JP7270814B2 - 衛星コンステレーション形成システム、および、衛星コンステレーション形成方法 - Google Patents
衛星コンステレーション形成システム、および、衛星コンステレーション形成方法 Download PDFInfo
- Publication number
- JP7270814B2 JP7270814B2 JP2022086954A JP2022086954A JP7270814B2 JP 7270814 B2 JP7270814 B2 JP 7270814B2 JP 2022086954 A JP2022086954 A JP 2022086954A JP 2022086954 A JP2022086954 A JP 2022086954A JP 7270814 B2 JP7270814 B2 JP 7270814B2
- Authority
- JP
- Japan
- Prior art keywords
- orbital
- satellite
- planes
- satellite constellation
- satellites
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 79
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 238000007726 management method Methods 0.000 description 81
- 238000004891 communication Methods 0.000 description 52
- 238000010586 diagram Methods 0.000 description 47
- 238000012545 processing Methods 0.000 description 30
- 230000000694 effects Effects 0.000 description 29
- 230000006870 function Effects 0.000 description 29
- 230000008569 process Effects 0.000 description 25
- 238000003860 storage Methods 0.000 description 25
- 238000004458 analytical method Methods 0.000 description 16
- 230000003287 optical effect Effects 0.000 description 16
- 238000010276 construction Methods 0.000 description 14
- 230000005540 biological transmission Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 11
- 238000003384 imaging method Methods 0.000 description 10
- 230000001133 acceleration Effects 0.000 description 9
- 230000001360 synchronised effect Effects 0.000 description 8
- 239000013598 vector Substances 0.000 description 8
- 238000007792 addition Methods 0.000 description 7
- 238000011084 recovery Methods 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 239000000470 constituent Substances 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000007704 transition Effects 0.000 description 4
- 230000006378 damage Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000007667 floating Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000001174 ascending effect Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000003380 propellant Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 244000144992 flock Species 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/242—Orbits and trajectories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/10—Artificial satellites; Systems of such satellites; Interplanetary vehicles
- B64G1/1085—Swarms and constellations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/242—Orbits and trajectories
- B64G1/2429—Station keeping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G3/00—Observing or tracking cosmonautic vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Aviation & Aerospace Engineering (AREA)
- Physics & Mathematics (AREA)
- Astronomy & Astrophysics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Radio Relay Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Description
衛星群により構成され、前記衛星群が連携してサービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムにおいて、
前記複数の軌道面の各軌道面の軌道高度が同じであり、かつ、前記複数の軌道面の各軌道面が互いに異なる面に存在する前記衛星コンステレーションを形成する衛星コンステレーション形成部を備え、
前記衛星コンステレーション形成部は、
前記複数の軌道面の軌道面同士の交点を、各軌道面を飛行する衛星が通過する衛星通過時刻が、同一軌道面において、次衛星が飛来するまでの待ち時間を前記複数の軌道面の軌道面数で割った時刻ずれ値の倍数となっており、かつ、前記複数の軌道面のいかなる2面の軌道面の交点においても前記衛星通過時刻が一致しない前記衛星コンステレーションを形成し、
前記衛星コンステレーション形成部は、
前記複数の軌道面の各軌道面の軌道傾斜角が概略90度であり、全ての軌道面の全ての衛星が極域近傍を通過する前記衛星通過時刻が前記時刻ずれ値の間隔で互いにずれている前記衛星コンステレーションを形成する。
図1は、地上に対し、複数衛星が連携して地球70の全球に亘り通信サービスを実現する例を示す図である。
図1は、全球に亘り通信サービスを実現する衛星コンステレーション20を示している。
同一軌道面を同一高度で飛行している複数の衛星の各衛星では、地上に対する通信サービス範囲が後続衛星の通信サービス範囲とオーバーラップしている。よって、このような複数の衛星によれば、地上の特定地点に対して、同一軌道面上の複数の衛星が時分割的に交互に交代しながら通信サービスを提供することができる。
しかしながら、単一軌道面で通信サービスを提供できるのは衛星軌道直下付近に限定される。そこで、地球に対して軌道面が東西方向に回転した別の軌道面を隣接させ、その軌道面上の複数の衛星による通信サービスも同時に実施する。このように隣接軌道面を設けることにより、隣接軌道間の地上に対する通信サービスを面的に網羅することが可能となる。同様に、地球の周りに多数の軌道面を概ね均等配置すれば、全球に亘り地上に対する通信サービスが可能となる。地上の特定地点から見れば、個々の衛星は短い時間で飛び去ってしまう。しかし、軌道上複数の衛星が時分割的に交互に交代しながら通信サービスを提供すれば、地上の任意の地点に対して連続的に通信サービスを提供することが可能となる。その際、個々の衛星は、後継衛星と通信サービスを分担するために、衛星間の通信方式を用いて、必要な信号および情報を授受する。
図2は、地球観測サービスを実現する衛星コンステレーション20を示している。図2の衛星コンステレーションは、光学センサあるいは合成開口レーダといった電波センサである地球観測装置を具備した衛星が同一軌道面を同一高度で飛行する。このように、地上の撮像範囲が時間遅れで後続衛星がオーバーラップする衛星群では、地上の特定地点に対して軌道上複数の衛星が時分割的に交互に交代しながら地上画像を撮像することにより地球観測サービスを提供する。しかしながら単一軌道面でサービス提供できるのは衛星軌道直下付近に限定される。これに対して地球に対して軌道面が東西方向に回転した別の軌道面を隣接させて、同様の複数衛星によるサービスを同時に実施すれば、隣接軌道間の地上サービスを面的に網羅することが可能となる。同様にして地球の周りに多数の軌道面を概ね均等配置すれば、全球に亘り網羅的に地球観測サービスが可能となる。地上の特定地点から見れば、個々の衛星は短い時間で飛び去ってしまうが、軌道上複数の衛星が時分割的に交互に交代しながらサービス提供すれば、地上の任意の地点に対していつでも地球観測サービスを提供することが可能となる。
本実施の形態に係る衛星コンステレーション形成システム100は、複数の軌道面21を有する衛星コンステレーション20を形成する。また、複数の軌道面21の各軌道面21には、複数の衛星30が同じ軌道高度で飛行する。
本実施の形態に係る衛星コンステレーション20は、各軌道面21の複数の衛星30からなる衛星群300により構成される。本実施の形態に係る衛星コンステレーション20は、衛星群300が連携してサービスを提供する。衛星コンステレーション20とは、具体的には、図1に示すような通信事業サービス会社による1つの衛星群から成る衛星コンステレーションを指す。また、衛星コンステレーション20とは、具体的には、図2に示すような観測事業サービス会社による1つの衛星群から成る衛星コンステレーションを指す。
図3では、衛星コンステレーション20における複数の軌道面の各軌道面21は、略同一面に存在する。一例として、各軌道面21には、複数の衛星として20機以上の衛星が飛行していてもよい。
