WO2021182279A1 - 濃度測定方法および濃度測定装置 - Google Patents

濃度測定方法および濃度測定装置 Download PDF

Info

Publication number
WO2021182279A1
WO2021182279A1 PCT/JP2021/008377 JP2021008377W WO2021182279A1 WO 2021182279 A1 WO2021182279 A1 WO 2021182279A1 JP 2021008377 W JP2021008377 W JP 2021008377W WO 2021182279 A1 WO2021182279 A1 WO 2021182279A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
light
peak wavelength
concentration
light source
Prior art date
Application number
PCT/JP2021/008377
Other languages
English (en)
French (fr)
Inventor
出口 祥啓
正明 永瀬
西野 功二
池田 信一
Original Assignee
国立大学法人徳島大学
株式会社フジキン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人徳島大学, 株式会社フジキン filed Critical 国立大学法人徳島大学
Priority to JP2022505995A priority Critical patent/JP7228209B2/ja
Priority to US17/905,486 priority patent/US20230124208A1/en
Priority to KR1020227016364A priority patent/KR20220079977A/ko
Publication of WO2021182279A1 publication Critical patent/WO2021182279A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements
    • G01N2021/0314Double pass, autocollimated path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/276Calibration, base line adjustment, drift correction with alternation of sample and standard in optical path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation
    • G01N2201/12746Calibration values determination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a concentration measuring method and a concentration measuring device, and more particularly to a concentration measuring method and a concentration measuring device for measuring a fluid concentration based on the intensity of light transmitted through a measuring cell.
  • a concentration measuring device that is incorporated in a gas supply line that supplies raw material gas to a semiconductor manufacturing device and is configured to measure the concentration of gas
  • the raw material gas include organometallic (MO) gas obtained from a liquid material or a solid material.
  • concentration measuring device In this type of concentration measuring device, light of a predetermined wavelength from a light source is incident on a measuring cell through which gas flows, and the transmitted light that has passed through the measuring cell is received by a light receiving element to measure the absorbance. Further, from the measured absorbance, the concentration of the measurement gas can be obtained based on Lambert-Beer's law (for example, Patent Documents 1 to 3).
  • the measurement cell includes not only a measurement cell branched from the fluid supply line and arranged separately, but also an in-line transmitted light detection structure provided in the middle of the fluid supply line as shown in Patent Documents 1 to 3. included.
  • Concentrations of various gases can be measured using a concentration measuring device, but until now, the applicant has used a reference gas (or calibration gas) such as acetone gas as a reference extinction coefficient (hereinafter referred to as the extinction coefficient) before shipment. , Sometimes called the reference extinction coefficient).
  • the absorption coefficient is an index indicating the ease of absorption of light incident on the fluid.
  • the molar concentration C M of the fluid can be obtained by dividing the measured absorbance A by the molar extinction coefficient ⁇ and the optical path length L.
  • the reference extinction coefficient can be corrected by using the correction factor corresponding to the gas type, and the concentration of a gas of a type other than the reference gas can be obtained by using the corrected absorption coefficient.
  • the extinction coefficient of the reference gas here, acetone gas
  • MO factor correction factor
  • the wavelength of light emitted from the light source may differ slightly depending on the light emitting element (typically LED) used.
  • LED typically LED
  • the emission spectrum of the LED may fluctuate after long-term use. For this reason, incident light with a wavelength deviating from the expected wavelength may be used. In this case, even if the concentration of gas in the measurement cell is the same, the absorbance differs depending on the wavelength of the incident light. Can be.
  • the above-mentioned error is corrected and the concentration is obtained by using the absorption coefficient and the correction factor corresponding to the wavelength of the measurement light (and the temperature of the fluid).
  • the method is disclosed. By using the absorption coefficient and the correction factor that match the emission wavelength in this way, it is possible to suppress an error caused by a difference in the optical system.
  • the inventor of the present application has found that even if different absorption coefficients and correction factors are used for each incident light wavelength as described above, the error may not be sufficiently suppressed depending on the types of the reference gas and the measurement gas. ..
  • the present invention has been made in view of the above problems, and is a concentration measuring method and a concentration measuring device capable of improving the measurement accuracy when the extinction coefficient of the reference gas is corrected and the actual gas concentration is measured. Its main purpose is to provide.
  • the concentration measuring method includes an electric unit having a light source and a light detector, a fluid unit having a measuring cell through which gas flows, and light passing through the measuring cell after being incident on the measuring cell from the light source.
  • This is a concentration measuring method performed in a concentration measuring device having a processing circuit for detecting the intensity of the gas with the light detector and calculating the concentration of the gas based on the output of the light detector, and is based on the measuring cell.
  • the absorption peak wavelength of the measurement gas is set with respect to the peak wavelength of the light source light emitted from the light source.
  • a reference gas having a long absorption peak wavelength with respect to the peak wavelength of the light source light is used, and when the absorption peak wavelength of the measurement gas is short with respect to the peak wavelength of the light source light, the peak wavelength of the light source light is used.
  • a reference gas having a short absorption peak wavelength is used.
  • the light emitted from the light source is near-ultraviolet light
  • the measurement gas and the reference gas are gases having an absorption peak wavelength larger than 300 nm.
  • the reference gas is either acetone gas, acetaldehyde gas, SO 2 gas, Cl 2 gas, or NO 2 gas.
  • the concentration measuring device has a bandpass filter that allows light from the light source to pass through, and performs density measurement using light having a narrowed half-value width.
  • the concentration measuring method includes the step of measuring the peak wavelength of the light source light when measuring the concentration of the measurement gas, and refers to a plurality of reference absorption coefficients associated with the peak wavelength of the light source light. Then, the concentration of the measured gas is determined using the reference absorption coefficient determined based on the peak wavelength of the measured light source light.
  • the concentration measuring method includes a step of measuring the gas temperature when measuring the concentration of the measured gas, with reference to a plurality of reference absorption coefficients associated with the gas temperature in the measuring cell. Then, the concentration of the measured gas is determined using the reference absorption coefficient determined based on the measured gas temperature.
  • the concentration measuring device includes an electric unit having a light source and a light detector, a fluid unit having a measuring cell through which gas flows, and light passing through the measuring cell after being incident on the measuring cell from the light source. It has a processing circuit that detects the intensity of the light by the light detector and calculates the concentration of the gas based on the output of the light detector, and the light from the light source passes through before being incident on the measurement cell.
  • a bandpass filter is provided, and the processing circuit has a storage unit for storing a reference absorption coefficient associated with the reference gas and a correction factor associated with the measurement gas, and the reference absorption coefficient and the correction factor It is configured to calculate the concentration of the measurement gas based on the output of the light detector, and as the reference absorption coefficient, the measurement gas has a peak wavelength of the light source light emitted from the light source.
  • the absorption peak wavelength is long, the reference absorption coefficient obtained from the reference gas having a long absorption peak wavelength with respect to the peak wavelength of the light source light is used, and the absorption peak wavelength of the measurement gas is used with respect to the peak wavelength of the light source light.
  • the reference absorption coefficient obtained from the reference gas having a shorter absorption peak wavelength with respect to the peak wavelength of the light source light is used.
  • A shows the spectrum when the bandpass filter is not present in front of the LED, and (b) shows the spectrum when the bandpass filter is present.
  • A shows the absorption coefficient set for each LED peak wavelength and the gas temperature in the cell for the reference gas (acetone in this case), and (b) corresponds to the measurement gas (organic metal gas in this case).
  • the correction factor (MO factor) is shown. It is a graph which shows the absorption characteristic of various gass, and the LED spectrum.
  • FIG. 1 is a diagram showing the overall configuration of the concentration measuring device 100 used in the embodiment of the present invention.
  • the concentration measuring device 100 includes a fluid unit 10 having a measuring cell 1 incorporated in a gas supply line, and an electric unit 20 arranged apart from the fluid unit 10.
  • the fluid unit 10 and the electric unit 20 are optically and electrically connected by an optical fiber cable 11 for incidence, an optical fiber cable 12 for exit, and a sensor cable (not shown).
  • the operating temperature of the fluid unit 10 is not particularly limited, and for example, it can be used in a room temperature environment, but it may be heated to about 100 ° C. to 150 ° C. depending on the type of measurement gas.
  • the electric unit 20 connected to the fluid unit 10 is usually arranged in a room temperature environment because of its low high temperature resistance. Therefore, when the temperature at the time of measurement is about room temperature, it may be integrated with the fluid unit 10 or isolated separately, but when it is likely to be higher than the heat resistant temperature of the electric unit 20. , It will be placed separately and isolated.
  • the electric unit 20 is usually connected to an external control device for transmitting an operation control signal to the concentration measuring device 100 and receiving a measured concentration signal from the concentration measuring device 100.
  • the fluid unit 10 is provided with a measurement cell 1 having an inflow port 1a and an outflow port 1b of the measurement gas and a flow path 1c extending in the longitudinal direction to which these are connected.
  • a transmitted light window 2 (here, a sapphire plate) in contact with the flow path is provided at one end of the measurement cell 1, and a reflective member 4 is provided at the other end of the measurement cell 1. ..
