WO2020158505A1 - 衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、地上設備、宇宙交通管理システム、宇宙物体管理部、および軌道降下時衝突回避運用方法 - Google Patents

衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、地上設備、宇宙交通管理システム、宇宙物体管理部、および軌道降下時衝突回避運用方法 Download PDF

Info

Publication number
WO2020158505A1
WO2020158505A1 PCT/JP2020/001901 JP2020001901W WO2020158505A1 WO 2020158505 A1 WO2020158505 A1 WO 2020158505A1 JP 2020001901 W JP2020001901 W JP 2020001901W WO 2020158505 A1 WO2020158505 A1 WO 2020158505A1
Authority
WO
WIPO (PCT)
Prior art keywords
orbital
satellite
orbit
satellite constellation
planes
Prior art date
Application number
PCT/JP2020/001901
Other languages
English (en)
French (fr)
Inventor
久幸 迎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/416,520 priority Critical patent/US20220081132A1/en
Priority to JP2020569532A priority patent/JP7118179B2/ja
Publication of WO2020158505A1 publication Critical patent/WO2020158505A1/ja
Priority to JP2022086954A priority patent/JP7270814B2/ja
Priority to JP2022086955A priority patent/JP7270815B2/ja
Priority to JP2022086956A priority patent/JP7224515B2/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1085Swarms and constellations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G3/00Observing or tracking cosmonautic vehicles

