WO2021166876A1 - 人工衛星、推薬管理方法、地上設備、および、管理事業装置 - Google Patents

人工衛星、推薬管理方法、地上設備、および、管理事業装置 Download PDF

Info

Publication number
WO2021166876A1
WO2021166876A1 PCT/JP2021/005619 JP2021005619W WO2021166876A1 WO 2021166876 A1 WO2021166876 A1 WO 2021166876A1 JP 2021005619 W JP2021005619 W JP 2021005619W WO 2021166876 A1 WO2021166876 A1 WO 2021166876A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
propellant
orbit
period
artificial satellite
Prior art date
Application number
PCT/JP2021/005619
Other languages
English (en)
French (fr)
Inventor
久幸 迎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US17/789,226 priority Critical patent/US20230030579A1/en
Priority to JP2022501890A priority patent/JP7313535B2/ja
Publication of WO2021166876A1 publication Critical patent/WO2021166876A1/ja
Priority to JP2023073972A priority patent/JP7566073B2/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1085Swarms and constellations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/242Orbits and trajectories
    • B64G1/2429Station keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/62Systems for re-entry into the earth's atmosphere; Retarding or landing devices

Definitions

  • This disclosure relates to artificial satellites, propellant management methods, ground equipment, and management business equipment.
  • Patent Document 1 discloses a technique for forming a satellite constellation composed of a plurality of satellites in the same circular orbit.
  • Patent Document 1 does not describe a method for preventing a large amount of satellites constituting a mega constellation from staying in outer space after completing a mission.
  • the purpose of this disclosure is to prevent the satellites that make up the mega constellation from staying in large quantities in outer space after completing the mission.
  • the artificial satellite according to the present disclosure is an artificial satellite equipped with a propulsion device.
  • a propellant used for the propulsion device in order to enter the atmosphere in a period less than the first period year after the artificial satellite leaves the orbit after operating in orbit for the first period year, which is the satellite design life. Have the required amount of propellant.
  • the artificial satellite according to the present disclosure there is an effect that it is possible to prevent a large amount of artificial satellites that have completed the mission from staying in outer space.
  • a block diagram of a satellite constellation formation system The block diagram of the satellite of the satellite constellation formation system.
  • Functional configuration example of satellite constellation formation system The figure which shows the transition of the number of space objects by the launch of the mega constellation which is the comparative example of Embodiment 1. The figure which shows the relationship between the propellant amount in the satellite which concerns on Embodiment 1 and the elapsed years after launch.
  • FIG. 1 The figure which shows the transition of the number of space objects by the launch of the mega constellation composed by the satellite which concerns on Embodiment 1.
  • FIG. 1 The figure which shows the method of shortening the deorbit period which concerns on Embodiment 1.
  • the block diagram of the ground equipment 700 which concerns on the modification of Embodiment 1.
  • Embodiment 1 An example of a satellite constellation that is a prerequisite for the space traffic management system according to the following embodiment will be described.
  • FIG. 1 is a diagram showing an example in which a plurality of satellites cooperate with each other to realize a communication service over the entire globe of the earth 70.
  • FIG. 1 shows a satellite constellation 20 that realizes a communication service all over the world.
  • the communication service range for the ground overlaps with the communication service range of the succeeding satellite. Therefore, according to such a plurality of satellites, it is possible to provide a communication service to a specific point on the ground while a plurality of satellites on the same orbital plane alternate in a time-division manner.
  • the adjacent orbital planes it is possible to cover the communication services on the ground between the adjacent orbitals.
  • communication services to the ground can be provided all over the globe.
  • FIG. 2 is a diagram showing an example in which a plurality of satellites having a single orbital plane realize an earth observation service.
  • FIG. 2 shows a satellite constellation 20 that realizes an earth observation service.
  • a satellite equipped with an earth observation device which is a radio wave sensor such as an optical sensor or a synthetic aperture radar flies in the same orbital plane at the same altitude.
  • an earth observation device which is a radio wave sensor such as an optical sensor or a synthetic aperture radar flies in the same orbital plane at the same altitude.
  • the satellite group 300 in which the subsequent satellites overlap with each other due to a time delay in the imaging range on the ground, a plurality of satellites in orbit alternate with each other in a time-division manner with respect to a specific point on the ground to capture a ground image.
  • the satellite constellation 20 is composed of a satellite group 300 composed of a plurality of satellites in each orbital plane.
  • the satellite group 300 cooperates to provide a service.
  • the satellite constellation 20 refers to a satellite constellation consisting of a group of satellites by a communication business service company as shown in FIG. 1 or an observation business service company as shown in FIG.
  • FIG. 3 is an example of a satellite constellation 20 having a plurality of orbital planes 21 intersecting in the vicinity of the polar region.
  • FIG. 4 is an example of a satellite constellation 20 having a plurality of orbital planes 21 intersecting outside the polar region.
  • the orbital inclination angles of the orbital planes 21 of the plurality of orbital planes are about 90 degrees, and the orbital planes 21 of the plurality of orbital planes are present on different planes.
  • the orbital inclination angles of the orbital planes 21 of the plurality of orbital planes are not about 90 degrees, and the orbital planes 21 of the plurality of orbital planes are present on different planes.
  • any two orbital planes intersect at a point near the polar region. Further, in the satellite constellation 20 of FIG. 4, any two orbital planes intersect at points other than the polar region.
  • a collision of the satellite 30 may occur in the vicinity of the polar region.
  • the orbital planes may intersect at various positions including the vicinity of the equator. Therefore, the places where the collision of the satellite 30 may occur are diversified.
  • the satellite 30 is an example of an artificial satellite, and the satellite may be read as an artificial satellite in the present embodiment.
  • the satellite 30 constitutes a mega constellation, which is a satellite constellation composed of 100 or more artificial satellites.
  • the satellite constellation formation system 600 is a management business device 40 operated by a business operator performing a satellite constellation business such as a mega constellation business device, a LEO constellation business device, or a satellite business device.
  • LEO is an abbreviation for Low Earth Orbit.
  • FIG. 5 is a configuration diagram of a satellite constellation formation system 600 that forms a mega constellation composed of satellites 30 according to the present embodiment.
  • the satellite constellation formation system 600 includes a computer.
  • FIG. 5 shows the configuration of one computer, in reality, each satellite 30 of the plurality of satellites constituting the satellite constellation 20 and the ground equipment 700 communicating with the satellite 30 are equipped with a computer. Be done. Then, the computers provided in each of the satellites 30 of the plurality of satellites and the ground equipment 700 communicating with the satellites 30 cooperate to realize the function of the satellite constellation formation system 600.
  • an example of a computer configuration that realizes the functions of the satellite constellation formation system 600 will be described.
  • the satellite constellation formation system 600 includes a satellite 30 and ground equipment 700.
  • the satellite 30 includes a satellite communication device 32 that communicates with the communication device 950 of the ground equipment 700.
  • FIG. 5 illustrates the satellite communication device 32 among the configurations included in the satellite 30.
  • the satellite constellation formation system 600 includes a processor 910 and other hardware such as a memory 921, an auxiliary storage device 922, an input interface 930, an output interface 940, and a communication device 950.
  • the processor 910 is connected to other hardware via a signal line and controls these other hardware.
  • the hardware of the satellite constellation formation system 600 is the same as the hardware of the ground equipment 700 described later in FIG.
  • the satellite constellation forming system 600 includes a satellite constellation forming unit 11 as a functional element.
  • the function of the satellite constellation forming unit 11 is realized by hardware or software.
  • the satellite constellation forming unit 11 controls the formation of the satellite constellation 20 while communicating with the satellite 30.
  • FIG. 6 is a configuration diagram of the satellite 30 according to the present embodiment.
  • the satellite 30 includes a satellite control device 31, a satellite communication device 32, a propulsion device 33, an attitude control device 34, and a power supply device 35.
  • FIG. 6 describes a satellite control device 31, a satellite communication device 32, a propulsion device 33, an attitude control device 34, and a power supply device 35.
  • the satellite 30 is an example of a space object 60.
  • the satellite control device 31 is a computer that controls the propulsion device 33 and the attitude control device 34, and includes a processing circuit. Specifically, the satellite control device 31 controls the propulsion device 33 and the attitude control device 34 according to various commands transmitted from the ground equipment 700.
  • the satellite communication device 32 is a device that communicates with the ground equipment 700. Specifically, the satellite communication device 32 transmits various data related to its own satellite to the ground equipment 700. Further, the satellite communication device 32 receives various commands transmitted from the ground equipment 700.
  • the propulsion device 33 is a device that gives a propulsive force to the satellite 30, and changes the speed of the satellite 30.
  • the propulsion device 33 is a chemical propulsion device or an electric propulsion device.
  • the chemical propulsion device is a thruster using a one-component or two-component fuel.
  • the electric propulsion device is an ion engine or a hall thruster.
  • the attitude control device 34 uses the attitude of the satellite 30, the angular velocity of the satellite 30, and the line-of-sight direction (Line Of). It is a device for controlling a posture element such as Sign).
  • the attitude control device 34 changes each attitude element in a desired direction.
  • the attitude control device 34 maintains each attitude element in a desired direction.
  • the attitude control device 34 includes an attitude sensor, an actuator, and a controller.
  • Attitude sensors are devices such as gyroscopes, earth sensors, sun sensors, star trackers, thrusters and magnetic sensors.
  • Actuators are devices such as attitude control thrusters, momentum wheels, reaction wheels and control moment gyro.
