ⁇ (X + 2Y) mol or more and 10 ⁇ (X + 2Y) mol or less, and 0.75 ⁇ (X + 2Y) mol or more 5 More preferably, it is ⁇ (X + 2Y) mol or less.
  • the stirring speed of the lithium solution is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 20 rpm or more and 2000 rpm or less, and more preferably 50 rpm or more and 1000 rpm or less.
  • the stirring time of the lithium solution is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 5 minutes or more and 240 minutes or less, and more preferably 15 minutes or more and 120 minutes or less. .. Further, by setting the stirring time (reaction time) to 240 minutes or less, it is possible to prevent the solidified fluorine from being redissolved.
  • the pH of the lithium solution can be adjusted to 10.5 or more by adjusting the lithium concentration when leaching lithium into water. It is considered that this is because the lithium solution becomes a lithium hydroxide solution.
  • the amount of alkali added to raise the pH after adding calcium hydroxide to 12 or more can be reduced.
  • the pH of the lithium solution after the addition of calcium hydroxide is less than 12, it is preferable to add an additional alkali to adjust the pH to 12 or more.
  • the pH can be adjusted only by adding calcium hydroxide. Under this condition, the dissolved amount of calcium ion (Ca 2+ ) can be suppressed to less than 2,000 mg / L in view of the solubility product of calcium.
  • the amount of a component (for example, carbon dioxide) added for removing calcium ions (Ca 2+) can be reduced.
  • a component for example, carbon dioxide
  • the removal of fluorine from the lithium-containing solution is well performed.
  • calcium ions in calcium hydroxide added to a lithium solution to remove fluorine are solidified as calcium carbonate by adding carbon dioxide to the lithium solution, and removed by solid-liquid separation.
  • carbon dioxide is added to the solution from which fluorine has been removed to solidify the calcium contained in the solution as calcium carbonate, and then the solution is filtered for solid-liquid separation. It is preferable to remove calcium from the solution.
  • the second removing step When the pH of the lithium solution is high (for example, in the case of 10.5 or higher), it is possible to hold the carbon dioxide efficiently in the absorption-solution as CO 3 2- ions in lithium solution, the second removing step The amount of CO 3 2- ion that did not contribute to the removal of the second component in the above can be effectively used as the component (CO 3 ) for the crystallization of lithium carbonate in the subsequent stage.
  • Lithium carbonate having a grade of 99% or more can be recovered from the liquid after removing calcium ions, for example, by evaporative concentration.
  • the method of adding carbon dioxide to the lithium solution is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a method of supplying (spraying) a gas containing carbon dioxide to the lithium solution, carbon dioxide examples thereof include a method of adding the formed solid to a lithium solution.
  • a method of supplying (dissipating) a gas containing carbon dioxide to the lithium solution is preferable in terms of eliminating the need to add impurities to the solution.
  • the gas containing carbon dioxide include carbon dioxide gas and air (Air) as a gas containing CO 2. Of these, carbon dioxide gas is preferable. In other words, it is preferable to add carbon dioxide gas containing carbon dioxide as carbon dioxide to the lithium solution. By doing so, the amount of carbon dioxide added to the lithium solution can be easily controlled, and carbon dioxide can be added efficiently.
  • the method of supplying (aeration) the gas containing carbon dioxide to the lithium solution is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a 20A PVC pipe having 20 holes with a diameter of 5 mm (20A) Hard polyvinyl chloride tube) can be used.
  • a known diffuser used in a water treatment plant, a wastewater treatment plant, a large septic tank, etc. can be used, or ⁇ (diameter) can be used.
  • Gas containing carbon dioxide may be supplied from a nozzle of 1 mm or more, and the gas may be dispersed by a stirring blade attached to the upper part of the nozzle.
  • the supply conditions for supplying (spraying) a gas containing carbon dioxide to the lithium solution are not particularly limited and may be appropriately selected depending on the intended purpose.
  • carbon dioxide gas may be supplied under the condition of dissipating air at 25 L / min for 30 minutes.
  • it is preferable to supply carbon dioxide so that the total amount of calcium hydroxide remaining in the lithium solution can be removed.
  • the lithium recovery method of the present invention may further include a concentration step of concentrating lithium in the solution after the solid-liquid separation step or the fluorine removal step described above.
  • concentration step of concentrating lithium in the solution after the solid-liquid separation step or the fluorine removal step described above.
  • the method of concentration in the concentration step is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include evaporation concentration, concentration by membrane separation, vacuum concentration and the like, but evaporation concentration is preferable. This is because the cost can be reduced by using the waste heat from the factory, and the crystallization of lithium carbonate by heating, which will be described later, can be carried out at the same time as the evaporation and concentration, which simplifies the process. It is desirable to concentrate lithium until the lithium concentration in the liquid reaches 1500 mg / L or more.
  • the lithium recovery method of the present invention it is preferable to add carbon dioxide (CO 2) to the solution containing lithium in the concentration step.
  • CO 2 carbon dioxide
  • the method of adding carbon dioxide to the solution containing lithium is not particularly limited and may be appropriately selected depending on the intended purpose, but it is preferably performed by blowing carbon dioxide gas.
  • the carbonic acid ion concentration of the lithium-containing solution after supplying carbon dioxide is preferably 3000 mg / L or more, and more preferably 6000 mg / L or more.
  • the concentration ratio when evaporating and concentrating a solution containing lithium is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1.5 times or more and 70 times or less, and 2 times or more and 35 times or more. More preferably, it is twice or less.
  • the temperature of the solution when evaporating and concentrating the solution containing lithium is not particularly limited as long as it is a temperature at which the solution containing lithium can be evaporated, and can be appropriately selected depending on the intended purpose. It is preferably 60 ° C. or higher and 105 ° C. or lower.
  • the method for recovering lithium from the leachate or solution is not particularly limited and may be appropriately selected depending on the intended purpose. However, it is preferable to recover lithium by heating the leachate or solution, and the solution is prepared. It is more preferable to recover lithium as lithium carbonate by heating. That is, in the present invention, it is preferable to recover lithium carbonate by heating a solution from which calcium has been removed in the lithium recovery step. For example, when a solution containing lithium is heated to raise the temperature, the solubility of lithium in the solution decreases, so that lithium that cannot be dissolved can be precipitated as a lithium compound and easily recovered. Further, the precipitated lithium (lithium carbonate) can be recovered by a known instrument such as a spoon, a rake, or a scraper. Further, the impurity grade of lithium carbonate can be reduced by further solid-liquid separation of lithium carbonate recovered by a known instrument such as a spoon, a rake, and a scraper to reduce the adhering water content.
  • the method of heating the leachate or the solution is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Examples thereof include a method of heating with a known heater.
  • the temperature of the solution when heating a solution containing lithium to precipitate lithium is not particularly limited as long as it is a temperature at which lithium can be precipitated, and can be appropriately selected depending on the intended purpose. For example, 60 ° C. or higher and 105 ° C. or lower is preferable.
  • the other steps are not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a dry magnetic separation step.
  • the present invention may further include a dry magnetic separation step of sorting the coarse grain products into magnetic and non-magnetic particles by performing dry magnetic separation (dry magnetic separation) on the coarse grain products after the classification step. ..
  • the dry magnetic separation step is not particularly limited as long as it is a step in which coarse-grained products can be sorted into magnetic and non-magnetic products by dry magnetic separation, and can be appropriately selected depending on the intended purpose.
  • the copper of the negative electrode current collector is coated with carbon and bonded with a binder. For example, this binder is decomposed by self-combustion utilizing the residual voltage of a lithium ion secondary battery, so that the carbon quality is reduced and the quality is high. Copper can be recovered in a non-magnetic deposit.
  • the dry magnetic separation step can be performed using a known magnetic force sorter (magnetic separator) or the like.
  • the magnetic separation machine that can be used in the present invention is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Magnetic pulley Examples include a magnetic separator and a hanging magnetic separator.
  • the magnetic force in the dry magnetic separation step can be appropriately selected according to the selection target.
  • the selection target For example, when iron is selected, it is preferably 0.01 T (tesla) or more and 0.3 T or less.
  • a magnetic force higher than the above range may be used. It is also possible to combine different magnetic forces and use them in multiple stages. By doing so, in the method for recovering valuable resources of the present invention, magnetic deposits such as iron and stainless steel and non-magnetic deposits such as copper can be selectively recovered.
  • the method for treating a lithium ion secondary battery of the present invention includes a heat treatment step of obtaining a heat-treated product by heat-treating a lithium ion secondary battery in which a voltage of 80% or more remains with respect to a rated voltage.
  • the details of the heat treatment step in the method for treating the lithium ion secondary battery of the present invention can be the same as the details of the heat treatment step in the method for recovering lithium of the present invention. That is, in the method for treating a lithium ion secondary battery of the present invention, in the heat treatment step, the lithium ion secondary battery is heat-treated at 350 ° C. or higher and 550 ° C.
  • the lithium ion secondary battery itself is burned by heat generation (self-combustion). It is preferable to generate and ignite. By doing so, the binder resin and the electrolytic solution in the lithium ion secondary battery can be efficiently thermally decomposed, and valuable resources such as copper, aluminum cobalt, and nickel, which are valuable resources, can be recovered from the lithium ion secondary battery. It can be made easier. Further, in the method for processing a lithium ion secondary battery of the present invention, for example, while suppressing thermal runaway of the lithium ion secondary battery, the energy derived from the voltage of the lithium ion secondary battery is used to utilize the energy derived from the voltage of the lithium ion secondary battery. Can be processed. Therefore, while suppressing the generation of toxic gas and the like, the lithium ion secondary battery can be stably deactivated (discharge, removal of electrolytic solution, etc.), and the energy required for processing can be suppressed. Can be done.
  • the method for treating a lithium ion secondary battery of the present invention it is preferable to house the lithium ion secondary battery in an accommodating container for heat treatment in the heat treatment step, as in the method for recovering lithium of the present invention. Further, the details of the storage container can be the same as the storage container in the lithium recovery method of the present invention. Further, in the method for treating a lithium ion secondary battery of the present invention, similar to the method for recovering lithium of the present invention, heat treatment is performed without directing the radiation direction of the flame for heat treatment of the lithium ion secondary battery toward the storage container. , It is preferable to perform the heat treatment so that the flame does not hit the storage container. By doing so, it is possible to prevent a sudden temperature rise of the lithium ion secondary battery, so that it becomes easier to recover valuable resources more safely.
  • the lithium ion secondary battery has an outer case (housing) containing aluminum, and the lithium ion secondary battery itself
  • the heat treatment step performed after the combustion (self-combustion) due to heat generation is completed, it is preferable to recover the aluminum by melting the outer case.
  • the exterior of the lithium ion secondary battery is formed by heat-treating the lithium ion secondary battery at 750 ° C. or higher in a heat treatment step performed after combustion (self-combustion) due to heat generation of the lithium ion secondary battery itself is completed.
  • the aluminum contained in the case (housing) and other parts (for example, electrodes) of the lithium ion secondary battery can be easily sorted (separated), and the aluminum derived from the case can be easily recovered. can. Further, in this case, the lithium ion secondary battery is placed on a net and heat-treated, or the lithium ion secondary battery is placed on a groove (slit) and heat-treated to be melted. It is preferable to make it easier to recover the aluminum.
  • a net or groove may be provided in the storage container, for example.
  • the lithium ion secondary battery can be treated safely and easily at low cost to make it harmless, for example, by thermal runaway in the lithium ion secondary battery.
  • the treatment can be performed without causing damage to the furnace used for rupture and the resulting heat treatment.
  • the burst due to thermal runaway of the lithium ion secondary battery is caused by a high proportion of nickel as the positive electrode active material, for example, NCA type or NCM811 in which Ni accounts for 75% or more by weight among Ni, Co, Mn, and Al. It is especially likely to occur during heat treatment. Therefore, in the present invention, even a lithium ion secondary battery in which the proportion of nickel in the positive electrode active material is 75% or more can be suitably heat-treated.
  • the method for treating a lithium ion secondary battery of the present invention includes a crushing step of obtaining a crushed product by crushing a heat-treated product and a classification step of obtaining a coarse-grained product and a fine-grained product by classifying the crushed product. , Are more preferably included.
  • the details of the crushing step and the classification step in the method for treating the lithium ion secondary battery of the present invention can be the same as the details of the crushing step and the classification step in the method for recovering lithium of the present invention.
  • the copper of the negative electrode current collector is coated with carbon and bonded by a binder.
  • this binder is decomposed by self-combustion utilizing the residual voltage of the lithium ion secondary battery.
  • the method for treating a lithium ion secondary battery of the present invention is a leaching step of immersing a fine-grained product in water to obtain a leaching solution containing lithium, and a wet magnetic selection of the leaching solution to obtain lithium and non-lithium leachate. It is preferable to further include a wet magnetic force sorting step of sorting the slurry containing the magnetic deposit and the magnetic deposit containing at least one of cobalt and nickel.
  • the details of the leaching step and the wet magnetic force sorting step in the lithium ion secondary battery processing method of the present invention can be the same as the details of the leaching step and the wet magnetic force sorting step in the lithium recovery method of the present invention.
  • cobalt and nickel are metallized (improved magnetic property) by causing combustion (self-combustion) due to heat generation of the lithium ion secondary battery itself in the heat treatment step. )It can be performed. Therefore, in the treatment method for the lithium ion secondary battery of the present invention, for example, cobalt and nickel metals can be recovered as magnetic deposits with a high recovery rate and quality by performing wet magnetic force sorting.
  • FIG. 1 is a diagram showing an example of a processing flow in one embodiment of the lithium recovery method of the present invention.
  • a heat treatment heat treatment step
  • LIB lithium ion secondary battery
  • the electric energy of the lithium ion secondary battery can be utilized for the heat treatment.
  • the LIB heat-treated product is crushed and classified (crushing step and classification step) to obtain coarse-grained products and fine-grained products.
  • copper (Cu), iron (Fe), and the like can be separated as coarse grain products.
  • the fine-grained product is immersed in water to obtain a slurry-like leachate.
  • lithium lithium oxide or lithium carbonate
  • a residue containing nickel (Ni), cobalt (Co), and manganese (Mn) is formed in the leachate.
  • the (undischarged) lithium ion secondary battery in which 80% or more of the rated voltage remains is Li x C or Li (1-x) CoO 2 (0 ⁇ x ⁇ 1).
  • lithium such as lithium fluoride (LiF), lithium carbonate (Li 2 CO 3 ) and lithium oxide (Li 2 O) can be added to water by heat treatment. It is easy to make the substance in a soluble form, and as a result, the recovery rate (leaching rate) of lithium in the leachate can be improved. Then, the residue containing nickel (Ni), cobalt (Co), and manganese (Mn) is removed from the liquid in which lithium has leached by solid-liquid separation to obtain a solution in which lithium has leached.
  • LiF lithium fluoride
  • Li 2 CO 3 lithium carbonate
  • Li 2 O lithium oxide
  • a lithium-ion secondary battery with a total weight of 400 kg (the ratio of Ni to the amount of Co, Ni, Mn, Al in the positive electrode active material is 75% on average and 100% of the voltage remains) is 2350 mm wide and 1650 mm deep. It was placed in a SUS304 storage container having a height of 400 mm and a plate thickness of 4 mm, and this container was placed in the central part of the furnace having a width of 3050 mm, a depth of 8950 mm and a height of 3940 mm. The temperature inside the furnace was measured from a thermocouple installed on the wall surface of the exhaust gas outlet provided in the upper part of the furnace.
  • the storage container is provided with an opening having a diameter of 500 mm in the center of the lid, and a slit (groove) having a width of 30 mm for collecting the molten aluminum is provided on the bottom surface of the storage container. Further, thermocouples were arranged on the upper and lower surfaces of the lithium ion secondary battery in the storage container, and the temperature of the pack body of the lithium ion secondary battery during the heat treatment described later was measured.
  • Example 1 a total of four burners, two kerosene burners arranged on both sides 1000 mm from the opening of the furnace and two kerosene burners arranged on both sides 7950 mm from the opening of the furnace, are burned.
  • the inside of the furnace was heated by allowing it to be heated, and heat treatment was performed so that the flame of the burner did not hit the storage container. That is, in Example 1, the heat treatment was performed without directing the radiation direction of the flame for heat-treating the lithium ion secondary battery toward the storage container.
  • the temperature inside the furnace was first raised from about 20 ° C. to 400 ° C. in 1 hour. Then, when the temperature inside the furnace was maintained at 400 ° C.
  • a hammer crusher (Makino type swing hammer crusher HC-20-3.7, manufactured by Makino Sangyo Co., Ltd.) was used as a crushing device, and the hole diameter of the punching metal at the outlet was 10 mm at 50 Hz (hammer peripheral speed 38 m / s). Under the conditions, the heat-treated lithium ion secondary battery (heat-treated product of the lithium ion secondary battery) was crushed to obtain a crushed product of the lithium ion secondary battery.
  • the crushed material of the lithium ion secondary battery was sieved (classified) using a sieve (diameter 200 mm, manufactured by Tokyo Screen Co., Ltd.) having a mesh opening (classification point) of 1.2 mm. Then, after sieving, 1.2 mm above the sieve (coarse grain product) and below the sieve (fine grain product) were collected.
  • wet magnetic separation was performed at 25% and a slurry supply rate of 100 L / h / min, and magnetically deposited material and 200 L of slurry containing non-magnetically deposited material were recovered.
  • the slurry containing this non-magnetic deposit is pressure-filtered at a pressure of 0.6 MPa with a filter press using a filter cloth (product name PP934K, manufactured by Nakao Filter Industry Co., Ltd.) to separate the non-magnetic deposit into a solid-liquid separation, and a lithium leachate (lithium leachate) ( A solution containing lithium) was obtained.
  • the obtained lithium leachate (pH about 10.5, fluorine concentration 500 mg / L) was prepared in an FRP tank (manufactured product, diameter 1084 mm, height 1500 mm). This was stirred with a stirrer (HP-5006, manufactured by Hanwa Kakoki), slaked lime (calcium hydroxide) having a slurry concentration of 25% and water were added, and the mixture was reacted for 1 hour while adjusting the pH to 12.0 (fluorine).
  • a stirrer HP-5006, manufactured by Hanwa Kakoki
  • slaked lime calcium hydroxide
  • the lithium solution in which this calcium carbonate is precipitated is solid-liquid separated by pressure filtration at a pressure of 0.6 MPa with a filter press using a filter cloth (product name PP934K, manufactured by Nakao Filter Industry Co., Ltd.) to remove calcium.
  • a removed lithium solution (a solution after removing calcium) was obtained.
  • Lithium carbonate crystallization> After first preparing 200 L of the lithium solution (calcium-removed liquid, 450 L) in a 250 L SUS304 cylindrical container (manufactured product, inner diameter 650 mm, height 1180 mm), a stirrer (product name: super agitator, model number TTF- While stirring at a stirring speed of 200 rpm at 2 V (manufactured by Toyoki Kogyo), the rest was continuously supplied at a speed of 7 L / h.
  • a stirrer product name: super agitator, model number TTF- While stirring at a stirring speed of 200 rpm at 2 V (manufactured by Toyoki Kogyo)
  • the liquid temperature is raised by supplying steam at 158 ° C into a tube-type heat exchanger made of Teflon (registered trademark) (manufactured by Kansetsu Sangyo, product, heat transfer area 1.4 m 2) arranged in this container.
  • Heat is exchanged under the condition of 100 ° C., and the liquid is evaporated and concentrated 5 times at normal pressure (the volume of the liquid after evaporation and concentration (including the crystallized product of lithium carbonate) is 90 L), and the liquid that is evaporated and concentrated is filtered (product name).
  • a crystallized product of lithium carbonate was obtained by pressure filtration at a pressure of 0.6 MPa with a filter press using PP934K (manufactured by Nakao Filter Industry Co., Ltd.).
  • Example 2 In Example 1, after the self-combustion of the lithium ion secondary battery was completed, the combustion of the four burners was restarted, the temperature was raised to 800 ° C. in the furnace at 1 h for 1 hour, and then 800 ° C. was maintained for 1 hour for additional heat treatment. The heat treatment was performed in the same manner as in Example 1 except that the above was performed. In Example 2, after this heat treatment, the combustion of all the burners is stopped, heat is dissipated for 1 hour, and then the storage container is taken out from the furnace, and the internal lithium ion secondary battery (after heat treatment) and the lower part of the storage container are removed. The aluminum collected in the slit was collected. Further, in Example 2, the treatment after the heat treatment was performed in the same manner as in Example 1, and lithium carbonate and the like were recovered.
  • Example 3 In Example 1, the same treatment as in Example 1 was carried out except that the temperature inside the furnace was raised from about 20 ° C. to 800 ° C. in 1 hour (400 ° C. in Example 1) and the heat treatment was performed. In Example 3, ignition was confirmed from the storage container when the temperature inside the furnace reached 700 ° C. (the temperature of the main body of the lithium ion secondary battery was 430 ° C.). In Example 3, when ignition was confirmed from the containment vessel, the combustion of the burner was completely stopped, but the temperature inside the furnace rose from 700 ° C. to 960 ° C. in 10 minutes.
  • Example 3 as compared with Example 1, the copper foil becomes brittle due to rapid combustion (oxidation reaction) inside the container, and the copper recovery rate to coarse-grained products after crushing and classification and lithium in fine-grained products Although the leaching rate of copper into water decreased (47% of Example 1), the recovery rate of lithium (lithium carbonate) was higher than that of Comparative Example 1 described later.
  • Example 4 In Example 1, when the temperature inside the heating furnace was raised to 400 ° C., combustion of one burner at a position where the storage container was exposed to the flame was started, and heat treatment was performed while applying the flame to the storage container. The same processing as was performed. In Example 4, ignition was confirmed from the storage container 3 minutes after the start of applying the flame (lithium ion secondary battery body temperature 430 ° C.). In Example 4, when ignition was confirmed from the containment vessel, the combustion of the burner was completely stopped, but the temperature inside the furnace rose from 400 ° C. to 920 ° C. in 10 minutes.
  • Example 4 the copper foil became brittle due to rapid combustion (oxidation reaction) inside the container, and the copper recovery rate to the coarse-grained product after crushing and classification and the leaching rate of lithium in the fine-grained product into water were increased. Although it decreased (32% of Example 1), the recovery rate of lithium (lithium carbonate) was higher than that of Comparative Example 1 described later.
  • Example 1 In Example 1, the same treatment as in Example 1 was carried out except that the lithium ion secondary battery was discharged to a residual voltage of 50% and then heat-treated. In Comparative Example 1, the lithium ion secondary battery did not ignite (self-combustion), and the binder did not decompose and the positive electrode active material did not decompose (lithium solubilization and cobalt and nickel metalization). Further, the lithium ion battery after the heat treatment was disassembled, and it was confirmed that the separator and the surfaces of the positive electrode and the negative electrode were moistened with the electrolytic solution, and the detoxification was not completed.
  • Comparative Example 1 the high-grade copper concentrate could not be recovered (the grade of copper was low), the leachation rate of lithium was low, and the recovery rates of cobalt and nickel in the magnetized material were low. Further, in Comparative Example 1, since the lithium ion secondary battery did not ignite (self-combustion), the amount of kerosene required to complete the heat treatment increased by 20% as compared with Example 1.
  • Table 1 shows the recovery rate of each element in each recovered product when the amount of each element contained in the lithium ion secondary battery to be treated is 100%.
  • Table 2 shows the grade of each element in each recovered product.
  • the lithium recovery method of the present invention is a lithium recovery method for recovering lithium from a lithium ion secondary battery, and lithium ions having a voltage of 80% or more remaining with respect to the rated voltage. It includes a heat treatment step of obtaining a heat-treated product by heat-treating a secondary battery, a crushing step of obtaining a crushed product by crushing the heat-treated product, and a lithium recovery step of recovering lithium from the crushed product.
  • the lithium recovery method of the present invention eliminates the need for discharging the lithium ion secondary battery, can reduce the energy cost in the heat treatment process, and recovers lithium from the lithium ion secondary battery with a high recovery rate. be able to.
  • the method for treating a lithium ion secondary battery of the present invention includes a heat treatment step of obtaining a heat-treated product by heat-treating a lithium ion secondary battery in which a voltage of 80% or more remains with respect to a rated voltage.
  • the method for treating the lithium ion secondary battery of the present invention eliminates the need for discharging the lithium ion secondary battery, can reduce the energy cost in the heat treatment process, and is safe, convenient, and low cost.
  • the next battery can be treated to detoxify (eg, remove the electrolyte).