図4では、衛星コンステレーション20における複数の軌道面の各軌道面21は、互いに異なる面に存在する。図4では、複数の軌道面の各軌道面21の軌道傾斜角は略90度となっているが、軌道面はずれている。すなわち、複数の軌道面21は互いに交差している。一例として、各軌道面21には、複数の衛星として20機以上の衛星が飛行していてもよい。また、図4の衛星コンステレーション20は、一例として、20面以上の軌道面21を有していてもよい。
同一軌道面において同一高度を飛行する複数の衛星30は、相対的に同じ速度で軌道面における相対位相を維持しながら飛行する。よって、同一軌道面において同一高度を飛行する複数の衛星30は、衝突することはない。
衛星コンステレーション形成システム100は、コンピュータを備える。図6では、1つのコンピュータの構成を示しているが、実際には、衛星コンステレーション20を構成する複数の衛星の各衛星30、および、衛星30と通信する地上設備の各々にコンピュータが備えられる。そして、複数の衛星の各衛星30、および、衛星30と通信する地上設備の各々に備えられたコンピュータが連携して、本実施の形態に係る衛星コンステレーション形成システム100の機能を実現する。以下において、衛星コンステレーション形成システム100の機能を実現するコンピュータの構成の一例について説明する。
プロセッサ910は、演算処理を行うIC(Integrated Circuit)である。プロセッサ910の具体例は、CPU、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。
補助記憶装置922は、データを保管する記憶装置である。補助記憶装置922の具体例は、HDDである。また、補助記憶装置922は、SD(登録商標)メモリカード、CF、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVDといった可搬記憶媒体であってもよい。なお、HDDは、Hard Disk Driveの略語である。SD(登録商標)は、Secure Digitalの略語である。CFは、CompactFlash(登録商標)の略語である。DVDは、Digital Versatile Diskの略語である。
出力インタフェース940は、ディスプレイといった出力機器のケーブルが接続されるポートである。出力インタフェース940は、具体的には、USB端子またはHDMI(登録商標)(High Definition Multimedia Interface)端子である。ディスプレイは、具体的には、LCD(Liquid Crystal Display)である。
衛星コンステレーション形成プログラムは、上記の衛星コンステレーション形成部の「部」を「処理」、「手順」あるいは「工程」に読み替えた各処理、各手順あるいは各工程を、コンピュータに実行させる。また、衛星コンステレーション形成方法は、衛星コンステレーション形成システム100が衛星コンステレーション形成プログラムを実行することにより行われる方法である。
衛星コンステレーション形成プログラムは、コンピュータ読取可能な記録媒体あるいは記憶媒体に格納されて提供されてもよい。また、衛星コンステレーション形成プログラムは、プログラムプロダクトとして提供されてもよい。
図7を用いて、本実施の形態に係る衛星コンステレーション形成システム100の動作について説明する。
ステップS102において、衛星コンステレーション形成部110は、複数の軌道面の各軌道面21の軌道高度が互いに異なる衛星コンステレーション20を形成する。衛星コンステレーション形成部110は、予め設定されたパラメータを用いて、各軌道面21の軌道高度が互いに異なる衛星コンステレーション20を形成する。一例として、各軌道面21には、複数の衛星として20機以上の衛星が飛行していてもよい。また、図4の衛星コンステレーション20は、一例として、20面以上の軌道面21を有していてもよい。
なお、近年SSA(Space Situation Awareness)と呼ばれる軌道上物体監視技術が着目されている。これにより、スペースフェンス構想と呼ばれる監視精度向上が実現されれば、衛星位置決定の向上手法を保有しない衛星事業者であっても高度差を縮小した衛星コンステレーションを実現可能となる。
また衛星進行方向に対しても、必ずしも撮像可能視野範囲が網羅される必要はなく、後続衛星ないし、隣接軌道面の衛星が視野方向変更すれば撮像可能な場合は同一軌道面の衛星数を減らすことも可能である。視野変更範囲が地表面換算で2000km程度となれば、1軌道面あたり2機から3機だけで全球を網羅できる可能性もある。
本実施の形態では、衛星コンステレーション形成部110の機能がソフトウェアで実現される。変形例として、衛星コンステレーション形成部110の機能がハードウェアで実現されてもよい。
電子回路は、衛星コンステレーション形成部110の機能を実現する専用の電子回路である。
電子回路は、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA、ASIC、または、FPGAである。GAは、Gate Arrayの略語である。ASICは、Application Specific Integrated Circuitの略語である。FPGAは、Field-Programmable Gate Arrayの略語である。
衛星コンステレーション形成部110の機能は、1つの電子回路で実現されてもよいし、複数の電子回路に分散して実現されてもよい。
別の変形例として、衛星コンステレーション形成部110の一部の機能が電子回路で実現され、残りの機能がソフトウェアで実現されてもよい。
本実施の形態に係る衛星コンステレーション形成システムでは、地上の特定地点に対して軌道上複数の衛星が時分割的に交互に交代しながらサービス提供する。そして、任意の軌道面では同一高度を飛翔する複数機の衛星が概略等間隔で飛翔する。さらに、互いに軌道高度の異なる複数の軌道面で構成された衛星コンステレーションを形成する。
なお、本実施の形態に係る衛星コンステレーションと同様に、同一軌道面を飛行して異なる軌道高度を飛行する衛星同士が衝突しないことは、異なる衛星コンステレーションの間でも同様である。よって、本実施の形態に係る基本概念は、複数衛星コンステレーションの衝突回避にも効果がある。近年混雑する宇宙空間における国際的なルール作りの必要性が訴求されているSTMにおいて、複数の衛星コンステレーションが共存して衝突回避するための方式を提供できるという効果がある。すなわち、本実施の形態に係る衛星コンステレーション形成システムによれば、数千機におよぶような膨大な数の衛星が近傍高度に密集している場合でも、衛星の衝突を回避することができるという効果がある。
本実施の形態では、主に、実施の形態1との相違点あるいは追加点について説明する。なお、実施の形態1と同様の構成には同一の符号を付し、その説明を省略する場合がある。
図8では、17個の軌道面を有する衛星コンステレーション20における各軌道面の相対高度差を表している。縦軸は、軌道面1の高度が高く、降順で高度が低くなることを表しており、距離を示すものではない。図8では、軌道面1を基準とした場合に、隣接する軌道面1と軌道面2との軌道高度の差、軌道面2と軌道面3との軌道高度の差、というようにプロットしていくと、正弦波状となることを示している。
地表面の画像を取得し、赤道上空の隣接軌道距離よりも広域の撮像が可能な光学センサを搭載した衛星コンステレーションによれば、全球をくまなく画像取得可能となる。光学センサの分解能と観測幅は軌道高度に依存するので、同じ仕様の光学センサを採用する衛星コンステレーションの場合、軌道高度の最も低い条件で撮像する場合が最も高分解能で、観測幅は最小となる。したがって、赤道上空で軌道高度が最低の条件における光学センサの観測幅が、隣接軌道間距離よりも大きければ、赤道上空を含めて網羅的に地表面の撮像が可能となる。
本実施の形態では、主に、実施の形態1および2との相違点あるいは追加点について説明する。なお、実施の形態1および2と同様の構成には同一の符号を付し、その説明を省略する場合がある。
衛星の相対位置が最適の状態では、対地サービス範囲の半径として、赤道上空隣接軌道間距離と同等に確保すれば、サービス範囲が全球を網羅可能となる。また、全ての軌道面において衛星高度が同じであればサービス領域も相対関係を維持するので、常に全球網羅したサービス継続が可能である。しかし、軌道高度が異なる軌道面においては、衛星進行速度が衛星高度に応じて相違があるために、衛星の相対位置が最適の状態で網羅的に確保されたサービス領域が、相対的に移動することにより空隙P、つまりサービスできない領域が生じる可能性がある。
図10では、対地サービス範囲の半径rbが赤道上空隣接軌道間距離Rbの√2/2である。この場合、図10に示すように、各軌道面の対地サービス範囲が45度ずつずれた場合でも、サービスできない領域(空隙)は生じない。
本実施の形態では、主に、実施の形態1から3との相違点あるいは追加点について説明する。なお、実施の形態1から3と同様の構成には同一の符号を付し、その説明を省略する場合がある。
地球観測衛星の光学衛星では、太陽光入射角がほぼ同一の条件で観測を継続することが望ましい。このため、太陽同期衛星と呼ばれる衛星の軌道が多用される。太陽同期衛星の軌道は、地球の公転と同期して軌道面が1年で1周回転する軌道面法線と太陽方向の角度が概ね一定である。また、太陽同期衛星の軌道は、地球の地方時LST(Local Sun Time)が年間を通して同じになる軌道である。
太陽同期軌道の条件が成立する軌道高度は間欠的に存在する。本実施の形態では、太陽同期軌道の条件に適合する軌道高度だけで軌道面を構成した衛星コンステレーション20が形成される。このような衛星コンステレーション20であれば、それぞれの軌道面が所望のLSTでのサービスを継続し、かつ衝突リスクのない衛星コンステレーションが実現可能になる。
なお、可視画像のみ撮像可能な光学センサの場合は夜間は撮像できないが、赤外センサあるいは電波センサであれば、夜間を通含めていつでも撮像が可能となる。
本実施の形態の変形例として、衛星コンステレーション形成部110は、複数の軌道面の各軌道面の軌道高度が、太陽同期準回帰軌道のみで構成されている衛星コンステレーション20を形成する態様について説明する。
複数の軌道面の各軌道面の軌道高度が太陽同期準回帰軌道のみで構成されている衛星コンステレーション20によれば、地球観測衛星で同一地点を長期に渡り繰り返し定常観測するための運用計画、撮像計画、およびデータ処理が容易になる。しかも、衝突リスクのない衛星コンステレーションが実現できるという効果がある。
また、例えば、13日回帰の軌道のみで構成する場合、約537km、約514km、約491km、約467km、445km、約422kmで構成すれば、軌道面6面で、高度差は最大でも約115kmの範囲で衛星コンステレーション20が実現できる。
本実施の形態では、主に、実施の形態1との相違点あるいは追加点について説明する。なお、実施の形態1と同様の構成には同一の符号を付し、その説明を省略する場合がある。