  • the light includes not only visible light but also at least infrared rays and ultraviolet rays, and may include electromagnetic waves of arbitrary wavelengths.
  • the transmitted light property means that the internal transmittance for the light incident on the measurement cell is high enough to perform the concentration measurement.
  • the wavelength of the measurement light may be appropriately selected based on the absorption characteristics of the gas to be measured.
  • near-ultraviolet light for example, a wavelength of 200 nm to 400 nm
  • an organometallic gas for example, trimethylgallium (TMGa)
  • TMGa trimethylgallium
  • the gas that absorbs near-ultraviolet light includes acetone gas, chlorine gas, fluorine gas, bromine gas, titanium chloride gas, nitrogen dioxide gas, sulfur dioxide gas, acetaldehyde gas, and the like.
  • the above-mentioned gas capable of absorbing near-ultraviolet light is used as a reference gas, and the concentration of the measurement gas capable of absorbing near-ultraviolet light is detected.
  • a gas that not only can absorb near-ultraviolet light but also has absorption characteristics suitable for the measurement gas is selected as the reference gas.
  • a collimator 3 to which the optical fiber cables 11 and 12 are connected is attached in the vicinity of the window portion 2 of the measurement cell 1.
  • the collimator 3 has a convex lens as a collimator lens, so that the light from the light source is incident on the measurement cell 1 as parallel light through the window portion 2 and the reflected light from the reflecting member 4 is received. It is configured.
  • the reflecting surface of the reflecting member 4 is provided perpendicular to the traveling direction of the incident light or the central axis of the flow path.
  • the flow path 1c of the measurement cell 1 is also used as an optical path for the measurement light.
  • a sapphire plate having resistance to detection light used for density measurement of near-ultraviolet light and high transmittance and mechanically and chemically stable is preferably used.
  • other materials such as quartz glass, calcium fluoride, and magnesium fluoride can also be used.
  • the main body (flow path forming portion) of the measurement cell 1 is made of, for example, SUS316L.
  • the reflective member 4 may have a configuration in which, for example, an aluminum layer or a dielectric multilayer film as a reflective layer is provided on the back surface of the sapphire plate. If a dielectric multilayer film is used as the reflection layer, light in a specific wavelength range can be selectively reflected.
  • the dielectric multilayer film is composed of a laminate of a plurality of optical thin films having different refractive indexes (high refractive index films and low refractive index films are alternately laminated), and the thickness and refractive index of each layer are appropriately selected. Allows light of a particular wavelength to be reflected or transmitted. Further, the dielectric multilayer film can reflect light at an arbitrary ratio by design, and a part (for example, 10%) of light is transmitted by a photodetector installed under the reflecting member 4. It may be detected as a reference light.
  • the fluid unit 10 also includes a pressure sensor 5 for detecting the pressure of the measurement gas flowing in the measurement cell 1 and a temperature sensor 6 for measuring the temperature of the measurement gas.
  • the outputs of the pressure sensor 5 and the temperature sensor 6 are sent to the electric unit 20 via a sensor cable (not shown).
  • the outputs of the pressure sensor 5 and the temperature sensor 6 are used to measure the gas concentration.
  • the electric unit 20 includes a light source 22 that generates light incident on the measuring cell 1, a light detector 24 that receives the light emitted from the measuring cell 1, and a light detector 24. It is provided with a processing circuit 28 that calculates the concentration of the measurement gas based on the detection signal (detection signal corresponding to the intensity of the received light) output by.
  • the processing circuit 28 is composed of, for example, a processor or a memory provided on a circuit board, includes a computer program that executes a predetermined operation based on an input signal, and can be realized by a combination of hardware and software.
  • the processing circuit 28 is built in the electric unit 20, but some or all of its components (such as a CPU) may be provided in a device outside the electric unit 20. Needless to say.
  • the light source 22 is configured by using two light emitting elements (here, LEDs) 23a and 23b that emit ultraviolet light having different wavelengths from each other.
  • Drive currents of different frequencies are passed through the light emitting elements 23a and 23b using an oscillation circuit, and frequency analysis (for example, high-speed Fourier transform or wavelet transform) is performed to obtain the detection signal detected by the photodetector 24.
  • the intensity of light corresponding to each wavelength component can be measured.
  • LDs laser diodes
  • a single wavelength light source can be used, and in this case, the combiner and the frequency analysis circuit can be omitted.
  • the light emitting elements 23a and 23b are arranged so as to irradiate the half mirror 23c with light at an angle of 45 °. Further, a reference photodetector 26 is provided so as to face one of the light emitting elements 23b with the half mirror 23c interposed therebetween. A part of the light from the light source 22 is incident on the reference photodetector 26 and is used for examining deterioration of the optical element and the like. The remaining light is collected by the ball lens 23d and then incident on the optical fiber cable 11 for incident light.
  • a photodiode or a phototransistor is used as the light receiving element constituting the photodetector 24 and the reference photodetector 26, for example.
  • the incident light and the reflected light are transmitted by a single optical fiber cable and reflected by the electric unit 20.
  • a spectroscopic element that separates light and guides it to the light detector 24 may be provided.
  • a transmission type measurement cell configured to take out the light passing through the cell from the side of the reflection member via the exit window may be used.
  • the concentration measuring device 100 configured as described above measures the concentration of gas in the cell by detecting the intensity of the light emitted from the light source 22 and passing through the measuring cell 1 with the photodetector 24. However, even if the light emitting elements 23a and 23b constituting the light source 22 have the same design, their peak wavelengths and half-value widths have individual differences.
  • 2 (a) and 2 (b) are graphs showing the distribution of peak wavelength and full width at half maximum for 400 LEDs (peak wavelength 300 ⁇ 5 nm). As described above, the peak wavelength and the half width differ depending on the LED actually used. And, due to this, there is a possibility that the error of the concentration measurement increases.
  • a bandpass filter (hereinafter, may be referred to as BPF) 30 is provided in the light source 22.
  • the BPF 30 is arranged in front of each of the light emitting elements 23a and 23b, respectively.
  • the BPF 30 is fixed by using the BPF fixing coupler, and the BPF 30 can be replaced if necessary.
  • the BPF30 for example, one manufactured by SIGMA KOKI, Inc. can be used.
  • the bandpass filter 30 acts to attenuate components having wavelengths distant from the peak wavelengths of the light emitting elements 23a and 23b.
  • the spectrum of light that has passed through the bandpass filter 30 becomes steeper, and the value of its full width at half maximum (for example, FWHM (Full Width at Half Maximum)) becomes smaller.
  • FIG. 3 (a) and 3 (b) are diagrams showing the spectra of the LEDs (No. 1 to No. 6) before and after passing through the bandpass filter.
  • FIG. 3A shows a normalized spectrum of each LED (No. 1 to No. 6) not passed through the bandpass filter
  • FIG. 3B shows each LED (1B to No. 6) after passing through the bandpass filter. The spectrum of 6B) is shown.
  • the variation of the peak wavelength of the light after passing through the bandpass filter does not change so much, but the FWHM becomes smaller for all the LEDs. In this way, it is possible to selectively inject light in a desired wavelength range, so that the wavelength dependence of the extinction coefficient can be reduced.
  • the FWHM is preferably 15 nm or less, more preferably 12 nm or less.
  • the optical path length of the light that makes one round trip in the measurement cell 1 can be defined by twice the distance between the window portion 2 and the reflection member 4.
  • the concentration measuring device 100 the light having a wavelength ⁇ incident on the measuring cell 1 and then reflected by the reflecting member 4 is absorbed depending on the concentration of the gas.
  • the processing circuit 28 can measure the absorbance A ⁇ at the wavelength ⁇ by frequency-analyzing the detection signal from the light detector 24, and further, the Lambert-Vale represented by the following equation (1). based on the law, it is possible to calculate the molar concentration C M from the absorbance a?.
  • I 0 is the intensity of incident light incident on the measurement cell
  • I is the intensity of light passing through the gas in the measurement cell
  • is the molar extinction coefficient (m 2 / mol)
  • L is the optical path length.
  • M ) and CM are molar concentrations (mol / m 3 ).
  • the molar extinction coefficient ⁇ is a coefficient determined by the substance (however, here, the extinction coefficient ⁇ with respect to the natural logarithm is used).
  • I / I 0 is generally referred to as transmittance.
  • the transmittance I / I 0 When the transmittance I / I 0 is 100%, the absorbance A ⁇ becomes 0, and when the transmittance I / I 0 is 0%, the absorbance A ⁇ becomes infinite.
  • the incident light intensity I 0 in the formula (1) when there is no absorbent gas in the measurement cell 1 (for example, when the measurement cell 1 is filled with a gas that does not absorb ultraviolet light, or when it is drawn to a vacuum.
  • the intensity of the light detected by the light detector 24 may be regarded as the incident light intensity I 0.
  • the concentration measuring device 100 may be configured to obtain the gas concentration in consideration of the pressure and temperature of the gas flowing through the measuring cell 1.
  • C M the amount of substance of gas per unit volume
  • n the amount of substance (mol) of the gas, that is, the number of moles
  • V the volume (m 3 ).
  • the pressure that can be detected by the pressure sensor is the total pressure Pt (Torr) of the mixed gas containing the measurement gas and the carrier gas.
  • the relationship between the concentration (volume%) of the measurement gas and the absorbance in consideration of the temperature can be expressed by the following equation (3) using the absorption coefficient ⁇ a of the measurement gas.
  • the measured gas concentration (% by volume) at the measured light wavelength can be obtained by calculation based on each measured value (gas temperature T, total pressure Pt, and transmitted light intensity I). Is.
  • the absorption coefficient ⁇ a of the measurement gas is obtained in advance from the measured values (T, Pt, I) when the measurement gas having a known concentration (for example, 100% concentration) is passed, according to the formula (3) or (4). Can be left.
  • the absorption coefficient ⁇ a obtained in this way is stored in the memory, and when the concentration calculation of the measurement gas having an unknown concentration is performed based on the equation (4), the absorption coefficient ⁇ a is read from the memory and used. Can be done.