  • the controller controls the actuator according to the measurement data of the attitude sensor or various commands from the ground equipment 700.
  • the power supply device 35 includes devices such as a solar cell, a battery, and a power control device, and supplies power to each device mounted on the satellite 30.
  • the processing circuit may be dedicated hardware or a processor that executes a program stored in memory. In the processing circuit, some functions may be realized by dedicated hardware and the remaining functions may be realized by software or firmware. That is, the processing circuit can be realized by hardware, software, firmware or a combination thereof.
  • Dedicated hardware is specifically a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA or a combination thereof.
  • ASIC is an abbreviation for Application Special Integrated Circuit.
  • FPGA is an abbreviation for Field Programmable Gate Array.
  • the satellite 30 is a propellant used for the propulsion device 33, and is less than the first period year after the satellite 30 leaves the orbit after the first period year in orbit operation, which is the satellite design life. We have the necessary amount of propellant to enter the atmosphere during this period. Further, in the propellant management method of the present embodiment, the satellite 30 is a propellant used for the propulsion device 33, and the satellite 30 deorbits after the orbital operation for the first period year, which is the satellite design life. It is a method of holding the necessary amount of propellant to enter the atmosphere in a period of less than one year.
  • the satellite design life is the period during which the satellite can operate in orbit, and is also referred to as the satellite orbit life or simply the design life.
  • FIG. 7 is a configuration diagram of the ground equipment 700 included in the satellite constellation formation system 600.
  • the ground equipment 700 programmatically controls a large number of satellites in all orbital planes.
  • the ground equipment 700 is an example of a ground device.
  • the ground device is composed of a ground station such as a ground antenna device, a communication device connected to the ground antenna device, or a computer, and ground equipment as a server or a terminal connected to the ground station via a network. Further, the ground device may include a communication device mounted on a moving body such as an aircraft, a self-propelled vehicle, or a mobile terminal.
  • the ground equipment 700 forms a satellite constellation 20 by communicating with each satellite 30.
  • the ground equipment 700 includes a processor 910 and other hardware such as a memory 921, an auxiliary storage device 922, an input interface 930, an output interface 940, and a communication device 950.
  • the processor 910 is connected to other hardware via a signal line and controls these other hardware. The hardware of the ground equipment 700 will be described later in FIG.
  • the ground equipment 700 includes a trajectory control command generation unit 510 and an analysis prediction unit 520 as functional elements.
  • the functions of the trajectory control command generation unit 510 and the analysis prediction unit 520 are realized by hardware or software.
  • the communication device 950 transmits / receives a signal for tracking and controlling each satellite 30 of the satellite group 300 constituting the satellite constellation 20. Further, the communication device 950 transmits an orbit control command 55 to each satellite 30.
  • the analysis prediction unit 520 analyzes and predicts the orbit of the satellite 30.
  • the orbit control command generation unit 510 generates an orbit control command 55 to be transmitted to the satellite 30.
  • the orbit control command generation unit 510 and the analysis prediction unit 520 realize the functions of the satellite constellation formation unit 11. That is, the orbit control command generation unit 510 and the analysis prediction unit 520 are examples of the satellite constellation formation unit 11.
  • FIG. 8 is a diagram showing a functional configuration example of the satellite constellation formation system 600.
  • the satellite 30 further includes a satellite constellation forming unit 11b that forms the satellite constellation 20. Then, the satellite constellation forming unit 11b of each satellite 30 of the plurality of satellites and the satellite constellation forming unit 11 provided in each of the ground equipment 700 cooperate to realize the function of the satellite constellation forming system 600. ..
  • the satellite constellation forming unit 11b of the satellite 30 may be provided in the satellite control device 31.
  • the ground equipment 700 includes a processor 910 and other hardware such as a memory 921, an auxiliary storage device 922, an input interface 930, an output interface 940, and a communication device 950.
  • the processor 910 is connected to other hardware via a signal line and controls these other hardware.
  • the processor 910 is a device that executes a satellite control program that controls the satellite 30.
  • the satellite control program is a program that realizes the functions of each component of the ground equipment 700.
  • the processor 910 is an IC (Integrated Circuit) that performs arithmetic processing.
  • a specific example of the processor 910 is a CPU (Central Processing). Unit), DSP (Digital Signal Processor), GPU (Graphics Processing Unit).
  • the memory 921 is a storage device that temporarily stores data.
  • a specific example of the memory 921 is a SRAM (Static Random Access Memory) or a DRAM (Dynamic Random Access Memory).
  • the auxiliary storage device 922 is a storage device that stores data.
  • a specific example of the auxiliary storage device 922 is an HDD.
  • the auxiliary storage device 922 may be a portable storage medium such as an SD (registered trademark) memory card, CF, NAND flash, flexible disc, optical disk, compact disc, Blu-ray (registered trademark) disc, or DVD.
  • HDD is an abbreviation for Hard Disk Drive.
  • SD® is an abbreviation for Secure Digital.
  • CF is an abbreviation for CompactFlash®.
  • DVD is an abbreviation for Digital Versatile Disc.
  • the input interface 930 is a port connected to an input device such as a mouse, keyboard, or touch panel. Specifically, the input interface 930 is a USB (Universal Serial Bus) terminal. The input interface 930 may be a port connected to a LAN (Local Area Network).
  • the output interface 940 is a port to which a cable of a display device 941 such as a display is connected. Specifically, the output interface 940 is a USB terminal or an HDMI (registered trademark) (High Definition Multimedia Interface) terminal. Specifically, the display is an LCD (Liquid Crystal Display).
  • the communication device 950 has a receiver and a transmitter. Specifically, the communication device 950 is a communication chip or a NIC (Network Interface Card).
  • NIC Network Interface Card
  • the satellite control program is read into the processor 910 and executed by the processor 910.
  • the memory 921 not only the satellite control program but also the OS (Operating System) is stored.
  • the processor 910 executes the satellite control program while executing the OS.
  • the satellite control program and the OS may be stored in the auxiliary storage device 922.
  • the satellite control program and OS stored in the auxiliary storage device 922 are loaded into the memory 921 and executed by the processor 910. A part or all of the satellite control program may be incorporated in the OS.
  • the ground equipment 700 may include a plurality of processors that replace the processor 910. These plurality of processors share the execution of the satellite control program.
  • Each processor like the processor 910, is a device that executes a satellite control program.
  • Data, information, signal values and variable values used, processed or output by the satellite control program are stored in a memory 921, an auxiliary storage device 922, or a register or cache memory in the processor 910.
  • the "part" of each part of the ground equipment may be read as “processing”, “procedure”, “means”, “step” or “process”.
  • the "process” of each part is replaced with “process”
  • the "process” of each part is “program”, “program product”, "computer-readable storage medium in which the program is stored”, or “computer reading in which the program is recorded”. It may be read as “possible recording medium”.
  • "Processing”, “procedure”, “means”, “step” or “process” can be read interchangeably.
  • each process, each procedure, each means, each stage or each is replaced with "process", “procedure”, “means”, “step” or “process” of each part of the ground equipment 700. Let the computer perform the process.
  • the satellite control method is a method performed by the ground equipment 700 executing a satellite control program.
  • the satellite control program may be provided stored in a computer-readable recording medium.
  • the satellite control program may also be provided as a program product.
  • the ground equipment 700 controls the satellite 30 including the propulsion device 33.
  • the ground equipment 700 provides the amount of propellant required for the satellite 30 to enter the atmosphere in a period of less than the first period of less than one year after leaving orbit after the satellite 30 has been in orbit for the first period of the satellite design life.
  • the satellite 30 is controlled so that the satellite 30 possesses it.
  • FIG. 9 is a diagram showing changes in the number of space objects due to the launch of a mega constellation, which is a comparative example of the present embodiment. With the advent of mega constellations, there is concern that the number of objects in orbit will increase dramatically. According to the IADC Space Debris Reduction Guidelines, it is stipulated that satellites after the completion of orbital missions will enter the atmosphere within 25 years. IADC is an abbreviation for The Inter-Agency Space Debris Coordination Committee. Assuming that the design life of 10,000 satellites is 5 years, the first-generation satellite group will be in orbit. If they leave the orbit after completing the mission and enter the atmosphere, the first-generation satellite group will stay in outer space for a total of 30 years.
  • the number of satellites in orbit will be 20,000. In this way, the number of objects in orbit increases to more than 20,000 including the upper stage of the rocket. Similarly, if the first-generation satellites are launched to the sixth-generation satellites by the time they enter the atmosphere, the number of objects in orbit will exceed 60,000. It has been pointed out that if an orbital collision accident occurs when the number of objects in orbit is excessive, it may induce Kessler syndrome in which collisions are chained and cannot be stopped. Therefore, it is necessary to avoid the situation where the number of objects in orbit increases 6 times in 30 years.
  • FIG. 10 is a diagram showing the relationship between the amount of propellant in the satellite 30 according to the present embodiment and the number of years elapsed after the launch.
  • FIG. 11 is a diagram showing changes in the number of space objects due to the launch of a mega constellation composed of satellites 30 according to the present embodiment.
  • the life in orbit of the satellite is set to be longer than the deorbit period until the satellite enters the atmosphere after the completion of the orbital mission.
  • the total number of space objects is more than doubled because the first-generation satellite group is staying in outer space.