本実施の形態に係る衛星コンステレーション20は、衛星群300により構成される。また、衛星コンステレーション20では、衛星群300が連携してサービスを提供する。また、衛星コンステレーション20は、各軌道面21に複数の衛星30が同じ軌道高度で飛行する複数の軌道面21を有する。
また、本実施の形態に係る衛星コンステレーション20は、複数の軌道面の各軌道面21の軌道高度が同じであり、かつ、複数の軌道面の各軌道面21が互いに異なる面に存在する。
同一軌道面において同一高度を飛翔する衛星は相対的に同じ速度で軌道面における相対位相を維持しながら飛行するため衝突することはない。しかしながら、異なる軌道面において、同じ軌道高度を飛行する衛星同士は、図13および図14に示すように、軌道面の交線上で軌道高度の一致する交点において衝突する可能性がある。特に、図14に示すように、軌道高度100kmから2000km程度を飛翔する低軌道周回衛星で軌道傾斜角が約90度の衛星では極域付近に交点が存在するため、北極と南極の極域近傍において衝突リスクがある。
具体的には、低軌道周回衛星が1周回に要する時間が約100分程度として、仮に軌道面当たり20機の衛星が飛行する場合、特定地点を衛星が通過してから、後続衛星が飛来するまで約5分かかることになる。仮に軌道面が20面あったとすれば、300秒を略等間隔に分割した15秒ずつずらすことで、本実施の形態に係る衛星コンステレーション20を実現できる。
本実施の形態では、主に、実施の形態5との相違点あるいは追加点について説明する。なお、実施の形態5と同様の構成には同一の符号を付し、その説明を省略する場合がある。
図15および図24に示す衛星コンステレーション20では、複数の軌道面の各軌道面21の軌道傾斜角が約90度ではなく、かつ、複数の軌道面の各軌道面21が互いに異なる面に存在する。この衛星コンステレーション20では、任意の2つの軌道面が極域以外の地点で交差する。そこで、衛星コンステレーション形成部110は、互いに異なる軌道面同士の交点を双方の軌道面の衛星が通過する時刻が、同一軌道面の「次衛星が飛来するまでの待ち時間T1/軌道面数」の倍数であり、かつ、いかなる2面の軌道面の交点においても衛星通過時刻が一致しないように衛星コンステレーション20を形成する。
さらに、軌道傾斜角が約45度程度を飛行する地球観測衛星も存在しており、この軌道では太陽非同期衛星となる。低軌道傾斜角の場合は異なる2軌道面の交点が低緯度側に存在し、しかも複数の緯度で交点が発生する可能性が生じる。軌道面数と1軌道面を飛行する衛星数の組合せ如何では、衝突を必ず回避できるとは限らない。よって、本実施の形態に係る衛星コンステレーション20では、全ての2軌道面の交点において衝突が発生しない軌道面数と1軌道面当たりの衛星数の組合せを見出し、その後各交点における通過タイミングを維持することにより衝突を回避する。
衛星数が極端に増加した場合は、総当たりの衝突回避計算が煩雑になるため、異なる軌道面により構成する実施の形態1を採用してもよい。
本実施の形態では、主に、実施の形態5との相違点あるいは追加点について説明する。なお、実施の形態5と同様の構成には同一の符号を付し、その説明を省略する場合がある。
図16は、軌道面数が18面であって、相対的に10度ずつ軌道面の角度が変わる事例を示している。極通過タイミングとして、後続衛星が飛来するまでの待ち時間を18等分し、奇数面ではタイミング1から順に、偶数面ではタイミング10から順にずらして通過させていくと、結果的に地上サービス範囲は偶数面と奇数面で交互に間を埋める状態となるので、地表面を網羅的に包含できるという効果がある。
図18は、本実施の形態に係る衛星コンステレーション20において、軌道面数が奇数の場合の極通過タイミングを表す図である。
図17および図18に示すように、本実施の形態に係る衛星コンステレーション20では、軌道面数が奇数であることが好ましい。図17の例では、18面の隣に来る1面のサービス領域が隣り合ってしまって全球網羅する上で不整合を生じる可能性がある。そこで図18のように、軌道面数を奇数にすることにより、最終面と1面の地上サービス範囲が他と同様に交互に配置されるので、合理的に全球網羅できるという効果がある。
本実施の形態では、主に、実施の形態1から7に追加する点について説明する。なお、実施の形態1から7と同様の構成には同一の符号を付し、その説明を省略する場合がある。
図20は、衛星コンステレーション20の上空の衛星がデオービットする際の衝突リスクを示す図である。
本実施の形態に係る例1のデブリ除去方式は、故障などにより制御不能となった故障衛星が降下して、衛星の密集する軌道面を経由する前に、故障衛星の軌道面を変更するための捕獲装置または外力付与装置と、故障衛星を推進する推進装置とを備える。
図22は、推進装置の噴射による軌道傾斜角の変更を示す図である。
デブリ除去方式の具体例としては、他衛星を捕獲する捕獲装置と、他衛星に推進力を与える推進装置とを備えたデブリ回収衛星により故障衛星を捕獲し、推進装置により人為的に軌道を変更する方式が有効である。
衛星進行方向に対して増速すれば一時的に軌道高度が上昇するので、密集軌道とは異なる周期で軌道面が摂動の効果により地球の略地軸周りに回転し、密集軌道面を回避することが可能となる。衛星進行方向に対して減速すれば一時的に軌道高度が下降して、密集軌道とは異なる周期で軌道面が摂動の効果により地球の略地軸周りに回転し、密集軌道面を回避することが可能となる。故障衛星が密集軌道を通過することを予測されるまでの時間的猶予に応じて、密集軌道と会合する前に降下させるか、密集軌道を通り過ぎた後に降下させるか、衝突回避方式を選択可能である。よって、確実に衝突を回避できるという効果がある。但し摂動による方法では滞留時間が長いというデメリットもあるため、積極的に推進装置を噴射して面外方向に軌道面を回転させる方式もありうる。この場合は推薬消費量の多いので、推進系タンクを含めてデブリ除去方式が大型化する。
本実施の形態に係る例2のデブリ除去方式は、楕円軌道を描きながら高度100kmから2000km程度を浮遊する物体が衛星コンステレーションを構成する軌道面を経由する前に、当該物体の軌道面を変更するための捕獲装置または外力付与装置と、当該物体に推進力を与える推進装置とを具備する。なお、外力付与装置は、「力」のみならず「トルク」、あるいは、合体することに伴う「質量特性変化」まで「外力」に含む場合がある。外力付与装置は、外乱付与装置ともいう。
本実施の形態では、主に、実施の形態1から8との相違点あるいは追加点について説明する。なお、実施の形態1から8と同様の構成には同一の符号を付し、その説明を省略する場合がある。
本実施の形態に係る衛星コンステレーション構築方式の例1では、衛星コンステレーション20を構成する構成要素の軌道面の近傍の異なる軌道面であって、近傍軌道面の衛星が飛行する軌道高度とは異なる軌道高度に軌道投入する。そして、衛星コンステレーション構築方式の例1では、増速ないし減速して軌道高度と軌道面の地球地軸周りの角度を変更して構成衛星を追加する。
本実施の形態に係る衛星コンステレーション構築方式の例2では、他国システムあるいは類似システムが採用する軌道上、軌道高度、飛行する衛星数などの情報を予め収集したデータベースを具備する。本実施の形態に係る衛星コンステレーション構築方式の例2では、既存の衛星の飛行する軌道面とは異なり、かつ構成要素の軌道面の近傍の異なる軌道面であって、近傍軌道面の衛星が飛行する軌道高度とは異なる軌道高度に軌道投入する。本実施の形態に係る衛星コンステレーション構築方式の例2では、増速ないし減速して軌道高度と軌道面の地球地軸周りの角度を変更して構成衛星を追加する。
また、衛星コンステレーション構築方式の例2では、宇宙空間の飛行物体の軌道および位置のデータ処理装置を地上に具備する。
本実施の形態では、主に、実施の形態1から9に追加する点について説明する。なお、実施の形態1から9と同様の構成には同一の符号を付し、その説明を省略する場合がある。
図23は、本実施の形態に係る地上設備500の例1の構成を示す図である。
地上設備500の例1の構成は実施の形態10と同様である。
軌道制御コマンド送信部510は、設計寿命末期を迎えたなどのデオービットさせる衛星30に、軌道制御コマンド51を送信する。
解析予測部520は、軌道離脱用コマンド受信後の衛星30の通過軌道を解析予測する。
しかしながらPMDあるいはADRでは、自由落下させて大気圏で燃え尽きる手法の必要性に訴求しているだけであって、落下途中で混雑軌道を通過する場合の回避策を有していない。また、静止軌道衛星では、デブリ衝突のリスクが予見された場合に、デブリの予測軌道情報を衝突警報と共に公表して、被衝突側衛星が衝突回避行動をとる事例がある。しかし、低軌道周回衛星において、別の衛星コンステレーションが構築されている場合、被衝突側衛星の回避行動が2次的衝突原因となるリスクが高い。すなわち、縦列駐車状態の前後衛星への衝突、同一面内で異なる高度の衛星群への衝突などのリスクである。
また、当該エリアに短期間に多数の被衝突側衛星が通過する可能性が高く、複数衛星が同時に回避行動をとった場合に、近傍衛星の挙動予測が困難となり、派生的な衝突リスクが発生する。
また、回避行動の結果として、軌道高度、軌道面内位相のみならず、軌道面の回転に伴うLSTの移動が発生し、復帰困難、ないし衛星コンステレーションが目的とするサービス継続に支障を来すリスクがある。
さらに、回避機能を持たない実験衛星であるCubeSatといった衛星が多数飛翔している場合がある。
また、自由落下に伴う軌道予測精度が悪い場合に、衝突警報を出すべきエリアと時間帯が広域かつ長時間となり、被衝突衛星側に頻繁に衝突警報が発せられ、対応不能になるという場合がある。
本実施の形態の地上設備500の例2では、デブリ回収衛星31に、軌道制御機能を喪失した故障衛星をデオービットさせる捕獲コマンド52と軌道制御コマンド51を、デブリ回収衛星31に対して送信する。デブリ回収衛星31は、例えば、故障により軌道制御機能を喪失した衛星を回収する装置を具備する衛星である。デブリ回収衛星31は、故障衛星を捕獲する捕獲装置と推進装置とを備える。
通信装置950は、デブリ回収衛星を追跡管制運用する信号を送受する。
軌道制御コマンド送信部510は、軌道制御コマンド51あるいは捕獲コマンド52を送信する。
解析予測部520は、故障衛星を捕獲した状態のデブリ回収衛星の通過軌道を解析予測する。
本実施の形態に係る地上設備500の例3では、通信装置950は、軌道高度800km以上の混雑軌道よりも上空を飛翔するロケットの残骸を回収する装置を具備するデブリ回収衛星を追跡管制運用する信号を送受する。
軌道制御コマンド送信部510は、ロケットの残骸を、デブリ回収衛星の具備する捕獲装置と推進装置を動作させることにより、軌道離脱させる捕獲コマンドと軌道制御コマンドをデブリ回収衛星に対して送信する。
解析予測部520は、ロケットの残骸を捕獲した状態のデブリ回収衛星の通過軌道を解析予測する。
本実施の形態に係る地上設備500の例3では、上記衛星の具備する軌道制御装置により、衛星速度の増速、ないし減速による軌道高度の上昇、ないし下降、あるいは衛星進行方向と概略直交する方向への推進器の噴射による軌道面の面外方向への加速度付与による軌道傾斜角の変更をする。そして、本実施の形態に係る地上設備500の例3では、混雑軌道通過タイミング、ないし軌道面をずらして衝突リスクを回避するアクティブデオービット運用を実施する。
