JP2017129374A - 分析装置、及び、分析方法 - Google Patents

分析装置、及び、分析方法 Download PDF

Info

Publication number
JP2017129374A
JP2017129374A JP2016007053A JP2016007053A JP2017129374A JP 2017129374 A JP2017129374 A JP 2017129374A JP 2016007053 A JP2016007053 A JP 2016007053A JP 2016007053 A JP2016007053 A JP 2016007053A JP 2017129374 A JP2017129374 A JP 2017129374A
Authority
JP
Japan
Prior art keywords
light
measurement
intensity
data
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016007053A
Other languages
English (en)
Inventor
井戸 琢也
Takuya Ido
琢也 井戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2016007053A priority Critical patent/JP2017129374A/ja
Priority to US15/406,932 priority patent/US20170205336A1/en
Priority to EP17151761.8A priority patent/EP3193160A1/en
Priority to CN201710030908.0A priority patent/CN107014760A/zh
Publication of JP2017129374A publication Critical patent/JP2017129374A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/42Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
    • G01J2003/423Spectral arrangements using lasers, e.g. tunable
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • G01N2021/8514Probe photometers, i.e. with optical measuring part dipped into fluid sample with immersed mirror
    • G01N2021/8521Probe photometers, i.e. with optical measuring part dipped into fluid sample with immersed mirror with a combination mirror cell-cuvette
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • G01N2201/0612Laser diodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/127Calibration; base line adjustment; drift compensation

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

【課題】分析装置において、測定光の経時変化による吸光度への影響を確認する。
【解決手段】分析装置は、基準ガス充填空間と、スペクトル生成部75と、スペクトル比較部76と、を備える。基準ガス充填空間は、測定光の光路上に形成され、測定対象ガスとは異なる基準ガスが予め決められた第1濃度にて充填される空間である。スペクトル生成部75は、基準ガス充填空間を通過した測定光である検出光の波長と、検出光の相対強度と、を関連付けた実測スペクトルデータDmsを生成する。スペクトル比較部76は、第1濃度の基準ガスの吸収スペクトルを直接吸収法により予め実測した基準吸収スペクトルデータDssと、実測スペクトルデータDmsとの差異を算出する。
【選択図】図2