Definitions

  • the present invention relates to a satellite constellation formation system, a satellite constellation formation method, a debris removal method, a satellite constellation construction method, ground equipment, a space traffic management system, a space object management unit, and a collision avoidance operation method during orbit descent.
  • satellite constellation formation system, satellite constellation formation method, debris removal method, satellite constellation construction method, ground equipment, space traffic management system, space object management unit, and collision avoidance during orbit descent that avoid the collision risk of satellites.
  • operation method Regarding operation method.
  • Patent Document 1 discloses a technique for forming a satellite constellation composed of a plurality of satellites in the same circular orbit.
  • the present invention aims at avoiding a collision risk in a satellite constellation.
  • a satellite constellation forming system is a satellite constellation forming system for forming a satellite constellation having a plurality of orbital planes, each orbital plane in which a plurality of satellites fly at the same orbital altitude.
  • a satellite constellation forming unit that forms the satellite constellations in which the orbital heights of the orbital planes of the plurality of orbital planes are different from each other is provided.
  • the satellite constellation forming unit forms a satellite constellation in which the orbital heights of the plurality of orbital surfaces are different from each other. Moreover, there is no possibility of collision between satellites flying in the same orbit plane. Therefore, according to the satellite constellation formation system of the present invention, the plurality of orbital planes have different orbital altitudes from each other, so that there is an effect that the collision risk can be avoided for all the satellites of the satellite constellation.
  • FIG. 3 is a schematic diagram showing an example of a plurality of orbital planes of the satellite constellation according to the first embodiment.
  • FIG. FIG. 5 is a schematic diagram showing another example of a plurality of orbital planes of the satellite constellation according to the first embodiment.
  • 3 is an example of a plurality of satellites flying in one of the orbital planes of the satellite constellation according to the first embodiment.
  • 1 is a configuration diagram of a satellite constellation formation system according to the first embodiment.
  • FIG. 3 is a diagram showing an operation of the satellite constellation formation system according to the first embodiment.
  • FIG 5 is a diagram showing a relative altitude difference between a plurality of orbital surfaces according to the second embodiment.
  • the figure which shows the ground service range of a comparative example The figure which shows the ground service range which concerns on Embodiment 3.
  • 16 is an example of a satellite constellation formed by the satellite constellation forming system according to the fifth embodiment.
  • 22 is an example of a satellite constellation formed by the satellite constellation forming system according to the sixth embodiment.
  • the figure showing the pole passage timing when the number of orbital planes is an even number in the satellite constellation according to the seventh embodiment.
  • the figure which shows the structure of the ground equipment which concerns on Embodiment 10. 22 is an example of a satellite constellation formed by the satellite constellation forming system according to the sixth embodiment.
  • a satellite configuration example of a satellite constellation formation system. 1 is a configuration example of ground facilities included in a satellite constellation formation system.
  • Example of functional configuration of satellite constellation formation system. 13 is an example of the overall configuration of a space traffic management system according to a twelfth embodiment. 13 is a configuration example of a space traffic management device according to a twelfth embodiment.
  • FIG. 14 is a diagram illustrating a satellite arrangement in an orbital plane, which is a comparative example of Example 2 of space traffic management processing. The figure showing the satellite arrangement in the orbital plane in the example 2 of the space traffic management processing which concerns on Embodiment 12.
  • FIG. 3 is a diagram showing a state of a dense area (dangerous area) entering a satellite orbit descent process by a high-altitude mega constellation satellite.
  • the figure which shows the space traffic management process of avoiding a dense region invasion in the satellite orbit descent process concerning Embodiment 12.
  • FIG. 1 is a diagram showing an example in which a plurality of satellites cooperate with each other on the ground to realize a communication service over the entire globe 70.
  • FIG. 1 shows a satellite constellation 20 that realizes communication services over the entire globe.
  • the communication service range with respect to the ground overlaps with the communication service range of the succeeding satellite. Therefore, according to such a plurality of satellites, it is possible to provide a communication service to a specific point on the ground while a plurality of satellites on the same orbital plane alternate in a time division manner.
  • communication services can be provided on a single orbital plane only near the satellite orbit.
  • another orbital plane whose orbital plane rotates in the east-west direction is adjacent to the earth, and a communication service by a plurality of satellites on the orbital plane is simultaneously provided.
  • the adjacent track surface By providing the adjacent track surface in this way, it becomes possible to comprehensively cover the ground communication service between the adjacent track surfaces.
  • a large number of orbital planes are arranged substantially evenly around the earth, it is possible to provide communication services to the ground over the entire globe. Seen from a specific point on the ground, individual satellites fly away in a short time.
  • a plurality of satellites in orbit alternately provide time-divisional alternation and provide communication services, it becomes possible to provide communication services continuously to arbitrary points on the ground. At that time, each satellite transmits and receives necessary signals and information using a communication system between satellites in order to share communication services with the succeeding satellite.
  • the service area of all satellites covers the entire globe, and communication services of arbitrary terrestrial users are shared by the satellites that are flying one after another while inheriting signals and information. To continue. As a result, a continuous communication service can be provided to the terrestrial users as a result. Since each satellite has a communication function between satellites in addition to a communication function between the satellite and the ground, it becomes possible for satellites passing in the vicinity to take over signals and information.
  • the transfer of signals and information that contributes to the mission cooperation of communication services is hereinafter referred to as handover.
  • FIG. 2 is a diagram showing an example in which a plurality of satellites in a single orbit plane realize an earth observation service.
  • FIG. 2 shows a satellite constellation 20 that realizes an earth observation service.
  • a satellite equipped with an earth observation device which is a radio wave sensor such as an optical sensor or a synthetic aperture radar, flies at the same altitude on the same orbit plane.
  • an earth observation device which is a radio wave sensor such as an optical sensor or a synthetic aperture radar
  • the services that can be provided on a single orbit are limited to areas immediately below the satellite orbit.
  • another orbital plane whose orbital plane rotates in the east-west direction is adjacent to the earth and the same multi-satellite service is performed at the same time, it will cover the ground service between adjacent orbits in a plane. Is possible.
  • a large number of orbital planes are arranged substantially evenly around the earth, it is possible to provide a comprehensive earth observation service over the entire globe. When viewed from a specific point on the ground, individual satellites fly away in a short time, but if multiple satellites in orbit provide services while alternating in a time-division manner, they can be delivered to any point on the ground at any time. It becomes possible to provide earth observation services.
  • the satellite constellation forming system 100 forms a satellite constellation 20 having a plurality of orbital planes 21.
  • a plurality of satellites 30 fly at the same orbital altitude on each orbital plane 21 of the plurality of orbital planes 21.
  • the satellite constellation 20 formed by the satellite constellation forming system 100 according to the present embodiment will be briefly described.
  • the satellite constellation 20 according to this embodiment includes a satellite group 300 including a plurality of satellites 30 on each orbital plane 21.
  • a satellite group 300 cooperates to provide a service.
  • the satellite constellation 20 specifically refers to a satellite constellation composed of one satellite group by a communication service company as shown in FIG. Further, the satellite constellation 20 specifically refers to a satellite constellation composed of one satellite group by an observation business service company as shown in FIG.
  • FIG. 3 is a schematic diagram showing an example of a plurality of orbital planes 21 of the satellite constellation 20 according to this embodiment.
  • the orbital planes 21 of the plurality of orbital planes in the satellite constellation 20 are substantially in the same plane.
  • 20 or more satellites may fly in each orbital plane 21 as a plurality of satellites.
  • FIG. 4 is a diagram showing another example of the plurality of orbital planes 21 of the satellite constellation 20 according to the present embodiment.
  • the orbital planes 21 of the plurality of orbital planes in the satellite constellation 20 exist on different planes.
  • the orbital inclination angle of each orbital surface 21 of the plurality of orbital surfaces is approximately 90 degrees, but the orbital surfaces are displaced. That is, the plurality of track surfaces 21 intersect with each other.
  • 20 or more satellites may fly in each orbital plane 21 as a plurality of satellites.
  • the satellite constellation 20 of FIG. 4 may have 20 or more orbital planes 21 as an example.
  • FIG. 5 is an example of a plurality of satellites 30 flying on one of the orbital planes 21 of the satellite constellation 20 according to this embodiment.
  • a plurality of satellites 30 flying at the same altitude in the same orbit plane fly at a relatively same speed while maintaining the relative phase in the orbit plane. Therefore, a plurality of satellites 30 flying at the same altitude on the same orbital plane do not collide.
  • the configuration of the satellite constellation forming system 100 according to the present embodiment will be described with reference to FIG.
  • the satellite constellation forming system 100 includes a computer.
  • FIG. 6 shows the configuration of one computer, in actuality, each satellite 30 of the plurality of satellites constituting the satellite constellation 20 and each ground facility for communicating with the satellite 30 are provided with a computer. .. Then, the satellites 30 of the plurality of satellites and the computers provided in the ground facilities for communicating with the satellites 30 cooperate to realize the functions of the satellite constellation formation system 100 according to the present embodiment.
  • An example of the configuration of a computer that realizes the functions of the satellite constellation formation system 100 will be described below.
  • the satellite constellation formation system 100 includes a processor 910 and other hardware such as a memory 921, an auxiliary storage device 922, an input interface 930, an output interface 940, and a communication device 950.
  • the processor 910 is connected to other hardware via a signal line and controls these other hardware.
  • the satellite constellation forming system 100 includes a satellite constellation forming unit 110 as a functional element.
  • the function of the satellite constellation forming unit 110 is realized by hardware or software.
  • the processor 910 is a device that executes a satellite constellation forming program.
  • the satellite constellation forming program is a program that realizes the function of the satellite constellation forming unit 110.
  • the processor 910 is an IC (Integrated Circuit) that performs arithmetic processing. Specific examples of the processor 910 are a CPU, a DSP (Digital Signal Processor), and a GPU (Graphics Processing Unit).
  • the memory 921 is a storage device that temporarily stores data.
  • a specific example of the memory 921 is an SRAM (Static Random Access Memory) or a DRAM (Dynamic Random Access Memory).
  • the auxiliary storage device 922 is a storage device that stores data.
  • a specific example of the auxiliary storage device 922 is an HDD.
  • the auxiliary storage device 922 may be a portable storage medium such as an SD (registered trademark) memory card, CF, NAND flash, flexible disk, optical disk, compact disk, Blu-ray (registered trademark) disk, or DVD.
  • SD registered trademark
  • SD Secure Digital
  • CF CompactFlash
  • DVD is an abbreviation for Digital Versatile Disk.
  • the input interface 930 is a port connected to an input device such as a mouse, a keyboard, or a touch panel.
  • the input interface 930 is specifically a USB (Universal Serial Bus) terminal.
  • the input interface 930 may be a port connected to a LAN (Local Area Network).
  • the output interface 940 is a port to which a cable of an output device such as a display is connected.
  • the output interface 940 is specifically a USB terminal or an HDMI (registered trademark) (High Definition Multimedia Interface) terminal.
  • the display is, specifically, an LCD (Liquid Crystal Display).
  • the communication device 950 has a receiver and a transmitter.
  • the communication device 950 is specifically a communication chip or a NIC (Network Interface Card).
  • the satellite constellation formation system 100 communicates with the ground facility and the satellite or between the satellites via the communication device 950.
  • the satellite constellation forming program is read by the processor 910 and executed by the processor 910.
  • the memory 921 stores not only a satellite constellation forming program but also an OS (Operating System).
  • the processor 910 executes the satellite constellation forming program while executing the OS.
  • the satellite constellation forming program and the OS may be stored in the auxiliary storage device.
  • the satellite constellation forming program and the OS stored in the auxiliary storage device are loaded into the memory 921 and executed by the processor 910. Note that part or all of the satellite constellation formation program may be incorporated in the OS.
  • the satellite constellation formation system 100 may include a plurality of processors that replace the processor 910. These multiple processors share the execution of the satellite constellation formation program.
  • Each processor like the processor 910, is a device that executes a satellite constellation forming program.
  • Data, information, signal values, and variable values used, processed, or output by the satellite constellation forming program are stored in the memory 921, the auxiliary storage device 922, or the register or cache memory in the processor 910.
  • the “section” of the satellite constellation forming section 110 may be read as “processing”, “procedure”, or “process”. Further, the “processing” of the satellite constellation forming processing may be replaced with a “program”, a “program product”, or a “computer-readable storage medium recording the program”.
  • the satellite constellation forming program causes a computer to execute each processing, each procedure or each step in which the "section" of the satellite constellation forming section is read as "processing", "procedure” or "step”.
  • the satellite constellation forming method is a method performed by the satellite constellation forming system 100 executing a satellite constellation forming program.
  • the satellite constellation forming program may be provided by being stored in a computer-readable recording medium or storage medium. Further, the satellite constellation forming program may be provided as a program product.
  • step S101 parameters are set in the satellite constellation forming system 100 such that the orbital altitudes of the orbital planes 21 included in the satellite constellation 20 are different from each other.
  • step S102 the satellite constellation forming unit 110 forms the satellite constellation 20 in which the orbital heights of the orbital planes 21 of the plurality of orbital planes are different from each other.
  • the satellite constellation forming unit 110 forms the satellite constellation 20 in which the orbital heights of the orbital planes 21 are different from each other using preset parameters.
  • 20 or more satellites may fly in each orbital plane 21 as a plurality of satellites.
  • the satellite constellation 20 of FIG. 4 may have 20 or more orbital planes 21 as an example.
  • the satellite constellation forming unit 110 forms the satellite constellation 20 (see FIG. 4) in which the orbital planes 21 of the plurality of orbital planes exist on mutually different planes will be described in more detail.
  • the plurality of satellites 30 of the satellite constellation 20 of FIG. 4 provide services while alternately alternating in a time division manner with respect to points on the ground.
  • the satellite constellation 20 having a plurality of orbital planes 21 having different orbital altitudes may be formed by setting the altitude difference between different orbital planes to 300 m or more with a margin in mind. .. If the satellite constellation 20 has about 20 orbital planes, the satellite constellation forming unit 110 can construct the satellite constellation 20 within an altitude difference of about 6 km.
  • the satellite constellation 20 having a plurality of orbital planes 21 having different orbital altitudes may be formed by setting an altitude difference between different orbital planes to 3 km or more with a margin in mind. ..
  • the satellite constellation forming unit 110 can construct the satellite constellation 20 within an altitude difference of about 60 km.
  • an on-orbit object monitoring technology called SSA (Space Site Awareness) has been receiving attention.
  • SSA Space Site Awareness
  • the satellite constellation forming unit 110 forms the satellite constellation 20 (see FIG. 3) in which the orbital planes 21 of the plurality of orbital planes are on the same plane will be described in more detail.
  • the plurality of satellites 30 of the satellite constellation 20 of FIG. 3 provide services while alternately alternating in a time division manner with respect to points on the ground.
  • the earth observation service realized by the satellite constellation 20 in FIG. 3 does not always have the need to continuously maintain the service.
  • the earth observation service "it is possible to take an image of an arbitrary point wherever you want". Therefore, it is preferable to configure the satellite constellation 20 by a satellite equipped with an earth observation device equipped with a device for changing the direction of the field of view to at least the class track direction orthogonal to the satellite traveling direction.
  • the satellite has the function of changing the direction of the field of view including the distance between adjacent orbits above the equator, so that it is possible to take an image of an arbitrary point anywhere on the globe, anytime, anywhere.
  • the satellite constellation can be constructed with a smaller number of orbital planes, so that the system construction cost can be reduced. Also, it is not always necessary to cover the image-capable field of view in the satellite traveling direction, and if the satellites in the succeeding satellites or adjacent orbital planes can be imaged if the visual field direction is changed, reduce the number of satellites in the same orbital plane It is also possible. If the field-of-view change range is approximately 2000 km on the ground surface, it is possible that only 2 to 3 aircraft can cover the entire globe per orbital plane.
  • the function of the satellite constellation forming unit 110 is realized by software.
  • the function of the satellite constellation generator 110 may be realized by hardware.
  • the satellite constellation formation system 100 includes an electronic circuit instead of the processor 910.
  • the electronic circuit is a dedicated electronic circuit that realizes the function of the satellite constellation forming unit 110.
  • the electronic circuit is specifically a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA, an ASIC, or an FPGA.
  • GA is an abbreviation for Gate Array.
  • ASIC is an abbreviation for Application Specific Integrated Circuit.
  • FPGA is an abbreviation for Field-Programmable Gate Array.
  • the function of the satellite constellation forming unit 110 may be realized by one electronic circuit, or may be realized by being distributed to a plurality of electronic circuits. As another modification, a part of the functions of the satellite constellation forming unit 110 may be realized by an electronic circuit and the remaining functions may be realized by software.
  • Each of the processor and electronic circuit is also called the processing circuitry. That is, in the satellite constellation forming system 100, the function of the satellite constellation forming unit 110 is realized by the processing circuitry.
  • a plurality of satellites in orbits provide services while alternately changing in a time division manner to a specific point on the ground. Then, on any orbital plane, a plurality of satellites flying at the same altitude fly at approximately equal intervals. Further, a satellite constellation composed of a plurality of orbital planes having different orbital altitudes is formed.
  • satellites flying at the same altitude in the same orbit plane fly at a relatively same speed while maintaining the relative phase in the orbit plane, and therefore do not collide.
  • satellites flying at different orbital altitudes do not collide, although there is a possibility of colliding at the intersection of the two planes.
  • the orbital altitudes are different on different orbital planes, there is an effect that the collision risk can be avoided for all the satellites of the satellite constellation.
  • the fact that satellites that fly in the same orbit plane and fly in different orbital altitudes do not collide with each other is the same between different satellite constellations.
  • the basic concept according to the present embodiment is also effective in avoiding a collision between multiple satellite constellations.
  • STM which has recently been appealing for the necessity of international rule making in crowded outer space
  • Embodiment 2 In the present embodiment, differences or additions from the first embodiment will be mainly described. The same components as those in the first embodiment are designated by the same reference numerals and the description thereof may be omitted.
  • the satellite constellation forming unit 110 forms the satellite constellation 20 in which the relative altitude difference between the adjacent orbital planes in the plurality of orbital planes is sinusoidal.
  • FIG. 8 is a diagram showing a relative altitude difference between a plurality of orbital surfaces according to the present embodiment.
  • the relative altitude difference of each orbital plane in the satellite constellation 20 having 17 orbital planes is shown.
  • the vertical axis represents that the altitude of the orbital surface 1 is high and the altitude decreases in descending order, and does not indicate the distance.
  • the difference in the orbital heights between the adjacent orbital planes 1 and 2 and the difference in the orbital heights between the orbital planes 2 and 3 are plotted. It shows that as it goes, it becomes a sine wave shape.
  • the hand-over distance by inter-satellite communication will be far, and the drive angle range for matching communication antennas to each other will be wide, which is a disadvantage.
  • the satellite constellation 20 according to the present embodiment since the altitude difference between adjacent orbits is limited, the relative difference gradually changes. Therefore, the handover which contributes to the mission cooperation with the neighboring satellites becomes easy.
  • the image quality of an optical sensor depends on the satellite altitude, so the difference in altitude between adjacent orbits is small, so that high-quality images with no mismatch between image scenes can be obtained.
  • a satellite constellation equipped with an optical sensor capable of capturing an image of the surface of the earth and capturing a wider area than the adjacent orbital distance above the equator makes it possible to capture an image of the entire globe. Since the resolution and the observation width of the optical sensor depend on the orbital altitude, in the case of a satellite constellation that uses the optical sensor of the same specifications, the highest resolution and the smallest observation width are obtained when the image is taken under the condition of the lowest orbital altitude. Become. Therefore, if the observation width of the optical sensor under the condition of the lowest orbit altitude over the equator is larger than the distance between adjacent orbits, it is possible to comprehensively image the ground surface including the equator sky.
  • the satellite constellation formation system according to the present embodiment since the altitude difference between adjacent orbits is limited, there is an effect that the seams of images are not conspicuous and global image data of good image quality can be acquired.
  • the greater the difference in satellite altitude the faster the relative movement speed of the ground service area.
  • the relative movement amount of the adjacent service area can be minimized, so that data handover to a succeeding satellite, which is called a handover in communication, is facilitated and an error is suppressed. There is an effect that it is easy to do.
  • Embodiment 3 In the present embodiment, differences or additions from the first and second embodiments will be mainly described.
  • the same components as those in Embodiments 1 and 2 are designated by the same reference numerals and the description thereof may be omitted.
  • the satellite constellation forming unit 110 forms the satellite constellation 20 in which the radius of the ground service range per satellite is approximately ⁇ 2/2 or more of the distance between adjacent orbits above the equator. Specifically, in this satellite constellation 20, the radius of the ground service range per satellite on the orbit plane having the lowest orbit altitude is approximately ⁇ 2/2 or more of the distance between adjacent orbits above the equator. Has been secured.
  • FIG. 9 is a diagram showing a ground service range of the comparative example.
  • the service range can cover the entire globe.
  • the service areas maintain a relative relationship, so that it is possible to continuously provide services that cover the entire globe.
  • the satellite travel speed differs depending on the satellite altitudes, so the service area that is comprehensively secured with the relative position of the satellites moving relatively moves. As a result, a void P, that is, an unserviceable region may occur.
  • Fig. 9 shows the ground service range of three orbital planes.
  • the radius ra of the ground service range is 1/2 of the inter-adjacent orbital distance Ra above the equator.
  • an unserviceable region (gap) will occur.
  • FIG. 10 is a diagram showing a ground service range according to the present embodiment.
  • the radius rb of the ground service range is ⁇ 2/2 of the inter-adjacent orbit distance Rb above the equator.
  • Rb inter-adjacent orbit distance
  • the satellite constellation formation system according to the present embodiment even if the relative positioning of satellites is in the worst state, that is, even when the service areas of adjacent orbits are located approximately 45 degrees ahead, the gaps in the service areas are Does not happen. Therefore, the satellite constellation formation system according to the present embodiment has an effect that even if the service areas of the adjacent orbits relatively move in the satellite traveling direction, the service can be continuously provided globally without interruption.
  • the satellite constellation forming unit 110 will describe a mode in which the orbital altitudes of the orbital planes of the plurality of orbital planes form the satellite constellation 20 that satisfies the conditions of the sun-synchronous orbit. Further, the satellite constellation forming unit 110 will describe a mode in which the orbital heights of the respective orbital planes of the plurality of orbital planes form the satellite constellation 20 in which only the sun-synchronous quasi-return orbits are formed.
  • FIG. 11 is a diagram showing an orbital surface that satisfies the conditions of the sun-synchronous orbit according to the present embodiment. It is desirable for the optical satellites of the Earth observation satellites to continue observation under the conditions where the incident angles of sunlight are almost the same. Therefore, the orbit of a satellite called a sun-synchronous satellite is frequently used. In the orbit of the sun-synchronous satellite, the angle between the sun and the normal to the orbit plane whose orbit plane rotates once per year in synchronization with the earth's orbit is almost constant.
  • the orbit of the sun-synchronous satellite is an orbit in which the local time LST (Local Sun Time) of the earth is the same throughout the year.
  • LST Local Sun Time
  • the satellite constellation 20 is formed in which the orbital plane is formed only by the orbital altitudes that meet the conditions of the sun-synchronous orbit. With such a satellite constellation 20, it becomes possible to realize a satellite constellation in which each orbital surface continues the service at the desired LST and there is no risk of collision.
  • the optical sensor changes image brightness and S/N characteristics depending on the incident angle of sunlight. For this reason, the sun-synchronous orbit often provides the earth observation service continuously under the condition that the incident angle of the sunlight on the orbital surface is constant. Furthermore, the orbital surface from LST 10:00 to 11:00 is often used because it can secure a sufficient amount of light and does not directly reflect on the sea surface. However, it is not possible to take an image "anytime, anywhere" only with a satellite group near LST 10:30. Therefore, it is effective to improve the imaging frequency by combining satellite groups having different LST orbital planes.
  • LST 9:00 and LST 12:00 orbit planes are added.
  • images can be taken approximately every 90 minutes, and if the time required for a low-orbit satellite to orbit the earth is about 90 to 100 minutes, it will be possible to take an image at any point including the imaging opportunity for the next orbit.
  • the imaging frequency can be improved.
  • the number of satellites in the same orbital plane increases, it becomes possible to cover them in a plane, and if the LSTs are evenly arranged in the same way, in principle, "anytime, anywhere" images can be taken.
  • An optical sensor capable of capturing only a visible image cannot capture images at night, but an infrared sensor or a radio wave sensor can capture images at any time during the night.
  • a satellite constellation equipped with an optical sensor capable of capturing images of the ground surface and capturing a wider area than the adjacent orbital distance above the equator, it is possible to capture images of the entire globe. Since the resolution and the observation width of the optical sensor depend on the orbital altitude, in the case of a satellite constellation that uses the optical sensor of the same specifications, the highest resolution and the smallest observation width are obtained when the image is taken under the condition of the lowest orbital altitude. Become. Therefore, if the observation width of the optical sensor under the condition of the lowest orbital altitude over the equator is larger than the distance between adjacent orbits, it is possible to comprehensively image the ground surface including the sky over the equator.
  • the satellite constellation forming unit 110 forms a satellite constellation 20 in which the orbital heights of the orbital planes of the plurality of orbital planes are configured only by the sun-synchronous quasi-return orbits. explain.
  • the sun-synchronous quasi-return orbit is an orbit in which the ground projection line of the satellite orbit revisits after a plurality of orbits, and is often used by earth observation satellites.
  • the orbital heights that meet the conditions of the sun-synchronous quasi-return orbit are a subset of the orbital heights that match the sun-synchronous orbit.
  • the satellite constellation 20 in which the orbital height of each orbital plane of the plurality of orbital planes is composed only of sun-synchronous quasi-return orbits an operation plan for repeatedly observing the same point with the earth observation satellite for a long time, Imaging planning and data processing are facilitated. Moreover, there is an effect that a satellite constellation without collision risk can be realized.
  • the orbital altitude of the sun-synchronous quasi-return orbit is, for example, about 540 km (15 days return), about 539 km (14 days return), about 537 km (13 days return), about 535 km (12 days return), It can be configured with orbital altitudes of about 533 km (11-day return) and about 530 km (10-day return). With these six orbital planes, the satellite constellation 20 can be realized within a range of a maximum altitude difference of about 10 km.
  • the orbital surface is 6 planes and the difference in altitude is about 115 km at the maximum.
  • the satellite constellation 20 can be realized in the range.
  • Embodiment 5 differences or additions from the first embodiment will be mainly described.
  • the same components as those in the first embodiment are designated by the same reference numerals and the description thereof may be omitted.
  • FIG. 12 is a diagram showing an example of the satellite constellation 20 formed by the satellite constellation forming system 100 according to the present embodiment.
  • the satellite constellation 20 according to the present embodiment is composed of a satellite group 300.
  • the satellite groups 300 cooperate to provide services.
  • the satellite constellation 20 has a plurality of orbital planes 21 in which a plurality of satellites 30 fly at the same orbital altitude on each orbital plane 21.
  • the orbital heights of the orbital planes 21 of the plurality of orbital planes are the same, and the orbital planes 21 of the plurality of orbital planes are on different planes.
  • the orbital inclination angles of the orbital planes 21 of the plurality of orbital planes are about 90 degrees, and the orbital planes 21 of the plurality of orbital planes exist in mutually different planes. Therefore, in the satellite constellation 20 shown in FIG. 12, a plurality of orbital planes 21 intersect in the polar region.
  • FIGS. 13 and 14 are schematic diagrams showing an example of a collision condition in a satellite constellation. Satellites flying at the same altitude in the same orbit plane fly at the same speed while maintaining the relative phase in the orbit plane, and therefore do not collide. However, satellites flying at the same orbital height in different orbital planes may collide with each other at intersections where the orbital heights coincide with each other on the line of intersection of the orbital planes, as shown in FIGS. 13 and 14. In particular, as shown in FIG. 14, in a low-Earth orbiting satellite flying at an altitude of 100 km to 2000 km and an orbital inclination angle of about 90 degrees, there is an intersection near the polar region, so that there is an intersection near the North Pole and the South Pole. There is a risk of collision in.
  • the satellite constellation forming unit 110 forms the satellite constellation 20 in which two objects do not collide. Specifically, the time at which the satellites flying in both orbital planes pass through the intersection of the different orbital planes is a multiple of "the waiting time until the next satellite arrives T1/the number of orbital planes" in the same orbital plane. And a satellite constellation 20 is formed in which the satellite transit times do not match at the intersection of any two orbital planes.
  • the satellite constellation 20 shown in FIG. 12 has a plurality of orbital planes having an orbital inclination angle of about 90 degrees and different from each other.
  • the satellite constellation formation unit 110 causes the polar region transit times of the satellites to fly in the same orbital plane at intervals of “waiting time T1/number of orbital planes until the next satellite arrives”, and the satellites in a plurality of orbital planes are mutually transmitted.
  • the polar transit time of is shifted. Specifically, assuming that the time required for a low-orbiting satellite to orbit is about 100 minutes, if 20 satellites fly per orbital plane, a satellite will pass through a specific point and then a subsequent satellite will fly. It will take about 5 minutes. If there are 20 orbital planes, the satellite constellation 20 according to the present embodiment can be realized by shifting 300 seconds at approximately equal intervals by 15 seconds.
  • a plurality of satellites in the same orbital plane are flying in synchronization with the same altitude, and satellites in different orbital planes also have orbital altitudes. They are consistently maintaining the same satellite speed. Therefore, if the initial settings are made so that the satellites in each orbital plane pass through the intersections at different timings in all orbital planes, the relative timing is always maintained, and the collision risk for any two satellites in all orbital planes is maintained. There is an effect that can be avoided.
  • the satellite constellation forming unit 110 determines that the time when the satellites on both orbital planes pass through the intersection of the different orbital planes is “waiting time until the next satellite arrives T1/orbital plane number” on the same orbital plane.
  • the satellite constellation 20 is formed so that the satellite transit times do not match at any intersection of two orbital planes.
  • intersections of a plurality of orbital planes whose orbital inclination angle is more than 90 degrees are separated from the polar region according to the orbital inclination angle. Further, there is a possibility that intersections exist at various positions including the vicinity of the equator depending on the combination of the orbital planes. Therefore, as compared with the satellite constellation of the fifth embodiment, the places where the collision may occur are diversified. However, since the number of intersections does not increase, the collision probability does not increase with the diversification of places.
  • an example of an earth observation satellite adopting a sun-synchronous quasi-regressive orbit with an orbit inclination angle of about 98 degrees and an orbit period of about 98 will be described.
  • the orbital inclination angle is about 98 degrees, so that all orbital planes do not meet in the polar region.
  • the line of intersection always exists between two different orbital planes, and the point of intersection exists at the same altitude, so the collision risk still exists.
  • the collision is avoided by shifting the satellite passage timing at the intersection between any two planes.
  • Embodiment 7 In the present embodiment, differences or additions from the fifth embodiment will be mainly described. The same components as those in the fifth embodiment are designated by the same reference numerals and the description thereof may be omitted.
  • the waiting time of the satellite in the case of the satellite constellation 20 of FIG. 14 in which a plurality of orbital planes intersect in the polar region
  • the waiting time until the succeeding satellite at the pole passing timing arrives on the odd orbital planes and the even orbital planes is shifted by about half each.
  • FIG. 16 is a diagram showing a ground surface service range by the satellite constellation 20 according to the present embodiment.
  • FIG. 16 shows an example in which the number of orbital planes is 18, and the angle of the orbital plane changes relatively by 10 degrees.
  • the waiting time until the following satellite arrives is divided into 18 equal parts, and they are sequentially shifted from timing 1 on the odd plane and from timing 10 on the even plane. Since even spaces and even spaces are alternately filled, the ground surface can be comprehensively covered.
  • FIG. 17 is a diagram showing the pole passage timing when the number of orbital planes is an even number in the satellite constellation 20 according to the present embodiment.
  • FIG. 18 is a diagram showing the pole passage timing when the number of orbital planes is an odd number in the satellite constellation 20 according to the present embodiment.
  • the satellite constellation 20 according to the present embodiment has an odd number of orbital planes.
  • the service areas of one surface next to the 18th surface are adjacent to each other and a mismatch occurs in covering the entire globe. Therefore, by setting the number of orbital surfaces to an odd number as shown in FIG. 18, the terrestrial service range of the final surface and the surface of one surface are alternately arranged as in the case of the other surfaces, so that it is possible to reasonably cover the entire globe.
  • FIG. 19 is a diagram showing the concept of de-orbit by free fall.
  • FIG. 20 is a diagram showing a collision risk when a satellite above the satellite constellation 20 de-orbits.
  • Example 1 of debris removal method changes the orbital surface of the failed satellite before the failed satellite that has become uncontrollable due to a failure descends and passes through the orbital surface where the satellites are dense. And a propulsion device for propelling a failed satellite.
  • the sun-synchronous quasi-regressive orbit from LST 10:00 to LST 11:00 is suitable for imaging by the optical sensor for earth observation because of the relationship between the incident angle of sunlight and the orbital surface.
  • the orbital altitude is suitable for high-resolution imaging, and is concentrated in the range of 500 km or more and 1000 km or less with low atmospheric resistance. However, there are also cases in which an orbital altitude of about 200 km such as an ultra-low altitude satellite is flown.
  • the satellites forming the satellite constellation 20 described in the first to seventh embodiments may fail and become uncontrollable.
  • this failed satellite freely falls from a high altitude of 1000 km to 2000 km, enters the earth's atmosphere, and disappears, it passes through a dense orbit surface while changing the orbit altitude. To do.
  • FIG. 20 there is a high risk that the failed satellite collides with the satellite group having a plurality of orbital altitudes. Therefore, by the debris removal method according to the present embodiment, if the raceway surface is changed in advance so as not to pass through the dense orbit, there is an effect that the collision of the dense orbit can be avoided.
  • FIG. 21 is a diagram showing a change in orbit altitude due to acceleration and deceleration of the satellite.
  • FIG. 22 is a diagram showing a change in the trajectory inclination angle due to the injection of the propulsion device.
  • a debris recovery satellite equipped with a capture device that captures other satellites and a propulsion device that gives propulsive force to the other satellites captures the failed satellite, and artificially changes the orbit by the propulsion device. The method of doing is effective.
  • the orbital altitude rises temporarily if the speed is increased with respect to the satellite traveling direction, the orbital surface rotates around the earth's approximate earth axis due to the effect of perturbation at a cycle different from that of the dense orbit, and avoid the dense orbital surface.
  • the collision avoidance method can be selected to drop before meeting with the dense orbit, or after passing through the dense orbit. is there. Therefore, there is an effect that the collision can be surely avoided.
  • the method of perturbation has a disadvantage that the residence time is long, and therefore, there may be a method of positively injecting the propulsion device to rotate the raceway surface in the out-of-plane direction. In this case, since the amount of propellant consumed is large, the debris removal system including the propulsion system tank becomes large.
  • the recovery of its own satellite is equivalent to the recovery of so-called cooperative targets. Therefore, it is effective that the debris collection satellite is equipped with an attachment adapted to the debris removal system in advance to facilitate the capture. In addition, it is effective for the debris recovery satellite to transmit information notifying the position of the own satellite or the target for capture so that the own satellite can easily approach or join. However, it is an exception when it loses control ability and rotates.
  • Example 2 of debris removal method changes the orbital plane of an object floating in an elliptical orbit before it goes through an orbital plane that constitutes a satellite constellation and floats at an altitude of about 100 km to 2000 km.
  • the external force application device may include not only “force” but also “torque” or “mass characteristic change” associated with uniting as “external force”.
  • the external force applying device is also referred to as a disturbance applying device.
  • Obstacle removal is an issue in STM. If the orbital plane of an object flying in an elliptical orbit coincides with the orbital plane where many satellites fly on a substantially circular orbit at a specific orbital altitude and flies on the same plane, the risk of collision becomes extremely high. According to the debris removal method of Example 2 according to the present embodiment, there is an effect that an obstacle having a high collision risk can be safely removed.
  • a specific example of the debris removal method is similar to ⁇ Example 1 of debris removal method>.
  • ⁇ Example 1 of debris removal method> since the own satellite is captured, it is possible to previously provide an attachment or the like that is easy to capture as a so-called cooperative target.
  • it is a so-called non-cooperative target, and it is possible to capture objects with complex shapes, rotating objects, heavy objects, or objects that do not have an appropriate structure that can be captured. It's a difficult object. For this reason, the capture device to be provided needs to be sophisticated.
  • a method of gripping with a robot, a method of covering an object with a capture net-like device, and a method of piercing and pulling a bar-shaped rod material with a wire can be realized.
  • the debris removal method described in Example 1 or Example 2 of the debris removal method of the eighth embodiment is applied to the satellite constellation constructed by the satellite constellation formation system described in the first to seventh embodiments. A variation of the applied satellite constellation construction method will be described.
  • Example 1 of satellite constellation construction method In Example 1 of the satellite constellation construction method according to the present embodiment, the orbital altitudes of different satellites in the vicinity of the orbital planes of the constituent elements of the satellite constellation 20 Orbit at different orbital altitudes. In Example 1 of the satellite constellation construction method, the satellites are added by increasing or decelerating the orbital altitude and the angle of the orbital plane around the earth axis.
  • Collision risk is high in the process of launching additional satellites into the orbital plane after launching a large number of satellites during the course of launching satellites in order and building a predetermined satellite constellation.
  • Example 1 of the satellite constellation construction method according to the present embodiment it is possible to drastically reduce the collision risk at the time of launching by inserting the satellite into an orbit with a slightly different orbital plane. Further, by gradually approaching a desired orbit from a satellite altitude that does not match the already entered satellite altitude, it is possible to reduce the collision risk in the transient stage.
  • Example 2 of satellite constellation construction method includes a database that has previously collected information such as the orbit, orbit altitude, and the number of flying satellites adopted by the system of another country or a similar system.
  • a satellite in a neighboring orbital plane that is different from the orbital plane on which an existing satellite flies and is different from the orbital plane of the constituent element Orbiting is performed at an orbital altitude different from the orbital altitude at which the aircraft will fly.
  • component satellites are added by changing the orbit altitude and the angle of the orbital plane around the earth's earth axis by speeding up or decelerating.
  • Example 2 of the satellite constellation construction method according to the present embodiment there is an effect that a satellite constellation can be constructed without collision risk in an environment where a plurality of satellite constellations are constructed and the entire outer space is crowded.
  • Example 1 of the satellite constellation construction method a data processing device for the orbit and position of the own satellite is provided on the ground.
  • a data processing device for orbits and positions of flying objects in outer space is provided on the ground.
  • Embodiment 10 In the present embodiment, points added to the first to ninth embodiments will be mainly described. The same components as those in the first to ninth embodiments are designated by the same reference numerals and the description thereof may be omitted.
  • the orbit control command 51 is a command to deorbit the satellite 30 by operating the propulsion device of the satellite 30.
  • FIG. 23 is a diagram showing the configuration of Example 1 of the ground facility 500 according to the present embodiment.
  • the configuration of Example 1 of the ground facility 500 is similar to that of the tenth embodiment.
  • the communication device 950 transmits/receives a signal for tracking and controlling the satellites 30 constituting the satellite constellation 20.
  • the orbit control command transmission unit 510 transmits the orbit control command 51 to the satellite 30 to be deorbited when the end of the design life is reached.
  • the analysis prediction unit 520 analyzes and predicts the passing orbit of the satellite 30 after receiving the command for leaving the orbit.
  • the analysis prediction unit 520 determines that the satellite 30 passes the orbital plane near LST 10:30 of the congested orbit in the sun-synchronous orbit at an altitude of 500 km to 800 km.
  • the orbit control command transmitting unit 510 shifts the congestion orbit passage timing or the orbit plane to transmit the orbit control command 51 for executing the active deorbit operation to avoid the risk of collision to the satellite 30.
  • the satellite 30 Upon receiving the orbit control command 51, the satellite 30 causes the orbit control device of the satellite 30 to increase or decrease the orbit altitude by increasing or decreasing the satellite speed.
  • the satellite 30 changes the orbital inclination angle by applying acceleration to the out-of-plane direction of the orbital plane by the injection of the propulsion device in a direction substantially orthogonal to the satellite traveling direction. In this way, the satellite 30 performs the active de-orbit operation in which the congestion orbit passage timing or the orbit plane is shifted to avoid the risk of collision.
  • the debris predicted orbit information is announced together with a collision warning, and the colliding side satellite takes a collision avoidance action.
  • the avoidance behavior of the collision-target satellite has a high risk of causing a secondary collision. That is, there is a risk of collision with front and rear satellites in a parallel parking state, collision with satellites of different altitudes in the same plane, and the like.
  • Example 1 of the ground facility 500 it is possible to control the trajectory during the fall even while the altitude is being reduced due to de-orbit, so that it is possible to avoid passing through a congested trajectory and avoid a collision. There is. Further, there is an effect that the collision can be avoided even if the satellite on the collision side does not take the avoidance action.
  • Example 2 of ground equipment 500 the debris recovery satellite 31 is transmitted with the capture command 52 and the orbit control command 51 for deorbiting the failed satellite that has lost the orbit control function. ..
  • the debris recovery satellite 31 is, for example, a satellite equipped with a device that recovers a satellite whose orbit control function is lost due to a failure.
  • the debris recovery satellite 31 includes a capture device that captures a failed satellite and a propulsion device.
  • the debris recovery satellite 31 receives a capture command 52 and an orbit control command 51 for deorbiting the failed satellite by operating the capture device and the propulsion device provided in the debris recovery satellite 31.
  • the communication device 950 transmits and receives a signal for tracking and controlling the debris collection satellite.
  • the orbit control command transmission unit 510 transmits the orbit control command 51 or the capture command 52.
  • the analysis prediction unit 520 analyzes and predicts the passage orbit of the debris recovery satellite in the state of capturing the failed satellite.
  • the analysis prediction unit 520 finds that the debris recovery satellite 31 passes through the orbital plane near LST 10:30 of the congested orbit in the sun-synchronous orbit at an altitude of 500 km to 800 km.
  • the orbit control command transmission unit 510 transmits to the debris recovery satellite 31 an orbit control command 51 that shifts the congestion orbit passage timing or the orbit plane to perform active deorbit operation to avoid the risk of collision.
  • the debris recovery satellite 31 causes the orbit controller of the satellite 30 to increase or decrease the orbit altitude by increasing or decreasing the satellite speed.
  • the satellite 30 changes the orbital inclination angle by applying acceleration to the out-of-plane direction of the orbital plane by the injection of the propulsion device in a direction substantially orthogonal to the satellite traveling direction.
  • the debris collection satellite 31 carries out an active deorbit operation for avoiding a collision risk by shifting the congestion orbit passage timing or the orbital plane.
  • Example 2 of the ground facility 500 according to the present embodiment the constituent satellites of the satellite constellation are provided with facilities such as a debris recovery satellite capture attachment in advance. Therefore, Example 2 of the ground facility 500 according to the present embodiment is effective in collecting the constituent satellites of the satellite constellation.
  • Example 3 of ground equipment 500 performs a tracking control operation of a debris recovery satellite that is equipped with a device that recovers the remains of a rocket flying above a congested orbit at an altitude of 800 km or more.
  • the orbit control command transmitting unit 510 transmits a capture command and an orbit control command for causing the debris recovery satellite to deorbit by operating a capture device and a propulsion device included in the debris recovery satellite.
  • the analysis prediction unit 520 analyzes and predicts the passage orbit of the debris recovery satellite in the state of capturing the failed satellite.
  • Example 3 of the ground facility 500 according to the present embodiment the orbit control device included in the above-mentioned satellite is used to increase or decrease the orbit altitude by increasing or decreasing the satellite speed, or a direction substantially orthogonal to the satellite traveling direction.
  • the inclination angle of the orbit is changed by applying acceleration to the out-of-plane direction of the orbital surface by the injection of a thruster.
  • a congestion orbit passage timing or an active de-orbit operation that shifts the orbit plane to avoid a collision risk is performed.
  • the rocket wreckage is not equipped with a debris recovery satellite capture attachment and is difficult to capture, such as rotating in orbit, so it is more technically difficult than Example 2 of the ground facility 500.
  • Example 3 of the above-ground equipment 500 according to the present embodiment as a capture device, a method of wrapping with a net-like object such as a net, a method of piercing and pulling a bar-shaped rod with a wire, or the outside of the capture target A method of adhering to the epidermis with a sticky substance or an adhesive is possible.
  • the debris recovery satellite cannot easily access the attachment for capture because the attitude becomes indefinite if the satellite is freely fallen without controlling the attitude. Probability is high. In such a case, the capture device of Example 3 of the ground facility 500 according to the present embodiment is effective.
  • Example 4 of ground facility 500 Here, as described in Examples 1 to 3 of the ground facility 500, during the descent of the satellite de-orbiting or de-orbiting to de-orbit, the analysis prediction unit 520 causes another satellite constellation constructed at a low altitude. The case where it is found that the light passes through the polar dense area of the station will be described.
  • Example 4 of the ground facility 500 the orbit inclination angle by the acceleration given to the out-of-plane direction of the orbit plane by the injection of the propulsion device in the direction substantially orthogonal to the satellite traveling direction so that the orbit inclination angle is different from the satellite constellation. Change.
  • Example 4 of the ground facility 500 the inclination of the track surface is changed from the crowded track or the active deorbit operation is performed to avoid the risk of collision by shifting the passage timing.
  • Examples 1 to 3 of the ground facility 500 not only can the congestion orbit avoidance in the vicinity of LST 10:30 be covered, but also the collision at the time of passing through the polar congested area can be avoided.
  • the examples 1 to 4 of the above ground facility 500 may be combined in any manner.
  • the following ground equipment can be implemented.
  • the ground equipment includes a communication device for transmitting and receiving signals for tracking and controlling the satellites constituting the satellite constellation, an orbit control command transmitting unit for transmitting an orbit control command, and a transit orbit of the satellite after receiving the command for leaving orbit. And an analysis prediction unit for performing analysis prediction.
  • the ground facility transmits the orbit control command for causing the satellite, which has reached the end of its design life, to deorbit by operating the propulsion device included in the satellite. Analytical predictions revealed that the ground equipment would pass through the polar congested area or congested orbital plane of another satellite constellation constructed at a low altitude during the descent of the satellite de-orbiting or de-orbiting de-orbiting. In this case, carry out active deorbit operation to avoid the risk of collision.
  • the ground equipment has an orbital tilt due to the acceleration given to the out-of-plane direction of the orbital plane by the injection of the propulsion device in a direction substantially orthogonal to the satellite traveling direction so that the orbital tilt angle is different from the satellite constellation.
  • the angle By changing the angle, the inclination of the track surface is changed from that of the crowded track, or active deorbit operation is performed to avoid the risk of collision by shifting the passage timing.
  • the ground equipment has a device that collects satellites that have failed and lost the orbit control function.
  • Communication device that sends and receives signals for tracking and controlling the debris recovery satellite, orbit control command transmission unit, and a state that captures the failed satellite It is equipped with an analysis and prediction unit that analyzes and predicts the passage orbit of the debris recovery satellite.
  • the ground facility transmits a capture command and an orbit control command for causing the failed satellite to orbit by operating the capture device and the propulsion device included in the debris recovery satellite, to the debris recovery satellite.
  • Analytical predictions revealed that the ground equipment would pass through the polar congested area or congested orbital plane of another satellite constellation constructed at a low altitude during the descent of the satellite de-orbiting or de-orbiting de-orbiting.
  • the ground equipment has an orbital tilt due to the acceleration given to the out-of-plane direction of the orbital plane by the injection of the propulsion device in a direction substantially orthogonal to the satellite traveling direction so that the orbital tilt angle is different from the satellite constellation.
  • the angle By changing the angle, the inclination of the track surface is changed from that of the crowded track, or active deorbit operation is performed to avoid the risk of collision by shifting the passage timing.
  • the ground equipment includes a communication device for transmitting and receiving a signal for tracking and controlling a debris recovery satellite equipped with a device for recovering the debris of a rocket flying above a congested orbit at an altitude of 800 km or more, an orbit control command transmission unit, An analysis/prediction unit for analytically predicting a transit orbit of a debris recovery satellite in a state of capturing a failed satellite is provided.
  • the ground equipment transmits a capture command and an orbit control command for causing the debris recovery satellite to de-orbit by operating the capture device and the propulsion device included in the debris recovery satellite.
  • the ground equipment would pass through the polar congested area or congested orbital plane of another satellite constellation constructed at a low altitude during the descent of the satellite de-orbiting or de-orbiting de-orbiting.
  • carry out active deorbit operation to avoid the risk of collision.
  • the ground equipment has an orbital tilt due to the acceleration given to the out-of-plane direction of the orbital plane by the injection of the propulsion device in a direction substantially orthogonal to the satellite traveling direction so that the orbital tilt angle is different from the satellite constellation.
  • the angle By changing the angle, the inclination of the track surface is changed from that of the crowded track, or active deorbit operation is performed to avoid the risk of collision by shifting the passage timing.
  • Deorbit a low-orbit satellite
  • the recently planned mega satellite constellation has an orbital altitude of 1000 km or higher, which is higher than that of a low-orbiting satellite, so it will be a satellite that flies in a lower orbital altitude when deorbiting at the end of its life or at the time of failure. There is a risk of collision.
  • the orbital planes of the mega-satellite constellation are also variously configured, and since many satellites fly in a row in each orbital plane, the orbital paths that the satellites pass through during de-orbit also vary widely.
  • the collision probability is high when there is a possibility of passing through a congested region of a low-orbit satellite such as the vicinity of LST 10:30 in the sun-synchronous orbit or the polar region.
  • the orbital plane rotates as the altitude is gradually lowered.Therefore, it is possible that a satellite deorbited from any orbital plane will pass through the sun-synchronized satellite's crowded orbit. There is.
  • the rotation of the orbital surface is used to advance the drop before the congested orbital passage, or conversely, as a quiet track after the congested orbital surface passes Avoid collisions by dropping the surface.
  • accelerating a satellite that deorbits increases the orbital altitude and delays the fall timing. If the vehicle decelerates, the orbital altitude descent accelerates, so the timing of the fall can be advanced. Further, there is an effect that the orbital surface rotates due to the perturbation according to the residence time at the orbital altitude, so that it becomes possible to wait for the passage of the congested orbital. Since the orbit inclination angle can be changed by operating the propulsion device in the traveling direction and the orthogonal direction when the satellite to be deorbited passes through the ascending or descending intersection, the rotation of the orbital surface can be accelerated.
  • Example 4 of the ground facility 500 collisions are avoided by intentionally changing the orbital inclination angle and changing the orbital surface so that it does not pass through the polar regions at altitudes that are congested in the polar regions.
  • the orbital inclination angle can be effectively changed by operating the propulsion device in the traveling direction and the orthogonal direction when the deorbiting satellite passes through the ascending or descending intersection.
  • the number of satellites is several thousand even in a single constellation, and the total number of satellites in the multi-satellite constellation concept is close to 10,000.
  • the orbital altitude is as low as 1/20 to 1/100 times that of geostationary satellites, and the distance between the two satellites is extremely close, so there is a high risk of collision even when compared with geostationary orbits.
  • different orbital planes are used at the same time, so there is a possibility of collision on the intersection of the two planes.
  • the satellite constellation method is provided by providing methods such as a combination of orbital planes having different altitudes, a method of artificially shifting the intersection passage time, a method of removing a failed satellite, and a method of injecting a new satellite orbit. It is possible to avoid collision of the ratios.
  • the satellite constellation formation system 100 is composed of the satellite group 300, and the satellite group 300 cooperates to form the satellite constellation 20 that provides a service.
  • the satellite constellation forming system 100 forms a satellite constellation 20 having a plurality of orbital planes in which a plurality of satellites fly at the same orbital altitude in each orbital plane 21.
  • the orbital heights of the orbital planes 21 of the plurality of orbital planes are different from each other, and the revolution cycles of the orbital planes 21 of the plurality of orbital planes are equal to each other.
  • a satellite constellation 20 is formed in which each orbital plane has an orbital inclination angle.
  • each orbital plane of the plurality of orbital planes is a sun-synchronous orbit as shown in FIG.
  • the orbital altitudes of the orbital planes 21 included in the satellite constellation 20 are different from each other, and the orbital inclination angles at which the revolution cycles of the orbital planes 21 of the plurality of orbital planes are equal to each other.
  • the parameters are set as the surface has.
  • the satellite constellation forming unit 110 uses the set parameters to set the orbital inclination angles of the orbital planes 21 so that the orbital heights of the orbital planes 21 are different from each other and the revolution cycles of the orbital planes 21 of the plurality of orbital planes are equal to each other.
  • a satellite constellation 20 having each orbital plane is formed.
  • FIG. 25 is a schematic diagram showing a specific example of the satellite constellation 20 according to the present embodiment.
  • the orbital planes synchronized with the sun have the same revolution period even if the orbital heights are different.
  • the following is an example of multiple orbital planes that have different orbital altitudes and become sun-synchronous orbits. Since the constraint condition for synchronizing the sun is generally determined by the correlation between the orbital altitude and the orbital inclination angle, a sun-synchronous orbit can be formed by appropriately setting the orbital inclination angle according to the orbital altitude.
  • the orbital planes of the above six orbital altitudes are set by LST as follows, a group of orbital planes having different angles in the latitudinal direction by about 30° are formed, and the relative angle between the orbital planes is always maintained. To be done. That is, six orbital surfaces having the same revolution cycle are formed.
  • the sun-synchronous orbit is illustrated as a typical example where the revolution cycles are the same, but it is also possible to select multiple orbital altitudes where the revolution cycles are the same, even with a sun-synchronous orbit.
  • the satellite constellation forming unit 110 determines that the orbital angles of the orbital planes 21 of the plurality of orbital planes are different from each other, and the orbital inclination angles of the orbital planes 21 of the plurality of orbital planes are synchronized with each other.
  • the satellite constellation 20 having may be formed.
  • the ground facility 500 for tracking and controlling the satellite constellation 20 constructed by the satellite constellation forming system 100 according to the present embodiment adjusts the altitude of each satellite so as to maintain the relative phase of each satellite in each orbital plane, and maintains the relative angle between the multiple orbital planes.
  • a command for adjusting the orbital altitude and the orbital inclination angle of each orbital plane is generated as described above and transmitted to each satellite in the satellite group.
  • FIG. 23 is a diagram showing a configuration of Example 5 of the ground facility 500 which is the ground facility 500 according to the present embodiment.
  • the configuration of Example 5 of the ground facility 500 is similar to that of Example 1 of the ground facility 500 of the tenth embodiment.
  • the communication device 950 transmits/receives a signal for tracking and controlling the satellites 30 constituting the satellite constellation 20.
  • the orbit control command transmission unit 510 adjusts the altitude of each satellite so as to maintain the relative phase of the satellites in each of the plurality of orbital planes, and maintains the relative angle between the plurality of orbital planes.
  • An orbit control command 51 for adjusting the orbit altitude and orbit inclination angle of each orbit plane is transmitted to the satellite 30.
  • Embodiments 1 to 11 points that are added to or different from Embodiments 1 to 11 will be mainly described.
  • the same components as those in the first to eleventh embodiments are designated by the same reference numerals and the description thereof may be omitted.
  • FIG. 26 is a configuration example of the satellite 30 of the satellite constellation formation system 600.
  • the satellite 30 includes a satellite control device 310, a satellite communication device 32, a propulsion device 33, an attitude control device 34, and a power supply device 35.
  • the satellite control device 310, the satellite communication device 32, the propulsion device 33, the attitude control device 34, and the power supply device 35 will be described with reference to FIG.
  • the satellite 30 is an example of the space object 60.
  • the satellite control device 310 is a computer that controls the propulsion device 33 and the attitude control device 34, and includes a processing circuit. Specifically, the satellite control device 310 controls the propulsion device 33 and the attitude control device 34 according to various commands transmitted from the ground facility 500.
  • the satellite communication device 32 is a device that communicates with the ground facility 500. Specifically, the satellite communication device 32 transmits various data related to the own satellite to the ground facility 500. The satellite communication device 32 also receives various commands transmitted from the ground facility 500.
  • the propulsion device 33 is a device that applies a propulsive force to the satellite 30, and changes the speed of the satellite 30. Specifically, the propulsion device 33 is an apogee kick motor, a chemical propulsion device, or an electric propulsion device.
  • the Apogee Kick Motor is an upper stage propulsion device used to orbit the artificial satellite, and is also called an apogee motor (when using a solid rocket motor) or an apogee engine (when using a liquid engine).
  • the chemical propulsion device is a thruster using a one-liquid fuel or a two-liquid fuel.
  • the electric propulsion device is an ion engine or a hall thruster.
  • the apogee kick motor is the name of the device used for orbit transition, and may be a type of chemical propulsion device.
  • the attitude control device 34 is a device for controlling attitude elements such as the attitude of the satellite 30, the angular velocity of the satellite 30, and the line-of-sight direction. The attitude control device 34 changes each attitude element in a desired direction.
  • the attitude control device 34 maintains each attitude element in a desired direction.
  • the attitude control device 34 includes an attitude sensor, an actuator, and a controller.
  • Attitude sensors are devices such as gyroscopes, earth sensors, sun sensors, star trackers, thrusters and magnetic sensors.
  • Actuators are devices such as attitude control thrusters, momentum wheels, reaction wheels and control moment gyros.
  • the controller controls the actuator according to the measurement data of the attitude sensor or various commands from the ground facility 500.
  • the power supply device 35 includes devices such as a solar cell, a battery, and a power control device, and supplies power to each device mounted on the satellite 30.
  • the processing circuit provided in the satellite control device 310 will be described.
  • the processing circuit may be dedicated hardware or a processor that executes a program stored in the memory.
  • some functions may be implemented by dedicated hardware and the remaining functions may be implemented by software or firmware. That is, the processing circuit can be realized by hardware, software, firmware, or a combination thereof.
  • the dedicated hardware is specifically a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • ASIC is an abbreviation for Application Specific Integrated Circuit.
  • FPGA is an abbreviation for Field Programmable Gate Array.
  • FIG. 27 is a configuration example of the ground facility 500 included in the satellite constellation formation system 600.
  • Ground facility 500 programmatically controls multiple satellites in all orbital planes.
  • the ground facility 500 is an example of a ground device.
  • the ground device is composed of a ground station such as a ground antenna device, a communication device connected to the ground antenna device, or an electronic computer, and a ground facility as a server or a terminal connected to the ground station by a network.
  • the ground device may include a communication device mounted on a mobile body such as an aircraft, a self-propelled vehicle, or a mobile terminal.
  • the ground facility 500 forms the satellite constellation 20 by communicating with each satellite 30.
  • the ground facility 500 is provided in the space traffic management device 200.
  • the ground facility 500 includes a processor 910 and other hardware such as a memory 921, an auxiliary storage device 922, an input interface 930, an output interface 940, and a communication device 950.
  • the processor 910 is connected to other hardware via a signal line and controls these other hardware.
  • the hardware of the ground facility 500 is the same as the hardware of the satellite constellation formation system 100 described in FIG.
  • the ground facility 500 includes a trajectory control command transmission unit 510 and an analysis prediction unit 520 as functional elements.
  • the functions of the trajectory control command transmission unit 510 and the analysis prediction unit 520 are realized by hardware or software.
  • the communication device 950 transmits and receives a signal for tracking and controlling each satellite 30 of the satellite group 300 that constitutes the satellite constellation 20.
  • the communication device 950 also transmits an orbit control command 55 to each satellite 30.
  • the analysis prediction unit 520 analyzes and predicts the orbit of the satellite 30.
  • the orbit control command transmission unit 510 generates the orbit control command 55 to be transmitted to the satellite 30.
  • the orbit control command transmission unit 510 and the analysis prediction unit 520 realize the function of the satellite constellation formation unit 11. That is, the orbit control command transmission unit 510 and the analysis prediction unit 520 are examples of the satellite constellation formation unit 11.
  • FIG. 28 is a diagram showing a functional configuration example of the satellite constellation formation system 600.
  • the satellite 30 further includes a satellite constellation forming unit 11b that forms the satellite constellation 20. Then, the satellite constellation forming unit 11b of each satellite 30 of the plurality of satellites and the satellite constellation forming unit 11 provided in each of the ground facilities 500 cooperate to realize the function of the satellite constellation forming system 600. ..
  • the satellite constellation forming unit 11b of the satellite 30 may be included in the satellite control device 310.
  • FIG. 29 is an example of the overall configuration of the space traffic management system 800 according to this embodiment.
  • the space traffic management system 800 includes a plurality of space traffic management devices 200.
  • Each of the plurality of space traffic management devices 200 is installed in the business device 40 of each of the plurality of companies that manages the space object 60 flying in space.
  • the plurality of space traffic management devices 200 are connected to each other via a communication line.
  • FIG. 30 is a diagram showing a configuration example of the space traffic management device 200 according to the present embodiment.
  • the space traffic management device 200 communicates with another business device 40.
  • the space traffic management device 200 may be mounted on the ground facility 701.
  • the space traffic management device 200 may be mounted on the satellite constellation formation system 600.
  • the business device 40 provides information on a space object 60 such as an artificial satellite or debris.
  • the business device 40 is a computer of a business operator that collects information about space objects 60 such as artificial satellites or debris.
  • the business equipment 40 includes mega constellation business equipment 41, LEO constellation business equipment 42, satellite business equipment 43, orbit transition business equipment 44, debris removal business equipment 45, rocket launch business equipment 46, and SSA business equipment 47. Is included. LEO is an abbreviation for Low Earth Orbit.
  • the mega-constellation business device 41 is a computer of a mega-constellation business operator that performs a large-scale satellite constellation, that is, a mega-constellation business.
  • the LEO constellation business device 42 is a computer of an LEO constellation business operator that performs a low orbit constellation, that is, an LEO constellation business.
  • the satellite business device 43 is a computer of a satellite business that handles one to several satellites.
  • the orbit transition business device 44 is a computer of an orbit transition business that issues a satellite space object intrusion warning.
  • the debris removal business device 45 is a computer of a debris removal business that conducts a business of collecting debris.
  • the rocket launch business device 46 is a computer of a rocket launch business that performs a rocket launch business.
  • the SSA business device 47 is a computer of an SSA business that performs an SSA business, that is, a space condition monitoring business.
  • the business device 40 may be any other device as long as it is a device that collects information about space objects such as artificial satellites or debris and provides the collected information to the space traffic management system 800.
  • the space traffic management device 200 When the space traffic management device 200 is installed on the SSA public server, the space traffic management device 200 may function as the SSA public server.
  • the space traffic management device 200 includes a processor 910 and other hardware such as a memory 921, an auxiliary storage device 922, an input interface 930, an output interface 940, and a communication device 950.
  • the processor 910 is connected to other hardware via a signal line and controls these other hardware.
  • the space traffic management device 200 includes a space traffic management unit 120 and a storage unit 140 as an example of functional elements.
  • the storage unit 140 stores rule information 515 and dense area identification information 525.
  • the function of the space traffic management unit 120 is realized by software.
  • the storage unit 140 is included in the memory 921.
  • the storage unit 140 may be included in the auxiliary storage device 922. Further, the storage unit 140 may be separately provided in the memory 921 and the auxiliary storage device 922.
  • the space traffic management unit 120 manages the space object 60 according to the rule information 515, for example. Alternatively, the space traffic management unit 120 manages the space object 60 according to the rule information 515 using the dense area identification information 525.
  • the processor 910 is a device that executes a space traffic management program.
  • the space traffic management program is a program that realizes the functions of the components of the space traffic management device 200 and the space traffic management system 800.
  • the hardware of the space traffic management device 200 is the same as the hardware of the satellite constellation formation system 100 described in FIG.
  • the space traffic management program is read by the processor 910 and executed by the processor 910.
  • the memory 921 stores not only a space traffic management program but also an OS (Operating System).
  • the processor 910 executes the space traffic management program while executing the OS.
  • the space traffic management program and the OS may be stored in the auxiliary storage device 922.
  • the space traffic management program and the OS stored in the auxiliary storage device 922 are loaded into the memory 921 and executed by the processor 910. Note that part or all of the space traffic management program may be incorporated in the OS.
  • the space traffic management device 200 may include a plurality of processors that replace the processor 910. These plural processors share the execution of the program.
  • Each processor like the processor 910, is a device that executes a program.
  • the “part” of each part of the space traffic management device may be replaced with “processing”, “procedure”, “means”, “stage” or “process”. Further, the “processing” of the passage determination processing, the alarm generation processing, and the alarm notification processing may be replaced with “program”, “program product”, or “computer-readable recording medium recording the program”. “Process”, “procedure”, “means”, “stage”, or “process” can be read as each other.
  • the space traffic management program is a process, each procedure, each means, each step in which "part" of each part of the space traffic management system is read as "processing", “procedure”, “means”, “stage” or “process”. Alternatively, a computer is made to execute each step.
  • the space traffic management method is a method performed by the space traffic management device 200 executing a space traffic management program.
  • the space traffic management program may be provided by being stored in a computer-readable recording medium. Further, each program may be provided as a program product.
  • the sun-synchronous orbit is frequently used in earth observation, and the following areas are particularly dense.
  • the space traffic management system 800 uses information such as rule information 515 and dense area identification information 525 to manage space traffic of the space object 60.
  • the space traffic management process is executed. That is, in the space traffic management system 800, the plurality of space traffic management devices 200 manage the traffic of the space object 60 by using the rule information 515 and the dense area identification information 525 common to the plurality of space traffic management devices 200. ..
  • the rule information 515 is also referred to as a space traffic management rule 501.
  • the space traffic management unit 120 executes the space traffic management processing of the space object 60 so that the satellites on the orbital planes having different normal vectors adopt different orbital altitudes.
  • the rule information 515 is set with information indicating a rule that satellites having different normal vectors have different orbital altitudes.
  • the space traffic management unit 120 manages the space object 60 according to the rule information 515.
  • the collision probability in the polar region becomes zero and the collision risk in the steady operation can be eliminated. is there.
  • the space traffic management unit 120 controls the space object 60 so that a plurality of satellites having the same normal vector and flying at the same orbit altitude maintain a relative phase angle in which they are approximately evenly arranged in the orbit plane. Implement space traffic management processing.
  • the rule information 515 represents a rule in which a plurality of satellites, which have the same normal vector and fly in the same orbit altitude, fly while maintaining a relative phase angle in which they are approximately evenly arranged in the orbit plane. Information is set.
  • the space traffic management unit 120 manages the space object 60 according to the rule information 515.
  • FIG. 31 is a diagram illustrating a satellite arrangement in an orbit plane in a comparative example of Example 2 of space traffic management processing.
  • FIG. 32 is a diagram showing the satellite arrangement in the orbit plane in the example 2 of the space traffic management processing according to the present embodiment.
  • FIG. 33 is a diagram showing a plurality of orbital planes having the same normal vector and different orbital altitudes.
  • the space traffic management rule 501 is used to identify a plurality of satellites flying in the same orbital plane, and a plurality of satellites flying in the same orbital altitude are roughly defined in the orbital plane. It flies with maintaining the relative phase angle that makes it evenly distributed. This has the effect of avoiding a collision.
  • the dense area identification information 525 is information that identifies the following areas as dense areas. -A region with an orbital altitude of 500 km or more and 1000 km or less near the sun-synchronous orbit LST 10:30. -A region with an orbital altitude of 500 km or more and 1000 km or less near the sun-synchronous orbit LST13:30. -A region with an orbital altitude of 500 km or more and 1000 km or less near the sun synchronous orbit LST 06:00. -A region with an orbital altitude of 500 km or more and 1000 km or less near the sun synchronous orbit LST 18:00. -A region with an orbital altitude of 500 km or more and 1000 km or less at a latitude of 80 degrees or more north.
  • LST ⁇ A region with an orbital altitude of 500 km or more and 1000 km or less at a latitude of 80 degrees or more south latitude.
  • the vicinity of LST 10:30 and the vicinity of LST 13:30 are orbits frequently used by various earth observation satellite groups called optical satellite groups or A-Train.
  • the vicinity of LST 06:00 and the vicinity of LST 18:00 are orbits frequently used by a radar satellite group equipped with a synthetic aperture radar.
  • a space traffic management rule 501 is set, which represents a rule for an operator managing satellites flying in a dense area to disclose satellite information.
  • the space traffic management unit 120 realizes a means for businesses that manage satellites that fly in the same orbit plane to exchange information about flight safety measures.
  • the space traffic management apparatus 200 includes the dense area identification information 525.
  • the space traffic management device 200 includes a space traffic management rule 501 in which a business operator who manages satellites that fly in a dense area discloses satellite information, and a business operator who manages satellites that fly in the same orbital plane has flight safety measures. And means for exchanging information about. In this way, it is dangerous for multiple operators to fly satellites uncontrollably in the orbit, so satellite orbit information will be disclosed as a traffic rule and an environment will be established where measures for ensuring flight safety can be adjusted. Therefore, according to the example 3 of the space traffic management process, there is an effect that the collision can be avoided.
  • a function for chatting on the portal of the space traffic management system 800 may be provided, or a message for hosting a coordination meeting may be transmitted.
  • the space traffic management unit 120 uses the dense area identification information 525 to capture and orbit the space object 60 before entering any of the dense areas in the course of the space object 60 deviating from the orbit and entering the atmosphere. Realizes collision avoidance operation during descent. Such a method of realizing collision avoidance operation during orbit descent is called a collision avoidance operation method during orbit descent.
  • a specific example of the dense area is the same as that described in Example 3 of the space traffic management process.
  • FIG. 34 is a diagram showing how a high-altitude mega-constellation satellite enters a dense area (dangerous area) during a satellite orbit descent process.
  • FIG. 35 is a diagram showing a space traffic management process for avoiding a dense area intrusion in the satellite orbit descent process according to the present embodiment.
  • the space object 60 in the course of the space object 60 deviating from its orbit and entering the atmosphere, the space object 60 is captured and collision avoidance operation during orbit descent is performed before entering the dense area.
  • a space traffic management rule 501 representing a rule for realizing the above is set. Collision avoidance operation during descent is also called active deorbit operation.
  • the space traffic management unit 120 uses the dense area identification information 525 and the rule information 515 before the space object 60 enters any of the dense areas during the course of the space object 60 de-orbiting and entering the atmosphere. To realize collision avoidance operation during orbit descent.
  • the space traffic management device 200 of the mega constellation business device 41 predicts that a high-altitude mega constellation satellite will become a failed satellite and enter a dense area (dangerous area). This intrusion prediction information is shared by all the space traffic management devices 200 of the space traffic management system 800 via a communication line.
  • the space traffic management device 200 of the debris removal business device 45 captures the space object 60 and implements collision avoidance operation during orbit descent before entering any of the dense areas. .. Specifically, a rapid response debris removal satellite will be launched.
  • the rapid response debris removal satellite captures and merges the failed satellites and avoids the dense area to enter the atmosphere. As a result, collision avoidance operation during orbit descent is realized.
  • each part of the satellite constellation forming system and the space traffic management system has been described as an independent functional block.
  • the configurations of the satellite constellation forming system and the space traffic management system do not have to be the configurations of the above-described embodiments.
  • the functional blocks of the satellite constellation formation system and the space traffic management system may have any configuration as long as they can realize the functions described in the above embodiments.
  • the satellite constellation forming system and the space traffic management system may be one device or a system composed of a plurality of devices.
  • a plurality of parts of the first to twelfth embodiments may be combined and carried out. Alternatively, one of these embodiments may be implemented.
  • these embodiments may be implemented in whole or in part in any combination. That is, in the first to twelfth embodiments, it is possible to freely combine the respective embodiments, modify any of the constituent elements of each of the embodiments, or omit any constituent element of each of the embodiments.
  • Satellite constellation formation unit 20 satellite constellation, 21 orbit plane, 30 satellite, 31 debris recovery satellite, 32 satellite communication device, 33 propulsion device, 34 attitude control device, 40 business device, 41 mega constellation business device , 42 LEO constellation business equipment, 43 satellite business equipment, 44 orbit transition business equipment, 45 debris removal business equipment, 46 rocket launch business equipment, 47 SSA business equipment, 51 orbit control commands, 52 capture commands, 60 space objects, 70 Earth, 100 satellite constellation formation system, 200 space traffic management device, 110 satellite constellation formation part, 120 space traffic management part, 140 storage part, 300 satellite group, 310 satellite control device, 500 ground equipment, 501 space traffic management rule 510 orbit control command transmission unit, 515 rule information, 525 dense area identification information, 520 analysis prediction unit, 600 satellite constellation formation system, 800 space traffic management system, 910 processor, 921 memory, 922 auxiliary storage device, 930 input interface , 940 output interface, 950 communication device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radio Relay Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

衛星コンステレーション形成システム(100)は、衛星コンステレーション(20)を形成する。衛星コンステレーション(20)は、衛星群(300)により構成される。衛星コンステレーション(20)は、衛星群(300)が連携してサービスを提供する。衛星コンステレーション(20)は、各軌道面(21)に複数の衛星(30)が同じ軌道高度で飛行する複数の軌道面を有する。衛星コンステレーション形成部(110)は、複数の軌道面の各軌道面(21)の軌道高度が互いに異なる衛星コンステレーション(20)を形成する。

Description

衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、地上設備、宇宙交通管理システム、宇宙物体管理部、および軌道降下時衝突回避運用方法
 本発明は、衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、地上設備、宇宙交通管理システム、宇宙物体管理部、および軌道降下時衝突回避運用方法に関する。特に、衛星の衝突リスクを回避する衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、地上設備、宇宙交通管理システム、宇宙物体管理部、および軌道降下時衝突回避運用方法に関する。
 近年、数百から数千機に及ぶ大規模な衛星コンステレーションが提唱されている。また、STM(宇宙交通管制)においては、複数の衛星コンステレーションが共存することによる衝突リスクを回避するための国際的なルール作りの必要性が高まっている。
 特許文献1には、同一の円軌道に複数の衛星から成る衛星コンステレーションを形成する技術が開示されている。
特開2017-114159号公報
 衛星コンステレーションでは、異なる軌道面の軌道高度は全て同一とすることが一般的である。よって、異なる軌道面を同一軌道高度で飛行する衛星同士が衝突するリスクがある。軌道面数、および、軌道面内の衛星数が増加するのに伴い、衝突リスクが高まることが課題となっている。
 本発明は、衛星コンステレーションにおいて、衝突リスクを回避させることを目的とする。
 本発明に係る衛星コンステレーション形成システムは、複数の軌道面であって各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムにおいて、
 前記複数の軌道面の各軌道面の軌道高度が互いに異なる前記衛星コンステレーションを形成する衛星コンステレーション形成部を備えた。
 本発明に係る衛星コンステレーション形成システムでは、衛星コンステレーション形成部が、複数の軌道面の各軌道面の軌道高度が互いに異なる衛星コンステレーションを形成する。また、同一軌道面を飛行する衛星同士は衝突する可能性はない。よって、本発明に係る衛星コンステレーション形成システムによれば、複数の軌道面の各々が互いに異なる軌道高度となるため、衛星コンステレーションの全ての衛星について衝突リスクが回避できるという効果がある。
地上に対し、複数衛星が地球の全球に亘り通信サービスを実現する例。 単一軌道面の複数衛星が地球観測サービスを実現する例。 実施の形態1に係る衛星コンステレーションの複数の軌道面の一例を示す模式図。 実施の形態1に係る衛星コンステレーションの複数の軌道面の別例を示す模式図。 実施の形態1に係る衛星コンステレーションの軌道面の1つを飛行する複数の衛星の例。 実施の形態1に係る衛星コンステレーション形成システムの構成図。 実施の形態1に係る衛星コンステレーション形成システムの動作を示す図。 実施の形態2に係る複数の軌道面の相対高度差を表す図。 比較例の対地サービス範囲を示す図。 実施の形態3に係る対地サービス範囲を示す図。 実施の形態4に係る太陽同期軌道の条件を満たす軌道面を示す図。 実施の形態5に係る衛星コンステレーション形成システムにより形成される衛星コンステレーションの例。 衛星コンステレーションにおける衝突の条件の一例を示す模式図。 衛星コンステレーションにおける衝突の条件の一例を示す模式図。 実施の形態6に係る衛星コンステレーション形成システムにより形成される衛星コンステレーションの例。 実施の形態7に係る衛星コンステレーションによる地表サービス範囲を示す図。 実施の形態7に係る衛星コンステレーションにおいて、軌道面数が偶数の場合の極通過タイミングを表す図。 実施の形態7に係る衛星コンステレーションにおいて、軌道面数が奇数の場合の極通過タイミングを表す図。 自由落下によるデオービットの概念を示す図。 衛星コンステレーションの上空の衛星がデオービットする際の衝突リスクを示す図。 衛星の増速と減速による軌道高度の変化を示す図。 推進装置の噴射による軌道傾斜角の変更を示す図。 実施の形態10に係る地上設備の構成を示す図。 実施の形態6に係る衛星コンステレーション形成システムにより形成される衛星コンステレーションの例。 実施の形態11に係る衛星コンステレーション20の具体例を示す模式図。 衛星コンステレーション形成システムの衛星の構成例。 衛星コンステレーション形成システムが備える地上設備の構成例。 衛星コンステレーション形成システムの機能構成例。 実施の形態12に係る宇宙交通管理システムの全体構成例。 実施の形態12に係る宇宙交通管理装置の構成例。 宇宙交通管理処理の例2の比較例であり、軌道面内での衛星配置を表す図。 実施の形態12に係る宇宙交通管理処理の例2における軌道面内での衛星配置を表す図。 法線ベクトルが同じで、かつ、軌道高度が異なる複数軌道面を表す図。 高高度のメガコンステレーション衛星による衛星軌道降下過程における密集領域(危険領域)侵入の様子を示す図。 実施の形態12に係る衛星軌道降下過程における密集領域侵入回避の宇宙交通管理処理を示す図。
 以下、本発明の実施の形態について、図を用いて説明する。なお、各図中、同一または相当する部分には、同一符号を付している。実施の形態の説明において、同一または相当する部分については、説明を適宜省略または簡略化する。また、以下の図面では各構成の大きさの関係が実際のものとは異なる場合がある。また、実施の形態の説明において、「上」、「下」、「左」、「右」、「前」、「後」、「表」、「裏」といった方向あるいは位置が示されている場合がある。それらの表記は、説明の便宜上、そのように記載しているだけであって、装置、器具、あるいは部品といった構成の配置および向きを限定するものではない。
 実施の形態1.
 図1は、地上に対し、複数衛星が連携して地球70の全球に亘り通信サービスを実現する例を示す図である。
 図1は、全球に亘り通信サービスを実現する衛星コンステレーション20を示している。
 同一軌道面を同一高度で飛行している複数の衛星の各衛星では、地上に対する通信サービス範囲が後続衛星の通信サービス範囲とオーバーラップしている。よって、このような複数の衛星によれば、地上の特定地点に対して、同一軌道面上の複数の衛星が時分割的に交互に交代しながら通信サービスを提供することができる。
 しかしながら、単一軌道面で通信サービスを提供できるのは衛星軌道直下付近に限定される。そこで、地球に対して軌道面が東西方向に回転した別の軌道面を隣接させ、その軌道面上の複数の衛星による通信サービスも同時に実施する。このように隣接軌道面を設けることにより、隣接軌道間の地上に対する通信サービスを面的に網羅することが可能となる。同様に、地球の周りに多数の軌道面を概ね均等配置すれば、全球に亘り地上に対する通信サービスが可能となる。地上の特定地点から見れば、個々の衛星は短い時間で飛び去ってしまう。しかし、軌道上複数の衛星が時分割的に交互に交代しながら通信サービスを提供すれば、地上の任意の地点に対して連続的に通信サービスを提供することが可能となる。その際、個々の衛星は、後継衛星と通信サービスを分担するために、衛星間の通信方式を用いて、必要な信号および情報を授受する。
 低軌道を周回する衛星コンステレーションで通信サービスを実現する場合、全衛星のサービス領域が全球を網羅し、任意の地上ユーザの通信サービスを、次々に飛来する衛星が信号および情報を引継ぎながら分担して継続する。これにより、結果的に地上ユーザに連続的な通信サービスを提供できる。個々の衛星は、衛星と地上間の通信機能に加えて、衛星間の通信機能を具備することにより、近傍を通過する衛星同士で信号および情報を引継ぐことが可能となる。通信サービスのミッション連携に資する信号および情報の引継ぎを以後ハンドオーバーと称する。
 衛星コンステレーションでは、異なる軌道面の軌道高度は全て同一とすることが一般的である。同一の軌道高度を飛行する衛星の対地速度は同様なので、地上に対するサービス範囲は個々の衛星のサービス範囲同士の相対位置関係を維持しながら衛星対地速度に応じて移動することになる。同一軌道面の後続衛星、あるいは、隣接軌道面の衛星におけるサービス範囲が、網羅的に地表をカバーしていれば、地上の任意の地点から見て、常にサービス範囲が維持される結果となる。
 図2は、単一軌道面の複数衛星が地球観測サービスを実現する例を示す図である。
 図2は、地球観測サービスを実現する衛星コンステレーション20を示している。図2の衛星コンステレーションは、光学センサあるいは合成開口レーダといった電波センサである地球観測装置を具備した衛星が同一軌道面を同一高度で飛行する。このように、地上の撮像範囲が時間遅れで後続衛星がオーバーラップする衛星群では、地上の特定地点に対して軌道上複数の衛星が時分割的に交互に交代しながら地上画像を撮像することにより地球観測サービスを提供する。しかしながら単一軌道面でサービス提供できるのは衛星軌道直下付近に限定される。これに対して地球に対して軌道面が東西方向に回転した別の軌道面を隣接させて、同様の複数衛星によるサービスを同時に実施すれば、隣接軌道間の地上サービスを面的に網羅することが可能となる。同様にして地球の周りに多数の軌道面を概ね均等配置すれば、全球に亘り網羅的に地球観測サービスが可能となる。地上の特定地点から見れば、個々の衛星は短い時間で飛び去ってしまうが、軌道上複数の衛星が時分割的に交互に交代しながらサービス提供すれば、地上の任意の地点に対していつでも地球観測サービスを提供することが可能となる。
***構成の説明***
 本実施の形態に係る衛星コンステレーション形成システム100は、複数の軌道面21を有する衛星コンステレーション20を形成する。また、複数の軌道面21の各軌道面21には、複数の衛星30が同じ軌道高度で飛行する。
 ここで、本実施の形態に係る衛星コンステレーション形成システム100により形成される衛星コンステレーション20について簡単に説明する。
 本実施の形態に係る衛星コンステレーション20は、各軌道面21の複数の衛星30からなる衛星群300により構成される。本実施の形態に係る衛星コンステレーション20は、衛星群300が連携してサービスを提供する。衛星コンステレーション20とは、具体的には、図1に示すような通信事業サービス会社による1つの衛星群から成る衛星コンステレーションを指す。また、衛星コンステレーション20とは、具体的には、図2に示すような観測事業サービス会社による1つの衛星群から成る衛星コンステレーションを指す。
 図3は、本実施の形態に係る衛星コンステレーション20の複数の軌道面21の一例を示す模式図である。
 図3では、衛星コンステレーション20における複数の軌道面の各軌道面21は、略同一面に存在する。一例として、各軌道面21には、複数の衛星として20機以上の衛星が飛行していてもよい。
 図4は、本実施の形態に係る衛星コンステレーション20の複数の軌道面21の別例を示す図である。
 図4では、衛星コンステレーション20における複数の軌道面の各軌道面21は、互いに異なる面に存在する。図4では、複数の軌道面の各軌道面21の軌道傾斜角は略90度となっているが、軌道面はずれている。すなわち、複数の軌道面21は互いに交差している。一例として、各軌道面21には、複数の衛星として20機以上の衛星が飛行していてもよい。また、図4の衛星コンステレーション20は、一例として、20面以上の軌道面21を有していてもよい。
 図5は、本実施の形態に係る衛星コンステレーション20の軌道面21の1つを飛行する複数の衛星30の例である。
 同一軌道面において同一高度を飛行する複数の衛星30は、相対的に同じ速度で軌道面における相対位相を維持しながら飛行する。よって、同一軌道面において同一高度を飛行する複数の衛星30は、衝突することはない。
 図6を用いて、本実施の形態に係る衛星コンステレーション形成システム100の構成を説明する。
 衛星コンステレーション形成システム100は、コンピュータを備える。図6では、1つのコンピュータの構成を示しているが、実際には、衛星コンステレーション20を構成する複数の衛星の各衛星30、および、衛星30と通信する地上設備の各々にコンピュータが備えられる。そして、複数の衛星の各衛星30、および、衛星30と通信する地上設備の各々に備えられたコンピュータが連携して、本実施の形態に係る衛星コンステレーション形成システム100の機能を実現する。以下において、衛星コンステレーション形成システム100の機能を実現するコンピュータの構成の一例について説明する。
 衛星コンステレーション形成システム100は、プロセッサ910を備えるとともに、メモリ921、補助記憶装置922、入力インタフェース930、出力インタフェース940、および通信装置950といった他のハードウェアを備える。プロセッサ910は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
 衛星コンステレーション形成システム100は、機能要素として、衛星コンステレーション形成部110を備える。衛星コンステレーション形成部110の機能は、ハードウェアあるいはソフトウェアにより実現される。
 プロセッサ910は、衛星コンステレーション形成プログラムを実行する装置である。衛星コンステレーション形成プログラムは、衛星コンステレーション形成部110の機能を実現するプログラムである。
 プロセッサ910は、演算処理を行うIC(Integrated Circuit)である。プロセッサ910の具体例は、CPU、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。
 メモリ921は、データを一時的に記憶する記憶装置である。メモリ921の具体例は、SRAM(Static Random Access Memory)、あるいはDRAM(Dynamic Random Access Memory)である。
 補助記憶装置922は、データを保管する記憶装置である。補助記憶装置922の具体例は、HDDである。また、補助記憶装置922は、SD(登録商標)メモリカード、CF、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVDといった可搬記憶媒体であってもよい。なお、HDDは、Hard Disk Driveの略語である。SD(登録商標)は、Secure Digitalの略語である。CFは、CompactFlash(登録商標)の略語である。DVDは、Digital Versatile Diskの略語である。
 入力インタフェース930は、マウス、キーボード、あるいはタッチパネルといった入力装置と接続されるポートである。入力インタフェース930は、具体的には、USB(Universal Serial Bus)端子である。なお、入力インタフェース930は、LAN(Local Area Network)と接続されるポートであってもよい。
 出力インタフェース940は、ディスプレイといった出力機器のケーブルが接続されるポートである。出力インタフェース940は、具体的には、USB端子またはHDMI(登録商標)(High Definition Multimedia Interface)端子である。ディスプレイは、具体的には、LCD(Liquid Crystal Display)である。
 通信装置950は、レシーバとトランスミッタを有する。通信装置950は、具体的には、通信チップまたはNIC(Network Interface Card)である。衛星コンステレーション形成システム100は、通信装置950を介して、地上設備と衛星、あるいは、衛星同士の通信を行う。
 衛星コンステレーション形成プログラムは、プロセッサ910に読み込まれ、プロセッサ910によって実行される。メモリ921には、衛星コンステレーション形成プログラムだけでなく、OS(Operating System)も記憶されている。プロセッサ910は、OSを実行しながら、衛星コンステレーション形成プログラムを実行する。衛星コンステレーション形成プログラムおよびOSは、補助記憶装置に記憶されていてもよい。補助記憶装置に記憶されている衛星コンステレーション形成プログラムおよびOSは、メモリ921にロードされ、プロセッサ910によって実行される。なお、衛星コンステレーション形成プログラムの一部または全部がOSに組み込まれていてもよい。
 衛星コンステレーション形成システム100は、プロセッサ910を代替する複数のプロセッサを備えていてもよい。これら複数のプロセッサは、衛星コンステレーション形成プログラムの実行を分担する。それぞれのプロセッサは、プロセッサ910と同じように、衛星コンステレーション形成プログラムを実行する装置である。
 衛星コンステレーション形成プログラムにより利用、処理または出力されるデータ、情報、信号値および変数値は、メモリ921、補助記憶装置922、または、プロセッサ910内のレジスタあるいはキャッシュメモリに記憶される。
 衛星コンステレーション形成部110の「部」を「処理」、「手順」あるいは「工程」に読み替えてもよい。また衛星コンステレーション形成処理の「処理」を「プログラム」、「プログラムプロダクト」または「プログラムを記録したコンピュータ読取可能な記憶媒体」に読み替えてもよい。
 衛星コンステレーション形成プログラムは、上記の衛星コンステレーション形成部の「部」を「処理」、「手順」あるいは「工程」に読み替えた各処理、各手順あるいは各工程を、コンピュータに実行させる。また、衛星コンステレーション形成方法は、衛星コンステレーション形成システム100が衛星コンステレーション形成プログラムを実行することにより行われる方法である。
 衛星コンステレーション形成プログラムは、コンピュータ読取可能な記録媒体あるいは記憶媒体に格納されて提供されてもよい。また、衛星コンステレーション形成プログラムは、プログラムプロダクトとして提供されてもよい。
***動作の説明***
 図7を用いて、本実施の形態に係る衛星コンステレーション形成システム100の動作について説明する。
 ステップS101において、衛星コンステレーション形成システム100には、衛星コンステレーション20が備える各軌道面21の軌道高度が互いに異なるようにパラメータが設定される。
 ステップS102において、衛星コンステレーション形成部110は、複数の軌道面の各軌道面21の軌道高度が互いに異なる衛星コンステレーション20を形成する。衛星コンステレーション形成部110は、予め設定されたパラメータを用いて、各軌道面21の軌道高度が互いに異なる衛星コンステレーション20を形成する。一例として、各軌道面21には、複数の衛星として20機以上の衛星が飛行していてもよい。また、図4の衛星コンステレーション20は、一例として、20面以上の軌道面21を有していてもよい。
 衛星コンステレーション形成部110が、複数の軌道面の各軌道面21が互いに異なる面に存在する衛星コンステレーション20(図4参照)を形成する場合について、さらに詳しく説明する。上述したように、図4の衛星コンステレーション20の複数の衛星30は、地上の地点に対して時分割的に交互に交代しながらサービスを提供する。
 異なる軌道高度を飛行させることにより衝突防止をするためには、2物体の寸法形状に加えて、地上で追跡管制する際の位置決定精度を考慮する必要がある。例えば、物体の寸法が1m程度であった場合、正確な位置が把握できているのであれば、3m以上の高度差を保てば衝突を回避できる。しかしながら、位置座標と時刻(x、y、z、t)の4要素に誤差が含まれる場合は衝突する可能性が残る。
 衛星コンステレーションの運用事業者であれば、自己保有衛星の任意の時刻における位置決定精度として、100m程度に維持することはできると考えられる。よって、異なる軌道面の高度差を200m以上に設定することにより、本実施の形態に係る軌道高度が互いに異なる複数の軌道面21を有する衛星コンステレーション20を形成できる。あるいは、余裕を見て、異なる軌道面の高度差を300m以上に設定することで、本実施の形態に係る軌道高度が互いに異なる複数の軌道面21を有する衛星コンステレーション20を形成してもよい。軌道面数が約20面程度の衛星コンステレーション20であれば、衛星コンステレーション形成部110は、高度差6km程度の範囲で衛星コンステレーション20を構築できる。
 一方、衛星位置決定の向上手法を保有しない衛星事業者が、公開情報に基づき衝突を回避する場合には、任意の時刻における位置決定精度は500mから1km程度まで劣化することが想定される。このため、異なる軌道面の高度差を2km以上に設定することにより、本実施の形態に係る軌道高度が互いに異なる複数の軌道面21を有する衛星コンステレーション20を形成できる。あるいは、余裕を見て、異なる軌道面の高度差を3km以上に設定することで、本実施の形態に係る軌道高度が互いに異なる複数の軌道面21を有する衛星コンステレーション20を形成してもよい。軌道面数が約20面程度の衛星コンステレーション20であれば、衛星コンステレーション形成部110は、高度差60km程度の範囲で衛星コンステレーション20を構築できる。
 なお、近年SSA(Space Situation Awareness)と呼ばれる軌道上物体監視技術が着目されている。これにより、スペースフェンス構想と呼ばれる監視精度向上が実現されれば、衛星位置決定の向上手法を保有しない衛星事業者であっても高度差を縮小した衛星コンステレーションを実現可能となる。
 次に、衛星コンステレーション形成部110が、複数の軌道面の各軌道面21が同じ面に存在する衛星コンステレーション20(図3参照)を形成する場合について、さらに詳しく説明する。上述したように、図3の衛星コンステレーション20の複数の衛星30は、地上の地点に対して時分割的に交互に交代しながらサービスを提供する。
 図3の衛星コンステレーション20が実現する地球観測サービスでは、通信サービスとは異なり必ずしも常時サービスを継続し続けるニーズがあるわけではない。一方、地球観測サービスでは「撮りたい時にどこでも任意の地点を撮像できる」ことが求められる。このため少なくとも衛星進行方向に直行するクラストラック方向に視野方向を変更する装置を具備した地球観測装置を備えた衛星により衛星コンステレーション20を構成することが好ましい。このように、衛星が、赤道上空の隣接軌道間距離を包含する視野方向変更機能を具備することで、全球任意の地点を、何時でもどこでも撮像可能となる。個別の固定視野の地球観測装置による衛星コンステレーションと比較して、少ない軌道面数で衛星コンステレーション構築できるという効果があるので、システム構築コストを低減可能となる。
 また衛星進行方向に対しても、必ずしも撮像可能視野範囲が網羅される必要はなく、後続衛星ないし、隣接軌道面の衛星が視野方向変更すれば撮像可能な場合は同一軌道面の衛星数を減らすことも可能である。視野変更範囲が地表面換算で2000km程度となれば、1軌道面あたり2機から3機だけで全球を網羅できる可能性もある。
***他の構成***
 本実施の形態では、衛星コンステレーション形成部110の機能がソフトウェアで実現される。変形例として、衛星コンステレーション形成部110の機能がハードウェアで実現されてもよい。
 衛星コンステレーション形成システム100は、プロセッサ910に替えて電子回路を備える。
 電子回路は、衛星コンステレーション形成部110の機能を実現する専用の電子回路である。
 電子回路は、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA、ASIC、または、FPGAである。GAは、Gate Arrayの略語である。ASICは、Application Specific Integrated Circuitの略語である。FPGAは、Field-Programmable Gate Arrayの略語である。
 衛星コンステレーション形成部110の機能は、1つの電子回路で実現されてもよいし、複数の電子回路に分散して実現されてもよい。
 別の変形例として、衛星コンステレーション形成部110の一部の機能が電子回路で実現され、残りの機能がソフトウェアで実現されてもよい。
 プロセッサと電子回路の各々は、プロセッシングサーキットリとも呼ばれる。つまり、衛星コンステレーション形成システム100において、衛星コンステレーション形成部110の機能は、プロセッシングサーキットリにより実現される。
***本実施の形態の効果の説明***
 本実施の形態に係る衛星コンステレーション形成システムでは、地上の特定地点に対して軌道上複数の衛星が時分割的に交互に交代しながらサービス提供する。そして、任意の軌道面では同一高度を飛翔する複数機の衛星が概略等間隔で飛翔する。さらに、互いに軌道高度の異なる複数の軌道面で構成された衛星コンステレーションを形成する。
 本実施の形態に係る衛星コンステレーション形成システムでは、同一軌道面において同一高度を飛翔する衛星は相対的に同じ速度で軌道面における相対位相を維持しながら飛行するため衝突することはない。また異なる軌道面においては、2面の交線において衝突する可能性があるものの、異なる軌道高度を飛行する衛星は衝突することがない。このように、異なる軌道面においてそれぞれ軌道高度が異なっていれば、衛星コンステレーションの全ての衛星について衝突リスクが回避できるという効果がある。
 なお、本実施の形態に係る衛星コンステレーションと同様に、同一軌道面を飛行して異なる軌道高度を飛行する衛星同志が衝突しないことは、異なる衛星コンステレーションの間でも同様である。よって、本実施の形態に係る基本概念は、複数衛星コンステレーションの衝突回避にも効果がある。近年混雑する宇宙空間における国際的なルール作りの必要性が訴求されているSTMにおいて、複数の衛星コンステレーションが共存して衝突回避するための方式を提供できるという効果がある。すなわち、本実施の形態に係る衛星コンステレーション形成システムによれば、数千機におよぶような膨大な数の衛星が近傍高度に密集している場合でも、衛星の衝突を回避することができるという効果がある。
 実施の形態2.
 本実施の形態では、主に、実施の形態1との相違点あるいは追加点について説明する。なお、実施の形態1と同様の構成には同一の符号を付し、その説明を省略する場合がある。
 本実施の形態では、衛星コンステレーション形成部110が、複数の軌道面における隣接する軌道面の相対高度差が正弦波状となる衛星コンステレーション20を形成する態様について説明する。
 図8は、本実施の形態に係る複数の軌道面の相対高度差を表す図である。
 図8では、17個の軌道面を有する衛星コンステレーション20における各軌道面の相対高度差を表している。縦軸は、軌道面1の高度が高く、降順で高度が低くなることを表しており、距離を示すものではない。図8では、軌道面1を基準とした場合に、隣接する軌道面1と軌道面2との軌道高度の差、軌道面2と軌道面3との軌道高度の差、というようにプロットしていくと、正弦波状となることを示している。
 隣接する軌道面の高度が著しく異なると、衛星間通信によるハンドオーバーの距離が遠方になり、かつ、通信用アンテナを相互に見合うための駆動角度範囲も広くなり、デメリットとなる。これに対して、本実施の形態に係る衛星コンステレーション20によれば、隣接する軌道間の高度差を限定しているので、相対差が徐々に変化する。よって、近傍衛星とのミッション連携に資するハンドオーバーが容易になる。
 また、地球観測衛星では、例えば光学センサの画像品質が衛星高度に依存するため、隣接する軌道間の高度差が小さいことにより、画像シーン間の不整合のない高品質の画像が得られるという効果がある。
 地表面の画像を取得し、赤道上空の隣接軌道距離よりも広域の撮像が可能な光学センサを搭載した衛星コンステレーションによれば、全球をくまなく画像取得可能となる。光学センサの分解能と観測幅は軌道高度に依存するので、同じ仕様の光学センサを採用する衛星コンステレーションの場合、軌道高度の最も低い条件で撮像する場合が最も高分解能で、観測幅は最小となる。したがって、赤道上空で軌道高度が最低の条件における光学センサの観測幅が、隣接軌道間距離よりも大きければ、赤道上空を含めて網羅的に地表面の撮像が可能となる。
 隣接軌道の高度が著しく異なると、画像のつなぎ目で分解能相違の伴う不連続性が顕在化しやすい。しかし、本実施の形態に係る衛星コンステレーション形成システムでは、隣接軌道間の高度差を限定しているので、画像のつなぎ目が目立たず画像品質のよい全球画像データが取得できるという効果がある。また、衛星高度の差が大きいほど、対地サービス領域の相対移動速度が速くなる特徴がある。このため、本実施の形態に係る衛星コンステレーション形成システムでは、隣接サービス領域の相対移動量を最小限にできるので、通信におけるハンドオーバーと呼ばれる後続衛星へのデータ引き継ぎが容易になり、エラーを抑制しやすいという効果がある。
 実施の形態3.
 本実施の形態では、主に、実施の形態1および2との相違点あるいは追加点について説明する。なお、実施の形態1および2と同様の構成には同一の符号を付し、その説明を省略する場合がある。
 本実施の形態では、衛星コンステレーション形成部110が、衛星1機当たりの対地サービス範囲の半径が赤道上空における隣接軌道間距離の略√2/2以上となる衛星コンステレーション20を形成する。具体的には、この衛星コンステレーション20において、軌道高度が最も低い軌道面の衛星1機当たりの対地サービス範囲の半径が、赤道上空における隣接軌道間距離の略√2/2ないしそれ以上のカバレッジを確保している。
 図9は、比較例の対地サービス範囲を示す図である。
 衛星の相対位置が最適の状態では、対地サービス範囲の半径として、赤道上空隣接軌道間距離と同等に確保すれば、サービス範囲が全球を網羅可能となる。また、全ての軌道面において衛星高度が同じであればサービス領域も相対関係を維持するので、常に全球網羅したサービス継続が可能である。しかし、軌道高度が異なる軌道面においては、衛星進行速度が衛星高度に応じて相違があるために、衛星の相対位置が最適の状態で網羅的に確保されたサービス領域が、相対的に移動することにより空隙P、つまりサービスできない領域が生じる可能性がある。
 図9では、3つの軌道面の対地サービス範囲が表されている。また、対地サービス範囲の半径raが赤道上空隣接軌道間距離Raの1/2である。この場合、図9に示すように、真ん中の軌道面の対地サービス範囲が45度前方にずれると、サービスできない領域(空隙)が生じてしまう。
 図10は、本実施の形態に係る対地サービス範囲を示す図である。
 図10では、対地サービス範囲の半径rbが赤道上空隣接軌道間距離Rbの√2/2である。この場合、図10に示すように、各軌道面の対地サービス範囲が45度ずつずれた場合でも、サービスできない領域(空隙)は生じない。
 以上のように、本実施の形態に係る衛星コンステレーション形成システムによれば、衛星相対配置が最悪の状態、すなわち隣接軌道のサービス領域が略45度前方に位置するときでも、サービス領域の空隙が生じない。よって、本実施の形態に係る衛星コンステレーション形成システムによれば、隣接軌道のサービス領域が衛星進行方向に相対的に移動しても、間断なく全球網羅的にサービス継続できるという効果がある。
 実施の形態4.
 本実施の形態では、主に、実施の形態1から3との相違点あるいは追加点について説明する。なお、実施の形態1から3と同様の構成には同一の符号を付し、その説明を省略する場合がある。
 本実施の形態では、衛星コンステレーション形成部110は、複数の軌道面の各軌道面の軌道高度が、太陽同期軌道の条件を満たす衛星コンステレーション20を形成する態様について説明する。また、衛星コンステレーション形成部110は、複数の軌道面の各軌道面の軌道高度が、太陽同期準回帰軌道のみで構成されている衛星コンステレーション20を形成する態様について説明する。
 図11は、本実施の形態に係る太陽同期軌道の条件を満たす軌道面を示す図である。
 地球観測衛星の光学衛星では、太陽光入射角がほぼ同一の条件で観測を継続することが望ましい。このため、太陽同期衛星と呼ばれる衛星の軌道が多用される。太陽同期衛星の軌道は、地球の公転と同期して軌道面が1年で1周回転する軌道面法線と太陽方向の角度が概ね一定である。また、太陽同期衛星の軌道は、地球の地方時LST(Local Sun Time)が年間を通して同じになる軌道である。
 太陽同期軌道の条件が成立する軌道高度は間欠的に存在する。本実施の形態では、太陽同期軌道の条件に適合する軌道高度だけで軌道面を構成した衛星コンステレーション20が形成される。このような衛星コンステレーション20であれば、それぞれの軌道面が所望のLSTでのサービスを継続し、かつ衝突リスクのない衛星コンステレーションが実現可能になる。
 光学センサは、太陽光入射角に依存して画像の明るさおよびS/N特性が変化する。このため、太陽同期軌道により、軌道面に対する太陽光入射角一定の条件で継続的に地球観測サービスを提供することが多い。さらに、LST10:00から11:00の軌道面は、十分な光量を確保でき、海面の直接反射もないことから多用される。しかしながら、LST10:30近傍の衛星群だけでは、「いつでも、どこでも」撮像できるわけではない。そこで、LSTの異なる軌道面の衛星群を組み合わせることにより、撮像頻度を向上させることが効果的である。
 例えば、LST10:30に加えてLST9:00、および、LST12:00の軌道面を追加する。この場合、概ね90分毎に撮像できる可能性があり、低軌道衛星が地球を1周回するのに要する時間が約90から100分とすれば、次周回の撮像機会も含めて任意の地点の撮像頻度を向上できる効果がある。さらに、同一軌道面の衛星数が増えれば、面的に網羅することも可能となり、同様の考え方でLSTを均等配置していけば、原理的に「いつでも、どこでも」撮像可能となる。
 なお、可視画像のみ撮像可能な光学センサの場合は夜間は撮像できないが、赤外センサあるいは電波センサであれば、夜間を通含めていつでも撮像が可能となる。
 地表面の画像を取得し、赤道上空の隣接軌道距離よりも広域の撮像が可能な光学センサを搭載した衛星コンステレーションによれば、全球をくまなく画像取得可能となる。光学センサの分解能と観測幅は軌道高度に依存するので、同じ仕様の光学センサを採用する衛星コンステレーションの場合、軌道高度の最も低い条件で撮像する場合が最も高分解能で、観測幅は最小となる。したがって、赤道上空で軌道高度が最低の条件における光学センサの観測幅が、隣接軌道間距離よりも大きければ、赤道上空を含めて網羅的に地表面の撮像が可能となる。また、隣接軌道の高度が著しく異なると、画像のつなぎ目で分解能相違の伴う不連続性が顕在化しやすい。しかし、本実施の形態においても、実施の形態2に係る衛星コンステレーションを採用することにより、隣接軌道間の高度差を限定し、画像のつなぎ目が目立たず画像品質のよい全球画像データが取得できるという効果がある。
***本実施の形態の変形例***
 本実施の形態の変形例として、衛星コンステレーション形成部110は、複数の軌道面の各軌道面の軌道高度が、太陽同期準回帰軌道のみで構成されている衛星コンステレーション20を形成する態様について説明する。
 太陽同期準回帰軌道は、衛星軌道の地上投影線が複数周回後に再訪する軌道であり、地球観測衛星で多用される。太陽同期準回帰軌道の条件に適合する軌道高度は太陽同期軌道に適合する軌道高度の部分集合である。
 複数の軌道面の各軌道面の軌道高度が太陽同期準回帰軌道のみで構成されている衛星コンステレーション20によれば、地球観測衛星で同一地点を長期に渡り繰り返し定常観測するための運用計画、撮像計画、およびデータ処理が容易になる。しかも、衝突リスクのない衛星コンステレーションが実現できるという効果がある。
 回帰日数にこだわらない場合、太陽同期準回帰軌道の軌道高度は、例えば約540km(15日回帰)、約539km(14日回帰)、約537km(13日回帰)、約535km(12日回帰)、約533km(11日回帰)、約530km(10日回帰)といった軌道高度で構成できる。この軌道面6面で、高度差は最大でも約10kmの範囲で衛星コンステレーション20が実現できる。
 また、例えば、13日回帰の軌道のみで構成する場合、約537km、約514km、約491km、約467km、445km、約422kmで構成すれば、軌道面6面で、高度差は最大でも約115kmの範囲で衛星コンステレーション20が実現できる。
 実施の形態5.
 本実施の形態では、主に、実施の形態1との相違点あるいは追加点について説明する。なお、実施の形態1と同様の構成には同一の符号を付し、その説明を省略する場合がある。
 図12は、本実施の形態に係る衛星コンステレーション形成システム100により形成される衛星コンステレーション20の例を示す図である。
 本実施の形態に係る衛星コンステレーション20は、衛星群300により構成される。また、衛星コンステレーション20では、衛星群300が連携してサービスを提供する。また、衛星コンステレーション20は、各軌道面21に複数の衛星30が同じ軌道高度で飛行する複数の軌道面21を有する。
 また、本実施の形態に係る衛星コンステレーション20は、複数の軌道面の各軌道面21の軌道高度が同じであり、かつ、複数の軌道面の各軌道面21が互いに異なる面に存在する。
 図12に示す衛星コンステレーション20では、複数の軌道面の各軌道面21の軌道傾斜角が約90度であり、かつ、複数の軌道面の各軌道面21が互いに異なる面に存在する。したがって、図12に示す衛星コンステレーション20は、極域において複数の軌道面21が交差する。
 図13および図14は、衛星コンステレーションにおける衝突の条件の一例を示す模式図である。
 同一軌道面において同一高度を飛翔する衛星は相対的に同じ速度で軌道面における相対位相を維持しながら飛行するため衝突することはない。しかしながら、異なる軌道面において、同じ軌道高度を飛行する衛星同士は、図13および図14に示すように、軌道面の交線上で軌道高度の一致する交点において衝突する可能性がある。特に、図14に示すように、軌道高度100kmから2000km程度を飛翔する低軌道周回衛星で軌道傾斜角が約90度の衛星では極域付近に交点が存在するため、北極と南極の極域近傍において衝突リスクがある。
 しかしながら、衛星の交点通過タイミングが常にずれていれば、2物体が衝突することがない。衛星コンステレーション形成部110は、2物体が衝突することがない衛星コンステレーション20を形成する。具体的には、互いに異なる軌道面同士の交点を双方の軌道面を飛行する衛星が通過する時刻が、同一軌道面において「次衛星が飛来するまでの待ち時間T1/軌道面数」の倍数となっており、かつ、いかなる2面の軌道面の交点においても衛星通過時刻が一致しない衛星コンステレーション20を形成する。
 図12に示す衛星コンステレーション20は、軌道傾斜角が約90度であり、互いに異なる複数の軌道面を有する。この衛星コンステレーション20では、全ての軌道面の全ての衛星が極域近傍を通過する。そこで、衛星コンステレーション形成部110は、衛星の極域通過時刻を同一軌道面において「次衛星が飛来するまでの待ち時間T1/軌道面数」の間隔で飛行させ、複数の軌道面において互いに衛星の極域通過時刻をずらしている。
 具体的には、低軌道周回衛星が1周回に要する時間が約100分程度として、仮に軌道面当たり20機の衛星が飛行する場合、特定地点を衛星が通過してから、後続衛星が飛来するまで約5分かかることになる。仮に軌道面が20面あったとすれば、300秒を略等間隔に分割した15秒ずつずらすことで、本実施の形態に係る衛星コンステレーション20を実現できる。
 本実施の形態に係る衛星コンステレーション形成システム100により形成された衛星コンステレーション20では、同一軌道面の複数衛星が同一高度を同期して飛行しており、異なる軌道面の衛星同士も軌道高度が一致して同じ衛星速度を保っている。よって、全ての軌道面においてそれぞれの軌道面の衛星同士が異なるタイミングで交点を通過するように初期設定すれば、相対タイミングが常に維持されるので、全ての軌道面の任意の2衛星について衝突リスクを回避できるという効果がある。
 なお、本実施の形態では、後続する衛星が飛来するまでの待ち時間を軌道面数で均等配置するタイミングの例を示した。しかし、互いに極域通過タイミングをずらす間隔の選び方と、軌道面の順番の選び方は多様に存在する。
 実施の形態6.
 本実施の形態では、主に、実施の形態5との相違点あるいは追加点について説明する。なお、実施の形態5と同様の構成には同一の符号を付し、その説明を省略する場合がある。
 図15および図24は、本実施の形態に係る衛星コンステレーション形成システム100により形成される衛星コンステレーション20の例を示す図である。
 図15および図24に示す衛星コンステレーション20では、複数の軌道面の各軌道面21の軌道傾斜角が約90度ではなく、かつ、複数の軌道面の各軌道面21が互いに異なる面に存在する。この衛星コンステレーション20では、任意の2つの軌道面が極域以外の地点で交差する。そこで、衛星コンステレーション形成部110は、互いに異なる軌道面同士の交点を双方の軌道面の衛星が通過する時刻が、同一軌道面の「次衛星が飛来するまでの待ち時間T1/軌道面数」の倍数であり、かつ、いかなる2面の軌道面の交点においても衛星通過時刻が一致しないように衛星コンステレーション20を形成する。
 図15および図24に示すように、軌道傾斜角が90度よりも傾斜している複数の軌道面の交点は軌道傾斜角に応じて極域から離れていく。また、軌道面の組合せによって赤道近傍を含む多様な位置で交点が存在する可能性がある。このため、実施の形態5の衛星コンステレーションに比べ、衝突の発生する可能性のある場所が多様化する。ただし、交点の数が増えるわけではないので、衝突確率が場所の多様化に応じて増加するわけではない。同一軌道面を多数の衛星が同期して飛行する場合に、特定の2軌道面間の衝突を回避するために、特定の交点において2軌道面の衛星通過タイミングをずらせば、この2軌道の衛星同士が衝突することがない。しかし、後続衛星が別の軌道面の衛星と衝突するリスクが残ることに留意を要する。任意の軌道面間に対して総当たりで交点通過タイミングが一致しないことを確認する必要があり、タイミング調整で解決できない場合は、軌道面か、一軌道面の衛星数のどちらかを変更する必要がある。なお、すべての交点で衝突しないことが確認できれば、その後は全ての軌道面内、および軌道面間の衛星が同期運用することになるので、衝突リスクが回避できるという効果がある。
 なお、本実施の形態では、後続する衛星が飛来するまでの待ち時間を軌道面数で均等配置するタイミングの例を示した。しかし、互いに極域通過タイミングをずらす間隔の選び方と、軌道面の順番の選び方は多様に存在する。
 ここで、具体例として、軌道傾斜角約98度、軌道周期約98分の太陽同期準回帰軌道が採用されている地球観測衛星の例について説明する。この軌道を採用して多数機衛星コンステレーションを構築した場合、軌道傾斜角が約98度と傾いているため、極域で全軌道面が会合することはない。しかし、異なる2軌道面間では必ず交線が存在し、同一高度で交点が存在するので、衝突リスクは依然存在する。さらに、異なる2軌道面間の全ての組合せにおいて衝突リスクが存在するため、本実施の形態では、任意の2面間における交点において、衛星通過タイミングをずらすことにより衝突を回避する。
 さらに、軌道傾斜角が約45度程度を飛行する地球観測衛星も存在しており、この軌道では太陽非同期衛星となる。低軌道傾斜角の場合は異なる2軌道面の交点が低緯度側に存在し、しかも複数の緯度で交点が発生する可能性が生じる。軌道面数と1軌道面を飛行する衛星数の組合せ如何では、衝突を必ず回避できるとは限らない。よって、本実施の形態に係る衛星コンステレーション20では、全ての2軌道面の交点において衝突が発生しない軌道面数と1軌道面当たりの衛星数の組合せを見出し、その後各交点における通過タイミングを維持することにより衝突を回避する。
 衛星数が極端に増加した場合は、総当たりの衝突回避計算が煩雑になるため、異なる軌道面により構成する実施の形態1を採用してもよい。
 実施の形態7.
 本実施の形態では、主に、実施の形態5との相違点あるいは追加点について説明する。なお、実施の形態5と同様の構成には同一の符号を付し、その説明を省略する場合がある。
 本実施の形態では、複数の軌道面が極域で交差する図14の衛星コンステレーション20の場合の衛星の待ち時間のずらし方の態様について説明する。本実施の形態では、複数の軌道面が並ぶ順番に番号を付けた場合に、奇数の軌道面と偶数の軌道面で極通過タイミングの後続衛星が飛来するまでの待ち時間の約半分ずつずらす。このように衛星コンステレーション20を形成することにより、地上サービス範囲が隣接する奇数面と偶数面の間で交互の配置となるので、地表サービス範囲を合理的に網羅できるという効果がある。
 図16は、本実施の形態に係る衛星コンステレーション20による地表サービス範囲を示す図である。
 図16は、軌道面数が18面であって、相対的に10度ずつ軌道面の角度が変わる事例を示している。極通過タイミングとして、後続衛星が飛来するまでの待ち時間を18等分し、奇数面ではタイミング1から順に、偶数面ではタイミング10から順にずらして通過させていくと、結果的に地上サービス範囲は偶数面と奇数面で交互に間を埋める状態となるので、地表面を網羅的に包含できるという効果がある。
 図17は、本実施の形態に係る衛星コンステレーション20において、軌道面数が偶数の場合の極通過タイミングを表す図である。
 図18は、本実施の形態に係る衛星コンステレーション20において、軌道面数が奇数の場合の極通過タイミングを表す図である。
 図17および図18に示すように、本実施の形態に係る衛星コンステレーション20では、軌道面数が奇数であることが好ましい。図17の例では、18面の隣に来る1面のサービス領域が隣り合ってしまって全球網羅する上で不整合を生じる可能性がある。そこで図18のように、軌道面数を奇数にすることにより、最終面と1面の地上サービス範囲が他と同様に交互に配置されるので、合理的に全球網羅できるという効果がある。
 実施の形態8.
 本実施の形態では、主に、実施の形態1から7に追加する点について説明する。なお、実施の形態1から7と同様の構成には同一の符号を付し、その説明を省略する場合がある。
 本実施の形態では、衛星が衝突を回避しながらデオービット(軌道離脱)することができるデブリ除去方式のバリエーションについて説明する。
 図19は、自由落下によるデオービットの概念を示す図である。
 図20は、衛星コンステレーション20の上空の衛星がデオービットする際の衝突リスクを示す図である。
<デブリ除去方式の例1>
 本実施の形態に係る例1のデブリ除去方式は、故障などにより制御不能となった故障衛星が降下して、衛星の密集する軌道面を経由する前に、故障衛星の軌道面を変更するための捕獲装置または外力付与装置と、故障衛星を推進する推進装置とを備える。
 LST10:00からLST11:00程度の太陽同期準回帰軌道は、太陽光入射角と軌道面の関係が地球観測用光学センサの撮像に好適であり、地球観測光学衛星が多数飛行する密集軌道面となっている。軌道高度は高分解能撮像に好適で、大気抵抗の少ない500km以上1000km以下程度に集中している。しかし、超低高度衛星など軌道高度200km程度を飛行する例もある。
 実施の形態1から実施の形態7で説明した衛星コンステレーション20を構成する衛星が、故障して制御不能となる場合がある。このとき、この故障衛星が、軌道高度1000kmから2000kmといった高高度から自由落下して地球の大気圏に突入して消滅するまでの図19に示すプロセスにおいて、軌道高度を変化させながら密集軌道面を通過する。その際、図20に示すように、故障衛星が、複数の軌道高度の衛星群と会合する可能性があるため衝突するリスクが高い。そこで、本実施の形態に係るデブリ除去方式により、予め密集軌道を通過しないよう軌道面を変更すれば、当該密集軌道の衝突を回避できるという効果がある。
 図21は、衛星の増速と減速による軌道高度の変化を示す図である。
 図22は、推進装置の噴射による軌道傾斜角の変更を示す図である。
 デブリ除去方式の具体例としては、他衛星を捕獲する捕獲装置と、他衛星に推進力を与える推進装置とを備えたデブリ回収衛星により故障衛星を捕獲し、推進装置により人為的に軌道を変更する方式が有効である。
 衛星進行方向に対して増速すれば一時的に軌道高度が上昇するので、密集軌道とは異なる周期で軌道面が摂動の効果により地球の略地軸周りに回転し、密集軌道面を回避することが可能となる。衛星進行方向に対して減速すれば一時的に軌道高度が下降して、密集軌道とは異なる周期で軌道面が摂動の効果により地球の略地軸周りに回転し、密集軌道面を回避することが可能となる。故障衛星が密集軌道を通過することを予測されるまでの時間的猶予に応じて、密集軌道と会合する前に降下させるか、密集軌道を通り過ぎた後に降下させるか、衝突回避方式を選択可能である。よって、確実に衝突を回避できるという効果がある。但し摂動による方法では滞留時間が長いというデメリットもあるため、積極的に推進装置を噴射して面外方向に軌道面を回転させる方式もありうる。この場合は推薬消費量の多いので、推進系タンクを含めてデブリ除去方式が大型化する。
 なお、自衛星の回収は所謂協力的ターゲットの回収に相当する。よって、デブリ回収衛星は、予めデブリ除去方式に適合するアタッチメントを具備して捕獲を容易にすることが有効である。また、デブリ回収衛星は、自衛星あるいは捕獲用ターゲットの位置を知らせる情報を発信して、自衛星が接近あるいは接合しやすくする方法が有効である。ただし、制御能力を喪失して回転しているといった場合は例外となる。
<デブリ除去方式の例2>
 本実施の形態に係る例2のデブリ除去方式は、楕円軌道を描きながら高度100kmから2000km程度を浮遊する物体が衛星コンステレーションを構成する軌道面を経由する前に、当該物体の軌道面を変更するための捕獲装置または外力付与装置と、当該物体に推進力を与える推進装置とを具備する。なお、外力付与装置は、「力」のみならず「トルク」、あるいは、合体することに伴う「質量特性変化」まで「外力」に含む場合がある。外力付与装置は、外乱付与装置ともいう。
 STMにおいて障害物除去が課題となっている。楕円軌道を描いて飛行する物体の軌道面が、特定軌道高度の略円軌道上で衛星が多数飛行する軌道面一致して同一面を飛行すると衝突リスクが非常に高くなる。本実施の形態に係る例2のデブリ除去方式によれば、衝突リスクの高い障害物を安全に除去できるという効果がある。
 デブリ除去方式の具体例は<デブリ除去方式の例1>と同様である。<デブリ除去方式の例1>では自衛星を捕獲するため、所謂協力的ターゲットとして、捕獲しやすいアタッチメントなどを予め具備することが可能である。しかし、自衛星以外の浮遊物体の場合は所謂非協力的ターゲットであり、形状が複雑な物体、回転している物体、重量の大きな物体、あるいは捕獲可能な適切な構造を持たない物体といった捕獲が難しい物体である。このため、具備すべき捕獲装置が高度化されている必要がある。具体例として、ロボットによる把持する方法、捕獲網状の装置で対象を覆いこむ方法、および、ワイヤー付きのもり状の棒材を突き刺して引っ張る方法といった方法が実現可能である。
 実施の形態9.
 本実施の形態では、主に、実施の形態1から8との相違点あるいは追加点について説明する。なお、実施の形態1から8と同様の構成には同一の符号を付し、その説明を省略する場合がある。
 本実施の形態では、実施の形態1から7に記載の衛星コンステレーション形成システムにより構築される衛星コンステレーションに、実施の形態8のデブリ除去方式の例1または例2に記載のデブリ除去方式を適用した衛星コンステレーション構築方式のバリエーションについて説明する。
<衛星コンステレーション構築方式の例1>
 本実施の形態に係る衛星コンステレーション構築方式の例1では、衛星コンステレーション20を構成する構成要素の軌道面の近傍の異なる軌道面であって、近傍軌道面の衛星が飛行する軌道高度とは異なる軌道高度に軌道投入する。そして、衛星コンステレーション構築方式の例1では、増速ないし減速して軌道高度と軌道面の地球地軸周りの角度を変更して構成衛星を追加する。
 衛星を順番に打ち上げて所定の衛星コンステレーションを構築する途中経過において、多数機投入後の軌道面に追加衛星を投入するプロセスでは衝突リスクが高い。本実施の形態に係る衛星コンステレーション構築方式の例1では、投入済の衛星の軌道面若干角度をずらした軌道に投入することで打上げ時の衝突リスクを格段に減じることが可能となる。更に投入済の衛星高度と一致しない衛星高度から徐々に所望の軌道に接近することにより、過渡段階の衝突リスクを減じることが可能となる。
<衛星コンステレーション構築方式の例2>
 本実施の形態に係る衛星コンステレーション構築方式の例2では、他国システムあるいは類似システムが採用する軌道上、軌道高度、飛行する衛星数などの情報を予め収集したデータベースを具備する。本実施の形態に係る衛星コンステレーション構築方式の例2では、既存の衛星の飛行する軌道面とは異なり、かつ構成要素の軌道面の近傍の異なる軌道面であって、近傍軌道面の衛星が飛行する軌道高度とは異なる軌道高度に軌道投入する。本実施の形態に係る衛星コンステレーション構築方式の例2では、増速ないし減速して軌道高度と軌道面の地球地軸周りの角度を変更して構成衛星を追加する。
 本実施の形態に係る衛星コンステレーション構築方式の例2によれば、衛星コンステレーションが複数構築され、宇宙空間全体が混雑する環境下において、衝突リスクなく衛星コンステレーションを構築できるという効果がある。
 また、衛星コンステレーション構築方式の例1では、自衛星の軌道および位置のデータ処理装置を地上に具備する。
 また、衛星コンステレーション構築方式の例2では、宇宙空間の飛行物体の軌道および位置のデータ処理装置を地上に具備する。
 実施の形態10.
 本実施の形態では、主に、実施の形態1から9に追加する点について説明する。なお、実施の形態1から9と同様の構成には同一の符号を付し、その説明を省略する場合がある。
 本実施の形態では、衛星コンステレーション20を構成する衛星30であって、設計寿命末期を迎えた衛星30に軌道制御コマンド51を送信する地上設備500のバリエーションについて説明する。軌道制御コマンド51は、上記衛星30の具備する推進装置を動作させることにより、衛星30をデオービットさせるコマンドである。
<地上設備500の例1>
 図23は、本実施の形態に係る地上設備500の例1の構成を示す図である。
 地上設備500の例1の構成は実施の形態10と同様である。
 通信装置950は、衛星コンステレーション20を構成する衛星30を追跡管制運用する信号を送受する。
 軌道制御コマンド送信部510は、設計寿命末期を迎えたなどのデオービットさせる衛星30に、軌道制御コマンド51を送信する。
 解析予測部520は、軌道離脱用コマンド受信後の衛星30の通過軌道を解析予測する。
 具体例として、解析予測部520が、太陽同期軌道における混雑軌道のLST10:30近傍の軌道面を軌道高度500kmから800kmで衛星30が通過すると判定した場合について説明する。このとき、軌道制御コマンド送信部510は、混雑軌道通過タイミングあるいは軌道面をずらして、衝突リスクを回避するアクティブデオービット運用を実施する軌道制御コマンド51を衛星30に送信する。衛星30は、軌道制御コマンド51を受信すると、衛星30の具備する軌道制御装置により、衛星速度の増速、ないし減速による軌道高度の上昇、ないし下降を実施する。あるいは、衛星30は、衛星進行方向と概略直行する方向への推進器の噴射による軌道面の面外方向への加速度付与による軌道傾斜角の変更をする。このようにして、衛星30は、混雑軌道通過タイミング、ないし軌道面をずらして衝突リスクを回避するアクティブデオービット運用を実施する。
 メガコンステレーション構築に当たり、宇宙空間のデブリ総量が無制限に増加しない対策として、PMD(Post-Mission Disposal)を義務づけて、例えば99%以上の衛星を軌道上からデオービットすることの必要性が議論されている。また寿命末期において衛星が健全である確率を考慮すべきことから、寿命末期あるいは故障により機能喪失して自律的にデオービットできない衛星を外的手法によりデオービットするADR(Active Debris Removal)の必要性も議論されている。
 しかしながらPMDあるいはADRでは、自由落下させて大気圏で燃え尽きる手法の必要性に訴求しているだけであって、落下途中で混雑軌道を通過する場合の回避策を有していない。また、静止軌道衛星では、デブリ衝突のリスクが予見された場合に、デブリの予測軌道情報を衝突警報と共に公表して、被衝突側衛星が衝突回避行動をとる事例がある。しかし、低軌道周回衛星において、別の衛星コンステレーションが構築されている場合、被衝突側衛星の回避行動が2次的衝突原因となるリスクが高い。すなわち、縦列駐車状態の前後衛星への衝突、同一面内で異なる高度の衛星群への衝突などのリスクである。
 また、当該エリアに短期間に多数の被衝突側衛星が通過する可能性が高く、複数衛星が同時に回避行動をとった場合に、近傍衛星の挙動予測が困難となり、派生的な衝突リスクが発生する。
 また、回避行動の結果として、軌道高度、軌道面内位相のみならず、軌道面の回転に伴うLSTの移動が発生し、復帰困難、ないし衛星コンステレーションが目的とするサービス継続に支障を来すリスクがある。
 さらに、回避機能を持たない実験衛星であるCubeSatといった衛星が多数飛翔している場合がある。
 また、自由落下に伴う軌道予測精度が悪い場合に、衝突警報を出すべきエリアと時間帯が広域かつ長時間となり、被衝突衛星側に頻繁に衝突警報が発せられ、対応不能になるという場合がある。
 本実施の形態に係る地上設備500の例1によれば、デオービットによる高度低下途中においても、落下途中の軌道制御が可能となるので、混雑軌道の通過を回避でき、衝突を回避できるという効果がある。また、被衝突側衛星が回避行動をとらなくても衝突を回避できるという効果がある。
<地上設備500の例2>
 本実施の形態の地上設備500の例2では、デブリ回収衛星31に、軌道制御機能を喪失した故障衛星をデオービットさせる捕獲コマンド52と軌道制御コマンド51を、デブリ回収衛星31に対して送信する。デブリ回収衛星31は、例えば、故障により軌道制御機能を喪失した衛星を回収する装置を具備する衛星である。デブリ回収衛星31は、故障衛星を捕獲する捕獲装置と推進装置とを備える。
 地上設備500の例2は、故障衛星を、上記デブリ回収衛星の具備する捕獲装置と推進装置とを動作させることにより、デオービットさせる捕獲コマンド52と軌道制御コマンド51をデブリ回収衛星31に対して送信する。
 通信装置950は、デブリ回収衛星を追跡管制運用する信号を送受する。
 軌道制御コマンド送信部510は、軌道制御コマンド51あるいは捕獲コマンド52を送信する。
 解析予測部520は、故障衛星を捕獲した状態のデブリ回収衛星の通過軌道を解析予測する。
 具体例として、解析予測部520が、太陽同期軌道における混雑軌道のLST10:30近傍の軌道面を軌道高度500kmから800kmでデブリ回収衛星31が通過すると判明した場合について説明する。このとき、軌道制御コマンド送信部510は、混雑軌道通過タイミングあるいは軌道面をずらして、衝突リスクを回避するアクティブデオービット運用を実施する軌道制御コマンド51をデブリ回収衛星31に送信する。デブリ回収衛星31は、軌道制御コマンド51を受信すると、衛星30の具備する軌道制御装置により、衛星速度の増速、ないし減速による軌道高度の上昇、ないし下降を実施する。あるいは、衛星30は、衛星進行方向と概略直行する方向への推進器の噴射による軌道面の面外方向への加速度付与による軌道傾斜角の変更をする。このようにして、デブリ回収衛星31は、混雑軌道通過タイミング、ないし軌道面をずらして衝突リスクを回避するアクティブデオービット運用を実施する。
 本実施の形態に係る地上設備500の例2によれば、予め、衛星コンステレーションの構成衛星がデブリ回収衛星の捕獲用アタッチメントといった設備を具備している。よって、本実施の形態に係る地上設備500の例2は、衛星コンステレーションの構成衛星の回収において有効である。
<地上設備500の例3>
 本実施の形態に係る地上設備500の例3では、通信装置950は、軌道高度800km以上の混雑軌道よりも上空を飛翔するロケットの残骸を回収する装置を具備するデブリ回収衛星を追跡管制運用する信号を送受する。
 軌道制御コマンド送信部510は、ロケットの残骸を、デブリ回収衛星の具備する捕獲装置と推進装置を動作させることにより、軌道離脱させる捕獲コマンドと軌道制御コマンドをデブリ回収衛星に対して送信する。
 解析予測部520は、故障衛星を捕獲した状態のデブリ回収衛星の通過軌道を解析予測する。
 具体例として、解析予測部520が、太陽同期軌道における混雑軌道のLST10:30近傍の軌道面を軌道高度500kmから800kmで通過すると判明した場合について説明する。
 本実施の形態に係る地上設備500の例3では、上記衛星の具備する軌道制御装置により、衛星速度の増速、ないし減速による軌道高度の上昇、ないし下降、あるいは衛星進行方向と概略直行する方向への推進器の噴射による軌道面の面外方向への加速度付与による軌道傾斜角の変更をする。そして、本実施の形態に係る地上設備500の例3では、混雑軌道通過タイミング、ないし軌道面をずらして衝突リスクを回避するアクティブデオービット運用を実施する。
 ロケットの残骸は通常デブリ回収衛星の捕獲用アタッチメントを具備せず、軌道上で回転するなど捕獲が難しいため、地上設備500の例2よりも技術難度が高い。本実施の形態に係る地上設備500の例3によれば、捕獲装置としては投網のようにネット状物体で包み込む方式、ワイヤー付きのもり状の棒材を突き刺して引っ張る方式、あるいは捕獲対象の外表皮に粘着性物質あるいは接着材により密着する方式などが可能である。また、捕獲用アタッチメントを具備する衛星コンステレーション構成要素衛星のデオービットであっても、姿勢制御せず自由落下させた場合は姿勢が不定となるためデブリ回収衛星が捕獲用アタッチメントに容易にアクセスできない可能性が高い。このような場合に、本実施の形態に係る地上設備500の例3の捕獲装置が有効となる。
<地上設備500の例4>
 ここでは、地上設備500の例1から例3で説明したように、衛星の軌道離脱あるいはデブリ回収による軌道離脱をする降下途中において、解析予測部520が、低高度に構築された別の衛星コンステレーションの極域密集域を通過すると判明した場合について説明する。
 地上設備500の例4では、当該衛星コンステレーションとは異なる軌道傾斜角となるよう衛星進行方向と概略直行する方向への推進器の噴射による軌道面の面外方向への加速度付与による軌道傾斜角の変更をする。これにより、地上設備500の例4では、混雑軌道とは軌道面の傾きを変更するか、または通過タイミングをずらして衝突リスクを回避するアクティブデオービット運用を実施する。
 地上設備500の例1から例3では、LST10:30近傍の混雑軌道回避をカバーするだけでなく、極域密集域通過の場合の衝突も回避することができる。
 上記地上設備500の例1から例4をどのように組み合わせて実施しても構わない。例えば、以下の地上設備を実施することが可能である。
 地上設備は、衛星コンステレーションを構成する衛星を追跡管制運用する信号を送受する通信装置と、軌道制御コマンドを送信する軌道制御コマンド送信部と、軌道離脱用コマンド受信後の上記衛星の通過軌道を解析予測する解析予測部とを備える。地上設備は、設計寿命末期を迎えた上記衛星を、上記衛星の具備する推進装置を動作させることにより、軌道離脱させる前記軌道制御コマンドを送信する。
 地上設備は、衛星の軌道離脱あるいはデブリ回収による軌道離脱をする降下途中において、低高度に構築された別の衛星コンステレーションの極域密集域または混雑軌道面を通過することが解析予測で判明した場合に、衝突リスクを回避するアクティブデオービット運用を実施する。具体的には、地上設備は、当該衛星コンステレーションとは異なる軌道傾斜角となるよう衛星進行方向と概略直行する方向への推進器の噴射による軌道面の面外方向への加速度付与による軌道傾斜角の変更をすることによって、混雑軌道とは軌道面の傾きを変更するか、または通過タイミングをずらして衝突リスクを回避するアクティブデオービット運用を実施する。
 地上設備は、故障して軌道制御機能を喪失した衛星を回収する装置を具備するデブリ回収衛星を追跡管制運用する信号を送受する通信装置と、軌道制御コマンド送信部と、故障衛星を捕獲した状態のデブリ回収衛星の通過軌道を解析予測する解析予測部を具備する。地上設備は、故障した衛星を、上記デブリ回収衛星の具備する捕獲装置と推進装置を動作させることにより、軌道離脱させる捕獲コマンドと軌道制御コマンドをデブリ回収衛星に対して送信する。
 地上設備は、衛星の軌道離脱あるいはデブリ回収による軌道離脱をする降下途中において、低高度に構築された別の衛星コンステレーションの極域密集域または混雑軌道面を通過することが解析予測で判明した場合に、衝突リスクを回避するアクティブデオービット運用を実施する。具体的には、地上設備は、当該衛星コンステレーションとは異なる軌道傾斜角となるよう衛星進行方向と概略直行する方向への推進器の噴射による軌道面の面外方向への加速度付与による軌道傾斜角の変更をすることによって、混雑軌道とは軌道面の傾きを変更するか、または通過タイミングをずらして衝突リスクを回避するアクティブデオービット運用を実施する。
 地上設備は、軌道高度800km以上の混雑軌道よりも上空を飛翔するロケットの残骸を回収する装置を具備するデブリ回収衛星を追跡管制運用する信号を送受する通信装置と、軌道制御コマンド送信部と、故障衛星を捕獲した状態のデブリ回収衛星の通過軌道を解析予測する解析予測部を具備する。地上設備は、ロケットの残骸を、上記デブリ回収衛星の具備する捕獲装置と推進装置を動作させることにより、軌道離脱させる捕獲コマンドと軌道制御コマンドをデブリ回収衛星に対して送信する。
 地上設備は、衛星の軌道離脱あるいはデブリ回収による軌道離脱をする降下途中において、低高度に構築された別の衛星コンステレーションの極域密集域または混雑軌道面を通過することが解析予測で判明した場合に、衝突リスクを回避するアクティブデオービット運用を実施する。具体的には、地上設備は、当該衛星コンステレーションとは異なる軌道傾斜角となるよう衛星進行方向と概略直行する方向への推進器の噴射による軌道面の面外方向への加速度付与による軌道傾斜角の変更をすることによって、混雑軌道とは軌道面の傾きを変更するか、または通過タイミングをずらして衝突リスクを回避するアクティブデオービット運用を実施する。
 ここで、本実施の形態に係る効果について、さらに説明する。
 低軌道衛星のデオービットは衛星進行方向と逆方向に推進器を動作して軌道高度を低下させ、大気圏突入により焼き尽くす手法が一般的である。しかしながら、昨今計画されているメガ衛星コンステレーションは、軌道高度が1000km以上と低軌道周回衛星よりも高高度であるため、寿命末期あるいは故障時にデオービットする際、より低軌道高度を飛行する衛星に衝突するリスクがある。
 またメガ衛星コンステレーションでは軌道面も多様に構成され、それぞれの軌道面に多数衛星が隊列飛行しているため、デオービット時に衛星が通過する軌道経路も多岐に渡る。特に太陽同期軌道のLST10:30近傍あるいは極域といった低軌道衛星の混雑領域を通過する可能性がある場合に、衝突確率が高い。
 デオービットを自由落下に依存する場合は、徐々に高度を低下させるのに伴って、軌道面が回転するため、いかなる軌道面からデオービットした衛星にも太陽同期衛星の混雑軌道を通過する可能性がある。
 また極域付近を通過する軌道傾斜角略90度近傍の軌道面で構成される衛星コンステレーションの衛星をデオービットする場合、軌道高度が低下しても軌道傾斜角が概ね同様なため、より低軌道の極軌道衛星と衝突する確率が高い。
 本実施の形態では、混雑軌道面通過を回避するために、軌道面の回転を利用して、混雑軌道通過前に落下を早めて通過するか、逆に混雑軌道面が通り過ぎた後に閑散として軌道面を落下させることにより衝突を回避する。混雑軌道面を通過するタイミングを変更する方式としては、デオービットする衛星を加速すれば軌道高度が上昇し、落下タイミングを遅らせることができる。また減速すれば軌道高度降下が加速するので、落下タイミングを早めることができる。また当該軌道高度での滞留時間に応じて、摂動により軌道面が回転する効果があるので、混雑軌道の通過を待つことが可能となる。なおデオービットする衛星の昇交点ないし降交点通過時に進行方向と直行方向に推進器を動作することで、軌道傾斜角が変更できるので、軌道面の回転を加速することも可能である。
 特に地上設備500の例4では、軌道傾斜角を意図的に変更することにより、極域で混雑する高度では、極域を通過しないよう、軌道面を変更することにより、衝突を回避する。軌道傾斜角を変更する方式としては、デオービットする衛星の昇交点ないし降交点通過時に進行方向と直行方向に推進器を動作することで、軌道傾斜角が効果的に変更できる。
 次に、上記の実施の形態1から10に係る効果について、さらに説明する。
 近年数千機に及ぶ大規模衛星コンステレーションの構想が発表されているが、同一高度を飛翔する衛星は軌道面の交線上で、衛星高度の一致する2点で衝突するリスクがある。大規模コンステレーションでは特に全ての軌道面が高確率で会合する極域において衝突確率が極めて高くなる。
 同一軌道面に多数の衛星が飛行する例として赤道上空で軌道高度約36000kmを飛行する静止軌道衛星が有名であり、同一軌道面を約300の衛星が飛行している。地球自転と同期しているため、地上から見るとあたかも宇宙空間で静止しているように見えるが、同一高度を略円軌道を描いて飛行しているため、静止軌道上衛星は衝突せず運用継続している。また地球から見た角度は約1度から2度程度しか離れていないので接近しているように感じるが、軌道上の2衛星間の距離は十分離れている。
 これに対して近年増加傾向の低軌道周回衛星コンステレーションでは、単独コンステレーションでも衛星数が数千の規模であり、複数衛星コンステレーション構想の衛星総数は1万機に迫る規模となる。軌道高度が静止衛星に対して1/20~1/100倍程度と低く、2衛星間の距離も格段に接近しているため、静止軌道と比較しても衝突のリスクが高い。
 また静止軌道とは異なり、異なる軌道面を同時に利用するため、2面の交線上で衝突する可能性が存在する。軌道傾斜角90°近傍の衛星コンステレーションでは複数の軌道面が地球の自転軸近傍を交線となし、全ての衛星が南極上空と北極上空を通過するため、軌道高度が一致すると衝突する可能性が高い。
 また地球観測衛星で多用するLST10:00~11:00の太陽同期軌道は衛星が密集する軌道面が多く、同じ軌道面内に徐々に軌道高度を変化させる物体が侵入すると衝突リスクが高い。
 また衛星コンステレーションの完成形態においては、いかなる2衛星も位置座標と時刻が同時に一致する条件(x1、y1、z1、t1)=(x2、y2、z2、t2)とならない限り衝突は発生しない。よって、軌道高度あるいはタイミング、軌道面内の位相などを人為的に操作することで衝突を回避することができる。しかし、衛星コンステレーションの構築過渡段階において、新規衛星をコンステレーションに追加するプロセスでは衝突リスクが高い。
 また多数の衛星コンステレーションよりも高高度を飛行する衛星が制御不能な故障に陥って自由落下する場合に、密集軌道面を高度変更しながら通過すると、同一軌道面内で複数の軌道高度の衛星群と会合する可能性があるため、衝突リスクが高い。
 宇宙空間は広大であるため絶対値としての衝突確率は依然十分小さいとしても、一度衝突が発生すると、大規模な破壊が起こり、多数飛散した残骸が所謂デブリとして、近傍を飛翔する衛星に再び衝突して2次被害を発生する恐れがある。ワーストケースでは衝突、破壊の連鎖により、近傍軌道全体がバイオレートされる懸念もある。
 近傍軌道全体がバイオレートされて、多数のデブリが浮遊する状態になると、長期にわたりいかなる衛星も運用できなくなるリスクがあり、宇宙インフラへの依存性が高まる一方の社会生活全般に悪影響が及ぶ。
 また衛星自体が高額であり、かつロケットによる打上げや運用に資する総コストが巨額であるため、衝突が発生すると巨額の経済的損失につながる。
 また複数衛星が連携することにより例えば通信サービスといった目的を実現しているため、衝突に伴う衛星欠落により、当初目的のサービスの中断および品質劣化を来す。
 上記の実施の形態1から10では、高度の異なる軌道面の組合せ、交点通過時刻を人為的にずらす方式、故障した衛星の除去方式、新規衛星軌道投入方式といった手法を提供することにより、衛星コンステレーションの衝突を回避することができる。
 実施の形態11.
 本実施の形態では、主に、実施の形態1から10に追加する点について説明する。なお、実施の形態1から10と同様の構成には同一の符号を付し、その説明を省略する場合がある。
 実施の形態1で説明したように、衛星コンステレーション形成システム100は、衛星群300により構成され、衛星群300が連携してサービスを提供する衛星コンステレーション20を形成する。衛星コンステレーション形成システム100は、各軌道面21に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーション20を形成する。
 また、本実施の形態に係る衛星コンステレーション形成部110は、複数の軌道面の各軌道面21の軌道高度が互いに異なり、かつ、複数の軌道面の各軌道面21の公転周期が互いに等しくなる軌道傾斜角を各軌道面が有する衛星コンステレーション20を形成する。例えば、複数の軌道面の各軌道面は、図11に示すような太陽同期軌道である。
 衛星コンステレーション形成システム100には、衛星コンステレーション20が備える各軌道面21の軌道高度が互いに異なり、かつ、複数の軌道面の各軌道面21の公転周期が互いに等しくなる軌道傾斜角を各軌道面が有するようにパラメータが設定される。
 そして、衛星コンステレーション形成部110は、設定されたパラメータを用いて、各軌道面21の軌道高度が互いに異なり、かつ、複数の軌道面の各軌道面21の公転周期が互いに等しくなる軌道傾斜角を各軌道面が有する衛星コンステレーション20を形成する。
 図25は、本実施の形態に係る衛星コンステレーション20の具体例を示す模式図である。
 太陽同期する軌道面同士は軌道高度が異なっていても公転周期が等しくなる。以下に、軌道高度が異なり、太陽同期軌道となる複数軌道面の例を示す。太陽同期するための制約条件は概ね軌道高度と軌道傾斜角の相関関係で決まるので、軌道高度に応じて軌道傾斜角を適切に設定すれば、太陽同期軌道を形成できる。
軌道高度1000km:軌道傾斜角約99.5°
軌道高度1100km:軌道傾斜角約99.9°
軌道高度1200km:軌道傾斜角約100.4°
軌道高度1300km:軌道傾斜角約100.9°
軌道高度1400km:軌道傾斜角約101.4°
軌道高度1500km:軌道傾斜角約102.0°
 例えば、上記6種類の軌道高度の軌道面をLSTで以下のように設定すれば、互いに概略30°ずつ緯度方向に角度が異なる軌道面群が構成され、この軌道面間の相対角度は常に維持される。すなわち、公転周期が等しい6つの軌道面が形成される。
軌道高度1000kmの太陽同期軌道面:LST06:00
軌道高度1100kmの太陽同期軌道面:LST08:00
軌道高度1200kmの太陽同期軌道面:LST10:00
軌道高度1300kmの太陽同期軌道面:LST12:00
軌道高度1400kmの太陽同期軌道面:LST14:00
軌道高度1500kmの太陽同期軌道面:LST16:00
 ここでは、公転周期が等しくなる典型的な例として太陽同期軌道を例示したが、太陽非同期軌道であっても、同様に公転周期が等しくなる複数の軌道高度の選定が可能である。
 なお、衛星コンステレーション形成部110は、複数の軌道面の各軌道面21の軌道高度が互いに異なり、かつ、複数の軌道面の各軌道面21の回転が同期する軌道傾斜角を各軌道面が有する衛星コンステレーション20を形成してもよい。
 次に、本実施の形態に係る衛星コンステレーション形成システム100により構築される衛星コンステレーション20を追跡管制する地上設備500について説明する。
 本実施の形態に係る地上設備500は、複数の軌道面の各軌道面における複数の衛星の相対位相を維持するように各衛星の高度を調整するとともに、複数の軌道面間の相対角度を維持するように各軌道面の軌道高度および軌道傾斜角の調整を行うコマンドを生成し、衛星群の各衛星に送信する。
<地上設備500の例5>
 図23は、本実施の形態に係る地上設備500である地上設備500の例5の構成を示す図である。
 地上設備500の例5の構成は、実施の形態10の地上設備500の例1と同様である。
 通信装置950は、衛星コンステレーション20を構成する衛星30を追跡管制運用する信号を送受する。
 軌道制御コマンド送信部510は、複数の軌道面の各軌道面における複数の衛星の相対位相を維持するように各衛星の高度を調整するとともに、複数の軌道面間の相対角度を維持するように各軌道面の軌道高度および軌道傾斜角の調整を行う軌道制御コマンド51を衛星30に送信する。
***本実施の形態の効果の説明***
 軌道高度が異なり、かつ、軌道傾斜角が等しい軌道面の公転周期は相違する。このため、長期間運用する内に軌道面同士の相対角度が変化してしまう。この結果、複数の衛星で連携してサービスを実施する際に、衛星の配置が変化してしまって、サービスに支障を来す虞がある。また適切な軌道配置を維持するために、別途推進器を用いて軌道面を調整する場合は、調整中の期間にはサービスの継続ができなくなるという虞がある。
 本実施の形態に係る衛星コンステレーション形成システムによれば、軌道面間の相対関係が維持されるので、支障なくサービス提供し続けながら、衝突リスクを回避することが可能となる。
 実施の形態12.
 本実施の形態では、主に、実施の形態1から11に追加する点あるいは異なる点について説明する。なお、実施の形態1から11と同様の構成には同一の符号を付し、その説明を省略する場合がある。
***構成の説明***
 図26は、衛星コンステレーション形成システム600の衛星30の構成例である。
 ここで、衛星コンステレーション形成システム600を形成する衛星30の構成について説明する。
 衛星30は、衛星制御装置310と衛星通信装置32と推進装置33と姿勢制御装置34と電源装置35とを備える。その他、各種の機能を実現する構成要素を備えるが、図6では、衛星制御装置310と衛星通信装置32と推進装置33と姿勢制御装置34と電源装置35について説明する。衛星30は、宇宙物体60の一例である。
 衛星制御装置310は、推進装置33と姿勢制御装置34とを制御するコンピュータであり、処理回路を備える。具体的には、衛星制御装置310は、地上設備500から送信される各種コマンドにしたがって、推進装置33と姿勢制御装置34とを制御する。
 衛星通信装置32は、地上設備500と通信する装置である。具体的には、衛星通信装置32は、自衛星に関する各種データを地上設備500へ送信する。また、衛星通信装置32は、地上設備500から送信される各種コマンドを受信する。
 推進装置33は、衛星30に推進力を与える装置であり、衛星30の速度を変化させる。具体的には、推進装置33は、アポジキックモーターまたは化学推進装置、または電気推進装置である。アポジキックモーター(AKM:Apogee Kick Motor)は、人工衛星の軌道投入に使われる上段の推進装置のことであり、アポジモーター(固体ロケットモーター使用時)、またはアポジエンジン(液体エンジン使用時)とも呼ばれている。
 化学推進装置は、一液性ないし二液性燃料を用いたスラスタである。電気推進装置としては、イオンエンジンまたはホールスラスタである。アポジキックモーターは軌道遷移に用いる装置の名称であり、化学推進装置の一種である場合もある。
 姿勢制御装置34は、衛星30の姿勢と衛星30の角速度と視線方向(Line Of Sight)といった姿勢要素を制御するための装置である。姿勢制御装置34は、各姿勢要素を所望の方向に変化させる。もしくは、姿勢制御装置34は、各姿勢要素を所望の方向に維持する。姿勢制御装置34は、姿勢センサとアクチュエータとコントローラとを備える。姿勢センサは、ジャイロスコープ、地球センサ、太陽センサ、スター・トラッカ、スラスタおよび磁気センサといった装置である。アクチュエータは、姿勢制御スラスタ、モーメンタムホイール、リアクションホイールおよびコントロール・モーメント・ジャイロといった装置である。コントローラは、姿勢センサの計測データまたは地上設備500からの各種コマンドにしたがって、アクチュエータを制御する。
 電源装置35は、太陽電池、バッテリおよび電力制御装置といった機器を備え、衛星30に搭載される各機器に電力を供給する。
 衛星制御装置310に備わる処理回路について説明する。
 処理回路は、専用のハードウェアであってもよいし、メモリに格納されるプログラムを実行するプロセッサであってもよい。
 処理回路において、一部の機能が専用のハードウェアで実現されて、残りの機能がソフトウェアまたはファームウェアで実現されてもよい。つまり、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせで実現することができる。
 専用のハードウェアは、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGAまたはこれらの組み合わせである。
 ASICは、Application Specific Integrated Circuitの略称である。FPGAは、Field Programmable Gate Arrayの略称である。
 図27は、衛星コンステレーション形成システム600が備える地上設備500の構成例である。
 地上設備500は、全ての軌道面の多数衛星をプログラム制御する。地上設備500は、地上装置の例である。地上装置は、地上アンテナ装置、地上アンテナ装置に接続された通信装置、あるいは電子計算機といった地上局と、地上局にネットワークで接続されたサーバあるいは端末としての地上設備から構成される。また、地上装置には航空機、自走車両、あるいは移動端末といった移動体に搭載された通信装置を含んでも良い。
 地上設備500は、各衛星30と通信することによって衛星コンステレーション20を形成する。地上設備500は、宇宙交通管理装置200に備えられる。地上設備500は、プロセッサ910を備えるとともに、メモリ921、補助記憶装置922、入力インタフェース930、出力インタフェース940、および通信装置950といった他のハードウェアを備える。プロセッサ910は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。地上設備500のハードウェアについては、図6において説明した衛星コンステレーション形成システム100のハードウェアと同様である。
 地上設備500は、機能要素として、軌道制御コマンド送信部510と、解析予測部520を備える。軌道制御コマンド送信部510および解析予測部520の機能は、ハードウェアあるいはソフトウェアにより実現される。
 通信装置950は、衛星コンステレーション20を構成する衛星群300の各衛星30を追跡管制する信号を送受信する。また、通信装置950は、軌道制御コマンド55を各衛星30に送信する。
 解析予測部520は、衛星30の軌道を解析予測する。
 軌道制御コマンド送信部510は、衛星30に送信する軌道制御コマンド55を生成する。
 軌道制御コマンド送信部510および解析予測部520は、衛星コンステレーション形成部11の機能を実現する。すなわち、軌道制御コマンド送信部510および解析予測部520は、衛星コンステレーション形成部11の例である。
 図28は、衛星コンステレーション形成システム600の機能構成例を示す図である。
 衛星30は、さらに、衛星コンステレーション20を形成する衛星コンステレーション形成部11bを備える。そして、複数の衛星の各衛星30の衛星コンステレーション形成部11bと、地上設備500の各々に備えられた衛星コンステレーション形成部11とが連携して、衛星コンステレーション形成システム600の機能を実現する。なお、衛星30の衛星コンステレーション形成部11bは、衛星制御装置310に備えられていてもよい。
 図29は、本実施の形態に係る宇宙交通管理システム800の全体構成例である。
 宇宙交通管理システム800は、複数の宇宙交通管理装置200を備える。
 複数の宇宙交通管理装置200の各々は、宇宙を飛行する宇宙物体60を管理する複数の事業者の各々の事業装置40に実装される。複数の宇宙交通管理装置200は、互いに通信回線で接続されている。
 図30は、本実施の形態に係る宇宙交通管理装置200の構成例を示す図である。
 宇宙交通管理装置200は、他の事業装置40と通信する。宇宙交通管理装置200は、地上設備701に搭載されていてもよい。また、宇宙交通管理装置200は、衛星コンステレーション形成システム600に搭載されていてもよい。
 事業装置40は、人工衛星、あるいは、デブリといった宇宙物体60に関する情報を提供する。事業装置40は、人工衛星、あるいは、デブリといった宇宙物体60に関する情報を収集する事業者のコンピュータである。
 事業装置40には、メガコンステレーション事業装置41、LEOコンステレーション事業装置42、衛星事業装置43、軌道遷移事業装置44、デブリ除去事業装置45、ロケット打ち上げ事業装置46、およびSSA事業装置47といった装置が含まれる。LEOが、Low Earth Orbitの略語である。
 メガコンステレーション事業装置41は、大規模衛星コンステレーション、すなわちメガコンステレーション事業を行うメガコンステレーション事業者のコンピュータである。
 LEOコンステレーション事業装置42は、低軌道コンステレーション、すなわちLEOコンステレーション事業を行うLEOコンステレーション事業者のコンピュータである。
 衛星事業装置43は、1機から数機の衛星を扱う衛星事業者のコンピュータである。
 軌道遷移事業装置44は、衛星の宇宙物体侵入警報を行う軌道遷移事業者のコンピュータである。
 デブリ除去事業装置45は、デブリを回収する事業を行うデブリ除去事業者のコンピュータである。
 ロケット打ち上げ事業装置46は、ロケット打ち上げ事業を行うロケット打ち上げ事業者のコンピュータである。
 SSA事業装置47は、SSA事業、すなわち、宇宙状況監視事業を行うSSA事業者のコンピュータである。
 事業装置40は、人工衛星、あるいは、デブリといった宇宙物体に関する情報を収集し、収集した情報を宇宙交通管理システム800に提供する装置であれば、その他の装置でもよい。また、宇宙交通管理装置200が、SSAの公開サーバ上に搭載される場合は、宇宙交通管理装置200がSSAの公開サーバとして機能する構成でもよい。
 宇宙交通管理装置200は、プロセッサ910を備えるとともに、メモリ921、補助記憶装置922、入力インタフェース930、出力インタフェース940、および通信装置950といった他のハードウェアを備える。プロセッサ910は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
 宇宙交通管理装置200は、機能要素の一例として、宇宙交通管理部120と記憶部140を備える。記憶部140には、ルール情報515と密集領域識別情報525が記憶されている。
 宇宙交通管理部120の機能は、ソフトウェアにより実現される。記憶部140は、メモリ921に備えられる。あるいは、記憶部140は、補助記憶装置922に備えられていてもよい。また、記憶部140は、メモリ921と補助記憶装置922に分けられて備えられてもよい。
 宇宙交通管理部120は、例えば、ルール情報515にしたがって宇宙物体60を管理する。あるいは、宇宙交通管理部120は、密集領域識別情報525を用いて、ルール情報515にしたがって宇宙物体60を管理する。
 プロセッサ910は、宇宙交通管理プログラムを実行する装置である。宇宙交通管理プログラムは、宇宙交通管理装置200および宇宙交通管理システム800の各構成要素の機能を実現するプログラムである。
 宇宙交通管理装置200のハードウェアについては、図6において説明した衛星コンステレーション形成システム100のハードウェアと同様である。
 宇宙交通管理プログラムは、プロセッサ910に読み込まれ、プロセッサ910によって実行される。メモリ921には、宇宙交通管理プログラムだけでなく、OS(Operating System)も記憶されている。プロセッサ910は、OSを実行しながら、宇宙交通管理プログラムを実行する。宇宙交通管理プログラムおよびOSは、補助記憶装置922に記憶されていてもよい。補助記憶装置922に記憶されている宇宙交通管理プログラムおよびOSは、メモリ921にロードされ、プロセッサ910によって実行される。なお、宇宙交通管理プログラムの一部または全部がOSに組み込まれていてもよい。
 宇宙交通管理装置200は、プロセッサ910を代替する複数のプロセッサを備えていてもよい。これら複数のプロセッサは、プログラムの実行を分担する。それぞれのプロセッサは、プロセッサ910と同じように、プログラムを実行する装置である。
 宇宙交通管理装置の各部の「部」を「処理」、「手順」、「手段」、「段階」あるいは「工程」に読み替えてもよい。また、通過判定処理と警報生成処理と警報通知処理の「処理」を「プログラム」、「プログラムプロダクト」または「プログラムを記録したコンピュータ読取可能な記録媒体」に読み替えてもよい。「処理」、「手順」、「手段」、「段階」あるいは「工程」は、互いに読み換えが可能である。
 宇宙交通管理プログラムは、宇宙交通管理システムの各部の「部」を「処理」、「手順」、「手段」、「段階」あるいは「工程」に読み替えた各処理、各手順、各手段、各段階あるいは各工程を、コンピュータに実行させる。また、宇宙交通管理方法は、宇宙交通管理装置200が宇宙交通管理プログラムを実行することにより行われる方法である。
 宇宙交通管理プログラムは、コンピュータ読取可能な記録媒体に格納されて提供されてもよい。また、各プログラムは、プログラムプロダクトとして提供されてもよい。
<本実施の形態の宇宙交通管理システムの機能概要について>
 太陽同期軌道は地球観測で多用される軌道であり、特に以下の領域が密集している。
 ・太陽同期軌道LST10:30近傍で軌道高度500km以上1000km以下の領域。
 ・太陽同期軌道LST13:30近傍で軌道高度500km以上1000km以下の領域。
 ・太陽同期軌道LST06:00近傍で軌道高度500km以上1000km以下の領域。
 ・太陽同期軌道LST18:00近傍で軌道高度500km以上1000km以下の領域。
 太陽同期軌道は軌道傾斜角が90度近傍となるので、同一軌道高度を飛行する衛星同士は極域において軌道面同士の交点が集中し、衝突するリスクが高い。
 そこでSTM(宇宙交通管理)のルールとして、法線ベクトルの異なる軌道面の衛星同士は異なる軌道高度を採用することをルール化し、軌道の交点を解消すれば、定常運用における衝突確率がゼロとなり、衝突リスクが解消する。現実的には軌道投入時や軌道離脱時などの非定常運用を実施する際に衝突リスクは発生するが、定常運用における衝突確率がゼロであれば、リスクは激減するという効果がある。
 また人為的な制御により極域通過タイミングをずらすことにより衝突回避をするという手段もある。しかし、太陽同期軌道には多数国の多数事業者が衛星を運用しており、相互連携がとり切れなければ衝突するリスクが残る。
 またデブリ衝突といった不慮の事故により、人為的な制御が不能となる事態に陥った場合に、衝突するリスクが高いという課題がある。
 このため定常運用における衝突確率がゼロであれば、人為的な制御ができなくなっても衝突事故を回避できるという効果がある。
 具体的には、図29および図30に示すように、本実施の形態に係る宇宙交通管理システム800は、ルール情報515および密集領域識別情報525といった情報を用いて、宇宙物体60の宇宙交通管理を実施する宇宙交通管理処理を実行する。すなわち、宇宙交通管理システム800では、複数の宇宙交通管理装置200が、複数の宇宙交通管理装置200において共通のルール情報515と密集領域識別情報525とを用いて、宇宙物体60の交通を管理する。ルール情報515は、宇宙交通管理ルール501ともいう。
<宇宙交通管理処理の例1>
 宇宙交通管理部120は、法線ベクトルの異なる軌道面の衛星同士が異なる軌道高度を採用するように、宇宙物体60の宇宙交通管理処理を実施する。
 具体的には、ルール情報515には、法線ベクトルの異なる軌道面の衛星同士が異なる軌道高度を採用するルールを表す情報が設定されている。
 宇宙交通管理部120は、ルール情報515にしたがって、宇宙物体60を管理する。
 宇宙交通管理処理の例1によれば、法線ベクトルの異なる軌道面の衛星同士が異なる軌道高度を採用するので、極域における衝突確率がゼロとなり、定常運用における衝突リスクを解消できるという効果がある。
<宇宙交通管理処理の例2>
 宇宙交通管理部120は、法線ベクトルが同じで、同一軌道高度を飛行する複数の衛星が、軌道面内で概略均等配置になる相対位相角を維持して飛行するように、宇宙物体60の宇宙交通管理処理を実施する。
 具体的には、ルール情報515には、法線ベクトルが同じで、同一軌道高度を飛行する複数の衛星が、軌道面内で概略均等配置になる相対位相角を維持して飛行するルールを表す情報が設定されている。
 宇宙交通管理部120は、ルール情報515にしたがって、宇宙物体60を管理する。
 図31は、宇宙交通管理処理の例2の比較例における、軌道面内での衛星配置を表す図である。
 図32は、本実施の形態に係る宇宙交通管理処理の例2における、軌道面内での衛星配置を表す図である。
 図33は、法線ベクトルが同じで、かつ、軌道高度が異なる複数軌道面を表す図である。
 図31および図32に示すように、同一軌道面で同一軌道高度を飛行する複数の衛星は、同期して飛行することにより衝突を回避できる。しかし、異なる事業者が管理する複数の衛星が、相対位相角を管理せずに衛星を飛行させた場合は衝突するリスクがある。
 宇宙交通管理処理の例2によれば、宇宙交通管理ルール501を用いて、同一軌道面を飛行する複数衛星を識別し、かつ、同一軌道高度を飛行する複数の衛星が、軌道面内で概略均等配置になる相対位相角を維持して飛行する。これにより、衝突を回避できるという効果がある。
<宇宙交通管理処理の例3>
 密集領域識別情報525は、以下の領域を密集領域として識別する情報である。
 ・太陽同期軌道LST10:30近傍で軌道高度500km以上1000km以下の領域。
 ・太陽同期軌道LST13:30近傍で軌道高度500km以上1000km以下の領域。
 ・太陽同期軌道LST06:00近傍で軌道高度500km以上1000km以下の領域。
 ・太陽同期軌道LST18:00近傍で軌道高度500km以上1000km以下の領域。
 ・北緯80度以上で軌道高度500km以上1000km以下の領域。
 ・南緯80度以上で軌道高度500km以上1000km以下の領域。
 LST10:30近傍とLST13:30近傍は、光学衛星群あるいはA-Trainと呼ばれる各種地球観測衛星群が多用する軌道である。LST06:00近傍とLST18:00近傍は合成開口レーダを搭載したレーダ衛星群が多用する軌道である。
 ルール情報515には、密集領域を飛行する衛星を管理する事業者が、衛星情報を公開するルールを表す宇宙交通管理ルール501が設定されている。
 宇宙交通管理部120は、密集領域識別情報525とルール情報515とを用いて、同一軌道面を飛行する衛星を管理する事業者同士が、飛行安全対策について情報交換する手段を実現する。
 宇宙交通管理処理の例3では、宇宙交通管理装置200は、密集領域識別情報525を具備する。かつ、宇宙交通管理装置200は、密集領域を飛行する衛星を管理する事業者が衛星情報を公開する宇宙交通管理ルール501と、同一軌道面を飛行する衛星を管理する事業者同士が飛行安全対策について情報交換できる手段とを具備する。
 このように、当該軌道に複数事業者が無統制で衛星を飛行させることは危険であるため、交通ルールとして衛星軌道情報を公開し、飛行安全確保のための対策を調整できる環境を整備する。よって、宇宙交通管理処理の例3によれば、衝突回避をできるという効果がある。
 飛行安全対策について情報交換できる手段としては、宇宙交通管理システム800のポータル上でチャットをできる機能を具備してもよいし、調整会議を主催するメッセージを発信してもよい。
<宇宙交通管理処理の例4>
 宇宙交通管理部120は、密集領域識別情報525を用いて、宇宙物体60が軌道離脱して大気圏突入する途中過程において、密集領域のいずれかに侵入する前に、宇宙物体60を捕獲して軌道降下時衝突回避運用を実現する。このような軌道降下時衝突回避運用の実現方法を軌道降下時衝突回避運用方法という。
 密集領域の具体例は、宇宙交通管理処理の例3で説明したものと同様である。
 図34は、高高度のメガコンステレーション衛星による衛星軌道降下過程における密集領域(危険領域)侵入の様子を示す図である。
 図35は、本実施の形態に係る衛星軌道降下過程における密集領域侵入回避の宇宙交通管理処理を示す図である。
 具体的には、ルール情報515には、宇宙物体60が軌道離脱して大気圏突入する途中過程において、密集領域のいずれかに侵入する前に、宇宙物体60を捕獲して軌道降下時衝突回避運用を実現するルールを表す宇宙交通管理ルール501が設定されている。軌道降下時衝突回避運用は、アクティブデオービット運用ともいう。
 宇宙交通管理部120は、密集領域識別情報525とルール情報515とを用いて、宇宙物体60が軌道離脱して大気圏突入する途中過程において、密集領域のいずれかに侵入する前に、宇宙物体60を捕獲して軌道降下時衝突回避運用を実現する。
 図35を用いて、具体的に説明する。
(1)メガコンステレーション事業装置41の宇宙交通管理装置200は、高高度のメガコンステレーション衛星が故障衛星となり、密集領域(危険領域)に侵入することを予見する。この侵入予見情報は、通信回線を介して、宇宙交通管理システム800の全ての宇宙交通管理装置200に共有される。
(2)デブリ除去事業装置45の宇宙交通管理装置200は、ルール情報515に基づいて、密集領域のいずれかに侵入する前に、宇宙物体60を捕獲して軌道降下時衝突回避運用を実現する。具体的には、即応型デブリ除去衛星の打ち上げが行われる。
(3)即応型デブリ除去衛星は故障衛星を捕獲合体して、密集領域を回避して大気圏突入を行う。これにより、軌道降下時衝突回避運用が実現される。
 以上の実施の形態1から12では、衛星コンステレーション形成システムおよび宇宙交通管理システムの各部を独立した機能ブロックとして説明した。しかし、衛星コンステレーション形成システムおよび宇宙交通管理システムの構成は、上述した実施の形態のような構成でなくてもよい。衛星コンステレーション形成システムおよび宇宙交通管理システムの機能ブロックは、上述した実施の形態で説明した機能を実現することができれば、どのような構成でもよい。また、衛星コンステレーション形成システムおよび宇宙交通管理システムは、1つの装置でも、複数の装置から構成されたシステムでもよい。
 また、実施の形態1から12のうち、複数の部分を組み合わせて実施しても構わない。あるいは、これらの実施の形態のうち、1つの部分を実施しても構わない。その他、これらの実施の形態を、全体としてあるいは部分的に、どのように組み合わせて実施しても構わない。
 すなわち、実施の形態1から12では、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 なお、上述した実施の形態は、本質的に好ましい例示であって、本発明の範囲、本発明の適用物の範囲、および本発明の用途の範囲を制限することを意図するものではない。上述した実施の形態は、必要に応じて種々の変更が可能である。
 11,11b 衛星コンステレーション形成部、20 衛星コンステレーション、21 軌道面、30 衛星、31 デブリ回収衛星、32 衛星通信装置、33 推進装置、34 姿勢制御装置、40 事業装置、41 メガコンステレーション事業装置、42 LEOコンステレーション事業装置、43 衛星事業装置、44 軌道遷移事業装置、45 デブリ除去事業装置、46 ロケット打ち上げ事業装置、47 SSA事業装置、51 軌道制御コマンド、52 捕獲コマンド、60 宇宙物体、70 地球、100 衛星コンステレーション形成システム、200 宇宙交通管理装置、110 衛星コンステレーション形成部、120 宇宙交通管理部、140 記憶部、300 衛星群、310 衛星制御装置、500 地上設備、501 宇宙交通管理ルール、510 軌道制御コマンド送信部、515 ルール情報、525 密集領域識別情報、520 解析予測部、600 衛星コンステレーション形成システム、800 宇宙交通管理システム、910 プロセッサ、921 メモリ、922 補助記憶装置、930 入力インタフェース、940 出力インタフェース、950 通信装置。

Claims (39)

  1.  衛星群により構成され、前記衛星群が連携してサービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムにおいて、
     前記複数の軌道面の各軌道面の軌道高度が互いに異なる前記衛星コンステレーションを形成する衛星コンステレーション形成部を備えた衛星コンステレーション形成システム。
  2.  衛星群により構成され、前記衛星群が連携してサービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムにおいて、
     前記複数の軌道面の各軌道面の軌道高度が互いに異なる前記衛星コンステレーションを形成する衛星コンステレーション形成部を備え、
     前記複数の軌道面の各軌道面には、前記複数の衛星として20機以上の衛星が飛行している衛星コンステレーション形成システム。
  3.  前記複数の軌道面の各軌道面は、同一面に存在する請求項1または請求項2に記載の衛星コンステレーション形成システム。
  4.  前記複数の軌道面の各軌道面は、互いに異なる面に存在する請求項1または請求項2に記載の衛星コンステレーション形成システム。
  5.  前記複数の衛星は、各衛星が地上の地点に対して時分割的に交互に交代しながら前記サービスを提供する請求項1から請求項4のいずれか1項に記載の衛星コンステレーション形成システム。
  6.  前記衛星コンステレーション形成部は、
     前記複数の軌道面における隣接する軌道面の相対高度差を順に並べると正弦波状となる前記衛星コンステレーションを形成する請求項1から請求項5のいずれか1項に記載の衛星コンステレーション形成システム。
  7.  前記衛星コンステレーション形成部は、
     前記複数の衛星における衛星1機当たりの対地サービス範囲の半径が赤道上空における隣接軌道間距離の√2/2以上である前記衛星コンステレーションを形成する請求項1から請求項6のいずれか1項に記載の衛星コンステレーション形成システム。
  8.  前記衛星コンステレーション形成部は、
     前記複数の軌道面の各軌道面の軌道高度が太陽同期軌道の条件を満たす前記衛星コンステレーションを形成する請求項1から請求項7のいずれか1項に記載の衛星コンステレーション形成システム。
  9.  前記衛星コンステレーション形成部は、
     前記複数の軌道面の各軌道面の軌道高度が太陽同期準回帰軌道である前記衛星コンステレーションを形成する請求項1から請求項8のいずれか1項に記載の衛星コンステレーション形成システム。
  10.  衛星群により構成され、前記衛星群が連携してサービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムの衛星コンステレーション形成方法において、
     衛星コンステレーション形成部が、前記複数の軌道面の各軌道面の軌道高度が互いに異なる前記衛星コンステレーションを形成する衛星コンステレーション形成方法。
  11.  衛星群により構成され、前記衛星群が連携してサービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムにおいて、
     前記複数の軌道面の各軌道面の軌道高度が同じであり、かつ、前記複数の軌道面の各軌道面が互いに異なる面に存在する前記衛星コンステレーションを形成する衛星コンステレーション形成部を備え、
     前記衛星コンステレーション形成部は、
     前記複数の軌道面の軌道面同士の交点を、各軌道面を飛行する衛星が通過する衛星通過時刻が、同一軌道面において、次衛星が飛来するまでの待ち時間を前記複数の軌道面の軌道面数で割った時刻ずれ値の倍数となっており、かつ、前記複数の軌道面のいかなる2面の軌道面の交点においても前記衛星通過時刻が一致しない前記衛星コンステレーションを形成する衛星コンステレーション形成システム。
  12.  前記衛星コンステレーション形成部は、
     前記複数の軌道面の各軌道面の軌道傾斜角が概略90度であり、全ての軌道面の全ての衛星が極域近傍を通過する前記衛星通過時刻が前記時刻ずれ値の間隔で互いにずれている前記衛星コンステレーションを形成する請求項11に記載の衛星コンステレーション形成システム。
  13.  前記衛星コンステレーション形成部は、
     前記複数の軌道面の各軌道面の軌道傾斜角が90度ではない前記衛星コンステレーションを形成する請求項11に記載の衛星コンステレーション形成システム。
  14.  前記衛星コンステレーション形成部は、
     前記複数の軌道面の各軌道面が並ぶ順番に番号を付けた場合に、奇数の軌道面と偶数の軌道面で極域通過のタイミングの後続衛星が飛来するまでの待ち時間が約半分ずつずれている前記衛星コンステレーションを形成する請求項12に記載の衛星コンステレーション形成システム。
  15.  前記衛星コンステレーションは、
     前記複数の軌道面の全ての衛星が極域近傍を通過する前記衛星通過時刻が、前記時刻ずれ値の間隔で互いにずれており、前記複数の軌道面の各軌道面が並ぶ順番に番号を付けた場合に、奇数の軌道面と偶数の軌道面で極域通過のタイミングの後続衛星が飛来するまでの待ち時間が約半分ずつずれている前記衛星コンステレーションを形成する請求項11から請求項14のいずれか1項に記載の衛星コンステレーション形成システム。
  16.  衛星群により構成され、前記衛星群が連携してサービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムの衛星コンステレーション形成方法において、
     衛星コンステレーション形成部が、前記複数の軌道面の各軌道面の軌道高度が同じであり、かつ、前記複数の軌道面の各軌道面が互いに異なる面に存在する前記衛星コンステレーションであって、前記複数の軌道面の軌道面同士の交点を、各軌道面を飛行する衛星が通過する衛星通過時刻が、同一軌道面において、次衛星が飛来するまでの待ち時間を前記複数の軌道面の軌道面数で割った時刻ずれ値の倍数となっており、かつ、前記複数の軌道面のいかなる2面の軌道面の交点においても前記衛星通過時刻が一致しない前記衛星コンステレーションを形成する衛星コンステレーション形成方法。
  17.  衛星が飛行する軌道面の上空から物体が降下して前記軌道面を経由する前に、前記物体の軌道面を変更するための捕獲装置または外力付与装置と推進装置とを備えたデブリ除去方式。
  18.  前記軌道面は、複数の軌道面から構成された衛星コンステレーションを形成し、
     前記物体は、制御不能となった衛星である請求項17に記載のデブリ除去方式。
  19.  前記軌道面は、複数の軌道面から構成された衛星コンステレーションを形成し、
     前記物体は、楕円軌道を描きながら高度100kmから2000km程度を浮遊する請求項17に記載のデブリ除去方式。
  20.  請求項1から請求項9,請求項11から請求項15のいずれか1項に記載の衛星コンステレーション形成システムにより構築される衛星コンステレーションに請求項17から請求項19のいずれか1項に記載のデブリ除去方式を適用する衛星コンステレーション構築方式において、
     構成要素の軌道面の近傍の異なる軌道面であって、近傍軌道面の衛星が飛行する軌道高度とは異なる軌道高度に軌道投入し、増速ないし減速して軌道高度と軌道面の地球地軸周りの角度を変更して構成衛星を追加する衛星コンステレーション構築方式。
  21.  請求項1から請求項9,請求項11から請求項15のいずれか1項に記載の衛星コンステレーション形成システムにより構築される衛星コンステレーションに請求項17から請求項19のいずれか1項に記載のデブリ除去方式を適用する衛星コンステレーション構築方式において、
     他国システムあるいは類似システムが採用する軌道上、軌道高度、飛行する衛星数などの情報を予め収集したデータベースを具備し、
     衛星の飛行する軌道面とは異なり、かつ構成要素の軌道面の近傍の異なる軌道面であって、近傍軌道面の衛星が飛行する軌道高度とは異なる軌道高度に軌道投入し、増速ないし減速して軌道高度と軌道面の地球地軸周りの角度を変更して構成衛星を追加する衛星コンステレーション構築方式。
  22.  自衛星の軌道および位置のデータ処理装置を地上に具備する請求項20に記載の衛星コンステレーション構築方式。
  23.  宇宙空間の飛行物体の軌道および位置のデータ処理装置を地上に具備する請求項21に記載の衛星コンステレーション構築方式。
  24.  衛星コンステレーションを構成する衛星を追跡管制運用する信号を送受する通信装置と、軌道制御コマンドを送信する軌道制御コマンド送信部と、軌道離脱用コマンド受信後の上記衛星の通過軌道を解析予測する解析予測部とを備え、設計寿命末期を迎えた上記衛星を、上記衛星の具備する推進装置を動作させることにより、軌道離脱させる前記軌道制御コマンドを送信する地上設備であって、
     前記軌道制御コマンド送信部は、
     前記解析予測部により、前記衛星コンステレーションの軌道面を通過すると判定されると、上記衛星の具備する軌道制御装置により、衛星速度の増速、ないし減速による軌道高度の上昇、ないし下降、あるいは衛星進行方向と概略直行する方向への推進器の噴射による軌道面の面外方向への加速度付与による軌道傾斜角の変更をすることによって、混雑軌道通過タイミング、ないし軌道面をずらして衝突リスクを回避するアクティブデオービット運用を実施する前記軌道制御コマンドを送信する地上設備。
  25.  衛星コンステレーションを構成する衛星を追跡管制運用する信号を送受する通信装置と、軌道制御コマンド送信部と、軌道離脱用コマンド受信後の上記衛星の通過軌道を解析予測する解析予測部を具備し、設計寿命末期を迎えた上記衛星を、上記衛星の具備する推進装置を動作させることにより、軌道離脱させる軌道制御コマンドを送信する地上設備であって、
     太陽同期軌道における混雑軌道のLST10:30近傍の軌道面を軌道高度500kmから800kmで通過することが、解析予測で判明した場合に、上記衛星の具備する軌道制御装置により、衛星速度の増速、ないし減速による軌道高度の上昇、ないし下降、あるいは衛星進行方向と概略直行する方向への推進器の噴射による軌道面の面外方向への加速度付与による軌道傾斜角の変更をすることによって、混雑軌道通過タイミング、ないし軌道面をずらして衝突リスクを回避するアクティブデオービット運用を実施する地上設備。
  26.  故障して軌道制御機能を喪失した衛星を回収する装置を具備するデブリ回収衛星を追跡管制運用する信号を送受する通信装置と、軌道制御コマンド送信部と、故障衛星を捕獲した状態のデブリ回収衛星の通過軌道を解析予測する解析予測部を具備し、故障した衛星を、上記デブリ回収衛星の具備する捕獲装置と推進装置を動作させることにより、軌道離脱させる捕獲コマンドと軌道制御コマンドをデブリ回収衛星に対して送信する地上設備であって、
     太陽同期軌道における混雑軌道のLST10:30近傍の軌道面を軌道高度500kmから800kmで通過することが、解析予測で判明した場合に、上記衛星の具備する軌道制御装置により、衛星速度の増速、ないし減速による軌道高度の上昇、ないし下降、あるいは衛星進行方向と概略直行する方向への推進器の噴射による軌道面の面外方向への加速度付与による軌道傾斜角の変更をすることによって、混雑軌道通過タイミング、ないし軌道面をずらして衝突リスクを回避するアクティブデオービット運用を実施する地上設備。
  27.  軌道高度800km以上の混雑軌道よりも上空を飛翔するロケットの残骸を回収する装置を具備するデブリ回収衛星を追跡管制運用する信号を送受する通信装置と、軌道制御コマンド送信部と、故障衛星を捕獲した状態のデブリ回収衛星の通過軌道を解析予測する解析予測部を具備し、ロケットの残骸を、上記デブリ回収衛星の具備する捕獲装置と推進装置を動作させることにより、軌道離脱させる捕獲コマンドと軌道制御コマンドをデブリ回収衛星に対して送信する地上設備であって、
     太陽同期軌道における混雑軌道のLST10:30近傍の軌道面を軌道高度500kmから800kmで通過することが、解析予測で判明した場合に、上記衛星の具備する軌道制御装置により、衛星速度の増速、ないし減速による軌道高度の上昇、ないし下降、あるいは衛星進行方向と概略直行する方向への推進器の噴射による軌道面の面外方向への加速度付与による軌道傾斜角の変更をすることによって、混雑軌道通過タイミング、ないし軌道面をずらして衝突リスクを回避するアクティブデオービット運用を実施する地上設備。
  28.  請求項24から請求項27のいずれか1項に記載の地上設備において、
     衛星の軌道離脱あるいはデブリ回収による軌道離脱をする降下途中において、低高度に構築された別の衛星コンステレーションの極域密集域または混雑軌道面を通過することが解析予測で判明した場合に、当該衛星コンステレーションとは異なる軌道傾斜角となるよう衛星進行方向と概略直行する方向への推進器の噴射による軌道面の面外方向への加速度付与による軌道傾斜角の変更をすることによって、混雑軌道とは軌道面の傾きを変更するか、または通過タイミングをずらして衝突リスクを回避するアクティブデオービット運用を実施する地上設備。
  29.  衛星群により構成され、前記衛星群が連携してサービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムにおいて、
     前記複数の軌道面の各軌道面の軌道高度が互いに異なり、かつ、前記複数の軌道面の各軌道面の公転周期が互いに等しくなる軌道傾斜角を各軌道面が有する前記衛星コンステレーションを形成する衛星コンステレーション形成部を備えた衛星コンステレーション形成システム。
  30.  衛星群により構成され、前記衛星群が連携してサービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムの衛星コンステレーション形成方法において、
     衛星コンステレーション形成部が、前記複数の軌道面の各軌道面の軌道高度が互いに異なり、かつ、前記複数の軌道面の各軌道面の公転周期が互いに等しくなる軌道傾斜角を各軌道面が有する前記衛星コンステレーションを形成する衛星コンステレーション形成方法。
  31.  衛星群により構成され、前記衛星群が連携してサービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムにおいて、
     前記複数の軌道面の各軌道面の軌道高度が互いに異なり、かつ、前記複数の軌道面の各軌道面の回転が同期する軌道傾斜角を各軌道面が有する前記衛星コンステレーションを形成する衛星コンステレーション形成部を備えた衛星コンステレーション形成システム。
  32.  衛星群により構成され、前記衛星群が連携してサービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムの衛星コンステレーション形成方法において、
     衛星コンステレーション形成部が、前記複数の軌道面の各軌道面の軌道高度が互いに異なり、かつ、前記複数の軌道面の各軌道面の回転が同期する軌道傾斜角を各軌道面が有する前記衛星コンステレーションを形成する衛星コンステレーション形成方法。
  33.  請求項29または請求項31に記載の衛星コンステレーション形成システムにより構築される衛星コンステレーションを追跡管制する地上設備であって、
     前記複数の軌道面の各軌道面における複数の衛星の相対位相を維持するように各衛星の高度を調整するとともに、前記複数の軌道面間の相対角度を維持するために各軌道面の軌道高度および軌道傾斜角を調整するコマンドを生成して前記衛星群の各衛星に送信する地上設備。
  34.  宇宙物体を管理する複数の事業者の各々の事業装置が具備する宇宙交通管理装置を通信回線で接続した宇宙交通管理システムであって、
     複数の宇宙交通管理装置の各々は、
     法線ベクトルの異なる軌道面の衛星同士が異なる軌道高度を採用するルールを表すルール情報と、
     前記ルール情報にしたがって、前記宇宙物体を管理する宇宙物体管理部と
    を備えた宇宙交通管理システム。
  35.  宇宙物体を管理する複数の事業者の各々の事業装置が具備する宇宙交通管理装置を通信回線で接続した宇宙交通管理システムであって、
     複数の宇宙交通管理装置の各々は、
     法線ベクトルが同じで、同一軌道高度を飛行する複数の衛星が、軌道面内で概略均等配置になる相対位相角を維持して飛行するルールを表すルール情報と、
     前記ルール情報にしたがって、前記宇宙物体を管理する宇宙物体管理部と
    を備えた宇宙交通管理システム。
  36.  宇宙物体を管理する複数の事業者の各々の事業装置が具備する宇宙交通管理装置を通信回線で接続した宇宙交通管理システムであって、
     複数の宇宙交通管理装置の各々は、
     太陽同期軌道LST10:30近傍で軌道高度500km以上1000km以下の領域と、
     太陽同期軌道LST13:30近傍で軌道高度500km以上1000km以下の領域と、
     太陽同期軌道LST06:00近傍で軌道高度500km以上1000km以下の領域と、
     太陽同期軌道LST18:00近傍で軌道高度500km以上1000km以下の領域と、
     北緯80度以上で軌道高度500km以上1000km以下の領域と、
     南緯80度以上で軌道高度500km以上1000km以下の領域と
    を密集領域として識別する密集領域識別情報と、
     前記密集領域を飛行する衛星を管理する事業者が、衛星情報を公開するルールを表す宇宙交通管理ルールであるルール情報と、
     前記密集領域識別情報と前記ルール情報とを用いて、同一軌道面を飛行する衛星を管理する事業者同士が、飛行安全対策について情報交換する手段を実現する宇宙物体管理部と
    を備えた宇宙交通管理システム。
  37.  宇宙物体を管理する複数の事業者の各々の事業装置が具備する宇宙交通管理装置を通信回線で接続した宇宙交通管理システムであって、
     複数の宇宙交通管理装置の各々は、
     宇宙物体が軌道離脱して大気圏突入する途中過程において、
     太陽同期軌道LST10:30近傍で軌道高度500km以上1000km以下の領域と、
     太陽同期軌道LST13:30近傍で軌道高度500km以上1000km以下の領域と、
     太陽同期軌道LST06:00近傍で軌道高度500km以上1000km以下の領域と、
     太陽同期軌道LST18:00近傍で軌道高度500km以上1000km以下の領域と、
     北緯80度以上で軌道高度500km以上1000km以下の領域と、
     南緯80度以上で軌道高度500km以上1000km以下の領域と
    のいずれかに前記宇宙物体が侵入する前に、
    前記宇宙物体を捕獲して軌道降下時衝突回避運用をする宇宙物体管理部を備えた宇宙交通管理システム。
  38.  宇宙物体を管理する事業装置に具備されている宇宙物体管理部であって、
     前記宇宙物体が軌道離脱して大気圏突入する途中過程において、
     太陽同期軌道LST10:30近傍で軌道高度500km以上1000km以下の領域と、
     太陽同期軌道LST13:30近傍で軌道高度500km以上1000km以下の領域と、
     太陽同期軌道LST06:00近傍で軌道高度500km以上1000km以下の領域と、
     太陽同期軌道LST18:00近傍で軌道高度500km以上1000km以下の領域と、
     北緯80度以上で軌道高度500km以上1000km以下の領域と、
     南緯80度以上で軌道高度500km以上1000km以下の領域と
    のいずれかに前記宇宙物体が侵入する前に、
    前記宇宙物体を捕獲して軌道降下時衝突回避運用をする宇宙物体管理部。
  39.  宇宙物体を管理する複数の事業者の各々の事業装置が具備する宇宙交通管理装置を通信回線で接続した宇宙交通管理システムの軌道降下時衝突回避運用方法であって、
     複数の宇宙交通管理装置の各々の宇宙物体管理部が、
     宇宙物体が軌道離脱して大気圏突入する途中過程において、
     太陽同期軌道LST10:30近傍で軌道高度500km以上1000km以下の領域と、
     太陽同期軌道LST13:30近傍で軌道高度500km以上1000km以下の領域と、
     太陽同期軌道LST06:00近傍で軌道高度500km以上1000km以下の領域と、
     太陽同期軌道LST18:00近傍で軌道高度500km以上1000km以下の領域と、
     北緯80度以上で軌道高度500km以上1000km以下の領域と、
     南緯80度以上で軌道高度500km以上1000km以下の領域と
    のいずれかに前記宇宙物体が侵入する前に、
    前記宇宙物体を捕獲して軌道降下時衝突回避運用をする軌道降下時衝突回避運用方法。
PCT/JP2020/001901 2019-01-28 2020-01-21 衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、地上設備、宇宙交通管理システム、宇宙物体管理部、および軌道降下時衝突回避運用方法 WO2020158505A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/416,520 US20220081132A1 (en) 2019-01-28 2020-01-21 Satellite constellation forming system, debris removal scheme, satellite constellation construction scheme, ground facility, space traffic management system, space object management unit, and operation method for avoiding collision during orbital descent
JP2020569532A JP7118179B2 (ja) 2019-01-28 2020-01-21 衛星コンステレーション形成システム、衛星コンステレーション形成方法、地上設備
JP2022086954A JP7270814B2 (ja) 2019-01-28 2022-05-27 衛星コンステレーション形成システム、および、衛星コンステレーション形成方法
JP2022086955A JP7270815B2 (ja) 2019-01-28 2022-05-27 デブリ除去方式、および、衛星コンステレーション構築方式
JP2022086956A JP7224515B2 (ja) 2019-01-28 2022-05-27 宇宙交通管理システム、宇宙物体管理部、および軌道降下時衝突回避運用方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPPCT/JP2019/002794 2019-01-28
PCT/JP2019/002794 WO2020157807A1 (ja) 2019-01-28 2019-01-28 衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、および地上設備
JPPCT/JP2019/017635 2019-04-25
PCT/JP2019/017635 WO2020158001A1 (ja) 2019-01-28 2019-04-25 衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、および地上設備

Publications (1)

Publication Number Publication Date
WO2020158505A1 true WO2020158505A1 (ja) 2020-08-06

Family

ID=71840057

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP2019/002794 WO2020157807A1 (ja) 2019-01-28 2019-01-28 衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、および地上設備
PCT/JP2019/017635 WO2020158001A1 (ja) 2019-01-28 2019-04-25 衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、および地上設備
PCT/JP2020/001901 WO2020158505A1 (ja) 2019-01-28 2020-01-21 衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、地上設備、宇宙交通管理システム、宇宙物体管理部、および軌道降下時衝突回避運用方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/002794 WO2020157807A1 (ja) 2019-01-28 2019-01-28 衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、および地上設備
PCT/JP2019/017635 WO2020158001A1 (ja) 2019-01-28 2019-04-25 衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、および地上設備

Country Status (3)

Country Link
US (1) US20220081132A1 (ja)
JP (5) JP7118178B2 (ja)
WO (3) WO2020157807A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112257016A (zh) * 2020-10-15 2021-01-22 中国西安卫星测控中心 一种Walker星座中长期碰撞预警方法
WO2021193411A1 (ja) * 2020-03-26 2021-09-30 三菱電機株式会社 衛星コンステレーション形成システム、メガコンステレーション事業装置、衛星コンステレーション、衛星、および地上設備
CN113665844A (zh) * 2021-09-10 2021-11-19 上海卫星工程研究所 用于堆叠卫星与运载分离的星箭解锁装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019215807A1 (ja) * 2018-05-08 2019-11-14 日本電気株式会社 監視装置、学習装置、監視方法、学習方法及び記憶媒体
WO2020157807A1 (ja) * 2019-01-28 2020-08-06 三菱電機株式会社 衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、および地上設備
US11668834B2 (en) * 2019-05-28 2023-06-06 Xona Space Systems Inc. Satellite for transmitting a navigation signal in a satellite constellation system
FR3110551B1 (fr) * 2020-05-25 2022-06-03 Airbus Defence & Space Sas Procédé d’ajustement de trajectoire orbitale de satellite
US11414218B1 (en) * 2020-06-03 2022-08-16 Amazon Technologies, Inc. System for maintaining satellites in orbital configuration
WO2022064720A1 (ja) * 2020-09-28 2022-03-31 三菱電機株式会社 衛星情報伝送システム、通信衛星、地上設備及び衛星通信システム
US11899120B2 (en) 2021-06-30 2024-02-13 Xona Space Systems Inc. Generation and transmission of navigation signals
WO2023008245A1 (ja) * 2021-07-27 2023-02-02 三菱電機株式会社 衛星コンステレーション維持方法、衛星コンステレーション、軌道降下方法および人工衛星
CN115072006B (zh) * 2022-07-06 2023-04-21 上海交通大学 基于空间摄动主动利用的双模式轨道重构控制方法及系统
CN117236073A (zh) * 2023-11-10 2023-12-15 中国人民解放军战略支援部队航天工程大学 一种中轨导航星座卫星的失效性能评估方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140578A (ja) * 1984-07-20 1986-02-26 ドイチエ、フオルシユンクス・ウント・フエルザハザンシユタルト、ヒユール、ルフト・ウント・ラオムフアールト、アインゲトウラゲナー、フエライン 衛星を用いる航行システム
JPH09130317A (ja) * 1995-10-03 1997-05-16 Trw Inc 多高度の衛星中継システム及び方法
US5813634A (en) * 1995-10-23 1998-09-29 Motorola, Inc. Method for replacing failing satellites in a satellite communication system
US5979832A (en) * 1998-01-22 1999-11-09 Mobile Communication Holdings, Inc. Dual ring array of satellites
JP2000341191A (ja) * 1999-05-28 2000-12-08 Natl Space Development Agency Of Japan 衛星軌跡が連鎖回帰型となる衛星群を用いた衛星通信システム及び衛星測位通信複合システム
JP2001335000A (ja) * 2000-05-25 2001-12-04 Communication Research Laboratory 人工衛星の緊急用軌道離脱装置
US6655637B1 (en) * 2002-06-24 2003-12-02 The Aerospace Corporation Spacecraft for removal of space orbital debris
US7720604B1 (en) * 2005-06-01 2010-05-18 Lockheed Martin Corporation Stationkeeping optimization for inclined elliptical satellite orbit constellations
JP2010533290A (ja) * 2007-07-10 2010-10-21 アストリウム エスアーエス 地上の使用者の位置決めシステム
JP2014507334A (ja) * 2011-03-08 2014-03-27 アストリウム ゲゼルシャフト ミット ベシュレンクテル ハフツング 宇宙空間を自由に飛行している物体の回収・制動装置
JP2014520724A (ja) * 2011-07-18 2014-08-25 ディーオービット ソチエタ ア リスポンサビリタ リミタータ 人工衛星を移動又は撤去させるための装置
WO2015190527A1 (ja) * 2014-06-13 2015-12-17 国立研究開発法人宇宙航空研究開発機構 スペースデブリの軌道降下方法、軌道降下システム、及び、人工衛星の軌道変換方法、軌道変換システム
JP2016508911A (ja) * 2012-12-20 2016-03-24 タレス アレーニア スペース イタリア ソチエタ ペル アツィオーニ コン ユニコ ソシオ 地球観測宇宙ミッション用の革新的な軌道設計
WO2016052518A1 (ja) * 2014-09-30 2016-04-07 株式会社Ihi デブリ除去装置及びデブリ除去方法
CN105511483A (zh) * 2015-12-02 2016-04-20 上海宇航系统工程研究所 鸟巢式星座及其设计方法
WO2017110105A1 (ja) * 2015-12-21 2017-06-29 株式会社Ihiエアロスペース 衛星コンステレーションの形成方法と形成装置
US20180022474A1 (en) * 2016-07-20 2018-01-25 Worldvu Satellites Limited Constellation Configuration for Constellations having a Large Number of LEO Satellites
CN107871047A (zh) * 2017-11-21 2018-04-03 中国人民解放军战略支援部队航天工程大学 一种复杂空间系统安全管理平行计算方法
US20180346153A1 (en) * 2017-05-30 2018-12-06 Launchspace Technologies Corporation Apparatus and Methods for Orbital Sensing and Debris Removal
US20180354658A1 (en) * 2015-07-31 2018-12-13 D-orbit Srl Propulsion system for small artificial satellites

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270498A (ja) * 1992-03-24 1993-10-19 Toshiba Corp 人工衛星
US5421540A (en) * 1992-08-26 1995-06-06 Ting; Paul C. Method and apparatus for disposal/recovery of orbiting space debris
US5803407A (en) * 1993-11-12 1998-09-08 Scott; David R. Apparatus and methods for in-space satellite operations
US5806802A (en) * 1993-11-12 1998-09-15 Scott; David D. Apparatus and methods for in-space satellite operations
US5511748A (en) * 1993-11-12 1996-04-30 Scott; David R. Method for extending the useful life of a space satellite
US6017000A (en) * 1998-08-02 2000-01-25 Scott; David R. Apparatus and methods for in-space satellite operations
US6757612B1 (en) * 2001-07-06 2004-06-29 Oceanit Laboratories, Inc. Phenomenological orbital debris impact risk assessment model and software
US8052092B2 (en) * 2009-01-30 2011-11-08 The Boeing Company Method and apparatus for satellite orbital change using space debris
US9944412B2 (en) * 2013-10-04 2018-04-17 Busek Co., Inc. Spacecraft system for debris disposal and other operations and methods pertaining to the same
ES2727867T3 (es) * 2014-10-30 2019-10-21 Airbus Defence & Space Ltd Interceptación de desechos espaciales
JP6586658B2 (ja) * 2015-05-12 2019-10-09 国立研究開発法人宇宙航空研究開発機構 トルク発生システム、宇宙機の姿勢制御システム、宇宙機の相対位置・速度制御システム
US9714101B1 (en) * 2016-10-25 2017-07-25 Marshall H. Kaplan Apparatus and methods for orbital debris removal
US9617017B1 (en) * 2016-10-25 2017-04-11 Marshall H. Kaplan Apparatus and methods for orbital debris removal
WO2020157807A1 (ja) 2019-01-28 2020-08-06 三菱電機株式会社 衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、および地上設備

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140578A (ja) * 1984-07-20 1986-02-26 ドイチエ、フオルシユンクス・ウント・フエルザハザンシユタルト、ヒユール、ルフト・ウント・ラオムフアールト、アインゲトウラゲナー、フエライン 衛星を用いる航行システム
JPH09130317A (ja) * 1995-10-03 1997-05-16 Trw Inc 多高度の衛星中継システム及び方法
US5813634A (en) * 1995-10-23 1998-09-29 Motorola, Inc. Method for replacing failing satellites in a satellite communication system
US5979832A (en) * 1998-01-22 1999-11-09 Mobile Communication Holdings, Inc. Dual ring array of satellites
JP2000341191A (ja) * 1999-05-28 2000-12-08 Natl Space Development Agency Of Japan 衛星軌跡が連鎖回帰型となる衛星群を用いた衛星通信システム及び衛星測位通信複合システム
JP2001335000A (ja) * 2000-05-25 2001-12-04 Communication Research Laboratory 人工衛星の緊急用軌道離脱装置
US6655637B1 (en) * 2002-06-24 2003-12-02 The Aerospace Corporation Spacecraft for removal of space orbital debris
US7720604B1 (en) * 2005-06-01 2010-05-18 Lockheed Martin Corporation Stationkeeping optimization for inclined elliptical satellite orbit constellations
JP2010533290A (ja) * 2007-07-10 2010-10-21 アストリウム エスアーエス 地上の使用者の位置決めシステム
JP2014507334A (ja) * 2011-03-08 2014-03-27 アストリウム ゲゼルシャフト ミット ベシュレンクテル ハフツング 宇宙空間を自由に飛行している物体の回収・制動装置
JP2014520724A (ja) * 2011-07-18 2014-08-25 ディーオービット ソチエタ ア リスポンサビリタ リミタータ 人工衛星を移動又は撤去させるための装置
JP2016508911A (ja) * 2012-12-20 2016-03-24 タレス アレーニア スペース イタリア ソチエタ ペル アツィオーニ コン ユニコ ソシオ 地球観測宇宙ミッション用の革新的な軌道設計
WO2015190527A1 (ja) * 2014-06-13 2015-12-17 国立研究開発法人宇宙航空研究開発機構 スペースデブリの軌道降下方法、軌道降下システム、及び、人工衛星の軌道変換方法、軌道変換システム
WO2016052518A1 (ja) * 2014-09-30 2016-04-07 株式会社Ihi デブリ除去装置及びデブリ除去方法
US20180354658A1 (en) * 2015-07-31 2018-12-13 D-orbit Srl Propulsion system for small artificial satellites
CN105511483A (zh) * 2015-12-02 2016-04-20 上海宇航系统工程研究所 鸟巢式星座及其设计方法
WO2017110105A1 (ja) * 2015-12-21 2017-06-29 株式会社Ihiエアロスペース 衛星コンステレーションの形成方法と形成装置
US20180022474A1 (en) * 2016-07-20 2018-01-25 Worldvu Satellites Limited Constellation Configuration for Constellations having a Large Number of LEO Satellites
US20180346153A1 (en) * 2017-05-30 2018-12-06 Launchspace Technologies Corporation Apparatus and Methods for Orbital Sensing and Debris Removal
CN107871047A (zh) * 2017-11-21 2018-04-03 中国人民解放军战略支援部队航天工程大学 一种复杂空间系统安全管理平行计算方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MURAKAMI, DAVID ET AL.: "Space Traffic Management with a NASA UAS Traffic Management (UTM) Inspired Architecture", AIAA SCITECH 2019 FORUM, 10 January 2019 (2019-01-10), pages 1 - 27, XP055726298, Retrieved from the Internet <URL:https://utm.arc.nasa.gov/docs/2019_Murakami_SciTech_2019.pdf> [retrieved on 20200324], DOI: 10.2514/6.2019-2004 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021193411A1 (ja) * 2020-03-26 2021-09-30 三菱電機株式会社 衛星コンステレーション形成システム、メガコンステレーション事業装置、衛星コンステレーション、衛星、および地上設備
JPWO2021193411A1 (ja) * 2020-03-26 2021-09-30
JP7241238B2 (ja) 2020-03-26 2023-03-16 三菱電機株式会社 衛星コンステレーション形成システム、メガコンステレーション事業装置、および地上設備
CN112257016A (zh) * 2020-10-15 2021-01-22 中国西安卫星测控中心 一种Walker星座中长期碰撞预警方法
CN112257016B (zh) * 2020-10-15 2024-03-29 中国西安卫星测控中心 一种Walker星座中长期碰撞预警方法
CN113665844A (zh) * 2021-09-10 2021-11-19 上海卫星工程研究所 用于堆叠卫星与运载分离的星箭解锁装置
CN113665844B (zh) * 2021-09-10 2023-09-19 上海卫星工程研究所 用于堆叠卫星与运载分离的星箭解锁装置

Also Published As

Publication number Publication date
WO2020157807A1 (ja) 2020-08-06
WO2020158001A1 (ja) 2020-08-06
JPWO2020158505A1 (ja) 2021-09-30
JP7270814B2 (ja) 2023-05-10
JPWO2020158001A1 (ja) 2021-09-30
JP7270815B2 (ja) 2023-05-10
JP7118178B2 (ja) 2022-08-15
JP7224515B2 (ja) 2023-02-17
US20220081132A1 (en) 2022-03-17
JP7118179B2 (ja) 2022-08-15
JP2022105747A (ja) 2022-07-14
JP2022111172A (ja) 2022-07-29
JP2022105748A (ja) 2022-07-14

Similar Documents

Publication Publication Date Title
WO2020158505A1 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、地上設備、宇宙交通管理システム、宇宙物体管理部、および軌道降下時衝突回避運用方法
WO2021221035A1 (ja) 宇宙状況監視事業装置、地上設備、宇宙交通事業装置、宇宙交通管理システム、および観測衛星
JP7329402B2 (ja) 軌道遷移支援装置、軌道遷移支援方法、および軌道遷移支援プログラム
JP7068763B2 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション、および地上装置
JP7224530B2 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、地上設備、事業装置、およびオープンアーキテクチャーデータリポジトリ
JP7068765B2 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、および地上装置
JP2023086965A (ja) ジャミング衛星回避方法、および、メガコンステレーション事業装置
WO2020256024A1 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション、および地上設備
JP7068764B2 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション、デオービット方法、デブリ回収方法、および地上装置
WO2021193411A1 (ja) 衛星コンステレーション形成システム、メガコンステレーション事業装置、衛星コンステレーション、衛星、および地上設備
JP2023001802A (ja) デブリ除去事業装置、地上設備、および、メガコンステレーション事業装置
JP7313246B2 (ja) ロケット打上支援装置、ロケット打上支援方法、およびロケット打上支援プログラム
JP2021054167A (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、および、地上装置
JP7233608B2 (ja) 宇宙情報レコーダー、危険解析システム、危険解析方法、メガコンステレーション事業装置、ssa事業装置、ロケット打ち上げ事業装置、衛星事業装置、デブリ除去事業装置、軌道遷移事業装置、および、oadr
JP7233602B2 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、地上設備、および事業装置
JP7224543B2 (ja) ロケット打上支援装置、ロケット打上支援システム、ロケット打上支援方法、宇宙情報レコーダー、宇宙交通管理装置、宇宙状況監視事業装置、メガコンステレーション事業装置、および、oadr
JP2024069634A (ja) ロケット打上支援システム
JP2024069633A (ja) ロケット、およびロケット打上方法
JP2023018220A (ja) ロケット打ち上げ方法、ロケット打ち上げ制御装置、軌道投入方法、衛星コンステレーション維持方法、デブリ除去方法、ロケット回収方法、回収型ロケット、ロケット発射場、ロケット再利用システム、ロケット、衛星コンステレーション、および、地上設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020569532

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748234

Country of ref document: EP

Kind code of ref document: A1