ここでは、地上設備500の例1から例3で説明したように、衛星の軌道離脱あるいはデブリ回収による軌道離脱をする降下途中において、解析予測部520が、低高度に構築された別の衛星コンステレーションの極域密集域を通過すると判明した場合について説明する。
地上設備500の例4では、当該衛星コンステレーションとは異なる軌道傾斜角となるよう衛星進行方向と概略直交する方向への推進器の噴射による軌道面の面外方向への加速度付与による軌道傾斜角の変更をする。これにより、地上設備500の例4では、混雑軌道とは軌道面の傾きを変更するか、または通過タイミングをずらして衝突リスクを回避するアクティブデオービット運用を実施する。
地上設備は、衛星の軌道離脱あるいはデブリ回収による軌道離脱をする降下途中において、低高度に構築された別の衛星コンステレーションの極域密集域または混雑軌道面を通過することが解析予測で判明した場合に、衝突リスクを回避するアクティブデオービット運用を実施する。具体的には、地上設備は、当該衛星コンステレーションとは異なる軌道傾斜角となるよう衛星進行方向と概略直交する方向への推進器の噴射による軌道面の面外方向への加速度付与による軌道傾斜角の変更をすることによって、混雑軌道とは軌道面の傾きを変更するか、または通過タイミングをずらして衝突リスクを回避するアクティブデオービット運用を実施する。
地上設備は、衛星の軌道離脱あるいはデブリ回収による軌道離脱をする降下途中において、低高度に構築された別の衛星コンステレーションの極域密集域または混雑軌道面を通過することが解析予測で判明した場合に、衝突リスクを回避するアクティブデオービット運用を実施する。具体的には、地上設備は、当該衛星コンステレーションとは異なる軌道傾斜角となるよう衛星進行方向と概略直交する方向への推進器の噴射による軌道面の面外方向への加速度付与による軌道傾斜角の変更をすることによって、混雑軌道とは軌道面の傾きを変更するか、または通過タイミングをずらして衝突リスクを回避するアクティブデオービット運用を実施する。
地上設備は、衛星の軌道離脱あるいはデブリ回収による軌道離脱をする降下途中において、低高度に構築された別の衛星コンステレーションの極域密集域または混雑軌道面を通過することが解析予測で判明した場合に、衝突リスクを回避するアクティブデオービット運用を実施する。具体的には、地上設備は、当該衛星コンステレーションとは異なる軌道傾斜角となるよう衛星進行方向と概略直交する方向への推進器の噴射による軌道面の面外方向への加速度付与による軌道傾斜角の変更をすることによって、混雑軌道とは軌道面の傾きを変更するか、または通過タイミングをずらして衝突リスクを回避するアクティブデオービット運用を実施する。
低軌道衛星のデオービットは衛星進行方向と逆方向に推進器を動作して軌道高度を低下させ、大気圏突入により焼き尽くす手法が一般的である。しかしながら、昨今計画されているメガ衛星コンステレーションは、軌道高度が1000km以上と低軌道周回衛星よりも高高度であるため、寿命末期あるいは故障時にデオービットする際、より低軌道高度を飛行する衛星に衝突するリスクがある。
またメガ衛星コンステレーションでは軌道面も多様に構成され、それぞれの軌道面に多数衛星が隊列飛行しているため、デオービット時に衛星が通過する軌道経路も多岐に渡る。特に太陽同期軌道のLST10:30近傍あるいは極域といった低軌道衛星の混雑領域を通過する可能性がある場合に、衝突確率が高い。
デオービットを自由落下に依存する場合は、徐々に高度を低下させるのに伴って、軌道面が回転するため、いかなる軌道面からデオービットした衛星にも太陽同期衛星の混雑軌道を通過する可能性がある。
また極域付近を通過する軌道傾斜角略90度近傍の軌道面で構成される衛星コンステレーションの衛星をデオービットする場合、軌道高度が低下しても軌道傾斜角が概ね同様なため、より低軌道の極軌道衛星と衝突する確率が高い。
近年数千機に及ぶ大規模衛星コンステレーションの構想が発表されているが、同一高度を飛翔する衛星は軌道面の交線上で、衛星高度の一致する2点で衝突するリスクがある。大規模コンステレーションでは特に全ての軌道面が高確率で会合する極域において衝突確率が極めて高くなる。
同一軌道面に多数の衛星が飛行する例として赤道上空で軌道高度約36000kmを飛行する静止軌道衛星が有名であり、同一軌道面を約300の衛星が飛行している。地球自転と同期しているため、地上から見るとあたかも宇宙空間で静止しているように見えるが、同一高度を略円軌道を描いて飛行しているため、静止軌道上衛星は衝突せず運用継続している。また地球から見た角度は約1度から2度程度しか離れていないので接近しているように感じるが、軌道上の2衛星間の距離は十分離れている。
また静止軌道とは異なり、異なる軌道面を同時に利用するため、2面の交線上で衝突する可能性が存在する。軌道傾斜角90°近傍の衛星コンステレーションでは複数の軌道面が地球の自転軸近傍を交線となし、全ての衛星が南極上空と北極上空を通過するため、軌道高度が一致すると衝突する可能性が高い。
また地球観測衛星で多用するLST10:00~11:00の太陽同期軌道は衛星が密集する軌道面が多く、同じ軌道面内に徐々に軌道高度を変化させる物体が侵入すると衝突リスクが高い。
また衛星コンステレーションの完成形態においては、いかなる2衛星も位置座標と時刻が同時に一致する条件(x1、y1、z1、t1)=(x2、y2、z2、t2)とならない限り衝突は発生しない。よって、軌道高度あるいはタイミング、軌道面内の位相などを人為的に操作することで衝突を回避することができる。しかし、衛星コンステレーションの構築過渡段階において、新規衛星をコンステレーションに追加するプロセスでは衝突リスクが高い。
また多数の衛星コンステレーションよりも高高度を飛行する衛星が制御不能な故障に陥って自由落下する場合に、密集軌道面を高度変更しながら通過すると、同一軌道面内で複数の軌道高度の衛星群と会合する可能性があるため、衝突リスクが高い。
近傍軌道全体がバイオレートされて、多数のデブリが浮遊する状態になると、長期にわたりいかなる衛星も運用できなくなるリスクがあり、宇宙インフラへの依存性が高まる一方の社会生活全般に悪影響が及ぶ。
また衛星自体が高額であり、かつロケットによる打上げや運用に資する総コストが巨額であるため、衝突が発生すると巨額の経済的損失につながる。
また複数衛星が連携することにより例えば通信サービスといった目的を実現しているため、衝突に伴う衛星欠落により、当初目的のサービスの中断および品質劣化を来す。
本実施の形態では、主に、実施の形態1から10に追加する点について説明する。なお、実施の形態1から10と同様の構成には同一の符号を付し、その説明を省略する場合がある。
また、本実施の形態に係る衛星コンステレーション形成部110は、複数の軌道面の各軌道面21の軌道高度が互いに異なり、かつ、複数の軌道面の各軌道面21の公転周期が互いに等しくなる軌道傾斜角を各軌道面が有する衛星コンステレーション20を形成する。例えば、複数の軌道面の各軌道面は、図11に示すような太陽同期軌道である。
そして、衛星コンステレーション形成部110は、設定されたパラメータを用いて、各軌道面21の軌道高度が互いに異なり、かつ、複数の軌道面の各軌道面21の公転周期が互いに等しくなる軌道傾斜角を各軌道面が有する衛星コンステレーション20を形成する。
太陽同期する軌道面同士は軌道高度が異なっていても公転周期が等しくなる。以下に、軌道高度が異なり、太陽同期軌道となる複数軌道面の例を示す。太陽同期するための制約条件は概ね軌道高度と軌道傾斜角の相関関係で決まるので、軌道高度に応じて軌道傾斜角を適切に設定すれば、太陽同期軌道を形成できる。
軌道高度1000km:軌道傾斜角約99.5°
軌道高度1100km:軌道傾斜角約99.9°
軌道高度1200km:軌道傾斜角約100.4°
軌道高度1300km:軌道傾斜角約100.9°
軌道高度1400km:軌道傾斜角約101.4°
軌道高度1500km:軌道傾斜角約102.0°
軌道高度1000kmの太陽同期軌道面:LST06:00
軌道高度1100kmの太陽同期軌道面:LST08:00
軌道高度1200kmの太陽同期軌道面:LST10:00
軌道高度1300kmの太陽同期軌道面:LST12:00
軌道高度1400kmの太陽同期軌道面:LST14:00
軌道高度1500kmの太陽同期軌道面:LST16:00
本実施の形態に係る地上設備500は、複数の軌道面の各軌道面における複数の衛星の相対位相を維持するように各衛星の高度を調整するとともに、複数の軌道面間の相対角度を維持するように各軌道面の軌道高度および軌道傾斜角の調整を行うコマンドを生成し、衛星群の各衛星に送信する。
図23は、本実施の形態に係る地上設備500である地上設備500の例5の構成を示す図である。
地上設備500の例5の構成は、実施の形態10の地上設備500の例1と同様である。
軌道制御コマンド送信部510は、複数の軌道面の各軌道面における複数の衛星の相対位相を維持するように各衛星の高度を調整するとともに、複数の軌道面間の相対角度を維持するように各軌道面の軌道高度および軌道傾斜角の調整を行う軌道制御コマンド51を衛星30に送信する。
軌道高度が異なり、かつ、軌道傾斜角が等しい軌道面の公転周期は相違する。このため、長期間運用する内に軌道面同士の相対角度が変化してしまう。この結果、複数の衛星で連携してサービスを実施する際に、衛星の配置が変化してしまって、サービスに支障を来す虞がある。また適切な軌道配置を維持するために、別途推進器を用いて軌道面を調整する場合は、調整中の期間にはサービスの継続ができなくなるという虞がある。
本実施の形態に係る衛星コンステレーション形成システムによれば、軌道面間の相対関係が維持されるので、支障なくサービス提供し続けながら、衝突リスクを回避することが可能となる。
本実施の形態では、主に、実施の形態1から11に追加する点あるいは異なる点について説明する。なお、実施の形態1から11と同様の構成には同一の符号を付し、その説明を省略する場合がある。
図26は、衛星コンステレーション形成システム600の衛星30の構成例である。
ここで、衛星コンステレーション形成システム600を形成する衛星30の構成について説明する。
衛星30は、衛星制御装置310と衛星通信装置32と推進装置33と姿勢制御装置34と電源装置35とを備える。その他、各種の機能を実現する構成要素を備えるが、図26では、衛星制御装置310と衛星通信装置32と推進装置33と姿勢制御装置34と電源装置35について説明する。衛星30は、宇宙物体60の一例である。
衛星通信装置32は、地上設備500と通信する装置である。具体的には、衛星通信装置32は、自衛星に関する各種データを地上設備500へ送信する。また、衛星通信装置32は、地上設備500から送信される各種コマンドを受信する。
推進装置33は、衛星30に推進力を与える装置であり、衛星30の速度を変化させる。具体的には、推進装置33は、アポジキックモーターまたは化学推進装置、または電気推進装置である。アポジキックモーター(AKM:Apogee Kick Motor)は、人工衛星の軌道投入に使われる上段の推進装置のことであり、アポジモーター(固体ロケットモーター使用時)、またはアポジエンジン(液体エンジン使用時)とも呼ばれている。