  • the extinction coefficient will be described here.
  • the extinction coefficient differs depending on the type of gas, but by using the extinction coefficient of the reference gas (hereinafter, may be referred to as the reference extinction coefficient) and the correction factor, the absorption coefficient of the gas to be measured is used. You can also find the coefficient.
  • the correction factor is defined as, for example, the value obtained by dividing the extinction coefficient of the reference gas by the extinction coefficient of the measurement gas.
  • the correction factor may be defined as the value obtained by dividing the extinction coefficient of the measurement gas by the extinction coefficient of the reference gas.
  • the reference gas is acetone gas and the measurement target is a predetermined gas (NO 2 is used here)
  • the extinction coefficient of the acetone gas is ⁇ ace
  • the concentration of the acetone gas is C ace
  • the measurement target is Assuming that the extinction coefficient of the gas is ⁇ NO2 , the concentration of the gas to be measured is C NO2, and the correction factor for the measurement gas ( ⁇ ace / ⁇ NO2 ) is MF, the following relational expression holds.
  • the extinction coefficient ⁇ ace of the reference gas is obtained using a concentration measuring device and stored in the memory, and when measuring the concentration of the measurement gas, the extinction coefficient ⁇ ace of the reference gas is used as the correction factor MF.
  • the concentration can be obtained from Eq. (4) using the divided extinction coefficient ⁇ NO2.
  • the concentration of the measurement gas can be obtained by multiplying the concentration obtained assuming acetone by the correction factor MF.
  • the above correction factor MF calculates the extinction coefficient ⁇ NO2 from the measured values (T, Pt, I) of the concentration measuring device when a measuring gas having a known concentration is passed, and the extinction coefficient ⁇ calculated from the measured values. It can be obtained by dividing the extinction coefficient ⁇ ace of the reference gas by NO2.
  • the correction factor is obtained in this way, the reference extinction coefficient is obtained for each concentration measuring device using the reference gas before shipment, and the absorption coefficient is corrected using the correction factor after shipment. Therefore, the concentration of the gas to be measured can be measured.
  • the concentration measurement error caused by the design of each optical system of the concentration measuring device is precalibrated in the process of obtaining the extinction coefficient using the reference gas. Therefore, when measuring the concentration of the measurement gas after shipment, it is possible to suppress the occurrence of a machine difference between the concentration measuring devices.
  • FIG. 2020/158506 discloses that a plurality of absorption coefficients of a reference gas are obtained in association with an incident light wavelength and a gas temperature, and for example, each absorption coefficient is stored in a table. ing. Similarly, a plurality of correction factors are obtained in relation to the incident light wavelength and the gas temperature, and when measuring the concentration of the measured gas, it is appropriate based on the incident light wavelength and the gas temperature at that time. It is disclosed that the reference extinction coefficient and the correction factor are used to determine the extinction coefficient for the measurement gas.
  • FIG. 4 (a) shows a table of absorption coefficients for acetone set in association with the LED peak wavelength and cell temperature
  • FIG. 4 (b) shows a table of corresponding correction factors (MO factors).
  • the experiment of the inventor of the present application has confirmed that when the measurement light wavelength has a fluctuation range as described above, the error in measuring the concentration of the measurement gas may increase depending on the type of the reference gas and the type of the measurement gas. rice field.
  • FIG. 5 is a graph showing the spectrum of the light source LED and the absorption curve of each gas.
  • the absorption peak wavelength of each gas is about 280.25 nm for acetone, about 325.5 nm for chlorine (Cl 2 ), about 286.25 nm for sulfur dioxide (SO 2 ), and about 350 nm for nitrogen dioxide (NO 2).
  • the peak wavelength of the light source LED is about 300 nm
  • the absorption peak wavelength of acetone exists in the vicinity of 280 nm, which is smaller than 300 nm
  • the absorption peak wavelength of chlorine gas exists in the vicinity of 326 nm, which is larger than 300 nm.
  • the absorption peak wavelength of NO 2 which is the concentration measurement target here, exists in the vicinity of 350 nm, which is larger than 300 nm.
  • Some organometallic gases used in semiconductor manufacturing also have an absorption peak wavelength of 300 nm or more (for example, about 320 nm).
  • the peak wavelength of the light source when the peak wavelength of the light source is on the longer wavelength side than 300 nm, for example, when light having a peak wavelength of 302.5 nm is emitted, the absorption is smaller with acetone gas, whereas it is smaller. , Chlorine gas and measurement gas have higher absorption. Further, when the peak wavelength of the light source is on the shorter wavelength side than 300 nm and light having a peak wavelength of 297.5 nm is emitted, for example, acetone gas absorbs more light, whereas chlorine gas and chlorine gas and Absorption is smaller with the measurement gas.
  • the appropriate correction factor differs greatly for each wavelength. This can increase the error in concentration measurement.
  • chlorine gas or nitrogen dioxide gas is used as the reference gas
  • the appropriate correction factor itself does not differ greatly for each wavelength. Therefore, for example, if the extinction coefficient is obtained for each wavelength at the calibration stage using a reference gas, the same correction factor can be used regardless of the wavelength. As a result, the error in the concentration measurement can be reduced without measuring the correction factor for each wavelength using the measurement gas. Further, even when the correction factor is set for each wavelength, it is unlikely that these values will be significantly different, and as a result, the error can be reduced.
  • the concentration using the correction factor when measuring the concentration using the correction factor, it is considered effective to use a gas having the same absorption characteristics as the measurement gas as the reference gas in order to reduce the error. More specifically, when the absorption peak wavelength of the measurement gas is longer than the peak wavelength of the light source light emitted from the light source, a reference gas having a longer absorption peak wavelength than the peak wavelength of the light source light is used, and the light source light is used. When the absorption peak wavelength of the measurement gas is shorter than the peak wavelength, it is considered preferable to use a reference gas having a shorter absorption peak wavelength than the peak wavelength of the light source light.
  • FIGS. 6 (a) and 6 (b) and 7 (a) and 7 (b) show the extinction coefficient when the bandpass filter is passed (black circle) and when it is not passed (white square). It is a graph which shows the wavelength dependence of.
  • the plurality of light sources (LEDs) used have a peak wavelength of 299.5 nm to 303.5 nm.
  • the FWHM without the bandpass filter was 17.5 nm to 21.25 nm, and the FWHM with the bandpass filter was 10.5 nm to 11.25 nm.
  • 6 (a) and 6 (b) show the relationship between the peak wavelength of the light source and the extinction coefficient when acetone and SO 2 are flowed under the conditions of 100 Torr and 125 ° C.
  • Acetone and SO 2 are gases having an absorption peak wavelength of less than 300 nm. Therefore, as the wavelength of the LED increases from 300 nm, the value of the extinction coefficient generally decreases.
  • the reference extinction coefficient is obtained by using a gas having absorption characteristics corresponding to the measurement gas as the reference gas, and the variation of the correction factor is made by using the light source light whose band is narrowed by the bandpass filter. It was found that it can be suppressed more effectively. This makes it possible to measure the concentration of the measurement gas with even higher accuracy.
  • the concentration measuring device according to the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment and various modifications can be made without departing from the spirit of the present invention.
  • the light used for the measurement it is also possible to use light in a wavelength region other than the ultraviolet region (for example, visible light) depending on the type of gas.
  • the reference extinction coefficient a plurality of reference extinction coefficients associated with wavelength and temperature may be used.
  • the plurality of reference extinction coefficients are set in association with at least one of the light source peak wavelength and the gas temperature, for example, as described in International Publication No. 2020/158506.
  • a step of measuring the light source peak wavelength is performed when measuring the concentration of the measurement gas. Then, the reference extinction coefficient to be used is determined based on the measured light source peak wavelength.
  • the concentration of the measured gas can be obtained more accurately.
  • the gas temperature is measured when measuring the concentration of the measured gas, and the reference extinction coefficient (or correction factor) to be used is determined based on the measured gas temperature.
  • the matrix-like reference extinction coefficient (see FIG. 4 (a)) and the corresponding correction factor (see FIG. 4 (b)) associated with both the light source peak wavelength and the gas temperature may be set in advance. good.
  • the reference extinction coefficient and correction factor to be used can be determined based on both the light source peak wavelength and the gas temperature measured at the time of concentration measurement, and the concentration of the measured gas can be obtained based on this.
  • the reference extinction coefficient may be obtained in advance or may be obtained when measuring the concentration.
  • the extinction coefficient of a reference gas for example, Cl 2
  • a measurement gas for example, NO 2
  • the present invention is not limited to this. It is also included in the embodiment of the present invention to use the extinction coefficient of a reference gas (eg acetone gas) having similar characteristics for measuring the concentration of a measurement gas (eg SO 2 ) having an absorption peak wavelength smaller than 300 nm. Is done.
  • the reference gas illustrated above and the measurement gas may be reversed, that is, the above reference gas may be used as the measurement gas, and the above measurement gas may be used as the reference gas.
  • the reference light source wavelength is not limited to 300 nm and may be any wavelength. The concentration measurement accuracy can be improved by using a light source having a wavelength suitable for the absorption characteristics of the measurement gas and using a reference gas having the same absorption peak wavelength as the measurement gas with the peak wavelength of the light source as a reference.
  • the concentration measuring method according to the embodiment of the present invention is suitably used for measuring the concentration of various gases in a semiconductor manufacturing apparatus or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