Description

本発明は、光吸収によりガスの分析を行う分析装置、及び、当該分析装置における分析方法に関する。
従来、光吸収を用いて測定対象である測定対象ガスを分析する分析装置が知られている。このような分析装置では、光源などの特性変化による分析結果への影響を低減するよう校正される。
特許文献1には、光吸収を用いて測定対象ガスを分析する分析装置を校正するための校正方法及び校正装置が開示されている。特許文献1に開示された校正方法及び校正装置では、水分濃度を測定する水分濃度測定装置の校正を、測定予定濃度の水分の吸収スペクトルの強度と、当該吸収スペクトルの強度との関係が分かっているガスの吸収スペクトルの強度との関係を用いて行っている。
特開2013−130509号公報
上記の特許文献1の校正方法においては、測定光に変調をかけることにより微分スペクトルを得る方式であるため、得られる信号強度が吸光度ではなく、経時的な強度変化が発生した場合に補正する精度が下がるという課題がある。
本発明の目的は、光吸収を用いて測定対象ガスを分析する分析装置において、測定光のより詳細な経時変化による吸光度への影響を確認することにある。
以下に、課題を解決するための手段として複数の態様を説明する。これら態様は、必要に応じて任意に組み合せることができる。
本発明の一見地に係る分析装置は、光源から出力される測定光を用いて測定対象ガスを分析する装置である。分析装置は、基準ガス充填空間と、スペクトル生成部と、スペクトル比較部と、を備える。基準ガス充填空間は、測定光の光路上に形成され、測定対象ガスとは異なる基準ガスが予め決められた第1濃度にて充填される空間である。スペクトル生成部は、基準ガス充填空間を通過した測定光である検出光の波長と、検出光の相対強度と、を関連付けた実測スペクトルデータを生成する。スペクトル比較部は、第1濃度の基準ガスの吸収スペクトルを直接吸収法により予め実測した基準吸収スペクトルデータと、実測スペクトルデータとの差異を算出する。
これにより、測定光の経時変化による吸光度への影響を確認できる。
スペクトル生成部は、基準ガスにより吸光されない場合の測定光の強度と検出光の強度との関係に基づいて、検出光の相対強度を算出してもよい。
スペクトル生成部は、測定対象ガスが存在する領域を通過した測定光である分析検出光の波長と当該分析検出光の相対強度とを関連付けたデータであって、測定対象ガスの分析に用いられる分析用スペクトルデータを生成してもよい。この場合、分析検出光の相対強度は、実測スペクトルデータの検出光の相対強度のピーク強度を、基準吸収スペクトルデータの対応する吸収ピークにおける吸光度に一致させる強度変化関数を用いて補正される。
これにより、分析用スペクトルデータにおいて、測定対象ガスの吸収ピークの吸光度に対応した強度を有する分析検出光の相対強度を算出できる。
分析用スペクトルデータの分析検出光の波長は、実測スペクトルデータの検出光の相対強度のピーク位置を基準吸収スペクトルデータの対応する吸収ピーク位置に一致させる波長変化関数を用いて算出されてもよい。
これにより、分析用スペクトルデータの分析検出光の相対強度のピーク位置を、測定対象ガスの対応する吸収ピーク位置と一致できる。
光源制御部と実測データ取得部とをさらに備えていてもよい。光源制御部は、測定光の強度及び/又は波長を制御する測定光制御信号を、所定の信号値範囲にて時間的に変化させながら光源に出力する。実測データ取得部は、検出光の強度を測定し、当該検出光の強度と当該検出光強度を測定したときの測定光制御信号とを関連付けて実測データを生成する。この場合、スペクトル生成部は、実測データから実測スペクトルデータを生成する。これにより、検出光の強度の測定値から、実測スペクトルデータを得られる。
基準吸収スペクトルデータと実測スペクトルデータとの差異が所定の値以上となったら、光源制御部は、測定光制御信号の信号値範囲を現在の信号値範囲から変更してもよい。これにより、測定対象ガスの分析時などに、分析に使用可能な適切な分析用スペクトルデータを取得できる。
分析装置は、基準ガス充填空間に基準ガスを導入する基準ガス導入部をさらに備えていてもよい。これにより、基準ガス充填空間に圧力を制御しながら高精度に基準ガスを充填できる。また、導入する基準ガスのガス種も選ばない。
測定対象ガスは、水分、塩化水素、フッ化水素、アンモニア、テトラメチルインジウム、又は、トリメチルガリウムのいずれかであってもよい。これにより、吸着性及び/又は腐食性などを有し取り扱いが困難な測定対象ガス、高濃度のガスが準備できない等、現場で準備することが困難である測定対象ガスに対して、分析装置は特に上記の効果を発揮できる。
基準ガスは炭化水素ガスであってもよい。これにより、分析に用いる波長範囲内に多数現れる吸収ピークを用いて、実測スペクトルデータと基準吸収スペクトルデータとの差異を精度よく算出できる。
本発明の他の見地に係る分析方法は、光源から出力される測定光を用いて測定対象ガスを分析する方法であって、以下のステップを含む。
◎測定対象ガスとは異なる基準ガスを予め決められた第1濃度にて充填した基準ガス充填空間を測定光の光路上に形成するステップ。
◎基準ガス充填空間を通過した測定光である検出光の波長と、検出光の相対強度と、を関連付けた実測スペクトルデータを生成するステップ。
◎第1濃度の基準ガスの吸収スペクトルを直接吸収法により予め実測した基準吸収スペクトルデータと、実測スペクトルデータとの差異を算出するステップ。
これにより、測定光の経時変化による吸光度への影響を確認できる。
光吸収を用いて測定対象ガスを分析する分析装置において、測定光の経時変化を詳細に確認できる。
第1実施形態に係る分析装置の模式断面図。 制御部の構成を示す図。 分析装置における測定光の特性変化モニター方法を示すフローチャート。 実測データの一例を示す図。 前処理データの一例を示す図。 実測スペクトルデータと基準吸収スペクトルデータとの比較の一例を示す図。 波長変化関数の一例を示す図。 実測スペクトルデータ(波長変化関数補正後)と基準吸収スペクトルとの比較の一例を示す図。 強度変化関数の一例を示す図。 実測スペクトルデータ(波長変化関数補正+強度変化関数補正後)と基準吸収スペクトルとの比較の一例を示す図。 分析実測データの一例を示す図。 分析用スペクトルデータの一例を示す図。 第2実施形態に係る分析装置の構成を示す図。
(1)ガス分析装置全体の構成
図1を用いて、本発明の一実施形態に係る分析装置100を説明する。図1は、分析装置の模式断面図である。
分析装置100は、例えば、煙道1を流れる排ガスGeに含まれる測定対象ガスGsを分析する分析装置である。その他、分析装置100は、各種製造工程(例えば、半導体プロセス、石油化学プロセスなど)において発生するプロセスガスを測定対象ガスGsとして分析するものであってもよい。分析装置100は、例えば、水分、塩化水素(HCl)、フッ化水素(HF)、又は、アンモニア(NH)、一酸化窒素(NO)などの窒素酸化物(NOx)、一酸化炭素(CO)、二酸化炭素(CO)、硫化水素(HS)、二酸化硫黄(SO)などの硫黄酸化物(SOx)、テトラメチルインジウム(TetraMethylIndium、TMI)、トリメチルガリウム(TriMethylGallium、TMGA)などを測定対象ガスGsとして分析できる。
本実施形態の分析装置100は、煙道1を構成する壁1aにフランジfを介して接続され、一部が煙道1中に挿入されたプローブ管2を備える。プローブ管2は、排ガスGeを拡散により内部に導入する導入孔21が煙道1中に挿入された箇所に設けられた円筒状の部材である。プローブ管2の材質は、例えば、強酸性及び/又は強アルカリ性に対して耐久性を示す金属などとできる。その他、プローブ管2の表面をコーティングしてもよい。
分析装置100は、プローブ管2の基端部の筐体C内部に配置された光源3を備える。光源3は、プローブ管2の内部空間に測定光Lmを出力する。光源3は、後述する測定光制御信号sを入力し、当該測定光制御信号sに応じた波長及び強度を有する測定光Lmを出力する。本実施形態において、光源3は、DFBレーザダイオード(Distributed FeedBack Laser Diode)である。この場合、測定光Lmは、例えば、0.7μm〜4μmの範囲の波長を有する赤外光である。また、この場合、測定光制御信号sは光源3に入力される電流である。
光源3としては、その他、外部共振器を備えた光源などを使用できる。
分析装置100は、壁1aの外側の光源3の近傍に配置された受光部4を備える。受光部4は、プローブ管2の内部空間を通過した測定光Lmの強度である検出光強度Iを、検出光強度信号として出力する、例えば、フォトダイオード等の光電変換装置である。
本実施形態において、光源3及び受光部4は、測定光Lmを透過可能な光学窓Wにより、プローブ管2の内部空間とは隔離される。また、プローブ管2の内部空間の光学窓Wから所定の距離だけ離れた位置には、光学窓Wとの間で測定光Lmの光路上に基準ガス充填空間Sc(以下、「充填空間Sc」と呼ぶ)を形成する測定光Lmを透過可能な光学窓W1が配置されている。このように、2つの光学窓により充填空間Scを形成することにより、充填空間Scの密封性を確保できる。
なお、充填空間Scは、2つの光学窓W、W1により形成される場合に限られず、基準ガスGcを第1濃度にて充填した空間を有し測定光Lmを透過可能な部材をプローブ管2の内部空間に配置することにより形成されてもよい。さらに、充填空間Scは、光学窓W1を用いずに、プローブ管2の内部空間に配置された第1リフレクタ5(後述)と光学窓Wとにより形成されてもよい。
また、2つの光学窓W、W1により充填空間Scが形成されている場合、後述する実測スペクトルデータDmsを取得するときに第1リフレクタ5を挿入することなく、第2リフレクタ8(後述)により測定光Lmを反射させてもよい。
分析装置100は、第1リフレクタ5を備える。第1リフレクタ5は、図示しない駆動機構により、充填空間Scの煙道1側に挿入又は当該箇所から取り出し可能となっている、例えば、コーナーキューブや可動式の平面ミラーである。図1に示すように、第1リフレクタ5がプローブ管2の内部空間に存在する時、充填空間Scを通過した測定光Lmは、第1リフレクタ5において反射され、受光部4に入射される。
なお、分析実行中に、第1リフレクタ5は、プローブ管2の内部空間から取り除かれていてもよいし、当該内部空間に挿入されてもよい。
分析装置100は、基準ガス導入部6を備える。基準ガス導入部6は、測定対象ガスGsとは異なる基準ガスGcを充填空間Scに充填する。基準ガス導入部6は、第1濃度の基準ガスGcを第1濃度として導入するガス供給装置である。このように、基準ガス導入部6は、ガス種類を選ばず、圧力を調整し高精度に基準ガスGcを導入できる。
本実施形態において、基準ガスGcは、例えば、メタン、エチレン、アセチレンなどの炭化水素ガスである。炭化水素ガスは、一般的に、分析のために用いる波長領域内に多くの吸収ピークを有する。よって、炭化水素ガスを基準ガスGcとすることにより、実測スペクトルデータDmsと基準吸収スペクトルデータDssとの差異を精度よく算出できる。
分析装置100は、制御部7を備える。制御部7は、CPU(Central Processing Unit)と、RAM、ROMなどの記憶装置と、表示部(例えば、液晶ディスプレイなど)と、各種インターフェースと、を有するコンピュータシステムである。また、以下の制御部7の各構成の機能は、記憶装置に記憶され、当該コンピュータシステムにて実行可能なプログラムとして実現されていてもよい。
制御部7は、分析装置100を制御する。制御部7は、図2に示すように、充填空間制御部71と、光源制御部72(例えば、D/A変換器)と、検出光取得部73(例えば、A/D変換器)と、実測データ取得部74と、スペクトル生成部75と、スペクトル比較部76と、補正部77と、制御部7の記憶装置の記憶領域に対応する記憶部78と、を有する。制御部7の各構成の機能及び動作は、後ほど詳しく説明する。
分析装置100は、プローブ管2の煙道1側の先端部に第2リフレクタ8を備えていてもよい。第2リフレクタ8は、分析実行中に、プローブ管2の内部空間を伝搬してきた測定光Lmを受光部4に向けて反射する、例えばコーナーキューブ又は平面ミラーである。これにより、排ガスGeが導入された空間を通過した測定光Lmの強度を受光部4にて測定し、排ガスGe中の測定対象ガスGsを分析できる。
分析装置100は、パージガス導入部9を備えていてもよい。パージガス導入部9は、プローブ管2の内部空間に、パージエアPa(図9)を導入する。これにより、第2リフレクタ8などが排ガスGeにより汚染されることを防止できる。
(2)分析装置における光源の特性変化モニター方法
次に、本実施形態の分析装置100における光源の特性変化の確認(特性変化モニター)方法について、図3に示すフローチャートを用いて説明する。
特性変化モニターの実行前に、制御部7は、分析等に必要なデータを取得する(ステップS1)。具体的には、制御部7は、特性変化モニターに用いる第1濃度の基準ガスGcの吸収スペクトルを示す基準吸収スペクトルデータDssを、予め、直接吸収法により、適切に校正された光源3(分析装置100)と基準ガスGcとを用いて実測して取得し、記憶部78に記憶する。
また、分析装置100の工場出荷時や、以下に説明する波長変化関数や強度変化関数の補正後など、適切な分析が可能となった状態において、数種類の予め決められた濃度の測定対象ガスGsの吸収スペクトルSpを実測にて取得し、記憶部78に記憶する。これにより、測定対象ガスGsの濃度と、測定対象ガスGsの吸収スペクトルの強度との関係が得られる。
その他、例えば、第1濃度の基準ガスGcの吸収スペクトルの(所定の)吸収ピークにおける吸光度と、所定濃度の測定対象ガスGsの吸収スペクトルの(所定の)吸収ピークにおける吸光度と、の関係Sp’を記憶部78に記憶してもよい。
特性変化モニターを開始すると、基準ガス導入部6が、基準ガスGc(本実施形態では、メタンガス)を第1濃度にて含むガスを充填空間Scに充填する(ステップS2)。また、充填空間制御部71が充填空間形成指令を出力し、当該指令により第1リフレクタ5がプローブ管2の内部空間に挿入される(ステップS3)。これにより、本実施形態において、測定光Lmの光路上に、基準ガスGcを第1濃度にて充填した充填空間Scが形成される。
その後、光源制御部72が、測定光制御信号s(電流値)をs1からsnまで周期的(ランプ波形状)にて増加させて光源3に出力して、強度を時間的に変化させた測定光Lmを光源3に出力させる(ステップS4)。
その他、光源制御部72は、光源3の温度を調節する信号(例えば、光源3に設けられた温度調節器の出力強度を調整する信号)を出力して、測定光Lm(の主に波長)を制御してもよい。
測定光Lmの出力中、実測データ取得部74が、測定光制御信号sの変化の周期よりも短い時間毎に、充填空間Scを通過して受光部4にて受光された測定光Lm(検出光と呼ぶ)の強度を示す検出光強度信号を、検出光取得部73にてA/D変換して取得する。実測データ取得部74は、検出光強度と当該検出光強度を取得した時刻とを関連付けて、実測データDmを取得する(ステップS5)。
なお、実測データ取得部74は、実測データDmにおける各時刻に当該各時刻における測定光制御信号sの信号値を関連付けてもよい。これにより、時刻と検出光強度との関係だけでなく、光源3に入力された測定光制御信号sと検出光強度との関係も取得できる。
上記のステップS4を実行すると、例えば、図4に示すような、検出光強度を取得した各時刻t1、t2、・・・tnと、当該時刻における検出光強度Id1、Id2、・・・Idnとの関係を示す実測データDmが取得される。図4に示す実測データDmは、時刻t1後の時刻ta、tb、tc、td、te、tfにおいて、それぞれ、検出光強度がIda、Idb、Idc、Idd、Ide、Idfである極小値を有している。実測データDm中の極小値は、基準ガスGcによる測定光Lmの吸光により発生する。また、図4の点線は、基準ガスGcにより吸収されていない測定光Lm(検出光)の強度(無吸光強度Imと呼ぶ)と時刻との関係を表す。
実測データDmの取得後、スペクトル生成部75が、以下のように直接吸収法により、実測データDmから実測スペクトルデータDmsを生成する(ステップS6)。
まず、スペクトル生成部75は、各時刻t1、t2、・・・tnにおける無吸光強度Im1、Im2、・・・Imnを算出する。具体的には、例えば、スペクトル生成部75は、図4中の白点にて示す、実測データDmの時刻t1、tg、th、ti、tj、tk、tnと当該時刻における検出光強度Id1、Idg、Idh、Idi、Idj、Idk、Idnとを関連付けた座標値を用いて、データフィッティング又は線形補間などにより算出される無吸光強度Imの時刻に対する関数を用いて、無吸光強度Im1、Im2、・・・Imnを算出する。
その後、スペクトル生成部75は、実測データDmの各時刻t1、t2、・・・tnにおける相対強度を、上記の無吸光強度と検出光強度との関係(比)に基づいて、A*Log(Im1/Id1)、A*Log(Im2/Id2)、・・・A*Log(Imn/Idn)と算出する。この相対強度は、直接吸収法により得られた基準ガスGcの吸収スペクトルにおける吸光度に対応する。さらに、スペクトル生成部75は、上記の時刻(又は当該時刻における測定光制御信号s)と相対強度とを関連付けて、図5に示すような前処理データDm’を生成する。
図5に示す前処理データDm’では、時刻ta’(信号値sa)、tb’ (信号値sb)、tc’ (信号値sc)、td’ (信号値sd)、te’ (信号値se)、tf’ (信号値sf)(時刻ta、tb、tc、td、te、tfとは必ずしも一致しない)において相対強度のピークが見られている。
次に、スペクトル生成部75は、前処理データDm’の各時刻における測定光Lmの波長を、記憶部78に現在記憶されており、前処理データDm’の各時刻(または、当該時刻にて出力された測定光制御信号s)と当該各時刻において出力される測定光Lmの波長との関係を表した波長変化関数F1を用いて算出する。
その後、スペクトル生成部75は、算出された各時刻の波長と、各時刻における相対強度とを関連付けて、実測スペクトルデータDmsを生成する。
実測スペクトルデータDmsを生成後、スペクトル比較部76が、実測スペクトルデータDmsと基準吸収スペクトルデータDssとの差異を算出する(ステップS7)。
例えば、スペクトル比較部76は、波長(補正前)と相対強度との座標上に、生成された実測スペクトルデータDmsと基準吸収スペクトルデータDssとをプロットした結果を、制御部7の表示部に表示する。これにより、2つのスペクトルデータの差異を視覚的に確認できる。
スペクトル比較部76は、2つのスペクトルのずれを上記のように視覚的に示すだけでなく、当該ずれを数値化してもよい。例えば、スペクトル比較部76は、2つのスペクトルのピーク位置の差分をピークずれの指標として数値的に算出してもよいし、2つのスペクトルの強度の差分を強度のずれの指標として数値的に算出してもよい。
このように、実測スペクトルデータDmsと直接吸収法による基準吸収スペクトルデータDssとの差異により、測定光Lmの波長及び強度の経時変化の両方を詳細に確認できる。その結果、測定光Lmの経時変化による吸光度への影響も確認できる。
また、実測スペクトルデータDmsと基準吸収スペクトルDssとの差異を比較することにより、例えば、分析装置100を測定対象ガスGsと同種類のガスにより校正する必要があるか否かの判断も行える。例えば、当該差異が大きい場合には、測定対象ガスGsと同種類のガスにて校正する必要があると判断できる。
実測スペクトルデータDmsと基準吸収スペクトルデータDssとを比較した結果、図6に示すように、実測スペクトルデータDmsにおける各ピーク位置及び/又は形状が、基準吸収スペクトルデータDssの対応する各吸収ピーク位置及び/又は形状と一致しないことは、現在の波長変化関数及び/又は後述する強度変化関数が、光源3のエージングなどにより、記憶部78に現在記憶されている波長変化関数F1及び/又は強度変化関数F2と一致しなくなったことを意味する。
従って、実測スペクトルデータDmsと基準吸収スペクトルデータDssとのずれが大きいと判断された場合には、補正部77は、基準吸収スペクトルデータDssと実測スペクトルデータDmsとが一致するよう、波長変化関数F1及び/又は強度変化関数F2を補正してもよい(ステップS8)。その後、後述する測定対象ガスGsの分析を実行してもよい(ステップS9〜S12)。
具体的には、補正部77は、前処理データDm’における時刻ta’、tb’、td’、tf’と、当該各時刻において取りうるべき波長λa’、λb’、λd’、λf’(基準吸収スペクトルデータDssにおいて対応する吸収ピークが見られる波長)と、を関連付けた二次元座標値(ta’,λa’)、(tb’,λb’)、(td’,λd’)、(tf’,λf’)を用いて、データフィッティングなどにより、新たな波長変化関数F1’を算出して記憶部78に記憶する。この結果、図7に示すように、二点鎖線にて示される補正前の波長変化関数F1が、実線にて示す新たな波長変化関数F1’へと補正される。
上記のようにして補正された波長変化関数F1’を用いて前処理データDm’の各時刻における波長を算出し直して、当該新たに算出した波長と当該波長における相対強度とを関連付けた新たな実測スペクトルデータDms’を生成すると、図8に示すように、実測スペクトルデータDms’の各ピーク位置が、基準吸収スペクトルデータDssの対応する吸収ピーク位置と一致するようになる。すなわち、補正後の波長変化関数F1’は、実測スペクトルデータDms’の相対強度の各ピーク位置を、基準吸収スペクトルデータDssの対応する吸収ピーク位置と一致させる関数である。
次に、補正部77は、図8に示されている、実測スペクトルデータDmsの各ピークにおける相対強度と、基準吸収スペクトルデータDssにおいて対応する吸収ピークの吸光度とのずれ(当該ずれは、一般的には、わずかである)を、必要に応じて補正する。ここで、基準吸収スペクトルデータDssの各波長λa’、λb’、λd’、λf’における吸光度は、それぞれ、Ba、Bb、Bd、Bfであるとする。
補正部77は、上記の時刻ta’、tb’、td’、tf’(波長λa’、λb’、λd’、λf’に対応)と、当該各時刻において取りうるべき無吸光強度Ima’、Imb’、Imd’、Imf’と、を関連付けた座標値(ta’,Ima’)、(tb’,Imb’)、(td’,Imd’)、(tf’,Imf’)を用いて、データフィッティングなどにより、新たな強度変化関数F2’を算出して記憶部78に記憶する。
上記の無吸光強度Ima’、Imb’、Imd’、Imf’は、例えば、各波長λa’、λb’、λd’、λf’(時刻ta’、tb’、td’、tf’)における相対強度A*Log(Ima’/Ida’)、A*Log(Imb’/Ida’)、A*Log(Imd’/Idd’)、A*Log(Imf’/Idf’)が、それぞれ、吸光度Ba、Bb、Bd、Bfと等しくなるとの方程式を、Ima’、Imb’、Imd’、Imf’について解くことにより算出できる。なお、Ida’、Idb’、Idd’、Idf’は、それぞれ、実測データDmの時刻ta’、tb’、td’、tf’における検出光強度である。
上記のようにして、補正部77は、例えば、図9に示すように、二点鎖線にて示される補正前の強度変化関数F2を、実線にて示した補正後の強度変化関数F2’へと補正できる。
また、補正後の波長変化関数F1’を用いて波長について補正された実測スペクトルデータDms’を、さらに補正後の強度変化関数F2’を用いて相対強度について補正(例えば、補正後の強度変化関数F2’を用いて算出した無吸光強度を用いて相対強度を算出する)して新たな実測スペクトルデータDms’’を生成すると、図10に示すように、当該新たな実測スペクトルデータDms’’は、基準吸収スペクトルデータDssと一致する。すなわち、補正後の強度変化関数F2’は、実測スペクトルデータDms’’の相対強度のピーク強度を、基準吸収スペクトルデータDssの対応する吸収ピークにおける吸光度と一致させるものである。
以上のように、2つのスペクトルデータの対応するピークにおける波長や強度(吸光度、相対強度)を用いて波長変化関数及び強度変化関数を補正することにより、少ない計算量にてこれらの関数を補正できる。また、メタンガス(炭化水素ガス)を基準ガスGcとして用いることにより、分析に用いる波長範囲内の広い範囲に多数(6個)現れる吸収ピークを用いて、波長変化関数及び強度変化関数を精度よく補正できる。なお、上記の波長変化関数及び強度変化関数の補正においては、4つのピークを用いた補正の例を示したが、6つの全てのピークを用いて補正を行ってもよい。
(3)分析装置における測定対象ガスの分析方法
以下、分析装置100における測定対象ガスGsの分析方法について簡単に説明する。
測定対象ガスGsの分析の実行が指令されると、充填空間制御部71が、第1リフレクタ5をプローブ管2の内部空間から取り出す(ステップS9)。この結果、測定光Lmは、プローブ管2の測定対象ガスGsが存在する領域を通過し、第2リフレクタ8にて反射され、受光部4にて受光される。また、パージガス導入部9から、パージエアPaがプローブ管2の内部空間に導入される。
次に、上記のステップS4と同様にして、測定対象ガスGsが存在する領域を通過して受光部4にて受光された測定光Lm(分析検出光)の強度を、分析実測データDaとして取得する(ステップS10)。例えば、図11に示すような、時刻TLのときに極小値IdLを有する分析実測データDaが得られたとする。
分析実測データDaを取得後、上記のステップS5と同様にして、スペクトル生成部75が、分析実測データDaから、分析検出光の強度を取得した時刻と当該時刻における分析検出光の相対強度とを関連付けた前処理分析データDa’を生成する。スペクトル生成部75は、前処理分析データDa’の各時刻における分析検出光の波長を、補正後の波長変化関数F1’を用いて算出し、当該算出した波長と、当該波長における相対強度とを関連付けて、分析用スペクトルデータDas’を生成する。
次に、スペクトル生成部75は、生成した分析用スペクトルデータDas’の相対強度を補正後の強度変化関数F2’を用いて補正して、新たな分析用スペクトルデータDasを生成する。例えば、分析検出光の無吸光強度を補正後の強度変化関数F2’を用いて算出し、当該無吸光強度と分析検出光の強度との比を用いて、補正された相対強度(すなわち、吸光度)を算出できる(ステップS11)。
以上の工程にて分析用スペクトルデータDasを生成することにより、例えば、図12に示すような、波長λLに相対強度のピークが見られる分析用スペクトルデータDasが得られる。このようにして得られた分析用スペクトルデータDasの相対強度のピーク位置及びピーク強度は、それぞれ、(同一濃度の)測定対象ガスGsの吸収スペクトルの吸収ピーク位置及び当該吸収ピークにおける吸光度と一致する。
従って、ユーザ又は制御部7は、例えば、上記のようにして得た分析用スペクトルデータDasと、予め実測されて記憶部78に記憶されている所定濃度の測定対象ガスGsの吸収スペクトルSpとを比較したり、予め実測された第1濃度の基準ガスGcの吸収スペクトル(基準吸収スペクトルデータDss)と比較したり、及び/又は、測定対象ガスGsの検量線を用いたりして、測定対象ガスGsの分析(濃度の算出など)を実行できる(ステップS12)。
また、本実施形態においては、測定対象ガスGsが基準ガスGcとして現場で準備することが困難なガスであったとしても、比較的扱いやすい基準ガスを用いて強度変化関数及び波長変化関数を補正して、上記のように取り扱いが困難な測定対象ガスGsの分析に用いる分析用スペクトルデータDasを正確に作成できる。
上記のように、強度変化関数及び波長変化関数は関数として定義されているので、基準ガスGcの吸収ピークが現れる波長範囲外における波長や相対強度も上記の強度変化関数及び波長変化関数により補正できる。その結果、当該波長範囲外に測定対象ガスGsの吸収ピークがある場合でも、正確な分析用スペクトルデータDasを算出できる。
また、図12に示されるように、分析用スペクトルデータDasのピーク位置(測定対象ガスGsの吸収スペクトルにおける吸収ピーク)が、基準吸収スペクトルデータDssにおいて吸収ピークが見られている波長範囲内にある場合には、当該波長範囲内に吸収ピークがみられる基準ガスGcを用いて波長変化関数及び強度変化関数を補正することにより、これらの波長変化関数及び強度変化関数を測定対象ガスGsの分析時に使用して、より正確な分析用スペクトルデータDasを算出できる。
なお、分析用スペクトルデータDasと測定対象ガスGsの吸収スペクトルとの差異が大きく適切な分析ができない場合(例えば、データフィッティングが成功しないなど)には、基準ガスGcを用いるか、又は、分析時に得られた分析用スペクトルデータDasと測定対象ガスGsの吸収スペクトルとを用いて、上記のステップS1〜S6と同様にして、さらなる波長変化関数及び強度変化関数の補正を実行してもよい。
(4)第2実施形態
(4−1)第2実施形態に係る分析装置の構成
上記の第1実施形態に係る分析装置100では、充填空間Scはプローブ管2の内部空間に形成されていた。充填空間Scは、測定光Lmが通過可能な経路に配置されればよいので、その配置位置はプローブ管2の内部空間に限られない。第2実施形態に係る分析装置200においては、図13に示すように、充填空間Scは、光源3が格納されている筐体C内部に配置される。
分析装置200は、充填空間Scが筐体C内に配置されることと、2つの受光部(第1受光部4a、第2受光部4b)とが備わることと、第1リフレクタ5が備わっていないこと以外は、第1実施形態に係る分析装置100と、基本的に同一の構成を有する。従って、分析装置200において、第1実施形態の分析装置100と同一の構成については、説明を省略する。
分析装置200は、筐体Cの内部に分波部11を備える。分波部11は、光源3から出力した測定光Lmを、プローブ管2の内部空間へ向かう第1光路Tm1と、後述する既知物質セル13へ向かう第2光路Tm2とに分波する、例えば、ビームスプリッタ又はカプラである。分析装置200は、ミラー12を備える。ミラー12は、第2光路Tm2に分波された測定光Lmを反射して、既知物質セル13及び第2受光部4bに向けて進行させる。
分析装置200は、既知物質セル13を備える。既知物質セル13は、例えば、基準ガスGcが予め決められた濃度にて充填された試料セルである。
分析装置200は、第1受光部4aを備える。第2受光部4bは、プローブ管2の内部空間を通過した測定光Lmを受光する。すなわち、第1受光部4aは、測定対象ガスGsにより吸光された測定光Lm(分析検出光)の強度を測定する。
分析装置200は、第2受光部4bを備える。第2受光部4bは、既知物質セル13内の充填空間Scを通過した測定光Lmを受光する。すなわち、第2受光部4bは、第1実施形態における実測データDmを生成するための検出光強度を測定する。
上記のように、測定対象ガスGsが存在する空間に向かう光路とは異なる光路上に充填空間Scを配置することにより、分析装置200は、測定対象ガスGsの分析と同時に光源3の特性変化をモニターできる。この結果、分析装置200では、例えば、分析装置200の強度変化関数及び波長変化関数の補正(または、校正)のタイミングを正確に把握できる。
その他、例えば、所定の周期毎に強度変化関数及び波長変化関数の補正(または、校正)を自動的に行うようにしてもよい。これにより、測定対象ガスGsをより精度よく分析できる。
(5)他の実施形態
以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。特に、本明細書に書かれた複数の実施形態及び変形例は必要に応じて任意に組み合せ可能である。
(A)分析装置の他の実施形態
上記の第1及び第2実施形態において、分析装置100、200はプローブ方式の分析装置であった。しかし、これに限られず、クロススタック方式の分析装置に対しても、上記にて説明した第1及び第2実施形態の技術は適用できる。
(B)波長変化関数及び強度変化関数についての他の実施形態
上記の第1及び第2実施形態において、波長変化関数及び強度変化関数は、時刻の関数として定義されていた。しかし、これに限られず、波長変化関数及び強度変化関数を、それぞれ、時刻と当該時刻における測定光Lmの波長及び強度とを関連付けた数値データとして定義してもよい。
数値データである波長変化関数の補正は、第1実施形態において説明した例をとって説明すると、例えば、基準吸収スペクトルデータDssにおいて各吸収ピークが見られる波長λa’、λb’、λd’、λf’(この波長は固定値)に、図6に示す前処理データDm’において対応する相対強度のピークが見られる時刻ta’、tb’、td’、tf’を関連付けることにより実行できる。
一方、強度変化関数の補正は、例えば、上記の時刻ta’、tb’、td’、tf’と、当該各時刻における上記のように算出された無吸光強度Ima’、Imb’、Imd’、Imf’とを関連付けることをより実行できる。
数値データである波長変化関数及び強度変化関数において具体的な数値で表されていない時刻における波長及び強度は、例えば、存在する数値データ間の線形補間により算出できる。
また、上記の第1及び第2実施形態においては、実測スペクトルデータDmsが基準吸収スペクトルデータDssと一致するように波長変化関数及び強度変化関数が補正されていた。しかし、その逆に、例えば、理論計算などにより生成した基準吸収スペクトルデータDssを、分析装置の影響等を含んだ実測スペクトルデータDmsと一致させるために、波長変化関数及び強度変化関数を用いてもよい。
(C)光源の特性の補正についての他の実施形態
上記の第1及び第2実施形態において、光源制御部72は、測定光制御信号sの信号値範囲を一定としていた。これに限られず、実測スペクトルデータDmsと基準吸収スペクトルデータDssとの差異が所定の値以上と非常に大きく、現在の信号値範囲では、測定対象ガスGsの分析に使用可能な分析用スペクトルデータDasが得られないと判断された場合には、光源制御部72は、測定光制御信号sの信号値範囲を現在の範囲から変更してもよい。
例えば、ランプ波形状の測定光制御信号sの信号値s1を現在の信号値より大きく又は小さくする、及び/又は、信号値snを現在の信号値より大きく又は小さくして、信号値範囲を調整できる。その他、ランプ波形状の測定光制御信号sの信号値を大きい側又は小さい側にシフトしたり、測定光制御信号sのランプ波の周期を長く又は短くしたり、ランプ波の傾きを大きく又は小さくしたりしてもよい
上記のように測定光制御信号sの信号値範囲を変更した場合には、補正部77は、記憶部78に記憶されている波長変化関数F1及び強度変化関数F2を補正する。
これにより、光源3のエージングによる効果が顕著になっても、測定対象ガスGsの分析時などに、分析に使用可能な分析用スペクトルデータDasを取得できる。
本発明は、ガスの光吸収により当該ガスの分析を行う分析装置、及び、当該分析装置における分析方法に広く適用できる。
100、200分析装置
1 煙道
1a 壁
2 プローブ管
3 光源
4 受光部
4a 第1受光部
4b 第2受光部
5 第1リフレクタ
6 基準ガス導入部
7 制御部
8 第2リフレクタ
9 パージガス導入部
11 分波部
12 ミラー
13 既知物質セル
21 導入孔
71 充填空間制御部
72 光源制御部
73 検出光取得部
74 実測データ取得部
75 スペクトル生成部
76 スペクトル比較部
77 補正部
78 記憶部
C 筐体
Da 分析実測データ
Da’ 前処理分析データ
Das 分析用スペクトルデータ
Dm 実測データ
Dm’ 前処理データ
Dms、Dms’、Dms’’実測スペクトルデータ
Dss 基準吸収スペクトルデータ
F1、F1’ 波長変化関数
F2、F2’ 強度変化関数
Gc 基準ガス
Ge 排ガス
Gs 測定対象ガス
Lm 測定光
Pa パージエア
Pc 基準ガス導入管
Sc 基準ガス充填空間、充填空間
Tm1 第1光路
Tm2 第2光路
W、W1 光学窓
f フランジ

Claims (10)

  1. 光源から出力される測定光を用いて測定対象ガスを分析する分析装置であって、
    前記測定光の光路上に形成され、前記測定対象ガスとは異なる基準ガスが予め決められた第1濃度にて充填される基準ガス充填空間と、
    前記基準ガス充填空間を通過した前記測定光である検出光の波長と、前記検出光の相対強度と、を関連付けた実測スペクトルデータを生成するスペクトル生成部と、
    前記第1濃度の前記基準ガスの吸収スペクトルを直接吸収法により予め実測した基準吸収スペクトルデータと、前記実測スペクトルデータとの差異を算出するスペクトル比較部と、
    を備える分析装置。
  2. 前記スペクトル生成部は、前記基準ガスにより吸光されない場合の前記測定光の強度と前記検出光の強度との関係に基づいて、前記検出光の相対強度を算出する、請求項1に記載の分析装置。
  3. 前記スペクトル生成部は、前記測定対象ガスが存在する領域を通過した前記測定光である分析検出光の波長と当該分析検出光の相対強度とを関連付けたデータであって、前記測定対象ガスの分析に用いられる分析用スペクトルデータを生成し、
    前記分析検出光の相対強度は、前記実測スペクトルデータの前記検出光の相対強度のピーク強度を前記基準吸収スペクトルデータの対応する吸収ピークにおける吸光度に一致させる強度変化関数を用いて補正される、請求項1又は2に記載の分析装置。
  4. 前記スペクトル生成部は、前記測定対象ガスが存在する領域を通過した前記測定光である分析検出光の波長と当該分析検出光の相対強度とを関連付けたデータであって、前記測定対象ガスの分析に用いられる分析用スペクトルデータを生成し、
    前記分析用スペクトルデータの前記分析検出光の波長は、前記実測スペクトルデータの前記検出光の相対強度のピーク位置を前記基準吸収スペクトルデータの対応する吸収ピーク位置に一致させる波長変化関数を用いて算出される、
    請求項1〜3のいずれかに記載の分析装置。
  5. 前記測定光の強度及び/又は波長を制御する測定光制御信号を、所定の信号値範囲にて時間的に変化させながら前記光源に出力する光源制御部と、
    前記検出光の強度を測定し、当該検出光の強度と当該検出光の強度を測定したときの前記測定光制御信号とを関連付けて実測データを生成する実測データ取得部と、
    をさらに備え、
    前記スペクトル生成部は、前記実測データから前記実測スペクトルデータを生成する、
    請求項1〜4のいずれかに記載の分析装置。
  6. 前記基準吸収スペクトルデータと前記実測スペクトルデータとの差異が所定の値以上となったら、前記光源制御部は、前記測定光制御信号の前記信号値範囲を現在の信号値範囲から変更する、請求項5に記載の分析装置。
  7. 前記基準ガス充填空間に前記基準ガスを導入する基準ガス導入部をさらに備える、請求項1〜6のいずれかに記載の分析装置。
  8. 前記測定対象ガスは、水分、塩化水素、フッ化水素、アンモニア、テトラメチルインジウム、又は、トリメチルガリウムのいずれかである、請求項1〜7のいずれかに記載の分析装置。
  9. 前記基準ガスは炭化水素ガスである、請求項1〜8のいずれかに記載の分析装置。
  10. 光源から出力される測定光を用いて測定対象ガスを分析する分析方法であって、
    前記測定対象ガスとは異なる基準ガスを予め決められた第1濃度にて充填した基準ガス充填空間を測定光の光路上に形成するステップと、
    前記基準ガス充填空間を通過した前記測定光である検出光の波長と、前記検出光の相対強度と、を関連付けた実測スペクトルデータを生成するステップと、
    前記第1濃度の前記基準ガスの吸収スペクトルを直接吸収法により予め実測した基準吸収スペクトルデータと、前記実測スペクトルデータとの差異を算出するステップと、
    を含む分析方法。
JP2016007053A 2016-01-18 2016-01-18 分析装置、及び、分析方法 Pending JP2017129374A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016007053A JP2017129374A (ja) 2016-01-18 2016-01-18 分析装置、及び、分析方法
US15/406,932 US20170205336A1 (en) 2016-01-18 2017-01-16 Analyzing apparatus and analyzing method
EP17151761.8A EP3193160A1 (en) 2016-01-18 2017-01-17 Gas absorption analyzing apparatus and gas absorption analyzing method
CN201710030908.0A CN107014760A (zh) 2016-01-18 2017-01-17 分析装置和分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016007053A JP2017129374A (ja) 2016-01-18 2016-01-18 分析装置、及び、分析方法

Publications (1)

Publication Number Publication Date
JP2017129374A true JP2017129374A (ja) 2017-07-27

Family

ID=57838222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016007053A Pending JP2017129374A (ja) 2016-01-18 2016-01-18 分析装置、及び、分析方法

Country Status (4)

Country Link
US (1) US20170205336A1 (ja)
EP (1) EP3193160A1 (ja)
JP (1) JP2017129374A (ja)
CN (1) CN107014760A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058971A1 (ja) * 2017-09-19 2019-03-28 横河電機株式会社 検査方法及び検査システム
JP2019144021A (ja) * 2018-02-16 2019-08-29 横河電機株式会社 分光分析装置
JP2019184522A (ja) * 2018-04-16 2019-10-24 横河電機株式会社 ガス分析装置
JPWO2021182279A1 (ja) * 2020-03-13 2021-09-16
JP2023511168A (ja) * 2020-01-20 2023-03-16 ケイリックス インコーポレイテッド 気体と浮遊物質を検出するための光学検出器
WO2024135369A1 (ja) * 2022-12-22 2024-06-27 株式会社堀場製作所 分光分析装置、分光分析方法、分光分析プログラム、学習装置、学習方法、及び、学習プログラム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105556282A (zh) * 2013-09-24 2016-05-04 通用电气健康护理生物科学股份公司 光学吸收监测系统
JP6967387B2 (ja) * 2017-07-14 2021-11-17 株式会社堀場製作所 ガス分析装置、ガス分析装置用プログラム、及びガス分析方法
FR3077640B1 (fr) * 2018-02-05 2023-06-30 Elichens Procede d'analyse d'un gaz par une double illumination
US10788420B2 (en) * 2018-04-25 2020-09-29 Yokogawa Electric Corporation Gas analyzer
CN109009091B (zh) * 2018-05-15 2021-02-19 杭州电子科技大学 基于EEMD与DSS-ApEn的脑电信号消噪方法
CN108801927B (zh) * 2018-06-12 2021-11-09 哈尔滨工业大学 一种利用光致超声法检测乙炔气体浓度的装置及方法
EP3674690B1 (en) * 2018-12-26 2023-10-18 HORIBA, Ltd. Analysis device, program for an analysis device and analysis method
JP7357938B2 (ja) * 2019-01-31 2023-10-10 株式会社フジキン 濃度測定装置
CN112986180B (zh) * 2021-02-06 2021-12-24 复旦大学 一种光谱式气体传感数据处理方法及系统
CN113640225B (zh) * 2021-08-23 2024-04-19 广西埃索凯新材料科技有限公司 一种应用于硫酸锰生产的硫酸浓度监测系统
CN113670832B (zh) * 2021-08-24 2023-08-29 中煤科工集团重庆研究院有限公司 一种参考气室气体吸收峰轮廓中心检索方法
CN115639168B (zh) * 2022-12-21 2023-04-07 杭州泽天春来科技有限公司 气体分析仪的气体检测方法、系统及介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8460134B2 (en) * 2006-12-19 2013-06-11 Easton Technical Products, Inc. Arrow point alignment system
US9651488B2 (en) * 2010-10-14 2017-05-16 Thermo Fisher Scientific (Bremen) Gmbh High-accuracy mid-IR laser-based gas sensor
JP6416453B2 (ja) * 2011-08-12 2018-10-31 株式会社堀場製作所 ガス分析装置
JP6116117B2 (ja) * 2011-12-22 2017-04-19 株式会社堀場製作所 水分濃度測定装置の校正方法及び校正装置
US8976358B2 (en) * 2012-03-23 2015-03-10 Spectrasensors, Inc. Collisional broadening compensation using real or near-real time validation in spectroscopic analyzers
JP5947709B2 (ja) * 2012-12-27 2016-07-06 株式会社堀場製作所 分光分析方法及び分光分析装置
WO2016125338A1 (ja) * 2015-02-06 2016-08-11 株式会社 東芝 ガス分析方法およびガス分析装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019058971A1 (ja) * 2017-09-19 2019-03-28 横河電機株式会社 検査方法及び検査システム
JP2019056560A (ja) * 2017-09-19 2019-04-11 横河電機株式会社 検査方法及び検査システム
JP2019144021A (ja) * 2018-02-16 2019-08-29 横河電機株式会社 分光分析装置
JP7077651B2 (ja) 2018-02-16 2022-05-31 横河電機株式会社 分光分析装置
JP2019184522A (ja) * 2018-04-16 2019-10-24 横河電機株式会社 ガス分析装置
US10908082B2 (en) 2018-04-16 2021-02-02 Yokogawa Electric Corporation Gas analyzer
JP2023511168A (ja) * 2020-01-20 2023-03-16 ケイリックス インコーポレイテッド 気体と浮遊物質を検出するための光学検出器
JP7364293B2 (ja) 2020-01-20 2023-10-18 ケイリックス インコーポレイテッド 気体と浮遊物質を検出するための光学検出器
JPWO2021182279A1 (ja) * 2020-03-13 2021-09-16
JP7228209B2 (ja) 2020-03-13 2023-02-24 国立大学法人徳島大学 濃度測定方法
WO2024135369A1 (ja) * 2022-12-22 2024-06-27 株式会社堀場製作所 分光分析装置、分光分析方法、分光分析プログラム、学習装置、学習方法、及び、学習プログラム

Also Published As

Publication number Publication date
CN107014760A (zh) 2017-08-04
US20170205336A1 (en) 2017-07-20
EP3193160A1 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
JP2017129374A (ja) 分析装置、及び、分析方法
EP3218695B1 (en) Target analyte detection and quantification in sample gases with complex background compositions
US7586094B2 (en) Background compensation by multiple-peak measurements for absorption spectroscopy-based gas sensing
US9618391B2 (en) Collisional broadening compensation using real or near-real time validation in spectroscopic analyzers
CN102027344B (zh) 红外分光计
US5331409A (en) Tunable diode laser gas analyzer
CN104903704B (zh) 进行水汽测定的可调谐二极管激光吸收光谱
CN105277503A (zh) 基于两种量子级联激光光谱的多组分气体同时检测装置及方法
CN101441173B (zh) 激光吸收光谱痕量气体分析方法及采用该方法的装置
CN201163269Y (zh) 激光吸收光谱痕量气体分析装置
CN104280362A (zh) 一种高温水汽激光光谱在线检测系统
CN210347454U (zh) 气体浓度分析仪
KR101923003B1 (ko) 가스 성분의 농도를 결정하기 위한 방법 및 이를 위한 분광계
US20150276587A1 (en) Method and apparatus for two point calibration of a tunable diode laser analyzer
CN110057779B (zh) 基于温度自动补偿tdlas技术测量气体浓度的方法与装置
CN103592253A (zh) 一种对测量气体浓度进行精确温度补偿的激光气体分析仪
US11754539B2 (en) System and computer-implemented method for extrapolating calibration spectra
US20130341502A1 (en) Method and apparatus for two point calibration of a tunable diode laser analyzer
JP7014701B2 (ja) 光学分析装置、並びに光学分析装置に用いられる機械学習装置及びその方法
EP2944944B1 (en) Gas detector and method of detection
JP6269438B2 (ja) レーザ式分析装置
CN115684081B (zh) 激光气体分析系统
CN103115878B (zh) 纠正光谱漂移的方法及应用
US20240219298A1 (en) Quantification of target analyte based on multi-layer multi-variant spectra analysis for spectroscopic analyzers
WO2013191728A1 (en) Method and apparatus for two point calibration of a tunable diode laser analyzer