化学推進装置は、一液性ないし二液性燃料を用いたスラスタである。電気推進装置としては、イオンエンジンまたはホールスラスタである。アポジキックモーターは軌道遷移に用いる装置の名称であり、化学推進装置の一種である場合もある。
姿勢制御装置34は、衛星30の姿勢と衛星30の角速度と視線方向(Line Of Sight)といった姿勢要素を制御するための装置である。姿勢制御装置34は、各姿勢要素を所望の方向に変化させる。もしくは、姿勢制御装置34は、各姿勢要素を所望の方向に維持する。姿勢制御装置34は、姿勢センサとアクチュエータとコントローラとを備える。姿勢センサは、ジャイロスコープ、地球センサ、太陽センサ、スター・トラッカ、スラスタおよび磁気センサといった装置である。アクチュエータは、姿勢制御スラスタ、モーメンタムホイール、リアクションホイールおよびコントロール・モーメント・ジャイロといった装置である。コントローラは、姿勢センサの計測データまたは地上設備500からの各種コマンドにしたがって、アクチュエータを制御する。
電源装置35は、太陽電池、バッテリおよび電力制御装置といった機器を備え、衛星30に搭載される各機器に電力を供給する。
処理回路は、専用のハードウェアであってもよいし、メモリに格納されるプログラムを実行するプロセッサであってもよい。
処理回路において、一部の機能が専用のハードウェアで実現されて、残りの機能がソフトウェアまたはファームウェアで実現されてもよい。つまり、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせで実現することができる。
専用のハードウェアは、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGAまたはこれらの組み合わせである。
ASICは、Application Specific Integrated Circuitの略称である。FPGAは、Field Programmable Gate Arrayの略称である。
地上設備500は、全ての軌道面の多数衛星をプログラム制御する。地上設備500は、地上装置の例である。地上装置は、地上アンテナ装置、地上アンテナ装置に接続された通信装置、あるいは電子計算機といった地上局と、地上局にネットワークで接続されたサーバあるいは端末としての地上設備から構成される。また、地上装置には航空機、自走車両、あるいは移動端末といった移動体に搭載された通信装置を含んでも良い。
解析予測部520は、衛星30の軌道を解析予測する。
軌道制御コマンド送信部510は、衛星30に送信する軌道制御コマンド55を生成する。
軌道制御コマンド送信部510および解析予測部520は、衛星コンステレーション形成部11の機能を実現する。すなわち、軌道制御コマンド送信部510および解析予測部520は、衛星コンステレーション形成部11の例である。
衛星30は、さらに、衛星コンステレーション20を形成する衛星コンステレーション形成部11bを備える。そして、複数の衛星の各衛星30の衛星コンステレーション形成部11bと、地上設備500の各々に備えられた衛星コンステレーション形成部11とが連携して、衛星コンステレーション形成システム600の機能を実現する。なお、衛星30の衛星コンステレーション形成部11bは、衛星制御装置310に備えられていてもよい。
宇宙交通管理システム800は、複数の宇宙交通管理装置200を備える。
複数の宇宙交通管理装置200の各々は、宇宙を飛行する宇宙物体60を管理する複数の事業者の各々の事業装置40に実装される。複数の宇宙交通管理装置200は、互いに通信回線で接続されている。
宇宙交通管理装置200は、他の事業装置40と通信する。宇宙交通管理装置200は、地上設備500に搭載されていてもよい。また、宇宙交通管理装置200は、衛星コンステレーション形成システム600に搭載されていてもよい。
事業装置40には、メガコンステレーション事業装置41、LEOコンステレーション事業装置42、衛星事業装置43、軌道遷移事業装置44、デブリ除去事業装置45、ロケット打ち上げ事業装置46、およびSSA事業装置47といった装置が含まれる。LEOが、Low Earth Orbitの略語である。
LEOコンステレーション事業装置42は、低軌道コンステレーション、すなわちLEOコンステレーション事業を行うLEOコンステレーション事業者のコンピュータである。
衛星事業装置43は、1機から数機の衛星を扱う衛星事業者のコンピュータである。
軌道遷移事業装置44は、衛星の宇宙物体侵入警報を行う軌道遷移事業者のコンピュータである。
デブリ除去事業装置45は、デブリを回収する事業を行うデブリ除去事業者のコンピュータである。
ロケット打ち上げ事業装置46は、ロケット打ち上げ事業を行うロケット打ち上げ事業者のコンピュータである。
SSA事業装置47は、SSA事業、すなわち、宇宙状況監視事業を行うSSA事業者のコンピュータである。
宇宙交通管理プログラムは、宇宙交通管理システムの各部の「部」を「処理」、「手順」、「手段」、「段階」あるいは「工程」に読み替えた各処理、各手順、各手段、各段階あるいは各工程を、コンピュータに実行させる。また、宇宙交通管理方法は、宇宙交通管理装置200が宇宙交通管理プログラムを実行することにより行われる方法である。
宇宙交通管理プログラムは、コンピュータ読取可能な記録媒体に格納されて提供されてもよい。また、各プログラムは、プログラムプロダクトとして提供されてもよい。
太陽同期軌道は地球観測で多用される軌道であり、特に以下の領域が密集している。
・太陽同期軌道LST10:30近傍で軌道高度500km以上1000km以下の領域。
・太陽同期軌道LST13:30近傍で軌道高度500km以上1000km以下の領域。
・太陽同期軌道LST06:00近傍で軌道高度500km以上1000km以下の領域。
・太陽同期軌道LST18:00近傍で軌道高度500km以上1000km以下の領域。
そこでSTM(宇宙交通管理)のルールとして、法線ベクトルの異なる軌道面の衛星同士は異なる軌道高度を採用することをルール化し、軌道の交点を解消すれば、定常運用における衝突確率がゼロとなり、衝突リスクが解消する。現実的には軌道投入時や軌道離脱時などの非定常運用を実施する際に衝突リスクは発生するが、定常運用における衝突確率がゼロであれば、リスクは激減するという効果がある。
またデブリ衝突といった不慮の事故により、人為的な制御が不能となる事態に陥った場合に、衝突するリスクが高いという課題がある。
このため定常運用における衝突確率がゼロであれば、人為的な制御ができなくなっても衝突事故を回避できるという効果がある。
宇宙交通管理部120は、法線ベクトルの異なる軌道面の衛星同士が異なる軌道高度を採用するように、宇宙物体60の宇宙交通管理処理を実施する。
宇宙交通管理部120は、ルール情報515にしたがって、宇宙物体60を管理する。
宇宙交通管理部120は、法線ベクトルが同じで、同一軌道高度を飛行する複数の衛星が、軌道面内で概略均等配置になる相対位相角を維持して飛行するように、宇宙物体60の宇宙交通管理処理を実施する。
宇宙交通管理部120は、ルール情報515にしたがって、宇宙物体60を管理する。
図32は、本実施の形態に係る宇宙交通管理処理の例2における、軌道面内での衛星配置を表す図である。
図33は、法線ベクトルが同じで、かつ、軌道高度が異なる複数軌道面を表す図である。
宇宙交通管理処理の例2によれば、宇宙交通管理ルール501を用いて、同一軌道面を飛行する複数衛星を識別し、かつ、同一軌道高度を飛行する複数の衛星が、軌道面内で概略均等配置になる相対位相角を維持して飛行する。これにより、衝突を回避できるという効果がある。
密集領域識別情報525は、以下の領域を密集領域として識別する情報である。
・太陽同期軌道LST10:30近傍で軌道高度500km以上1000km以下の領域。
・太陽同期軌道LST13:30近傍で軌道高度500km以上1000km以下の領域。
・太陽同期軌道LST06:00近傍で軌道高度500km以上1000km以下の領域。
・太陽同期軌道LST18:00近傍で軌道高度500km以上1000km以下の領域。
・北緯80度以上で軌道高度500km以上1000km以下の領域。
・南緯80度以上で軌道高度500km以上1000km以下の領域。
LST10:30近傍とLST13:30近傍は、光学衛星群あるいはA-Trainと呼ばれる各種地球観測衛星群が多用する軌道である。LST06:00近傍とLST18:00近傍は合成開口レーダを搭載したレーダ衛星群が多用する軌道である。
宇宙交通管理部120は、密集領域識別情報525とルール情報515とを用いて、同一軌道面を飛行する衛星を管理する事業者同士が、飛行安全対策について情報交換する手段を実現する。
このように、当該軌道に複数事業者が無統制で衛星を飛行させることは危険であるため、交通ルールとして衛星軌道情報を公開し、飛行安全確保のための対策を調整できる環境を整備する。よって、宇宙交通管理処理の例3によれば、衝突回避をできるという効果がある。
飛行安全対策について情報交換できる手段としては、宇宙交通管理システム800のポータル上でチャットをできる機能を具備してもよいし、調整会議を主催するメッセージを発信してもよい。
宇宙交通管理部120は、密集領域識別情報525を用いて、宇宙物体60が軌道離脱して大気圏突入する途中過程において、密集領域のいずれかに侵入する前に、宇宙物体60を捕獲して軌道降下時衝突回避運用を実現する。このような軌道降下時衝突回避運用の実現方法を軌道降下時衝突回避運用方法という。
密集領域の具体例は、宇宙交通管理処理の例3で説明したものと同様である。
図35は、本実施の形態に係る衛星軌道降下過程における密集領域侵入回避の宇宙交通管理処理を示す図である。
宇宙交通管理部120は、密集領域識別情報525とルール情報515とを用いて、宇宙物体60が軌道離脱して大気圏突入する途中過程において、密集領域のいずれかに侵入する前に、宇宙物体60を捕獲して軌道降下時衝突回避運用を実現する。
(1)メガコンステレーション事業装置41の宇宙交通管理装置200は、高高度のメガコンステレーション衛星が故障衛星となり、密集領域(危険領域)に侵入することを予見する。この侵入予見情報は、通信回線を介して、宇宙交通管理システム800の全ての宇宙交通管理装置200に共有される。
(2)デブリ除去事業装置45の宇宙交通管理装置200は、ルール情報515に基づいて、密集領域のいずれかに侵入する前に、宇宙物体60を捕獲して軌道降下時衝突回避運用を実現する。具体的には、即応型デブリ除去衛星の打ち上げが行われる。
(3)即応型デブリ除去衛星は故障衛星を捕獲合体して、密集領域を回避して大気圏突入を行う。これにより、軌道降下時衝突回避運用が実現される。
また、実施の形態1から12のうち、複数の部分を組み合わせて実施しても構わない。あるいは、これらの実施の形態のうち、1つの部分を実施しても構わない。その他、これらの実施の形態を、全体としてあるいは部分的に、どのように組み合わせて実施しても構わない。