  • the first-generation satellite will enter the atmosphere. Therefore, the total number of space objects is maintained at more than double, and the risk of monotonously increasing due to the subsequent generation change can be eliminated.
  • the satellite 30 enters the atmosphere in a period of less than the first period L1 year after leaving the orbit after the satellite 30 is operated in orbit for the first period L1 year, which is the satellite design life. Have the necessary amount of propellant for this.
  • the satellite with the first period L1 year which is the satellite design life, executes the orbital mission during the first period L1 year, and then, after leaving the orbit, the atmosphere is in the period less than the first period L1 year. If it can be entered, the total number of space objects will be maintained at more than double.
  • a propellant management method is realized in which the satellite design life is longer than the deorbit period until the satellite enters the atmosphere after the end of the orbital mission.
  • the satellite enters the atmosphere in a period of less than the first period L1 year after leaving the orbit after the satellite is operated in orbit for the first period L1 year, which is the satellite design life. Have the required amount of propellant.
  • a first-generation satellite having a satellite design life of 10 years in the first period executes an orbital mission for about 10 years. Then, shortly before the first-generation satellite completes its orbital mission, the second-generation satellite will be launched.
  • the first-generation satellites enter the deorbit period at about the same time as the second-generation satellites are launched. Since the first-generation satellites enter the atmosphere within a period of less than 10 years after leaving orbit, the total number of space objects at this time is maintained at more than double. On the other hand, when the third-generation satellite is launched, the total number of space objects will be maintained at more than double because the first-generation satellite has already entered the atmosphere.
  • FIG. 12 is a diagram showing a method of shortening the deorbit period according to the present embodiment.
  • a method of shortening the deorbit period of the satellite 30 artificial satellite
  • it is effective to operate the propulsion device so as to propel (obtain thrust) in the direction opposite to the traveling direction in orbit.
  • the number of objects in the orbit of the mega constellation can be maintained to be more than twice the number of stationary satellites, and thus Kessler syndrome. It has the effect of being able to prevent it.
  • the ground equipment that executes the propellant management method is, for example, a management business device such as a mega constellation business device, a LEO constellation business device, or a satellite business device.
  • the artificial satellite enters the atmosphere within a period of less than L1 year after leaving the orbit after the satellite is operated in orbit with a satellite design life of L1 year. Have the propellant needed to do it.
  • an example is shown in which the artificial satellite leaves the orbit after the design life is reached.
  • artificial satellites At the time of operation with a satellite design life of L1 years, artificial satellites have the necessary propellants to enter the atmosphere in less than L1 years after leaving orbit. Therefore, since the aircraft enters the atmosphere before the successor is launched, there is an effect that the risk that the number of objects in the orbit continues to increase can be eliminated.
  • the functions of the ground equipment 700 are realized by software.
  • the function of the ground equipment 700 may be realized by hardware.
  • FIG. 13 is a diagram showing the configuration of the ground equipment 700 according to the modified example of the present embodiment.
  • the ground equipment 700 includes an electronic circuit 909 instead of the processor 910.
  • the electronic circuit 909 is a dedicated electronic circuit that realizes the functions of the ground equipment 700.
  • the electronic circuit 909 is specifically a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, a logic IC, a GA, an ASIC, or an FPGA.
  • GA is an abbreviation for Gate Array.
  • the function of the ground equipment 700 may be realized by one electronic circuit, or may be distributed and realized by a plurality of electronic circuits. As another modification, some functions of the ground equipment 700 may be realized by electronic circuits, and the remaining functions may be realized by software.
  • Each of the processor and the electronic circuit is also called a processing circuit. That is, the function of the ground equipment 700 is realized by the processing circuit.
  • Embodiment 2 points different from the first embodiment and points to be added to the first embodiment will be mainly described.
  • the same reference numerals are given to the configurations having the same functions as those in the first embodiment, and the description thereof will be omitted.
  • the configurations of the satellite 30, the satellite constellation formation system 600, and the ground equipment 700 are the same as those in the first embodiment.
  • an artificial satellite propellant management method will be described when the propellant amount is impaired more than planned due to an unexpected reason.
  • An unforeseen reason is, for example, that the propellant is consumed more than expected before it is put into orbit after launch, or that there is an unexpected impairment due to a propellant leak.
  • the propellant management method according to the present embodiment the residual propellant is continuously operated, and as a result, at the time of the period L2 years of operation in orbit, the amount of propellant possessed enters the atmosphere within L2 years after leaving the orbit. The operation will be terminated in anticipation of the amount of propellant required for this.
  • FIG. 14 is a diagram showing the relationship between the amount of propellant in the satellite 30 according to the present embodiment and the number of years elapsed after the launch.
  • the satellite 30 according to the present embodiment has a second period after leaving the orbit after the orbital operation of the second period L2 years, which is shorter than the first period L1 year, which is the satellite design life after the launch of the satellite 30.
  • the propellant management method according to the present embodiment after the satellite 30 is operated in orbit for the second period L2 years, which is shorter than the first period L1 years, which is the satellite design life after the launch of the satellite 30, the satellite 30 is operated. It is a method of holding the necessary amount of propellant to enter the atmosphere within the second period L2 years after leaving the orbit.
  • the ground equipment 700 is L2 years after the satellite 30 leaves the orbit after the satellite 30 is put into orbit for L2 years, which is a shorter period than the satellite design life of L1 years after the launch of the satellite 30. Control satellite 30 to carry the amount of propellant required to enter the atmosphere below.
  • the satellite 30 is in the atmosphere within a period of less than L2 years after leaving orbit after being operated in orbit for L2 years, which is shorter than the satellite design life of L1 years, due to unexpected explosive consumption. I have the propellant needed to rush.
  • the propellant management method according to the present embodiment the residual propellant is continuously operated, and as a result, at the time of the period L2 years of operation in orbit, the amount of propellant possessed enters the atmosphere within L2 years after leaving the orbit. The operation will be terminated in anticipation of the amount of propellant required for this.
  • the residence period in the orbit is less than L2 ⁇ 2, so that there is an effect that the risk that the number of objects in the orbit keeps increasing can be eliminated.
  • the ground equipment 700 based on the number of years of operation Lx in orbit up to the present and the current amount of propellant, is the current amount of propellant less than Lx years from the present time and the amount of propellant required for entry into the atmosphere? Is calculated.
  • the ground equipment 700 may determine the end of orbital operation of the satellite based on the amount of propellant required to enter the atmosphere in less than Lx years from the present time.
  • the vehicle deorbits after the orbital operation for L2 years which is shorter than the design life due to an unexpected reason.
  • it has the amount of propellant that enters the atmosphere within L2 years after leaving the orbit. Therefore, there is an effect that the risk that the number of objects in the orbit continues to increase can be eliminated as in the first embodiment.
  • Embodiment 3 points different from the first and second embodiments and points to be added to the first and second embodiments will be mainly described.
  • the same reference numerals are given to the configurations having the same functions as those in the first and second embodiments, and the description thereof will be omitted.
  • the configurations of the satellite 30, the satellite constellation formation system 600, and the ground equipment 700 are the same as those in the first embodiment.
  • an artificial satellite (satellite 30) having a satellite design life longer than the time from leaving the orbit to entering the atmosphere will be described.
  • the satellite enter the atmosphere within 25 years after the completion of the mission in orbit, or transition to a orbit called a graveyard orbit, which does not adversely affect the artificial satellite in regular operation.
  • the design life of a mega constellation with more than 10,000 stationary operations is shorter than 25 years, the total number of objects in orbit will increase more than three times as follows. Specifically, at the stage where the first-generation satellite group deorbits after the mission is completed, the second-generation satellite group is launched and operated, deorbited after the mission is completed, and the third-generation satellite group is launched. The first generation satellite group is in the middle of Deorbit. Therefore, the total number of objects in orbit will increase more than three times.
  • Kessler syndrome will not stop.
  • An effective means of suppressing this increase in the number of objects is to set the satellite design life of the artificial satellite longer than the time from leaving the orbit to entering the atmosphere. In this case, since the first-generation satellite completes the entry into the atmosphere before the design life of the second-generation satellite is reached, there is an effect that it is possible to prevent the number of objects from increasing monotonically after the third generation.
  • each part of the ground equipment has been described as an independent functional block.
  • the configuration of the ground equipment does not have to be the configuration as in the above-described embodiment.
  • the functional block of the ground equipment may have any configuration as long as it can realize the functions described in the above-described embodiment.
  • the ground equipment may be one device or a system composed of a plurality of devices.
  • first to third embodiments may be combined and implemented. Alternatively, one part of these embodiments may be implemented. In addition, these embodiments may be implemented in any combination as a whole or partially. That is, in the first to third embodiments, it is possible to freely combine the parts of the first to third embodiments, modify any component, or omit any component in the first to third embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