Abstract

リチウムイオン二次電池からリチウムを回収するリチウムの回収方法であって、定格の電圧に対し80%以上の電圧を残存させたリチウムイオン二次電池を熱処理することにより、熱処理物を得る熱処理工程と、前記熱処理物を破砕することにより、破砕物を得る破砕工程と、前記破砕物から、リチウムを回収するリチウム回収工程と、を含むリチウムの回収方法等を提供する。

Description

リチウムの回収方法及びリチウムイオン二次電池の処理方法
 本発明は、リチウムイオン二次電池からのリチウムの回収方法及びリチウムイオン二次電池の処理方法に関する。
 リチウムイオン二次電池は、従来の鉛蓄電池、ニッカド二次電池などに比較して軽量、高容量、高起電力の二次電池であり、パソコン、電気自動車、携帯機器などの二次電池として使用されている。例えば、リチウムイオン二次電池の正極には、コバルトやニッケルなどの有価物が、コバルト酸リチウム(LiCoO)、三元系正極材(LiNiCoMn(x+y+z=1))などとして使用されている。
 リチウムイオン二次電池は、今後も使用の拡大が予想されていることから、製造過程で発生した不良品や使用機器および電池の寿命などに伴い廃棄されるリチウムイオン二次電池からリチウムなどの有価物を回収することが、資源リサイクルの観点から望まれている。リチウムイオン二次電池からリチウムなどの有価物を回収する際には、リチウムイオン二次電池に使用されている種々の金属や不純物を分離して回収することが、回収物の価値を高める点から重要である。
 リチウムイオン二次電池から有価物を回収する技術としては、例えば、使用済みのリチウムイオン二次電池に放電工程を行い、放電後のリチウムイオン二次電池に対して、熱分解工程、破砕工程、篩分工程、風力選別工程、及び磁力選別工程を行うことにより、銅箔、アルミニウム箔、活物質成分、金属材などの有価物を回収する技術が提案されている(例えば、特許文献1参照)。
 上述したような従来技術では、安全面などの問題から、放電した状態のリチウムイオン二次電池を、熱処理や有価物を選別する処理の対象とすることを当然の前提としている。このように、従来技術では、電圧が残っている(残存している)状態のリチウムイオン二次電池を処理することについては、そもそも検討の対象となるものではなく、全く検討されてこなかった。
 また、リチウムイオン二次電池からリチウムを回収する技術に種々の検討が行われているが、従来技術においては、リチウムの回収率を向上させることに限界があり、リチウムの回収率をより高くできる手法を見出すことは困難を極めていた。
 さらに、上述したように、リチウムイオン二次電池については使用の拡大が予測されることから、廃棄物としての発生量も増大すると考えられる。
 従来技術においては、多量のリチウムイオン二次電池からリチウム等の有価物を回収するにあたり、電池を放電させる工程が必要であることや、熱処理工程でのエネルギー消費が大きいという問題があった。また、回収されるリチウムの純度を向上する手法が求められていた。
 したがって、廃棄されるリチウムイオン二次電池の放電が不要となり、熱処理工程でのエネルギーコストを下げることが求められており、この手法を実現するためには、電圧が残った状態のリチウムイオン二次電池を安全かつ簡便に処理できる手法が必要となる。
特許第6198027号公報
 本発明は、従来における諸問題を解決し、以下の目的を達成することを課題とする。
 すなわち、本発明は、リチウムイオン二次電池の放電が不要となり、熱処理工程でのエネルギーコストを下げることができる、リチウムの回収方法及びリチウムイオン二次電池の処理方法を提供することを目的とする。
 上記の課題を解決するための手段としては、以下の通りである。すなわち、
<1> リチウムイオン二次電池からリチウムを回収するリチウムの回収方法であって、
 定格の電圧に対し80%以上の電圧を残存させたリチウムイオン二次電池を熱処理することにより、熱処理物を得る熱処理工程と、
 前記熱処理物を破砕することにより、破砕物を得る破砕工程と、
 前記破砕物から、リチウムを回収するリチウム回収工程と、
 を含むことを特徴とするリチウムの回収方法。
<2> 前記熱処理工程が、前記リチウムイオン二次電池を350℃以上550℃以下に加熱する処理を含む、<1>に記載のリチウムの回収方法。
<3> 前記熱処理工程において、前記リチウムイオン二次電池の発火が生じているときの熱の供給量を、前記リチウムイオン二次電池の発火が生じる前の熱の供給量の50%以下に変更する、<2>に記載のリチウムの回収方法。
<4> 前記熱処理工程において、前記リチウムイオン二次電池自体の発火が終了した後に、前記リチウムイオン二次電池を750℃以上1,085℃未満で更に熱処理する、<2>から<3>のいずれか記載のリチウムの回収方法。
<5> 前記熱処理工程において、前記リチウムイオン二次電池を収容容器に収容して熱処理を行う、<1>から<4>のいずれかに記載のリチウムの回収方法。
<6> 前記収容容器が、気体を流通可能な開口部を有する、<5>に記載のリチウムの回収方法。
<7> 前記収容容器が、前記リチウムイオン二次電池を収容するための開閉可能な蓋部を有する、<5>から<6>のいずれかに記載のリチウムの回収方法。
<8> 前記収容容器の融点が、前記リチウムイオン二次電池を熱処理する際の温度より高い、<5から<7>のいずれかに記載のリチウムの回収方法。
<9> 前記熱処理工程において、前記リチウムイオン二次電池を熱処理するための火炎が、前記収容容器に当たらないようにして熱処理を行う、<5>から<8>のいずれかに記載のリチウムの回収方法。
<10> 前記熱処理工程において、前記リチウムイオン二次電池を熱処理するための前記火炎の放射方向を、前記収容容器に向けずに熱処理を行う、<9>に記載のリチウムの回収方法。
<11> 前記破砕工程の後に、前記破砕物を分級することにより、粗粒産物と細粒産物とを得る分級工程を含み、
 前記リチウム回収工程において、前記細粒産物からリチウムを回収する、<1>から<10>のいずれかに記載のリチウムの回収方法。
<12> 前記リチウム回収工程において、前記破砕物を水に浸けることにより、リチウムを含む浸出液を得る、<1>から<11>のいずれかに記載のリチウムの回収方法。
<13> 前記リチウム回収工程において、前記浸出液をろ過することにより、前記浸出液を、リチウムを含む溶液と残渣とに固液分離する、<12>に記載のリチウムの回収方法。
<14> 前記リチウム回収工程において、前記浸出液に対して湿式磁力選別を行うことにより、前記浸出液を、リチウム及び非磁着物を含むスラリーと、コバルト及びニッケルの少なくともいずれかを含む磁着物とに選別する、<12>に記載のリチウムの回収方法。
<15> 前記リチウム回収工程において、前記スラリーをろ過することにより、前記スラリーを、リチウムを含む溶液と非磁着物を含む残渣とに固液分離する、<14>に記載のリチウムの回収方法。
<16> 前記リチウム回収工程において、前記溶液に水酸化カルシウムを添加して、前記溶液に含まれるフッ素をフッ化カルシウムとして固化させた後、前記溶液をろ過して固液分離することにより、前記溶液からフッ素を除去する、<15>に記載のリチウムの回収方法。
<17> 前記リチウム回収工程において、フッ素を除去した前記溶液に二酸化炭素を添加して、前記溶液に含まれるカルシウムを炭酸カルシウムとして固化させた後、前記溶液をろ過して固液分離することにより、前記溶液からカルシウムを除去する、<16>に記載のリチウムの回収方法。
<18> 前記リチウム回収工程において、カルシウムを除去した前記溶液を加熱することにより炭酸リチウムを回収する、<17>に記載のリチウムの回収方法。
<19> 定格の電圧に対し80%以上の電圧を残存させたリチウムイオン二次電池を熱処理することにより、熱処理物を得る熱処理工程を含むことを特徴とするリチウムイオン二次電池の処理方法。
<20> 前記熱処理工程が、前記リチウムイオン二次電池を350℃以上550℃以下に加熱する処理を含む、<19>に記載のリチウムイオン二次電池の処理方法。
<21> 前記熱処理工程において、前記リチウムイオン二次電池の発火が生じているときの熱の供給量を、前記リチウムイオン二次電池の発火が生じる前の熱の供給量の50%以下に変更する、<20>に記載のリチウムイオン二次電池の処理方法。
<22> 前記熱処理工程において、前記リチウムイオン二次電池の発火が終了した後に、前記リチウムイオン二次電池を750℃以上1,085℃未満で更に熱処理する、<20>から<21>のいずれか記載のリチウムイオン二次電池の処理方法。
<23> 前記リチウムイオン二次電池がアルミニウムを含む外装ケースを有し、
 前記熱処理工程において、前記外装ケースを溶融させることによりアルミニウムを回収する、<22>に記載のリチウムイオン二次電池の処理方法。
<24> 前記熱処理工程において、前記リチウムイオン二次電池を収容容器に収容して熱処理を行う、<19>から<23>のいずれかに記載のリチウムイオン二次電池の処理方法。
<25> 前記収容容器が、気体を流通可能な開口部を有する、<24>に記載のリチウムイオン二次電池の処理方法。
<26> 前記収容容器が、前記リチウムイオン二次電池を収容するための開閉可能な蓋部を有する、<24>から<25>のいずれかに記載のリチウムイオン二次電池の処理方法。
<27> 前記収容容器の融点が、前記リチウムイオン二次電池を熱処理する際の温度より高い、<24>から<26>のいずれかに記載のリチウムイオン二次電池の処理方法。
<28> 前記熱処理工程において、前記リチウムイオン二次電池を熱処理するための火炎が、前記収容容器に当たらないようにして熱処理を行う、<24>から<27>のいずれかに記載のリチウムイオン二次電池の処理方法。
<29> 前記熱処理工程において、前記リチウムイオン二次電池を熱処理するための前記火炎の放射方向を、前記収容容器に向けずに熱処理を行う、<28>に記載のリチウムイオン二次電池の処理方法。
<30> 前記熱処理物を破砕することにより、破砕物を得る破砕工程と、
 前記破砕物を分級することにより、粗粒産物と細粒産物とを得る分級工程と、
 を更に含む、<19>から<28>のいずれかに記載のリチウムイオン二次電池の処理方法。
<31> 前記分級工程において、前記粗粒産物に銅を回収する、<30>に記載のリチウムイオン二次電池の処理方法。
<32> 前記細粒産物を水に浸けることにより、リチウムを含む浸出液を得る浸出工程を更に含む、<30>から<31>のいずれかに記載のリチウムイオン二次電池の処理方法。
<33> 前記浸出液に対して湿式磁力選別を行うことにより、前記浸出液を、リチウム及び非磁着物を含むスラリーと、コバルト及びニッケルの少なくともいずれかを含む磁着物とに選別する湿式磁力選別を更に含む、<32>に記載のリチウムイオン二次電池の処理方法。
<34> 前記リチウムイオン二次電池における、正極活物質中のニッケルの割合が75%以上である、<19>から<33>のいずれかに記載のリチウムイオン二次電池の処理方法。
 本発明によると、従来における諸問題を解決することができ、リチウムイオン二次電池の放電が不要となり、熱処理工程でのエネルギーコストを下げることができる、リチウムの回収方法及びリチウムイオン二次電池の処理方法を提供することができる。
 さらに、本発明によると、リチウムイオン二次電池からリチウムを高い回収率で回収可能なリチウムの回収方法を提供することができる。加えて、本発明によると、例えば、安全かつ簡便に低コストで、リチウムイオン二次電池を処理して無害化(例えば、放電及び電解液の除去)することができるリチウムイオン二次電池の処理方法を提供することができる。
図1は、本発明のリチウムの回収方法の一実施形態における処理の流れの一例を示す図である。
(リチウムの回収方法及びリチウムイオン二次電池の処理方法)
 本発明のリチウムの回収方法は、熱処理工程と、破砕工程と、リチウム回収工程とを含み、分級工程を含むことが好ましく、更に必要に応じてその他の工程を含む。
 また、本発明のリチウムイオン二次電池の処理方法は、熱処理工程を含み、破砕工程、分級工程、浸出工程、湿式磁力選別工程を含むことが好ましく、更に必要に応じてその他の工程を含む。
 ここで、本発明では、定格の電圧に対し80%以上の電圧を残存させたリチウムイオン二次電池を熱処理する。
 本発明者らが、リチウムイオン二次電池から、リチウムなどの有価物を回収する技術について、鋭意検討を重ねる中で、リチウムイオン二次電池における電圧の残存量によらずリチウムイオン二次電池からリチウムの回収を行うことができることを見出した。
 本発明者らが検討を進めたところ、リチウムイオン二次電池における電圧の残存量が所定量以上である場合に、熱処理時のエネルギー効率を向上できることを知見した。本発明のリチウムの回収方法は、この知見に基づくものである。
 また、電圧が残っているリチウムイオン二次電池の熱処理に関しては、例えば、『リチウムイオン電池の安全性評価試験における発生事象について(交通安全環境研究所フォーラム講演概要,135-138,2012)(https://www.ntsel.go.jp/forum/2012files/pt_21.pdf)』において、「リチウムイオン電池が外部加熱されると、電池内部で正極材料、電解液、負極材料が単独及び相互に発熱反応を起こす」と記載されている。このように、電圧が残っているリチウムイオン二次電池が加熱されると、リチウムイオン二次電池内で発熱反応が生じ、蓄えられていた電気エネルギーが熱エネルギーに変換され、リチウムイオン二次電池自体が発熱する。
 本発明のリチウムの回収方法では、電圧を所定以上残した状態のリチウムイオン二次電池に対して熱処理を行うため、熱処理の際に、リチウムイオン二次電池内で発熱反応が生じ、蓄えられていた電気エネルギーが熱エネルギーに変換され、リチウムイオン二次電池自体が発熱する場合がある。
 このため、本発明のリチウムの回収方法では、一つの側面では、従来技術と比べて、少ないエネルギー(熱エネルギー)で熱処理を行うこと、即ち、加熱の温度をより低くすることや加熱する時間をより短くすることができる。
 また、本発明のリチウムイオン二次電池の処理方法においては、定格の電圧に対し80%以上の電圧を残存させたリチウムイオン二次電池を熱処理する。より具体的には、本発明のリチウムイオン二次電池の処理方法では、例えば、リチウムイオン二次電池を所定の温度(例えば、350℃以上550℃以下)で熱処理する。本発明のリチウムイオン二次電池の処理方法では、こうすることにより、リチウムイオン二次電池自体の発熱による燃焼(自燃)を生じさせて発火させる。
 上述したように、電圧が残っているリチウムイオン二次電池が加熱されると、リチウムイオン二次電池自体が発熱するため、この発熱を利用してリチウムイオン二次電池自体を燃焼させることができる。このため、本発明のリチウムイオン二次電池の処理方法では、従来技術よりも省エネルギーで、リチウムイオン二次電池におけるバインダ樹脂や電解液、正極活物質を熱分解させることができ、リチウムイオン二次電池から有価物である銅、アルミニウム、コバルト、ニッケルなどの有価物を回収しやすくすることができる。また、正極活物質の分解によりリチウムが水に溶解しやすくなる。
 さらに、本発明のリチウムイオン二次電池の処理方法では、例えば、リチウムイオン二次電池を所定の温度で熱処理することにより、リチウムイオン二次電池の自燃を生じさせて発火させることで、リチウムイオン二次電池の熱暴走を抑制しつつ、リチウムイオン二次電池の電圧由来のエネルギーを利用して、リチウムイオン二次電池の処理を行うことができる。このようにしてリチウムイオン二次電池を処理することにより、有毒なガスなどの発生を抑制しつつ、リチウムイオン二次電池を安定的に失活(放電及び電解液の除去等)させることができると共に、処理に必要となるエネルギーを抑制することができる。
 以下では、まず、本発明のリチウムの回収方法について説明する。
 本発明のリチウムの回収方法は、リチウムイオン二次電池からリチウムを回収するための方法である。
 また、本発明においては、リチウム以外の物質を更に回収してもよく、例えば、リチウムイオン二次電池に含まれるリチウム以外の有価物を更に回収してもよい。
 ここで、有価物とは、廃棄せずに取引対象たりうるものを意味し、例えば、各種金属などが挙げられる。リチウムイオン二次電池における有価物としては、例えば、銅(Cu)、アルミニウム(Al)、コバルト(Co)、ニッケル(Ni)などが挙げられる。
-リチウムイオン二次電池-
 本発明において、リチウムイオン二次電池としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、リチウムイオン二次電池の製造過程で発生した不良品のリチウムイオン二次電池、使用機器の不良、使用機器の寿命などにより廃棄されるリチウムイオン二次電池、寿命により廃棄される使用済みのリチウムイオン二次電池などが挙げられる。
 リチウムイオン二次電池の形状、構造、大きさ、材質としては、特に制限はなく、目的に応じて適宜選択することができる。
 リチウムイオン二次電池の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ラミネート型、円筒型、ボタン型、コイン型、角型、平型などが挙げられる。
 また、リチウムイオン二次電池の形態としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、バッテリーセル、バッテリーモジュール、バッテリーパックなどが挙げられる。ここで、バッテリーモジュールは、単位電池であるバッテリーセルを複数個接続して一つの筐体にまとめたものを意味し、バッテリーパックとは、複数のバッテリーモジュールを一つの筐体にまとめたものを意味する。また、バッテリーパックは、制御コントローラーや冷却装置を備えたものであってもよい。
 リチウムイオン二次電池としては、例えば、正極と、負極と、セパレータと、電解質および有機溶剤を含有する電解液と、正極、負極、セパレータ、及び電解液を収容する電池ケースである外装容器と、を備えたものなどが挙げられる。なお、リチウムイオン二次電池は、正極や負極などが脱落した状態であってもよい。
--正極--
 正極としては、正極活物質を有していれば特に制限はなく、目的に応じて適宜選択することができ、例えば、正極集電体を有することが好ましい。
 正極の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状、シート状などが挙げられる。
---正極集電体---
 正極集電体としては、その形状、構造、大きさ、材質などに、特に制限はなく、目的に応じて適宜選択することができる。
 正極集電体の形状としては、例えば、箔状などが挙げられる。
 正極集電体の材質としては、例えば、ステンレススチール、ニッケル、アルミニウム、銅、チタン、タンタルなどが挙げられる。これらの中でも、アルミニウムが好ましい。
 正極材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、リチウムを含有する正極活物質を少なくとも含み、必要により導電剤と、結着樹脂とを含む正極材などが挙げられる。
 正極活物質としては、例えば、マンガン酸リチウム(LiMn)、コバルト酸リチウム(LiCoO)、コバルトニッケル酸リチウム(LiCo1/2Ni1/2)、3元系やNCM系などと呼ばれるLiNiCoMn(x+y+z=1)、NCA系などと呼ばれるLiNiCoAl(x+y+z=1)、リン酸鉄リチウム(LiFePO)、チタン酸リチウム(LiTiO)などが挙げられる。この中で、マンガン酸リチウム、コバルト酸リチウム、コバルトニッケル酸リチウム(LiCo1/2Ni1/2)、3元系やNCM系などと呼ばれるLiNiCoMn(x+y+z=1)、NCA系などと呼ばれるLiNiCoAl(x+y+z=1)が、熱処理でリチウムを水に可溶な形態に変化させやすい事から好適である。
 導電剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カーボンブラック、グラファイト、カーボンファイバー、金属炭化物などが挙げられる。
 結着樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ化ビニリデン、四フッ化エチレン、アクリロニトリル、エチレンオキシド等の単独重合体または共重合体、スチレン-ブタジエンゴムなどが挙げられる。
--負極--
 負極としては、負極活物質を有していれば特に制限はなく、目的に応じて適宜選択することができ、例えば、負極集電体を有することが好ましい。
 負極の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状、シート状などが挙げられる。
---負極集電体---
 負極集電体としては、その形状、構造、大きさ、材質などに、特に制限はなく、目的に応じて適宜選択することができる。
 負極集電体の形状としては、例えば、箔状などが挙げられる。
 負極集電体の材質としては、例えば、ステンレススチール、ニッケル、アルミニウム、銅、チタン、タンタルなどが挙げられる。これらの中でも、銅が好ましい。
 負極活物質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、グラファイト、ハードカーボン等の炭素材料、シリコン、チタネイトなどが挙げられる。
 以下では、本発明のリチウムの回収方法における各工程について、詳細に説明する。
<熱処理工程>
 熱処理工程は、定格の電圧に対し80%以上の電圧を残存させたリチウムイオン二次電池を熱処理することにより、熱処理物を得る工程である。
 また、熱処理物(焙焼物)は、リチウムイオン二次電池を熱処理して得られたものを意味する。
 このように、一定量以上の電圧が残存するリチウムイオン二次電池を熱処理することで、電池内の電気エネルギーが熱エネルギーに変換されて、リチウムイオン二次電池自体が発熱し、正極活物質中のLi(Ni/Co/Mn)Oや電解質中のLiPFにおけるリチウムが、フッ化リチウム(LiF)や炭酸リチウム(LiCO)や酸化リチウム(LiO)などリチウムが水溶液に可溶な形態の物質を形成するようになる。
 ここで、リチウムイオン二次電池における定格の電圧とは、リチウムイオン二次電池を通常の状態で使用したときの電圧(起電力)を意味し、当該リチウムイオン二次電池が製品として使用されるときの電圧とすることができる。つまり、リチウムイオン二次電池における定格の電圧は、例えば、劣化していないリチウムイオン二次電池を十分に充電した状態で使用したときの端子間の電圧とすることができ、より具体的には、リチウムイオン二次電池における公称電圧とすることができる。
 また、本発明においては、複数のリチウムイオン二次電池を一括して熱処理する場合に、全てのリチウムイオン二次電池が定格の電圧に対し80%以上の電圧を残存した状態であってもよいし、一部のリチウムイオン二次電池が定格の電圧に対し80%以上の電圧であってもよい。つまり、本発明において、複数のリチウムイオン二次電池を一括して熱処理する場合には、処理を行うリチウムイオン二次電池の中に、定格の電圧に対し80%以上の電圧を残存した状態のものが含まれていればよい。
 ここで、複数のリチウムイオン二次電池を一括して熱処理する場合における、熱処理するリチウムイオン二次電池の総数に対する、定格の電圧に対し80%以上の電圧を残存した状態のリチウムイオン二次電池の個数の割合としては、30個数%以上が好ましく、60個数%以上がより好ましい。
 また、複数のリチウムイオン二次電池セルによって構成されるリチウムイオン二次電池パック又はリチウムイオン二次電池モジュールを熱処理する場合、パック又はモジュール全体の電圧がパック又はモジュールの定格の電圧に対し80%以上の電圧を残存した状態であってもよいし、パック又はモジュールを構成する全てのリチウムイオン二次電池セルが定格の電圧の80%以上の電圧を残存した状態であってもよいし、パック又はモジュールを構成する一部のリチウムイオン二次電池セルが定格の電圧に対し80%以上の電圧であってもよい。
 つまり、本発明において、リチウムイオン二次電池パック又はモジュールを熱処理する場合には、パック又はモジュールを構成するリチウムイオン二次電池セルの中に、定格の電圧に対し80%以上の電圧を残存した状態のものが含まれていればよい。
 ここで、リチウムイオン二次電池パック又はモジュールを熱処理する場合における、パック又はモジュールに含まれるリチウムイオン二次電池セルの総数に対する、定格の電圧に対し80%以上の電圧を残存した状態のリチウムイオン二次電池セルの個数の割合としては、30個数%以上が好ましく、60個数%以上がより好ましい。
 また、リチウムイオン二次電池における電圧(起電力)は、例えば、公知のテスターを用いて測定することができる。
 ここで、リチウムイオン二次電池における定格の電圧は、例えば、リチウムイオン二次電池外装に記載された電圧情報を確認すること、リチウムイオン二次電池を製品として初めて使用する際の満充電時の電圧をテスターなどで測定すること、リチウムイオン二次電池の製造メーカに定格の電圧を問い合わせることなどにより、確認することができる。
 熱処理工程における熱処理を行う手法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、公知の焙焼炉によりリチウムイオン二次電池を加熱することにより熱処理を行うことができる。
 焙焼炉としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ロータリーキルン、流動床炉、トンネル炉、マッフル等のバッチ式炉、キュポラ、ストーカー炉、プッシャー式連続炉などが挙げられる。これらの中でも、バッチ式炉及びプッシャー式連続炉が好ましい。また、バッチ式炉とプッシャー式連続炉とを組み合わせて用いることも好ましい。
<<熱処理の条件>>
 リチウムイオン二次電池を熱処理(加熱)する条件(熱処理条件)としては、リチウムイオン二次電池の各構成部品を、後述する破砕工程において分離して破砕可能な状態とすることができる条件であれば特に制限はなく、目的に応じて適宜選択することができる。
 熱処理に用いる雰囲気としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、大気雰囲気、不活性雰囲気、還元性雰囲気、低酸素雰囲気などが挙げられる。
 大気雰囲気とは、空気を用いた雰囲気を意味する。
 不活性雰囲気とは、窒素又はアルゴンからなる雰囲気を例示できる。
 還元性雰囲気とは、例えば、窒素又はアルゴン等の不活性雰囲気中にCO、H、HS、SOなどを含む雰囲気を意味する。
 低酸素雰囲気とは、酸素分圧が11%以下である雰囲気を意味する。
 本発明においては、これらの中でも、リチウムイオン二次電池における正極集電体由来の有価物(例えば、アルミニウム)及び負極集電体由来の有価物(例えば、銅)の回収率及び品位をより向上できる点で、低酸素雰囲気を用いることが好ましい。
 また、本発明では、上述したように熱処理工程が、リチウムイオン二次電池を350℃以上550℃以下に加熱する処理を含むことが好ましい。こうすることにより、リチウムイオン二次電池の熱暴走を抑制しつつ、リチウムイオン二次電池の電圧由来のエネルギーを利用してリチウムイオン二次電池の発火(自燃)を開始させることができる。この自燃は、リチウムイオン二次電池におけるセパレータの溶断に伴う、正極と負極のショート(電圧の熱エネルギー化)により継続し、この自燃(電圧の熱エネルギー化及び電解液の燃焼)の継続によりリチウムイオン二次電池の熱処理にかかるエネルギーを低減できる。
 また、この自燃は、リチウムイオン二次電池内部の正極材の分解・酸素の放出に伴い促進され、リチウムイオン二次電池の外部の熱を用いてリチウムイオン二次電池を加熱する場合よりも、効率的にリチウムイオン二次電池におけるリチウムの可溶化、銅とカーボンの間のバインダの分解、コバルト及びニッケルのメタル化(磁着性の向上)を行うことができる。
 熱処理温度の調整には、加熱のコントロールの他に、空気の吹込みによる降温処理が利用できる。
 ここで、「リチウムイオン二次電池を350℃以上550℃以下に加熱する処理」における加熱温度は、リチウムイオン二次電池の表面温度のことを意味する。なお、リチウムイオン二次電池を収容容器に入れて加熱処理する場合には、炉内温度に比べてリチウムイオン二次電池の表面温度が低くなることがある。
 リチウムイオン二次電池の表面温度の測定は、例えば、リチウムイオン二次電池の上下の表面に熱電対を設け、双方の測定温度の平均値をとることで確認できる。また、炉内温度は、例えば、炉内上部に設けられた排ガス出口の壁面に設置された熱電対により測定できる。
 ここで、リチウムイオン二次電池の発火(例えば、リチウムイオン二次電池自体の発熱による燃焼(自燃))が生じているときの、リチウムイオン二次電池自体の温度は、700℃以上900℃以下が好ましく、700℃以上850℃以下がより好ましい。自燃が生じているときのリチウムイオン二次電池自体の温度を700℃以上とすることにより、正極活物質中のLi(Ni/Co/Mn)Oや電解質中のLiPFにおけるリチウムを、フッ化リチウム(LiF)や炭酸リチウム(LiCO)や酸化リチウム(LiO)などリチウムが水溶液に可溶な形態の物質にすることができ、リチウムを浸出時にフッ素以外の不純物と分離することができる。
 また、自燃が生じているときのリチウムイオン二次電池自体の温度を700℃以上とすることにより、正極活物質として含まれるコバルト酸リチウムやニッケル酸リチウムなどを熱分解し、コバルトやニッケルの金属粒子を形成させ、磁選で磁着物に選択的に回収しやすくすることができる。また、負極集電体の銅とカーボンのバインダを熱分解し、銅からカーボンを分離しやすくできる。加えて、自燃が生じているときのリチウムイオン二次電池自体の温度を700℃以上とすることにより、正極集電体のアルミニウムを脆化させることができるため、破砕・分級により細粒産物側に除去可能となり、粗粒産物側に回収される銅と、アルミニウムを分離できるようになる。なお、自燃が生じているときのリチウムイオン二次電池自体の温度が950℃を超えないようにすることにより、熱暴走を抑制することができ、炉内の酸素濃度の急減やその結果としての排ガス中のCO濃度の増加(不完全燃焼)を抑制することができる。
 なお、リチウムイオン二次電池自体の温度は、熱処理温度中のリチウムイオン二次電池に、カップル、サーミスタなどの温度計を差し込むことにより、測定することができる。
 熱処理時間(熱処理を行う時間)としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、リチウムイオン二次電池自体の発火(自燃)を生じさせることができる時間とすることができ、1分間以上5時間以下が好ましく、1分間以上2時間以下がより好ましく、1分間以上1時間以下が特に好ましい。熱処理時間は、例えば、リチウムイオン二次電池が上記の熱処理温度に到達するまでの時間であってもよく、保持時間は短くてもよい。熱処理時間が、1分間以上5時間以下であることにより、熱処理にかかるコストを抑制できるとともに、熱処理の効率を向上させることができる点で有利である。
 また、熱処理工程において、例えば、リチウムイオン二次電池自体の発熱による燃焼(自燃)が確認された後に、リチウムイオン二次電池の加熱を弱めることが好ましい。こうすることにより、熱処理に必要となるエネルギーを、特に少なくすることができることに加え、リチウムイオン電池の熱暴走を防ぐことができる。
 より具体的には、例えば、熱処理工程において、リチウムイオン二次電池自体の発熱による燃焼(発火)が生じているときの熱の供給量を、リチウムイオン二次電池自体の発熱による燃焼が生じる前の熱の供給量の50%以下に変更することが好ましい。また、熱処理工程における熱の供給量は、例えば、供給する燃料の量を変更することや、電力量を調節することにより制御することができる。
 本発明においては、リチウムイオン二次電池における発火(自燃)が継続し、リチウムイオン二次電池におけるバインダ樹脂や電解液を十分に熱分解できる。加えて、この場合には、熱処理におけるリチウムイオン二次電池の加熱を終了した後においても、リチウムイオン二次電池における燃焼が継続することにより、例えば、正極集電体由来の有価物の一例であるアルミニウムを十分に酸化(脆化)させることができ、負極集電体由来の有価物の一例である銅と選別しやすくすることができ、銅及びアルミニウムの回収率及び品位をより向上させることができる。また、この発熱自体で正極活物質中のLi(Ni/Co/Mn)Oや電解質中のLiPFにおけるリチウムを、フッ化リチウム(LiF)や炭酸リチウム(LiCO)や酸化リチウム(LiO)などリチウムが水溶液に可溶な形態の物質にすることができる。
 また、本発明では、熱処理工程において、リチウムイオン二次電池自体の発熱による燃焼(発火)が終了した後に、再び熱の供給量を上げることで、リチウムイオン二次電池を750℃以上1,085℃未満で更に熱処理することが好ましい。この追加の熱処理により、リチウムイオン二次電池の自燃のみでは熔融しなかったアルミニウムを熔融させて分離回収することができる。
 具体的には、この熱処理温度で更に熱処理を行うことで、例えば、リチウムイオン二次電池セルの外装容器や、モジュール又はパックの構成部材にアルミニウムが用いられているとき、これらのアルミニウムを溶融させて回収することができる。すなわち、熱処理工程においてリチウムイオン二次電池を750℃以上で熱処理することにより、リチウムイオン二次電池の筐体に含まれるアルミニウムと、リチウムイオン二次電池における他の部分(例えば、電極など)とを、容易に選別(分離)して、筐体由来のアルミニウムを簡便に回収することができる。
 また、正極集電体がアルミニウム(融点:660℃)であり、負極集電体が銅(融点:1,085℃)である場合には、例えば、熱処理温度を750℃以上1,085℃未満とすることにより、アルミニウム箔で形成される正極集電体が溶融して脆性化し、後述する破砕工程において細粒化しやすくなる。一方、銅箔で形成される負極集電体は、銅の融点未満の温度で熱処理されるため、溶融することがない。このため、熱処理工程により得た熱処理物を破砕工程で破砕して得た破砕物における銅は、破砕後も箔に近い形状として存在するため、分級工程において粗粒産物として容易に回収できる。
<<収容容器>>
 本発明では、熱処理工程において、リチウムイオン二次電池を収容容器に収容して熱処理を行うことが好ましい。
 ここで、リチウムイオン二次電池を熱処理する際、リチウムイオン二次電池に電圧が多く残存している場合に、熱処理の条件等によっては、リチウムイオン二次電池が「熱暴走」と称される現象を起こす場合がある。
 「熱暴走」とは、「何らかの原因により電池内部の特定部が発熱し、その発熱が電池内部の反応を引き起こして更なる発熱を招き、電池全体が温度上昇して発熱・発火・発煙などを引き起こす」現象である(例えば、『リチウムイオン電池の安全性評価試験における発生事象について(交通安全環境研究所フォーラム講演概要,135-138,2012)(https://www.ntsel.go.jp/forum/2012files/pt_21.pdf)』参照)。また、上記の文献には、リチウムイオン二次電池が熱暴走に至る原因として、外部から加熱されることが例示されている。
 さらに、上記の文献においては、「連鎖的にセルが熱暴走した場合、発生したガスの噴出のタイミングが一致し、多量のガスによる電池パック内部の圧力上昇により、電池パックが破裂することも懸念される」と記載されている。
 加えて、『リチウムイオン電池の安全性試験と発生ガス分析(東レリサーチセンター)(https://www.toray-research.co.jp/technical-info/trcnews/pdf/201801-02.pdf)』においても、充電された状態のリチウムイオン二次電池に対して高温加熱試験を行った結果として、「昇温に伴いセルが膨れ始め、白煙が発生した」と記載されている。
 これらの文献にも記載されているように、リチウムイオン二次電池が熱暴走した場合には、熱暴走で生じたガスによりリチウムイオン二次電池内の圧力が上昇して、リチウムイオン二次電池が破裂することがある。
 熱処理の際にリチウムイオン二次電池が熱暴走して破裂すると、熱処理に用いる焼却炉の炉体が損傷してしまう場合がある。
 このため、本発明の好ましい形態においては、熱処理工程において、リチウムイオン二次電池を収容容器に収容して熱処理を行う。こうすることにより、リチウムイオン二次電池に対する温度上昇の程度(リチウムイオン二次電池の周囲の雰囲気や加熱温度など)をより緩やか制御可能となり、リチウムイオン二次電池の破裂を抑制することができる。さらに、リチウムイオン二次電池を収容容器に収容して熱処理を行うことにより、リチウムイオン二次電池が熱処理の際に破裂した場合においても、熱処理に用いる焼却炉の炉体の損傷を抑制することができる。
 収容容器としては、リチウムイオン二次電池を収容可能な容器であれば、特に制限はなく、目的に応じて適宜選択することができる。また、収容容器としては、リチウムイオン二次電池のパック又はモジュールにおける外装容器をそのまま用いてもよい。
 また、収容容器の形状としては、特に制限はなく、目的に応じて適宜選択することができる。収容容器の形状としては、熱処理を行うリチウムイオン二次電池の周囲を取り囲むような形状であることが好ましい。
 収容容器の大きさとしては、熱処理を行うリチウムイオン二次電池を収容することができれば特に制限はなく、目的に応じて適宜選択することができる。また、複数のリチウムイオン二次電池を一括して熱処理する場合は、処理する全てのリチウムイオン二次電池を収容可能な大きさであることが好ましい。
 ここで、収容容器は、気体を流通可能な開口部を有することが好ましい。この場合、収容容器は、開口部以外の部分では気体が流通しないように、リチウムイオン二次電池を収容することが好ましい。収容容器が開口部を有することにより、収容容器の内部の圧力や雰囲気を制御できる。
 開口部の形状としては、特に制限はなく、目的に応じて適宜選択することができる。また、収容容器における開口部の位置としては、熱処理時に気体を流通可能な位置であれば、特に制限はなく、目的に応じて適宜選択することができる。なお、開口部は、収容容器に複数設けられていてもよい。
 また、開口部として、リチウムイオン二次電池のパック又はモジュールの外装容器に設けられた孔を用いてもよい。リチウムイオン二次電池のパックには、通常、充放電を行うケーブルやプラグを、パック又はモジュール内部の通電部に接続するための孔が設けられており、これを開口部として活用することが可能である。
 開口部の大きさ(面積)としては、特に制限はなく、目的に応じて適宜選択することができるが、収容容器の表面積に対して、12.5%以下であることが好ましく、6.3%以下であることがより好ましい。開口部の大きさが、収容容器の表面積に対して12.5%以下であることにより、熱処理時において集電体に含まれる有価物の酸化を抑制することができる。以下では、収容容器の表面積に対する開口部の面積を「開口率」と称することがある。なお、開口率は、収容容器に開口部が複数設けられる場合、収容容器の表面積に対する、それぞれの開口部の面積の合計とすることができる。
 収容容器における開口率が、上記の好ましい範囲内であると、例えば、収容容器の外部の雰囲気が大気雰囲気である場合などに、熱処理を行う際の収容容器の内部の雰囲気を低酸素雰囲気とすることができる。このため、熱処理時のリチウムイオン二次電池の過剰な燃焼を抑制できるため、リチウムイオン二次電池の熱暴走及び熱暴走による破裂を抑制することができ、焼却炉の炉体の損傷を抑制することができる。
 ここで、収容容器としては、リチウムイオン二次電池を収容するための開閉可能な蓋部を有するものが好ましい。こうすることにより、収容容器にリチウムイオン二次電池を容易に収容でき、更に、熱処理工程の後に、熱処理されたリチウムイオン二次電池(熱処理物)を容易に取り出すことができる。
 蓋部としては、特に制限はなく、目的に応じて適宜選択することができる。
 また、蓋部としては、例えば、ヒンジなどにより開閉可能に固定された形態であってもよし、蓋部を取り外しすることにより開閉する形態であってもよい。
 また、収容容器の材質としては、特に制限はなく、目的に応じて適宜選択することができるが、熱処理温度(熱処理における最高温度)より高い融点の材質であることが好ましい。つまり本発明においては、収容容器の融点が、リチウムイオン二次電池を熱処理する際の温度より高いことが好ましい。こうすることにより、熱処理を行う際における、収容容器の脆化や溶融を防止できる。
 収容容器における具体的な材質としては、例えば、鉄、ステンレス鋼などが挙げられる。例えば、熱処理温度を660℃以上1,085℃未満とする場合、鉄及びステンレス鋼の融点は熱処理温度よりも高いため、鉄又はステンレス鋼で形成された収容容器を用いることにより、熱処理を行う際における、収容容器の脆化や溶融を防止できる。
 本発明では、熱処理工程において、リチウムイオン二次電池を熱処理するための火炎が、収容容器に当たらないようにして熱処理を行うことが好ましい。つまり、本発明では、熱処理が燃料を用いる場合、収容容器に火炎を直接当てず、収容容器周囲の気体を加熱して熱処理を行うことが好ましい。こうすることにより、収容容器内のリチウムイオン二次電池の熱暴走による破裂を防ぐことができる。
 また、リチウムイオン二次電池を熱処理するための火炎が、収容容器に当たらないようにして熱処理を行う具体的な手法としては、特に制限はなく、目的に応じて適宜選択することができるが、火炎の放射方向を収容容器に向けずに熱処理を行うことが好ましい。言い換えると、本発明では、熱処理工程において、リチウムイオン二次電池を熱処理するための火炎の放射方向を、収容容器に向けずに熱処理を行うことが好ましい。
<破砕工程>
 破砕工程は、熱処理物(リチウムイオン二次電池を熱処理したもの)を破砕することにより、破砕物を得る工程である。
 破砕工程としては、熱処理物(焙焼物)を破砕して、破砕物を得る工程であれば、特に制限はなく、目的に応じて適宜選択することができる。また、破砕物とは、熱処理物を破砕したものを意味する。
 破砕工程としては、例えば、熱処理物を衝撃により破砕して破砕物を得る工程であることが好ましい。また、リチウムイオン二次電池の外装容器(リチウムイオン二次電池のパックやモジュールにおける外装ケースを含む)が熱処理中に溶融しない場合には、熱処理物に衝撃を与える前に、切断機により熱処理物を切断する予備破砕しておくことがより好ましい。
 衝撃により破砕を行う方法としては、例えば、回転する打撃板により熱処理物を投げつけ、衝突板に叩きつけて衝撃を与える方法や、回転する打撃子(ビーター)により熱処理物を叩く方法が挙げられ、例えば、ハンマークラッシャーなどにより行うことができる。また、衝撃により破砕を行う方法としては、例えば、セラミックなどのボールにより熱処理物を叩く方法でもよく、この方法は、ボールミルなどにより行うことができる。また、衝撃による破砕は、例えば、圧縮による破砕を行う刃幅、刃渡りの短い二軸破砕機等を用いて行うこともできる。
 さらに、衝撃により破砕を行う方法としては、例えば、回転させた2本のチェーンにより、熱処理物を叩いて衝撃を与える方法も挙げられ、例えば、チェーンミルなどにより行うことができる。
 衝撃により熱処理物を破砕することで、正極集電体(例えば、アルミニウム)の破砕が促進されるが、形態が著しく変化していない負極集電体(例えば、銅)は、箔状などの形態で存在する。そのため、破砕工程において、負極集電体は切断されるにとどまるため、後述する分級工程において、正極集電体由来の有価物(例えば、アルミニウム)と負極集電体由来の有価物(例えば、銅)とを、効率的に分離できる状態の破砕物を得ることができる。
 破砕工程における破砕時間としては、特に制限はなく、目的に応じて適宜選択することができるが、リチウムイオン二次電池1kgあたりの破砕時間としては、1秒間以上30分間以下が好ましく、2秒間以上10分間以下がより好ましく、3秒間以上5分間以下が特に好ましい。
 また、本発明においては、熱処理の際にリチウムイオン二次電池自体が発熱する場合、熱処理におけるリチウムイオン二次電池の加熱を終了した後においても、リチウムイオン二次電池における燃焼が継続する。このため、リチウムイオン二次電池の燃焼が終了してから、破砕を行うことが好ましい。
<分級工程>
 分級工程は、破砕物を分級することにより、粗粒産物と細粒産物とを得る工程である。
 分級工程としては、破砕物を分級して粗粒産物(篩上物)と細粒産物(篩下物)を得ることができる工程であれば、特に制限はなく、目的に応じて適宜選択することができる。
 分級方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、振動篩、多段式振動篩、サイクロン、JIS Z8801の標準篩などを用いて行うことができる。分級により、銅、鉄、アルミニウム等を粗粒産物中に分離でき、リチウムを細粒産物中に濃縮できる。
 分級の粒度(分級点、篩の目開き)としては、特に制限はなく、目的に応じて適宜選択することができる。分級により、銅、鉄、アルミニウム等を粗粒産物中に分離し、リチウム、コバルト、ニッケル等を細粒産物中に濃縮することを目的とする場合は、分級の粒度としては、0.6mm以上2.4mm以下が好ましく、0.85mm以上1.7mm以下がより好ましい。分級の粒度が2.4mm以下の場合、細粒産物中への銅・鉄・アルミニウム等の混入を抑制できる。分級の粒度が0.6mm以上の場合、粗粒産物中へのリチウム、コバルト、ニッケル等の混入を抑制できる。
 また、分級方法として篩を用いる場合に、篩上に解砕促進物として、例えば、ステンレス球やアルミナボールを乗せて分級を行うことにより、大きな破砕物に付着している小さな破砕物を、大きな破砕物から分離させることで、大きな破砕物と小さな破砕物を、より効率的に分離することができる。こうすることにより、回収する金属の品位を更に向上させることができる。
 なお、破砕工程と分級工程は、同時進行で行うこともできる。例えば、熱処理工程で得られた熱処理物を破砕しながら、破砕物を粗粒産物と細粒産物とに分級する破砕・分級工程(破砕・分級)として行ってもよい。
 なお、粗粒産物と細粒産物との分級を複数回繰り返してもよい。この再度の分級により、各産物の不純物品位をさらに低減することができる。
<リチウム回収工程>
 本発明のリチウムの回収方法におけるリチウム回収工程は、破砕物等からリチウムを回収する工程である。リチウム回収工程としては、破砕物、細粒産物、リチウムを含む浸出液、リチウムを含む溶液などから、リチウムを回収することができれば特に制限はなく、目的に応じて適宜選択することができる。
 本発明では、リチウム回収工程において、破砕物又は細粒産物を水に浸けることにより、リチウムを含む浸出液を得る(浸出液にリチウムを浸出させて回収する)ことが好ましい。言い換えると、本発明において、リチウム回収工程は、破砕物又は細粒産物を水に浸けることにより、リチウムを含む浸出液を得る浸出工程を含むことが好ましい。
 浸出工程としては、破砕工程において破砕した破砕物又は分級工程において回収した細粒産物を水に浸ける(浸す、水に入れる)ことにより、水にリチウムを浸出させて浸出液を得ることができる工程であれば特に制限はなく、目的に応じて適宜選択することができる。また、浸出工程においては、分級工程において回収した細粒産物を水に浸けることが好ましい。
 なお、浸出液は、通常、スラリー状の液体(懸濁液)となる。
 破砕物又は細粒産物を浸出させる水としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、工業用水、水道水、イオン交換水、限外ろ過水、逆浸透水、蒸留水等の純水、超純水などが挙げられる。
 例えば、酸化リチウム(LiO)や炭酸リチウム(LiCO)を含む破砕物又は細粒産物を水に浸けることにより、リチウムを水酸化リチウム(LiOH)や炭酸リチウム(LiCO)として水に浸出させて、高い効率で回収することができる。
 ここで、浸出工程における浸出手法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、単に破砕物又は細粒産物を水に投入しておく手法、破砕物又は細粒産物を水に投入して撹拌する手法、破砕物又は細粒産物を水に投入して、超音波を当てながら緩やかに撹拌する手法、破砕物又は細粒産物に水をかけ流す手法などが挙げられる。浸出手法としては、例えば、破砕物又は細粒産物を水に投入して撹拌する手法が好ましい。
 浸出工程における水の撹拌速度としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、200rpmとすることができる。
 浸出工程における浸出時間としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、1時間とすることができる。
<湿式磁選工程>
 本発明においては、浸出工程の後に、浸出液に湿式磁選(湿式磁力選別)を行ってもよい。湿式磁選によりコバルトとニッケルとマンガンなどの正極活物質由来の成分、及び鉄などの磁性を有するリチウムイオン二次電池部材由来の成分を回収できる。これは後段のろ過工程の負荷を減らす意味でも有効である。
 つまり、本発明では、リチウム回収工程において、浸出液に対して湿式磁力選別を行うことにより、浸出液を、リチウム及び非磁着物を含むスラリーと、コバルト及びニッケルの少なくともいずれかを含む磁着物とに選別することが好ましい。
<固液分離工程>
 本発明においては、リチウム回収工程において、リチウムを含む浸出液をろ過することにより、当該浸出液を、リチウムを含む溶液と残渣とに固液分離する(リチウムを溶液に回収する)ことが好ましい。言い換えると、本発明において、リチウム回収工程は、リチウムを含む浸出液をろ過することにより、浸出液を、リチウムを含む溶液と残渣とに固液分離する固液分離工程を含むことが好ましい。
 また、本発明では、浸出液に対して湿式磁力選別を行う場合、湿式磁力選別により得たスラリーをろ過することにより、当該スラリーを、リチウムを含む溶液と非磁着物を含む残渣とに固液分離することが好ましい。
 本発明においては、固液分離工程を含むことにより、浸出液に含まれるニッケル、コバルトを、残渣としてほぼ全て(100%)回収可能とすることができる。また、浸出液に含まれるリチウムを、溶液中に分離することができる。
 固液分離を行う手法としては、特に制限はなく、目的に応じて適宜選択することができるが、スラリー状のリチウム浸出液を、ろ紙やフィルタープレスなどを用いて固液分離する手法が好ましい。
<フッ素除去工程>
 本発明のリチウムの回収方法においては、上述した固液分離工程の後に、リチウムを含む溶液におけるフッ素イオンを除去するフッ素除去工程を更に含んでいてもよい。こうすることにより、例えば、フッ素除去工程後のリチウム溶液から、不純物であるフッ素の品位を低減した炭酸リチウムを、晶析可能とすることができる。
 リチウムを含む溶液からのフッ素の除去には、例えば、水酸化カルシウム(消石灰)を用いることができる。水酸化カルシウムを用いることにより、溶液中のフッ素をフッ化カルシウムとして固化し、固液分離で除去できる。つまり、本発明では、リチウム回収工程において、溶液に水酸化カルシウムを添加して、溶液に含まれるフッ素をフッ化カルシウムとして固化させた後、溶液をろ過して固液分離することにより、溶液からフッ素を除去することが好ましい。
 リチウムを含む溶液に水酸化カルシウムを添加することで、フッ素とカルシウムイオンによりフッ化カルシウムが形成され、固液分離することにより除去可能となる。また、カルシウムイオンは、後述する二酸化炭素の添加により容易に除去することができるため、リチウムを含む溶液(リチウム溶液)における不純物をより低減することができる。
 ここで、水酸化カルシウムをリチウム溶液に添加する際には、水酸化カルシウムを直接的に添加してもよいし、水酸化カルシウムを含む化合物等を添加してもよい。
 水酸化カルシウムを直接的に添加する場合には、例えば、水酸化カルシウムで形成された固体をリチウム溶液に添加してもよいし、水酸化カルシウムが溶解した溶液を添加してもよい。
 これらの中でも、水酸化カルシウムを溶解した溶液を添加する方法が、フッ素の除去効率の面で好適である。水酸化カルシウムを溶解した溶液を添加することで、水酸化カルシウムを予めイオン化した状態でリチウム溶液に添加でき、フッ素との反応効率を高められる。
 言い換えると、固体で添加した場合に生じ得る、次のような不具合を防ぐことができる。すなわち、炭酸イオン(CO 2-)などのリチウム溶液中に存在する溶存成分と水酸化カルシウムを含む固体表面との反応・その結果としての固体表面での非フッ素反応相の形成を防ぐことができる。例えば、消石灰を固体で添加する場合、消石灰表面とリチウム溶液中に溶存する炭酸イオン(CO 2-)が反応し炭酸カルシウム相を形成し、フッ素の除去効率が低下する。
 リチウム溶液の全量に対する水酸化カルシウムの添加量としては、リチウム溶液に含まれるフッ素及び炭酸イオンの双方と水酸化カルシウムが反応できるような量とすることが好ましく、例えば、リチウム溶液中のフッ素Xモル(mol)及び炭酸イオンYモル(mol)に対する水酸化カルシウムの添加量としては、0.5×(X+2Y)mol以上10×(X+2Y)mol以下が好ましく、0.75×(X+2Y)mol以上5×(X+2Y)mol以下がより好ましい。
 また、水酸化カルシウムを添加した後に、リチウム溶液を撹拌することが好ましい。
 リチウム溶液の撹拌速度としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、20rpm以上2000rpm以下とすることが好ましく、50rpm以上1000rpm以下とすることがより好ましい。
 リチウム溶液の撹拌時間としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、5分以上240分以下とすることが好ましく、15分以上120分以下とすることがより好ましい。また、撹拌時間(反応時間)を240分以下とすることで、固化したフッ素の再溶解を防ぐことができる。
 本発明の一実施形態においては、水にリチウムを浸出させる際のリチウム濃度を調整することにより、リチウム溶液のpHを10.5以上にすることができる。これは、リチウム溶液が水酸化リチウム溶液となるためであると考えられる。浸出時にpHを高くすることで、水酸化カルシウム添加後のpHを12以上に上げためのアルカリの添加量を減らすことができる。また、水酸化カルシウム添加後のリチウム溶液のpHが12未満の場合は、アルカリを追加で添加してpHを12以上に調整することが好ましい。また、pHの調整は水酸化カルシウムの添加のみで行うことができる。
 この条件下では、カルシウムの溶解度積に鑑みると、カルシウムイオン(Ca2+)の溶存量を、2,000mg/L未満まで抑制できる。このため、カルシウムイオン(Ca2+)を除去するための成分(例えば、二酸化炭素)の添加量を低減することができる。
 上述したように、カルシウムイオン濃度が2,000mg/Lと低水準であるにも関わらず、リチウムを含む溶液からのフッ素の除去は良好に行われる。
 さらに、本発明では、フッ素を除去するためにリチウム溶液に添加した水酸化カルシウムにおけるカルシウムイオンを、リチウム溶液に二酸化炭素を添加することによりカルシウムイオンを炭酸カルシウムとして固化し、固液分離で除去することが好ましい。つまり、本発明では、リチウム回収工程において、フッ素を除去した溶液に二酸化炭素を添加して、溶液に含まれるカルシウムを炭酸カルシウムとして固化させた後、溶液をろ過して固液分離することにより、溶液からカルシウムを除去することが好ましい。
 さらに、リチウム溶液のpHが高い場合(例えば、10.5以上の場合)、リチウム溶液に二酸化炭素をCO 2-イオンとして効率的に吸収・液中に保持させることができ、第二除去工程での第二成分の除去に寄与しなかった分のCO 2-イオンを後段の炭酸リチウムの晶析のための成分(CO)として有効利用できる。
 カルシウムイオン除去後の液は、例えば、蒸発濃縮により品位99%以上の炭酸リチウムが回収できる。
 二酸化炭素をリチウム溶液に添加する手法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、二酸化炭素を含む気体をリチウム溶液に供給(散気)する手法、二酸化炭素で形成された固体をリチウム溶液に添加する手法などが挙げられる。これらの中でも、不純物を溶液中に追加せずに済むという面で、二酸化炭素を含む気体をリチウム溶液に供給(散気)する手法が好ましい。
 二酸化炭素を含む気体としては、例えば、二酸化炭素ガス、COを含むガスとして空気(Air)などが挙げられる。これらの中でも、二酸化炭素ガスが好ましい。言い換えると、二酸化炭素としての二酸化炭素を含む二酸化炭素ガスを、リチウム溶液に添加することが好ましい。こうすることにより、リチウム溶液に添加する二酸化炭素の量を容易に制御できるとともに、効率的に二酸化炭素を添加することができる。
 二酸化炭素を含む気体のリチウム溶液に対する供給(散気)方法は、特に制限はなく、目的に応じて適宜選択することができるが、例えば、直径5mmの穴を20箇所あけた20Aの塩ビ管(硬質ポリ塩化ビニル管)を用いることができる。また、二酸化炭素を含む気体のリチウム溶液に対する供給(散気)は、例えば、上・下水処理場、廃水処理場、大型浄化槽などで利用される公知のディフューザーを利用することや、φ(直径)1mm以上のノズルから二酸化炭素を含む気体を供給し、このノズル上部に取り付けた攪拌羽根で気体を分散させることにより行ってもよい。
 また、二酸化炭素を含む気体をリチウム溶液に供給(散気)する際の供給条件としては、特に制限はなく、目的に応じて適宜選択することができる。二酸化炭素を含む気体として二酸化炭素ガスを用いる場合においては、例えば、25L/分で30分間かけて散気する条件で二酸化炭素ガスを供給するようにしてもよい。
 加えて、例えば、リチウム溶液に残存する水酸化カルシウムの全量を除去可能となるように、二酸化炭素を供給することが好ましい。
<濃縮工程(晶析工程)>
 本発明のリチウムの回収方法においては、上述した固液分離工程又はフッ素除去工程の後に、溶液におけるリチウムを濃縮する濃縮工程を更に含んでいてもよい。こうすることにより、例えば、溶液に含まれるリチウムを、炭酸リチウムとして容易に晶析可能とすることができる。
 濃縮工程における濃縮の手法としては特に制限はなく、目的に応じて適宜選択することができ、例えば、蒸発濃縮、膜分離による濃縮、真空濃縮などが挙げられるが、蒸発濃縮が好ましい。これは、工場排熱の利用などでコストを小さく実施できる点、蒸発濃縮時に後述の加熱による炭酸リチウムの晶析も同時に実施でき、プロセスを簡易にできるためである。リチウムの濃縮は、液中のリチウム濃度が1500mg/L以上となるまで行うことが望ましい。
 また、本発明のリチウムの回収方法では、濃縮工程において、リチウムを含む溶液に二酸化炭素(CO)を加えることが好ましい。こうすることにより、リチウムを含む溶液中の炭酸リチウムがより析出しやすくなり、他の不純物(例えば、フッ素など)と結合したリチウム(例えば、フッ化リチウム)よりも炭酸リチウムが優先して析出するため、より品位の高い炭酸リチウムを回収することができる。
 また、リチウムを含む溶液に二酸化炭素を加える手法としては、特に制限はなく、目的に応じて適宜選択することができるが、二酸化炭素ガスの吹込みにより行うことが好ましい。また、二酸化炭素を供給した後のリチウムを含む溶液の炭酸イオン濃度としては、3000mg/L以上が好ましく、6000mg/L以上がより好ましい。
 リチウムを含む溶液を蒸発濃縮する際の濃縮倍率としては、特に制限はなく、目的に応じて適宜選択することができるが、1.5倍以上70倍以下であることが好ましく、2倍以上35倍以下であることがより好ましい。
 リチウムを含む溶液を蒸発濃縮する際の溶液の温度としては、リチウムを含む溶液を蒸発させることが可能な温度であれば特に制限はなく、目的に応じて適宜選択することができるが、例えば、60℃以上105℃以下が好ましい。
 また、浸出液又は溶液からリチウムを回収する手法としては、特に制限はなく、目的に応じて適宜選択することができるが、浸出液又は溶液を加熱することにより、リチウムを回収することが好ましく、溶液を加熱することにより、リチウムを炭酸リチウムとして回収することがより好ましい。つまり、本発明では、リチウム回収工程において、カルシウムを除去した溶液を加熱することにより炭酸リチウムを回収することが好ましい。
 例えば、リチウムを含む溶液を加熱して温度を上昇させると、溶液におけるリチウムの溶解度が下がるため、溶存できなくなったリチウムをリチウム化合物として析出させて、容易に回収することができる。
 また、析出させたリチウム(炭酸リチウム)は、例えば、匙、レーキ、スクレーパーなどの公知の器具で回収することができる。また、匙、レーキ、スクレーパーなどの公知の器具で回収した炭酸リチウムを、さらに固液分離して付着水分を低減することにより、炭酸リチウムの不純物品位を低減できる。
 ここで、浸出液又は溶液を加熱する手法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、公知のヒータにより加熱する手法などが挙げられる。
 例えば、リチウムを含む溶液を加熱してリチウムを析出させる際の溶液の温度としては、リチウムを析出させることが可能な温度であれば特に制限はなく、目的に応じて適宜選択することができるが、例えば、60℃以上105℃以下が好ましい。
<その他の工程>
 その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、乾式磁選工程などが挙げられる。
<<乾式磁選工程>>
 本発明では、分級工程の後に、粗粒産物に乾式磁選(乾式磁力選別)を行うことにより、粗粒産物を、磁着物と非磁着物とに選別する乾式磁選工程を更に含んでいてもよい。
 乾式磁選工程としては、乾式磁選により、粗粒産物を、磁着物と非磁着物とに選別できる工程であれば特に制限はなく、目的に応じて適宜選択することができる。
 本発明においては、例えば、粗粒産物に乾式磁選(乾式磁力選別)を行うことにより、非磁着物に銅(銅濃縮物)を回収することが好ましい。負極集電体の銅はカーボンが塗布されてバインダで結合されているが、例えば、リチウムイオン二次電池の残電圧を活用した自燃によりこのバインダは分解するため、カーボン品位が低減された高品位の銅を非磁着物に回収することができる。
 乾式磁選工程は、公知の磁力選別機(磁選機)などを用いて行うことができる。
 本発明で用いることができる磁力選別機としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、棒磁石、ハンドマグネット、格子型マグネット、ロータリーマグネット、マグネットストレーナー、高磁力プーリ(マグネットプーリ)磁選機、吊下げ型磁選機などが挙げられる。
 また、乾式磁選工程における磁力は、選別対象に応じて適宜選択することができ、例えば、鉄を選別する場合は、0.01T(テスラ)以上0.3T以下とすることが好ましい。また、ステンレス鋼を選別する場合は、上記の範囲よりも高磁力を用いてもよい。なお、異なる磁力を組み合わせて多段階で使用することも可能である。
 このようにすることにより、本発明の有価物の回収方法では、鉄やステンレス鋼などの磁着物と、銅などの非磁着物とを選択的に回収することができる。
 続いて、以下では、本発明のリチウムイオン二次電池の処理方法について説明する。
<熱処理工程>
 本発明のリチウムイオン二次電池の処理方法は、定格の電圧に対し80%以上の電圧を残存させたリチウムイオン二次電池を熱処理することにより、熱処理物を得る熱処理工程を含む。
 本発明のリチウムイオン二次電池の処理方法における熱処理工程の詳細は、本発明のリチウムの回収方法における熱処理工程の詳細と同様とすることができる。
 つまり、本発明のリチウムイオン二次電池の処理方法では、熱処理工程において、リチウムイオン二次電池を350℃以上550℃以下で熱処理することにより、リチウムイオン二次電池自体の発熱による燃焼(自燃)を生じさせて発火させることが好ましい。こうすることにより、リチウムイオン二次電池におけるバインダ樹脂や電解液を効率的に熱分解させることができ、リチウムイオン二次電池から有価物である銅、アルミニウムコバルト、ニッケルなどの有価物を回収しやすくすることができる。さらに、本発明のリチウムイオン二次電池の処理方法では、例えば、リチウムイオン二次電池の熱暴走を抑制しつつ、リチウムイオン二次電池の電圧由来のエネルギーを利用して、リチウムイオン二次電池の処理を行うことができる。このため、有毒なガスなどの発生を抑制しつつ、リチウムイオン二次電池を安定的に失活(放電及び電解液の除去等)させることができると共に、処理に必要となるエネルギーを抑制することができる。
 また、本発明のリチウムイオン二次電池の処理方法では、本発明のリチウムの回収方法と同様に、熱処理工程において、リチウムイオン二次電池を収容容器に収容して熱処理を行うことが好ましい。また、収容容器ついての詳細は、本発明のリチウムの回収方法における収容容器と同様とすることができる。
 さらに、本発明のリチウムイオン二次電池の処理方法では、本発明のリチウムの回収方法と同様に、リチウムイオン二次電池を熱処理するための火炎の放射方向を収容容器に向けずに熱処理を行い、火炎が収容容器に当たらないようにして熱処理を行うことが好ましい。こうすることにより、リチウムイオン二次電池の急激な温度上昇を防ぐことができるため、より安全に、より有価物を回収しやすくなる。
 本発明のリチウムイオン二次電池の処理方法では、本発明のリチウムの回収方法と同様に、リチウムイオン二次電池がアルミニウムを含む外装ケース(筐体)を有し、リチウムイオン二次電池自体の発熱による燃焼(自燃)が終了した後に行う熱処理工程において、外装ケースを溶融させることによりアルミニウムを回収することが好ましい。具体的には、例えば、リチウムイオン二次電池自体の発熱による燃焼(自燃)が終了した後に行う熱処理工程においてリチウムイオン二次電池を750℃以上で熱処理することにより、リチウムイオン二次電池の外装ケース(筐体)に含まれるアルミニウムと、リチウムイオン二次電池における他の部分(例えば、電極など)とを、容易に選別(分離)して、筐体由来のアルミニウムを簡便に回収することができる。
 また、この場合には、リチウムイオン二次電池を網の上に載置して熱処理することや、リチウムイオン二次電池を溝(スリット)の上に載置して熱処理することなどにより、溶融したアルミニウムをより容易に回収できるようにすることが好ましい。このような網や溝は、例えば、収容容器に設けてもよい。
 本発明のリチウムイオン二次電池の処理方法では、上述したように、安全かつ簡便に低コストで、リチウムイオン二次電池を処理して無害化でき、例えば、リチウムイオン二次電池における熱暴走による破裂及びそれに起因する熱処理に用いる炉の損傷を生じさせることなく処理を行うことができる。
リチウムイオン二次電池の熱暴走による破裂は、正極活物質のニッケルの割合が高いもの、例えば、Ni、Co、Mn、Alのうち、Niが重量で75%以上を占めるNCA系やNCM811等を熱処理する際に特に生じやすい。このため、本発明においては、正極活物質中のニッケルの割合が75%以上であるリチウムイオン二次電池についても、好適に熱処理を行うことができる。
<破砕工程及び分級工程>
 本発明のリチウムイオン二次電池の処理方法は、熱処理物を破砕することにより、破砕物を得る破砕工程と、破砕物を分級することにより、粗粒産物と細粒産物とを得る分級工程と、を更に含むことが好ましい。
 本発明のリチウムイオン二次電池の処理方法における破砕工程及び分級工程の詳細は、本発明のリチウムの回収方法における破砕工程及び分級工程の詳細と同様とすることができる。
 さらに、本発明のリチウムイオン二次電池の処理方法では、分級工程において、粗粒産物に銅を回収することが好ましい。ここで、上述したように、負極集電体の銅はカーボンが塗布されてバインダで結合されているが、例えば、リチウムイオン二次電池の残電圧を活用した自燃によりこのバインダは分解するため、粗粒産物に対して乾式磁力選別を行うことにより、カーボン品位が低減された高品位の銅を非磁着物に回収することができる。
<浸出工程及び湿式磁力選別工程>
 本発明のリチウムイオン二次電池の処理方法は、細粒産物を水に浸けることにより、リチウムを含む浸出液を得る浸出工程、浸出液に対して湿式磁力選別を行うことにより、浸出液を、リチウム及び非磁着物を含むスラリーと、コバルト及びニッケルの少なくともいずれかを含む磁着物とに選別する湿式磁力選別工程などを更に含むことが好ましい。
 本発明のリチウムイオン二次電池の処理方法における浸出工程及び湿式磁力選別工程の詳細は、本発明のリチウムの回収方法における浸出工程及び湿式磁力選別工程の詳細と同様とすることができる。
 本発明のリチウムイオン二次電池の処理方法では、熱処理工程において、リチウムイオン二次電池自体の発熱による燃焼(自燃)を生じさせることにより、例えば、コバルト及びニッケルのメタル化(磁着性の向上)を行うことができる。このため、本発明のリチウムイオン二次電池の処理方法では、湿式磁力選別を行うことにより、例えば、コバルト及びニッケルのメタルを、磁着物として高い回収率及び品位で回収することができる。
<その他の工程>
 その他の工程としては、特に制限はなく、目的に応じて適宜選択することができる。
<第1の実施形態>
 ここで、図面を参照して、本発明のリチウムの回収方法における実施形態の一例について説明する。図1は、本発明のリチウムの回収方法の一実施形態における処理の流れの一例を示す図である。
 第1の実施形態においては、まず、定格の電圧に対し80%以上の電圧を残存させた状態の(未放電の)リチウムイオン二次電池(LIB;Lithium Ion Battery)に対して熱処理(熱処理工程)を行い、LIB熱処理物を得る。熱処理においては、リチウムイオン二次電池の電気エネルギーを熱処理に活用できる。また、アルミニウムの融点以上の温度で熱処理を行うことにより、LIBにおけるアルミニウム(Al)を熔融し分離することができる。
 次に、第1の実施形態においては、LIB熱処理物に対して、破砕及び分級(破砕工程及び分級工程)を行い、粗粒産物と細粒産物とを得る。ここで、粗粒産物として、銅(Cu)や鉄(Fe)などを分離することができる。
 続いて、第1の実施形態では、細粒産物を水に浸けることにより、スラリー状の浸出液を得る。このとき、リチウム(酸化リチウム又は炭酸リチウム)を水に浸出すると共に、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)を含む残渣が、浸出液中に形成される。
 定格の電圧に対し80%以上の電圧を残存させた状態の(未放電の)リチウムイオン二次電池は、前述の通りLiCやLi(1-x)CoO(0<x≦1)などの熱力学的に不安定な状態で存在しているため、熱処理によりフッ化リチウム(LiF)や炭酸リチウム(LiCO)や酸化リチウム(LiO)などの、リチウムが水に可溶な形態の物質にさせやすく、結果として、浸出液中のリチウムの回収率(浸出率)を向上できる。
 そして、リチウムが浸出した液中から、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)を含む残渣を固液分離により除去して、リチウムが浸出した溶液が得られる。
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
(実施例1)
<熱処理>
 まず、重量の合計が400kgのリチウムイオン二次電池(正極活物質中のCo・Ni・Mn・Al量に占めるNiの割合が平均75%、電圧が100%残存)を、幅2350mm、奥行1650mm、高さ400mm、板厚4mmのSUS304製収容容器に入れ、この容器を、炉内幅3050mm、奥行8950mm、高さ3940mmの炉内の中央部に配した。炉内温度は、炉内上部に設けられた排ガス出口の壁面に設置された熱電対より測定した。
 この収容容器には、蓋中央部に直径500mmの開口部が設けられていると共に、収容容器底面には熔融したアルミニウムを回収するための幅30mmのスリット(溝)が設けられている。また、この収容容器中のリチウムイオン二次電池の上部及び下部の表面に、熱電対を配置し、後述する熱処理の際のリチウムイオン二次電池のパック本体の温度を測定した。
 続いて、炉の開口部から1000mmの位置の両側面に配された灯油バーナー2本と、炉開口部から7950mmの位置の両側面に配された灯油バーナー2本の計4本のバーナーを燃焼させることにより炉内を加温し、バーナーの火炎が収容容器に当たらないように熱処理した。つまり、実施例1では、リチウムイオン二次電池を熱処理するための火炎の放射方向を、収容容器に向けずに熱処理を行った。
 バーナーの火炎による熱処理では、まず、炉内温度が約20℃から1時間で400℃まで昇温した。そして、炉内温度400℃を1時間保持した段階で、炉内カメラの画像により収容容器の開口部及び蓋と本体の隙間から火炎が発生し、収容容器の内部のリチウムイオン二次電池の自己燃焼(自燃)による発火が開始したことを確認された。そして、リチウムイオン二次電池の自己燃焼が確認されたときから、バーナーに用いる灯油の供給量を、炉内温度を400℃に保持するときの灯油の供給量を100%とした場合の20%まで低下させた。
 リチウムイオン二次電池の自己燃焼(自燃)による発火は、30分間継続し、リチウムイオン二次電池本体温度は、自己燃焼直前の430℃から最高温度800℃まで到達した。リチウムイオン二次電池の自己燃焼の終了後(収容容器から火炎が確認されなくなった後)、すべてのバーナーの燃焼を停止して、1時間放熱した後、炉内から収容容器を取り出して、内部のリチウムイオン二次電池(熱処理後)と、収容容器下部のスリットに回収されたアルミニウムを回収した。
<破砕及び分級>
 次いで、破砕装置として、ハンマークラッシャー(マキノ式スイングハンマークラッシャーHC-20-3.7、槇野産業株式会社製)を用い、50Hz(ハンマー周速38m/s)、出口部分のパンチングメタルの孔径10mmの条件で、熱処理を行ったリチウムイオン二次電池(リチウムイオン二次電池の熱処理物)を破砕し、リチウムイオン二次電池の破砕物を得た。
 続いて、篩目の目開き(分級点)が1.2mmの篩(直径200mm、東京スクリーン株式会社製)を用いて、リチウムイオン二次電池の破砕物を篩分け(分級)した。そして、篩分け後の1.2mmの篩上(粗粒産物)と篩下(細粒産物)をそれぞれ採取した。
<粗粒産物の乾式磁選(銅濃縮物の回収)>
 次に、得られた粗粒産物を、磁束密度が1500G(0.15T)の乾式ドラム型磁選機(CC 15“φ×20”W、日本エリーズマグネチックス株式会社製)を用いて、フィード速度0.5kg/分の条件で、磁力選別(乾式磁選)を行い、磁着物と非磁着物(銅濃縮物)を分離して回収した。
<細粒産物の浸出及び湿式磁選>
 また、分級により得られた細粒産物100kgを、400Lの水に浸けて、固液比25%、攪拌速度400rpm、浸出時間1時間の条件で、水にリチウムを浸出させた。この水にリチウムを浸出させて得たスラリーを、ドラム型磁選機(商品名:WD L-8ラボモデル、エリーズマグネチックス社製)を用いて、磁力:1500G、ドラム回転数45rpm、固液比25%、スラリー供給速度100L/h/minで湿式磁選(湿式磁力選別)を行い、磁着物と、非磁着物を含むスラリー200Lとを回収した。この非磁着物を含むスラリーをろ布(品名PP934K、中尾フィルター工業株式会社製)を用いたフィルタープレスで0.6MPaの圧力で加圧ろ過して非磁着物を固液分離し、リチウム浸出液(リチウムを含む溶液)を得た。
<リチウム浸出液のフッ素除去>
 得られたリチウム浸出液(pH約10.5、フッ素濃度500mg/L)をFRP製タンク(製作品、直径1084mm、高さ1500mm)内に準備した。これを攪拌機(HP-5006、阪和化工機製)で攪拌した状態で、スラリー濃度25%の消石灰(水酸化カルシウム)及び水を添加し、pH12.0に調整しながら、1時間反応させた(フッ化カルシウムの形成)後、ろ布(品名PP934K、中尾フィルター工業株式会社製)を用いたフィルタープレスで0.6MPaの圧力の加圧ろ過で固液分離して、フッ素を除去したリチウム溶液(フッ素除去後液、フッ素濃度15mg/L)を得た。
<リチウム溶液中のカルシウム除去>
 リチウム溶液(フッ素除去後液)におけるカルシウムの濃度を測定したところ、リチウム溶液にカルシウムが135mg/L溶存していた。これを除去するため、二酸化炭素(CO)ガスを、直径5mmの穴を20箇所あけた20Aの塩ビ管(硬質ポリ塩化ビニル管)を用いて、リチウム溶液中に25L/分で30分間かけて散気し、リチウム溶液に残存するカルシウム(Ca2+イオン)を、炭酸カルシウムとして析出させた。
 そして、この炭酸カルシウムを析出させたリチウム溶液を、ろ布(品名PP934K、中尾フィルター工業株式会社製)を用いたフィルタープレスで0.6MPaの圧力の加圧ろ過で固液分離して、カルシウムを除去したリチウム溶液(カルシウム除去後液)を得た。
<炭酸リチウムの晶析>
 リチウム溶液(カルシウム除去後液、450L)を250LのSUS304製円筒容器(製作品、内径650mm、高さ1180mm)内に、初めに200Lを準備した後に、撹拌機(品名:スーパーアジテーター、型番TTF-2V、トヨキ工業製)で200rpmの攪拌速度で攪拌しながら、残りを7L/hの速度で連続的に供給した。さらに、この容器内に配されたテフロン(登録商標)製のチューブ型熱交換器(カンセツ産業製、製作品、伝熱面積1.4m)内に158℃の蒸気を供給して液温が100℃となる条件で熱交換して、常圧で5倍(蒸発濃縮後液(炭酸リチウムの晶析物を含む)の容積が90L)に蒸発濃縮し、蒸発濃縮した液をろ布(品名PP934K、中尾フィルター工業株式会社製)を用いたフィルタープレスで0.6MPaの圧力で加圧ろ過して、炭酸リチウムの晶析物を得た。
(実施例2)
 実施例1において、リチウムイオン二次電池の自己燃焼の終了後、再度バーナー4本の燃焼を再開して炉内温度800℃まで1hで昇温後、800℃を1時間保持し、追加の熱処理を行った以外は、実施例1と同様にして熱処理を行った。実施例2では、この熱処理後にすべてのバーナーの燃焼を停止して、1時間放熱した後、炉内から収容容器を取り出して、内部のリチウムイオン二次電池(熱処理後)と、収容容器下部のスリットに回収されたアルミニウムを回収した。
 また、実施例2では、熱処理以降の処理を、実施例1と同様にして行い、炭酸リチウム等を回収した。
(実施例3)
 実施例1において、炉内温度が約20℃から1時間で800℃(実施例1では400℃)まで昇温して熱処理を行った以外は、実施例1と同様の処理を行った。実施例3では、炉内温度が700℃に到達した時点(リチウムイオン二次電池本体温度は430℃)で収容容器から発火が確認された。実施例3では、収容容器から発火が確認されたときに、バーナーの燃焼を完全に停止したが、炉内温度は10分で700℃から960℃まで上昇した。実施例3では、実施例1と比べると、収容容器内部の急激な燃焼(酸化反応)により銅箔が脆化し、破砕・分級後の粗粒産物への銅回収率及び細粒産物中のリチウムの水への浸出率が低下(実施例1の47%)したものの、後述する比較例1と比べると、リチウム(炭酸リチウム)の回収率は高くなった。
(実施例4)
 実施例1において、熱炉内温度が400℃まで昇温した段階で、収容容器に火炎が当たる位置のバーナー1本の燃焼を開始し、収容容器に火炎を当てながら熱処理した以外は実施例1と同様の処理を行った。実施例4では、火炎を当て始めてから3分で(リチウムイオン二次電池本体温度430℃)で収容容器から発火が確認された。実施例4では、収容容器から発火が確認されたときに、バーナーの燃焼を完全に停止したが、炉内温度は10分で400℃から920℃まで上昇した。実施例4では、収容容器内部の急激な燃焼(酸化反応)により銅箔が脆化し、破砕・分級後の粗粒産物への銅回収率及び細粒産物中のリチウムの水への浸出率が低下(実施例1の32%)したものの、後述する比較例1と比べると、リチウム(炭酸リチウム)の回収率は高くなった。
(比較例1)
 実施例1において、リチウムイオン二次電池を残電圧が50%となるまで放電した後に熱処理を行った以外は、実施例1と同様の処理を行った。比較例1では、リチウムイオン二次電池の発火(自燃)が生じず、バインダの分解や正極活物質の分解(リチウムの可溶化及びコバルト及びニッケルのメタル化)が生じなかった。また、熱処理後のリチウムイオン電池を解体し、セパレータ、並びに正極及び負極の表面が電解液で湿潤しており、無害化が完了していないことが確認された。
 このため、比較例1では、高品位の銅濃縮物が回収できず(銅の品位が低く)、リチウムの浸出率は低く、コバルト及びニッケルは磁着物中の回収率が低下した。また、比較例1ではリチウムイオン二次電池の発火(自燃)が生じなかったため、実施例1と比べて、熱処理終了までに要した灯油の量が20%増加した。
 ここで、処理の対象としたリチウムイオン二次電池に含まれていた、各元素の量を100%とした場合の、各回収物への各元素の回収率を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 また、各回収物中の各元素の品位を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 また、いずれの実施例においても、リチウムイオン二次電池を収容容器内に収容したことにより、リチウムイオン二次電池の破裂による炉体の損傷を防止できた。また、いずれの実施例においても、電解液は完全に除去されていた。
 以上、説明したように、本発明のリチウムの回収方法は、リチウムイオン二次電池からリチウムを回収するリチウムの回収方法であって、定格の電圧に対し80%以上の電圧を残存させたリチウムイオン二次電池を熱処理することにより、熱処理物を得る熱処理工程と、熱処理物を破砕することにより、破砕物を得る破砕工程と、破砕物から、リチウムを回収するリチウム回収工程と、を含む。これにより、本発明のリチウムの回収方法は、リチウムイオン二次電池の放電が不要となり、熱処理工程でのエネルギーコストを下げることができると共に、リチウムイオン二次電池からリチウムを高い回収率で回収することができる。
 また、本発明のリチウムイオン二次電池の処理方法は、定格の電圧に対し80%以上の電圧を残存させたリチウムイオン二次電池を熱処理することにより、熱処理物を得る熱処理工程を含む。これにより、本発明のリチウムイオン二次電池の処理方法は、リチウムイオン二次電池の放電が不要となり、熱処理工程でのエネルギーコストを下げることができ、安全かつ簡便に低コストで、リチウムイオン二次電池を処理して無害化(例えば、電解液の除去)することができる。

Claims (34)

  1.  リチウムイオン二次電池からリチウムを回収するリチウムの回収方法であって、
     定格の電圧に対し80%以上の電圧を残存させたリチウムイオン二次電池を熱処理することにより、熱処理物を得る熱処理工程と、
     前記熱処理物を破砕することにより、破砕物を得る破砕工程と、
     前記破砕物から、リチウムを回収するリチウム回収工程と、
     を含むことを特徴とするリチウムの回収方法。
  2.  前記熱処理工程が、前記リチウムイオン二次電池を350℃以上550℃以下に加熱する処理を含む、請求項1に記載のリチウムの回収方法。
  3.  前記熱処理工程において、前記リチウムイオン二次電池の発火が生じているときの熱の供給量を、前記リチウムイオン二次電池の発火が生じる前の熱の供給量の50%以下に変更する、請求項2に記載のリチウムの回収方法。
  4.  前記熱処理工程において、前記リチウムイオン二次電池の発火が終了した後に、前記リチウムイオン二次電池を750℃以上1,085℃未満で更に熱処理する、請求項2から3のいずれか記載のリチウムの回収方法。
  5.  前記熱処理工程において、前記リチウムイオン二次電池を収容容器に収容して熱処理を行う、請求項1から4のいずれかに記載のリチウムの回収方法。
  6.  前記収容容器が、気体を流通可能な開口部を有する、請求項5に記載のリチウムの回収方法。
  7.  前記収容容器が、前記リチウムイオン二次電池を収容するための開閉可能な蓋部を有する、請求項5から6のいずれかに記載のリチウムの回収方法。
  8.  前記収容容器の融点が、前記リチウムイオン二次電池を熱処理する際の温度より高い、請求項5から7のいずれかに記載のリチウムの回収方法。
  9.  前記熱処理工程において、前記リチウムイオン二次電池を熱処理するための火炎が、前記収容容器に当たらないようにして熱処理を行う、請求項5から8のいずれかに記載のリチウムの回収方法。
  10.  前記熱処理工程において、前記リチウムイオン二次電池を熱処理するための前記火炎の放射方向を、前記収容容器に向けずに熱処理を行う、請求項9に記載のリチウムの回収方法。
  11.  前記破砕工程の後に、前記破砕物を分級することにより、粗粒産物と細粒産物とを得る分級工程を含み、
     前記リチウム回収工程において、前記細粒産物からリチウムを回収する、請求項1から10のいずれかに記載のリチウムの回収方法。
  12.  前記リチウム回収工程において、前記破砕物を水に浸けることにより、リチウムを含む浸出液を得る、請求項1から11のいずれかに記載のリチウムの回収方法。
  13.  前記リチウム回収工程において、前記浸出液をろ過することにより、前記浸出液を、リチウムを含む溶液と残渣とに固液分離する、請求項12に記載のリチウムの回収方法。
  14.  前記リチウム回収工程において、前記浸出液に対して湿式磁力選別を行うことにより、前記浸出液を、リチウム及び非磁着物を含むスラリーと、コバルト及びニッケルの少なくともいずれかを含む磁着物とに選別する、請求項12に記載のリチウムの回収方法。
  15.  前記リチウム回収工程において、前記スラリーをろ過することにより、前記スラリーを、リチウムを含む溶液と非磁着物を含む残渣とに固液分離する、請求項14に記載のリチウムの回収方法。
  16.  前記リチウム回収工程において、前記溶液に水酸化カルシウムを添加して、前記溶液に含まれるフッ素をフッ化カルシウムとして固化させた後、前記溶液をろ過して固液分離することにより、前記溶液からフッ素を除去する、請求項15に記載のリチウムの回収方法。
  17.  前記リチウム回収工程において、フッ素を除去した前記溶液に二酸化炭素を添加して、前記溶液に含まれるカルシウムを炭酸カルシウムとして固化させた後、前記溶液をろ過して固液分離することにより、前記溶液からカルシウムを除去する、請求項16に記載のリチウムの回収方法。
  18.  前記リチウム回収工程において、カルシウムを除去した前記溶液を加熱することにより炭酸リチウムを回収する、請求項17に記載のリチウムの回収方法。
  19.  定格の電圧に対し80%以上の電圧を残存させたリチウムイオン二次電池を熱処理することにより、熱処理物を得る熱処理工程を含むことを特徴とするリチウムイオン二次電池の処理方法。
  20.  前記熱処理工程が、前記リチウムイオン二次電池を350℃以上550℃以下に加熱する処理を含む、請求項19に記載のリチウムイオン二次電池の処理方法。
  21.  前記熱処理工程において、前記リチウムイオン二次電池の発火が生じているときの熱の供給量を、前記リチウムイオン二次電池の発火が生じる前の熱の供給量の50%以下に変更する、請求項20に記載のリチウムイオン二次電池の処理方法。
  22.  前記熱処理工程において、前記リチウムイオン二次電池の発火が終了した後に、前記リチウムイオン二次電池を750℃以上1,085℃未満で更に熱処理する、請求項20から21のいずれか記載のリチウムイオン二次電池の処理方法。
  23.  前記リチウムイオン二次電池がアルミニウムを含む外装ケースを有し、
     前記熱処理工程において、前記外装ケースを溶融させることによりアルミニウムを回収する、請求項22に記載のリチウムイオン二次電池の処理方法。
  24.  前記熱処理工程において、前記リチウムイオン二次電池を収容容器に収容して熱処理を行う、請求項19から23のいずれかに記載のリチウムイオン二次電池の処理方法。
  25.  前記収容容器が、気体を流通可能な開口部を有する、請求項24に記載のリチウムイオン二次電池の処理方法。
  26.  前記収容容器が、前記リチウムイオン二次電池を収容するための開閉可能な蓋部を有する、請求項24から25のいずれかに記載のリチウムイオン二次電池の処理方法。
  27.  前記収容容器の融点が、前記リチウムイオン二次電池を熱処理する際の温度より高い、請求項24から26のいずれかに記載のリチウムイオン二次電池の処理方法。
  28.  前記熱処理工程において、前記リチウムイオン二次電池を熱処理するための火炎が、前記収容容器に当たらないようにして熱処理を行う、請求項24から27のいずれかに記載のリチウムイオン二次電池の処理方法。
  29.  前記熱処理工程において、前記リチウムイオン二次電池を熱処理するための前記火炎の放射方向を、前記収容容器に向けずに熱処理を行う、請求項28に記載のリチウムイオン二次電池の処理方法。
  30.  前記熱処理物を破砕することにより、破砕物を得る破砕工程と、
     前記破砕物を分級することにより、粗粒産物と細粒産物とを得る分級工程と、
     を更に含む、請求項19から29のいずれかに記載のリチウムイオン二次電池の処理方法。
  31.  前記分級工程において、前記粗粒産物に銅を回収する、請求項30に記載のリチウムイオン二次電池の処理方法。
  32.  前記細粒産物を水に浸けることにより、リチウムを含む浸出液を得る浸出工程を更に含む、請求項30から31のいずれかに記載のリチウムイオン二次電池の処理方法。
  33.  前記浸出液に対して湿式磁力選別を行うことにより、前記浸出液を、リチウム及び非磁着物を含むスラリーと、コバルト及びニッケルの少なくともいずれかを含む磁着物とに選別する湿式磁力選別を更に含む、請求項32に記載のリチウムイオン二次電池の処理方法。
  34.  前記リチウムイオン二次電池における、正極活物質中のニッケルの割合が75%以上である、請求項19から33のいずれかに記載のリチウムイオン二次電池の処理方法。

     
PCT/JP2021/009223 2020-03-13 2021-03-09 リチウムの回収方法及びリチウムイオン二次電池の処理方法 WO2021182452A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/910,214 US20230104457A1 (en) 2020-03-13 2021-03-09 Method for recovering lithium and method for processing lithium ion secondary battery
EP21768111.3A EP4119245A4 (en) 2020-03-13 2021-03-09 METHOD FOR RECOVERING LITHIUM AND METHOD FOR PROCESSING A LITHIUM-ION SECONDARY BATTERY
KR1020227031918A KR20220151627A (ko) 2020-03-13 2021-03-09 리튬 회수 방법 및 리튬 이온 이차전지 처리 방법
CN202180034027.0A CN115552694A (zh) 2020-03-13 2021-03-09 锂的回收方法及锂离子二次电池的处理方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020043902 2020-03-13
JP2020-043902 2020-03-13
JP2021-034103 2021-03-04
JP2021034103A JP6963135B2 (ja) 2020-03-13 2021-03-04 リチウムの回収方法及びリチウムイオン二次電池の処理方法

Publications (1)

Publication Number Publication Date
WO2021182452A1 true WO2021182452A1 (ja) 2021-09-16

Family

ID=77671556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009223 WO2021182452A1 (ja) 2020-03-13 2021-03-09 リチウムの回収方法及びリチウムイオン二次電池の処理方法

Country Status (6)

Country Link
US (1) US20230104457A1 (ja)
EP (1) EP4119245A4 (ja)
KR (1) KR20220151627A (ja)
CN (1) CN115552694A (ja)
TW (1) TW202141842A (ja)
WO (1) WO2021182452A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055071A1 (en) * 2022-09-14 2024-03-21 Gelion Technologies Pty Ltd A recycling method for recovery of valuable metal elements from waste battery materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124127A (ja) * 2009-12-11 2011-06-23 Toyota Motor Corp 電池パックのリサイクル方法および電池パックのリサイクル装置
JP6198027B1 (ja) 2017-01-24 2017-09-20 三菱マテリアル株式会社 使用済みリチウムイオン電池からの有価物回収方法
CN110923453A (zh) * 2019-11-29 2020-03-27 中南大学 一种从废旧锂离子电池中回收锂的方法
CN111430831A (zh) * 2020-03-11 2020-07-17 中南大学 一种废旧锂离子电池负极材料的回收方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2319285A1 (en) * 2000-09-13 2002-03-13 Hydro-Quebec A method for neutralizing and recycling spent lithium metal polymer rechargeable batteries
JP6587861B2 (ja) * 2015-08-11 2019-10-09 学校法人早稲田大学 リチウムイオン電池の処理方法
JP6448684B2 (ja) * 2017-03-03 2019-01-09 Jx金属株式会社 リチウム回収方法
CN109037722A (zh) * 2018-08-17 2018-12-18 湖南金凯循环科技有限公司 一种回收废旧钛酸锂系锂离子电池负极片中锂的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124127A (ja) * 2009-12-11 2011-06-23 Toyota Motor Corp 電池パックのリサイクル方法および電池パックのリサイクル装置
JP6198027B1 (ja) 2017-01-24 2017-09-20 三菱マテリアル株式会社 使用済みリチウムイオン電池からの有価物回収方法
CN110923453A (zh) * 2019-11-29 2020-03-27 中南大学 一种从废旧锂离子电池中回收锂的方法
CN111430831A (zh) * 2020-03-11 2020-07-17 中南大学 一种废旧锂离子电池负极材料的回收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4119245A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055071A1 (en) * 2022-09-14 2024-03-21 Gelion Technologies Pty Ltd A recycling method for recovery of valuable metal elements from waste battery materials

Also Published As

Publication number Publication date
US20230104457A1 (en) 2023-04-06
EP4119245A4 (en) 2024-04-24
TW202141842A (zh) 2021-11-01
CN115552694A (zh) 2022-12-30
EP4119245A1 (en) 2023-01-18
KR20220151627A (ko) 2022-11-15

Similar Documents

Publication Publication Date Title
JP6963135B2 (ja) リチウムの回収方法及びリチウムイオン二次電池の処理方法
JP6859598B2 (ja) 使用済みリチウムイオン電池からの有価物回収方法
JP6748274B2 (ja) リチウムイオン二次電池からの有価物の回収方法
JP7402733B2 (ja) 電池廃棄物の熱処理方法及び、リチウム回収方法
JP6948481B2 (ja) 有価物の回収方法
WO2021090571A1 (ja) リチウムの分離方法
JP6888130B1 (ja) 有価物の選別方法
US11482737B2 (en) Method for recovering valuable material from lithium ion secondary battery
WO2021182452A1 (ja) リチウムの回収方法及びリチウムイオン二次電池の処理方法
JP6984055B2 (ja) リチウムイオン二次電池に含まれる有価金属の濃縮方法
JP6869444B1 (ja) リチウムの分離方法
WO2022209421A1 (ja) 電池廃棄物の処理方法
WO2022054723A1 (ja) 有価物の回収方法
WO2023243385A1 (ja) 再生正極材およびその製造方法、ならびに再生正極材の使用方法、再生正極、およびリチウムイオン二次電池
WO2024014144A1 (ja) リチウムイオン二次電池からの有価物の回収方法
JP7109702B1 (ja) 電池廃棄物の処理方法
JP6994093B1 (ja) リチウムイオン二次電池からの有価物の回収方法
WO2023140198A1 (ja) 有価物の回収方法
WO2024090313A1 (ja) リチウムイオン二次電池からの有価物の回収方法
JP2023183355A (ja) 再生正極材およびその製造方法、ならびに再生正極材の使用方法、再生正極、およびリチウムイオン二次電池
JP2022164547A (ja) リチウムイオン二次電池からのリチウムの回収方法
TW202410536A (zh) 源自鋰離子二次電池的貴重物的回收方法
TW202247521A (zh) 有價物的選別方法
TW202410535A (zh) 再生正極材料及其製造方法、再生正極材料的使用方法、再生正極以及鋰離子二次電池
JP2024062957A (ja) リチウムイオン二次電池からの有価物の回収方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768111

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021768111

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021768111

Country of ref document: EP

Effective date: 20221013

NENP Non-entry into the national phase

Ref country code: DE