すなわち、実施の形態1から12では、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
軌道面、30 衛星、31 デブリ回収衛星、32 衛星通信装置、33 推進装置、34 姿勢制御装置、40 事業装置、41 メガコンステレーション事業装置、42 LEOコンステレーション事業装置、43 衛星事業装置、44 軌道遷移事業装置、45 デブリ除去事業装置、46 ロケット打ち上げ事業装置、47 SSA事業装置、51 軌道制御コマンド、52 捕獲コマンド、60 宇宙物体、70 地球、100 衛星コンステレーション形成システム、200 宇宙交通管理装置、110 衛星コンステレーション形成部、120 宇宙交通管理部、140 記憶部、300 衛星群、310 衛星制御装置、500 地上設備、501 宇宙交通管理ルール、510 軌道制御コマンド送信部、515 ルール情報、525 密集領域識別情報、520 解析予測部、600 衛星コンステレーション形成システム、800 宇宙交通管理システム、910 プロセッサ、921 メモリ、922 補助記憶装置、930 入力インタフェース、940 出力インタフェース、950 通信装置。
Claims (9)
- 衛星群により構成され、前記衛星群が連携してサービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムにおいて、
前記複数の軌道面の各軌道面の軌道高度が同じであり、かつ、前記複数の軌道面の各軌道面が互いに異なる面に存在する前記衛星コンステレーションを形成する衛星コンステレーション形成部を備え、
前記衛星コンステレーション形成部は、
前記複数の軌道面の軌道面同士の交点を、各軌道面を飛行する衛星が通過する衛星通過時刻が、同一軌道面において、次衛星が飛来するまでの待ち時間を前記複数の軌道面の軌道面数で割った時刻ずれ値の倍数となっており、かつ、前記複数の軌道面のいかなる2面の軌道面の交点においても前記衛星通過時刻が一致しない前記衛星コンステレーションを形成し、
前記衛星コンステレーション形成部は、
前記複数の軌道面の各軌道面の軌道傾斜角が概略90度であり、全ての軌道面の全ての衛星が極域近傍を通過する前記衛星通過時刻が前記時刻ずれ値の間隔で互いにずれている前記衛星コンステレーションを形成する衛星コンステレーション形成システム。 - 前記衛星コンステレーション形成部は、
前記複数の軌道面の各軌道面が並ぶ順番に番号を付けた場合に、奇数の軌道面と偶数の軌道面で極域通過のタイミングの後続衛星が飛来するまでの待ち時間が約半分ずつずれている前記衛星コンステレーションを形成する請求項1に記載の衛星コンステレーション形成システム。 - 前記衛星コンステレーション形成部は、
前記複数の軌道面の全ての衛星が極域近傍を通過する前記衛星通過時刻が、前記時刻ずれ値の間隔で互いにずれており、前記複数の軌道面の各軌道面が並ぶ順番に番号を付けた場合に、奇数の軌道面と偶数の軌道面で極域通過のタイミングの後続衛星が飛来するまでの待ち時間が約半分ずつずれている前記衛星コンステレーションを形成する請求項1または請求項2に記載の衛星コンステレーション形成システム。 - 衛星群により構成され、前記衛星群が連携してサービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムにおいて、
前記複数の軌道面の各軌道面の軌道高度が同じであり、かつ、前記複数の軌道面の各軌道面が互いに異なる面に存在する前記衛星コンステレーションを形成する衛星コンステレーション形成部を備え、
前記衛星コンステレーション形成部は、
前記複数の軌道面の軌道面同士の交点を、各軌道面を飛行する衛星が通過する衛星通過時刻が、同一軌道面において、次衛星が飛来するまでの待ち時間を前記複数の軌道面の軌道面数で割った時刻ずれ値の倍数となっており、かつ、前記複数の軌道面のいかなる2面の軌道面の交点においても前記衛星通過時刻が一致しない前記衛星コンステレーションを形成し、
前記衛星コンステレーション形成部は、
前記複数の軌道面の全ての衛星が極域近傍を通過する前記衛星通過時刻が、前記時刻ずれ値の間隔で互いにずれており、前記複数の軌道面の各軌道面が並ぶ順番に番号を付けた場合に、奇数の軌道面と偶数の軌道面で極域通過のタイミングの後続衛星が飛来するまでの待ち時間が約半分ずつずれている前記衛星コンステレーションを形成する衛星コンステレーション形成システム。 - 前記衛星コンステレーション形成部は、
前記複数の軌道面の各軌道面の軌道傾斜角が概略90度であり、全ての軌道面の全ての衛星が極域近傍を通過する前記衛星通過時刻が前記時刻ずれ値の間隔で互いにずれている前記衛星コンステレーションを形成する請求項4に記載の衛星コンステレーション形成システム。 - 前記衛星コンステレーション形成部は、
前記複数の軌道面の各軌道面の軌道傾斜角が90度ではない前記衛星コンステレーションを形成する請求項4に記載の衛星コンステレーション形成システム。 - 前記衛星コンステレーション形成部は、
前記複数の軌道面の各軌道面が並ぶ順番に番号を付けた場合に、奇数の軌道面と偶数の軌道面で極域通過のタイミングの後続衛星が飛来するまでの待ち時間が約半分ずつずれている前記衛星コンステレーションを形成する請求項5に記載の衛星コンステレーション形成システム。 - 衛星群により構成され、前記衛星群が連携してサービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムの衛星コンステレーション形成方法において、
前記複数の軌道面の各軌道面の軌道高度が同じであり、かつ、前記複数の軌道面の各軌道面が互いに異なる面に存在する前記衛星コンステレーションであって、前記複数の軌道面の軌道面同士の交点を、各軌道面を飛行する衛星が通過する衛星通過時刻が、同一軌道面において、次衛星が飛来するまでの待ち時間を前記複数の軌道面の軌道面数で割った時刻ずれ値の倍数となっており、かつ、前記複数の軌道面のいかなる2面の軌道面の交点においても前記衛星通過時刻が一致しない前記衛星コンステレーションを形成し、
前記衛星コンステレーションは、前記複数の軌道面の各軌道面の軌道傾斜角が概略90度であり、全ての軌道面の全ての衛星が極域近傍を通過する前記衛星通過時刻が前記時刻ずれ値の間隔で互いにずれている衛星コンステレーション形成方法。 - 衛星群により構成され、前記衛星群が連携してサービスを提供する衛星コンステレーションであって、各軌道面に複数の衛星が同じ軌道高度で飛行する複数の軌道面を有する衛星コンステレーションを形成する衛星コンステレーション形成システムの衛星コンステレーション形成方法において、
前記複数の軌道面の各軌道面の軌道高度が同じであり、かつ、前記複数の軌道面の各軌道面が互いに異なる面に存在する前記衛星コンステレーションであって、前記複数の軌道面の軌道面同士の交点を、各軌道面を飛行する衛星が通過する衛星通過時刻が、同一軌道面において、次衛星が飛来するまでの待ち時間を前記複数の軌道面の軌道面数で割った時刻ずれ値の倍数となっており、かつ、前記複数の軌道面のいかなる2面の軌道面の交点においても前記衛星通過時刻が一致しない前記衛星コンステレーションを形成し、
前記衛星コンステレーションは、前記複数の軌道面の全ての衛星が極域近傍を通過する前記衛星通過時刻が、前記時刻ずれ値の間隔で互いにずれており、前記複数の軌道面の各軌道面が並ぶ順番に番号を付けた場合に、奇数の軌道面と偶数の軌道面で極域通過のタイミングの後続衛星が飛来するまでの待ち時間が約半分ずつずれている衛星コンステレーション形成方法。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPPCT/JP2019/002794 | 2019-01-28 | ||
PCT/JP2019/002794 WO2020157807A1 (ja) | 2019-01-28 | 2019-01-28 | 衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、および地上設備 |
PCT/JP2019/017635 WO2020158001A1 (ja) | 2019-01-28 | 2019-04-25 | 衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、および地上設備 |
JPPCT/JP2019/017635 | 2019-04-25 | ||
JP2020569532A JP7118179B2 (ja) | 2019-01-28 | 2020-01-21 | 衛星コンステレーション形成システム、衛星コンステレーション形成方法、地上設備 |
PCT/JP2020/001901 WO2020158505A1 (ja) | 2019-01-28 | 2020-01-21 | 衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、地上設備、宇宙交通管理システム、宇宙物体管理部、および軌道降下時衝突回避運用方法 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020569532A Division JP7118179B2 (ja) | 2019-01-28 | 2020-01-21 | 衛星コンステレーション形成システム、衛星コンステレーション形成方法、地上設備 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022105747A JP2022105747A (ja) | 2022-07-14 |
JP7270814B2 true JP7270814B2 (ja) | 2023-05-10 |
Family
ID=71840057
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020569344A Active JP7118178B2 (ja) | 2019-01-28 | 2019-04-25 | 地上設備 |
JP2020569532A Active JP7118179B2 (ja) | 2019-01-28 | 2020-01-21 | 衛星コンステレーション形成システム、衛星コンステレーション形成方法、地上設備 |
JP2022086956A Active JP7224515B2 (ja) | 2019-01-28 | 2022-05-27 | 宇宙交通管理システム、宇宙物体管理部、および軌道降下時衝突回避運用方法 |
JP2022086955A Active JP7270815B2 (ja) | 2019-01-28 | 2022-05-27 | デブリ除去方式、および、衛星コンステレーション構築方式 |
JP2022086954A Active JP7270814B2 (ja) | 2019-01-28 | 2022-05-27 | 衛星コンステレーション形成システム、および、衛星コンステレーション形成方法 |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020569344A Active JP7118178B2 (ja) | 2019-01-28 | 2019-04-25 | 地上設備 |