光源(22)および光検出器(24)を有する電気ユニット(20)と、ガス(G)が流れる測定セル(1)を有する流体ユニット(10)と、測定セルを通過した光の強度に基づいてガスの濃度を演算する処理回路(28)とを有する濃度測定装置(100)において行われる濃度測定方法は、基準ガスに関連付けて求められた基準吸光係数と、測定ガスに関連付けられた補正ファクタとを用いて測定ガスの吸光係数を決定するステップと、測定ガスの吸光係数を用いて測定セル内を流れる測定ガスの濃度を求めるステップとを含み、光源から発せられる光源光のピーク波長に対して測定ガスの吸光ピーク波長が長いときには、光源光のピーク波長に対して吸光ピーク波長が長い基準ガスが用いられ、光源光のピーク波長に対して測定ガスの吸光ピーク波長が短いときには光源光のピーク波長に対して吸光ピーク波長が短い基準ガスが用いられる。

Description

濃度測定方法および濃度測定装置
 本発明は、濃度測定方法および濃度測定装置に関し、特に、測定セル内を透過した光の強度に基づいて流体濃度を測定する濃度測定方法および濃度測定装置に関する。
 従来、半導体製造装置に原料ガスを供給するガス供給ラインに組み込まれ、ガスの濃度を測定するように構成された濃度測定装置(いわゆるインライン式濃度測定装置)が知られている。原料ガスとしては、例えば、液体材料や固体材料から得られる有機金属(MO)ガスが挙げられる。
 この種の濃度測定装置では、ガスが流れる測定セルに光源からの所定波長の光を入射させ、測定セルを通過した透過光を受光素子で受光することによって吸光度を測定する。また、測定した吸光度から、ランベルト・ベールの法則に基づいて測定ガスの濃度を求めることができる(例えば、特許文献1~3)。
 本明細書において、流体の濃度を検出するために用いられる種々の透過光検出構造を広く、測定セルと呼んでいる。測定セルには、流体供給ラインから分岐して別個に配置された測定セルだけでなく、特許文献1~3に示されるような流体供給ラインの途中に設けられたインライン式の透過光検出構造も含まれる。
特開2014-219294号公報 国際公開第2017/029792号 国際公開第2018/021311号
 濃度測定装置を用いて種々のガスの濃度を測定し得るが、これまで、本出願人は、出荷前に、例えばアセトンガスなどの基準ガス(または校正ガス)によって、基準となる吸光係数(以下、基準吸光係数と呼ぶことがある)を求めていた。ここで、吸光係数とは、流体に入射された光の吸収のされやすさを示す指標である。ランベルト・ベールの式によれば、測定された吸光度Aを、モル吸光係数αおよび光路長Lで除算することによって、その流体のモル濃度CMが求められる。
 また、ガス種に対応する補正ファクタを用いて基準吸光係数を補正し、補正した吸光係数を用いて、基準ガス以外の他の種類のガスの濃度を求めることができる。本出願人の1による国際公開第2020/158506号には、有機金属ガスの濃度測定を行うための補正ファクタ(MOファクタ)を用いて、基準ガス(ここではアセトンガス)の吸光係数を補正して有機金属ガスの濃度を求める方法が開示されている。
 ただし、光源から出射される光の波長は、使用する発光素子(典型的にはLED)によってわずかに異なる場合がある。例えば、300nmにピーク波長を有するように設計されたLEDであっても、実際には約295nm~約305nmにピーク波長を有する光が発せられる。また、長期間の使用を経てLEDの発光スペクトルが変動することもある。このため、想定されている波長からずれた波長の入射光が用いられることがあり、この場合には、測定セル内のガスの濃度が同じであっても、入射光の波長によって吸光度が異なるものとなり得る。
 これに対して、上記の国際公開第2020/158506号には、測定光の波長(および流体の温度)に対応する吸光係数および補正ファクタを用いることによって、上記の誤差を修正して濃度を求める方法が開示されている。このように発光波長に適合する吸光係数および補正ファクタを用いることによって、光学系の機差によって生じる誤差を抑制することができる。
 しかしながら、上記のように入射光波長ごとに異なる吸光係数や補正ファクタを用いたとしても、基準ガスおよび測定ガスの種類によっては、誤差の抑制が十分でない場合があることを本願発明者は見出した。
 本発明は、上記課題を鑑みてなされたものであり、基準ガスの吸光係数を補正して実際のガスの濃度測定を行うときに、測定精度を向上させることができる濃度測定方法および濃度測定装置を提供することをその主たる目的とする。
 本発明の実施形態による濃度測定方法は、光源および光検出器を有する電気ユニットと、ガスが流れる測定セルを有する流体ユニットと、前記光源から前記測定セルに入射したあと前記測定セルを通過した光の強度を前記光検出器で検出し、前記光検出器の出力に基づいて前記ガスの濃度を演算する処理回路とを有する濃度測定装置において行われる濃度測定方法であって、前記測定セルに基準ガスを流し、前記光検出器を用いて前記基準ガスに関連付けて求められた基準吸光係数と、測定ガスに関連付けられた補正ファクタとを用いて、前記測定ガスの吸光係数を決定するステップと、前記測定ガスの吸光係数を用いて、前記測定セル内を流れる前記測定ガスの濃度を求めるステップとを含み、前記光源から発せられる光源光のピーク波長に対して、前記測定ガスの吸光ピーク波長が長いときは、前記光源光のピーク波長に対して吸光ピーク波長が長い基準ガスを用い、前記光源光のピーク波長に対して前記測定ガスの吸光ピーク波長が短いときは、前記光源光のピーク波長に対して吸光ピーク波長が短い基準ガスを用いる。
 ある実施形態において、前記光源から発せられる光は近紫外光であり、前記測定ガスおよび前記基準ガスは、300nmより大きい吸光ピーク波長を有するガスである。
 ある実施形態において、前記基準ガスは、アセトンガス、アセトアルデヒドガス、SO2ガス、Cl2ガス、または、NO2ガスのいずれかである。
 ある実施形態において、前記濃度測定装置は、前記光源からの光を通過させるバンドパスフィルタを有し、半値幅が狭められた光を用いて濃度測定を行う。
 ある実施形態において、上記濃度測定方法は、前記測定ガスの濃度を測定するときの光源光のピーク波長を測定するステップを含み、光源光のピーク波長に対応付けられた複数の基準吸光係数を参照したうえで、前記測定された光源光のピーク波長に基づいて決定された基準吸光係数を用いて前記測定ガスの濃度が求められる。
 ある実施形態において、上記濃度測定方法は、前記測定ガスの濃度を測定するときのガス温度を測定するステップを含み、測定セル内のガス温度に対応付けられた複数の基準吸光係数を参照したうえで、前記測定されたガス温度に基づいて決定された基準吸光係数を用いて前記測定ガスの濃度が求められる。
 本発明の実施形態による濃度測定装置は、光源および光検出器を有する電気ユニットと、ガスが流れる測定セルを有する流体ユニットと、前記光源から前記測定セルに入射したあと前記測定セルを通過した光の強度を前記光検出器で検出し、前記光検出器の出力に基づいて前記ガスの濃度を演算する処理回路とを有し、前記測定セルに入射させる前に前記光源からの光が通過するバンドパスフィルタが設けられ、前記処理回路は、基準ガスに関連付けられた基準吸光係数と、測定ガスに関連付けられた補正ファクタとを記憶する記憶部を有し、前記基準吸光係数と前記補正ファクタと前記光検出器の出力とに基づいて、前記測定ガスの濃度を演算するように構成されており、前記基準吸光係数として、前記光源から発せられる光源光のピーク波長に対して、前記測定ガスの吸光ピーク波長が長いときには、前記光源光のピーク波長に対して吸光ピーク波長が長い基準ガスから求められた基準吸光係数が用いられ、前記光源光のピーク波長に対して前記測定ガスの吸光ピーク波長が短いときには、前記光源光のピーク波長に対して吸光ピーク波長が短い基準ガスから求められた基準吸光係数が用いられる。
 本発明の実施形態によれば、種々のガスについて光学的手法による濃度測定を適切に行うことができる。