メガコンステレーションを構成する衛星が、ミッションを終了した後に、宇宙空間に大量に滞留することを防ぐことを目的とする。人工衛星は、推進装置を具備する。人工衛星は、推進装置に用いられる推薬であって、人工衛星が衛星設計寿命である第1期間L1年の軌道上運用後に、軌道離脱してから第1期間L1年未満の期間で大気圏突入するために必要な量の推薬を保有する。地上設備は、人工衛星が、衛星設計寿命である第1期間L1年の軌道上運用後に、軌道離脱してから第1期間L1年未満の期間で大気圏突入するために必要な量の推薬を保有するように人工衛星を制御する。

Description

人工衛星、推薬管理方法、地上設備、および、管理事業装置
 本開示は、人工衛星、推薬管理方法、地上設備、および、管理事業装置に関する。
 近年、数百から数千機に及ぶ大規模衛星コンステレーション、所謂メガコンステレーションの構築が始まり、軌道上における衛星の衝突のリスクが高まっている。また、故障により制御不能となった衛星、あるいは、ロケットの残骸といったスペースデブリが増加している。
 このような宇宙空間における衛星およびスペースデブリといった宇宙物体の急激な増加に伴い、宇宙交通管制(STM)では、宇宙物体の衝突を回避するための国際的なルール作りの必要性が高まっている。
 特許文献1には、同一の円軌道に複数の衛星から成る衛星コンステレーションを形成する技術が開示されている。
特開2017-114159号公報
 従来では、メガコンステレーションを構成する衛星が、軌道上におけるミッションを終了し、宇宙空間に大量に滞留する虞がある。
 しかしながら、特許文献1には、メガコンステレーションを構成する衛星が、ミッションを終了した後に、宇宙空間に大量に滞留することを防ぐ方式については記載されていない。
 本開示は、メガコンステレーションを構成する衛星が、ミッションを終了した後に、宇宙空間に大量に滞留することを防ぐことを目的とする。
 本開示に係る人工衛星は、推進装置を具備する人工衛星において、
 前記推進装置に用いられる推薬であって、前記人工衛星が衛星設計寿命である第1期間年の軌道上運用後に、軌道離脱してから前記第1期間年未満の期間で大気圏突入するために必要な量の推薬を保有する。
 本開示に係る人工衛星によれば、ミッションを終了した人工衛星が、宇宙空間に大量に滞留することを防ぐことができるという効果がある。
複数衛星が連携して地球の全球に亘り通信サービスを実現する例。 単一軌道面の複数衛星が地球観測サービスを実現する例。 極域近傍で交差する複数の軌道面を有する衛星コンステレーションの例。 極域以外で交差する複数の軌道面を有する衛星コンステレーションの例。 衛星コンステレーション形成システムの構成図。 衛星コンステレーション形成システムの衛星の構成図。 衛星コンステレーション形成システムの地上設備の構成図。 衛星コンステレーション形成システムの機能構成例。 実施の形態1の比較例であるメガコンステレーションの打ち上げによる宇宙物体数の推移を示す図。 実施の形態1に係る衛星における推薬量と打ち上げ後経過年数の関係を示す図。 実施の形態1に係る衛星により構成されたメガコンステレーションの打ち上げによる宇宙物体数の推移を示す図。 実施の形態1に係るデオービット期間を短縮する方法を示す図。 実施の形態1の変形例に係る地上設備700の構成図。 実施の形態2に係る衛星における推薬量と打ち上げ後経過年数の関係を示す図。
 以下、本開示の実施の形態について、図を用いて説明する。なお、各図中、同一または相当する部分には、同一符号を付している。実施の形態の説明において、同一または相当する部分については、説明を適宜省略または簡略化する。また、以下の図面では各構成の大きさの関係が実際のものとは異なる場合がある。また、実施の形態の説明において、「上」、「下」、「左」、「右」、「前」、「後」、「表」、「裏」といった方向あるいは位置が示されている場合がある。それらの表記は、説明の便宜上、そのように記載しているだけであって、装置、器具、あるいは部品といった構成の配置および向きを限定するものではない。
 実施の形態1.
 以下の実施の形態に係る宇宙交通管理システムの前提となる衛星コンステレーションの例について説明する。
 図1は、地上に対し、複数衛星が連携して地球70の全球に亘り通信サービスを実現する例を示す図である。
 図1は、全球に亘り通信サービスを実現する衛星コンステレーション20を示している。
 同一軌道面を同一高度で飛行している複数の衛星の各衛星では、地上に対する通信サービス範囲が後続衛星の通信サービス範囲とオーバーラップしている。よって、このような複数の衛星によれば、地上の特定地点に対して、同一軌道面上の複数の衛星が時分割的に交互に交代しながら通信サービスを提供することができる。また、隣接軌道面を設けることにより、隣接軌道間の地上に対する通信サービスを面的に網羅することが可能となる。同様に、地球の周りに多数の軌道面を概ね均等配置すれば、全球に亘り地上に対する通信サービスが可能となる。
 図2は、単一軌道面の複数衛星が地球観測サービスを実現する例を示す図である。
 図2は、地球観測サービスを実現する衛星コンステレーション20を示している。図2の衛星コンステレーション20は、光学センサあるいは合成開口レーダーといった電波センサである地球観測装置を具備した衛星が同一軌道面を同一高度で飛行する。このように、地上の撮像範囲が時間遅れで後続衛星がオーバーラップする衛星群300では、地上の特定地点に対して軌道上複数の衛星が時分割的に交互に交代しながら地上画像を撮像することにより地球観測サービスを提供する。
 このように、衛星コンステレーション20は、各軌道面の複数の衛星からなる衛星群300により構成される。衛星コンステレーション20では、衛星群300が連携してサービスを提供する。衛星コンステレーション20とは、具体的には、図1に示すような通信
事業サービス会社、あるいは、図2に示すような観測事業サービス会社による1つの衛星群から成る衛星コンステレーションを指す。
 図3は、極域近傍で交差する複数の軌道面21を有する衛星コンステレーション20の例である。また、図4は、極域以外で交差する複数の軌道面21を有する衛星コンステレーション20の例である。
 図3の衛星コンステレーション20では、複数の軌道面の各軌道面21の軌道傾斜角が約90度であり、かつ、複数の軌道面の各軌道面21が互いに異なる面に存在する。
 図4の衛星コンステレーション20では、複数の軌道面の各軌道面21の軌道傾斜角が約90度ではなく、かつ、複数の軌道面の各軌道面21が互いに異なる面に存在する。
 図3の衛星コンステレーション20では、任意の2つの軌道面が極域近傍の地点で交差する。また、図4の衛星コンステレーション20では、任意の2つの軌道面が極域以外の地点で交差する。図3では、極域近傍において、衛星30の衝突が発生する可能性がある。また、図4に示すように、軌道傾斜角が90度よりも傾斜している複数の軌道面の交点は軌道傾斜角に応じて極域から離れていく。また、軌道面の組合せによって赤道近傍を含む多様な位置で軌道面が交差する可能性がある。このため、衛星30の衝突が発生する可能性のある場所が多様化する。衛星30は人工衛星の例であり、本実施の形態において衛星を人工衛星と読み替えてもよい。
 例えば、衛星30は、100機以上の人工衛星から構成された衛星コンステレーションであるメガコンステレーションを構成する。
 ここで、図5から図8を用いて衛星コンステレーション20を形成する衛星コンステレーション形成システム600における衛星30と地上設備700の一例について説明する。例えば、衛星コンステレーション形成システム600は、メガコンステレーション事業装置、LEOコンステレーション事業装置、あるいは衛星事業装置のような衛星コンステレーション事業を行う事業者により運用される管理事業装置40である。LEOは、Low Earth Orbitの略語である。
***構成の説明***
 図5は、本実施の形態に係る衛星30から構成されるメガコンステレーションを形成する衛星コンステレーション形成システム600の構成図である。
 衛星コンステレーション形成システム600は、コンピュータを備える。図5では、1つのコンピュータの構成を示しているが、実際には、衛星コンステレーション20を構成する複数の衛星の各衛星30、および、衛星30と通信する地上設備700の各々にコンピュータが備えられる。そして、複数の衛星の各衛星30、および、衛星30と通信する地上設備700の各々に備えられたコンピュータが連携して、衛星コンステレーション形成システム600の機能を実現する。以下において、衛星コンステレーション形成システム600の機能を実現するコンピュータの構成の一例について説明する。
 衛星コンステレーション形成システム600は、衛星30と地上設備700を備える。衛星30は、地上設備700の通信装置950と通信する衛星通信装置32を備える。図5では、衛星30が備える構成のうち衛星通信装置32を図示している。
 衛星コンステレーション形成システム600は、プロセッサ910を備えるとともに、メモリ921、補助記憶装置922、入力インタフェース930、出力インタフェース940、および通信装置950といった他のハードウェアを備える。プロセッサ910は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。衛星コンステレーション形成システム600のハードウェアについては、図8において後述する地上設備700のハードウェアと同様である。
 衛星コンステレーション形成システム600は、機能要素として、衛星コンステレーション形成部11を備える。衛星コンステレーション形成部11の機能は、ハードウェアあるいはソフトウェアにより実現される。
 衛星コンステレーション形成部11は、衛星30と通信しながら衛星コンステレーション20の形成を制御する。
 図6は、本実施の形態に係る衛星30の構成図である。
 衛星30は、衛星制御装置31と衛星通信装置32と推進装置33と姿勢制御装置34と電源装置35とを備える。その他、各種の機能を実現する構成要素を備えるが、図6では、衛星制御装置31と衛星通信装置32と推進装置33と姿勢制御装置34と電源装置35について説明する。衛星30は、宇宙物体60の一例である。
 衛星制御装置31は、推進装置33と姿勢制御装置34とを制御するコンピュータであり、処理回路を備える。具体的には、衛星制御装置31は、地上設備700から送信される各種コマンドにしたがって、推進装置33と姿勢制御装置34とを制御する。
 衛星通信装置32は、地上設備700と通信する装置である。具体的には、衛星通信装置32は、自衛星に関する各種データを地上設備700へ送信する。また、衛星通信装置32は、地上設備700から送信される各種コマンドを受信する。
 推進装置33は、衛星30に推進力を与える装置であり、衛星30の速度を変化させる。具体的には、推進装置33は、化学推進装置、または電気推進装置である。
 化学推進装置は、一液性ないし二液性燃料を用いたスラスタである。電気推進装置としては、イオンエンジンまたはホールスラスタである。
 姿勢制御装置34は、衛星30の姿勢と衛星30の角速度と視線方向(Line Of
 Sight)といった姿勢要素を制御するための装置である。姿勢制御装置34は、各姿勢要素を所望の方向に変化させる。もしくは、姿勢制御装置34は、各姿勢要素を所望の方向に維持する。姿勢制御装置34は、姿勢センサとアクチュエータとコントローラとを備える。姿勢センサは、ジャイロスコープ、地球センサ、太陽センサ、スター・トラッカ、スラスタおよび磁気センサといった装置である。アクチュエータは、姿勢制御スラスタ、モーメンタムホイール、リアクションホイールおよびコントロール・モーメント・ジャイロといった装置である。コントローラは、姿勢センサの計測データまたは地上設備700からの各種コマンドにしたがって、アクチュエータを制御する。
 電源装置35は、太陽電池、バッテリおよび電力制御装置といった機器を備え、衛星30に搭載される各機器に電力を供給する。
 衛星制御装置31に備わる処理回路について説明する。
 処理回路は、専用のハードウェアであってもよいし、メモリに格納されるプログラムを実行するプロセッサであってもよい。
 処理回路において、一部の機能が専用のハードウェアで実現されて、残りの機能がソフトウェアまたはファームウェアで実現されてもよい。つまり、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせで実現することができる。
 専用のハードウェアは、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGAまたはこれらの組み合わせである。
 ASICは、Application Specific Integrated Circuitの略称である。FPGAは、Field Programmable Gate Arrayの略称である。
 本実施の形態に係る衛星30は、推進装置33に用いられる推薬であって、衛星30が衛星設計寿命である第1期間年の軌道上運用後に、軌道離脱してから第1期間年未満の期間で大気圏突入するために必要な量の推薬を保有する。
 また、本実施の形態の推薬管理方法は、衛星30が、推進装置33に用いられる推薬であって、衛星30が衛星設計寿命である第1期間年の軌道上運用後に、軌道離脱してから第1期間年未満の期間で大気圏突入するために必要な量の推薬を保有する方法である。
 なお、衛星設計寿命とは、衛星が軌道上で運用可能な期間であり、衛星軌道上寿命、あるいは単に設計寿命ともいう。
 図7は、衛星コンステレーション形成システム600が備える地上設備700の構成図である。
 地上設備700は、全ての軌道面の多数衛星をプログラム制御する。地上設備700は、地上装置の例である。地上装置は、地上アンテナ装置、地上アンテナ装置に接続された通信装置、あるいは電子計算機といった地上局と、地上局にネットワークで接続されたサーバあるいは端末としての地上設備から構成される。また、地上装置には航空機、自走車両、あるいは移動端末といった移動体に搭載された通信装置を含んでも良い。
 地上設備700は、各衛星30と通信することによって衛星コンステレーション20を形成する。地上設備700は、プロセッサ910を備えるとともに、メモリ921、補助記憶装置922、入力インタフェース930、出力インタフェース940、および通信装置950といった他のハードウェアを備える。プロセッサ910は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。地上設備700のハードウェアについては、図8において後述する。
 地上設備700は、機能要素として、軌道制御コマンド生成部510と、解析予測部520を備える。軌道制御コマンド生成部510および解析予測部520の機能は、ハードウェアあるいはソフトウェアにより実現される。
 通信装置950は、衛星コンステレーション20を構成する衛星群300の各衛星30を追跡管制する信号を送受信する。また、通信装置950は、軌道制御コマンド55を各衛星30に送信する。
 解析予測部520は、衛星30の軌道を解析予測する。
 軌道制御コマンド生成部510は、衛星30に送信する軌道制御コマンド55を生成する。
 軌道制御コマンド生成部510および解析予測部520は、衛星コンステレーション形成部11の機能を実現する。すなわち、軌道制御コマンド生成部510および解析予測部520は、衛星コンステレーション形成部11の例である。
 図8は、衛星コンステレーション形成システム600の機能構成例を示す図である。
 衛星30は、さらに、衛星コンステレーション20を形成する衛星コンステレーション形成部11bを備える。そして、複数の衛星の各衛星30の衛星コンステレーション形成部11bと、地上設備700の各々に備えられた衛星コンステレーション形成部11とが連携して、衛星コンステレーション形成システム600の機能を実現する。なお、衛星30の衛星コンステレーション形成部11bは、衛星制御装置31に備えられていてもよい。
 地上設備700は、プロセッサ910を備えるとともに、メモリ921、補助記憶装置922、入力インタフェース930、出力インタフェース940、および通信装置950といった他のハードウェアを備える。プロセッサ910は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
 プロセッサ910は、衛星30を制御する衛星制御プログラムを実行する装置である。衛星制御プログラムは、地上設備700の各構成要素の機能を実現するプログラムである。
 プロセッサ910は、演算処理を行うIC(Integrated Circuit)である。プロセッサ910の具体例は、CPU(Central Processing
 Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)である。
 メモリ921は、データを一時的に記憶する記憶装置である。メモリ921の具体例は、SRAM(Static Random Access Memory)、あるいはDRAM(Dynamic Random Access Memory)である。
 補助記憶装置922は、データを保管する記憶装置である。補助記憶装置922の具体例は、HDDである。また、補助記憶装置922は、SD(登録商標)メモリカード、CF、NANDフラッシュ、フレキシブルディスク、光ディスク、コンパクトディスク、ブルーレイ(登録商標)ディスク、DVDといった可搬の記憶媒体であってもよい。なお、HDDは、Hard Disk Driveの略語である。SD(登録商標)は、Secure Digitalの略語である。CFは、CompactFlash(登録商標)の略語である。DVDは、Digital Versatile Diskの略語である。
 入力インタフェース930は、マウス、キーボード、あるいはタッチパネルといった入力装置と接続されるポートである。入力インタフェース930は、具体的には、USB(Universal Serial Bus)端子である。なお、入力インタフェース930は、LAN(Local Area Network)と接続されるポートであってもよい。
 出力インタフェース940は、ディスプレイといった表示機器941のケーブルが接続されるポートである。出力インタフェース940は、具体的には、USB端子またはHDMI(登録商標)(High Definition Multimedia Interface)端子である。ディスプレイは、具体的には、LCD(Liquid Crystal Display)である。
 通信装置950は、レシーバとトランスミッタを有する。通信装置950は、具体的には、通信チップまたはNIC(Network Interface Card)である。
 衛星制御プログラムは、プロセッサ910に読み込まれ、プロセッサ910によって実行される。メモリ921には、衛星制御プログラムだけでなく、OS(Operating System)も記憶されている。プロセッサ910は、OSを実行しながら、衛星制御プログラムを実行する。衛星制御プログラムおよびOSは、補助記憶装置922に記憶されていてもよい。補助記憶装置922に記憶されている衛星制御プログラムおよびOSは、メモリ921にロードされ、プロセッサ910によって実行される。なお、衛星制御プログラムの一部または全部がOSに組み込まれていてもよい。
 地上設備700は、プロセッサ910を代替する複数のプロセッサを備えていてもよい。これら複数のプロセッサは、衛星制御プログラムの実行を分担する。それぞれのプロセッサは、プロセッサ910と同じように、衛星制御プログラムを実行する装置である。
 衛星制御プログラムにより利用、処理または出力されるデータ、情報、信号値および変数値は、メモリ921、補助記憶装置922、または、プロセッサ910内のレジスタあ
るいはキャッシュメモリに記憶される。
 地上設備の各部の「部」を「処理」、「手順」、「手段」、「段階」あるいは「工程」に読み替えてもよい。また、各部の「部」を「処理」に読み替えた各処理の「処理」を「プログラム」、「プログラムプロダクト」、「プログラムを記憶したコンピュータ読取可能な記憶媒体」または「プログラムを記録したコンピュータ読取可能な記録媒体」に読み替えてもよい。「処理」、「手順」、「手段」、「段階」あるいは「工程」は、互いに読み換えが可能である。
 衛星制御プログラムは、地上設備700の各部の「部」を「処理」、「手順」、「手段」、「段階」あるいは「工程」に読み替えた各処理、各手順、各手段、各段階あるいは各工程を、コンピュータに実行させる。また、衛星制御方法は、地上設備700が衛星制御プログラムを実行することにより行われる方法である。
 衛星制御プログラムは、コンピュータ読取可能な記録媒体に格納されて提供されてもよい。また、衛星制御プログラムは、プログラムプロダクトとして提供されてもよい。
 本実施の形態に係る地上設備700は、推進装置33を具備する衛星30を制御する。地上設備700は、衛星30が衛星設計寿命である第1期間年の軌道上運用後に、軌道離脱してから第1期間年未満の期間で大気圏突入するために必要な量の推薬を、衛星30が保有するように衛星30を制御する。
 図9は、本実施の形態の比較例であるメガコンステレーションの打ち上げによる宇宙物体数の推移を示す図である。
 メガコンステレーションの登場により、軌道上物体数が激増することが懸念される。
 IADCによるスペースデブリ低減ガイドライン(Space Debris Mitigation Guidelines)によれば、軌道上ミッション終了後の衛星を25年以内に大気圏突入させることが規定されている。IADCは、国際機関間スペースデブリ調整委員会(The Inter-agency Space Debris Coordination Committeeの略語である。仮に、10000機の衛星の設計寿命が5年と仮定すると、第一世代の衛星群が軌道上ミッションを終了してから軌道離脱して、大気圏突入する場合、第一世代の衛星群は合計30年間宇宙空間に滞留することになる。
 サービス継続のために第二世代衛星を10000機を打ち上げた時点で、軌道上の衛星数は20000機となる。このように、軌道上物体数は、ロケット上段を含めて20000を超す数に増加する。同様に第一世代衛星群が大気圏突入するまでに第六世代衛星群まで打ち上げると、軌道上物体数は60000を超す状況となる。軌道上物体数が過多になった状態で軌道上衝突事故が発生すると、衝突が連鎖して止まらなくなるケスラーシンドロームを誘引する可能性が指摘されている。よって、軌道上物体数が30年間に6倍に増加する状況は回避する必要がある。
 図10は、本実施の形態に係る衛星30における推薬量と打ち上げ後経過年数の関係を示す図である。
 図11は、本実施の形態に係る衛星30により構成されたメガコンステレーションの打ち上げによる宇宙物体数の推移を示す図である。
 軌道上物体数が増大することの対策として、衛星の軌道上寿命が、軌道上ミッション終了後の衛星を大気圏突入させるまでのデオービット期間よりも長くなるように設定する。このとき、第二世代衛星群の打ち上げ時点では、第一世代衛星群が宇宙空間に滞留しているので、宇宙物体総数は2倍強に増加する。しかし、第三世代衛星群の打ち上げ時点においては、第一世代衛星が大気圏突入する。よって、宇宙物体総数は2倍強のまま維持され
、その後の世代交代により単調増加するリスクが解消できる。
 図10に示すように、本実施の形態に係る衛星30は、衛星設計寿命である第1期間L1年の軌道上運用後に、軌道離脱してから第1期間L1年未満の期間で大気圏突入するために必要な量の推薬を保有する。このように、衛星設計寿命である第1期間L1年の衛星が、第1期間L1年の間、軌道上ミッションを実行し、その後、軌道離脱してから第1期間L1年未満の期間で大気圏突入することができれば、宇宙物体総数は2倍強のまま維持される。
 また、本実施の形態では、衛星設計寿命が、軌道上ミッション終了後の衛星を大気圏突入させるまでのデオービット期間よりも長くなる推薬管理方法を実現する。つまり、本実施の形態の推薬管理方法では、衛星は、衛星設計寿命である第1期間L1年の軌道上運用後に、軌道離脱してから第1期間L1年未満の期間で大気圏突入するために必要な量の推薬を保有する。
 図11に示すように、衛星設計寿命である第1期間が10年の第一世代の衛星は、約10年の間、軌道上ミッションを実行する。そして、第一世代の衛星が軌道上ミッションを終了するより少し前に、第二世代の衛星が打ち上げられる。第二世代の衛星が打ち上げられる時期と概ね同時期に第一世代の衛星はデオービット期間に入る。第一世代の衛星は、軌道離脱してから約10年未満の期間で大気圏突入するので、このときの宇宙物体総数は2倍強のまま維持される。一方、第三世代の衛星が打ち上げられる際には、第一世代の衛星は既に大気圏突入しているので、やはり、宇宙物体総数は2倍強のまま維持される。
 図12は、本実施の形態に係るデオービット期間を短縮する方法を示す図である。
 衛星30(人工衛星)のデオービット期間を短縮する方法としては、軌道上進行方向と逆向きに推進する(推力を得る)ように推進装置を動作させるのが有効である。より多く噴射する程、減速効果が大きくなり、大気圏突入までの時間が短縮できる。このためデオービット期間の短縮効果は、軌道離脱時点に保有する推薬の量に依存する。
***本実施の形態の効果の説明***
 このように、本実施の形態に係る人工衛星、推薬管理方法、および地上設備によれば、メガコンステレーションの軌道上物体数が定常運用衛星数の2倍強程度に維持できるので、ケスラーシンドローム防止ができるという効果がある。また、推薬管理方法を実行する地上設備は、例えば、メガコンステレーション事業装置、LEOコンステレーション事業装置、あるいは、衛星事業装置といった管理事業装置である。
 また、本実施の形態に係る人工衛星、推薬管理方法、および地上設備では、人工衛星は、衛星設計寿命L1年の軌道上運用後において、軌道離脱してからL1年未満の期間で大気圏突入するのに要する推薬を保有する。
 本実施の形態では、人工衛星が設計寿命を全うしてから軌道離脱する例を示している。人工衛星は、衛星設計寿命L1年の運用時点において、軌道離脱後L1年未満で大気圏突入するのに必要な推薬を保有している。よって、後継機の更に後継機を打ち上げる前には大気圏突入するので、軌道上物体数が増え続けるリスクが解消できるという効果がある。
***他の構成***
 本実施の形態では、地上設備700の機能がソフトウェアで実現される。変形例として、地上設備700の機能がハードウェアで実現されてもよい。
 図13は、本実施の形態の変形例に係る地上設備700の構成を示す図である。
 地上設備700は、プロセッサ910に替えて電子回路909を備える。
 電子回路909は、地上設備700の機能を実現する専用の電子回路である。
 電子回路909は、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ロジックIC、GA、ASIC、または、FPGAである。GAは、Gate Arrayの略語である。
 地上設備700の機能は、1つの電子回路で実現されてもよいし、複数の電子回路に分散して実現されてもよい。
 別の変形例として、地上設備700の一部の機能が電子回路で実現され、残りの機能がソフトウェアで実現されてもよい。
 プロセッサと電子回路の各々は、プロセッシングサーキットリとも呼ばれる。つまり、地上設備700の機能は、プロセッシングサーキットリにより実現される。
 実施の形態2.
 本実施の形態では、主に、実施の形態1と異なる点および実施の形態1に追加する点について説明する。
 本実施の形態において、実施の形態1と同様の機能を有する構成については同一の符号を付し、その説明を省略する。
 なお、衛星30、衛星コンステレーション形成システム600、および地上設備700の構成は、実施の形態1と同様である。
 本実施の形態では、不慮の事由により推薬量が計画よりも減損した場合の人工衛星の推薬管理方法について説明する。不慮の事由とは、例えば、打ち上げ後軌道投入までに想定以上に推薬を消耗してしまった、あるいは、推薬リークにより想定外の減損があるといった場合である。本実施の形態に係る推薬管理方法では、残存推薬を運用継続して、結果として軌道上運用した期間L2年の時点で、保有する推薬量が軌道離脱後L2年未満で大気圏突入するのに必要な推薬量を見越して運用を終了する。
 図14は、本実施の形態に係る衛星30における推薬量と打ち上げ後経過年数の関係を示す図である。
 本実施の形態に係る衛星30は、衛星30の打ち上げ後に衛星設計寿命である第1期間L1年よりも短期間である第2期間L2年の軌道上運用後に、軌道離脱してから第2期間L2年未満で大気圏突入するために必要な量の推薬を保有する。
 また、本実施の形態に係る推薬管理方法は、衛星30が、衛星30の打ち上げ後に衛星設計寿命である第1期間L1年よりも短期間である第2期間L2年の軌道上運用後に、軌道離脱してから第2期間L2年未満で大気圏突入するために必要な量の推薬を保有する方法である。
 また、本実施の形態に係る地上設備700は、衛星30が、衛星30の打ち上げ後に衛星設計寿命であるL1年よりも短期間であるL2年の軌道上運用後に、軌道離脱してからL2年未満で大気圏突入するために必要な量の推薬を保有するように衛星30を制御する。
 図14では、衛星30は、想定外の推薬消耗に伴い、衛星設計寿命であるL1年よりも短期間のL2年の軌道上運用後において、軌道離脱してからL2年未満の期間で大気圏突入するのに要する推薬を保有している。
 本実施の形態に係る推薬管理方法では、残存推薬を運用継続して、結果として軌道上運用した期間L2年の時点で、保有する推薬量が軌道離脱後L2年未満で大気圏突入するのに必要な推薬量を見越して運用を終了する。この結果、軌道上滞留期間はL2×2未満となるので、軌道上物体数が増え続けるリスクが解消できるという効果がある。
 例えば、地上設備700は、軌道上での現在までの運用年数Lxと現時点での推薬量と
に基づいて、現時点での推薬量が現時点からLx年未満で大気圏突入に要する推薬量かを算出する。地上設備700は、現時点からLx年未満で大気圏突入に要する推薬量に基づいて、衛星の軌道上運用の終了を判定してもよい。
 以上のように、本実施の形態に係る人工衛星、推薬管理方法、および地上設備によれば、不慮の事由により設計寿命よりも短期間L2年の軌道上運用の後に軌道離脱する場合であっても、軌道離脱後L2年未満で大気圏突入する推薬量を保有している。よって、実施の形態1と同様に軌道上物体数が増え続けるリスクを解消できるという効果がある。
 実施の形態3.
 本実施の形態では、主に、実施の形態1,2と異なる点および実施の形態1,2に追加する点について説明する。
 本実施の形態において、実施の形態1,2と同様の機能を有する構成については同一の符号を付し、その説明を省略する。
 なお、衛星30、衛星コンステレーション形成システム600、および地上設備700の構成は、実施の形態1と同様である。
 本実施の形態では、軌道離脱してから大気圏突入するまでの時間よりも長い衛星設計寿命を有する人工衛星(衛星30)について説明する。
 人工衛星は、軌道上でのミッション終了後に25年以内に、大気圏突入する、あるいは、墓場軌道と呼ばれる、定常運用中の人工衛星に悪影響を及ぼさない軌道に遷移することが推奨されている。
 しかしながら定常運用数が1万機を超えるメガコンステレーションの設計寿命が25年よりも短い場合、軌道上物体総数が以下のように3倍以上に増加する。具体的には、第一世代の衛星群がミッション終了後にデオービットし、第二世代の衛星群を打上げて運用してミッション終了後にデオービットし、第三世代の衛星群を打ち上げる段階において、未だ第一世代の衛星群がデオービット途中である。このため、軌道上物体総数が3倍以上に増加することになる。
 例えば、設計寿命が5年の場合は第六世代衛星打ち上げまで第一世代衛星が宇宙空間を滞留しているため、軌道上物体総数は6倍に及ぶ。よって、宇宙物体衝突のリスクが高まり、一度爆裂的な衝突が発生した場合に、飛散した破片の2次衝突が連鎖して、ケスラーシンドロームと呼ばれる連鎖衝突が止まらない事態に至るリスクもある。
 この物体数増加を抑制する有効な手段は、人工衛星の衛星設計寿命を、軌道離脱してから大気圏突入するまでの時間よりも長く設定することである。
 この場合、第二世代衛星の設計寿命に至る前に第一世代衛星が大気圏突入を完了するので、第三世代以降に単調増加的に物体数が増加するのを抑止できるという効果がある。
 上記の衛星設計寿命の延伸を実現する手段としては、搭載推薬増加あるいは冗長構成による寿命延伸、設計あるいは製造品質向上、搭載機器あるいは部品の設計寿命延伸といった方策により設計寿命期間を延伸する対策が有効である。
 またミッション終了後に衛星進行方向に対して推進装置を逆噴射して、デオービット期間を短縮する対策も有効である。
 以上の実施の形態1から3では、地上設備の各部を独立した機能ブロックとして説明した。しかし、地上設備の構成は、上述した実施の形態のような構成でなくてもよい。地上設備の機能ブロックは、上述した実施の形態で説明した機能を実現することができれば、どのような構成でもよい。また、地上設備は、1つの装置でも、複数の装置から構成され
たシステムでもよい。
 また、実施の形態1から3のうち、複数の部分を組み合わせて実施しても構わない。あるいは、これらの実施の形態のうち、1つの部分を実施しても構わない。その他、これらの実施の形態を、全体としてあるいは部分的に、どのように組み合わせて実施しても構わない。
 すなわち、実施の形態1から3では、実施の形態1から3の部分の自由な組み合わせ、あるいは任意の構成要素の変形、もしくは実施の形態1から3において任意の構成要素の省略が可能である。
 なお、上述した実施の形態は、本質的に好ましい例示であって、本開示の範囲、本開示の適用物の範囲、および本開示の用途の範囲を制限することを意図するものではない。上述した実施の形態は、必要に応じて種々の変更が可能である。
 20 衛星コンステレーション、21 軌道面、30 衛星、31 衛星制御装置、32 衛星通信装置、33 推進装置、34 姿勢制御装置、35 電源装置、41 メガコンステレーション事業装置、42 LEOコンステレーション事業装置、43 衛星事業装置、60 宇宙物体、70 地球、55 軌道制御コマンド、600 衛星コンステレーション形成システム、11,11b 衛星コンステレーション形成部、300 衛星群、700 地上設備、510 軌道制御コマンド生成部、520 解析予測部、909 電子回路、910 プロセッサ、921 メモリ、922 補助記憶装置、930 入力インタフェース、940 出力インタフェース、941 表示機器、950 通信装置。

Claims (9)

  1.  推進装置を具備する人工衛星において、
     前記推進装置に用いられる推薬であって、前記人工衛星が衛星設計寿命である第1期間年の軌道上運用後に、軌道離脱してから前記第1期間年未満の期間で大気圏突入するために必要な量の推薬を保有する人工衛星。
  2.  推進装置を具備する人工衛星において、
     前記推進装置に用いられる推薬であって、前記人工衛星の打ち上げ後に衛星設計寿命である第1期間年よりも短期間である第2期間年の軌道上運用後に、軌道離脱してから前記第2期間年未満で大気圏突入するために必要な量の推薬を保有する人工衛星。
  3.  前記人工衛星は、100機以上の人工衛星から構成された衛星コンステレーションであるメガコンステレーションを構成する請求項1または請求項2に記載の人工衛星。
  4.  推進装置を具備する人工衛星の推薬管理方法において、
     前記人工衛星は、前記推進装置に用いられる推薬であって、前記人工衛星が衛星設計寿命である第1期間年の軌道上運用後に、軌道離脱してから前記第1期間年未満の期間で大気圏突入するために必要な量の推薬を保有する推薬管理方法。
  5.  推進装置を具備する人工衛星の推薬管理方法において、
     前記人工衛星は、前記推進装置に用いられる推薬であって、前記人工衛星の打ち上げ後に衛星設計寿命である第1期間年よりも短期間である第2期間年の軌道上運用後に、軌道離脱してから前記第2期間年未満で大気圏突入するために必要な量の推薬を保有する推薬管理方法。
  6.  推進装置を具備する人工衛星を制御する地上設備において、
     前記推進装置に用いられる推薬であって、前記人工衛星が衛星設計寿命である第1期間年の軌道上運用後に、軌道離脱してから前記第1期間年未満の期間で大気圏突入するために必要な量の推薬を人工衛星が保有するように、人工衛星を制御する地上設備。
  7.  推進装置を具備する人工衛星を制御する地上設備において、
     前記推進装置に用いられる推薬であって、前記人工衛星の打ち上げ後に衛星設計寿命である第1期間年よりも短期間である第2期間年の軌道上運用後に、軌道離脱してから前記第2期間年未満で大気圏突入するために必要な量の推薬を人工衛星が保有するように、人工衛星を制御する地上設備。
  8.  軌道離脱してから大気圏突入するまでの時間よりも長い衛星設計寿命を有する人工衛星。
  9.  請求項4または請求項5に記載の推薬管理方法を実行する管理事業装置であって、メガコンステレーション事業装置、LEO(Low Earth Orbit)コンステレーション事業装置、あるいは、衛星事業装置である管理事業装置。
PCT/JP2021/005619 2020-02-17 2021-02-16 人工衛星、推薬管理方法、地上設備、および、管理事業装置 WO2021166876A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/789,226 US20230030579A1 (en) 2020-02-17 2021-02-16 Artificial satellite, propellant management method, ground facility, and management business device
JP2022501890A JP7313535B2 (ja) 2020-02-17 2021-02-16 人工衛星、推薬管理方法、地上設備、および、メガコンステレーション事業装置
JP2023073972A JP7566073B2 (ja) 2020-02-17 2023-04-28 地上設備

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-024455 2020-02-17
JP2020024455 2020-02-17

Publications (1)

Publication Number Publication Date
WO2021166876A1 true WO2021166876A1 (ja) 2021-08-26

Family

ID=77391199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005619 WO2021166876A1 (ja) 2020-02-17 2021-02-16 人工衛星、推薬管理方法、地上設備、および、管理事業装置

Country Status (3)

Country Link
US (1) US20230030579A1 (ja)
JP (2) JP7313535B2 (ja)
WO (1) WO2021166876A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050205717A1 (en) * 2002-09-26 2005-09-22 The Boeing Company Method of operating a satellite for end-of-life maneuvers
US20170313444A1 (en) * 2016-04-29 2017-11-02 The George Washington University Self-consuming satellite
US20180354658A1 (en) * 2015-07-31 2018-12-13 D-orbit Srl Propulsion system for small artificial satellites
WO2020021696A1 (ja) * 2018-07-27 2020-01-30 株式会社Ihiエアロスペース 非常軌道離脱装置と非常軌道離脱方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001066175A (ja) 1999-08-25 2001-03-16 Ishikawajima Harima Heavy Ind Co Ltd 液体量計測方法及び液体量計測装置
US9519873B2 (en) * 2013-02-01 2016-12-13 Spire Global, Inc. System and method for widespread low cost orbital satellite access
US9880042B2 (en) * 2015-12-08 2018-01-30 The Boeing Company Propellant gauging tool for predicting propellant mass in a propellant storage volume
GB2552505A (en) * 2016-07-26 2018-01-31 Esa A method and apparatus for determining a schedule for contact with a constellation of satellites

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050205717A1 (en) * 2002-09-26 2005-09-22 The Boeing Company Method of operating a satellite for end-of-life maneuvers
US20180354658A1 (en) * 2015-07-31 2018-12-13 D-orbit Srl Propulsion system for small artificial satellites
US20170313444A1 (en) * 2016-04-29 2017-11-02 The George Washington University Self-consuming satellite
WO2020021696A1 (ja) * 2018-07-27 2020-01-30 株式会社Ihiエアロスペース 非常軌道離脱装置と非常軌道離脱方法

Also Published As

Publication number Publication date
JP2023086939A (ja) 2023-06-22
US20230030579A1 (en) 2023-02-02
JPWO2021166876A1 (ja) 2021-08-26
JP7313535B2 (ja) 2023-07-24
JP7566073B2 (ja) 2024-10-11

Similar Documents

Publication Publication Date Title
JP7479555B2 (ja) 衝突回避方法および地上設備
JP7329402B2 (ja) 軌道遷移支援装置、軌道遷移支援方法、および軌道遷移支援プログラム
JP7520184B2 (ja) ジャミング衛星回避方法、および、メガコンステレーション事業装置
WO2021182426A1 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、地上設備、事業装置、およびオープンアーキテクチャーデータリポジトリ
US9477795B1 (en) Modeling, simulation, and control of a solar electric propulsion vehicle in near-earth vicinity including solar array degradation
Henshaw et al. Grappling spacecraft
JP7566103B2 (ja) デブリ除去衛星、地上設備、デブリ除去制御装置、および、デブリ除去制御方法
JP2023031461A (ja) 衛星コンステレーション形成方法、衛星コンステレーション、および、解析装置
US20230137948A1 (en) Space traffic management system, space traffic management device, collision avoidance assist business device, ssa business device, mega-constellation business device, space traffic management method, and oadr
WO2021166876A1 (ja) 人工衛星、推薬管理方法、地上設備、および、管理事業装置
WO2020256024A1 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション、および地上設備
JP7106006B2 (ja) デブリ回収制御装置、デブリ回収衛星、捕獲用インタフェース機器、接続装置、デブリ回収システム、デブリ回収方法、および、デブリ回収プログラム
WO2021182427A1 (ja) 衛星コンステレーション形成システム、衛星コンステレーション形成方法、衛星コンステレーション形成プログラム、地上設備、および事業装置
Everetts et al. Iridium deorbit strategy, execution, and results
JP7241990B1 (ja) 衛星コンステレーション維持方法、衛星コンステレーション、ロケット打上げ方法、地上設備、コマンド送信方法、および、コマンド送信プログラム
JP2023020151A (ja) 衛星コンステレーション維持方法、地上設備、コマンド送信方法、および、コマンド送信プログラム
JP7460824B2 (ja) ロケット打上支援装置、ロケット打上支援方法、およびロケット打上支援プログラム
JP7479316B2 (ja) 観測衛星
JP2023018220A (ja) ロケット打ち上げ方法、ロケット打ち上げ制御装置、軌道投入方法、衛星コンステレーション維持方法、デブリ除去方法、ロケット回収方法、回収型ロケット、ロケット発射場、ロケット再利用システム、ロケット、衛星コンステレーション、および、地上設備
Rodrigo Cordova-Alarcon Study on Attitude and Orbit Control Characterization for a CubeSat Equipped with Pulsed Plasma Thrusters
Bouvier Three-Axis Attitude Control for Solar-Powered Electric Propulsion Spacecraft
Angelucci et al. Lunarsat ADCS European orbiter to the moon attitude determination and control system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501890

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756540

Country of ref document: EP

Kind code of ref document: A1