JP2020569532A Active JP7118179B2 (ja) | 2019-01-28 | 2020-01-21 | 衛星コンステレーション形成システム、衛星コンステレーション形成方法、地上設備 |
JP2022086956A Active JP7224515B2 (ja) | 2019-01-28 | 2022-05-27 | 宇宙交通管理システム、宇宙物体管理部、および軌道降下時衝突回避運用方法 |
JP2022086955A Active JP7270815B2 (ja) | 2019-01-28 | 2022-05-27 | デブリ除去方式、および、衛星コンステレーション構築方式 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220081132A1 (ja) |
JP (5) | JP7118178B2 (ja) |
WO (3) | WO2020157807A1 (ja) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019215807A1 (ja) * | 2018-05-08 | 2019-11-14 | 日本電気株式会社 | 監視装置、学習装置、監視方法、学習方法及び記憶媒体 |
WO2020157807A1 (ja) * | 2019-01-28 | 2020-08-06 | 三菱電機株式会社 | 衛星コンステレーション形成システム、衛星コンステレーション形成方法、デブリ除去方式、衛星コンステレーション構築方式、および地上設備 |
US11668834B2 (en) * | 2019-05-28 | 2023-06-06 | Xona Space Systems Inc. | Satellite for transmitting a navigation signal in a satellite constellation system |
US11899120B2 (en) | 2021-06-30 | 2024-02-13 | Xona Space Systems Inc. | Generation and transmission of navigation signals |
US11668843B2 (en) | 2019-05-28 | 2023-06-06 | Xona Space Systems Inc. | Satellite for broadcasting clock state data |
US20230080986A1 (en) * | 2020-03-26 | 2023-03-16 | Mitsubishi Electric Corporation | Satellite constellation forming system, mega-constellation business device, and ground facility |
WO2021230166A1 (ja) * | 2020-05-12 | 2021-11-18 | 三菱電機株式会社 | 宇宙情報レコーダー、危険解析システム、危険解析方法、メガコンステレーション事業装置、ssa事業装置、ロケット打ち上げ事業装置、衛星事業装置、デブリ除去事業装置、軌道遷移事業装置、および、oadr |
FR3110551B1 (fr) * | 2020-05-25 | 2022-06-03 | Airbus Defence & Space Sas | Procédé d’ajustement de trajectoire orbitale de satellite |
US11414218B1 (en) * | 2020-06-03 | 2022-08-16 | Amazon Technologies, Inc. | System for maintaining satellites in orbital configuration |
WO2021262867A1 (en) * | 2020-06-24 | 2021-12-30 | Leolabs | A system and method for orbital collision screening |
WO2022064720A1 (ja) * | 2020-09-28 | 2022-03-31 | 三菱電機株式会社 | 衛星情報伝送システム、通信衛星、地上設備及び衛星通信システム |
CN112257016B (zh) * | 2020-10-15 | 2024-03-29 | 中国西安卫星测控中心 | 一种Walker星座中长期碰撞预警方法 |
GB2623459A (en) * | 2021-07-27 | 2024-04-17 | Mitsubishi Electric Corp | Satellite constellation maintenance method, satellite constellation, orbit descent method, and artificial satellite |
CN113665844B (zh) * | 2021-09-10 | 2023-09-19 | 上海卫星工程研究所 | 用于堆叠卫星与运载分离的星箭解锁装置 |
CN115072006B (zh) * | 2022-07-06 | 2023-04-21 | 上海交通大学 | 基于空间摄动主动利用的双模式轨道重构控制方法及系统 |
CN115098983B (zh) * | 2022-07-07 | 2024-09-20 | 上海交通大学 | 基于太阳同步重访轨道特性的相邻轨道分布方法及系统 |
CN117236073A (zh) * | 2023-11-10 | 2023-12-15 | 中国人民解放军战略支援部队航天工程大学 | 一种中轨导航星座卫星的失效性能评估方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000341191A (ja) | 1999-05-28 | 2000-12-08 | Natl Space Development Agency Of Japan | 衛星軌跡が連鎖回帰型となる衛星群を用いた衛星通信システム及び衛星測位通信複合システム |
JP7118179B2 (ja) | 2019-01-28 | 2022-08-15 | 三菱電機株式会社 | 衛星コンステレーション形成システム、衛星コンステレーション形成方法、地上設備 |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3426851C1 (de) * | 1984-07-20 | 1985-10-17 | Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn | Satelliten-Navigationssystem |
JPH05270498A (ja) * | 1992-03-24 | 1993-10-19 | Toshiba Corp | 人工衛星 |
US5421540A (en) * | 1992-08-26 | 1995-06-06 | Ting; Paul C. | Method and apparatus for disposal/recovery of orbiting space debris |
US5803407A (en) * | 1993-11-12 | 1998-09-08 | Scott; David R. | Apparatus and methods for in-space satellite operations |
US5806802A (en) * | 1993-11-12 | 1998-09-15 | Scott; David D. | Apparatus and methods for in-space satellite operations |
US5511748A (en) * | 1993-11-12 | 1996-04-30 | Scott; David R. | Method for extending the useful life of a space satellite |
US6017000A (en) * | 1998-08-02 | 2000-01-25 | Scott; David R. | Apparatus and methods for in-space satellite operations |
US5906337A (en) * | 1995-10-03 | 1999-05-25 | Trw Inc. | Multiple altitude satellite relay system and method |
US5813634A (en) * | 1995-10-23 | 1998-09-29 | Motorola, Inc. | Method for replacing failing satellites in a satellite communication system |
US5979832A (en) * | 1998-01-22 | 1999-11-09 | Mobile Communication Holdings, Inc. | Dual ring array of satellites |
JP3530897B2 (ja) * | 2000-05-25 | 2004-05-24 | 独立行政法人通信総合研究所 | 人工衛星の緊急用軌道離脱装置 |
US6757612B1 (en) * | 2001-07-06 | 2004-06-29 | Oceanit Laboratories, Inc. | Phenomenological orbital debris impact risk assessment model and software |
US6655637B1 (en) * | 2002-06-24 | 2003-12-02 | The Aerospace Corporation | Spacecraft for removal of space orbital debris |
US7720604B1 (en) * | 2005-06-01 | 2010-05-18 | Lockheed Martin Corporation | Stationkeeping optimization for inclined elliptical satellite orbit constellations |
FR2918827B1 (fr) * | 2007-07-10 | 2009-10-16 | Astrium Sas | Systeme pour le positionnement d'un utilisateur terrestre. |
US8052092B2 (en) * | 2009-01-30 | 2011-11-08 | The Boeing Company | Method and apparatus for satellite orbital change using space debris |
DE102011013875A1 (de) * | 2011-03-08 | 2012-09-13 | Astrium Gmbh | Bergungs- und Abbremsvorrichtung für frei im All fliegende Objekte |