本発明の実施形態による濃度測定方法で用いられる濃度測定装置の全体構成を示す模式図である。 同設計の複数のLEDの実際のピーク波長と半値幅(FWHM)のばらつきを示すグラフである。 (a)は、LEDの前方にバンドパスフィルタが存在しないときのスペクトルを示し、(b)は、バンドパスフィルタが存在するときのスペクトルを示す。 (a)は基準ガス(ここではアセトン)について、LEDピーク波長およびセル内ガス温度ごとに設定した吸光係数を示し、(b)は測定ガス(ここでは有機金属ガス)に適用するときの対応する補正ファクタ(MOファクタ)を示す。 各種ガスの吸光特性およびLEDスペクトルを示すグラフである。 バンドパスフィルタが存在しないときと、存在するときとでの吸光係数の波長依存性を示すグラフであり、(a)はアセトンについてのグラフ、(b)は二酸化硫黄(SO2)についてのグラフである。 バンドパスフィルタが存在しないときと、存在するときとでの吸光係数の波長依存性を示すグラフであり、(a)は塩素(Cl2)についてのグラフ、(b)は二酸化窒素(NO2)についてのグラフである。
 以下、図面を参照しながら本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。
 図1は、本発明の実施形態で用いられる濃度測定装置100の全体構成を示す図である。濃度測定装置100は、ガス供給ラインに組み込まれる測定セル1を有する流体ユニット10と、流体ユニット10と離れて配置される電気ユニット20とを備えている。流体ユニット10と電気ユニット20とは、入射用の光ファイバケーブル11、出射用の光ファイバケーブル12、および、センサケーブル(図示せず)によって、光学的および電気的に接続されている。
 流体ユニット10は、使用温度は特に限定されず、例えば室温環境下での使用も可能であるが、測定ガスの種類によって100℃~150℃程度にまで加熱される可能性がある。一方、流体ユニット10に接続される電気ユニット20は、高温耐性が低いために、通常は室温環境下に配置されている。そのため、測定する時の温度が室温程度の時は、流体ユニット10と一体化されていても、別体で隔離されていても良いが、電気ユニット20の耐熱温度よりも高くなりそうなときは、別体で隔離して配置することになる。電気ユニット20には、通常、濃度測定装置100に動作制御信号を送信したり、濃度測定装置100から測定濃度信号を受信したりするための外部制御装置が接続されている。
 流体ユニット10には、測定ガスの流入口1a、流出口1bおよびこれらが接続された長手方向に延びる流路1cを有する測定セル1が設けられている。測定セル1の一方の端部には、流路に接する透過光性の窓部2(ここではサファイアプレート)が設けられ、測定セル1の他方の端部には反射部材4が設けられている。本明細書において、光とは、可視光線のみならず、少なくとも赤外線、紫外線を含み、任意の波長の電磁波を含み得る。また、透過光性とは、測定セルに入射させる光に対する内部透過率が濃度測定を行い得る程度に高いことを意味する。
 測定光の波長は、測定対象のガスの吸光特性に基づいて、適宜選択されてよい。本実施形態では、紫外光を吸収する有機金属ガス(例えば、トリメチルガリウム(TMGa))などの濃度測定に適した近紫外光(例えば、波長200nm~400nm)が用いられている。
 また、有機金属ガス以外にも、近紫外光を吸収するガスとしては、アセトンガス、塩素ガス、フッ素ガス、臭素ガス、塩化チタンガス、二酸化窒素ガス、二酸化硫黄ガス、アセトアルデヒドガスなどがある。本実施形態では、上記のような近紫外光を吸収可能なガスを基準ガスとして用い、近紫外光を吸収可能な測定ガスの濃度を検出する。ただし、後述するように、単に近紫外光を吸収可能なだけでなく、測定ガスに適合する吸光特性を有したガスが基準ガスとして選択される。
 測定セル1の窓部2の近傍には、光ファイバケーブル11、12が接続されたコリメータ3が取り付けられている。コリメータ3は、コリメートレンズとしての凸レンズを有しており、光源からの光を、窓部2を介して平行光として測定セル1に入射させるとともに、反射部材4からの反射光を受光するように構成されている。反射部材4の反射面は、入射光の進行方向または流路の中心軸に対して垂直に設けられている。測定セル1の流路1cは、測定光の光路としても利用される。
 窓部2としては、近紫外光等の濃度測定に用いる検出光に対して耐性および高透過率を有し、機械的・化学的に安定なサファイアプレートが好適に用いられる。ただし、他の素材、例えば石英ガラスやフッ化カルシウム、フッ化マグネシウムを用いることもできる。測定セル1の本体(流路形成部)は例えばSUS316L製である。
 また、反射部材4は、例えばサファイアプレートの裏面に反射層としてのアルミニウム層や誘電体多層膜が設けられた構成を有していてよい。反射層として誘電体多層膜を用いれば、特定波長域の光を選択的に反射させることができる。誘電体多層膜は、屈折率の異なる複数の光学薄膜の積層体(高屈折率膜と低屈折率膜とを交互に積層したもの)によって構成され、各層の厚さや屈折率を適宜選択することによって、特定の波長の光を反射したり透過させたりすることができる。また、誘電体多層膜は、設計により、任意の割合で光を反射させることが可能であり、一部(例えば10%)の光を透過させ、反射部材4の下部に設置した光検出器によって参照光として検出してもよい。
 流体ユニット10は、また、測定セル1内を流れる測定ガスの圧力を検出するための圧力センサ5と、測定ガスの温度を測定するための温度センサ6とを備えている。圧力センサ5および温度センサ6の出力は、図示しないセンサケーブルを介して電気ユニット20に送られる。圧力センサ5および温度センサ6の出力は、ガス濃度を測定するために用いられる。
 本実施形態の濃度測定装置100において、電気ユニット20は、測定セル1内に入射させる光を発生する光源22と、測定セル1から出射した光を受光する光検出器24と、光検出器24が出力する検出信号(受光した光の強度に応じた検出信号)に基づいて測定ガスの濃度を演算する処理回路28とを備えている。
 処理回路28は、例えば、回路基板上に設けられたプロセッサやメモリなどによって構成され、入力信号に基づいて所定の演算を実行するコンピュータプログラムを含み、ハードウェアとソフトウェアとの組み合わせによって実現され得る。なお、図示する態様では処理回路28は、電気ユニット20に内蔵されているが、その構成要素の一部(CPUなど)または全部が電気ユニット20の外側の装置に設けられていてもよいことはいうまでもない。
 また、光源22は、互いに異なる波長の紫外光を発する2つの発光素子(ここではLED)23a、23bを用いて構成されている。発光素子23a、23bには、発振回路を用いて異なる周波数の駆動電流が流され、周波数解析(例えば、高速フーリエ変換やウェーブレット変換)を行うことによって、光検出器24が検出した検出信号から、各波長成分に対応した光の強度を測定することができる。発光素子23a、23bとしては、LD(レーザダイオード)を用いることもできる。また、複数の異なる波長の合波光を光源に用いる代わりに、単一波長の光源を利用することもでき、この場合、合波器や周波数解析回路は省略することができる。
 発光素子23a、23bは、ハーフミラー23cに対していずれも45°の角度で光を照射するように配置されている。また、ハーフミラー23cを挟んで一方の発光素子23bと対向するように、参照光検出器26が設けられている。光源22からの光の一部は、参照光検出器26に入射され、光学素子の劣化等を調べるために用いられる。残りの光は、ボールレンズ23dによって集光されてから、入射光用の光ファイバケーブル11に入射される。光検出器24および参照光検出器26を構成する受光素子としては、例えばフォトダイオードやフォトトランジスタが用いられる。
 なお、上記には、入射光と反射光とを別個の光ファイバケーブルで伝送する態様を説明したが、入射光と反射光とを一本の光ファイバケーブルで伝送するとともに、電気ユニット20において反射光を分離して光検出器24に導く分光素子を設けるようにしてもよい。また、上記のような反射部材4を用いずに、反射部材の側から出射用窓部を介してセル内を通過した光を取り出すように構成された透過型の測定セルを用いてもよい。
 上記のように構成された濃度測定装置100では、光源22から出射し、測定セル1を通過した光の強度を光検出器24で検出することによって、セル内のガスの濃度の測定を行う。ただし、光源22を構成する発光素子23a、23bは、同じ設計であっても、そのピーク波長や半値幅が、個体差を有している。
 図2(a)および(b)は、LED400個(ピーク波長300±5nm)についてのピーク波長および半値幅の分布を示すグラフである。このように、実際に使用するLEDによってピーク波長や半値幅は異なっている。そして、このことが原因で、濃度測定の誤差が増加するおそれがある。
 そこで、本実施形態の電気ユニット20においては、光源22にバンドパスフィルタ(以下、BPFと記載することがある)30を設けている。図1に示すように、BPF30は、各発光素子23a、23bの前にそれぞれ配置されている。本実施形態では、BPF30は、BPF固定用カプラを用いて固定されており、必要に応じてBPF30を交換することができる。BPF30としては、例えば、シグマ光機社製のものを用いることができる。
 バンドパスフィルタ30は、発光素子23a、23bのピーク波長から離れた波長の成分を減衰させるように作用する。バンドパスフィルタ30を通過した光のスペクトルは、より急峻となり、その半値幅(例えばFWHM(Full Width at Half Maximum))の値は、より小さくなる。
 図3(a)および(b)は、バンドパスフィルタを通す前と通した後との各LED(No.1~No.6)のスペクトルを示す図である。図3(a)は、バンドパスフィルタを通していない各LED(No.1~No.6)の規格化されたスペクトルを示し、図3(b)は、バンドパスフィルタ通過後の各LED(1B~6B)のスペクトルを示す。
 図3(a)および(b)からわかるように、バンドパスフィルタを通過させた後の光は、ピーク波長のばらつきはあまり変わらない一方で、いずれのLEDについても、FWHMはより小さくなる。このようにして、所望の波長域の光を選択的に入射させることが可能になるので、吸光係数の波長依存性を低減させ得る。本実施形態においては、BPFを通した後、FWHMは、15nm以下であることが好ましく、12nm以下であることがより好ましい。
 以下、本実施形態の濃度測定装置を用いて行う濃度測定の手順を説明する。図1に示した反射型の測定セル1において、測定セル1内を1往復する光の光路長は、窓部2と反射部材4との距離の2倍によって規定することができる。濃度測定装置100において、測定セル1に入射され、その後、反射部材4によって反射された波長λの光は、ガスの濃度に依存して吸収される。そして、処理回路28は、光検出器24からの検出信号を周波数解析することによって、当該波長λでの吸光度Aλを測定することができ、さらに、以下の式(1)に示すランベルト・ベールの法則に基づいて、吸光度Aλからモル濃度CMを算出することができる。
   Aλ=-ln(I/I0)=αLCM   ・・・(1)
 式(1)において、I0は測定セルに入射する入射光の強度、Iは測定セル内のガス中を通過した光の強度、αはモル吸光係数(m2/mol)、Lは光路長(m)、CMはモル濃度(mol/m3)である。モル吸光係数αは物質によって決まる係数(ただし、ここでは、自然対数に対する吸光係数αを用いている)である。I/I0は、一般に透過率と呼ばれる。透過率I/I0が100%のときに吸光度Aλは0となり、透過率I/I0が0%のときに吸光度Aλは無限大となる。なお、式(1)における入射光強度I0については、測定セル1内に吸光性のガスが存在しないとき(例えば、紫外光を吸収しないガスが充満しているときや、真空に引かれているとき)に光検出器24によって検出された光の強度を入射光強度I0とみなしてよい。
 また、濃度測定装置100は、測定セル1を流れるガスの圧力および温度も考慮して、ガスの濃度を求めるように構成されていてもよい。以下、具体例を説明する。上記のランベルト・ベールの式(1)が成り立つが、上記のモル濃度CMは、単位体積当たりのガスの物質量であるので、CM=n/Vと表すことができる。ここで、nはガスの物質量(mol)すなわちモル数であり、Vは体積(m3)である。そして、測定対象がガスであるので、理想気体の状態方程式PV=nRTから、モル濃度CM=n/V=P/RTが導かれ、これをランベルト・ベールの式に代入し、また、-ln(I/I0)=ln(I0/I)を適用すると、以下の式(2)が得られる。
   ln(I0/I)=αL(P/RT)   ・・・(2)
 式(2)において、Rは気体定数=0.0623(Torr・m3/K/mol)であり、Pは圧力(Torr)であり、Tは温度(K)である。また、式(2)のモル吸光係数αは、透過率の自然対数に対応する吸光係数αである。
 ここで、圧力センサが検出できる圧力は、測定ガスとキャリアガスとを含む混合ガスの全圧Pt(Torr)である。一方、吸収に関係するガスは、測定ガスのみであり、上記の式(2)における圧力Pは、測定ガスの分圧Paに対応する。そこで、測定ガスの分圧Paを、ガス全体中における測定ガス濃度Cv(体積%)と全圧Ptとによって表した式であるPa=Pt・Cvを用いて式(2)を表すと、圧力および温度を考慮した測定ガスの濃度(体積%)と吸光度との関係は、測定ガスの吸光係数αaを用いて、以下の式(3)によって表すことができる。
   ln(I0/I)=αaL(Pt・Cv/RT)   ・・・(3)
 また、式(3)を変形すると、以下の式(4)が得られる。
   Cv=(RT/αaLPt)・ln(I0/I)   ・・・(4)
 したがって、式(4)によれば、各測定値(ガス温度T、全圧Pt、および透過光強度I)に基づいて、測定光波長における測定ガス濃度(体積%)を演算により求めることが可能である。このようにすれば、ガス温度やガス圧力も考慮して混合ガス中における吸光ガスの濃度を求めることができる。なお、測定ガスの吸光係数αaは、既知濃度(例えば100%濃度)の測定ガスを流したときの測定値(T、Pt、I)から、式(3)または(4)に従って予め求めておくことができる。このようにして求められた吸光係数αaはメモリに格納されており、式(4)に基づいて未知濃度の測定ガスの濃度演算を行うときは、吸光係数αaをメモリから読み出して用いることができる。
 ここで吸光係数について説明する。吸光係数は、ガスの種類ごとに異なるものであるが、基準となるガスの吸光係数(以下、基準吸光係数と呼ぶことがある)と補正ファクタとを用いることによって、測定対象のガスについての吸光係数を求めることもできる。このような補正ファクタについては、本出願人の1による国際公開第2020/158506号に開示されている。補正ファクタは、例えば、基準ガスの吸光係数を測定ガスの吸光係数で除算した値として定義される。補正ファクタは、測定ガスの吸光係数を基準ガスの吸光係数で除算した値として定義されてもよい。
 例えば、基準ガスがアセトンガスであり、測定対象が所定のガス(ここではNO2とする)であるとき、アセトンガスの吸光係数をαaceとし、アセトンガスの濃度をCaceとし、測定対象のガスの吸光係数をαNO2とし、測定対象のガスの濃度をCNO2とし、測定ガス用の補正ファクタ(αace/αNO2)をMFとすると、下記の関係式が成り立つ。
   CNO2=(αace/αNO2)・Cace=MF・Cace   ・・・(5)
 ここで、Caceは、上記の式(4)より、Cace=(RT/αaceLPt)・ln(I0/I)で与えられる。
 したがって、出荷前などに濃度測定装置を用いて基準ガスの吸光係数αaceを求めてメモリに格納しておき、測定ガスの濃度測定を行うときには、基準ガスの吸光係数αaceを補正ファクタMFで除算した吸光係数αNO2を用いて、式(4)から濃度を求めることが可能である。あるいは、式(5)からわかるように、アセトンと仮定して求められた濃度に、補正ファクタMFを乗じることによって、測定ガスの濃度を求めることができる。
 上記の補正ファクタMFは、既知濃度の測定ガスを流したときの濃度測定装置の測定値(T、Pt、I)からの吸光係数αNO2を算出するとともに、測定値から算出された吸光係数αNO2で、基準ガスの吸光係数αaceを除算することによって求めることができる。
 このようにして補正ファクタが求められていれば、出荷前には、基準ガスを用いて濃度測定装置ごとに基準吸光係数を求めておき、出荷後には、補正ファクタを用いて吸光係数を補正して、測定対象のガスの濃度を測定することができる。濃度測定装置のそれぞれの光学系の設計によって生じる濃度測定の誤差は、基準ガスを用いて吸光係数を求める過程で予め校正されている。したがって、出荷後に測定ガスの濃度を測定するときに、濃度測定装置ごとの機差が生じることが抑制される。
 また、国際公開第2020/158506号には、基準ガスの吸光係数を、入射光波長とガス温度とに関連付けて複数求めておき、例えば、テーブルに各吸光係数を格納しておくことが開示されている。また、補正ファクタも同様に、入射光波長とガス温度とに関連付けて複数求めておき、測定ガスの濃度測定を行う際には、そのときの入射光波長とガス温度とに基づいて、適切な基準吸光係数および補正ファクタを用いて、測定ガス用の吸光係数を決定することが開示されている。図4(a)は、LEDピーク波長とセル温度とに関連付けて設定されたアセトンについての吸光係数のテーブルを示し、図4(b)は、対応する補正ファクタ(MOファクタ)のテーブルを示す。
 しかしながら、本願発明者の実験によって、上記のように測定光波長に変動幅があるときには、基準ガスの種類と測定ガスの種類とによって、測定ガスの濃度測定の誤差が増大し得ることが確認された。
 図5は、光源LEDのスペクトルと、各ガスの吸収曲線を示すグラフである。各ガスの吸光ピーク波長は、アセトンで約280.25nm、塩素(Cl2)で約325.5nm、二酸化硫黄(SO2)で約286.25nm、二酸化窒素(NO2)で約350nmである。
 光源LEDのピーク波長は約300nmであるのに対して、アセトンの吸収ピーク波長は300nmよりも小さい280nm近傍に存在し、塩素ガスの吸収ピーク波長は300nmよりも大きい326nm近傍に存在する。また、ここでの濃度測定対象であるNO2の吸収ピーク波長は、300nmよりも大きい350nm近傍に存在する。なお、半導体製造で用いられる有機金属ガスにおいても、吸収ピーク波長が300nm以上(例えば約320nm)のものが存在する。
 このような場合に、光源のピーク波長が300nmよりも長波長側にあり、例えば、302.5nmのピーク波長を有する光が発せられている場合、アセトンガスでは吸収がより小さくなるのに対して、塩素ガスおよび測定ガスでは吸収がより大きくなる。また、光源のピーク波長が300nmよりも短波長側にあり、例えば、297.5nmのピーク波長を有する光が発せられている場合、アセトンガスでは吸収がより大きくなるのに対して、塩素ガスおよび測定ガスでは吸収がより小さくなる。
 このため、測定ガスの吸光ピーク波長が300nmより大きいにもかかわらず、例えばアセトンガスや二酸化硫黄ガスを基準ガスとして用いた場合には、適切な補正ファクタが波長ごとに大きく異なることになり、このことによって、濃度測定の誤差が増大し得る。一方で、塩素ガスや二酸化窒素ガスを基準ガスとして用いた場合には、適切な補正ファクタ自体は、波長ごとには大きくは異ならないものとなる。したがって、例えば基準ガスを用いた校正段階で波長ごとに吸光係数を求めておけば、補正ファクタとしては、波長によらず同じものを用いることも可能になる。これにより、測定ガスを用いた波長ごとの補正ファクタの測定を行わなくても、濃度測定の誤差を軽減し得る。また、補正ファクタを波長ごとに設定するときにも、これらが大幅に異なる値にはなりにくいため、結果として誤差を軽減できる。
 以上のことから、補正ファクタを用いて濃度測定を行う場合、基準ガスとして、測定ガスと同様の吸光特性を有するガスを用いることが誤差軽減のために有効であると考えられる。より具体的には、光源から発せられる光源光のピーク波長に対して、測定ガスの吸光ピーク波長が長いときには、光源光のピーク波長に対して吸光ピーク波長が長い基準ガスを用い、光源光のピーク波長に対して前記測定ガスの吸光ピーク波長が短いときには、光源光のピーク波長に対して吸光ピーク波長が短い基準ガスを用いることが好適であると考えられる。
 また、図6(a)、(b)および図7(a)、(b)は、バンドパスフィルタを通したとき(黒丸)と、通さなかったとき(白抜き四角)とでの、吸光係数の波長依存性を示すグラフである。なお、使用した複数の光源(LED)は、ピーク波長が299.5nm~303.5nmのものである。また、バンドパスフィルタなしでのFWHMは17.5nm~21.25nmであり、バンドパスフィルタありでのFWHMは10.5nm~11.25nmであった。
 図6(a)および(b)は、100Torr、125℃の条件下でアセトンおよびSO2を流したときの、光源ピーク波長と、吸光係数との関係を示す。アセトンおよびSO2は、300nm未満の吸光ピーク波長を有するガスである。したがって、LEDの波長が300nmから大きくなるにつれ、吸光係数の値はおおむね減少している。
 図7(a)および(b)は、100Torr、125℃の条件下でCl2およびNO2を流したときの、光源ピーク波長と、吸光係数との関係を示す。Cl2およびNO2は、300nmを超える吸光ピーク波長を有するガスである。したがって、LEDの波長が300nmから大きくなるにつれ、吸光係数の値はおおむね増加している。
 また、図6(a)、(b)および図7(a)、(b)からわかるように、バンドパスフィルタを通した場合(白抜き四角)、光源ピーク波長に対する吸光係数のばらつきが、アセトンガス、SO2、Cl2およびNO2のいずれにおいても、フィルタを通す前に比べて抑えられている。したがって、バンドパスフィルタを用いることによって、波長による吸光係数のばらつきの発生を抑制できることがわかる。
 以上のことから、基準ガスとして、測定ガスに対応する吸光特性を有するガスを用いて基準吸光係数を求めるとともに、バンドパスフィルタにより帯域が狭められた光源光を用いることによって、補正ファクタのばらつきをさらに効果的に抑制できることがわかった。これによって、測定ガスの濃度測定をさらに向上した精度で行うことが可能になった。
 以上、本発明の実施形態による濃度測定装置を説明したが、本発明は、上記実施形態に限定解釈されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。例えば、測定に用いられる光としては、ガスの種類に応じて、紫外領域以外の波長領域の光(例えば可視光)を利用することも可能である。また、基準吸光係数として、波長および温度に関連付けられた複数の基準吸光係数が用いられてもよい。
 複数の基準吸光係数は、例えば、国際公開第2020/158506号に記載されるように、光源ピーク波長およびガス温度の少なくともいずれかに対応付けて設定される。光源ピーク波長に対応付けられる場合、測定ガスの濃度を測定するときに、光源ピーク波長を測定する工程が行われる。そして、測定された光源ピーク波長に基づいて、用いる基準吸光係数が決定される。
 このように光源光波長に適合する基準吸光係数(あるいは補正ファクタ)を用いることによって、より正確に測定ガスの濃度を求め得る。同様に、ガス温度に対応付けられる場合、測定ガスの濃度を測定するときに、ガス温度が測定され、測定されたガス温度に基づいて、用いる基準吸光係数(あるいは補正ファクタ)が決定される。もちろん、光源ピーク波長とガス温度との双方に関連付けられたマトリクス状の基準吸光係数(図4(a)参照)や対応する補正ファクタ(図4(b)参照)を予め設定しておいてもよい。この場合、濃度測定に際して測定した光源ピーク波長とガス温度との両方に基づいて、使用する基準吸光係数や補正ファクタを決定し、これに基づいて測定ガスの濃度を求めることができる。なお、基準吸光係数は、予め求めておくようにしても良いし、濃度を測定する際に求めるようにしても良い。
 また、上記には300nmより大きい吸収ピーク波長を有する測定ガス(例えばNO2)の濃度測定のために、同様の吸光特性を有する基準ガス(例えばCl2)の吸光係数を用いる態様を説明したが、本発明はこれに限られない。300nmよりも小さい吸収ピーク波長を有する測定ガス(例えばSO2)の濃度測定のために、同様の特性を有する基準ガス(例えばアセトンガス)の吸光係数を用いることも、本発明の実施形態に含まれる。
 また、上記に例示した基準ガスと測定ガスとが逆、すなわち、上記の基準ガスが測定ガスとして用いられ、上記の測定ガスが基準ガスとして用いられてもよい。さらに、基準となる光源波長は300nmに限られるわけではなく、任意の波長であってよいことは言うまでもない。測定ガスの吸光特性に適合する波長を有する光源を用いるとともに、その光源のピーク波長を基準として、測定ガスと同様の吸光ピーク波長を有する基準ガスを用いることによって、濃度測定精度を向上させ得る。
 本発明の実施形態に係る濃度測定方法は、半導体製造装置などにおいて種々のガスの濃度測定のために好適に利用される。
 1 測定セル
 2 窓部
 3 コリメータ
 4 反射部材
 5 圧力センサ
 6 温度センサ
 10 流体ユニット
 11 光ファイバケーブル(入射用)
 12 光ファイバケーブル(出射用)
 20 電気ユニット
 22 光源
 23a、23b 発光素子
 30 バンドパスフィルタ
 24 光検出器
 26 参照光検出器
 28 処理回路
 100 濃度測定装置

Claims (7)

  1.  光源および光検出器を有する電気ユニットと、ガスが流れる測定セルを有する流体ユニットと、前記光源から前記測定セルに入射したあと前記測定セルを通過した光の強度を前記光検出器で検出し、前記光検出器の出力に基づいて前記ガスの濃度を演算するように構成された処理回路とを有する濃度測定装置において行われる濃度測定方法であって、
     前記測定セルに基準ガスを流すことにより前記光検出器を用いて前記基準ガスに関連付けて求められた基準吸光係数と、測定ガスに関連付けられた補正ファクタとを用いて、前記測定ガスの吸光係数を決定するステップと、
     前記測定ガスの吸光係数を用いて、前記測定セル内を流れる測定ガスの濃度を求めるステップとを含み、
     前記光源から発せられる光源光のピーク波長に対して、前記測定ガスの吸光ピーク波長が長いときは、前記光源光のピーク波長に対して吸光ピーク波長が長い基準ガスを用い、
     前記光源光のピーク波長に対して前記測定ガスの吸光ピーク波長が短いときは、前記光源光のピーク波長に対して吸光ピーク波長が短い基準ガスを用いる、濃度測定方法。
  2.  前記光源から発せられる光は近紫外光であり、前記測定ガスおよび前記基準ガスは、300nmより長い吸光ピーク波長を有するガスである、請求項1に記載の濃度測定方法。
  3.  前記基準ガスは、アセトンガス、アセトアルデヒドガス、SO2ガス、Cl2ガス、または、NO2ガスのいずれかである、請求項1に記載の濃度測定方法。
  4.  前記濃度測定装置は、前記光源からの光を通過させるバンドパスフィルタを有し、半値幅が狭められた光を用いて濃度測定を行う、請求項1から3のいずれかに記載の濃度測定方法。
  5.  前記測定ガスの濃度を測定するときの光源光のピーク波長を測定するステップを含み、
     光源光のピーク波長に対応付けられた複数の基準吸光係数を参照したうえで、前記測定された光源光のピーク波長に基づいて決定された基準吸光係数を用いて前記測定ガスの濃度を求める、請求項1から4のいずれかに記載の濃度測定方法。
  6.  前記測定ガスの濃度を測定するときのガス温度を測定するステップを含み、
     測定セル内のガス温度に対応付けられた複数の基準吸光係数を参照したうえで、前記測定されたガス温度に基づいて決定された基準吸光係数を用いて前記測定ガスの濃度を求める、請求項1から5のいずれかに記載の濃度測定方法。
  7.  光源および光検出器を有する電気ユニットと、
     ガスが流れる測定セルを有する流体ユニットと、
     前記光源から前記測定セルに入射したあと前記測定セルを通過した光の強度を前記光検出器で検出し、前記光検出器の出力に基づいて前記ガスの濃度を演算する処理回路と、
     前記測定セルに入射させる前に前記光源からの光が通過するバンドパスフィルタと
    を有する濃度測定装置であって、
     前記処理回路は、基準ガスに関連付けられた基準吸光係数と、測定ガスに関連付けられた補正ファクタとを記憶する記憶部を有し、前記基準吸光係数と前記補正ファクタと前記光検出器の出力とに基づいて、前記測定ガスの濃度を演算するように構成されており、
     前記基準吸光係数として、前記光源から発せられる光源光のピーク波長に対して、前記測定ガスの吸光ピーク波長が大きいときには、前記光源光のピーク波長に対して吸光ピーク波長が大きい基準ガスから求められた基準吸光係数が用いられ、前記光源光のピーク波長に対して前記測定ガスの吸光ピーク波長が小さいときには、前記光源光のピーク波長に対して吸光ピーク波長が小さい基準ガスから求められた基準吸光係数が用いられる、濃度測定装置。
PCT/JP2021/008377 2020-03-13 2021-03-04 濃度測定方法および濃度測定装置 WO2021182279A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022505995A JP7228209B2 (ja) 2020-03-13 2021-03-04 濃度測定方法
US17/905,486 US20230124208A1 (en) 2020-03-13 2021-03-04 Concentration measuring method, and concentration measuring device
KR1020227016364A KR20220079977A (ko) 2020-03-13 2021-03-04 농도 측정 방법 및 농도 측정 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-044828 2020-03-13
JP2020044828 2020-03-13

Publications (1)

Publication Number Publication Date
WO2021182279A1 true WO2021182279A1 (ja) 2021-09-16

Family

ID=77672332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008377 WO2021182279A1 (ja) 2020-03-13 2021-03-04 濃度測定方法および濃度測定装置

Country Status (5)

Country Link
US (1) US20230124208A1 (ja)
JP (1) JP7228209B2 (ja)
KR (1) KR20220079977A (ja)
TW (1) TWI762233B (ja)
WO (1) WO2021182279A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128955A (ja) * 1994-09-27 1996-05-21 Okitoronikusu Kk ガス濃度計の検査方法およびガス濃度計
JP2002139428A (ja) * 2000-11-02 2002-05-17 Chubu Electric Power Co Inc ガス成分測定装置及び方法
US20130265579A1 (en) * 2012-04-05 2013-10-10 Dräger Safety AG & Co. KGaA Optical gas sensor
JP2017181204A (ja) * 2016-03-29 2017-10-05 東亜ディーケーケー株式会社 オゾン測定装置
WO2018021311A1 (ja) * 2016-07-29 2018-02-01 国立大学法人徳島大学 濃度測定装置
JP2018025499A (ja) * 2016-08-12 2018-02-15 株式会社フジキン 濃度測定装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266440A (ja) * 1986-05-14 1987-11-19 Fujitsu Ltd ガス検出装置
JP5885699B2 (ja) 2013-05-09 2016-03-15 株式会社フジキン 脆性破壊性光透過窓板の固定構造及びこれを用いた脆性破壊性光透過窓板の固定方法
US10408742B2 (en) * 2014-11-23 2019-09-10 Fujikin Incorporated Optical gas concentration measuring method by forming a differential signal using lights with different absorbabilities to a raw material in a gas flow path using a time-sharing method
WO2016117173A1 (ja) * 2015-01-20 2016-07-28 株式会社 東芝 呼気測定装置および呼気測定方法、並びにガスセル
KR102082172B1 (ko) 2015-08-18 2020-02-27 가부시키가이샤 후지킨 농도 측정 장치
TW201719154A (zh) * 2015-11-26 2017-06-01 財團法人工業技術研究院 光學感測模組
JP2017129374A (ja) 2016-01-18 2017-07-27 株式会社堀場製作所 分析装置、及び、分析方法
TWI592647B (zh) * 2016-05-25 2017-07-21 熱映光電股份有限公司 氣體測量裝置及氣體濃度測量方法
WO2020158506A1 (ja) 2019-01-31 2020-08-06 株式会社フジキン 濃度測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08128955A (ja) * 1994-09-27 1996-05-21 Okitoronikusu Kk ガス濃度計の検査方法およびガス濃度計
JP2002139428A (ja) * 2000-11-02 2002-05-17 Chubu Electric Power Co Inc ガス成分測定装置及び方法
US20130265579A1 (en) * 2012-04-05 2013-10-10 Dräger Safety AG & Co. KGaA Optical gas sensor
JP2017181204A (ja) * 2016-03-29 2017-10-05 東亜ディーケーケー株式会社 オゾン測定装置
WO2018021311A1 (ja) * 2016-07-29 2018-02-01 国立大学法人徳島大学 濃度測定装置
JP2018025499A (ja) * 2016-08-12 2018-02-15 株式会社フジキン 濃度測定装置

Also Published As

Publication number Publication date
US20230124208A1 (en) 2023-04-20
JP7228209B2 (ja) 2023-02-24
TW202146881A (zh) 2021-12-16
KR20220079977A (ko) 2022-06-14
JPWO2021182279A1 (ja) 2021-09-16
TWI762233B (zh) 2022-04-21

Similar Documents

Publication Publication Date Title
KR20180104090A (ko) 농도 측정 장치
JP6786099B2 (ja) 濃度測定装置
JP2023160991A (ja) 濃度測定装置
WO2020158506A1 (ja) 濃度測定装置
TW202100983A (zh) 濃度測定裝置
US11460396B2 (en) Concentration measurement method
WO2021182279A1 (ja) 濃度測定方法および濃度測定装置
WO2021054097A1 (ja) 濃度測定装置
JP7249031B2 (ja) 異常検知方法
WO2020203281A1 (ja) 濃度測定装置
US11686671B2 (en) Concentration measurement device
JP2024076641A (ja) 濃度測定装置
JP2020106435A (ja) 反射部材の表裏識別方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505995

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227016364

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767148

Country of ref document: EP

Kind code of ref document: A1