WO2021182427A1 - 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、地上設備、および事業装置 - Google Patents

衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、地上設備、および事業装置 Download PDF

Info

Publication number
WO2021182427A1
WO2021182427A1 PCT/JP2021/009113 JP2021009113W WO2021182427A1 WO 2021182427 A1 WO2021182427 A1 WO 2021182427A1 JP 2021009113 W JP2021009113 W JP 2021009113W WO 2021182427 A1 WO2021182427 A1 WO 2021182427A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
satellite constellation
orbital
constellation
ground
Prior art date
Application number
PCT/JP2021/009113
Other languages
English (en)
French (fr)
Inventor
久幸 迎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022507199A priority Critical patent/JP7233602B2/ja
Priority to US17/792,406 priority patent/US20230056948A1/en
Publication of WO2021182427A1 publication Critical patent/WO2021182427A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1085Swarms and constellations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/62Systems for re-entry into the earth's atmosphere; Retarding or landing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/66Arrangements or adaptations of apparatus or instruments, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G3/00Observing or tracking cosmonautic vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/66Arrangements or adaptations of apparatus or instruments, not otherwise provided for
    • B64G1/68Arrangements or adaptations of apparatus or instruments, not otherwise provided for of meteoroid or space debris detectors

Definitions

  • This disclosure relates to a satellite constellation formation system, a satellite constellation formation method, a satellite constellation formation program, ground equipment, and business equipment.
  • Patent Document 1 discloses a technique for forming a satellite constellation composed of a plurality of satellites in the same circular orbit.
  • Patent Document 1 does not describe a collision avoidance method when a space object invades a satellite constellation.
  • the purpose of this disclosure is to reduce the risk of space objects colliding with satellite constellations.
  • the satellite constellation formation system is It is a satellite constellation composed of a group of satellites and the satellite groups cooperate to provide communication services, and forms a satellite constellation having a plurality of orbital planes in which a plurality of satellites fly at the same orbital plane on each orbital plane.
  • Each satellite of the satellite group includes an intersatellite communication means and a communication means between the satellite and the ground.
  • the satellite constellation formation system is The arrangement has 10 or more orbital planes having different normal directions, and the relative angles of the plurality of orbital planes adjacent to each other in the azimuth direction are partially uneven.
  • the means of communication between the flying satellite and the ground is equipped with a satellite constellation forming part that forms a satellite constellation having a communication range covering the ground above the equator.
  • a passage region for passing a space object is formed at the orbital altitude of the satellite constellation, so that the risk of collision between a large space object and the satellite constellation is reduced. be able to.
  • FIG. 1 An example in which multiple satellites work together to realize communication services throughout the globe.
  • Functional configuration example of satellite constellation formation system The flow chart of the satellite constellation formation processing by the satellite constellation formation system which concerns on Embodiment 1.
  • FIG. 1 An example in which multiple satellites work together to realize communication services throughout the globe.
  • the figure which looked at the orbital plane of the 12 planes of the satellite constellation which consists of the orbital planes of 24 planes which concerns on Embodiment 1 from the North Pole direction. 12 orbital planes other than the 12 planes in FIG. A total of 24 orbital planes including the 12 planes of FIG. 10 and the 12 planes of FIG.
  • the figure which formed the passage area in the satellite constellation of FIG. The figure which formed the passage area in the satellite constellation of FIG.
  • the figure which formed the passage area in the satellite constellation of FIG. The block diagram of the satellite constellation formation system which concerns on the modification of Embodiment 1.
  • the figure which looked at the orbital plane of the 12 planes of the satellite constellation composed of the orbital planes of 24 planes which concerns on Embodiment 2 from the North Pole direction.
  • An example of an intersatellite communication mission concept by a mega constellation operator that is, a conceptual diagram of intersatellite communication. The figure which shows the image of the intersatellite communication network in the orbital plane even arrangement by a mega constellation operator. It is an image of an intersatellite communication network in an uneven arrangement of orbital planes, and is a diagram showing a state without adjacent communication in an uneven arrangement area.
  • satellite-to-satellite communication in the oblique direction is performed between the orbital planes of L21 and L23 adjacent to each other in the gap region in FIG. 31.
  • Embodiment 1 *** Explanation of configuration *** A configuration example of the satellite constellation formation system according to the following embodiment will be described.
  • FIG. 1 is a diagram showing an example in which a plurality of satellites cooperate with each other to realize a communication service over the entire globe of the earth 70.
  • FIG. 1 shows a satellite constellation 20 that realizes a communication service all over the world.
  • the communication service range for the ground overlaps with the communication service range of the succeeding satellite. Therefore, according to such a plurality of satellites, it is possible to provide a communication service to a specific point on the ground while a plurality of satellites on the same orbital plane alternate in a time-division manner.
  • the adjacent orbital planes it is possible to cover the communication services on the ground between the adjacent orbitals.
  • communication services to the ground can be provided all over the globe.
  • FIG. 2 is a diagram showing an example in which a plurality of satellites having a single orbital plane realize an earth observation service.
  • FIG. 2 shows a satellite constellation 20 that realizes an earth observation service.
  • a satellite equipped with an earth observation device which is a radio wave sensor such as an optical sensor or a synthetic aperture radar flies in the same orbital plane at the same altitude.
  • an earth observation device which is a radio wave sensor such as an optical sensor or a synthetic aperture radar flies in the same orbital plane at the same altitude.
  • the satellite group 300 in which the subsequent satellites overlap with each other due to a time delay in the imaging range on the ground, a plurality of satellites in orbit alternate with each other in a time-division manner with respect to a specific point on the ground to capture a ground image.
  • the satellite constellation 20 is composed of a satellite group 300 composed of a plurality of satellites in each orbital plane.
  • the satellite group 300 cooperates to provide a service.
  • the satellite constellation 20 refers to a satellite constellation consisting of a group of satellites by a communication business service company as shown in FIG. 1 or an observation business service company as shown in FIG.
  • FIG. 3 is an example of a satellite constellation 20 having a plurality of orbital planes 21 intersecting in the vicinity of the polar region.
  • FIG. 4 is an example of a satellite constellation 20 having a plurality of orbital planes 21 intersecting outside the polar region.
  • the orbital inclination angles of the orbital planes 21 of the plurality of orbital planes are about 90 degrees, and the orbital planes 21 of the plurality of orbital planes are present on different planes.
  • the orbital inclination angles of the orbital planes 21 of the plurality of orbital planes are not about 90 degrees, and the orbital planes 21 of the plurality of orbital planes are present on different planes.
  • any two orbital planes intersect at a point near the polar region. Further, in the satellite constellation 20 of FIG. 4, any two orbital planes intersect at points other than the polar region.
  • a collision of the satellite 30 may occur in the vicinity of the polar region.
  • the orbital planes may intersect at various positions including the vicinity of the equator. Therefore, the places where the collision of the satellite 30 may occur are diversified. Satellite 30 is also called an artificial satellite.
  • ADR is an abbreviation for Active Devris Removal.
  • the satellite constellation formation system 600 is operated by a business operator such as a mega constellation business device, a LEO (Low Earth Orbit) constellation business device, or a satellite business device.
  • a business operator such as a mega constellation business device, a LEO (Low Earth Orbit) constellation business device, or a satellite business device.
  • FIG. 5 is a block diagram of the satellite constellation formation system 600.
  • the satellite constellation formation system 600 includes a computer.
  • FIG. 5 shows the configuration of one computer, in reality, each satellite 30 of the plurality of satellites constituting the satellite constellation 20 and the ground equipment 700 communicating with the satellite 30 are equipped with a computer. Be done. Then, the computers provided in each of the satellites 30 of the plurality of satellites and the ground equipment 700 communicating with the satellites 30 cooperate to realize the function of the satellite constellation formation system 600.
  • an example of a computer configuration that realizes the functions of the satellite constellation formation system 600 will be described.
  • the satellite constellation formation system 600 includes ground equipment 700 that communicates with the satellite 30.
  • the satellite 30 includes a satellite communication device 32 that communicates with the communication device 950 of the ground equipment 700.
  • FIG. 5 illustrates the satellite communication device 32 among the configurations included in the satellite 30.
  • the satellite constellation formation system 600 includes a processor 910 and other hardware such as a memory 921, an auxiliary storage device 922, an input interface 930, an output interface 940, and a communication device 950.
  • the processor 910 is connected to other hardware via a signal line and controls these other hardware.
  • the satellite constellation forming system 600 includes a satellite constellation forming unit 11 as a functional element.
  • the satellite constellation forming unit 11 controls the formation of the satellite constellation 20 while communicating with the satellite 30.
  • the function of the satellite constellation forming unit 11 is realized by software.
  • Processor 910 is a device that executes a satellite constellation formation program.
  • the satellite constellation forming program is a program that realizes the function of the satellite constellation forming unit 11.
  • the processor 910 is an IC (Integrated Circuit) that performs arithmetic processing. Specific examples of the processor 910 are a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
  • the memory 921 is a storage device that temporarily stores data.
  • a specific example of the memory 921 is a SRAM (Static Random Access Memory) or a DRAM (Dynamic Random Access Memory).
  • the auxiliary storage device 922 is a storage device that stores data.
  • a specific example of the auxiliary storage device 922 is an HDD.
  • the auxiliary storage device 922 may be a portable recording medium such as an SD (registered trademark) memory card, CF, NAND flash, flexible disc, optical disk, compact disc, Blu-ray (registered trademark) disc, or DVD.
  • HDD is an abbreviation for Hard Disk Drive.
  • SD® is an abbreviation for Secure Digital.
  • CF is an abbreviation for CompactFlash®.
  • DVD is an abbreviation for Digital Versatile Disc.
  • the input interface 930 is a port connected to an input device such as a mouse, keyboard, or touch panel. Specifically, the input interface 930 is a USB (Universal Serial Bus) terminal. The input interface 930 may be a port connected to a LAN (Local Area Network).
  • the output interface 940 is a port to which a cable of a display device such as a display is connected. Specifically, the output interface 940 is a USB terminal or an HDMI (registered trademark) (High Definition Multimedia Interface) terminal. Specifically, the display is an LCD (Liquid Crystal Display).
  • the communication device 950 has a receiver and a transmitter. Specifically, the communication device 950 is a communication chip or a NIC (Network Interface Card).
  • NIC Network Interface Card
  • the satellite constellation formation program is read into the processor 910 and executed by the processor 910.
  • the memory 921 not only the satellite constellation formation program but also the OS (Operating System) is stored.
  • the processor 910 executes the satellite constellation formation program while executing the OS.
  • the satellite constellation formation program and the OS may be stored in the auxiliary storage device 922.
  • the satellite constellation formation program and OS stored in the auxiliary storage device 922 are loaded into the memory 921 and executed by the processor 910. A part or all of the satellite constellation formation program may be incorporated in the OS.
  • the satellite constellation formation system 600 may include a plurality of processors that replace the processor 910. These multiple processors share the execution of the program.
  • Each processor like the processor 910, is a device that executes a program.
  • Data, information, signal values and variable values used, processed or output by the program are stored in the memory 921, the auxiliary storage device 922, or the register or cache memory in the processor 910.
  • the "part" of each part of the satellite constellation formation system may be read as “processing”, “procedure”, “means", “step” or “process”. Further, the “process” of the satellite constellation formation process may be read as “program”, “program product”, or "computer-readable storage medium on which the program is recorded”. "Processing”, “procedure”, “means”, “step” or “process” can be read interchangeably.
  • the satellite constellation formation method is a method performed by the satellite constellation formation system 600 executing a satellite constellation formation program.
  • the satellite constellation formation program may be provided stored in a computer-readable storage medium.
  • each program may be provided as a program product.
  • FIG. 6 is a block diagram of the satellite 30 of the satellite constellation formation system 600.
  • the satellite 30 includes a satellite control device 31, a satellite communication device 32, a propulsion device 33, an attitude control device 34, and a power supply device 35.
  • FIG. 6 describes a satellite control device 31, a satellite communication device 32, a propulsion device 33, an attitude control device 34, and a power supply device 35.
  • the satellite 30 is an example of a space object 60.
  • the satellite control device 31 is a computer that controls the propulsion device 33 and the attitude control device 34, and includes a processing circuit. Specifically, the satellite control device 31 controls the propulsion device 33 and the attitude control device 34 according to various commands transmitted from the ground equipment 700.
  • the satellite communication device 32 includes an intersatellite communication means and a communication means between the satellite and the ground.
  • the intersatellite communication means is a device for communicating between satellites of a plurality of satellites constituting the satellite constellation 20.
  • the means of communication between the satellite and the ground is a device that communicates with the ground equipment 700. Specifically, the satellite communication device 32 transmits various data related to its own satellite to the ground equipment 700. Further, the satellite communication device 32 receives various commands transmitted from the ground equipment 700.
  • the propulsion device 33 is a device that gives a propulsive force to the satellite 30, and changes the speed of the satellite 30.
  • the propulsion device 33 is an apogee kick motor, a chemical propulsion device, or an electric propulsion device.
  • the apogee kick motor (AKM) is an upper propulsion device used to insert an artificial satellite into orbit, and is also called an apogee motor (when using a solid rocket motor) or an apogee engine (when using a liquid engine).
  • the chemical propulsion device is a thruster using a one-component or two-component fuel.
  • the electric propulsion device is an ion engine or a hall thruster.
  • Apogee kick motor is the name of the device used for orbit transition, and may be a kind of chemical propulsion device.
  • the attitude control device 34 is a device for controlling attitude elements such as the attitude of the satellite 30, the angular velocity of the satellite 30, and the line-of-sight direction (Line Of Right).
  • the attitude control device 34 changes each attitude element in a desired direction.
  • the attitude control device 34 maintains each attitude element in a desired direction.
  • the attitude control device 34 includes an attitude sensor, an actuator, and a controller.
  • Attitude sensors are devices such as gyroscopes, earth sensors, sun sensors, star trackers, thrusters and magnetic sensors.
  • Actuators are devices such as attitude control thrusters, momentum wheels, reaction wheels and control moment gyro.
  • the controller controls the actuator according to the measurement data of the attitude sensor or various commands from the ground equipment 700.
  • the power supply device 35 includes devices such as a solar cell, a battery, and a power control device, and supplies power to each device mounted on the satellite 30
  • the processing circuit may be dedicated hardware or a processor that executes a program stored in memory. In the processing circuit, some functions may be realized by dedicated hardware and the remaining functions may be realized by software or firmware. That is, the processing circuit can be realized by hardware, software, firmware or a combination thereof.
  • Dedicated hardware is specifically a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA or a combination thereof.
  • ASIC is an abbreviation for Application Special Integrated Circuit.
  • FPGA is an abbreviation for Field Programmable Gate Array.
  • FIG. 7 is a configuration diagram of the ground equipment 700 included in the satellite constellation formation system 600.
  • the ground equipment 700 programmatically controls a large number of satellites in all orbital planes.
  • the ground equipment 700 is an example of a ground device.
  • the ground device is composed of a ground station such as a ground antenna device, a communication device connected to the ground antenna device, or a computer, and ground equipment as a server or a terminal connected to the ground station via a network. Further, the ground device may include a communication device mounted on a moving body such as an aircraft, a self-propelled vehicle, or a mobile terminal.
  • the ground equipment 700 forms a satellite constellation 20 by communicating with each satellite 30.
  • the ground equipment 700 is provided in the satellite constellation formation system 600.
  • the ground equipment 700 includes a processor 910 and other hardware such as a memory 921, an auxiliary storage device 922, an input interface 930, an output interface 940, and a communication device 950.
  • the processor 910 is connected to other hardware via a signal line and controls these other hardware.
  • the hardware of the ground equipment 700 is the same as the hardware of the satellite constellation formation system 600 described with reference to FIG.
  • the ground equipment 700 includes a trajectory control command generation unit 510 and an analysis prediction unit 520 as functional elements.
  • the functions of the trajectory control command generation unit 510 and the analysis prediction unit 520 are realized by hardware or software.
  • the communication device 950 transmits / receives a signal for tracking and controlling each satellite 30 of the satellite group 300 constituting the satellite constellation 20. Further, the communication device 950 transmits an orbit control command 55 to each satellite 30.
  • the analysis prediction unit 520 analyzes and predicts the orbit of the satellite 30.
  • the orbit control command generation unit 510 generates an orbit control command 55 to be transmitted to the satellite 30.
  • the orbit control command generation unit 510 and the analysis prediction unit 520 realize the functions of the satellite constellation formation unit 11. That is, the orbit control command generation unit 510 and the analysis prediction unit 520 are examples of the satellite constellation formation unit 11.
  • FIG. 8 is a diagram showing a functional configuration example of the satellite constellation formation system 600.
  • the satellite 30 further includes a satellite constellation forming unit 11b that forms the satellite constellation 20. Then, the satellite constellation forming unit 11b of each satellite 30 of the plurality of satellites and the satellite constellation forming unit 11 provided in each of the ground equipment 700 cooperate to realize the function of the satellite constellation forming system 600. ..
  • the satellite constellation forming unit 11b of the satellite 30 may be provided in the satellite control device 31.
  • FIG. 9 is a flow chart of the satellite constellation forming process S100 by the satellite constellation forming system 600 according to the present embodiment.
  • the satellite constellation formation system 600 is composed of a satellite constellation system 600, and the satellite constellation 20 forms a satellite constellation 20 in which the satellite groups cooperate to provide a communication service.
  • the satellite constellation formation system 600 forms a satellite constellation 20 having a plurality of orbital planes in which a plurality of satellites fly at the same orbital altitude on each orbital plane.
  • the satellite constellation 20 has 10 orbital planes having different normal directions.
  • Each satellite of the satellite group includes an intersatellite communication means and a communication means between the satellite and the ground.
  • the satellite constellation 20 may have three or more orbital planes having different normal directions.
  • the number of orbital planes may be any number as long as the satellite constellation 20 can form a portion where the relative angles of adjacent orbital planes in the azimuth direction are equal and uneven.
  • step S101 the satellite constellation forming unit 11 determines whether or not 20 satellite constellations having unevenly arranged orbital planes are formed. For example, when it is predicted that a space object such as ISS will pass the orbital altitude of the satellite constellation from the sky above the satellite constellation, it is determined that the orbital planes are unevenly arranged. It is assumed that the satellite constellation formation system 600 forms a mega constellation composed of a group of thousands of satellites in the vicinity of an orbital altitude of 340 km. Further, it is assumed that the ISS is flying at an orbital altitude of about 400 km. It is expected that the ISS will leave the orbit due to PMD and descend to the mega constellation after the mission is completed.
  • the satellite constellation forming unit 11 determines whether or not the ISS, which is a large space object, passes the orbital altitude of the mega constellation from the sky above the mega constellation. If it is determined that the raceway planes are unevenly arranged, the process proceeds to step S102. If it is not determined that the orbital planes are unevenly arranged, step S101 is repeated.
  • the satellite constellation forming unit 11 has 10 orbital planes having different normal directions, and a plurality of orbitals arranged so that the relative angles in the azimuth direction of the adjacent orbital planes are partially uneven.
  • the satellite constellation forming unit 11 forms a satellite constellation 20 in which the communication means between the satellite flying on the orbital planes of uneven arrangement and the ground has a communication range covering the ground above the equator. Specifically, it is as follows.
  • a passage region R through which the space object passes is formed at the orbital altitude of the satellite constellation.
  • the passing region R is an empty region in which adjacent raceways are unevenly arranged.
  • the passing region R is, for example, a region in which each of the plurality of raceway planes does not exist or there are few intersections between the raceway planes.
  • the passing region R is a region where the relative angles of adjacent orbital planes in the azimuth direction are uneven.
  • the satellite constellation forming unit 11 changes the orbital altitudes of all the satellites constituting the adjacent orbital planes at the same time, and maintains a state in which the average orbital altitudes of the plurality of orbital planes arranged in the azimuth direction are sequentially increased.
  • a passage region R is formed.
  • the satellite constellation forming unit 11 changes the orbital altitudes of all satellites on adjacent orbital planes at the same time, and maintains a state in which the average orbital altitudes of a plurality of orbital planes arranged in the azimuth direction are sequentially increased. Generate an orbit control command to do. Then, the satellite constellation forming unit 11 transmits an orbit control command to a plurality of satellites 30 forming the satellite constellation. By performing orbit control according to the orbit control command, each satellite forming the satellite constellation maintains a state in which the average orbital altitudes of the plurality of orbital planes arranged in the azimuth direction increase in order, and the passing region R is formed. Will be done.
  • the satellite constellation forming unit 11 forms a satellite constellation in which each orbital plane of a plurality of orbital planes passes through a polar region and the polar region is a dense region of the orbital plane. That is, the satellite constellation 20 described with reference to FIGS. 1 and 3.
  • the satellite constellation forming unit 11 passes between the orbital planes through which the space object passes among the plurality of orbital planes, and passes through a region expanded so that the relative angles in the azimuth direction of the adjacent orbital planes are partially uneven.
  • An example of forming as a region R will be described.
  • 10 to 12 are diagrams showing satellite constellation 20 according to the present embodiment.
  • 10 to 12 show an example of a satellite constellation 20 composed of polar orbit satellites having an orbit inclination angle of about 90 degrees.
  • the dense region is near the polar region.
  • FIG. 10 is a view of the 12 orbital planes of the satellite constellation 20 composed of the 24 orbital planes according to the present embodiment as viewed from the North Pole direction.
  • FIG. 11 shows 12 orbital planes other than the 12 planes of FIG.
  • FIG. 12 shows a total of 24 orbital planes including the 12 planes of FIG. 10 and the 12 planes of FIG.
  • the azimuth components of the normals of each orbital plane are separated by 15 degrees.
  • the orbital planes in which the azimuth components of the normal line face each other appear to overlap. Therefore, it should be noted that in FIG. 12, it is easy to make an illusion as if it is composed of 12 orbital planes.
  • FIG. 13 to 15 are views showing the satellite constellation 20 in which the passage region R according to the present embodiment is formed.
  • FIG. 13 is a diagram in which a passage region R is formed in the satellite constellation 20 of FIG.
  • FIG. 14 is a diagram in which a passage region R is formed in the satellite constellation 20 of FIG.
  • FIG. 15 is a diagram in which a passage region R is formed in the satellite constellation 20 of FIG.
  • the satellite constellation forming unit 11 changes the orbital altitudes of all the satellites on the adjacent orbital planes at the same time, and maintains a state in which the average orbital altitudes of the plurality of orbital planes arranged in the azimuth direction increase in order.
  • the region R is formed.
  • FIGS. 13 and 14 can be obtained by shifting the azimuth components of the adjacent orbital planes by 2 degrees on the orbital planes of FIGS. 10 and 11.
  • FIG. 15 shows the orbital planes of 24 planes in which FIGS. 13 and 14 are overlapped.
  • a gap that is, a passing region R is created between the raceway planes.
  • the passing region R is a region where the raceway surface is not located or the raceway surface is small and there is a margin.
  • step S103 the satellite constellation forming unit 11 determines whether or not to move the orbital planes that are unevenly arranged. If it is determined that the orbital planes are unevenly arranged, the process proceeds to step S104. If it is not determined that the orbital planes are unevenly arranged, step S103 is repeated. For example, when it is predicted that the space object will pass through a position other than the passing area after the space object has passed through the passing area formed in step S102, the satellite constellation forming unit 11 will have an unevenly arranged orbital plane. Is determined to move.
  • step S104 the satellite constellation forming unit 11 simultaneously raises or lowers the orbit of the satellite group and moves the orbital planes that are unevenly arranged.
  • the satellite constellation forming unit 11 changes the orbital altitudes of all satellites on adjacent orbital planes at the same time, and maintains a state in which the average orbital altitudes of a plurality of orbital planes arranged in the azimuth direction are sequentially lowered. Generate an orbit control command to do. Then, the satellite constellation forming unit 11 transmits an orbit control command to a plurality of satellites forming the satellite constellation. By performing orbit control according to the orbit control command, each satellite forming the satellite constellation maintains a state in which the average orbital altitudes of the plurality of orbital planes arranged in the azimuth direction are lowered in order, and the satellite constellation 20 is operated. It returns to the state before the passage region R was formed.
  • the satellite constellation forming unit 11 performs the same processing as in step S102 so that the relative angles of the adjacent orbital planes in the azimuth direction are unevenly arranged at the desired positions in the satellite constellation 20. To form. Alternatively, the satellite constellation forming unit 11 simultaneously ascends or descends the satellite group from the arrangement of the plurality of orbital planes formed in step S102 without restoring the arrangement of the plurality of orbital planes, and is uneven. The arranged orbital plane may be moved.
  • the function of the satellite constellation formation system 600 is realized by software.
  • the function of the satellite constellation formation system 600 may be realized by hardware.
  • FIG. 16 is a diagram showing a configuration of a satellite constellation forming system 600 according to a modified example of the present embodiment.
  • the satellite constellation formation system 600 includes an electronic circuit 909 instead of the processor 910.
  • the electronic circuit 909 is a dedicated electronic circuit that realizes the functions of the satellite constellation formation system 600.
  • the electronic circuit 909 is specifically a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA, an ASIC, or an FPGA.
  • GA is an abbreviation for Gate Array.
  • the function of the satellite constellation formation system 600 may be realized by one electronic circuit, or may be realized by being distributed in a plurality of electronic circuits. As another modification, some functions of the satellite constellation formation system 600 may be realized by electronic circuits, and the remaining functions may be realized by software.
  • Each of the processor and the electronic circuit is also called a processing circuit. That is, the function of the satellite constellation formation system 600 is realized by the processing circuit.
  • the communication means between the satellite flying on the orbital planes of uneven arrangement and the ground has a communication range covering the ground above the equator. Therefore, according to the satellite constellation formation system according to the present embodiment, the service range of the onboard mission is set to be adaptable to uneven arrangement because no gaps are generated in the ground service.
  • the space object descending from a high altitude does not have the control ability by itself, and in the orbit analysis prediction, the space other than the vacant area of the orbital plane arranged unevenly is excluded. If it is predicted that the space will pass, the mega constellation operator can change the position of the uneven arrangement in advance. Therefore, according to the satellite constellation formation system according to the present embodiment, there is an effect that a vacant area can be passed through a space object to avoid a collision. Further, by synchronizing all satellites, that is, by simultaneously ascending or descending the orbit of the satellite group, there is an effect that the service can be continued without disturbing the communication service.
  • Embodiment 2 the points different from the first embodiment or the points to be added to the first embodiment will be mainly described.
  • the same components as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
  • the configuration of the satellite constellation formation system 600, the satellite 30, and the ground equipment 700 according to the present embodiment is the same as that of the first embodiment.
  • the satellite constellation forming unit 11 forms a satellite constellation in which each orbital plane of a plurality of orbital planes does not pass through the polar region and the mid-latitude region is a dense region of the orbital plane. That is, it is the satellite constellation 20 described with reference to FIG. Specifically, the mid-latitude region is near 50 degrees north latitude and around 50 degrees south latitude. Then, the satellite constellation forming unit 11 forms a region where the density of the orbital plane is relaxed in the mid-latitude region as a passing region R. In the present embodiment, the passing region R is an empty region where the density is relaxed due to the uneven arrangement of adjacent raceway surfaces.
  • FIG. 17 is a view of the 12 orbital planes of the satellite constellation 20 composed of the 24 orbital planes according to the present embodiment as viewed from the North Pole direction.
  • FIG. 18 shows 12 orbital planes other than the 12 planes of FIG.
  • FIG. 19 shows a total of 24 orbital planes including the 12 planes of FIG. 17 and the 12 planes of FIG. 17 to 19 show an example of a satellite constellation 20 composed of orbiting satellites whose orbit inclination angles are separated from 90 degrees.
  • the dense area is near the mid-latitude.
  • FIG. 17 and 18 show the orbital planes of 12 planes each as seen from the North Pole, similar to FIGS. 10 and 11.
  • FIG. 19 shows 24 orbital planes in which 12 planes of each of FIGS. 17 and 18 are combined.
  • FIG. 12 of the first embodiment there is a region where all the orbital planes are densely packed in the polar region.
  • FIG. 19 of the present embodiment the latitude of the dense region in the polar region is lowered to the mid-latitude, and the degree of density is also relaxed.
  • intersections with other orbital planes exist in a grid pattern over the entire mid-latitude zone. In the mega constellation, dozens of satellites are flying in each orbital plane. Therefore, the overlap or intersection of the orbital planes indicates that they may collide. Therefore, it is shown that the area with a high degree of density has a high probability of collision.
  • FIG. 20 is a diagram in which unevenly arranged orbital planes are formed in the satellite constellation 20 of FIG.
  • FIG. 21 is a diagram in which unevenly arranged orbital planes are formed in the satellite constellation 20 of FIG.
  • FIG. 22 is a diagram in which unevenly arranged orbital planes are formed in the satellite constellation 20 of FIG.
  • the satellite constellation forming unit 11 changes the orbital altitudes of all the satellites on the adjacent orbital planes at the same time, and maintains a state in which the average orbital altitudes of the plurality of orbital planes arranged in the azimuth direction are sequentially increased. Form evenly distributed orbital planes.
  • a region R' is formed in which adjacent raceways are unevenly arranged.
  • the passing region R here is a region in which the degree of overlap of the orbital planes or the degree of density of intersections is relaxed.
  • the region R'where the adjacent race planes are unevenly arranged is an empty area where the adjacent race planes are unevenly arranged.
  • the orbital planes of FIGS. 20 and 21 can be obtained by shifting the azimuth components of the adjacent orbital planes by 2 degrees on the orbital planes of FIGS. 17 and 18.
  • FIG. 22 shows 24 orbital planes in which the orbital planes of FIGS. 20 and 21 are overlapped.
  • a region having a margin in which the degree of overlap of the orbital planes or the degree of density of the intersections is relaxed, that is, a passing region R is created.
  • the orbital inclination of the ISS is far from 90 degrees and is close to the orbital inclination of the megaconstellation, which is planned to be constructed at an orbital altitude of 340 km.
  • this passage region R is more effective for the effect of the ISS. Unlike polar orbit satellites, as shown in FIG. 22, the passage region R has intersections with a plurality of orbital planes on the side opposite to the normal azimuth component in the mid-latitude zone. However, when FIG. 19 and FIG. 22 are compared, it can be seen that the collision risk is reduced by forming the passage region R.
  • the satellite constellation forming unit 11 returns the satellite constellation 20 to the state before forming the passing area R after the space object has passed through the passing area R.
  • the satellite constellation 20 returns from the state of FIGS. 20 to 22 in which the passing region R is formed to the state of FIGS. 17 to 19 in which the passing region R is not formed.
  • the ISS is flying at an orbit inclination angle of about 50 degrees and an orbit altitude of about 400 km. In the process of deorbiting and descending the orbit, the ISS descends the orbit altitude while maintaining the orbit inclination angle of about 50 degrees. When deorbiting and descending, the ISS needs to change its orbital altitude without colliding with the mega constellation to be constructed as follows.
  • FIG. 23 is a view of the mega constellation according to the present embodiment as viewed from the North Pole.
  • the northernmost and southernmost ends of all the orbital planes are located near the north latitude of about 50 degrees and the south latitude of about 50 degrees. Therefore, in the vicinity of the north latitude of about 50 degrees and the south latitude of about 50 degrees, the residence time for the satellite to fly in the east-west direction is long, and the intersections of the orbital planes exist at high density.
  • Around 50 degrees north latitude and about 50 degrees south latitude are danger zones with extremely high collision risk.
  • FIG. 24 is a view of the mega constellation forming the passage region R according to the present embodiment as viewed from the North Pole.
  • the satellite constellation forming system 600 according to the present embodiment relaxes the density of the intersections between the orbital planes and the region where the intersections between the orbital planes are high at about 50 degrees north latitude.
  • a region that is, a passage region R, is generated. Since the effect of alleviating the density of the high-density danger zones at the northernmost and southernmost ends of the orbital plane is produced, collisions are avoided by using this sparse region as a passage region R for large space objects. Since the orbit of a large space object such as ISS can be grasped in advance, the orbital plane may be shifted by the mega constellation side according to the azimuth direction angle of the orbital plane in the time zone when the orbital altitude is near 340 km.
  • FIG. 25 is a diagram showing an example of collision avoidance between a mega constellation forming a passage region R and a large space object according to the present embodiment.
  • the high density is relaxed, the northernmost and southernmost ends of the orbital plane are still dangerous zones where intersections with other orbital planes are densely present. Therefore, it is desirable to pass through the dangerous altitude zone in the region R'above the equator where adjacent orbital planes without intersections are unevenly arranged.
  • the propulsion device used for deorbit has extremely large thrust, it is effective for a large space object to rapidly decelerate over the equator and pass through the dangerous altitude zone in a short time.
  • the dangerous altitude zone for example, the orbital altitude of about 346 km, the orbital altitude of about 341 km, and the orbital altitude of about 336 km, is between the time of passing the polar region and the time of passing the next polar region. It is effective to go through each altitude zone.
  • the altitude zone is called because there are variations and fluctuations in the orbital altitude of each satellite group consisting of about 2,500 satellites.
  • the ISS side When the ISS is lowered into the orbit, the ISS side can select the effect timing and control the descent timing and the descent speed. Therefore, it is effective for the ISS to select and pass through an empty area of the raceway surface that is unevenly arranged on the mega constellation side in advance. Similarly, in the descent of a satellite having active debris operation capability in the debris operation process or a debris removal satellite, the space object on the orbit-descending side selects an empty area and descends in orbit.
  • FIG. 26 is a diagram showing an example of realizing a ground communication service from a satellite in a state where adjacent orbital intervals are evenly spaced.
  • FIG. 27 is a diagram showing an example of realizing a ground communication service from a satellite in a state where adjacent orbital intervals are uneven.
  • FIG. 26 shows an image of a satellite-terrestrial communication service in an even orbital plane arrangement. The distance between adjacent orbits is the longest above the equator. Therefore, if the terrestrial services at the equator are covered, the comprehensiveness of the communication services can be ensured.
  • FIG. 27 shows an image of a satellite-terrestrial communication service when the distance between adjacent orbital planes is unevenly arranged and the distance between adjacent orbits is expanded.
  • FIG. 27 shows an example in which the directivity direction of the communication mission is rotated in the cross-track direction in advance in order to ensure the completeness of the terrestrial communication service.
  • it is also effective to set a wide setting with a margin in the communication service range in advance.
  • FIG. 28 is an example of an intersatellite communication mission concept by a mega constellation operator, that is, a conceptual diagram of intersatellite communication.
  • FIG. 29 is a diagram showing an image of an intersatellite communication network in an orbital plane uniform arrangement by a mega constellation operator. According to the intersatellite communication concept of the mega constellation operator according to FIG. 28, in addition to the satellites before and after flying in the same orbital plane, the satellites diagonally before and after the adjacent orbital plane also perform intersatellite communication. Therefore, the intersatellite communication network shown in FIG. 29 can be realized by a plurality of satellites.
  • thick lines such as L21, L22, L23, and L24 are images representing examples of adjacent raceway planes.
  • the thick dotted line is an image diagram showing an example of communication between adjacent orbits.
  • FIG. 30 is an image of an intersatellite communication network in an uneven arrangement of orbital planes, and is a diagram showing a state without adjacent communication in an uneven arrangement region.
  • FIG. 30 shows an example in which the raceway planes according to the present embodiment are unevenly arranged. It is assumed that the region becomes a gap in the raceway surface shown by L22 in FIG. 29 due to the uneven arrangement of the raceway surfaces.
  • the raceway surface of the void region is represented by a thick alternate long and short dash line.
  • FIG. 30 shows an example in which communication before and after the oblique direction between adjacent orbits by the orbital plane represented by L22 in FIG. 29 hidden by the alternate long and short dash line is cut off. It can be seen that the communication route in the east-west direction is still secured by the communication network using other orbital planes.
  • FIG. 31 shows an example in which satellite-to-satellite communication is performed before and after the oblique direction between the orbital planes of L21 and L23 adjacent to each other in the void region in FIG.
  • the laser beam since the laser beam has little attenuation depending on the communication distance, it is highly possible that such an increase in the communication distance can be dealt with without changing the communication mission equipment.
  • the same effect as that of the first embodiment can be expected. That is, when a space object descending from a high altitude does not have its own control ability and is predicted to pass through an area other than the vacant area of the orbital plane unevenly arranged in the orbit analysis prediction, the mega constellation project is carried out in advance. The person can change the position of the uneven arrangement. Therefore, according to the satellite constellation formation system according to the present embodiment, there is an effect that a vacant area can be passed through a space object to avoid a collision. Further, by synchronizing all satellites, that is, by simultaneously ascending or descending the orbit of the satellite group, there is an effect that the service can be continued without disturbing the communication service.
  • the business equipment is the business equipment of the satellite constellation operator that manages the satellite constellation.
  • the business equipment of the satellite constellation operator includes the satellite constellation formation system described in the first and second embodiments, or the ground equipment. Then, the business equipment of the satellite constellation operator executes the satellite constellation formation method or the satellite constellation formation program.
  • each part of the satellite constellation formation system has been described as an independent functional block.
  • the configuration of the satellite constellation formation system does not have to be the configuration as in the above-described embodiment.
  • the functional block of the satellite constellation formation system may have any configuration as long as it can realize the functions described in the above-described embodiment.
  • the satellite constellation formation system may be a single device or a system composed of a plurality of devices.
  • first and second embodiments a plurality of parts may be combined and carried out. Alternatively, one part of these embodiments may be implemented. In addition, these embodiments may be implemented in any combination as a whole or partially. That is, in the first and second embodiments, it is possible to freely combine the parts of the first and second embodiments, modify any component, or omit any component in the first and second embodiments.
  • 11b satellite constellation formation unit 20 satellite constellation, 21 orbital plane, 30 satellites, 31 satellite control device, 32 satellite communication device, 33 propulsion device, 34 attitude control device, 35 power supply device, 55 orbit control command, 60 Space object, 70 earth, 300 satellite group, 600 satellite constellation formation system, 700 ground equipment, 510 orbit control command generator, 520 analysis prediction unit, 909 electronic circuit, 910 processor, 921 memory, 922 auxiliary storage device, 930 input Interface, 940 output interface, 950 communication device, R passage area.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radio Relay Systems (AREA)

Abstract

衛星コンステレーション形成システム(600)は、衛星群により構成され、衛星群が連携して通信サービスを提供し、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する。衛星群の各衛星は、衛星間通信手段と、衛星と地上間の通信手段とを備える。衛星コンステレーション形成部(11)は、法線方向の異なる軌道面を10軌道面以上有し、かつ、複数の軌道面の隣接する軌道面のアジマス方向相対角度が一部不均等となる配置であり、不均等配置の軌道面を飛行する衛星と地上間の通信手段が、赤道上空で地上を網羅する通信範囲を有する衛星コンステレーションを形成する。

Description

衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、地上設備、および事業装置
 本開示は、衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、地上設備、および事業装置に関する。
 近年、数百から数千機に及ぶ大規模衛星コンステレーション、所謂メガコンステレーションの構築が始まり、軌道上における衛星の衝突のリスクが高まっている。また、故障により制御不能となった衛星、あるいは、ロケットの残骸といったスペースデブリが増加している。
 このような宇宙空間における衛星およびスペースデブリといった宇宙物体の急激な増加に伴い、STM(宇宙交通管制)では、宇宙物体の衝突を回避するための国際的なルール作りの必要性が高まっている。
 特に、軌道高度340km近傍に数千機の衛星群で構成されるメガコンステレーションを構築する計画がある。一方、ISS(国際宇宙ステーション)といった宇宙物体は、通常、軌道高度340km近傍よりも高高度の軌道高度400km程度を飛翔している。このような宇宙物体を軌道離脱させて大気圏突入する過程において、必ずメガコンステレーションの飛翔する高度を通過する必要がある。
 特許文献1には、同一の円軌道に複数の衛星から成る衛星コンステレーションを形成する技術が開示されている。
特開2017-114159号公報
 メガコンステレーションである衛星コンステレーションよりも高高度を飛翔する宇宙物体を軌道離脱させて大気圏突入させる際、この宇宙物体は、衛星コンステレーションの軌道高度を通過する必要がある。このとき、宇宙物体が、メガコンステレーションを構成する衛星と衝突するリスクがある。
 しかしながら、特許文献1には、衛星コンステレーションに宇宙物体が侵入する際の衝突回避方式については記載されていない。
 本開示は、宇宙物体が衛星コンステレーションと衝突するリスクを低減することを目的とする。
 本開示に係る衛星コンステレーション形成システムは、
 衛星群により構成され、前記衛星群が連携して通信サービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムにおいて、
 前記衛星群の各衛星は、衛星間通信手段と、衛星と地上間の通信手段とを備え、
 前記衛星コンステレーション形成システムは、
 法線方向の異なる軌道面を10軌道面以上有し、かつ、前記複数の軌道面の隣接する軌道面のアジマス方向相対角度が一部不均等となる配置であり、不均等配置の軌道面を飛行する衛星と地上間の通信手段が、赤道上空で地上を網羅する通信範囲を有する衛星コンステレーションを形成する衛星コンステレーション形成部を備えた。
 本開示に係る衛星コンステレーション形成システムによれば、衛星コンステレーションの軌道高度において宇宙物体を通過させるための通過領域を形成するので、大型の宇宙物体と衛星コンステレーションとの衝突のリスクを低減させることができる。
複数衛星が連携して地球の全球に亘り通信サービスを実現する例。 単一軌道面の複数衛星が地球観測サービスを実現する例。 極域近傍で交差する複数の軌道面を有する衛星コンステレーションの例。 極域以外で交差する複数の軌道面を有する衛星コンステレーションの例。 衛星コンステレーション形成システムの構成図。 衛星コンステレーション形成システムの衛星の構成図。 衛星コンステレーション形成システムの地上設備の構成図。 衛星コンステレーション形成システムの機能構成例。 実施の形態1に係る衛星コンステレーション形成システムによる衛星コンステレーション形成処理のフロー図。 実施の形態1に係る24面の軌道面で構成される衛星コンステレーションの12面の軌道面を北極方向から見た図。 図10の12面以外の12面の軌道面。 図10の12面と図11の12面を合わせた合計24面の軌道面。 図10の衛星コンステレーションにおいて通過領域が形成された図。 図11の衛星コンステレーションにおいて通過領域が形成された図。 図12の衛星コンステレーションにおいて通過領域が形成された図。 実施の形態1の変形例に係る衛星コンステレーション形成システムの構成図。 実施の形態2に係る24面の軌道面で構成される衛星コンステレーションの12面の軌道面を北極方向から見た図。 図17の12面以外の12面の軌道面。 図17の12面と図18の12面を合わせた合計24面の軌道面。 図17の衛星コンステレーションにおいて不均等配置の軌道面が形成された図。 図18の衛星コンステレーションにおいて不均等配置の軌道面が形成された図。 図19の衛星コンステレーションにおいて不均等配置の軌道面が形成された図。 実施の形態2に係るメガコンステレーションを北極から見た図。 実施の形態2に係る通過領域を形成したメガコンステレーションを北極から見た図。 実施の形態2に係る通過領域を形成したメガコンステレーションと大型宇宙物体の衝突回避の例。 隣接軌道間隔を均等とした状態において、衛星から地上通信サービスを実現する例。 隣接軌道間隔を不均等とした状態において、衛星から地上通信サービスを実現する例。 メガコンステレーション事業者による衛星間通信ミッション構想の例、すなわち衛星間通信概念図。 メガコンステレーション事業者による軌道面均等配置における衛星間通信網イメージを示す図。 軌道面不均等配置における衛星間通信網のイメージであり、不均等配置領域における隣接通信なしの状態を示す図。 図31で空隙になった領域において隣接するL21、L23の軌道面間で斜方向前後の衛星間通信を実施した例。
 以下、本開示の実施の形態について、図を用いて説明する。なお、各図中、同一または相当する部分には、同一符号を付している。実施の形態の説明において、同一または相当する部分については、説明を適宜省略または簡略化する。また、以下の図面では各構成の大きさの関係が実際のものとは異なる場合がある。また、実施の形態の説明において、「上」、「下」、「左」、「右」、「前」、「後」、「表」、「裏」といった方向あるいは位置が示されている場合がある。それらの表記は、説明の便宜上、そのように記載しているだけであって、装置、器具、あるいは部品といった構成の配置および向きを限定するものではない。
 実施の形態1.
***構成の説明***
 以下の実施の形態に係る衛星コンステレーション形成システムの構成例について説明する。
 図1は、地上に対し、複数衛星が連携して地球70の全球に亘り通信サービスを実現する例を示す図である。
 図1は、全球に亘り通信サービスを実現する衛星コンステレーション20を示している。
 同一軌道面を同一高度で飛行している複数の衛星の各衛星では、地上に対する通信サービス範囲が後続衛星の通信サービス範囲とオーバーラップしている。よって、このような複数の衛星によれば、地上の特定地点に対して、同一軌道面上の複数の衛星が時分割的に交互に交代しながら通信サービスを提供することができる。また、隣接軌道面を設けることにより、隣接軌道間の地上に対する通信サービスを面的に網羅することが可能となる。同様に、地球の周りに多数の軌道面を概ね均等配置すれば、全球に亘り地上に対する通信サービスが可能となる。
 図2は、単一軌道面の複数衛星が地球観測サービスを実現する例を示す図である。
 図2は、地球観測サービスを実現する衛星コンステレーション20を示している。図2の衛星コンステレーション20は、光学センサあるいは合成開口レーダといった電波センサである地球観測装置を具備した衛星が同一軌道面を同一高度で飛行する。このように、地上の撮像範囲が時間遅れで後続衛星がオーバーラップする衛星群300では、地上の特定地点に対して軌道上複数の衛星が時分割的に交互に交代しながら地上画像を撮像することにより地球観測サービスを提供する。
 このように、衛星コンステレーション20は、各軌道面の複数の衛星からなる衛星群300により構成される。衛星コンステレーション20では、衛星群300が連携してサービスを提供する。衛星コンステレーション20とは、具体的には、図1に示すような通信事業サービス会社、あるいは、図2に示すような観測事業サービス会社による1つの衛星群から成る衛星コンステレーションを指す。
 図3は、極域近傍で交差する複数の軌道面21を有する衛星コンステレーション20の例である。また、図4は、極域以外で交差する複数の軌道面21を有する衛星コンステレーション20の例である。
 図3の衛星コンステレーション20では、複数の軌道面の各軌道面21の軌道傾斜角が約90度であり、かつ、複数の軌道面の各軌道面21が互いに異なる面に存在する。
 図4の衛星コンステレーション20では、複数の軌道面の各軌道面21の軌道傾斜角が約90度ではなく、かつ、複数の軌道面の各軌道面21が互いに異なる面に存在する。
 図3の衛星コンステレーション20では、任意の2つの軌道面が極域近傍の地点で交差する。また、図4の衛星コンステレーション20では、任意の2つの軌道面が極域以外の地点で交差する。図3では、極域近傍において、衛星30の衝突が発生する可能性がある。また、図4に示すように、軌道傾斜角が90度よりも傾斜している複数の軌道面の交点は軌道傾斜角に応じて極域から離れていく。また、軌道面の組合せによって赤道近傍を含む多様な位置で軌道面が交差する可能性がある。このため、衛星30の衝突が発生する可能性のある場所が多様化する。衛星30は人工衛星ともいう。
 近年、数百から数千機に及ぶ大規模衛星コンステレーションの構築が始まり、軌道上における衛星の衝突のリスクが高まっている。また、故障により制御不能となった人工衛星、あるいは、ロケットの残骸といったデブリが増加している。大規模衛星コンステレーションは、メガコンステレーションともいう。このようなデブリはスペースデブリともいう。
 このように、宇宙空間におけるデブリ増加、および、メガコンステレーションを始めとする衛星数の急激な増加に伴い、STM(宇宙交通管制)の必要性が高まっている。
 また、ISSといった大型宇宙物体および衛星におけるミッション終了後の軌道離脱、あるいは、故障衛星および浮遊するロケット上段といったデブリをデブリ除去衛星といった外的手段により軌道離脱させるADRの必要性が高まっている。このようなADRの必要性について、STMとして国際的な議論が始まっている。ADRは、Active Debris Removalの略語である。
 ここで、図5から図8を用いて衛星コンステレーション20を形成する衛星コンステレーション形成システム600、衛星30、および地上設備700の一例について説明する。例えば、衛星コンステレーション形成システム600は、メガコンステレーション事業装置、LEO(Low Earth Orbit)コンステレーション事業装置、あるいは衛星事業装置のような衛星コンステレーション事業を行う事業者により運用される。
 図5は、衛星コンステレーション形成システム600の構成図である。
 衛星コンステレーション形成システム600は、コンピュータを備える。図5では、1つのコンピュータの構成を示しているが、実際には、衛星コンステレーション20を構成する複数の衛星の各衛星30、および、衛星30と通信する地上設備700の各々にコンピュータが備えられる。そして、複数の衛星の各衛星30、および、衛星30と通信する地上設備700の各々に備えられたコンピュータが連携して、衛星コンステレーション形成システム600の機能を実現する。以下において、衛星コンステレーション形成システム600の機能を実現するコンピュータの構成の一例について説明する。
 衛星コンステレーション形成システム600は、衛星30と通信する地上設備700を備える。衛星30は、地上設備700の通信装置950と通信する衛星通信装置32を備える。図5では、衛星30が備える構成のうち衛星通信装置32を図示している。
 衛星コンステレーション形成システム600は、プロセッサ910を備えるとともに、メモリ921、補助記憶装置922、入力インタフェース930、出力インタフェース940、および通信装置950といった他のハードウェアを備える。プロセッサ910は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
 衛星コンステレーション形成システム600は、機能要素として、衛星コンステレーション形成部11を備える。衛星コンステレーション形成部11は、衛星30と通信しながら衛星コンステレーション20の形成を制御する。
 衛星コンステレーション形成部11の機能は、ソフトウェアにより実現される。
 プロセッサ910は、衛星コンステレーション形成プログラムを実行する装置である。衛星コンステレーション形成プログラムは、衛星コンステレーション形成部11の機能を実現するプログラムである。
 プロセッサ910は、演算処理を行うIC(Integrated Circuit)である。プロセッサ910の具体例は、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。
 メモリ921は、データを一時的に記憶する記憶装置である。メモリ921の具体例は、SRAM(Static Random Access Memory)、あるいはDRAM(Dynamic Random Access Memory)である。
 補助記憶装置922は、データを保管する記憶装置である。補助記憶装置922の具体例は、HDDである。また、補助記憶装置922は、SD(登録商標)メモリカード、CF、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVDといった可搬の記録媒体であってもよい。なお、HDDは、Hard Disk Driveの略語である。SD(登録商標)は、Secure Digitalの略語である。CFは、CompactFlash(登録商標)の略語である。DVDは、Digital Versatile Diskの略語である。
 入力インタフェース930は、マウス、キーボード、あるいはタッチパネルといった入力装置と接続されるポートである。入力インタフェース930は、具体的には、USB(Universal Serial Bus)端子である。なお、入力インタフェース930は、LAN(Local Area Network)と接続されるポートであってもよい。
 出力インタフェース940は、ディスプレイといった表示機器のケーブルが接続されるポートである。出力インタフェース940は、具体的には、USB端子またはHDMI(登録商標)(High Definition Multimedia Interface)端子である。ディスプレイは、具体的には、LCD(Liquid Crystal Display)である。
 通信装置950は、レシーバとトランスミッタを有する。通信装置950は、具体的には、通信チップまたはNIC(Network Interface Card)である。
 衛星コンステレーション形成プログラムは、プロセッサ910に読み込まれ、プロセッサ910によって実行される。メモリ921には、衛星コンステレーション形成プログラムだけでなく、OS(Operating System)も記憶されている。プロセッサ910は、OSを実行しながら、衛星コンステレーション形成プログラムを実行する。衛星コンステレーション形成プログラムおよびOSは、補助記憶装置922に記憶されていてもよい。補助記憶装置922に記憶されている衛星コンステレーション形成プログラムおよびOSは、メモリ921にロードされ、プロセッサ910によって実行される。なお、衛星コンステレーション形成プログラムの一部または全部がOSに組み込まれていてもよい。
 衛星コンステレーション形成システム600は、プロセッサ910を代替する複数のプロセッサを備えていてもよい。これら複数のプロセッサは、プログラムの実行を分担する。それぞれのプロセッサは、プロセッサ910と同じように、プログラムを実行する装置である。
 プログラムにより利用、処理または出力されるデータ、情報、信号値および変数値は、メモリ921、補助記憶装置922、または、プロセッサ910内のレジスタあるいはキャッシュメモリに記憶される。
 衛星コンステレーション形成システムの各部の「部」を「処理」、「手順」、「手段」、「段階」あるいは「工程」に読み替えてもよい。また、衛星コンステレーション形成処理の「処理」を「プログラム」、「プログラムプロダクト」または「プログラムを記録したコンピュータ読取可能な記憶媒体」に読み替えてもよい。「処理」、「手順」、「手段」、「段階」あるいは「工程」は、互いに読み換えが可能である。
 衛星コンステレーション形成プログラムは、衛星コンステレーション形成システムの各部の「部」を「処理」、「手順」、「手段」、「段階」あるいは「工程」に読み替えた各処理、各手順、各手段、各段階あるいは各工程を、コンピュータに実行させる。また、衛星コンステレーション形成方法は、衛星コンステレーション形成システム600が衛星コンステレーション形成プログラムを実行することにより行われる方法である。
 衛星コンステレーション形成プログラムは、コンピュータ読取可能な記憶媒体に格納されて提供されてもよい。また、各プログラムは、プログラムプロダクトとして提供されてもよい。
 図6は、衛星コンステレーション形成システム600の衛星30の構成図である。
 衛星30は、衛星制御装置31と衛星通信装置32と推進装置33と姿勢制御装置34と電源装置35とを備える。その他、各種の機能を実現する構成要素を備えるが、図6では、衛星制御装置31と衛星通信装置32と推進装置33と姿勢制御装置34と電源装置35について説明する。衛星30は、宇宙物体60の一例である。
 衛星制御装置31は、推進装置33と姿勢制御装置34とを制御するコンピュータであり、処理回路を備える。具体的には、衛星制御装置31は、地上設備700から送信される各種コマンドにしたがって、推進装置33と姿勢制御装置34とを制御する。
 衛星通信装置32は、衛星間通信手段と、衛星と地上間の通信手段とを備える。
 衛星間通信手段は、衛星コンステレーション20を構成する複数の衛星の衛星間で通信する装置である。
 衛星と地上間の通信手段は、地上設備700と通信する装置である。具体的には、衛星通信装置32は、自衛星に関する各種データを地上設備700へ送信する。また、衛星通信装置32は、地上設備700から送信される各種コマンドを受信する。
 推進装置33は、衛星30に推進力を与える装置であり、衛星30の速度を変化させる。具体的には、推進装置33は、アポジキックモーターまたは化学推進装置、または電気推進装置である。アポジキックモーター(AKM:Apogee Kick Motor)は、人工衛星の軌道投入に使われる上段の推進装置のことであり、アポジモーター(固体ロケットモーター使用時)、またはアポジエンジン(液体エンジン使用時)とも呼ばれている。
 化学推進装置は、一液性ないし二液性燃料を用いたスラスタである。電気推進装置としては、イオンエンジンまたはホールスラスタである。アポジキックモーターは軌道遷移に用いる装置の名称であり、化学推進装置の一種である場合もある。
 姿勢制御装置34は、衛星30の姿勢と衛星30の角速度と視線方向(Line Of Sight)といった姿勢要素を制御するための装置である。姿勢制御装置34は、各姿勢要素を所望の方向に変化させる。もしくは、姿勢制御装置34は、各姿勢要素を所望の方向に維持する。姿勢制御装置34は、姿勢センサとアクチュエータとコントローラとを備える。姿勢センサは、ジャイロスコープ、地球センサ、太陽センサ、スター・トラッカ、スラスタおよび磁気センサといった装置である。アクチュエータは、姿勢制御スラスタ、モーメンタムホイール、リアクションホイールおよびコントロール・モーメント・ジャイロといった装置である。コントローラは、姿勢センサの計測データまたは地上設備700からの各種コマンドにしたがって、アクチュエータを制御する。
 電源装置35は、太陽電池、バッテリおよび電力制御装置といった機器を備え、衛星30に搭載される各機器に電力を供給する。
 衛星制御装置31に備わる処理回路について説明する。
 処理回路は、専用のハードウェアであってもよいし、メモリに格納されるプログラムを実行するプロセッサであってもよい。
 処理回路において、一部の機能が専用のハードウェアで実現されて、残りの機能がソフトウェアまたはファームウェアで実現されてもよい。つまり、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせで実現することができる。
 専用のハードウェアは、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGAまたはこれらの組み合わせである。
 ASICは、Application Specific Integrated Circuitの略称である。FPGAは、Field Programmable Gate Arrayの略称である。
 図7は、衛星コンステレーション形成システム600が備える地上設備700の構成図である。
 地上設備700は、全ての軌道面の多数衛星をプログラム制御する。地上設備700は、地上装置の例である。地上装置は、地上アンテナ装置、地上アンテナ装置に接続された通信装置、あるいは電子計算機といった地上局と、地上局にネットワークで接続されたサーバあるいは端末としての地上設備から構成される。また、地上装置には航空機、自走車両、あるいは移動端末といった移動体に搭載された通信装置を含んでも良い。
 地上設備700は、各衛星30と通信することによって衛星コンステレーション20を形成する。地上設備700は、衛星コンステレーション形成システム600に備えられる。地上設備700は、プロセッサ910を備えるとともに、メモリ921、補助記憶装置922、入力インタフェース930、出力インタフェース940、および通信装置950といった他のハードウェアを備える。プロセッサ910は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。地上設備700のハードウェアについては、図5において説明した衛星コンステレーション形成システム600のハードウェアと同様である。
 地上設備700は、機能要素として、軌道制御コマンド生成部510と、解析予測部520を備える。軌道制御コマンド生成部510および解析予測部520の機能は、ハードウェアあるいはソフトウェアにより実現される。
 通信装置950は、衛星コンステレーション20を構成する衛星群300の各衛星30を追跡管制する信号を送受信する。また、通信装置950は、軌道制御コマンド55を各衛星30に送信する。
 解析予測部520は、衛星30の軌道を解析予測する。
 軌道制御コマンド生成部510は、衛星30に送信する軌道制御コマンド55を生成する。
 軌道制御コマンド生成部510および解析予測部520は、衛星コンステレーション形成部11の機能を実現する。すなわち、軌道制御コマンド生成部510および解析予測部520は、衛星コンステレーション形成部11の例である。
 図8は、衛星コンステレーション形成システム600の機能構成例を示す図である。
 衛星30は、更に、衛星コンステレーション20を形成する衛星コンステレーション形成部11bを備える。そして、複数の衛星の各衛星30の衛星コンステレーション形成部11bと、地上設備700の各々に備えられた衛星コンステレーション形成部11とが連携して、衛星コンステレーション形成システム600の機能を実現する。なお、衛星30の衛星コンステレーション形成部11bは、衛星制御装置31に備えられていてもよい。
***動作の説明***
 図9は、本実施の形態に係る衛星コンステレーション形成システム600による衛星コンステレーション形成処理S100のフロー図である。
 本実施の形態において、衛星コンステレーション形成システム600は、衛星コンステレーション形成システム600は、衛星群により構成され、衛星群が連携して通信サービスを提供する衛星コンステレーション20を形成する。衛星コンステレーション形成システム600は、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーション20を形成する。衛星コンステレーション20は、法線方向の異なる軌道面を10軌道面以上有する。
 衛星群の各衛星は、衛星間通信手段と、衛星と地上間の通信手段とを備える。
 なお、衛星コンステレーション20は、法線方向の異なる軌道面を3面以上有していればよい。衛星コンステレーション20が、隣接する軌道面のアジマス方向相対角度が均等な箇所と不均等な箇所を形成することができれば、軌道面の数はどのような数でもよい。
 ステップS101において、衛星コンステレーション形成部11は、軌道面が不均等に配置された衛星コンステレーションを20形成するか否かを判定する。例えば、衛星コンステレーションの上空から、ISSといった宇宙物体が衛星コンステレーションの軌道高度を通過することが予見された場合に、不均等配置の軌道面を形成すると判定する。衛星コンステレーション形成システム600が、軌道高度340km近傍に数千機の衛星群で構成されるメガコンステレーションを形成しているものとする。また、ISSが、軌道高度400km程度を飛翔しているものとする。ISSは、ミッション終了後、PMDのために軌道離脱し、メガコンステレーションに降下してくることが想定される。衛星コンステレーション形成部11は、メガコンステレーションの上空から大型宇宙物体であるISSがメガコンステレーションの軌道高度を通過するか否かを判定する。
 不均等配置の軌道面を形成すると判定された場合、ステップS102に進む。
 不均等配置の軌道面を形成すると判定されない場合、ステップS101を繰り返す。
 ステップS102において、衛星コンステレーション形成部11は、法線方向の異なる軌道面を10軌道面以上有し、かつ、隣接する軌道面のアジマス方向相対角度が一部不均等となる配置の複数の軌道面を有する衛星コンステレーション20を形成する。また、衛星コンステレーション形成部11は、不均等配置の軌道面を飛行する衛星と地上間の通信手段が、赤道上空で地上を網羅する通信範囲を有する衛星コンステレーション20を形成する。具体的には、以下の通りである。
 衛星コンステレーションの上空から宇宙物体が衛星コンステレーションの軌道高度を通過する前に、衛星コンステレーションの軌道高度において宇宙物体が通過する通過領域Rを形成する。通過領域Rは、隣接する軌道面が不均等配置された空き領域である。通過領域Rは、例えば、複数の軌道面の各軌道面が存在しない、あるいは、軌道面同士の交点が少ない領域である。通過領域Rが、隣接する軌道面のアジマス方向相対角度が不均等となる領域である。衛星コンステレーション形成部11は、隣接する軌道面を構成する全ての衛星の軌道高度を同時に変更し、アジマス方向に並ぶ複数の軌道面の平均軌道高度が順番に高くなる状態を維持することにより、通過領域Rを形成する。
 具体的には、衛星コンステレーション形成部11は、隣接する軌道面上の全ての衛星の軌道高度を同時に変更し、アジマス方向に並ぶ複数の軌道面の平均軌道高度が順番に高くなる状態を維持する軌道制御コマンドを生成する。そして、衛星コンステレーション形成部11は、軌道制御コマンドを、衛星コンステレーションを形成する複数の衛星30に送信する。衛星コンステレーションを形成する各衛星が、軌道制御コマンドにしたがって軌道制御を実施することにより、アジマス方向に並ぶ複数の軌道面の平均軌道高度が順番に高くなる状態を維持し、通過領域Rが形成される。
 隣接する軌道面上の全ての衛星の軌道高度を同時に変更し、アジマス方向に並ぶ複数の軌道面の平均軌道高度が順番に高くなる状態を維持することにより、軌道面ごとにアジマス方向の相対角度がずれていく。これにより、密集していた軌道面の間に余裕の領域、すなわち通過領域Rが生じる。大型宇宙物体がミッションを終了して軌道離脱して大気投入する軌道降下過程において、大型宇宙物体が通過領域Rを通過することで、大型宇宙物体が衛星コンステレーションを構成する衛星と衝突するリスクが低減されるという効果がある。
 衛星コンステレーション形成部11による通過領域の形成についえ、以下に具体例を用いて説明する。
 本実施の形態では、衛星コンステレーション形成部11は、複数の軌道面の各軌道面が極域を通り、極域が軌道面の密集領域となる衛星コンステレーションを形成するものとする。すなわち、図1および図3で説明した衛星コンステレーション20である。ここでは、衛星コンステレーション形成部11が、複数の軌道面のうち宇宙物体が通過する軌道面間を、隣接する軌道面のアジマス方向相対角度が一部不均等となるように拡大した領域を通過領域Rとして形成する例について説明する。
 図10から図12は、本実施の形態に係る衛星コンステレーション20を示す図である。
 図10から図12では、軌道傾斜角が90度近傍の極軌道衛星により構成される衛星コンステレーション20の例を示している。図10から図12の衛星コンステレーション20では、密集領域が極域近傍となる。
 図10は、本実施の形態に係る24面の軌道面で構成される衛星コンステレーション20の12面の軌道面を北極方向から見た図である。図11は、図10の12面以外の12面の軌道面を示している。図12は、図10の12面と図11の12面を合わせた合計24面の軌道面を示している。
 各軌道面の法線のアジマス成分はそれぞれ15度ずつ離れている。しかし、北極から見ると、法線のアジマス成分が対向する方向を向く軌道面同士は重なって見える。よって、図12では、あたかも12面の軌道面で構成されるように錯覚しやすいことに留意する必要がある。
 図13から図15は、本実施の形態に係る通過領域Rが形成された衛星コンステレーション20を示す図である。
 図13は、図10の衛星コンステレーション20において通過領域Rが形成された図である。図14は、図11の衛星コンステレーション20において通過領域Rが形成された図である。図15は、図12の衛星コンステレーション20において通過領域Rが形成された図である。
 衛星コンステレーション形成部11は、隣接する軌道面上の全ての衛星の軌道高度を同時に変更し、アジマス方向に並ぶ複数の軌道面の平均軌道高度が順番に高くなる状態を維持することにより、通過領域Rを形成する。
 図10と図11の軌道面において、それぞれ隣接する軌道面のアジマス成分について2度ずつずらすことにより、図13と図14の軌道面が得られる。この図13と図14を重ねた24面の軌道面を図15に示す。この結果、軌道面間に隙間、すなわち通過領域Rが生まれたことがわかる。図15に示すように、通過領域Rは,軌道面が位置しない、あるいは、軌道面が少ない、余裕のある領域である。このような通過領域Rを大型宇宙物体が通過することにより、大型宇宙物体は、衛星コンステレーション20を形成する衛星と衝突するリスクなく降下することが可能となる。
 ステップS103において、衛星コンステレーション形成部11は、不均等配置された軌道面を移動させるか否かを判定する。
 不均等配置の軌道面を移動すると判定された場合、ステップS104に進む。
 不均等配置の軌道面を移動すると判定されない場合、ステップS103を繰り返す。
 例えば、衛星コンステレーション形成部11は、ステップS102において形成された通過領域を宇宙物体が通過した後に、通過領域以外の位置を宇宙物体が通過することが予見された場合、不均等配置の軌道面を移動すると判定する。
 ステップS104において、衛星コンステレーション形成部11は、衛星群を同時に軌道上昇ないし軌道降下し、不均等配置された軌道面を移動させる。
 具体的には、衛星コンステレーション形成部11は、隣接する軌道面上の全ての衛星の軌道高度を同時に変更し、アジマス方向に並ぶ複数の軌道面の平均軌道高度が順番に低くなる状態を維持する軌道制御コマンドを生成する。そして、衛星コンステレーション形成部11は、軌道制御コマンドを、衛星コンステレーションを形成する複数の衛星に送信する。衛星コンステレーションを形成する各衛星が、軌道制御コマンドにしたがって軌道制御を実施することにより、アジマス方向に並ぶ複数の軌道面の平均軌道高度が順番に低くなる状態を維持し、衛星コンステレーション20を通過領域Rが形成される前の状態に戻す。
 その後、衛星コンステレーション形成部11は、ステップS102と同様の処理により、衛星コンステレーション20における所望の位置において、隣接する軌道面のアジマス方向相対角度が不均等配置となるように、衛星コンステレーション20を形成する。
 あるいは、衛星コンステレーション形成部11は、複数の軌道面の配置を元に戻すことなく、ステップS102で形成された複数の軌道面の配置から、衛星群を同時に軌道上昇ないし軌道降下し、不均等配置された軌道面を移動させてもよい。
***他の構成***
 本実施の形態では、衛星コンステレーション形成システム600の機能がソフトウェアで実現される。変形例として、衛星コンステレーション形成システム600の機能がハードウェアで実現されてもよい。
 図16は、本実施の形態の変形例に係る衛星コンステレーション形成システム600の構成を示す図である。
 衛星コンステレーション形成システム600は、プロセッサ910に替えて電子回路909を備える。
 電子回路909は、衛星コンステレーション形成システム600の機能を実現する専用の電子回路である。
 電子回路909は、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA、ASIC、または、FPGAである。GAは、Gate Arrayの略語である。
 衛星コンステレーション形成システム600の機能は、1つの電子回路で実現されてもよいし、複数の電子回路に分散して実現されてもよい。
 別の変形例として、衛星コンステレーション形成システム600の一部の機能が電子回路で実現され、残りの機能がソフトウェアで実現されてもよい。
 プロセッサと電子回路の各々は、プロセッシングサーキットリとも呼ばれる。つまり、衛星コンステレーション形成システム600の機能は、プロセッシングサーキットリにより実現される。
***本実施の形態の効果の説明***
 本実施の形態に係る衛星コンステレーション形成システムでは、軌道面の配置を不均等とすることで、デオービットする宇宙物体が衛星コンステレーションの軌道高度を降下する際の空間的な空き領域を確保することができる。よって、本実施の形態に係る衛星コンステレーション形成システムよれば、衝突リスクをなくすことができる。
 本実施の形態に係る衛星コンステレーション形成システムでは、不均等配置の軌道面を飛行する衛星と地上間の通信手段が、赤道上空で地上を網羅する通信範囲を有する。よって、本実施の形態に係る衛星コンステレーション形成システムよれば、地上サービスの空隙が発生しないために、搭載ミッションのサービス範囲が不均等配置に適応できる設定となっており。
 また、本実施の形態に係る衛星コンステレーション形成システムでは、高高度から軌道降下してくる宇宙物体が、自ら制御能力を持たず、軌道解析予測において、不均等配置した軌道面の空き領域以外を通過すると予測された場合に、予めメガコンステレーション事業者側が不均等配置の位置を変更することができる。よって、本実施の形態に係る衛星コンステレーション形成システムよれば、空き領域を宇宙物体に通過させて、衝突回避ができるという効果がある。また全衛星を同期させて、すなわち衛星群を同時に軌道上昇ないし軌道降下させることにより、通信サービスに支障をきたさずサービス継続できるという効果がある。
 実施の形態2.
 本実施の形態では、主に、実施の形態1と異なる点、あるいは、実施の形態1に追加する点について説明する。本実施の形態において、実施の形態1と同様の構成については同一の符号を付し、その説明を省略する。
 本実施の形態に係る衛星コンステレーション形成システム600、衛星30、および地上設備700の構成については実施の形態1と同様である。
 本実施の形態では、衛星コンステレーション形成部11は、複数の軌道面の各軌道面が極域を通らず、中緯度領域が軌道面の密集領域となる衛星コンステレーションを形成するものとする。すなわち、図4で説明した衛星コンステレーション20である。中緯度領域とは、具体的には、北緯50度近傍および南緯50度近傍である。そして、衛星コンステレーション形成部11は、中緯度領域において軌道面の密度が緩和された領域を通過領域Rとして形成する。本実施の形態では、通過領域Rは、隣接する軌道面が不均等配置されたことにより密度が緩和された空き領域である。
 図17は、本実施の形態に係る24面の軌道面で構成される衛星コンステレーション20の12面の軌道面を北極方向から見た図である。図18は、図17の12面以外の12面の軌道面を示している。図19は、図17の12面と図18の12面を合わせた合計24面の軌道面を示している。
 図17から図19では、軌道傾斜角が90度から離れた軌道衛星により構成される衛星コンステレーション20の例を示している。図17から図19の衛星コンステレーション20では、密集領域が中緯度近傍となる。
 図17と図18は、図10と図11と同様に、北極から見た12面ずつの軌道面を示している。図19は、図17と図18の各々の12面を合わせた24面の軌道面を示している。実施の形態1の図12では全ての軌道面が極域で密集する領域がある。本実施の形態の図19では極域にあった密集領域の緯度が中緯度まで下がり、密集度合いも緩和されている。一方で、中緯度帯全域にわたり、他の軌道面との交点が格子状に存在する。
 メガコンステレーションではそれぞれの軌道面に数十機の衛星が飛翔している。よって、軌道面の重なりあるいは交点は、衝突する可能性があることを示す。したがって、密集度合いが高いエリアは衝突する確率が高いことを示している。
 図20は、図17の衛星コンステレーション20において不均等配置の軌道面が形成された図である。図21は、図18の衛星コンステレーション20において不均等配置の軌道面が形成された図である。図22は、図19の衛星コンステレーション20において不均等配置の軌道面が形成された図である。
 衛星コンステレーション形成部11は、隣接する軌道面上の全ての衛星の軌道高度を同時に変更し、アジマス方向に並ぶ複数の軌道面の平均軌道高度が順番に高くなる状態を維持することにより、不均等配置の軌道面を形成する。隣接する軌道面が不均等配置された領域R’が形成されている。ここでの通過領域Rは、軌道面の重なりあるいは交点の密集度合いが緩和された領域である。隣接する軌道面が不均等配置された領域R’は、隣接する軌道面が不均等配置された空き領域である。
 図17と図18の軌道面において、それぞれ隣接する軌道面のアジマス成分について2度ずつずらすことにより、図20と図21の軌道面が得られる。図20と図21の軌道面を重ねた24面の軌道面を図22に示す。この結果、中緯度領域に、軌道面の重なりあるいは交点の密集度合いが緩和された余裕のある領域、すなわち通過領域Rが生まれたことがわかる。ISSの軌道傾斜角は、90度から離れており、軌道高度340kmに構築することが計画されているメガコンステレーションの軌道傾斜角と近い。よって、この通過領域Rは、ISSの効果に対してより有効である。極軌道衛星とは異なり、図22に示すように、通過領域Rには、中緯度帯で法線のアジマス成分が対向する側にある複数の軌道面との交点が存在している。しかし、図19と図22を比較すると、通過領域Rを形成することにより、衝突リスクが低減されることがわかる。
 なお、本実施の形態においても、衛星コンステレーション形成部11は、通過領域Rを宇宙物体が通過した後に、通過領域Rを形成する前の状態に衛星コンステレーション20を戻す。衛星コンステレーション20は、通過領域Rが形成された図20から図22の状態から、通過領域Rが形成されていない図17から図19の状態に戻る。
 次に、ISSがデオービットして軌道降下する具体例について説明する。
 ISSは、軌道傾斜角約50度、かつ、軌道高度約400kmで飛翔している。ISSは、デオービットして軌道降下する過程で、軌道傾斜角約50度を概ね維持しながら軌道高度を降下する。デオービットして軌道降下する際、ISSは、以下のように構築予定のメガコンステレーションと衝突することなく、軌道高度を変更する必要がある。
軌道傾斜角約53度で軌道高度約346km、約2500機
軌道傾斜角約48度で軌道高度約341km、約2500機
軌道傾斜角約42度で軌道高度約336km、約2500機
 図23は、本実施の形態に係るメガコンステレーションを北極から見た図である。
 図23に示すように、北緯約50度近傍と南緯約50度近傍では、全ての軌道面の最北端と最南端とが位置している。よって、北緯約50度近傍と南緯約50度近傍では、衛星が東西方向に飛翔するための滞留時間が長く、かつ、軌道面同士の交点も高密度に存在している。北緯約50度近傍と南緯約50度近傍は、衝突リスクが極めて高い危険ゾーンである。
 図24は、本実施の形態に係る通過領域Rを形成したメガコンステレーションを北極から見た図である。
 図24に示すように、本実施の形態に係る衛星コンステレーション形成システム600により、北緯約50度上空で軌道面同士の交点が高密度な領域と、軌道面同士の交点の密度が緩和される領域、すなわち、通過領域Rとが生じる。軌道面の最北端と最南端の高密度危険ゾーンの密度が緩和される効果が生まれるため、この疎領域を大型宇宙物体の通過領域Rとして利用することにより衝突を回避する。ISSといった大型宇宙物体の軌道は事前に把握できるので、軌道高度が340km近傍となる時間帯における軌道面のアジマス方向角度に応じて、メガコンステレーション側が軌道面をずらせばよい。
 図25は、本実施の形態に係る通過領域Rを形成したメガコンステレーションと大型宇宙物体の衝突回避の例を示す図である。
 なお、高密度が緩和されるとはいえ、軌道面の最北端と最南端近傍は、他の軌道面との交点が密に存在する危険ゾーンであることに変わりはない。よって、危険高度帯の通過は、赤道上空の、軌道面に交点のない隣接する軌道面が不均等配置された領域R’で実施するのが望ましい。デオービットに利用する推進装置が極めて大きな推力を持つ場合は、大型宇宙物体は、赤道上空で急激に減速して、危険高度帯を短時間で通過するのが効果的である。
 そこまで高推力の推進装置を具備できない場合には、大型宇宙物体が衛星通過の時間帯をずらすことによって、軌道面の交点がある領域において、衝突を回避するのが現実的な衝突回避策となる。
 軌道面の最北端と最南端近傍が危険ゾーンなので、極域通過後から、次の極域通過までの間に、危険高度帯、例えば軌道高度約346km、軌道高度約341km、軌道高度約336kmのそれぞれの高度帯を抜けるのが効果的である。
 なお高度帯という呼び方をしているのは、約2500機で構成されるそれぞれの高度の衛星群の軌道高度にばらつきや変動があるためである。
 なお、ISSを軌道降下させる場合は、ISS側が効果タイミングを選んで降下タイミングおよび降下速度を制御できる。よって、予めメガコンステレーション側が不均等に配置した軌道面の、空き領域をISSが選んで通過することが有効である。
 同様に、デオービット運用過程におけるアクティブデオービット運用能力を具備する衛星、あるいは、デブリ除去衛星の降下においては、軌道降下する側の宇宙物体が空き領域を選んで軌道降下する。
 次に、通信ミッションの成立性として、衛星と地上間の通信サービスの実現方法を示す。
 図26は、隣接軌道間隔を均等間隔とした状態において、衛星から地上通信サービスを実現する例を示す図である。
 図27は、隣接軌道間隔を不均等とした状態において、衛星から地上通信サービスを実現する例を示す図である。
 図26は、軌道面均等配置における衛星と地上間通信サービスのイメージを示す。赤道上空において隣接軌道間の間隔が最も離れる。よって、赤道における地上サービスが網羅されていれば、通信サービスの網羅性が確保できる。
 図27では、隣接する軌道面の間隔を不均等配置にして、隣接軌道間隔を拡大した場合の衛星と地上間通信サービスのイメージを示す。図27では、地上通信サービスの網羅性を確保するために、予め通信ミッションの指向方向をクロストラック方向に回転させた例を示している。別の方法として、予め通信サービス範囲に余裕をもった広い設定としておくことも有効である。
 図28は、メガコンステレーション事業者による衛星間通信ミッション構想の例、すなわち衛星間通信概念図である。
 図29は、メガコンステレーション事業者による軌道面均等配置における衛星間通信網イメージを示す図である。
 図28によるメガコンステレーション事業者の衛星間通信構想によれば、同一軌道面を飛翔する前後の衛星に加えて、隣接軌道面の斜め前後の衛星とも衛星間通信をする。よって、複数衛星により図29の衛星間通信網が実現できる。隣接軌道間の通信をしているため、地球に対して東西方向の通信ルートが確保でき、最短経路で通信できることがわかる。図29において、L21,L22,L23,L24といった太線は、隣接する軌道面の例を表すイメージである。また、太点線は、隣接軌道間の通信の例を表すイメージ図である。
 図30は、軌道面不均等配置における衛星間通信網イメージであり、不均等配置領域における隣接通信なしの状態を示す図である。
 図30は、本実施の形態に係る軌道面を不均等配置した例を表している。軌道面の不均等配置により、図29においてL22で示した軌道面に領域が空隙になったと仮定する。図30では、空隙になった領域の軌道面を太一点鎖線で表している。また、図30では、太一点鎖線で隠ぺいした図29のL22で表す軌道面による隣接軌道間の斜方向前後の通信を遮断した例を表している。
 依然として、他の軌道面による通信網により東西方向の通信ルートが確保されていることがわかる。
 図31は、図31では空隙になった領域において隣接するL21、L23の軌道面間で斜方向前後の衛星間通信を実施した例を示す。衛星間光通信の場合、レーザー光ビームは通信距離に依存する減衰が少ないので、この程度の通信距離の増加に対しては、通信ミッション機器の変更をすることなく対応できる可能性が高い。
***本実施の形態の効果の説明***
 本実施の形態に係る衛星コンステレーション形成システムでは、実施の形態1と同様の効果を期待できる。すなわち、高高度から軌道降下してくる宇宙物体が、自ら制御能力を持たず、軌道解析予測において、不均等配置した軌道面の空き領域以外を通過すると予測された場合に、予めメガコンステレーション事業者側が不均等配置の位置を変更することができる。よって、本実施の形態に係る衛星コンステレーション形成システムよれば、空き領域を宇宙物体に通過させて、衝突回避ができるという効果がある。また全衛星を同期させて、すなわち衛星群を同時に軌道上昇ないし軌道降下させることにより、通信サービスに支障をきたさずサービス継続できるという効果がある。
 なお、実施の形態1,2では、以下の事業装置について説明した。
 事業装置は、衛星コンステレーションを管理する衛星コンステレーション事業者の事業装置である。
 衛星コンステレーション事業者の事業装置は、実施の形態1,2で説明した衛星コンステレーション形成システム、または、地上設備を具備する。そして、衛星コンステレーション事業者の事業装置は、衛星コンステレーション形成方法、または、衛星コンステレーション形成プログラムを実行する。
 以上の実施の形態1,2では、衛星コンステレーション形成システムの各部を独立した機能ブロックとして説明した。しかし、衛星コンステレーション形成システムの構成は、上述した実施の形態のような構成でなくてもよい。衛星コンステレーション形成システムの機能ブロックは、上述した実施の形態で説明した機能を実現することができれば、どのような構成でもよい。また、衛星コンステレーション形成システムは、1つの装置でも、複数の装置から構成されたシステムでもよい。
 また、実施の形態1,2のうち、複数の部分を組み合わせて実施しても構わない。あるいは、これらの実施の形態のうち、1つの部分を実施しても構わない。その他、これらの実施の形態を、全体としてあるいは部分的に、どのように組み合わせて実施しても構わない。
 すなわち、実施の形態1,2では、実施の形態1,2の部分の自由な組み合わせ、あるいは任意の構成要素の変形、もしくは実施の形態1,2において任意の構成要素の省略が可能である。
 なお、上述した実施の形態は、本質的に好ましい例示であって、本開示の範囲、本開示の適用物の範囲、および本開示の用途の範囲を制限することを意図するものではない。上述した実施の形態は、必要に応じて種々の変更が可能である。
 11,11b 衛星コンステレーション形成部、20 衛星コンステレーション、21 軌道面、30 衛星、31 衛星制御装置、32 衛星通信装置、33 推進装置、34 姿勢制御装置、35 電源装置、55 軌道制御コマンド、60 宇宙物体、70 地球、300 衛星群、600 衛星コンステレーション形成システム、700 地上設備、510 軌道制御コマンド生成部、520 解析予測部、909 電子回路、910 プロセッサ、921 メモリ、922 補助記憶装置、930 入力インタフェース、940 出力インタフェース、950 通信装置、R 通過領域。

Claims (6)

  1.  衛星群により構成され、前記衛星群が連携して通信サービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムにおいて、
     前記衛星群の各衛星は、衛星間通信手段と、衛星と地上間の通信手段とを備え、
     前記衛星コンステレーション形成システムは、
     法線方向の異なる軌道面を10軌道面以上有し、かつ、前記複数の軌道面の隣接する軌道面のアジマス方向相対角度が一部不均等となる配置であり、不均等配置の軌道面を飛行する衛星と地上間の通信手段が、赤道上空で地上を網羅する通信範囲を有する衛星コンステレーションを形成する衛星コンステレーション形成部を備えた衛星コンステレーション形成システム。
  2.  前記衛星コンステレーション形成部は、
     前記衛星群を同時に軌道上昇ないし軌道降下し、不均等配置された軌道面を移動させる請求項1に記載の衛星コンステレーション形成システム。
  3.  衛星群により構成され、前記衛星群が連携して通信サービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムの衛星コンステレーション形成方法において、
     前記衛星群の各衛星は、衛星間通信手段と、衛星と地上間の通信手段とを備え、
     衛星コンステレーション形成部が、法線方向の異なる軌道面を10軌道面以上有し、かつ、前記複数の軌道面の隣接する軌道面のアジマス方向相対角度が一部不均等となる配置であり、不均等配置の軌道面を飛行する衛星と地上間の通信手段が、赤道上空で地上を網羅する通信範囲を有する衛星コンステレーションを形成する衛星コンステレーション形成方法。
  4.  衛星群により構成され、前記衛星群が連携して通信サービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムの衛星コンステレーション形成プログラムにおいて、
     前記衛星群の各衛星は、衛星間通信手段と、衛星と地上間の通信手段とを備え、
     法線方向の異なる軌道面を10軌道面以上有し、かつ、前記複数の軌道面の隣接する軌道面のアジマス方向相対角度が一部不均等となる配置であり、不均等配置の軌道面を飛行する衛星と地上間の通信手段が、赤道上空で地上を網羅する通信範囲を有する衛星コンステレーションを形成する衛星コンステレーション形成処理をコンピュータに実行させる衛星コンステレーション形成プログラム。
  5.  衛星群により構成され、前記衛星群が連携して通信サービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムが備える地上設備において、
     前記衛星群の各衛星は、衛星間通信手段と、衛星と地上間の通信手段とを備え、
     前記地上設備は、
     法線方向の異なる軌道面を10軌道面以上有し、かつ、前記複数の軌道面の隣接する軌道面のアジマス方向相対角度が一部不均等となる配置であり、不均等配置の軌道面を飛行する衛星と地上間の通信手段が、赤道上空で地上を網羅する通信範囲を有する衛星コンステレーションを形成する衛星コンステレーション形成部を備えた地上設備。
  6.  衛星コンステレーションを管理する衛星コンステレーション事業者の事業装置であって、
     請求項1または請求項2に記載の衛星コンステレーション形成システム、または、請求項5に記載の地上設備を具備し、
     請求項3に記載の衛星コンステレーション形成方法、または、請求項4に記載の衛星コンステレーション形成プログラムを実行する衛星コンステレーション事業者の事業装置。
PCT/JP2021/009113 2020-03-10 2021-03-09 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、地上設備、および事業装置 WO2021182427A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022507199A JP7233602B2 (ja) 2020-03-10 2021-03-09 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、地上設備、および事業装置
US17/792,406 US20230056948A1 (en) 2020-03-10 2021-03-09 Satellite constellation forming system, satellite constellation forming method, ground facility, and business device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-040881 2020-03-10
JP2020040881 2020-03-10

Publications (1)

Publication Number Publication Date
WO2021182427A1 true WO2021182427A1 (ja) 2021-09-16

Family

ID=77671720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009113 WO2021182427A1 (ja) 2020-03-10 2021-03-09 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、地上設備、および事業装置

Country Status (3)

Country Link
US (1) US20230056948A1 (ja)
JP (1) JP7233602B2 (ja)
WO (1) WO2021182427A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6050525A (en) * 1997-04-29 2000-04-18 Lockheed Martin Corporation Asymmetric open rosette constellations
EP1795445A1 (en) * 2004-10-27 2007-06-13 Zakrytoe Aktsionernoe Obschestvo"NPO Kosmicheskogo Priborostroenija" Method for forming an on-orbit navigation satellite system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2927217A1 (en) * 2016-04-14 2017-10-14 Telesat Canada Dual leo satellite system and method for global coverage
US10954003B2 (en) * 2016-07-20 2021-03-23 Worldvu Satellites Limited Constellation configuration for constellations having a large number of LEO satellites
DE102017102481A1 (de) * 2017-02-08 2018-08-09 Klaus Schilling Formationsfähiger Kleinstsatellit und Formation aus mehreren Kleinstsatelliten
US10843822B1 (en) * 2017-02-28 2020-11-24 Space Exploration Technologies Corp. Satellite constellations
US10807739B1 (en) * 2017-06-21 2020-10-20 Blue Digs LLC Methods and systems for deploying satellite constellations
CN110198184B (zh) 2019-05-22 2021-09-07 航天科工空间工程发展有限公司 一种低轨星座系统间频谱共存星座设计方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6050525A (en) * 1997-04-29 2000-04-18 Lockheed Martin Corporation Asymmetric open rosette constellations
EP1795445A1 (en) * 2004-10-27 2007-06-13 Zakrytoe Aktsionernoe Obschestvo"NPO Kosmicheskogo Priborostroenija" Method for forming an on-orbit navigation satellite system

Also Published As

Publication number Publication date
US20230056948A1 (en) 2023-02-23
JP7233602B2 (ja) 2023-03-06
JPWO2021182427A1 (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
WO2020158505A1 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、地上設備、宇宙交通管理システム、宇宙物体管理部、および軌道降下時衝突回避運用方法
JP7479555B2 (ja) 衝突回避方法および地上設備
JP7383170B2 (ja) 衛星見守りシステム、衛星情報伝送システム、および、監視システム
US20230137711A1 (en) Space situational awareness business device, space traffic business device, space traffic management system, and observation satellite
JP7329402B2 (ja) 軌道遷移支援装置、軌道遷移支援方法、および軌道遷移支援プログラム
Madry et al. Innovative design, manufacturing and testing of small satellites
WO2021182426A1 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、地上設備、事業装置、およびオープンアーキテクチャーデータリポジトリ
JP7068763B2 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション、および地上装置
JP2023086965A (ja) ジャミング衛星回避方法、および、メガコンステレーション事業装置
JP2023155474A (ja) デブリ除去衛星、地上設備、デブリ除去制御装置、および、デブリ除去制御方法
JP7068765B2 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、および地上装置
WO2021182427A1 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、地上設備、および事業装置
WO2020256024A1 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション、および地上設備
JP2023031461A (ja) 衛星コンステレーション形成方法、衛星コンステレーション、および、解析装置
JP2023023216A (ja) 衝突回避方法、地上設備、コマンド送信方法、および、コマンド送信プログラム
WO2022137623A1 (ja) 衛星コンステレーション、飛翔体対処システム、情報収集システム、衛星情報伝送システム、衛星、ハイブリッドコンステレーション、ハイブリッドコンステレーション形成方法、地上システム、ミッション衛星、および、地上設備
JP7068764B2 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション、デオービット方法、デブリ回収方法、および地上装置
WO2021166876A1 (ja) 人工衛星、推薬管理方法、地上設備、および、管理事業装置
JP7460824B2 (ja) ロケット打上支援装置、ロケット打上支援方法、およびロケット打上支援プログラム
WO2022070237A1 (ja) 光通信システムおよび飛翔体対応システム
JP2023018220A (ja) ロケット打ち上げ方法、ロケット打ち上げ制御装置、軌道投入方法、衛星コンステレーション維持方法、デブリ除去方法、ロケット回収方法、回収型ロケット、ロケット発射場、ロケット再利用システム、ロケット、衛星コンステレーション、および、地上設備
WO2021230169A1 (ja) 宇宙交通管理システム、デブリ除去方法、デブリ除去事業装置、第1メガコンステレーション事業装置、第2メガコンステレーション事業装置、および、oadr
JP2024069633A (ja) ロケット、およびロケット打上方法
JP2024069634A (ja) ロケット打上支援システム
JP2023180776A (ja) 衛星コンステレーション、地上設備、人工衛星、ミッション衛星、通信衛星、制御方法、および制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022507199

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767972

Country of ref document: EP

Kind code of ref document: A1