ITMI20111332A1 (it) * | 2011-07-18 | 2013-01-19 | Orbit S R L D | Dispositivo per la deorbitazione di satelliti artificiali. |
ITTO20121117A1 (it) * | 2012-12-20 | 2014-06-21 | Thales Alenia Space Italia S P A C On Unico Socio | Innovativo design orbitale per missioni spaziali di osservazione della terra |
US9944412B2 (en) * | 2013-10-04 | 2018-04-17 | Busek Co., Inc. | Spacecraft system for debris disposal and other operations and methods pertaining to the same |
JP6473960B2 (ja) * | 2014-06-13 | 2019-02-27 | 国立研究開発法人宇宙航空研究開発機構 | スペースデブリの軌道降下方法、軌道降下システム、及び、人工衛星の軌道変換方法、軌道変換システム |
JP6429109B2 (ja) * | 2014-09-30 | 2018-11-28 | 株式会社Ihi | デブリ除去装置及びデブリ除去方法 |
ES2727867T3 (es) * | 2014-10-30 | 2019-10-21 | Airbus Defence & Space Ltd | Interceptación de desechos espaciales |
JP6586658B2 (ja) * | 2015-05-12 | 2019-10-09 | 国立研究開発法人宇宙航空研究開発機構 | トルク発生システム、宇宙機の姿勢制御システム、宇宙機の相対位置・速度制御システム |
ITUB20152728A1 (it) * | 2015-07-31 | 2017-01-31 | D Orbit S R L | Sistema di propulsione per satelliti artificiali di piccole dimensioni, satellite incorporante detto sistema di propulsione e metodo di gestione di detto sistema di propulsione |
CN105511483B (zh) * | 2015-12-02 | 2018-01-12 | 上海宇航系统工程研究所 | 鸟巢式星座及其设计方法 |
JP6291471B2 (ja) * | 2015-12-21 | 2018-03-14 | 株式会社Ihiエアロスペース | 衛星コンステレーションの形成方法 |
US10954003B2 (en) * | 2016-07-20 | 2021-03-23 | Worldvu Satellites Limited | Constellation configuration for constellations having a large number of LEO satellites |
US9617017B1 (en) * | 2016-10-25 | 2017-04-11 | Marshall H. Kaplan | Apparatus and methods for orbital debris removal |
US9714101B1 (en) * | 2016-10-25 | 2017-07-25 | Marshall H. Kaplan | Apparatus and methods for orbital debris removal |
US20180346153A1 (en) * | 2017-05-30 | 2018-12-06 | Launchspace Technologies Corporation | Apparatus and Methods for Orbital Sensing and Debris Removal |
CN107871047A (zh) | 2017-11-21 | 2018-04-03 | 中国人民解放军战略支援部队航天工程大学 | 一种复杂空间系统安全管理平行计算方法 |
-
2019
- 2019-01-28 WO PCT/JP2019/002794 patent/WO2020157807A1/ja active Application Filing
- 2019-04-25 JP JP2020569344A patent/JP7118178B2/ja active Active
- 2019-04-25 WO PCT/JP2019/017635 patent/WO2020158001A1/ja active Application Filing
-
2020
- 2020-01-21 WO PCT/JP2020/001901 patent/WO2020158505A1/ja active Application Filing
- 2020-01-21 JP JP2020569532A patent/JP7118179B2/ja active Active
- 2020-01-21 US US17/416,520 patent/US20220081132A1/en active Pending
-
2022
- 2022-05-27 JP JP2022086956A patent/JP7224515B2/ja active Active
- 2022-05-27 JP JP2022086955A patent/JP7270815B2/ja active Active
- 2022-05-27 JP JP2022086954A patent/JP7270814B2/ja active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000341191A (ja) | 1999-05-28 | 2000-12-08 | Natl Space Development Agency Of Japan | 衛星軌跡が連鎖回帰型となる衛星群を用いた衛星通信システム及び衛星測位通信複合システム |
JP7118179B2 (ja) | 2019-01-28 | 2022-08-15 | 三菱電機株式会社 | 衛星コンステレーション形成システム、衛星コンステレーション形成方法、地上設備 |
Also Published As
Publication number | Publication date |
---|---|
JP7118178B2 (ja) | 2022-08-15 |
WO2020158505A1 (ja) | 2020-08-06 |
JP7118179B2 (ja) | 2022-08-15 |
JPWO2020158505A1 (ja) | 2021-09-30 |
WO2020157807A1 (ja) | 2020-08-06 |
JPWO2020158001A1 (ja) | 2021-09-30 |
JP2022105747A (ja) | 2022-07-14 |
WO2020158001A1 (ja) | 2020-08-06 |
JP7270815B2 (ja) | 2023-05-10 |
JP2022105748A (ja) | 2022-07-14 |
JP7224515B2 (ja) | 2023-02-17 |
US20220081132A1 (en) | 2022-03-17 |
JP2022111172A (ja) | 2022-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7270814B2 (ja) | 衛星コンステレーション形成システム、および、衛星コンステレーション形成方法 | |
WO2021221035A1 (ja) | 宇宙状況監視事業装置、地上設備、宇宙交通事業装置、宇宙交通管理システム、および観測衛星 | |
JP7499901B2 (ja) | メガコンステレーション事業装置、衛星コンステレーション、衛星、および地上設備 | |
JP7214047B2 (ja) | 宇宙交通管理システム、デブリ除去方法、デブリ除去事業装置、第1メガコンステレーション事業装置、第2メガコンステレーション事業装置、および、oadr | |
JP2024045593A (ja) | 衝突回避方法および地上設備 | |
JP2023086965A (ja) | ジャミング衛星回避方法、および、メガコンステレーション事業装置 | |
JP2023053143A (ja) | 宇宙交通管理システム、宇宙交通管理装置、衛星事業装置、および、宇宙情報レコーダー | |
JP7204997B2 (ja) | 宇宙交通管理システム、宇宙交通管理装置、衝突回避支援事業装置、ssa事業装置、メガコンステレーション事業装置、宇宙交通管理方法、および、oadr | |
JP2021049906A (ja) | 軌道遷移支援装置、軌道遷移支援方法、および軌道遷移支援プログラム | |
JP7224530B2 (ja) | 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、地上設備、事業装置、およびオープンアーキテクチャーデータリポジトリ | |
JP7566103B2 (ja) | デブリ除去衛星、地上設備、デブリ除去制御装置、および、デブリ除去制御方法 | |
JP2023001802A (ja) | デブリ除去事業装置、地上設備、および、メガコンステレーション事業装置 | |
JP7313246B2 (ja) | ロケット打上支援装置、ロケット打上支援方法、およびロケット打上支援プログラム | |
JP7233602B2 (ja) | 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、地上設備、および事業装置 | |
JP2023018220A (ja) | ロケット打ち上げ方法、ロケット打ち上げ制御装置、軌道投入方法、衛星コンステレーション維持方法、デブリ除去方法、ロケット回収方法、回収型ロケット、ロケット発射場、ロケット再利用システム、ロケット、衛星コンステレーション、および、地上設備 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230210 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230328 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230425 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7270814 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |