WO2021182260A1 - アーク検出装置、パワーコンディショナ、屋内配線システム、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱 - Google Patents

アーク検出装置、パワーコンディショナ、屋内配線システム、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱 Download PDF

Info

Publication number
WO2021182260A1
WO2021182260A1 PCT/JP2021/008293 JP2021008293W WO2021182260A1 WO 2021182260 A1 WO2021182260 A1 WO 2021182260A1 JP 2021008293 W JP2021008293 W JP 2021008293W WO 2021182260 A1 WO2021182260 A1 WO 2021182260A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
wiring
arc
magnetic core
power supply
Prior art date
Application number
PCT/JP2021/008293
Other languages
English (en)
French (fr)
Inventor
大島 和哉
達雄 古賀
圭太 金森
和憲 木寺
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US17/802,632 priority Critical patent/US12088080B2/en
Priority to JP2022505983A priority patent/JP7357228B2/ja
Priority to CN202180015666.2A priority patent/CN115151830A/zh
Priority to EP21767090.0A priority patent/EP4120494A4/en
Publication of WO2021182260A1 publication Critical patent/WO2021182260A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/0015Using arc detectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to an arc detection device, a power conditioner, an indoor wiring system, a breaker, a solar panel, a module attached to the solar panel, and a junction box.
  • an object of the present invention is to provide an arc detection device or the like capable of accurately detecting an arc.
  • One aspect of the arc detection device has a magnetic core through which the first path and the second path connecting the DC power supply and the device pass through, and the first path corresponds to the magnetic field generated in the magnetic core.
  • a current detection unit that detects a current flowing through the second path, and a low-impedance circuit having a lower impedance than that of the DC power supply and the device, which are connected to the first path and the second path and are connected to the first path.
  • the direction of the direct current flowing through the first path and the direction of the direct current flowing through the second path are opposite to each other.
  • One aspect of the power conditioner according to the present invention includes the above arc detection device and a converter that converts the output power of the DC power supply.
  • One aspect of the indoor wiring system according to the present invention includes the arc detection device, the first path, the second path, and the device installed indoors.
  • One aspect of the breaker according to the present invention is provided with the above-mentioned arc detection device, and when it is determined that an arc has been generated, the current flowing through the first path and the second path is cut off.
  • One aspect of the solar panel according to the present invention is provided with the above-mentioned arc detection device and generates electricity by sunlight.
  • One aspect of the module attached to the solar panel according to the present invention is provided with the above-mentioned arc detection device and converts the signal output from the solar panel.
  • junction box is provided with the above-mentioned arc detection device, and connects the solar panel and the power conditioner.
  • the arc can be detected accurately.
  • FIG. 1A is a configuration diagram showing an example of an arc detection device according to the first embodiment.
  • FIG. 1B is a diagram showing an example of a current flowing through the wiring when an arc is generated in the arc detection device according to the first embodiment.
  • FIG. 1C is a diagram showing an example of a current flowing through the wiring when an arc is generated in the arc detection device according to the first embodiment.
  • FIG. 2A is a configuration diagram showing an example of an arc detection device according to the first modification of the first embodiment.
  • FIG. 2B is a diagram showing an example of a current flowing through the wiring when an arc is generated in the arc detection device according to the first modification of the first embodiment.
  • FIG. 2C is a diagram showing an example of a current flowing through the wiring when an arc is generated in the arc detection device according to the first modification of the first embodiment.
  • FIG. 3A is a configuration diagram showing an example of an arc detection device according to the second modification of the first embodiment.
  • FIG. 3B is a diagram showing an example of a current flowing through the wiring when an arc is generated in the arc detection device according to the second modification of the first embodiment.
  • FIG. 3C is a diagram showing an example of a current flowing through the wiring when an arc is generated in the arc detection device according to the second modification of the first embodiment.
  • FIG. 4A is a configuration diagram showing an example of an arc detection device according to the third modification of the first embodiment.
  • FIG. 4B is a diagram showing an example of a current flowing through the wiring when an arc is generated in the arc detection device according to the third modification of the first embodiment.
  • FIG. 4C is a diagram showing an example of a current flowing through the wiring when an arc is generated in the arc detection device according to the third modification of the first embodiment.
  • FIG. 5A is a configuration diagram showing an example of an arc detection device according to a modification 4 of the first embodiment.
  • FIG. 5B is a diagram showing an example of a current flowing through the wiring when an arc is generated in the arc detection device according to the fourth modification of the first embodiment.
  • FIG. 5C is a diagram showing an example of a current flowing through the wiring when an arc is generated in the arc detection device according to the fourth modification of the first embodiment.
  • FIG. 6A is a configuration diagram showing an example of the photovoltaic power generation system according to the second embodiment.
  • FIG. 6B is a configuration diagram showing an example of a photovoltaic power generation system according to a modified example of the second embodiment.
  • FIG. 7A is a configuration diagram showing an example of the photovoltaic power generation system according to the third embodiment.
  • FIG. 7B is a configuration diagram showing an example of a photovoltaic power generation system according to a modified example of the third embodiment.
  • FIG. 8A is a configuration diagram showing an example of the photovoltaic power generation system according to the fourth embodiment.
  • FIG. 8B is a configuration diagram showing an example of a photovoltaic power generation system according to a modified example of the fourth embodiment.
  • FIG. 8A is a configuration diagram showing an example of the photovoltaic power generation system according to the fourth embodiment.
  • FIG. 9A is a configuration diagram showing an example of the photovoltaic power generation system according to the fifth embodiment.
  • FIG. 9B is a configuration diagram showing an example of a photovoltaic power generation system according to a modified example of the fifth embodiment.
  • FIG. 10 is a configuration diagram showing an example of the indoor wiring system according to the sixth embodiment.
  • FIG. 11 is a diagram for explaining an application example of the arc detection device according to the present invention.
  • FIG. 1A is a configuration diagram showing an example of the arc detection device 10a according to the first embodiment. Note that FIG. 1A also shows a DC power supply 40 and a device 50.
  • the DC power supply 40 is a power supply that generates DC power.
  • the DC power generated by the DC power supply 40 is supplied to the device 50.
  • the DC power supply 40 has a positive electrode and a negative electrode, wiring 41a is connected to the positive electrode, wiring 42a is connected to the negative electrode, and DC power is supplied to the device 50 via the wirings 41a and 42a.
  • the device 50 is a device in which DC power is supplied from the DC power supply 40 via the wirings 41a and 42a.
  • the type of device 50 is not particularly limited.
  • the device 50 may be a converter such as a DC / DC converter, or may be a device such as a lighting fixture, a speaker, or a microphone installed indoors.
  • Wiring 41a and 42a connect the DC power supply 40 and the device 50.
  • the wiring 41a is an example of the first wiring connected to one of the positive electrode and the negative electrode of the DC power supply 40.
  • the wiring 41a is connected to the positive electrode as one of the positive electrode and the negative electrode of the DC power supply 40.
  • the wiring 42a is an example of the second wiring connected to the other of the positive electrode and the negative electrode of the DC power supply 40.
  • the wiring 42a is connected to the negative electrode as the other of the positive electrode and the negative electrode of the DC power supply 40.
  • the wirings 41a and 42a penetrate the magnetic core 21 described later, and the portion (path) penetrating the magnetic core 21 in the wiring 41a is defined as the path 51a, and the portion (path) penetrating the magnetic core 21 in the wiring 42a (the wiring 42a). Route) is defined as route 52a. Since the path 51a is a path in the wiring 41a connecting the DC power supply 40 and the device 50, it can be said that the path 51a also connects the DC power supply 40 and the device 50.
  • the path 51a is an example of a first path connecting the DC power supply 40 and the device 50.
  • the path 52a is a path in the wiring 42a connecting the DC power supply 40 and the device 50, it can be said that the path 52a also connects the DC power supply 40 and the device 50.
  • the path 52a is an example of a second path connecting the DC power supply 40 and the device 50.
  • the direction of the direct current flowing through the path 51a and the direction of the direct current flowing through the path 52a are opposite. Since the path 51a is the path in the wiring 41a connected to the positive electrode of the DC power supply 40 and the path 52a is the path in the wiring 42a connected to the negative electrode of the DC power supply 40, the direction of the DC current flowing through the path 51a It can be seen that the direction of the direct current flowing through the path 52a is opposite to that of the direct current. In FIG. 1A, the direction of the direct current flowing through the path 51a and the direction of the direct current flowing through the path 52a are indicated by arrows near the magnetic core 21.
  • the arc detection device 10a is a device for detecting an arc, and includes a low impedance circuit 11a, a current detection unit 20a, and an arc determination unit 30.
  • the current detection unit 20a has a magnetic core 21 through which the paths 51a and 52a pass, and detects a current flowing through the paths 51a and 52a according to a magnetic field generated in the magnetic core 21.
  • the magnetic core 21 has an annular shape (here, an annular shape) through which wiring can penetrate, and a magnetic field corresponding to the current is generated in the core by the current flowing through the wiring penetrating its own hole.
  • the magnetic core 21 is not limited to an annular shape, but may have a rectangular annular shape or the like.
  • the current detection unit 20a includes, for example, a Hall element (not shown) that detects a magnetic field generated in the magnetic core 21 and generates a voltage corresponding to the magnetic field generated in the magnetic core 21.
  • the voltage generated by the Hall element is input to the arc determination unit 30 as a signal indicating a magnetic field generated in the magnetic core 21, that is, a current flowing through a path passing through the magnetic core 21.
  • the low impedance circuit 11a is a circuit having a lower impedance than the DC power supply 40 and the device 50.
  • the low impedance circuit 11a is a circuit connected to the paths 51a and 52a to bypass the high frequency component to one of the paths 51a and 52a.
  • the low impedance circuit 11a is, for example, a capacitor, and has a lower impedance than the capacitance component of the DC power supply 40 and the capacitance component of the device 50. Since the capacitor has a function of blocking the DC component, only the high frequency component can be extracted from the signals flowing through the wirings 41a and 42a. The capacitance value of the capacitor is appropriately determined according to the frequency of the high frequency component to be extracted and the like. Since the low impedance circuit 11a has a lower impedance than the DC power supply 40 and the device 50, high frequency components tend to flow toward the low impedance circuit 11a in the wirings 41a and 42a.
  • the low impedance circuit 11a includes a connection point N1a on the wiring 41a between one of the positive electrode and the negative electrode (here, the positive electrode) of the DC power supply 40 and the magnetic core 21, the magnetic core 21 and the device 50. It is provided in the bypass path 43a connecting the connection point N2a on the wiring 42a with the wiring 42a.
  • the arc determination unit 30 is realized by, for example, a microcomputer (microcontroller).
  • the microcomputer is a ROM, a RAM in which a program is stored, a processor (CPU: Central Processing Unit) that executes a program, a timer, an A / D converter, a semiconductor integrated circuit having a D / A converter, and the like.
  • the arc determination unit 30 may be realized by hardware by a dedicated electronic circuit composed of an A / D converter, a logic circuit, a gate array, a D / A converter, and the like.
  • the arc determination unit 30 determines the generation of an arc based on the current detected by the current detection unit 20a. For example, the arc determination unit 30 determines the generation of an arc in the wiring 41a or 42a by frequency-analyzing the current detected by the current detection unit 20a.
  • the current on which the high frequency component generated by the generation of the arc is superimposed contains the frequency component caused by the arc, and the generation of the arc can be determined by detecting the frequency component.
  • the magnetic core 21 so that only one of the wirings 41a and 42a (for example, only the wiring 41a) penetrates, but in that case, a large DC current from the DC power supply 40 is applied to the wiring 41a. It is flowing and magnetic saturation can occur in the magnetic core 21. Therefore, when an arc is generated in the wiring 41a, the high frequency component due to the arc superimposed on the DC current flowing through the wiring 41a may not be accurately detected due to magnetic saturation due to the direct current.
  • the magnetic core 21 is simply provided so that both the wirings 41a and 42a penetrate, the direction of the current flowing through the wiring 41a and the direction of the current flowing through the wiring 42a are opposite, so that the wiring 41a flows. It is possible to cancel the magnetic field due to the DC current and the magnetic field due to the DC current flowing through the wiring 42a and prevent magnetic saturation, but the magnetic field due to the high frequency component based on the generation of the arc is also canceled in the same manner, and it is difficult to detect the generation of the arc.
  • the arc detection device 10 is used between the connection point N1a on the wiring 41a between one of the positive electrode and the negative electrode (here, the positive electrode) of the DC power supply 40 and the magnetic core 21, and between the magnetic core 21 and the device 50.
  • the low impedance circuit 11a provided in the bypass path 43a connecting the connection point N2a on the wiring 42a in the above is provided.
  • the low impedance circuit 11a (for example, a capacitor) is an element that cuts off a direct current and allows an alternating current (high frequency component) to pass through, and causes a high frequency component included in the current flowing through the wiring 41a or 42a to flow to the bypass path 43a.
  • the principle that the arc detection device 10a can accurately detect an arc by providing such a low impedance circuit 11a will be described with reference to FIGS. 1B and 1C.
  • FIGS. 1B and 1C are diagrams showing an example of a current flowing through the wiring when an arc is generated in the arc detection device 10a according to the first embodiment.
  • FIG. 1B it is assumed that an arc is generated between the positive electrode of the DC power supply 40 and the connection point N1a in the wiring 41a.
  • FIG. 1C it is assumed that an arc is generated between the device 50 and the magnetic core 21 in the wiring 42a.
  • FIGS. 1B and 1C the flow of high-frequency components generated by the generation of an arc is shown by a thick broken line.
  • the magnetic field due to the direct current flowing through the path 51a and the magnetic field due to the direct current flowing through the path 52a generated in the magnetic core 21 are canceled out and magnetic saturation can be prevented. Further, these DC currents do not flow to the bypass path 43a by the low impedance circuit 11a (capacitor) that cuts off the DC currents.
  • the high frequency component due to the arc flows to the bypass path 43a at the connection point N1a. This is because the high frequency component tends to flow through the bypass path 43a provided with the low impedance circuit 11a, instead of the path 51a connecting the connection point N1a and the device 50. Then, the high frequency component flows through the path 52a connecting the connection point N2a and the DC power supply 40. In this way, the bypass path 43a becomes a path that bypasses the path 51a, and the high-frequency component flows through the path 52a in the magnetic core 21 but does not flow through the path 51a.
  • the magnetic field corresponding to the direct current flowing through the path 51a and the magnetic field corresponding to the direct current flowing through the path 52a are canceled out, and a magnetic field corresponding to the high frequency component flowing through the path 52a is generated.
  • the magnetic field is output to the arc determination unit 30 as a voltage signal by, for example, a Hall element, and the arc determination unit 30 can determine from the voltage signal that an arc has been generated.
  • the high frequency component due to the arc flows through the path 51a at the magnetic core 21 and flows to the bypass path 43a at the connection point N1a. This is because the high frequency component tends to flow through the bypass path 43a provided with the low impedance circuit 11a, not the path connecting the connection point N1a and the DC power supply 40. Then, the high frequency component flows through the path connecting the connection point N2a and the device 50. In this way, the bypass path 43a becomes a path that bypasses the path 52a, and the high-frequency component flows through the path 51a in the magnetic core 21 but does not flow through the path 52a.
  • the magnetic field corresponding to the direct current flowing through the path 51a and the magnetic field corresponding to the direct current flowing through the path 52a are canceled out, and a magnetic field corresponding to the high frequency component flowing through the path 51a is generated.
  • the magnetic field is output to the arc determination unit 30 as a voltage signal by, for example, a Hall element, and the arc determination unit 30 can determine from the voltage signal that an arc has been generated.
  • the arc detection device 10a is a magnetic core through which the first path (for example, path 51a) and the second path (for example, path 52a) connecting the DC power supply 40 and the device 50 penetrate.
  • a current detection unit 20a having 21 and detecting currents flowing in the first path and the second path according to a magnetic field generated in the magnetic core 21, and a low impedance circuit 11a having a lower impedance than the DC power supply 40 and the device 50. Therefore, it was detected by the low impedance circuit 11a connected to the first path and the second path and bypassing the high frequency component to one of the first path and the second path, and the current detection unit 20a.
  • An arc determination unit 30 that determines the generation of an arc based on the current is provided, and in the magnetic core 21, the direction of the direct current flowing through the first path and the direction of the direct current flowing through the second path are opposite to each other. ..
  • both the first path and the second path through which the direct currents flow in opposite directions pass through the magnetic core 21, the magnetic field due to the direct current flowing through the first path generated in the magnetic core 21 and the first path. Magnetic saturation can be prevented by canceling out the magnetic field caused by the direct current flowing through the two paths.
  • the low impedance circuit 11a is provided so as to bypass the high frequency component due to the arc to either the first path or the second path, the high frequency component due to the arc can be prevented from being offset. can. Therefore, the arc can be detected accurately.
  • the DC power supply 40 includes a first wiring (for example, wiring 41a) connected to one of the positive and negative electrodes of the DC power supply 40, and a second wiring connected to the other of the positive and negative electrodes of the DC power supply. Power is supplied to the device 50 via (for example, wiring 42a), the first path may be the path in the first wiring, and the second path may be the path in the second wiring.
  • first wiring for example, wiring 41a
  • second wiring connected to the other of the positive and negative electrodes of the DC power supply.
  • Power is supplied to the device 50 via (for example, wiring 42a)
  • the first path may be the path in the first wiring
  • the second path may be the path in the second wiring.
  • the direction of the direct current flowing in the first path in the first wiring and the direct current flowing in the second path in the second wiring can be reversed.
  • the low impedance circuit 11a includes a connection point (for example, a connection point N1a) on the first wiring between one of the positive electrode and the negative electrode of the DC power supply 40 and the magnetic core 21, and the magnetic core 21 and the device 50. It may be provided in the bypass path 43a connecting the connection point (for example, the connection point N2a) on the second wiring between them.
  • connection point on the DC power supply 40 side of the magnetic core 21 in the first wiring and the connection point on the device 50 side of the magnetic core 21 in the second wiring are bypassed via the low impedance circuit 11a via the bypass path 43a.
  • the high frequency component to one of the first path and the second path can be bypassed.
  • the low impedance circuit 11a has a connection point N1a on the wiring 41a between the positive electrode of the DC power supply 40 and the magnetic core 21 and a connection point on the wiring 42a between the magnetic core 21 and the device 50.
  • An example provided in the bypass path 43a connecting N2a has been described, but the present invention is not limited to this.
  • the low impedance circuit has a connection point on the first wiring between the negative electrode of the DC power supply 40 and the magnetic core 21, and a second wiring between the magnetic core 21 and the device 50.
  • An example provided in the bypass path connecting the above connection points will be described.
  • FIG. 2A is a configuration diagram showing an example of the arc detection device 10b according to the first modification of the first embodiment. Note that FIG. 2A also shows the DC power supply 40 and the device 50.
  • the DC power supply 40 has a positive electrode and a negative electrode, wiring 41b is connected to the positive electrode, wiring 42b is connected to the negative electrode, and DC power is supplied to the device 50 via the wirings 41b and 42b.
  • the device 50 is a device in which DC power is supplied from the DC power supply 40 via the wirings 41b and 42b.
  • Wiring 41b and 42b connect the DC power supply 40 and the device 50.
  • the wiring 42b is an example of the first wiring connected to one of the positive electrode and the negative electrode of the DC power supply 40.
  • the wiring 42b is connected to the negative electrode as one of the positive electrode and the negative electrode of the DC power supply 40.
  • the wiring 41b is an example of the second wiring connected to the other of the positive electrode and the negative electrode of the DC power supply 40.
  • the wiring 41b is connected to the positive electrode as the other of the positive electrode and the negative electrode of the DC power supply 40.
  • the path 51b is an example of a second path connecting the DC power supply 40 and the device 50. Since the path 52b is a path in the wiring 42b connecting the DC power supply 40 and the device 50, it can be said that the path 52b also connects the DC power supply 40 and the device 50.
  • the path 52b is an example of a first path connecting the DC power supply 40 and the device 50.
  • the direction of the direct current flowing through the path 51b and the direction of the direct current flowing through the path 52b are opposite. Since the path 51b is the path in the wiring 41b connected to the positive electrode of the DC power supply 40 and the path 52b is the path in the wiring 42b connected to the negative electrode of the DC power supply 40, the direction of the DC current flowing through the path 51b It can be seen that the direction of the direct current flowing through the path 52b is opposite to that of the direct current. In FIG. 2A, the direction of the direct current flowing through the path 51b and the direction of the direct current flowing through the path 52b are indicated by arrows near the magnetic core 21.
  • the arc detection device 10b is a device for detecting an arc, and includes a low impedance circuit 11b, a current detection unit 20b, and an arc determination unit 30.
  • the current detection unit 20b has a magnetic core 21 through which the paths 51b and 52b penetrate, and detects a current flowing through the paths 51b and 52b according to a magnetic field generated in the magnetic core 21.
  • the current detection unit 20b includes, for example, a Hall element (not shown) that detects a magnetic field generated in the magnetic core 21 and generates a voltage corresponding to the magnetic field generated in the magnetic core 21.
  • the voltage generated by the Hall element is input to the arc determination unit 30 as a signal indicating a magnetic field generated in the magnetic core 21, that is, a current flowing through a path passing through the magnetic core 21.
  • the low impedance circuit 11b is a circuit having a lower impedance than the DC power supply 40 and the device 50.
  • the low impedance circuit 11b is a circuit connected to the paths 51b and 52b to bypass the high frequency component to one of the paths 51b and 52b.
  • the low impedance circuit 11b is, for example, a capacitor, and has a lower impedance than the capacitance component of the DC power supply 40 and the capacitance component of the device 50. Since the capacitor has a function of blocking the DC component, only the high frequency component can be extracted from the signals flowing through the wirings 41b and 42b. The capacitance value of the capacitor is appropriately determined according to the frequency of the high frequency component to be extracted and the like. Since the low impedance circuit 11b has a lower impedance than the DC power supply 40 and the device 50, high frequency components tend to flow toward the low impedance circuit 11b in the wirings 41b and 42b.
  • the low impedance circuit 11b includes a connection point N2b on the wiring 42b between one of the positive electrode and the negative electrode (here, the negative electrode) of the DC power supply 40 and the magnetic core 21, the magnetic core 21 and the device 50. It is provided in the bypass path 43b connecting the connection point N1b on the wiring 41b with the wiring 41b.
  • the arc determination unit 30 determines the generation of an arc based on the current detected by the current detection unit 20b. For example, the arc determination unit 30 determines the generation of an arc in the wiring 41b or 42b by frequency-analyzing the current detected by the current detection unit 20b.
  • the low impedance circuit 11b (for example, a capacitor) is an element that cuts off a direct current and allows an alternating current (high frequency component) to pass through, and causes a high frequency component included in the current flowing through the wiring 41b or 42b to flow to the bypass path 43b.
  • the principle that the arc detection device 10b can accurately detect an arc by providing such a low impedance circuit 11b will be described with reference to FIGS. 2B and 2C.
  • FIGS. 2B and 2C are diagrams showing an example of a current flowing through the wiring when an arc is generated in the arc detection device 10b according to the first modification of the first embodiment.
  • FIG. 2B it is assumed that an arc is generated between the positive electrode of the DC power supply 40 and the connection point N1b in the wiring 41b.
  • FIG. 2C it is assumed that an arc is generated between the device 50 and the connection point N1b in the wiring 41b.
  • FIGS. 2B and 2C the flow of high-frequency components generated by the generation of an arc is shown by a thick broken line.
  • the magnetic field due to the direct current flowing through the path 51b and the magnetic field due to the direct current flowing through the path 52b generated in the magnetic core 21 are canceled out and magnetic saturation can be prevented. Further, these DC currents do not flow to the bypass path 43b by the low impedance circuit 11b (capacitor) that cuts off the DC currents.
  • the high frequency component due to the arc flows through the path 51b at the magnetic core 21 and flows to the bypass path 43b at the connection point N1b. This is because the high frequency component tends to flow through the bypass path 43b provided with the low impedance circuit 11b, not the path connecting the connection point N1b and the device 50. Then, the high frequency component flows through the path connecting the connection point N2b and the DC power supply 40. In this way, the bypass path 43b becomes a path that bypasses the path 52b, and the high-frequency component flows through the path 51b in the magnetic core 21 but does not flow through the path 52b.
  • the magnetic field corresponding to the direct current flowing through the path 51b and the magnetic field corresponding to the direct current flowing through the path 52b are canceled out, and a magnetic field corresponding to the high frequency component flowing through the path 51b is generated.
  • the magnetic field is output to the arc determination unit 30 as a voltage signal by, for example, a Hall element, and the arc determination unit 30 can determine from the voltage signal that an arc has been generated.
  • the high frequency component due to the arc flows to the bypass path 43b at the connection point N1b. This is because the high frequency component tends to flow through the bypass path 43b provided with the low impedance circuit 11b, instead of the path 51b connecting the connection point N1b and the DC power supply 40. Then, the high frequency component flows through the path 52b connecting the connection point N2b and the device 50. In this way, the bypass path 43b becomes a path that bypasses the path 51b, and the high-frequency component flows through the path 52b in the magnetic core 21 but does not flow through the path 51b.
  • the magnetic field corresponding to the direct current flowing through the path 51b and the magnetic field corresponding to the direct current flowing through the path 52b are canceled out, and a magnetic field corresponding to the high frequency component flowing through the path 52b is generated.
  • the magnetic field is output to the arc determination unit 30 as a voltage signal by, for example, a Hall element, and the arc determination unit 30 can determine from the voltage signal that an arc has been generated.
  • the low impedance circuit 11b has the connection point N2b on the wiring 42b between the negative electrode of the DC power supply 40 and the magnetic core 21 and the connection point N1b on the wiring 41b between the magnetic core 21 and the device 50.
  • the arc can be accurately detected even when the bypass path 43b is provided.
  • the path 51a penetrating the magnetic core 21 is a path in the wiring 41a connected to one of the positive electrode and the negative electrode (for example, the positive electrode) of the DC power supply 40, and the path 52a penetrating the magnetic core 21. Described the example of the path in the wiring 42a connected to the other (for example, the negative electrode) of the positive electrode and the negative electrode of the DC power supply 40, but the present invention is not limited to this.
  • the two paths penetrating the magnetic core 21 are the paths in the first wiring connected to one of the positive electrode and the negative electrode of the DC power supply 40.
  • FIG. 3A is a configuration diagram showing an example of the arc detection device 10c according to the second modification of the first embodiment. Note that FIG. 3A also shows the DC power supply 40 and the device 50.
  • the DC power supply 40 has a positive electrode and a negative electrode, wiring 41c is connected to the positive electrode, wiring 42c is connected to the negative electrode, and DC power is supplied to the device 50 via the wirings 41c and 42c.
  • the device 50 is a device in which DC power is supplied from the DC power supply 40 via the wirings 41c and 42c.
  • Wiring 41c and 42c connect the DC power supply 40 and the device 50.
  • the wiring 42c is an example of the first wiring connected to one of the positive electrode and the negative electrode of the DC power supply 40.
  • the wiring 42c is connected to the positive electrode as one of the positive electrode and the negative electrode of the DC power supply 40.
  • the wiring 41c is an example of the second wiring connected to the other of the positive electrode and the negative electrode of the DC power supply 40.
  • the wiring 41c is connected to the negative electrode as the other of the positive electrode and the negative electrode of the DC power supply 40.
  • the wiring 41c penetrates the magnetic core 21. Specifically, the wiring 41c penetrates the magnetic core 21 from one side of the magnetic core 21 (left side of the magnetic core 21 in FIG. 3A) to the other side (right side of the magnetic core 21 in FIG. 3A) and then folds back to form the magnetic core. 21 penetrates from the other side of the magnetic core 21 to the one side.
  • the portion (path) through which the magnetic core 21 penetrates from one side to the other side is defined as the path 51c
  • the portion (path) through which the magnetic core 21 penetrates from the other side to the other side is defined as the path 51c.
  • the route is 52c.
  • the paths 51c and 52c are routes in the wiring 41c connecting the DC power supply 40 and the device 50, it can be said that the paths 51c and 52c also connect the DC power supply 40 and the device 50.
  • the path 51c is an example of the first path connecting the DC power supply 40 and the device 50
  • the path 52c is an example of the second path connecting the DC power supply 40 and the device 50.
  • the direction of the direct current flowing through the path 51c and the direction of the direct current flowing through the path 52c are opposite.
  • Both the paths 51c and 52c are paths in the wiring 41c, the path 51c penetrates the magnetic core 21 from the one side to the other side, and the path 52c penetrates the magnetic core 21 from the other side to the one side. From this, it can be seen that in the magnetic core 21, the direction of the direct current flowing through the path 51c and the direction of the direct current flowing through the path 52c are opposite.
  • FIG. 3A the direction of the direct current flowing through the path 51c and the direction of the direct current flowing through the path 52c are indicated by arrows near the magnetic core 21.
  • the arc detection device 10c is a device for detecting an arc, and includes a low impedance circuit 11c, a current detection unit 20c, and an arc determination unit 30.
  • the current detection unit 20c has a magnetic core 21 through which the paths 51c and 52c pass, and detects the current flowing through the paths 51c and 52c according to the magnetic field generated in the magnetic core 21.
  • the current detection unit 20c includes, for example, a Hall element (not shown) that detects a magnetic field generated in the magnetic core 21 and generates a voltage corresponding to the magnetic field generated in the magnetic core 21.
  • the voltage generated by the Hall element is input to the arc determination unit 30 as a signal indicating a magnetic field generated in the magnetic core 21, that is, a current flowing through a path passing through the magnetic core 21.
  • the low impedance circuit 11c is a circuit having a lower impedance than the DC power supply 40 and the device 50.
  • the low impedance circuit 11c is a circuit connected to the paths 51c and 52c to bypass the high frequency component to one of the paths 51c and 52c.
  • the low impedance circuit 11c is, for example, a capacitor, and has a lower impedance than the capacitance component of the DC power supply 40 and the capacitance component of the device 50. Since the capacitor has a function of blocking the DC component, only the high frequency component can be extracted from the signal flowing through the wiring 41c. The capacitance value of the capacitor is appropriately determined according to the frequency of the high frequency component to be extracted and the like. Since the low impedance circuit 11c has a lower impedance than the DC power supply 40 and the device 50, a high frequency component tends to flow toward the low impedance circuit 11c in the wiring 41c.
  • the low impedance circuit 11c is provided in the bypass path 43c connecting the connection point N1c at the folded-back portion and the connection point N2c on the wiring 41c between the one side of the magnetic core 21 and the device 50. ..
  • the arc determination unit 30 determines the generation of an arc based on the current detected by the current detection unit 20c. For example, the arc determination unit 30 determines the generation of an arc in the wiring 41c or 42c by frequency-analyzing the current detected by the current detection unit 20c.
  • the low impedance circuit 11c (for example, a capacitor) is an element that cuts off a direct current and allows an alternating current (high frequency component) to pass through, and causes a high frequency component included in the current flowing through the wiring 41c to flow to the bypass path 43c.
  • the principle that the arc detection device 10c can accurately detect an arc by providing such a low impedance circuit 11c will be described with reference to FIGS. 3B and 3C.
  • FIGS. 3B and 3C are diagrams showing an example of a current flowing through the wiring when an arc is generated in the arc detection device 10c according to the second modification of the first embodiment.
  • FIG. 3B it is assumed that an arc is generated between the positive electrode of the DC power supply 40 and the one side of the magnetic core 21 in the wiring 41c.
  • FIG. 3C it is assumed that an arc is generated between the device 50 and the connection point N2c in the wiring 41c.
  • FIGS. 3B and 3C the flow of high-frequency components generated by the generation of an arc is shown by a thick broken line.
  • the magnetic field due to the direct current flowing through the path 51c and the magnetic field due to the direct current flowing through the path 52c generated in the magnetic core 21 are canceled out and magnetic saturation can be prevented. Further, these DC currents do not flow to the bypass path 43c by the low impedance circuit 11c (capacitor) that cuts off the DC currents.
  • the high frequency component due to the arc flows through the path 51c at the magnetic core 21 and flows to the bypass path 43c at the connection point N1c. This is because the high frequency component tends to flow through the bypass path 43c provided with the low impedance circuit 11c instead of the path 52c. Then, the high frequency component flows through the path connecting the connection point N2c and the device 50. In this way, the bypass path 43c becomes a path that bypasses the path 52c, and the high-frequency component flows through the path 51c in the magnetic core 21 but does not flow through the path 52c.
  • the magnetic field corresponding to the direct current flowing through the path 51c and the magnetic field corresponding to the direct current flowing through the path 52c are canceled out, and a magnetic field corresponding to the high frequency component flowing through the path 51c is generated.
  • the magnetic field is output to the arc determination unit 30 as a voltage signal by, for example, a Hall element, and the arc determination unit 30 can determine from the voltage signal that an arc has been generated.
  • the high frequency component due to the arc flows to the bypass path 43c at the connection point N2c. This is because the high frequency component tends to flow through the bypass path 43c provided with the low impedance circuit 11c instead of the path 52c. Then, the high frequency component flows through the path 51c connecting the connection point N1c and the DC power supply 40. In this way, the bypass path 43c becomes a path that bypasses the path 52c, and the high-frequency component flows through the path 51c in the magnetic core 21 but does not flow through the path 52c.
  • the magnetic field corresponding to the direct current flowing through the path 51c and the magnetic field corresponding to the direct current flowing through the path 52c are canceled out, and a magnetic field corresponding to the high frequency component flowing through the path 51c is generated.
  • the magnetic field is output to the arc determination unit 30 as a voltage signal by, for example, a Hall element, and the arc determination unit 30 can determine from the voltage signal that an arc has been generated.
  • the DC power supply 40 is connected to the first wiring (for example, wiring 41c) connected to one of the positive and negative sides of the DC power supply 40, and to the other of the positive and negative sides of the DC power supply 40.
  • Power is supplied to the device 50 through the second wiring (for example, wiring 42c), and the first path (for example, path 51c) and the second path (for example, path 52c) are the paths in the first wiring, and the first path.
  • the wiring penetrates the magnetic core 21 from one side to the other side of the magnetic core 21 in the first path and then folds back, and penetrates the magnetic core 21 from the other side of the magnetic core 21 to the one side in the second path.
  • the low impedance circuit 11c includes a connection point (for example, connection point N1c) at the folded-back portion and a connection point (for example, connection point N2c) on the first wiring between the one side of the magnetic core 21 and the device 50. It may be provided in the bypass path 43c connecting the above.
  • connection point of the folded portion after once penetrating the magnetic core 21 in the first wiring and the connection point after penetrating the magnetic core 21 in the first wiring again have low impedance.
  • the low impedance circuit 11c connects the connection point N1c of the folded portion in the wiring 41c and the connection point N2c on the wiring 41c between one side of the magnetic core 21 and the device 50.
  • An example provided in the bypass path 43c has been described, but the present invention is not limited to this.
  • the low impedance circuit is connected to the connection point of the folded portion in the first wiring connected to one of the positive electrode and the negative electrode of the DC power supply 40, and one side of the magnetic core 21 and the DC power supply.
  • An example provided in the bypass path connecting the connection point on the first wiring between the positive electrode and the negative electrode of 40 will be described.
  • FIG. 4A is a configuration diagram showing an example of the arc detection device 10d according to the third modification of the first embodiment. Note that FIG. 4A also shows the DC power supply 40 and the device 50.
  • the DC power supply 40 has a positive electrode and a negative electrode, wiring 41d is connected to the positive electrode, wiring 42d is connected to the negative electrode, and DC power is supplied to the device 50 via the wirings 41d and 42d.
  • the device 50 is a device in which DC power is supplied from the DC power supply 40 via the wirings 41d and 42d.
  • Wiring 41d and 42d connect the DC power supply 40 and the device 50.
  • the wiring 42d is an example of the first wiring connected to one of the positive electrode and the negative electrode of the DC power supply 40.
  • the wiring 42d is connected to the positive electrode as one of the positive electrode and the negative electrode of the DC power supply 40.
  • the wiring 41d is an example of the second wiring connected to the other of the positive electrode and the negative electrode of the DC power supply 40.
  • the wiring 41d is connected to the negative electrode as the other of the positive electrode and the negative electrode of the DC power supply 40.
  • the wiring 41d penetrates the magnetic core 21. Specifically, the wiring 41d penetrates the magnetic core 21 from one side of the magnetic core 21 (left side of the magnetic core 21 in FIG. 4A) to the other side (right side of the magnetic core 21 in FIG. 4A) and then folds back to form the magnetic core. 21 penetrates from the other side of the magnetic core 21 to the one side.
  • the portion (path) through which the magnetic core 21 penetrates from one side to the other side is defined as the path 51d
  • the portion (path) through which the magnetic core 21 penetrates from the other side to the other side is defined as the path 51d.
  • the route is 52d.
  • the routes 51d and 52d are the routes in the wiring 41d connecting the DC power supply 40 and the device 50, it can be said that the routes 51d and 52d also connect the DC power supply 40 and the device 50.
  • the path 51d is an example of the first path connecting the DC power supply 40 and the device 50
  • the path 52d is an example of the second path connecting the DC power supply 40 and the device 50.
  • the direction of the direct current flowing through the path 51d and the direction of the direct current flowing through the path 52d are opposite.
  • Both the paths 51d and 52d are paths in the wiring 41d, the path 51d penetrates the magnetic core 21 from the one side to the other side, and the path 52d penetrates the magnetic core 21 from the other side to the one side. From this, it can be seen that in the magnetic core 21, the direction of the direct current flowing through the path 51d and the direction of the direct current flowing through the path 52d are opposite.
  • FIG. 4A the direction of the direct current flowing through the path 51d and the direction of the direct current flowing through the path 52d are indicated by arrows near the magnetic core 21.
  • the arc detection device 10d is a device for detecting an arc, and includes a low impedance circuit 11d, a current detection unit 20d, and an arc determination unit 30.
  • the current detection unit 20d has a magnetic core 21 through which the paths 51d and 52d pass, and detects the current flowing through the paths 51d and 52d according to the magnetic field generated in the magnetic core 21.
  • the current detection unit 20d includes, for example, a Hall element (not shown) that detects a magnetic field generated in the magnetic core 21 and generates a voltage corresponding to the magnetic field generated in the magnetic core 21.
  • the voltage generated by the Hall element is input to the arc determination unit 30 as a signal indicating a magnetic field generated in the magnetic core 21, that is, a current flowing through a path passing through the magnetic core 21.
  • the low impedance circuit 11d is a circuit having a lower impedance than the DC power supply 40 and the device 50.
  • the low impedance circuit 11d is a circuit connected to the paths 51d and 52d to bypass the high frequency component to one of the paths 51d and 52d.
  • the low impedance circuit 11d is, for example, a capacitor, and has a lower impedance than the capacitance component of the DC power supply 40 and the capacitance component of the device 50. Since the capacitor has a function of blocking the DC component, only the high frequency component can be extracted from the signal flowing through the wiring 41d. The capacitance value of the capacitor is appropriately determined according to the frequency of the high frequency component to be extracted and the like. Since the low impedance circuit 11d has a lower impedance than the DC power supply 40 and the device 50, a high frequency component tends to flow toward the low impedance circuit 11d in the wiring 41d.
  • the low impedance circuit 11d is on the wiring 41d between the connection point N1d at the folded-back portion, the one side of the magnetic core 21, and one of the positive electrode and the negative electrode of the DC power supply 40 (for example, the positive electrode). It is provided in the bypass path 43d connecting the connection point N2d of the above.
  • the arc determination unit 30 determines the generation of an arc based on the current detected by the current detection unit 20d. For example, the arc determination unit 30 determines the occurrence of an arc in the wiring 41d or 42d by frequency-analyzing the current detected by the current detection unit 20d.
  • the low impedance circuit 11d (for example, a capacitor) is an element that cuts off a direct current and allows an alternating current (high frequency component) to pass through, and causes a high frequency component included in the current flowing through the wiring 41d to flow to the bypass path 43d.
  • the principle that the arc detection device 10d can accurately detect an arc by providing such a low impedance circuit 11d will be described with reference to FIGS. 4B and 4C.
  • FIGS. 4B and 4C are diagrams showing an example of a current flowing through the wiring when an arc is generated in the arc detection device 10d according to the third modification of the first embodiment.
  • FIG. 4B it is assumed that an arc is generated between the positive electrode of the DC power supply 40 and the connection point N2d in the wiring 41d.
  • FIG. 4C it is assumed that an arc is generated between the device 50 in the wiring 41d and the one side of the magnetic core 21.
  • FIGS. 4B and 4C the flow of high-frequency components generated by the generation of an arc is shown by a thick broken line.
  • the magnetic field due to the direct current flowing through the path 51d and the magnetic field due to the direct current flowing through the path 52d generated in the magnetic core 21 are canceled out and magnetic saturation can be prevented. Further, these DC currents do not flow to the bypass path 43d by the low impedance circuit 11d (capacitor) that cuts off the DC currents.
  • the high frequency component due to the arc flows to the bypass path 43d at the connection point N2d. This is because the high frequency component tends to flow through the bypass path 43d provided with the low impedance circuit 11d instead of the path 51d. Then, the high frequency component flows through the path 52d connecting the connection point N1d and the device 50. In this way, the bypass path 43d becomes a path that bypasses the path 51d, and the high-frequency component flows through the path 52d in the magnetic core 21 but does not flow through the path 51d.
  • the magnetic field corresponding to the direct current flowing through the path 51d and the magnetic field corresponding to the direct current flowing through the path 52d are canceled out, and a magnetic field corresponding to the high frequency component flowing through the path 52d is generated.
  • the magnetic field is output to the arc determination unit 30 as a voltage signal by, for example, a Hall element, and the arc determination unit 30 can determine from the voltage signal that an arc has been generated.
  • the high frequency component due to the arc flows through the path 52d at the magnetic core 21 and flows to the bypass path 43d at the connection point N1d. This is because the high frequency component tends to flow through the bypass path 43d provided with the low impedance circuit 11d instead of the path 51d. Then, the high frequency component flows through the path connecting the connection point N2d and the DC power supply 40. In this way, the bypass path 43d becomes a path that bypasses the path 51d, and the high-frequency component flows through the path 52d in the magnetic core 21 but does not flow through the path 51d.
  • the magnetic field corresponding to the direct current flowing through the path 51d and the magnetic field corresponding to the direct current flowing through the path 52d are canceled out, and a magnetic field corresponding to the high frequency component flowing through the path 52d is generated.
  • the magnetic field is output to the arc determination unit 30 as a voltage signal by, for example, a Hall element, and the arc determination unit 30 can determine from the voltage signal that an arc has been generated.
  • the low impedance circuit 11d includes a connection point (for example, connection point N1d) at the folded portion of the first wiring (for example, wiring 41d), one side of the magnetic core 21, and a positive electrode and a negative electrode of the DC power supply 40. It may be provided in the bypass path 43d connecting the connection point (for example, the connection point N2d) on the first wiring with one of them.
  • a low impedance circuit connects the connection point of the folded portion after once penetrating the magnetic core 21 in the first wiring and the connection point before penetrating the magnetic core 21 in the first wiring when viewed from the DC power supply 40.
  • the low impedance circuit is the first wiring between the connection point of the folded portion in the first wiring and one side of the magnetic core 21 and the DC power supply 40 or the device 50.
  • An example provided in the bypass path connecting the above connection point has been described, but the present invention is not limited to this.
  • the low impedance circuit connects the connection point of the folded portion in the first wiring connected to one of the positive electrode and the negative electrode of the DC power supply 40 and the connection point on the second wiring. An example provided in the connecting bypass path will be described.
  • FIG. 5A is a configuration diagram showing an example of the arc detection device 10e according to the modified example 4 of the first embodiment. Note that FIG. 5A also shows the DC power supply 40 and the device 50.
  • the DC power supply 40 has a positive electrode and a negative electrode, wiring 41e is connected to the positive electrode, wiring 42e is connected to the negative electrode, and DC power is supplied to the device 50 via the wirings 41e and 42e.
  • the device 50 is a device in which DC power is supplied from the DC power supply 40 via the wirings 41e and 42e.
  • Wiring 41e and 42e connect the DC power supply 40 and the device 50.
  • the wiring 42e is an example of the first wiring connected to one of the positive electrode and the negative electrode of the DC power supply 40.
  • the wiring 42e is connected to the positive electrode as one of the positive electrode and the negative electrode of the DC power supply 40.
  • the wiring 41e is an example of the second wiring connected to the other of the positive electrode and the negative electrode of the DC power supply 40.
  • the wiring 41e is connected to the negative electrode as the other of the positive electrode and the negative electrode of the DC power supply 40.
  • the wiring 41e penetrates the magnetic core 21. Specifically, the wiring 41e penetrates the magnetic core 21 from one side of the magnetic core 21 (left side of the magnetic core 21 in FIG. 5A) to the other side (right side of the magnetic core 21 in FIG. 5A) and then folds back to form the magnetic core. 21 penetrates from the other side of the magnetic core 21 to the one side.
  • the portion (path) through which the magnetic core 21 penetrates from one side to the other side is defined as a path 51e
  • the portion (path) through which the magnetic core 21 penetrates from the other side to the other side is defined as a path 51e. Route 52e.
  • the paths 51e and 52e are routes in the wiring 41e connecting the DC power supply 40 and the device 50, it can be said that the paths 51e and 52e also connect the DC power supply 40 and the device 50.
  • the path 51e is an example of the first path connecting the DC power supply 40 and the device 50
  • the path 52e is an example of the second path connecting the DC power supply 40 and the device 50.
  • the direction of the direct current flowing through the path 51e and the direction of the direct current flowing through the path 52e are opposite.
  • Both the paths 51e and 52e are paths in the wiring 41e, the path 51e penetrates the magnetic core 21 from the one side to the other side, and the path 52e penetrates the magnetic core 21 from the other side to the one side. From this, it can be seen that in the magnetic core 21, the direction of the direct current flowing through the path 51e and the direction of the direct current flowing through the path 52e are opposite.
  • FIG. 5A the direction of the direct current flowing through the path 51e and the direction of the direct current flowing through the path 52e are indicated by arrows near the magnetic core 21.
  • the arc detection device 10e is a device for detecting an arc, and includes a low impedance circuit 11e, a current detection unit 20e, and an arc determination unit 30.
  • the current detection unit 20e has a magnetic core 21 through which the paths 51e and 52e pass, and detects the current flowing through the paths 51e and 52e according to the magnetic field generated in the magnetic core 21.
  • the current detection unit 20e includes, for example, a Hall element (not shown) that detects a magnetic field generated in the magnetic core 21 and generates a voltage corresponding to the magnetic field generated in the magnetic core 21.
  • the voltage generated by the Hall element is input to the arc determination unit 30 as a signal indicating a magnetic field generated in the magnetic core 21, that is, a current flowing through a path passing through the magnetic core 21.
  • the low impedance circuit 11e is a circuit having a lower impedance than the DC power supply 40 and the device 50.
  • the low impedance circuit 11e is a circuit connected to the paths 51e and 52e to bypass the high frequency component to one of the paths 51e and 52e.
  • the low impedance circuit 11e is, for example, a capacitor, and has a lower impedance than the capacitance component of the DC power supply 40 and the capacitance component of the device 50. Since the capacitor has a function of blocking the DC component, only the high frequency component can be extracted from the signals flowing through the wirings 41e and 42e. The capacitance value of the capacitor is appropriately determined according to the frequency of the high frequency component to be extracted and the like. Since the low impedance circuit 11e has a lower impedance than the DC power supply 40 and the device 50, high frequency components tend to flow toward the low impedance circuit 11e in the wirings 41e and 42e.
  • the low impedance circuit 11e is provided in the bypass path 43e connecting the connection point N1e at the folded-back portion and the connection point N2e on the wiring 42e.
  • the arc determination unit 30 determines the generation of an arc based on the current detected by the current detection unit 20e. For example, the arc determination unit 30 determines the generation of an arc in the wiring 41e or 42e by frequency-analyzing the current detected by the current detection unit 20e.
  • the low impedance circuit 11e (for example, a capacitor) is an element that cuts off a direct current and allows an alternating current (high frequency component) to pass through, and causes a high frequency component included in the current flowing through the wirings 41e and 42e to flow to the bypass path 43e.
  • the principle that the arc detection device 10e can accurately detect an arc by providing such a low impedance circuit 11e will be described with reference to FIGS. 5B and 5C.
  • FIGS. 5B and 5C are diagrams showing an example of a current flowing through the wiring when an arc is generated in the arc detection device 10e according to the modified example 4 of the first embodiment.
  • FIG. 5B it is assumed that an arc is generated between the positive electrode of the DC power supply 40 and the one side of the magnetic core 21 in the wiring 41e.
  • FIG. 5C it is assumed that an arc is generated between the device 50 in the wiring 41e and the one side of the magnetic core 21.
  • FIGS. 5B and 5C the flow of high-frequency components generated by the generation of an arc is shown by a thick broken line.
  • the magnetic field due to the direct current flowing through the path 51e and the magnetic field due to the direct current flowing through the path 52e generated in the magnetic core 21 are canceled out and magnetic saturation can be prevented. Further, these DC currents do not flow to the bypass path 43e by the low impedance circuit 11e (capacitor) that cuts off the DC currents.
  • the high frequency component due to the arc flows through the path 51e at the magnetic core 21 and flows to the bypass path 43e at the connection point N1e. This is because the high frequency component tends to flow through the bypass path 43e provided with the low impedance circuit 11e instead of the path 52e. Then, the high frequency component flows through the wiring 42e connecting the connection point N2e and the DC power supply 40. In this way, the bypass path 43e becomes a path that bypasses the path 52e, and the high-frequency component flows through the path 51e in the magnetic core 21 but does not flow through the path 52e.
  • the magnetic field corresponding to the direct current flowing through the path 51e and the magnetic field corresponding to the direct current flowing through the path 52e are canceled out, and a magnetic field corresponding to the high frequency component flowing through the path 51e is generated.
  • the magnetic field is output to the arc determination unit 30 as a voltage signal by, for example, a Hall element, and the arc determination unit 30 can determine from the voltage signal that an arc has been generated.
  • the high frequency component due to the arc flows through the path 52e at the magnetic core 21 and flows to the bypass path 43e at the connection point N1e. This is because the high frequency component tends to flow through the bypass path 43e provided with the low impedance circuit 11e instead of the path 51e. Then, the high frequency component flows through the path connecting the connection point N2e and the device 50. In this way, the bypass path 43e becomes a path that bypasses the path 51e, and the high-frequency component flows through the path 52e in the magnetic core 21 but does not flow through the path 51e.
  • the magnetic field corresponding to the direct current flowing through the path 51e and the magnetic field corresponding to the direct current flowing through the path 52e are canceled out, and a magnetic field corresponding to the high frequency component flowing through the path 52e is generated.
  • the magnetic field is output to the arc determination unit 30 as a voltage signal by, for example, a Hall element, and the arc determination unit 30 can determine from the voltage signal that an arc has been generated.
  • the low impedance circuit 11e has a connection point (for example, connection point N1e) at the folded-back portion of the first wiring (for example, wiring 41e) and a connection point (for example, connection point) on the second wiring (for example, wiring 42e). It may be provided in the bypass path 43e connecting N2e).
  • connection point of the folded portion after once penetrating the magnetic core 21 in the first wiring and the connection point in the second wiring are connected by the bypass path 43e via the low impedance circuit 11e.
  • the high frequency component to one of the first path and the second path can be bypassed.
  • the arc detection device according to the present invention may be provided in a power conditioner (referred to as a power conditioner) in a photovoltaic power generation system or the like. This will be described with reference to FIG. 6A.
  • a power conditioner referred to as a power conditioner
  • FIG. 6A is a configuration diagram showing an example of the photovoltaic power generation system 1a according to the second embodiment.
  • the photovoltaic power generation system 1a includes a solar panel 41, storage batteries 54, 55 and 56, DC / DC converters 51, 52 and 53, and a power conditioner 60a.
  • the solar panel 41 generates electricity by sunlight and generates DC power.
  • the DC power generated by the solar panel 41 is supplied to the power conditioner 60a.
  • the storage battery 54 stores the DC power from the DC / DC converter 51
  • the storage battery 55 stores the DC power from the DC / DC converter 52
  • the storage battery 56 stores the DC power from the DC / DC converter 53.
  • the storage batteries 54, 55, and 56 may be mounted on an electric vehicle, an electric bicycle, or the like, or may be used for supplying power to household electric appliances or the like.
  • the DC / DC converters 51, 52, and 53 are voltage converters that boost or step down the DC voltage of the supplied DC power and output it.
  • the DC / DC converter 51 boosts or lowers the DC power supplied from the power conditioner 60a and outputs it to the storage battery 54.
  • the DC / DC converter 52 boosts or lowers the DC power supplied from the power conditioner 60a and outputs it to the storage battery 55.
  • the DC / DC converter 53 boosts or lowers the DC power supplied from the power conditioner 60a and outputs it to the storage battery 56.
  • the power conditioner 60a has a function of converting DC power supplied from the solar panel 41 into AC power. Further, the power conditioner 60a has a function of supplying DC power supplied from the solar panel 41 to a storage battery or the like without converting it into AC power.
  • the power conditioner 60a includes a DC / DC converter 61, an inverter 62, and an arc detection device 10a.
  • the DC / DC converter 61 boosts or lowers the DC power supplied from the solar panel 41 and outputs it to the DC / DC converters 51, 52 and 53 and the inverter 62. Since DC power is output from the DC / DC converter 61, the DC / DC converter 61 can be regarded as a DC power supply. That is, the DC / DC converter 61 is an example of a DC power supply.
  • the DC / DC converter 61 has a positive electrode and a negative electrode, and the wiring 110 is connected to the positive electrode and the wiring 120 is connected to the negative electrode.
  • Wiring 110 and 120 connect the DC / DC converter 61 and the DC / DC converters 51, 52 and 53.
  • the DC / DC converters 51, 52 and 53 are examples of devices connected to the DC / DC converter 61 via wirings 110 and 120.
  • the wiring 110 is an example of the first wiring connected to one of the positive electrode and the negative electrode of the DC / DC converter 61.
  • the wiring 110 is connected to the positive electrode as one of the positive electrode and the negative electrode of the DC / DC converter 61.
  • the wiring 120 is an example of the second wiring connected to the other of the positive electrode and the negative electrode of the DC / DC converter 61.
  • the wiring 120 is connected to the negative electrode as the other of the positive electrode and the negative electrode of the DC / DC converter 61.
  • the wiring 110 is wiring that branches from the positive electrode of the DC / DC converter 61 to each of the DC / DC converters 51, 52, and 53.
  • the point at which the positive electrode of the DC / DC converter 61 in the wiring 110 branches to the DC / DC converters 51, 52, and 53 is defined as the branch point N3.
  • the path before branching connecting the branch point N3 and the positive electrode of the DC / DC converter 61 is the path 110a
  • the path after branching connecting the branch point N3 and the DC / DC converter 51 is the path 110c
  • the branch point is defined as the path 110c.
  • the post-branch route connecting N3 and the DC / DC converter 52 is referred to as the path 110d
  • the post-branch route connecting the branch point N3 and the DC / DC converter 53 is referred to as the path 110b.
  • the wiring 120 is a wiring that branches from the negative electrode of the DC / DC converter 61 to each of the DC / DC converters 51, 52, and 53.
  • the point at which the negative electrode of the DC / DC converter 61 in the wiring 120 branches to the DC / DC converters 51, 52, and 53 is defined as the branch point N4.
  • the path before branching connecting the branch point N4 and the negative electrode of the DC / DC converter 61 is set as the path 120a
  • the path after branching connecting the branch point N4 and the DC / DC converter 51 is set as the path 120c.
  • the post-branch route connecting N4 and the DC / DC converter 52 is referred to as the path 120d
  • the post-branch route connecting the branch point N4 and the DC / DC converter 53 is referred to as the path 120b.
  • the path 110a is an example of a first path connecting the DC / DC converter 61 and the DC / DC converters 51, 52, and 53.
  • the path 120a is a path in the wiring 120 connecting the DC / DC converter 61 and the DC / DC converters 51, 52 and 53, the path 120a is also the path in the DC / DC converter 61 and the DC / DC converters 51, 52. And 53 can be said to be connected.
  • the path 120a is an example of a second path connecting the DC / DC converter 61 and the DC / DC converters 51, 52 and 53.
  • the inverter 62 converts the DC power supplied from the DC / DC converter 61 into AC power and outputs it.
  • the inverter 62 employs, for example, an MPPT (Maximum Power Point Tracking) method, and adjusts the current and voltage of the DC power supplied from the DC / DC converter 61 to values that maximize the power, respectively.
  • MPPT Maximum Power Point Tracking
  • the inverter 62 converts DC power into AC power having a voltage of 100 V and a frequency of 50 Hz or 60 Hz.
  • the AC power is used in household electric appliances and the like.
  • the arc detection device 10a has the same function as that in the first embodiment, and corresponds to the first embodiment except that the paths penetrating the magnetic core 21 are the paths 110a and 120a. A detailed description will be omitted.
  • the second embodiment also has the effect of being able to accurately detect the arc as in the first embodiment.
  • the power conditioner 60a includes an arc detection device 10a and a converter (for example, an inverter 62) that converts the output power of a DC power supply (for example, a DC / DC converter 61).
  • a converter for example, an inverter 62
  • DC power supply for example, a DC / DC converter 61
  • the arc detection device 10a may be provided in the power conditioner 60a, and can provide the power conditioner 60a capable of accurately detecting the arc.
  • the wirings 110 and 120 are branched wirings (referred to as branch wirings), and arcs may be generated for each of the pre-branch path and the post-branch plurality of paths of the branch wiring. Since the path before branching (specifically, path 110a) penetrates the magnetic core 21 included in 10a, a plurality of paths after branching (for example, paths 110b, 110c, 110d, 120b, 120c and 120d) No matter where the arc is generated, the high-frequency component due to the arc flows through the path before branching that penetrates the magnetic core 21, so that it is detected by the current detection unit 20a that detects the current that flows through the path that penetrates the magnetic core 21. The arc can be detected based on the current.
  • FIG. 6B is a configuration diagram showing an example of the photovoltaic power generation system 1aa according to the modified example of the second embodiment.
  • the photovoltaic power generation system 1aa is different from the photovoltaic power generation system 1a according to the second embodiment in that the power conditioner 60aa is provided instead of the power conditioner 60a. Since the other points are the same as those of the photovoltaic power generation system 1a according to the second embodiment, the description thereof will be omitted.
  • the power conditioner 60aa is different from the power conditioner 60a according to the second embodiment in that the arc detection device 10aa is provided instead of the arc detection device 10a. Since other points are the same as those of the power conditioner 60a according to the second embodiment, the description thereof will be omitted.
  • the arc detection device 10aa includes current detection units 20aa, 20ab and 20ac, and an arc determination unit 30a.
  • the current detection unit 20aa has the same function as the current detection unit 20a according to the first embodiment, and corresponds to the first embodiment except that the paths penetrating the magnetic core 21 are the paths 110c and 120c. Therefore, detailed description will be omitted.
  • the current detection unit 20ab has the same function as the current detection unit 20a according to the first embodiment, and corresponds to the first embodiment except that the paths penetrating the magnetic core 21 are the paths 110d and 120d. Therefore, detailed description will be omitted.
  • the current detection unit 20ac has the same function as the current detection unit 20a according to the first embodiment, and corresponds to the first embodiment except that the paths penetrating the magnetic core 21 are the paths 110b and 120b. Therefore, detailed description will be omitted.
  • the arc determination unit 30a is realized by, for example, a microcomputer, like the arc determination unit 30, but may be realized by hardware by a dedicated electronic circuit.
  • the arc determination unit 30a determines the generation of an arc based on the currents detected by the current detection units 20aa, 20ab and 20ac. For example, the arc determination unit 30a determines the occurrence of an arc in the path 110c or 120c by frequency-analyzing the current detected by the current detection unit 20aa, and frequency-analyzes the current detected by the current detection unit 20ab. The generation of the arc in the path 110d or 120d is determined, and the generation of the arc in the path 110b or 120b is determined by frequency-analyzing the current detected by the current detection unit 20ac.
  • the path after branching penetrates the magnetic core 21, so that the current is generated.
  • the arc can be detected based on the current detected by the detection unit 20aa, 20ab or 20ac. In particular, it is possible to identify in which path the arc was generated after branching.
  • FIG. 7A is a configuration diagram showing an example of the photovoltaic power generation system 1b according to the third embodiment.
  • the photovoltaic power generation system 1b is different from the photovoltaic power generation system 1a according to the second embodiment in that the power conditioner 60b is provided instead of the power conditioner 60a. Since the other points are the same as those of the photovoltaic power generation system 1a according to the second embodiment, the description thereof will be omitted.
  • the power conditioner 60b is different from the power conditioner 60a according to the second embodiment in that the arc detection device 10c is provided instead of the arc detection device 10a. Since other points are the same as those of the power conditioner 60a according to the second embodiment, the description thereof will be omitted.
  • the arc detection device 10c has the same function as that of the second modification of the first embodiment, and is the same as the second modification of the first embodiment except that the path penetrating the magnetic core 21 is the path 110a. Since it is supported, detailed description will be omitted. Also in the third embodiment, the effect that the arc can be accurately detected can be obtained as in the second modification of the first embodiment.
  • FIG. 7B is a configuration diagram showing an example of the photovoltaic power generation system 1ba according to the modified example of the third embodiment.
  • the photovoltaic power generation system 1ba is different from the photovoltaic power generation system 1b according to the third embodiment in that the power conditioner 60ba is provided instead of the power conditioner 60b. Since other points are the same as those of the photovoltaic power generation system 1b according to the third embodiment, the description thereof will be omitted.
  • the power conditioner 60ba is different from the power conditioner 60b according to the third embodiment in that the arc detection device 10ca is provided instead of the arc detection device 10c. Since other points are the same as those of the power conditioner 60b according to the third embodiment, the description thereof will be omitted.
  • the arc detection device 10ca includes current detection units 20ca, 20cc and 20cc, and an arc determination unit 30a.
  • the current detection unit 20ca has the same function as the current detection unit 20c according to the second modification of the first embodiment, except that the path penetrating the magnetic core 21 is the path 110c. It corresponds to the second modification, and detailed description thereof will be omitted.
  • the current detection unit 20cc has the same function as the current detection unit 20c according to the second modification of the first embodiment, except that the path penetrating the magnetic core 21 is the path 110d. It corresponds to the second modification, and detailed description thereof will be omitted.
  • the current detection unit 20cc has the same function as the current detection unit 20c according to the second modification of the first embodiment, except that the path penetrating the magnetic core 21 is the path 110b. It corresponds to the second modification, and detailed description thereof will be omitted.
  • the arc determination unit 30a determines the generation of an arc based on the currents detected by the current detection units 20ca, 20cc and 20cc. For example, the arc determination unit 30a determines the occurrence of an arc in the path 110c or 120c by frequency-analyzing the current detected by the current detection unit 20ca, and frequency-analyzes the current detected by the current detection unit 20cc. The generation of the arc in the path 110d or 120d is determined, and the generation of the arc in the path 110b or 120b is determined by frequency-analyzing the current detected by the current detection unit 20cc.
  • the path after branching penetrates the magnetic core 21, so that the current is generated.
  • the arc can be detected based on the current detected by the detection unit 20ca, 20cc or 20cc. In particular, it is possible to identify in which path the arc was generated after branching.
  • FIG. 8A is a configuration diagram showing an example of the photovoltaic power generation system 1c according to the fourth embodiment.
  • the photovoltaic power generation system 1c is different from the photovoltaic power generation system 1a according to the second embodiment in that the power conditioner 60c is provided instead of the power conditioner 60a. Since the other points are the same as those of the photovoltaic power generation system 1a according to the second embodiment, the description thereof will be omitted.
  • the power conditioner 60c is different from the power conditioner 60a according to the second embodiment in that the arc detection device 10d is provided instead of the arc detection device 10a. Since other points are the same as those of the power conditioner 60a according to the second embodiment, the description thereof will be omitted.
  • the arc detection device 10d has the same function as that of the modification 3 of the first embodiment, and has the same function as that of the modification 3 of the first embodiment except that the path penetrating the magnetic core 21 is the path 110a. Since it is supported, detailed description will be omitted. Also in the fourth embodiment, the effect that the arc can be accurately detected can be obtained as in the case of the third modification of the first embodiment.
  • FIG. 8B is a configuration diagram showing an example of the photovoltaic power generation system 1ca according to the modified example of the fourth embodiment.
  • the photovoltaic power generation system 1ca is different from the photovoltaic power generation system 1c according to the fourth embodiment in that the power conditioner 60ca is provided instead of the power conditioner 60c. Since the other points are the same as those of the photovoltaic power generation system 1c according to the fourth embodiment, the description thereof will be omitted.
  • the power conditioner 60ca is different from the power conditioner 60c according to the fourth embodiment in that the arc detection device 10da is provided instead of the arc detection device 10d. Since other points are the same as those of the power conditioner 60c according to the fourth embodiment, the description thereof will be omitted.
  • the arc detection device 10da includes current detection units 20da, 20db and 20dc, and an arc determination unit 30a.
  • the current detection unit 20da has the same function as the current detection unit 20d according to the third modification of the first embodiment, except that the path penetrating the magnetic core 21 is the path 110c. It corresponds to the modification example 3, and detailed description thereof will be omitted.
  • the current detection unit 20db has the same function as the current detection unit 20d according to the third modification of the first embodiment, except that the path penetrating the magnetic core 21 is the path 110d. It corresponds to the modification example 3, and detailed description thereof will be omitted.
  • the current detection unit 20dc has the same function as the current detection unit 20d according to the third modification of the first embodiment, except that the path penetrating the magnetic core 21 is the path 110b. It corresponds to the modification example 3, and detailed description thereof will be omitted.
  • the arc determination unit 30a determines the generation of an arc based on the currents detected by the current detection units 20da, 20db and 20dc. For example, the arc determination unit 30a determines the occurrence of an arc in the path 110c or 120c by frequency-analyzing the current detected by the current detection unit 20da, and frequency-analyzes the current detected by the current detection unit 20db. The generation of the arc in the path 110d or 120d is determined, and the generation of the arc in the path 110b or 120b is determined by frequency-analyzing the current detected by the current detection unit 20dc.
  • the path after branching penetrates the magnetic core 21, so that the current is generated.
  • the arc can be detected based on the current detected by the detection unit 20da, 20db or 20dc. In particular, it is possible to identify in which path the arc was generated after branching.
  • FIG. 9A is a configuration diagram showing an example of the photovoltaic power generation system 1d according to the fifth embodiment.
  • the photovoltaic power generation system 1d is different from the photovoltaic power generation system 1a according to the second embodiment in that the power conditioner 60d is provided instead of the power conditioner 60a. Since the other points are the same as those of the photovoltaic power generation system 1a according to the second embodiment, the description thereof will be omitted.
  • the power conditioner 60d is different from the power conditioner 60a according to the second embodiment in that the arc detection device 10e is provided instead of the arc detection device 10a. Since other points are the same as those of the power conditioner 60a according to the second embodiment, the description thereof will be omitted.
  • the arc detection device 10e has the same function as that in the modified example 4 of the first embodiment, and is described in the modified example 4 of the first embodiment except that the path penetrating the magnetic core 21 is the path 110a. Since it is supported, detailed description will be omitted. Also in the fifth embodiment, the effect that the arc can be accurately detected can be obtained as in the case of the fourth modification of the first embodiment.
  • FIG. 9B is a configuration diagram showing an example of the photovoltaic power generation system 1da according to the modified example of the fifth embodiment.
  • the photovoltaic power generation system 1da is different from the photovoltaic power generation system 1d according to the fifth embodiment in that the power conditioner 60da is provided instead of the power conditioner 60d. Since the other points are the same as those of the photovoltaic power generation system 1d according to the fifth embodiment, the description thereof will be omitted.
  • the power conditioner 60da is different from the power conditioner 60d according to the fifth embodiment in that the arc detection device 10ea is provided instead of the arc detection device 10e. Since other points are the same as those of the power conditioner 60d according to the fifth embodiment, the description thereof will be omitted.
  • the arc detection device 10ea includes current detection units 20ea, 20eb and 20ec, and an arc determination unit 30a.
  • the current detection unit 20ea has the same function as the current detection unit 20e according to the fourth modification of the first embodiment, except that the path penetrating the magnetic core 21 is the path 110c. It corresponds to the modified example 4, and detailed description thereof will be omitted.
  • the current detection unit 20eb has the same function as the current detection unit 20e according to the fourth modification of the first embodiment, except that the path penetrating the magnetic core 21 is the path 110d. It corresponds to the modified example 4, and detailed description thereof will be omitted.
  • the current detection unit 20ec has the same function as the current detection unit 20e according to the fourth modification of the first embodiment, except that the path penetrating the magnetic core 21 is the path 110b. It corresponds to the modified example 4, and detailed description thereof will be omitted.
  • the arc determination unit 30a determines the generation of an arc based on the currents detected by the current detection units 20ea, 20eb and 20ec. For example, the arc determination unit 30a determines the occurrence of an arc in the path 110c or 120c by frequency-analyzing the current detected by the current detection unit 20ea, and frequency-analyzes the current detected by the current detection unit 20eb. The generation of the arc in the path 110d or 120d is determined, and the generation of the arc in the path 110b or 120b is determined by frequency-analyzing the current detected by the current detection unit 20ec.
  • the path after branching penetrates the magnetic core 21, so that the current is generated.
  • the arc can be detected based on the current detected by the detection unit 20ea, 20eb or 20ec. In particular, it is possible to identify in which path the arc was generated after branching.
  • the arc detector may be included in the indoor wiring system. This will be described with reference to FIG.
  • FIG. 10 is a configuration diagram showing an example of the indoor wiring system 2 according to the sixth embodiment. Note that FIG. 10 also shows a system power supply 43 connected to the indoor wiring system 2.
  • the grid power supply 43 is a power supply that supplies AC power generated at a power plant or the like.
  • the indoor wiring system 2 includes an AC / DC converter 42, wirings 111 and 121, lighting fixtures 57, 58 and 59, and an arc detection device 10a.
  • the AC / DC converter 42, the wirings 111 and 121, the lighting fixtures 57, 58 and 59, and the arc detection device 10a are installed indoors in a facility such as a detached house, an apartment house, a building or a factory.
  • the AC / DC converter 42 is a power converter in which AC power is supplied from the system power supply 43, and the supplied AC power is converted into DC power and output. Since DC power is output from the AC / DC converter 42, the AC / DC converter 42 can be regarded as a DC power supply.
  • the AC / DC converter 42 converts the AC power supplied from the system power supply 43 into DC power and outputs it to the lighting fixtures 57, 58 and 59.
  • the AC / DC converter 42 has a positive electrode and a negative electrode, and the wiring 111 is connected to the positive electrode and the wiring 121 is connected to the negative electrode.
  • Wiring 111 and 121 connect the AC / DC converter 42 and the lighting fixtures 57, 58 and 59.
  • Lighting fixtures 57, 58 and 59 are examples of devices connected to the AC / DC converter 42 via wirings 111 and 121.
  • the wiring 111 is an example of the first wiring connected to one of the positive electrode and the negative electrode of the AC / DC converter 42.
  • the wiring 111 is connected to the positive electrode as one of the positive electrode and the negative electrode of the AC / DC converter 42.
  • the wiring 121 is an example of the second wiring connected to the other of the positive electrode and the negative electrode of the AC / DC converter 42.
  • the wiring 121 is connected to the negative electrode as the other of the positive electrode and the negative electrode of the AC / DC converter 42.
  • the wiring 111 is a wiring that branches from the positive electrode of the AC / DC converter 42 to each of the lighting fixtures 57, 58, and 59, as in the wiring 110 in the second embodiment and the like.
  • the wiring 121 is a wiring that branches from the negative electrode of the AC / DC converter 42 to each of the lighting fixtures 57, 58, and 59, as in the wiring 120 in the second embodiment and the like.
  • the equipment is not limited to lighting equipment, and is not particularly limited as long as it is installed indoors.
  • the device may be a speaker, a microphone, or the like.
  • the wirings 111 and 121 penetrate the magnetic core 21, and the path before branching in the wirings 111 and 121 penetrates the magnetic core 21.
  • the path before branching of the wiring 111 is an example of a first path connecting the AC / DC converter 42 and the lighting fixtures 57, 58, and 59.
  • the path before branching of the wiring 121 is an example of a second path connecting the AC / DC converter 42 and the lighting fixtures 57, 58, and 59.
  • the arc detection device 10a has the same function as that in the first embodiment, and corresponds to the first embodiment except that the path penetrating the magnetic core 21 is the path before branching of the wirings 111 and 121. Therefore, detailed description will be omitted.
  • the sixth embodiment also has the effect of being able to accurately detect the arc as in the first embodiment.
  • the indoor wiring system 2 includes the arc detection device 10a, the first path (for example, the path before branching of the wiring 111), the second path (for example, the path before branching of the wiring 121), and indoors. It comprises installed equipment (eg, lighting fixtures 57, 58 and 59).
  • the arc detection device 10a may be provided in the indoor wiring system 2, and can provide the indoor wiring system 2 capable of accurately detecting the arc.
  • the wirings 111 and 121 are branch wirings, and an arc may be generated for each of the pre-branch path and the post-branch plurality of paths of the branch wiring. Since the path before branching penetrates through the magnetic core 21 included in 10a, the high-frequency component due to the arc penetrates the magnetic core 21 before branching, regardless of where in the plurality of paths after branching the arc occurs. Since the current flows through the path of the above, the arc can be detected based on the current detected by the current detection unit 20a that detects the current flowing through the path passing through the magnetic core 21.
  • arc detection devices may be provided in each of the paths after branching.
  • the arc detection device according to the modified examples 1 to 4 of the first embodiment may be provided in the indoor wiring system.
  • a low impedance circuit may be realized by diverting a capacitor provided in a device connected to a DC power supply.
  • the first wiring that penetrates the magnetic core 21 once, then folds back and penetrates again is connected to the positive electrode of the DC power supply 40
  • the arc detection device is applied to a photovoltaic power generation system (specifically, a power conditioner) and an indoor wiring system
  • a photovoltaic power generation system specifically, a power conditioner
  • an indoor wiring system specifically, a power conditioner
  • the application example is not limited to these.
  • Another application example of the arc detection device that is, the arc detection device capable of accurately detecting an arc
  • FIG. 1 Another application example of the arc detection device (that is, the arc detection device capable of accurately detecting an arc) according to the present invention will be described with reference to FIG.
  • FIG. 11 is a diagram for explaining an application example of the arc detection device according to the present invention.
  • the arc detection device is applied to, for example, each component in a system in which DC power supplied from a solar panel 310 via wiring is converted into AC power by a power conditioner 500.
  • a plurality (for example, three) of solar panels 310 connected in series by one wiring 600 (string) are arranged side by side to form a solar cell array 300.
  • the plurality of wirings 600 are grouped by the junction box 400 and connected to the power conditioner 500.
  • the DC power supply is a solar panel 310, and the first path and the second path are wiring 600.
  • a breaker 410 is provided for each wiring 600, and here, a breaker 410 is provided in the junction box 400.
  • the breaker 410 does not have to be provided in the junction box 400.
  • the breaker 410 may be provided between the junction box 400 and the solar cell array 300, or may be provided between the junction box 400 and the power conditioner 500 without being provided for each wiring 600.
  • the solar panel 310 has, for example, a solar panel accessory module 320 that converts a signal output from the solar panel 310.
  • the solar panel accessory module 320 is, for example, a DC / DC converter that optimizes the amount of power generation for each solar panel 310.
  • the solar panel 310 does not have to have the module attached to the solar panel 320.
  • the breaker 410 may be provided with an arc detection device.
  • the breaker 410 cuts off the current flowing through the wiring 600 when it is determined that an abnormality has occurred.
  • the solar panel 310 or the module attached to the solar panel 320 may include an arc detection device.
  • the solar panel 310 or the module attached to the solar panel 320 stops the output to the wiring 600 when it is determined that an arc has been generated.
  • the junction box 400 may be provided with an arc detection device. When it is determined that an arc has been generated, the junction box 400 cuts off the current flowing through the wiring 600, for example, via a breaker 410 or the like.
  • the arc detection device according to the present invention is not limited to these, and can be applied to all systems that require arc detection.
  • the breaker 410 may be provided with an arc detection device, and when it is determined that an arc has been generated, the current flowing through the first path and the second path may be cut off.
  • the solar panel 310 may include an arc detection device and generate electricity by sunlight.
  • the solar panel accessory module 320 may include an arc detection device and convert the signal output from the solar panel 310.
  • the junction box 400 may include an arc detection device and may connect the solar panel 310 and the power conditioner 500.
  • the arc determination unit included in the arc detection device may be realized by software in a general-purpose computer such as a personal computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Plasma Technology (AREA)

Abstract

アーク検出装置(10a)は、直流電源(40)と機器(50)とを接続する第1経路(51a)及び第2経路(52a)が貫通する磁気コア(21)を有し、磁気コア(21)に発生する磁界に応じて第1経路(51a)及び第2経路(52a)を流れる電流を検出する電流検出部(20a)と、直流電源(40)及び機器(50)よりもインピーダンスが低い低インピーダンス回路(11a)であって、第1経路(51a)及び第2経路(52a)に接続され、第1経路(51a)及び第2経路(52a)のうちの一方の経路への高周波成分をバイパスするための低インピーダンス回路(11a)と、電流検出部(20a)により検出された電流に基づいて、アークの発生を判定するアーク判定部(30)と、を備え、磁気コア(21)において、第1経路(51a)を流れる直流電流の向きと第2経路(52a)を流れる直流電流の向きとは逆向きである。

Description

アーク検出装置、パワーコンディショナ、屋内配線システム、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱
 本発明は、アーク検出装置、パワーコンディショナ、屋内配線システム、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱に関する。
 従来、PV(Photo Voltaic)パネル(太陽光パネル)等から配線を介して供給される直流電力をインバータ等の機器で交流電力に変換するシステムが知られている。このような配線は、外的要因又は経年劣化等によって損傷又は破断を引き起こすことが報告されている。このような配線の損傷等に起因してアーク(つまりアーク放電)が発生する場合がある。そこで、アークを検出するためのアーク検出手段が提案されている(例えば、特許文献1)。
特開2011-7765号公報
 配線に流れる電流によって電流センサに発生する磁界を検出し、当該磁界に応じた電流に基づいてアークを検出する方法がある。しかしながら、当該方法では、電流センサの磁気コアにおいて磁気飽和が発生して、アークを正確に検出できないことがある。
 そこで、本発明は、アークを正確に検出できるアーク検出装置等を提供することを目的とする。
 本発明に係るアーク検出装置の一態様は、直流電源と機器とを接続する第1経路及び第2経路が貫通する磁気コアを有し、前記磁気コアに発生する磁界に応じて前記第1経路及び前記第2経路を流れる電流を検出する電流検出部と、前記直流電源及び前記機器よりもインピーダンスが低い低インピーダンス回路であって、前記第1経路及び前記第2経路に接続され、前記第1経路及び前記第2経路のうちの一方の経路への高周波成分をバイパスするための低インピーダンス回路と、前記電流検出部により検出された電流に基づいて、アークの発生を判定するアーク判定部と、を備え、前記磁気コアにおいて、前記第1経路を流れる直流電流の向きと前記第2経路を流れる直流電流の向きとは逆向きである。
 本発明に係るパワーコンディショナの一態様は、上記のアーク検出装置と、前記直流電源の出力電力を変換する変換器と、を備える。
 本発明に係る屋内配線システムの一態様は、上記のアーク検出装置と、前記第1経路と、前記第2経路と、屋内に設置された前記機器と、を備える。
 本発明に係るブレーカの一態様は、上記のアーク検出装置を備え、アークが発生したと判定された場合に、前記第1経路及び前記第2経路に流れる電流を遮断する。
 本発明に係る太陽光パネルの一態様は、上記のアーク検出装置を備え、太陽光により発電する。
 本発明に係る太陽光パネル付属モジュールの一態様は、上記のアーク検出装置を備え、太陽光パネルから出力される信号の変換を行う。
 本発明に係る接続箱の一態様は、上記のアーク検出装置を備え、太陽光パネルとパワーコンディショナとを接続する。
 本発明の一態様によれば、アークを正確に検出できる。
図1Aは、実施の形態1に係るアーク検出装置の一例を示す構成図である。 図1Bは、実施の形態1に係るアーク検出装置においてアークが発生したときの配線に流れる電流の一例を示す図である。 図1Cは、実施の形態1に係るアーク検出装置においてアークが発生したときの配線に流れる電流の一例を示す図である。 図2Aは、実施の形態1の変形例1に係るアーク検出装置の一例を示す構成図である。 図2Bは、実施の形態1の変形例1に係るアーク検出装置においてアークが発生したときの配線に流れる電流の一例を示す図である。 図2Cは、実施の形態1の変形例1に係るアーク検出装置においてアークが発生したときの配線に流れる電流の一例を示す図である。 図3Aは、実施の形態1の変形例2に係るアーク検出装置の一例を示す構成図である。 図3Bは、実施の形態1の変形例2に係るアーク検出装置においてアークが発生したときの配線に流れる電流の一例を示す図である。 図3Cは、実施の形態1の変形例2に係るアーク検出装置においてアークが発生したときの配線に流れる電流の一例を示す図である。 図4Aは、実施の形態1の変形例3に係るアーク検出装置の一例を示す構成図である。 図4Bは、実施の形態1の変形例3に係るアーク検出装置においてアークが発生したときの配線に流れる電流の一例を示す図である。 図4Cは、実施の形態1の変形例3に係るアーク検出装置においてアークが発生したときの配線に流れる電流の一例を示す図である。 図5Aは、実施の形態1の変形例4に係るアーク検出装置の一例を示す構成図である。 図5Bは、実施の形態1の変形例4に係るアーク検出装置においてアークが発生したときの配線に流れる電流の一例を示す図である。 図5Cは、実施の形態1の変形例4に係るアーク検出装置においてアークが発生したときの配線に流れる電流の一例を示す図である。 図6Aは、実施の形態2に係る太陽光発電システムの一例を示す構成図である。 図6Bは、実施の形態2の変形例に係る太陽光発電システムの一例を示す構成図である。 図7Aは、実施の形態3に係る太陽光発電システムの一例を示す構成図である。 図7Bは、実施の形態3の変形例に係る太陽光発電システムの一例を示す構成図である。 図8Aは、実施の形態4に係る太陽光発電システムの一例を示す構成図である。 図8Bは、実施の形態4の変形例に係る太陽光発電システムの一例を示す構成図である。 図9Aは、実施の形態5に係る太陽光発電システムの一例を示す構成図である。 図9Bは、実施の形態5の変形例に係る太陽光発電システムの一例を示す構成図である。 図10は、実施の形態6に係る屋内配線システムの一例を示す構成図である。 図11は、本発明に係るアーク検出装置の適用例を説明するための図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であって本発明を限定する主旨ではない。
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 (実施の形態1)
 図1Aは、実施の形態1に係るアーク検出装置10aの一例を示す構成図である。なお、図1Aには、直流電源40及び機器50も示している。
 直流電源40は、直流電力を生成する電源である。直流電源40で生成された直流電力は機器50に供給される。直流電源40は、正極と負極を有し、正極には配線41aが接続され、負極には配線42aが接続され、配線41a及び42aを介して直流電力を機器50に供給する。
 機器50は、直流電源40から配線41a及び42aを介して直流電力が供給される機器である。機器50の種類は特に限定されない。例えば、機器50は、DC/DCコンバータ等の変換器であってもよいし、屋内に設置される照明器具、スピーカ又はマイク等の機器であってもよい。
 配線41a及び42aは、直流電源40と機器50とを接続する。配線41aは、直流電源40の正極及び負極のうちの一方に接続された第1配線の一例である。ここでは、配線41aは、直流電源40の正極及び負極のうちの一方として正極に接続される。配線42aは、直流電源40の正極及び負極のうちの他方に接続された第2配線の一例である。ここでは、配線42aは、直流電源40の正極及び負極のうちの他方として負極に接続される。
 配線41a及び42aは、後述する磁気コア21を貫通しており、配線41aにおける磁気コア21を貫通している部分(経路)を経路51aとし、配線42aにおける磁気コア21を貫通している部分(経路)を経路52aとする。経路51aは、直流電源40と機器50とを接続している配線41aにおける経路であることから、経路51aも直流電源40と機器50とを接続しているといえる。経路51aは、直流電源40と機器50とを接続する第1経路の一例である。経路52aは、直流電源40と機器50とを接続している配線42aにおける経路であることから、経路52aも直流電源40と機器50とを接続しているといえる。経路52aは、直流電源40と機器50とを接続する第2経路の一例である。
 磁気コア21において経路51aを流れる直流電流の向きと経路52aを流れる直流電流の向きとは逆向きである。経路51aが、直流電源40の正極に接続された配線41aにおける経路であり、経路52aが、直流電源40の負極に接続された配線42aにおける経路であることからも経路51aを流れる直流電流の向きと経路52aを流れる直流電流の向きとが逆向きであることがわかる。図1Aにおいて、経路51aを流れる直流電流の向きと経路52aを流れる直流電流の向きとを、磁気コア21付近に矢印で示している。
 アーク検出装置10aは、アークを検出するための装置であり、低インピーダンス回路11a、電流検出部20a及びアーク判定部30を備える。
 電流検出部20aは、経路51a及び52aが貫通する磁気コア21を有し、磁気コア21に発生する磁界に応じて経路51a及び52aを流れる電流を検出する。
 磁気コア21は、配線が貫通可能な環状形状(ここでは円環形状)となっており、自身の孔を貫通する配線に流れる電流によって、当該電流に応じた磁界がコアに発生する。なお、磁気コア21は、円環形状に限らず、矩形状の環状形状等であってもよい。
 また、電流検出部20aは、例えば、磁気コア21に発生する磁界を検出して、磁気コア21に発生する磁界に応じた電圧を発生するホール素子(図示せず)を備える。ホール素子が発生する電圧は、磁気コア21に発生した磁界、つまり、磁気コア21を貫通する経路を流れる電流を示す信号としてアーク判定部30に入力される。
 低インピーダンス回路11aは、直流電源40及び機器50よりもインピーダンスが低い回路である。低インピーダンス回路11aは、経路51a及び52aに接続され、経路51a及び52aのうちの一方の経路への高周波成分をバイパスするための回路である。低インピーダンス回路11aは、例えばコンデンサであり、直流電源40が有する容量成分及び機器50が有する容量成分よりもインピーダンスが低い。コンデンサは、直流成分を遮断する機能を有するため、配線41a及び42aを流れる信号から高周波成分のみを抽出することができる。コンデンサのキャパシタンス値は、抽出したい高周波成分の周波数等に応じて適宜決定される。低インピーダンス回路11aは、直流電源40及び機器50よりもインピーダンスが低いことから、配線41a及び42aでは、低インピーダンス回路11aへ向けて高周波成分が流れやすくなっている。
 低インピーダンス回路11aは、具体的には、直流電源40の正極及び負極のうちの一方(ここでは正極)と磁気コア21との間における配線41a上の接続点N1aと、磁気コア21と機器50との間における配線42a上の接続点N2aとを結ぶバイパス経路43aに設けられる。
 アーク判定部30は、例えばマイコン(マイクロコントローラ)により実現される。マイコンは、プログラムが格納されたROM、RAM、プログラムを実行するプロセッサ(CPU:Central Processing Unit)、タイマ、A/D変換器及びD/A変換器等を有する半導体集積回路等である。なお、アーク判定部30は、A/D変換器、論理回路、ゲートアレイ及びD/A変換器等で構成される専用の電子回路によってハードウェア的に実現されてもよい。
 アーク判定部30は、電流検出部20aにより検出された電流に基づいて、アークの発生を判定する。例えば、アーク判定部30は、電流検出部20aにより検出された電流を周波数分析することで配線41a又は42aにおけるアークの発生を判定する。アークの発生により生じる高周波成分が重畳した電流には、アークに起因する周波数成分が含まれており、当該周波数成分を検出することでアークの発生を判定することができる。
 一般的には、配線41a及び42aの一方のみ(例えば配線41aのみ)が貫通するように磁気コア21を設けることが考えられるが、その場合、配線41aには直流電源40からの大きな直流電流が流れており、磁気コア21に磁気飽和が生じ得る。このため、配線41aにアークが発生した場合、直流電流による磁気飽和によって、配線41aに流れる直流電流に重畳したアークによる高周波成分を正確に検出できないことがある。
 また、単に、配線41a及び42aの両方が貫通するように磁気コア21を設けるだけの場合、配線41aを流れる電流の向きと配線42aを流れる電流の向きとが逆となるため、配線41aを流れる直流電流による磁界と配線42aを流れる直流電流による磁界とを相殺でき磁気飽和を防止できるが、アークの発生に基づく高周波成分による磁界についても同様に相殺されてしまい、アークの発生の検出が難しい。
 そこで、アーク検出装置10は、直流電源40の正極及び負極のうちの一方(ここでは正極)と磁気コア21との間における配線41a上の接続点N1aと、磁気コア21と機器50との間における配線42a上の接続点N2aとを結ぶバイパス経路43aに設けられる低インピーダンス回路11aを備える。
 低インピーダンス回路11a(例えばコンデンサ)は、直流電流を遮断し、交流電流(高周波成分)を通過させる素子であり、配線41a又は42aを流れる電流に含まれる高周波成分をバイパス経路43aへ流す。アーク検出装置10aがこのような低インピーダンス回路11aを備えることによりアークを正確に検出できるようになる原理について、図1B及び図1Cを用いて説明する。
 図1B及び図1Cは、実施の形態1に係るアーク検出装置10aにおいてアークが発生したときの配線に流れる電流の一例を示す図である。図1Bでは、配線41aにおける直流電源40の正極と接続点N1aとの間でアークが発生したとする。図1Cでは、配線42aにおける機器50と磁気コア21との間でアークが発生したとする。図1B及び図1Cでは、アークの発生により生じる高周波成分の流れを太い破線で示す。
 上述したように、磁気コア21において発生する経路51aを流れる直流電流による磁界と経路52aを流れる直流電流による磁界とは相殺され磁気飽和を防止できる。また、これらの直流電流は、直流電流を遮断する低インピーダンス回路11a(コンデンサ)によってバイパス経路43aへは流れない。
 まず、図1Bに示されるように、配線41aにおける直流電源40の正極と接続点N1aとの間でアークが発生した場合に、アークを正確に検出できるようになる原理について説明する。
 アークによる高周波成分は、接続点N1aにおいてバイパス経路43aへと流れる。高周波成分は、接続点N1aと機器50とを結ぶ経路51aではなく、低インピーダンス回路11aが設けられたバイパス経路43aを流れようとするためである。そして、高周波成分は、接続点N2aと直流電源40とを結ぶ経路52aを流れる。このように、バイパス経路43aは経路51aをバイパスする経路となり、高周波成分は、磁気コア21において経路52aを流れるのに対して経路51aには流れない。したがって、磁気コア21において、経路51aを流れる直流電流に応じた磁界と経路52aを流れる直流電流に応じた磁界とは相殺され、経路52aを流れる高周波成分に応じた磁界が発生する。当該磁界は、例えばホール素子によって電圧信号としてアーク判定部30に出力され、当該電圧信号からアーク判定部30は、アークが発生したと判定できる。
 次に、図1Cに示されるように、配線42aにおける機器50と磁気コア21との間でアークが発生した場合に、アークを正確に検出できるようになる原理について説明する。
 アークによる高周波成分は、磁気コア21において経路51aを流れ、接続点N1aにおいてバイパス経路43aへと流れる。高周波成分は、接続点N1aと直流電源40とを結ぶ経路ではなく、低インピーダンス回路11aが設けられたバイパス経路43aを流れようとするためである。そして、高周波成分は、接続点N2aと機器50とを結ぶ経路を流れる。このように、バイパス経路43aは経路52aをバイパスする経路となり、高周波成分は、磁気コア21において経路51aを流れるのに対して経路52aには流れない。したがって、磁気コア21において、経路51aを流れる直流電流に応じた磁界と経路52aを流れる直流電流に応じた磁界とは相殺され、経路51aを流れる高周波成分に応じた磁界が発生する。当該磁界は、例えばホール素子によって電圧信号としてアーク判定部30に出力され、当該電圧信号からアーク判定部30は、アークが発生したと判定できる。
 以上説明したように、本実施の形態に係るアーク検出装置10aは、直流電源40と機器50とを接続する第1経路(例えば経路51a)及び第2経路(例えば経路52a)が貫通する磁気コア21を有し、磁気コア21に発生する磁界に応じて第1経路及び第2経路を流れる電流を検出する電流検出部20aと、直流電源40及び機器50よりもインピーダンスが低い低インピーダンス回路11aであって、第1経路及び第2経路に接続され、第1経路及び第2経路のうちの一方の経路への高周波成分をバイパスするための低インピーダンス回路11aと、電流検出部20aにより検出された電流に基づいて、アークの発生を判定するアーク判定部30と、を備え、磁気コア21において、第1経路を流れる直流電流の向きと第2経路を流れる直流電流の向きとは逆向きである。
 これによれば、それぞれ逆向きの直流電流が流れる第1経路及び第2経路の両方が磁気コア21を貫通しているため、磁気コア21において発生する第1経路を流れる直流電流による磁界と第2経路を流れる直流電流による磁界とは相殺されて磁気飽和を防止できる。また、第1経路及び第2経路のいずれか一方の経路へのアークによる高周波成分をバイパスするように低インピーダンス回路11aが設けられているため、アークによる高周波成分については相殺されないようにすることができる。よって、アークを正確に検出できる。
 例えば、直流電源40は、直流電源40の正極及び負極のうちの一方に接続された第1配線(例えば配線41a)、並びに、直流電源の正極及び負極のうちの他方に接続された第2配線(例えば配線42a)を介して機器50に電力を供給し、第1経路は、第1配線における経路であり、第2経路は、第2配線における経路であってもよい。
 これによれば、それぞれ極性の異なる電極に接続された第1配線及び第2配線を用いることで、第1配線における第1経路に流れる直流電流の向きと第2配線における第2経路を流れる直流電流の向きとを逆向きにすることができる。
 例えば、低インピーダンス回路11aは、直流電源40の正極及び負極のうちの一方と磁気コア21との間における第1配線上の接続点(例えば接続点N1a)と、磁気コア21と機器50との間における第2配線上の接続点(例えば接続点N2a)とを結ぶバイパス経路43aに設けられてもよい。
 これによれば、第1配線における磁気コア21よりも直流電源40側の接続点と、第2配線における磁気コア21よりも機器50側の接続点とを低インピーダンス回路11aを介してバイパス経路43aによって結ぶことで、第1経路及び第2経路のうちの一方の経路への高周波成分をバイパスすることができる。
 (実施の形態1の変形例1)
 実施の形態1では、低インピーダンス回路11aは、直流電源40の正極と磁気コア21との間における配線41a上の接続点N1aと、磁気コア21と機器50との間における配線42a上の接続点N2aとを結ぶバイパス経路43aに設けられる例について説明したが、これに限らない。実施の形態1の変形例1では、低インピーダンス回路が、直流電源40の負極と磁気コア21との間における第1配線上の接続点と、磁気コア21と機器50との間における第2配線上の接続点とを結ぶバイパス経路に設けられる例について説明する。
 図2Aは、実施の形態1の変形例1に係るアーク検出装置10bの一例を示す構成図である。なお、図2Aには、直流電源40及び機器50も示している。
 直流電源40は、正極と負極を有し、正極には配線41bが接続され、負極には配線42bが接続され、配線41b及び42bを介して直流電力を機器50に供給する。
 機器50は、直流電源40から配線41b及び42bを介して直流電力が供給される機器である。
 配線41b及び42bは、直流電源40と機器50とを接続する。配線42bは、直流電源40の正極及び負極のうちの一方に接続された第1配線の一例である。ここでは、配線42bは、直流電源40の正極及び負極のうちの一方として負極に接続される。配線41bは、直流電源40の正極及び負極のうちの他方に接続された第2配線の一例である。ここでは、配線41bは、直流電源40の正極及び負極のうちの他方として正極に接続される。
 配線41b及び42bは、磁気コア21を貫通しており、配線41bにおける磁気コア21を貫通している部分(経路)を経路51bとし、配線42bにおける磁気コア21を貫通している部分(経路)を経路52bとする。経路51bは、直流電源40と機器50とを接続している配線41bにおける経路であることから、経路51bも直流電源40と機器50とを接続しているといえる。経路51bは、直流電源40と機器50とを接続する第2経路の一例である。経路52bは、直流電源40と機器50とを接続している配線42bにおける経路であることから、経路52bも直流電源40と機器50とを接続しているといえる。経路52bは、直流電源40と機器50とを接続する第1経路の一例である。
 磁気コア21において経路51bを流れる直流電流の向きと経路52bを流れる直流電流の向きとは逆向きである。経路51bが、直流電源40の正極に接続された配線41bにおける経路であり、経路52bが、直流電源40の負極に接続された配線42bにおける経路であることからも経路51bを流れる直流電流の向きと経路52bを流れる直流電流の向きとが逆向きであることがわかる。図2Aにおいて、経路51bを流れる直流電流の向きと経路52bを流れる直流電流の向きとを、磁気コア21付近に矢印で示している。
 アーク検出装置10bは、アークを検出するための装置であり、低インピーダンス回路11b、電流検出部20b及びアーク判定部30を備える。
 電流検出部20bは、経路51b及び52bが貫通する磁気コア21を有し、磁気コア21に発生する磁界に応じて経路51b及び52bを流れる電流を検出する。
 電流検出部20bは、例えば、磁気コア21に発生する磁界を検出して、磁気コア21に発生する磁界に応じた電圧を発生するホール素子(図示せず)を備える。ホール素子が発生する電圧は、磁気コア21に発生した磁界、つまり、磁気コア21を貫通する経路を流れる電流を示す信号としてアーク判定部30に入力される。
 低インピーダンス回路11bは、直流電源40及び機器50よりもインピーダンスが低い回路である。低インピーダンス回路11bは、経路51b及び52bに接続され、経路51b及び52bのうちの一方の経路への高周波成分をバイパスするための回路である。低インピーダンス回路11bは、例えばコンデンサであり、直流電源40が有する容量成分及び機器50が有する容量成分よりもインピーダンスが低い。コンデンサは、直流成分を遮断する機能を有するため、配線41b及び42bを流れる信号から高周波成分のみを抽出することができる。コンデンサのキャパシタンス値は、抽出したい高周波成分の周波数等に応じて適宜決定される。低インピーダンス回路11bは、直流電源40及び機器50よりもインピーダンスが低いことから、配線41b及び42bでは、低インピーダンス回路11bへ向けて高周波成分が流れやすくなっている。
 低インピーダンス回路11bは、具体的には、直流電源40の正極及び負極のうちの一方(ここでは負極)と磁気コア21との間における配線42b上の接続点N2bと、磁気コア21と機器50との間における配線41b上の接続点N1bとを結ぶバイパス経路43bに設けられる。
 アーク判定部30は、電流検出部20bにより検出された電流に基づいて、アークの発生を判定する。例えば、アーク判定部30は、電流検出部20bにより検出された電流を周波数分析することで配線41b又は42bにおけるアークの発生を判定する。
 低インピーダンス回路11b(例えばコンデンサ)は、直流電流を遮断し、交流電流(高周波成分)を通過させる素子であり、配線41b又は42bを流れる電流に含まれる高周波成分をバイパス経路43bへ流す。アーク検出装置10bがこのような低インピーダンス回路11bを備えることによりアークを正確に検出できるようになる原理について、図2B及び図2Cを用いて説明する。
 図2B及び図2Cは、実施の形態1の変形例1に係るアーク検出装置10bにおいてアークが発生したときの配線に流れる電流の一例を示す図である。図2Bでは、配線41bにおける直流電源40の正極と接続点N1bとの間でアークが発生したとする。図2Cでは、配線41bにおける機器50と接続点N1bとの間でアークが発生したとする。図2B及び図2Cでは、アークの発生により生じる高周波成分の流れを太い破線で示す。
 上述したように、磁気コア21において発生する経路51bを流れる直流電流による磁界と経路52bを流れる直流電流による磁界とは相殺され磁気飽和を防止できる。また、これらの直流電流は、直流電流を遮断する低インピーダンス回路11b(コンデンサ)によってバイパス経路43bへは流れない。
 まず、図2Bに示されるように、配線41bにおける直流電源40の正極と接続点N1bとの間でアークが発生した場合に、アークを正確に検出できるようになる原理について説明する。
 アークによる高周波成分は、磁気コア21において経路51bを流れ、接続点N1bにおいてバイパス経路43bへと流れる。高周波成分は、接続点N1bと機器50とを結ぶ経路ではなく、低インピーダンス回路11bが設けられたバイパス経路43bを流れようとするためである。そして、高周波成分は、接続点N2bと直流電源40とを結ぶ経路を流れる。このように、バイパス経路43bは経路52bをバイパスする経路となり、高周波成分は、磁気コア21において経路51bを流れるのに対して経路52bには流れない。したがって、磁気コア21において、経路51bを流れる直流電流に応じた磁界と経路52bを流れる直流電流に応じた磁界とは相殺され、経路51bを流れる高周波成分に応じた磁界が発生する。当該磁界は、例えばホール素子によって電圧信号としてアーク判定部30に出力され、当該電圧信号からアーク判定部30は、アークが発生したと判定できる。
 次に、図2Cに示されるように、配線41bにおける機器50と接続点N1bとの間でアークが発生した場合に、アークを正確に検出できるようになる原理について説明する。
 アークによる高周波成分は、接続点N1bにおいてバイパス経路43bへと流れる。高周波成分は、接続点N1bと直流電源40とを結ぶ経路51bではなく、低インピーダンス回路11bが設けられたバイパス経路43bを流れようとするためである。そして、高周波成分は、接続点N2bと機器50とを結ぶ経路52bを流れる。このように、バイパス経路43bは経路51bをバイパスする経路となり、高周波成分は、磁気コア21において経路52bを流れるのに対して経路51bには流れない。したがって、磁気コア21において、経路51bを流れる直流電流に応じた磁界と経路52bを流れる直流電流に応じた磁界とは相殺され、経路52bを流れる高周波成分に応じた磁界が発生する。当該磁界は、例えばホール素子によって電圧信号としてアーク判定部30に出力され、当該電圧信号からアーク判定部30は、アークが発生したと判定できる。
 このように、低インピーダンス回路11bが、直流電源40の負極と磁気コア21との間における配線42b上の接続点N2bと、磁気コア21と機器50との間における配線41b上の接続点N1bとを結ぶバイパス経路43bに設けられる場合であっても、アークを正確に検出できる。
 (実施の形態1の変形例2)
 実施の形態1では、磁気コア21を貫通する経路51aは、直流電源40の正極及び負極のうちの一方(例えば正極)に接続された配線41aにおける経路であり、磁気コア21を貫通する経路52aは、直流電源40の正極及び負極のうちの他方(例えば負極)に接続された配線42aにおける経路である例について説明したが、これに限らない。実施の形態1の変形例2では、磁気コア21を貫通する2つの経路が、直流電源40の正極及び負極のうちの一方に接続された第1配線における経路である例について説明する。
 図3Aは、実施の形態1の変形例2に係るアーク検出装置10cの一例を示す構成図である。なお、図3Aには、直流電源40及び機器50も示している。
 直流電源40は、正極と負極を有し、正極には配線41cが接続され、負極には配線42cが接続され、配線41c及び42cを介して直流電力を機器50に供給する。
 機器50は、直流電源40から配線41c及び42cを介して直流電力が供給される機器である。
 配線41c及び42cは、直流電源40と機器50とを接続する。配線42cは、直流電源40の正極及び負極のうちの一方に接続された第1配線の一例である。ここでは、配線42cは、直流電源40の正極及び負極のうちの一方として正極に接続される。配線41cは、直流電源40の正極及び負極のうちの他方に接続された第2配線の一例である。ここでは、配線41cは、直流電源40の正極及び負極のうちの他方として負極に接続される。
 配線41cは、磁気コア21を貫通している。具体的には、配線41cは、磁気コア21を磁気コア21の一方側(図3Aでは磁気コア21の左側)から他方側(図3Aでは磁気コア21の右側)へ貫通した後折り返し、磁気コア21を磁気コア21の上記他方側から上記一方側へ貫通している。配線41cにおける、磁気コア21を上記一方側から上記他方側へ貫通している部分(経路)を経路51cとし、磁気コア21を上記他方側から上記一方側へ貫通している部分(経路)を経路52cとする。経路51c及び52cは、直流電源40と機器50とを接続している配線41cにおける経路であることから、経路51c及び52cも直流電源40と機器50とを接続しているといえる。経路51cは、直流電源40と機器50とを接続する第1経路の一例であり、経路52cは、直流電源40と機器50とを接続する第2経路の一例である。
 磁気コア21において経路51cを流れる直流電流の向きと経路52cを流れる直流電流の向きとは逆向きである。経路51c及び52cが共に配線41cにおける経路であり、経路51cが磁気コア21を上記一方側から上記他方側へ貫通し、経路52cが磁気コア21を上記他方側から上記一方側へ貫通していることからも、磁気コア21において経路51cを流れる直流電流の向きと経路52cを流れる直流電流の向きとが逆向きであることがわかる。図3Aにおいて、経路51cを流れる直流電流の向きと経路52cを流れる直流電流の向きとを、磁気コア21付近に矢印で示している。
 アーク検出装置10cは、アークを検出するための装置であり、低インピーダンス回路11c、電流検出部20c及びアーク判定部30を備える。
 電流検出部20cは、経路51c及び52cが貫通する磁気コア21を有し、磁気コア21に発生する磁界に応じて経路51c及び52cを流れる電流を検出する。
 電流検出部20cは、例えば、磁気コア21に発生する磁界を検出して、磁気コア21に発生する磁界に応じた電圧を発生するホール素子(図示せず)を備える。ホール素子が発生する電圧は、磁気コア21に発生した磁界、つまり、磁気コア21を貫通する経路を流れる電流を示す信号としてアーク判定部30に入力される。
 低インピーダンス回路11cは、直流電源40及び機器50よりもインピーダンスが低い回路である。低インピーダンス回路11cは、経路51c及び52cに接続され、経路51c及び52cのうちの一方の経路への高周波成分をバイパスするための回路である。低インピーダンス回路11cは、例えばコンデンサであり、直流電源40が有する容量成分及び機器50が有する容量成分よりもインピーダンスが低い。コンデンサは、直流成分を遮断する機能を有するため、配線41cを流れる信号から高周波成分のみを抽出することができる。コンデンサのキャパシタンス値は、抽出したい高周波成分の周波数等に応じて適宜決定される。低インピーダンス回路11cは、直流電源40及び機器50よりもインピーダンスが低いことから、配線41cでは、低インピーダンス回路11cへ向けて高周波成分が流れやすくなっている。
 低インピーダンス回路11cは、具体的には、上記折り返し部分における接続点N1cと、磁気コア21の上記一方側と機器50との間における配線41c上の接続点N2cとを結ぶバイパス経路43cに設けられる。
 アーク判定部30は、電流検出部20cにより検出された電流に基づいて、アークの発生を判定する。例えば、アーク判定部30は、電流検出部20cにより検出された電流を周波数分析することで配線41c又は42cにおけるアークの発生を判定する。
 低インピーダンス回路11c(例えばコンデンサ)は、直流電流を遮断し、交流電流(高周波成分)を通過させる素子であり、配線41cを流れる電流に含まれる高周波成分をバイパス経路43cへ流す。アーク検出装置10cがこのような低インピーダンス回路11cを備えることによりアークを正確に検出できるようになる原理について、図3B及び図3Cを用いて説明する。
 図3B及び図3Cは、実施の形態1の変形例2に係るアーク検出装置10cにおいてアークが発生したときの配線に流れる電流の一例を示す図である。図3Bでは、配線41cにおける直流電源40の正極と磁気コア21の上記一方側との間でアークが発生したとする。図3Cでは、配線41cにおける機器50と接続点N2cとの間でアークが発生したとする。図3B及び図3Cでは、アークの発生により生じる高周波成分の流れを太い破線で示す。
 上述したように、磁気コア21において発生する経路51cを流れる直流電流による磁界と経路52cを流れる直流電流による磁界とは相殺され磁気飽和を防止できる。また、これらの直流電流は、直流電流を遮断する低インピーダンス回路11c(コンデンサ)によってバイパス経路43cへは流れない。
 まず、図3Bに示されるように、配線41cにおける直流電源40の正極と磁気コア21の上記一方側との間でアークが発生した場合に、アークを正確に検出できるようになる原理について説明する。
 アークによる高周波成分は、磁気コア21において経路51cを流れ、接続点N1cにおいてバイパス経路43cへと流れる。高周波成分は、経路52cではなく、低インピーダンス回路11cが設けられたバイパス経路43cを流れようとするためである。そして、高周波成分は、接続点N2cと機器50とを結ぶ経路を流れる。このように、バイパス経路43cは経路52cをバイパスする経路となり、高周波成分は、磁気コア21において経路51cを流れるのに対して経路52cには流れない。したがって、磁気コア21において、経路51cを流れる直流電流に応じた磁界と経路52cを流れる直流電流に応じた磁界とは相殺され、経路51cを流れる高周波成分に応じた磁界が発生する。当該磁界は、例えばホール素子によって電圧信号としてアーク判定部30に出力され、当該電圧信号からアーク判定部30は、アークが発生したと判定できる。
 次に、図3Cに示されるように、配線41cにおける機器50と接続点N2cとの間でアークが発生した場合に、アークを正確に検出できるようになる原理について説明する。
 アークによる高周波成分は、接続点N2cにおいてバイパス経路43cへと流れる。高周波成分は、経路52cではなく、低インピーダンス回路11cが設けられたバイパス経路43cを流れようとするためである。そして、高周波成分は、接続点N1cと直流電源40とを結ぶ経路51cを流れる。このように、バイパス経路43cは経路52cをバイパスする経路となり、高周波成分は、磁気コア21において経路51cを流れるのに対して経路52cには流れない。したがって、磁気コア21において、経路51cを流れる直流電流に応じた磁界と経路52cを流れる直流電流に応じた磁界とは相殺され、経路51cを流れる高周波成分に応じた磁界が発生する。当該磁界は、例えばホール素子によって電圧信号としてアーク判定部30に出力され、当該電圧信号からアーク判定部30は、アークが発生したと判定できる。
 以上説明したように、直流電源40は、直流電源40の正極及び負極のうちの一方に接続された第1配線(例えば配線41c)、並びに、直流電源40の正極及び負極のうちの他方に接続された第2配線(例えば配線42c)を介して機器50に電力を供給し、第1経路(例えば経路51c)及び第2経路(例えば経路52c)は、第1配線における経路であり、第1配線は、第1経路において磁気コア21を磁気コア21の一方側から他方側へ貫通した後折り返し、第2経路において磁気コア21を磁気コア21の上記他方側から上記一方側へ貫通する。
 これによれば、第1配線を一度貫通させ、折り返して再度貫通させることで、第1配線における第1経路に流れる直流電流の向きと第2経路を流れる直流電流の向きとを逆向きにすることができる。
 例えば、低インピーダンス回路11cは、上記折り返し部分における接続点(例えば接続点N1c)と、磁気コア21の上記一方側と機器50との間における第1配線上の接続点(例えば接続点N2c)とを結ぶバイパス経路43cに設けられてもよい。
 これによれば、直流電源40から見て第1配線における磁気コア21を一度貫通した後の折り返し部分の接続点と、第1配線における磁気コア21を再度貫通した後の接続点とを低インピーダンス回路11cを介してバイパス経路43cによって結ぶことで、第2経路への高周波成分をバイパスすることができる。
 (実施の形態1の変形例3)
 実施の形態1の変形例2では、低インピーダンス回路11cは、配線41cにおける折り返し部分の接続点N1cと、磁気コア21の一方側と機器50との間における配線41c上の接続点N2cとを結ぶバイパス経路43cに設けられる例について説明したが、これに限らない。実施の形態1の変形例3では、低インピーダンス回路が、直流電源40の正極及び負極のうちの一方に接続された第1配線における折り返し部分の接続点と、磁気コア21の一方側と直流電源40の正極及び負極のうちの一方との間における第1配線上の接続点とを結ぶバイパス経路に設けられる例について説明する。
 図4Aは、実施の形態1の変形例3に係るアーク検出装置10dの一例を示す構成図である。なお、図4Aには、直流電源40及び機器50も示している。
 直流電源40は、正極と負極を有し、正極には配線41dが接続され、負極には配線42dが接続され、配線41d及び42dを介して直流電力を機器50に供給する。
 機器50は、直流電源40から配線41d及び42dを介して直流電力が供給される機器である。
 配線41d及び42dは、直流電源40と機器50とを接続する。配線42dは、直流電源40の正極及び負極のうちの一方に接続された第1配線の一例である。ここでは、配線42dは、直流電源40の正極及び負極のうちの一方として正極に接続される。配線41dは、直流電源40の正極及び負極のうちの他方に接続された第2配線の一例である。ここでは、配線41dは、直流電源40の正極及び負極のうちの他方として負極に接続される。
 配線41dは、磁気コア21を貫通している。具体的には、配線41dは、磁気コア21を磁気コア21の一方側(図4Aでは磁気コア21の左側)から他方側(図4Aでは磁気コア21の右側)へ貫通した後折り返し、磁気コア21を磁気コア21の上記他方側から上記一方側へ貫通している。配線41dにおける、磁気コア21を上記一方側から上記他方側へ貫通している部分(経路)を経路51dとし、磁気コア21を上記他方側から上記一方側へ貫通している部分(経路)を経路52dとする。経路51d及び52dは、直流電源40と機器50とを接続している配線41dにおける経路であることから、経路51d及び52dも直流電源40と機器50とを接続しているといえる。経路51dは、直流電源40と機器50とを接続する第1経路の一例であり、経路52dは、直流電源40と機器50とを接続する第2経路の一例である。
 磁気コア21において経路51dを流れる直流電流の向きと経路52dを流れる直流電流の向きとは逆向きである。経路51d及び52dが共に配線41dにおける経路であり、経路51dが磁気コア21を上記一方側から上記他方側へ貫通し、経路52dが磁気コア21を上記他方側から上記一方側へ貫通していることからも、磁気コア21において経路51dを流れる直流電流の向きと経路52dを流れる直流電流の向きとが逆向きであることがわかる。図4Aにおいて、経路51dを流れる直流電流の向きと経路52dを流れる直流電流の向きとを、磁気コア21付近に矢印で示している。
 アーク検出装置10dは、アークを検出するための装置であり、低インピーダンス回路11d、電流検出部20d及びアーク判定部30を備える。
 電流検出部20dは、経路51d及び52dが貫通する磁気コア21を有し、磁気コア21に発生する磁界に応じて経路51d及び52dを流れる電流を検出する。
 電流検出部20dは、例えば、磁気コア21に発生する磁界を検出して、磁気コア21に発生する磁界に応じた電圧を発生するホール素子(図示せず)を備える。ホール素子が発生する電圧は、磁気コア21に発生した磁界、つまり、磁気コア21を貫通する経路を流れる電流を示す信号としてアーク判定部30に入力される。
 低インピーダンス回路11dは、直流電源40及び機器50よりもインピーダンスが低い回路である。低インピーダンス回路11dは、経路51d及び52dに接続され、経路51d及び52dのうちの一方の経路への高周波成分をバイパスするための回路である。低インピーダンス回路11dは、例えばコンデンサであり、直流電源40が有する容量成分及び機器50が有する容量成分よりもインピーダンスが低い。コンデンサは、直流成分を遮断する機能を有するため、配線41dを流れる信号から高周波成分のみを抽出することができる。コンデンサのキャパシタンス値は、抽出したい高周波成分の周波数等に応じて適宜決定される。低インピーダンス回路11dは、直流電源40及び機器50よりもインピーダンスが低いことから、配線41dでは、低インピーダンス回路11dへ向けて高周波成分が流れやすくなっている。
 低インピーダンス回路11dは、具体的には、上記折り返し部分における接続点N1dと、磁気コア21の上記一方側と直流電源40の正極及び負極のうちの一方(例えば正極)との間における配線41d上の接続点N2dとを結ぶバイパス経路43dに設けられる。
 アーク判定部30は、電流検出部20dにより検出された電流に基づいて、アークの発生を判定する。例えば、アーク判定部30は、電流検出部20dにより検出された電流を周波数分析することで配線41d又は42dにおけるアークの発生を判定する。
 低インピーダンス回路11d(例えばコンデンサ)は、直流電流を遮断し、交流電流(高周波成分)を通過させる素子であり、配線41dを流れる電流に含まれる高周波成分をバイパス経路43dへ流す。アーク検出装置10dがこのような低インピーダンス回路11dを備えることによりアークを正確に検出できるようになる原理について、図4B及び図4Cを用いて説明する。
 図4B及び図4Cは、実施の形態1の変形例3に係るアーク検出装置10dにおいてアークが発生したときの配線に流れる電流の一例を示す図である。図4Bでは、配線41dにおける直流電源40の正極と接続点N2dとの間でアークが発生したとする。図4Cでは、配線41dにおける機器50と磁気コア21の上記一方側との間でアークが発生したとする。図4B及び図4Cでは、アークの発生により生じる高周波成分の流れを太い破線で示す。
 上述したように、磁気コア21において発生する経路51dを流れる直流電流による磁界と経路52dを流れる直流電流による磁界とは相殺され磁気飽和を防止できる。また、これらの直流電流は、直流電流を遮断する低インピーダンス回路11d(コンデンサ)によってバイパス経路43dへは流れない。
 まず、図4Bに示されるように、配線41dにおける直流電源40の正極と接続点N2dとの間でアークが発生した場合に、アークを正確に検出できるようになる原理について説明する。
 アークによる高周波成分は、接続点N2dにおいてバイパス経路43dへと流れる。高周波成分は、経路51dではなく、低インピーダンス回路11dが設けられたバイパス経路43dを流れようとするためである。そして、高周波成分は、接続点N1dと機器50とを結ぶ経路52dを流れる。このように、バイパス経路43dは経路51dをバイパスする経路となり、高周波成分は、磁気コア21において経路52dを流れるのに対して経路51dには流れない。したがって、磁気コア21において、経路51dを流れる直流電流に応じた磁界と経路52dを流れる直流電流に応じた磁界とは相殺され、経路52dを流れる高周波成分に応じた磁界が発生する。当該磁界は、例えばホール素子によって電圧信号としてアーク判定部30に出力され、当該電圧信号からアーク判定部30は、アークが発生したと判定できる。
 次に、図4Cに示されるように、配線41dにおける機器50と磁気コア21の上記一方側との間でアークが発生した場合に、アークを正確に検出できるようになる原理について説明する。
 アークによる高周波成分は、磁気コア21において経路52dを流れ、接続点N1dにおいてバイパス経路43dへと流れる。高周波成分は、経路51dではなく、低インピーダンス回路11dが設けられたバイパス経路43dを流れようとするためである。そして、高周波成分は、接続点N2dと直流電源40とを結ぶ経路を流れる。このように、バイパス経路43dは経路51dをバイパスする経路となり、高周波成分は、磁気コア21において経路52dを流れるのに対して経路51dには流れない。したがって、磁気コア21において、経路51dを流れる直流電流に応じた磁界と経路52dを流れる直流電流に応じた磁界とは相殺され、経路52dを流れる高周波成分に応じた磁界が発生する。当該磁界は、例えばホール素子によって電圧信号としてアーク判定部30に出力され、当該電圧信号からアーク判定部30は、アークが発生したと判定できる。
 以上説明したように、低インピーダンス回路11dは、第1配線(例えば配線41d)の折り返し部分における接続点(例えば接続点N1d)と、磁気コア21の一方側と直流電源40の正極及び負極のうちの一方との間における第1配線上の接続点(例えば接続点N2d)とを結ぶバイパス経路43dに設けられてもよい。
 これによれば、直流電源40から見て第1配線における磁気コア21を一度貫通した後の折り返し部分の接続点と、第1配線における磁気コア21を貫通する前の接続点とを低インピーダンス回路11dを介してバイパス経路43dによって結ぶことで、第1経路への高周波成分をバイパスすることができる。
 (実施の形態1の変形例4)
 実施の形態1の変形例2及び変形例3では、低インピーダンス回路は、第1配線における折り返し部分の接続点と、磁気コア21の一方側と直流電源40又は機器50との間における第1配線上の接続点とを結ぶバイパス経路に設けられる例について説明したが、これに限らない。実施の形態1の変形例4では、低インピーダンス回路が、直流電源40の正極及び負極のうちの一方に接続された第1配線における折り返し部分の接続点と、第2配線上の接続点とを結ぶバイパス経路に設けられる例について説明する。
 図5Aは、実施の形態1の変形例4に係るアーク検出装置10eの一例を示す構成図である。なお、図5Aには、直流電源40及び機器50も示している。
 直流電源40は、正極と負極を有し、正極には配線41eが接続され、負極には配線42eが接続され、配線41e及び42eを介して直流電力を機器50に供給する。
 機器50は、直流電源40から配線41e及び42eを介して直流電力が供給される機器である。
 配線41e及び42eは、直流電源40と機器50とを接続する。配線42eは、直流電源40の正極及び負極のうちの一方に接続された第1配線の一例である。ここでは、配線42eは、直流電源40の正極及び負極のうちの一方として正極に接続される。配線41eは、直流電源40の正極及び負極のうちの他方に接続された第2配線の一例である。ここでは、配線41eは、直流電源40の正極及び負極のうちの他方として負極に接続される。
 配線41eは、磁気コア21を貫通している。具体的には、配線41eは、磁気コア21を磁気コア21の一方側(図5Aでは磁気コア21の左側)から他方側(図5Aでは磁気コア21の右側)へ貫通した後折り返し、磁気コア21を磁気コア21の上記他方側から上記一方側へ貫通している。配線41eにおける、磁気コア21を上記一方側から上記他方側へ貫通している部分(経路)を経路51eとし、磁気コア21を上記他方側から上記一方側へ貫通している部分(経路)を経路52eとする。経路51e及び52eは、直流電源40と機器50とを接続している配線41eにおける経路であることから、経路51e及び52eも直流電源40と機器50とを接続しているといえる。経路51eは、直流電源40と機器50とを接続する第1経路の一例であり、経路52eは、直流電源40と機器50とを接続する第2経路の一例である。
 磁気コア21において経路51eを流れる直流電流の向きと経路52eを流れる直流電流の向きとは逆向きである。経路51e及び52eが共に配線41eにおける経路であり、経路51eが磁気コア21を上記一方側から上記他方側へ貫通し、経路52eが磁気コア21を上記他方側から上記一方側へ貫通していることからも、磁気コア21において経路51eを流れる直流電流の向きと経路52eを流れる直流電流の向きとが逆向きであることがわかる。図5Aにおいて、経路51eを流れる直流電流の向きと経路52eを流れる直流電流の向きとを、磁気コア21付近に矢印で示している。
 アーク検出装置10eは、アークを検出するための装置であり、低インピーダンス回路11e、電流検出部20e及びアーク判定部30を備える。
 電流検出部20eは、経路51e及び52eが貫通する磁気コア21を有し、磁気コア21に発生する磁界に応じて経路51e及び52eを流れる電流を検出する。
 電流検出部20eは、例えば、磁気コア21に発生する磁界を検出して、磁気コア21に発生する磁界に応じた電圧を発生するホール素子(図示せず)を備える。ホール素子が発生する電圧は、磁気コア21に発生した磁界、つまり、磁気コア21を貫通する経路を流れる電流を示す信号としてアーク判定部30に入力される。
 低インピーダンス回路11eは、直流電源40及び機器50よりもインピーダンスが低い回路である。低インピーダンス回路11eは、経路51e及び52eに接続され、経路51e及び52eのうちの一方の経路への高周波成分をバイパスするための回路である。低インピーダンス回路11eは、例えばコンデンサであり、直流電源40が有する容量成分及び機器50が有する容量成分よりもインピーダンスが低い。コンデンサは、直流成分を遮断する機能を有するため、配線41e及び42eを流れる信号から高周波成分のみを抽出することができる。コンデンサのキャパシタンス値は、抽出したい高周波成分の周波数等に応じて適宜決定される。低インピーダンス回路11eは、直流電源40及び機器50よりもインピーダンスが低いことから、配線41e及び42eでは、低インピーダンス回路11eへ向けて高周波成分が流れやすくなっている。
 低インピーダンス回路11eは、具体的には、上記折り返し部分における接続点N1eと、配線42e上の接続点N2eとを結ぶバイパス経路43eに設けられる。
 アーク判定部30は、電流検出部20eにより検出された電流に基づいて、アークの発生を判定する。例えば、アーク判定部30は、電流検出部20eにより検出された電流を周波数分析することで配線41e又は42eにおけるアークの発生を判定する。
 低インピーダンス回路11e(例えばコンデンサ)は、直流電流を遮断し、交流電流(高周波成分)を通過させる素子であり、配線41e及び42eを流れる電流に含まれる高周波成分をバイパス経路43eへ流す。アーク検出装置10eがこのような低インピーダンス回路11eを備えることによりアークを正確に検出できるようになる原理について、図5B及び図5Cを用いて説明する。
 図5B及び図5Cは、実施の形態1の変形例4に係るアーク検出装置10eにおいてアークが発生したときの配線に流れる電流の一例を示す図である。図5Bでは、配線41eにおける直流電源40の正極と磁気コア21の上記一方側との間でアークが発生したとする。図5Cでは、配線41eにおける機器50と磁気コア21の上記一方側との間でアークが発生したとする。図5B及び図5Cでは、アークの発生により生じる高周波成分の流れを太い破線で示す。
 上述したように、磁気コア21において発生する経路51eを流れる直流電流による磁界と経路52eを流れる直流電流による磁界とは相殺され磁気飽和を防止できる。また、これらの直流電流は、直流電流を遮断する低インピーダンス回路11e(コンデンサ)によってバイパス経路43eへは流れない。
 まず、図5Bに示されるように、配線41eにおける直流電源40の正極と磁気コア21の上記一方側との間でアークが発生した場合に、アークを正確に検出できるようになる原理について説明する。
 アークによる高周波成分は、磁気コア21において経路51eを流れ、接続点N1eにおいてバイパス経路43eへと流れる。高周波成分は、経路52eではなく、低インピーダンス回路11eが設けられたバイパス経路43eを流れようとするためである。そして、高周波成分は、接続点N2eと直流電源40とを結ぶ配線42eを流れる。このように、バイパス経路43eは経路52eをバイパスする経路となり、高周波成分は、磁気コア21において経路51eを流れるのに対して経路52eには流れない。したがって、磁気コア21において、経路51eを流れる直流電流に応じた磁界と経路52eを流れる直流電流に応じた磁界とは相殺され、経路51eを流れる高周波成分に応じた磁界が発生する。当該磁界は、例えばホール素子によって電圧信号としてアーク判定部30に出力され、当該電圧信号からアーク判定部30は、アークが発生したと判定できる。
 次に、図5Cに示されるように、配線41eにおける機器50と磁気コア21の上記一方側との間でアークが発生した場合に、アークを正確に検出できるようになる原理について説明する。
 アークによる高周波成分は、磁気コア21において経路52eを流れ、接続点N1eにおいてバイパス経路43eへと流れる。高周波成分は、経路51eではなく、低インピーダンス回路11eが設けられたバイパス経路43eを流れようとするためである。そして、高周波成分は、接続点N2eと機器50とを結ぶ経路を流れる。このように、バイパス経路43eは経路51eをバイパスする経路となり、高周波成分は、磁気コア21において経路52eを流れるのに対して経路51eには流れない。したがって、磁気コア21において、経路51eを流れる直流電流に応じた磁界と経路52eを流れる直流電流に応じた磁界とは相殺され、経路52eを流れる高周波成分に応じた磁界が発生する。当該磁界は、例えばホール素子によって電圧信号としてアーク判定部30に出力され、当該電圧信号からアーク判定部30は、アークが発生したと判定できる。
 以上説明したように、低インピーダンス回路11eは、第1配線(例えば配線41e)の折り返し部分における接続点(例えば接続点N1e)と、第2配線(例えば配線42e)上の接続点(例えば接続点N2e)とを結ぶバイパス経路43eに設けられてもよい。
 これによれば、直流電源40から見て第1配線における磁気コア21を一度貫通した後の折り返し部分の接続点と、第2配線における接続点とを低インピーダンス回路11eを介してバイパス経路43eによって結ぶことで、第1経路及び第2経路のうちの一方の経路への高周波成分をバイパスすることができる。
 (実施の形態2)
 本発明に係るアーク検出装置は、太陽光発電システム等におけるパワーコンディショナ(パワコンと呼ぶ)に備えられてもよい。これについて、図6Aを用いて説明する。
 図6Aは、実施の形態2に係る太陽光発電システム1aの一例を示す構成図である。
 太陽光発電システム1aは、太陽光パネル41、蓄電池54、55及び56、DC/DCコンバータ51、52及び53並びにパワコン60aを備える。
 太陽光パネル41は、太陽光により発電し直流電力を発生する。太陽光パネル41で発生した直流電力はパワコン60aに供給される。
 蓄電池54はDC/DCコンバータ51からの直流電力を蓄電し、蓄電池55はDC/DCコンバータ52からの直流電力を蓄電し、蓄電池56はDC/DCコンバータ53からの直流電力を蓄電する。例えば、蓄電池54、55及び56は、電気自動車又は電動自転車等に搭載されてもよいし、家庭用電気機器等への電力供給のために用いられてもよい。
 DC/DCコンバータ51、52及び53は、供給された直流電力の直流電圧を昇圧又は降圧して出力する電圧変換器である。DC/DCコンバータ51は、パワコン60aから供給された直流電力を昇圧又は降圧して、蓄電池54に出力する。DC/DCコンバータ52は、パワコン60aから供給された直流電力を昇圧又は降圧して、蓄電池55に出力する。DC/DCコンバータ53は、パワコン60aから供給された直流電力を昇圧又は降圧して、蓄電池56に出力する。
 パワコン60aは、太陽光パネル41から供給される直流電力を交流電力に変換する機能を有する。また、パワコン60aは、太陽光パネル41から供給される直流電力を交流電力に変換せずに蓄電池等に供給する機能を有する。パワコン60aは、DC/DCコンバータ61、インバータ62及びアーク検出装置10aを備える。
 DC/DCコンバータ61は、太陽光パネル41から供給された直流電力を昇圧又は降圧して、DC/DCコンバータ51、52及び53並びにインバータ62へ出力する。DC/DCコンバータ61からは直流電力が出力されるため、DC/DCコンバータ61は直流電源とみなすことができる。すなわち、DC/DCコンバータ61は、直流電源の一例である。DC/DCコンバータ61は正極と負極を有し、正極には配線110が接続され、負極には配線120が接続される。
 配線110及び120は、DC/DCコンバータ61とDC/DCコンバータ51、52及び53とを接続する。DC/DCコンバータ51、52及び53は、DC/DCコンバータ61と配線110及び120を介して接続される機器の一例である。配線110は、DC/DCコンバータ61の正極及び負極のうちの一方に接続された第1配線の一例である。ここでは、配線110は、DC/DCコンバータ61の正極及び負極のうちの一方として正極に接続される。配線120は、DC/DCコンバータ61の正極及び負極のうちの他方に接続された第2配線の一例である。ここでは、配線120は、DC/DCコンバータ61の正極及び負極のうちの他方として負極に接続される。
 配線110は、DC/DCコンバータ61の正極からDC/DCコンバータ51、52及び53のそれぞれへと分岐している配線である。配線110におけるDC/DCコンバータ61の正極からDC/DCコンバータ51、52及び53へ分岐する点を分岐点N3とする。
 配線110において、分岐点N3とDC/DCコンバータ61の正極とを結ぶ分岐前の経路を経路110aとし、分岐点N3とDC/DCコンバータ51とを結ぶ分岐後の経路を経路110cとし、分岐点N3とDC/DCコンバータ52とを結ぶ分岐後の経路を経路110dとし、分岐点N3とDC/DCコンバータ53とを結ぶ分岐後の経路を経路110bとする。
 配線120は、DC/DCコンバータ61の負極からDC/DCコンバータ51、52及び53のそれぞれへと分岐している配線である。配線120におけるDC/DCコンバータ61の負極からDC/DCコンバータ51、52及び53へ分岐する点を分岐点N4とする。
 配線120において、分岐点N4とDC/DCコンバータ61の負極とを結ぶ分岐前の経路を経路120aとし、分岐点N4とDC/DCコンバータ51とを結ぶ分岐後の経路を経路120cとし、分岐点N4とDC/DCコンバータ52とを結ぶ分岐後の経路を経路120dとし、分岐点N4とDC/DCコンバータ53とを結ぶ分岐後の経路を経路120bとする。
 配線110及び120は、磁気コア21を貫通しており、配線110における磁気コア21を貫通している部分(経路)は経路110aであり、配線120における磁気コア21を貫通している部分(経路)は経路120aである。経路110aは、DC/DCコンバータ61とDC/DCコンバータ51、52及び53とを接続している配線110における経路であることから、経路110aもDC/DCコンバータ61とDC/DCコンバータ51、52及び53とを接続しているといえる。経路110aは、DC/DCコンバータ61とDC/DCコンバータ51、52及び53とを接続する第1経路の一例である。経路120aは、DC/DCコンバータ61とDC/DCコンバータ51、52及び53とを接続している配線120における経路であることから、経路120aもDC/DCコンバータ61とDC/DCコンバータ51、52及び53とを接続しているといえる。経路120aは、DC/DCコンバータ61とDC/DCコンバータ51、52及び53とを接続する第2経路の一例である。
 インバータ62は、DC/DCコンバータ61から供給された直流電力を交流電力に変換して出力する。インバータ62は、例えばMPPT(Maximum Power Point Tracking)方式を採用しており、DC/DCコンバータ61から供給される直流電力の電流及び電圧を、それぞれ電力が最大となる値に調整する。例えば、インバータ62は、直流電力を電圧100V、周波数50Hz又は60Hzの交流電力に変換する。当該交流電力は、家庭用電気機器等で使用される。
 アーク検出装置10aは、実施の形態1におけるものと機能は同じであり、磁気コア21を貫通する経路が経路110a及び120aとなっている点以外は、実施の形態1に対応しているため、詳細な説明は省略する。実施の形態2についても、実施の形態1と同様にアークを正確に検出できるという効果が奏される。
 以上説明したように、パワコン60aは、アーク検出装置10aと、直流電源(例えばDC/DCコンバータ61)の出力電力を変換する変換器(例えばインバータ62)と、を備える。
 このように、アーク検出装置10aは、パワコン60aに備えられていてもよく、アークを正確に検出できるパワコン60aを提供できる。
 なお、配線110及び120は分岐している配線(分岐配線と呼ぶ)であり、分岐配線の分岐前の経路と分岐後の複数の経路のそれぞれについてアークが発生する場合があるが、アーク検出装置10aが備える磁気コア21には、分岐前の経路(具体的には経路110a)が貫通しているため、分岐後の複数の経路(例えば、経路110b、110c、110d、120b、120c及び120d)のどこでアークが発生したとしても、アークによる高周波成分は磁気コア21を貫通している分岐前の経路を流れるため、磁気コア21を貫通する経路を流れる電流を検出する電流検出部20aにより検出された電流に基づいてアークを検出できる。
 (実施の形態2の変形例)
 実施の形態2では、電流検出部20aが備える磁気コア21に分岐前の経路が貫通している例について説明したが、これに限らない。これについて、図6Bを用いて説明する。
 図6Bは、実施の形態2の変形例に係る太陽光発電システム1aaの一例を示す構成図である。
 太陽光発電システム1aaは、パワコン60aの代わりにパワコン60aaを備える点が、実施の形態2に係る太陽光発電システム1aと異なる。その他の点については、実施の形態2に係る太陽光発電システム1aと同じであるため、説明は省略する。
 パワコン60aaは、アーク検出装置10aの代わりにアーク検出装置10aaを備える点が、実施の形態2に係るパワコン60aと異なる。その他の点については、実施の形態2に係るパワコン60aと同じであるため、説明は省略する。
 アーク検出装置10aaは、電流検出部20aa、20ab及び20ac並びにアーク判定部30aを備える。
 電流検出部20aaは、実施の形態1に係る電流検出部20aと機能は同じであり、磁気コア21を貫通する経路が経路110c及び120cとなっている点以外は、実施の形態1に対応しており、詳細な説明は省略する。電流検出部20abは、実施の形態1に係る電流検出部20aと機能は同じであり、磁気コア21を貫通する経路が経路110d及び120dとなっている点以外は、実施の形態1に対応しており、詳細な説明は省略する。電流検出部20acは、実施の形態1に係る電流検出部20aと機能は同じであり、磁気コア21を貫通する経路が経路110b及び120bとなっている点以外は、実施の形態1に対応しており、詳細な説明は省略する。
 アーク判定部30aは、アーク判定部30と同じように、例えばマイコンにより実現されるが、専用の電子回路によってハードウェア的に実現されてもよい。
 アーク判定部30aは、電流検出部20aa、20ab及び20acにより検出された電流に基づいて、アークの発生を判定する。例えば、アーク判定部30aは、電流検出部20aaにより検出された電流を周波数分析することで経路110c又は120cにおけるアークの発生を判定し、電流検出部20abにより検出された電流を周波数分析することで経路110d又は120dにおけるアークの発生を判定し、電流検出部20acにより検出された電流を周波数分析することで経路110b又は120bにおけるアークの発生を判定する。
 これにより、分岐後の複数の経路(例えば、経路110b、110c、110d、120b、120c及び120d)のどこでアークが発生したとしても、分岐後の経路が磁気コア21を貫通しているため、電流検出部20aa、20ab又は20acにより検出された電流に基づいてアークを検出できる。特に、分岐後のどの経路においてアークが発生したかを特定できる。
 (実施の形態3)
 実施の形態2では、パワコン60aに実施の形態1に係るアーク検出装置10aが備えられる例について説明したが、パワコンに実施の形態1の変形例2に係るアーク検出装置10cが備えられてもよい。これについて、図7Aを用いて説明する。
 図7Aは、実施の形態3に係る太陽光発電システム1bの一例を示す構成図である。
 太陽光発電システム1bは、パワコン60aの代わりにパワコン60bを備える点が、実施の形態2に係る太陽光発電システム1aと異なる。その他の点については、実施の形態2に係る太陽光発電システム1aと同じであるため、説明は省略する。
 パワコン60bは、アーク検出装置10aの代わりにアーク検出装置10cを備える点が、実施の形態2に係るパワコン60aと異なる。その他の点については、実施の形態2に係るパワコン60aと同じであるため、説明は省略する。
 アーク検出装置10cは、実施の形態1の変形例2におけるものと機能は同じであり、磁気コア21を貫通する経路が経路110aとなっている点以外は、実施の形態1の変形例2に対応しているため、詳細な説明は省略する。実施の形態3についても、実施の形態1の変形例2と同様にアークを正確に検出できるという効果が奏される。
 (実施の形態3の変形例)
 実施の形態3では、電流検出部20cが備える磁気コア21に分岐前の経路が貫通している例について説明したが、これに限らない。これについて、図7Bを用いて説明する。
 図7Bは、実施の形態3の変形例に係る太陽光発電システム1baの一例を示す構成図である。
 太陽光発電システム1baは、パワコン60bの代わりにパワコン60baを備える点が、実施の形態3に係る太陽光発電システム1bと異なる。その他の点については、実施の形態3に係る太陽光発電システム1bと同じであるため、説明は省略する。
 パワコン60baは、アーク検出装置10cの代わりにアーク検出装置10caを備える点が、実施の形態3に係るパワコン60bと異なる。その他の点については、実施の形態3に係るパワコン60bと同じであるため、説明は省略する。
 アーク検出装置10caは、電流検出部20ca、20cb及び20cc並びにアーク判定部30aを備える。
 電流検出部20caは、実施の形態1の変形例2に係る電流検出部20cと機能は同じであり、磁気コア21を貫通する経路が経路110cとなっている点以外は、実施の形態1の変形例2に対応しており、詳細な説明は省略する。電流検出部20cbは、実施の形態1の変形例2に係る電流検出部20cと機能は同じであり、磁気コア21を貫通する経路が経路110dとなっている点以外は、実施の形態1の変形例2に対応しており、詳細な説明は省略する。電流検出部20ccは、実施の形態1の変形例2に係る電流検出部20cと機能は同じであり、磁気コア21を貫通する経路が経路110bとなっている点以外は、実施の形態1の変形例2に対応しており、詳細な説明は省略する。
 アーク判定部30aは、電流検出部20ca、20cb及び20ccにより検出された電流に基づいて、アークの発生を判定する。例えば、アーク判定部30aは、電流検出部20caにより検出された電流を周波数分析することで経路110c又は120cにおけるアークの発生を判定し、電流検出部20cbにより検出された電流を周波数分析することで経路110d又は120dにおけるアークの発生を判定し、電流検出部20ccにより検出された電流を周波数分析することで経路110b又は120bにおけるアークの発生を判定する。
 これにより、分岐後の複数の経路(例えば、経路110b、110c、110d、120b、120c及び120d)のどこでアークが発生したとしても、分岐後の経路が磁気コア21を貫通しているため、電流検出部20ca、20cb又は20ccにより検出された電流に基づいてアークを検出できる。特に、分岐後のどの経路においてアークが発生したかを特定できる。
 (実施の形態4)
 実施の形態2では、パワコン60aに実施の形態1に係るアーク検出装置10aが備えられる例について説明したが、パワコンに実施の形態1の変形例3に係るアーク検出装置10dが備えられてもよい。これについて、図8Aを用いて説明する。
 図8Aは、実施の形態4に係る太陽光発電システム1cの一例を示す構成図である。
 太陽光発電システム1cは、パワコン60aの代わりにパワコン60cを備える点が、実施の形態2に係る太陽光発電システム1aと異なる。その他の点については、実施の形態2に係る太陽光発電システム1aと同じであるため、説明は省略する。
 パワコン60cは、アーク検出装置10aの代わりにアーク検出装置10dを備える点が、実施の形態2に係るパワコン60aと異なる。その他の点については、実施の形態2に係るパワコン60aと同じであるため、説明は省略する。
 アーク検出装置10dは、実施の形態1の変形例3におけるものと機能は同じであり、磁気コア21を貫通する経路が経路110aとなっている点以外は、実施の形態1の変形例3に対応しているため、詳細な説明は省略する。実施の形態4についても、実施の形態1の変形例3と同様にアークを正確に検出できるという効果が奏される。
 (実施の形態4の変形例)
 実施の形態4では、電流検出部20dが備える磁気コア21に分岐前の経路が貫通している例について説明したが、これに限らない。これについて、図8Bを用いて説明する。
 図8Bは、実施の形態4の変形例に係る太陽光発電システム1caの一例を示す構成図である。
 太陽光発電システム1caは、パワコン60cの代わりにパワコン60caを備える点が、実施の形態4に係る太陽光発電システム1cと異なる。その他の点については、実施の形態4に係る太陽光発電システム1cと同じであるため、説明は省略する。
 パワコン60caは、アーク検出装置10dの代わりにアーク検出装置10daを備える点が、実施の形態4に係るパワコン60cと異なる。その他の点については、実施の形態4に係るパワコン60cと同じであるため、説明は省略する。
 アーク検出装置10daは、電流検出部20da、20db及び20dc並びにアーク判定部30aを備える。
 電流検出部20daは、実施の形態1の変形例3に係る電流検出部20dと機能は同じであり、磁気コア21を貫通する経路が経路110cとなっている点以外は、実施の形態1の変形例3に対応しており、詳細な説明は省略する。電流検出部20dbは、実施の形態1の変形例3に係る電流検出部20dと機能は同じであり、磁気コア21を貫通する経路が経路110dとなっている点以外は、実施の形態1の変形例3に対応しており、詳細な説明は省略する。電流検出部20dcは、実施の形態1の変形例3に係る電流検出部20dと機能は同じであり、磁気コア21を貫通する経路が経路110bとなっている点以外は、実施の形態1の変形例3に対応しており、詳細な説明は省略する。
 アーク判定部30aは、電流検出部20da、20db及び20dcにより検出された電流に基づいて、アークの発生を判定する。例えば、アーク判定部30aは、電流検出部20daにより検出された電流を周波数分析することで経路110c又は120cにおけるアークの発生を判定し、電流検出部20dbにより検出された電流を周波数分析することで経路110d又は120dにおけるアークの発生を判定し、電流検出部20dcにより検出された電流を周波数分析することで経路110b又は120bにおけるアークの発生を判定する。
 これにより、分岐後の複数の経路(例えば、経路110b、110c、110d、120b、120c及び120d)のどこでアークが発生したとしても、分岐後の経路が磁気コア21を貫通しているため、電流検出部20da、20db又は20dcにより検出された電流に基づいてアークを検出できる。特に、分岐後のどの経路においてアークが発生したかを特定できる。
 (実施の形態5)
 実施の形態2では、パワコン60aに実施の形態1に係るアーク検出装置10aが備えられる例について説明したが、パワコンに実施の形態1の変形例4に係るアーク検出装置10eが備えられてもよい。これについて、図9Aを用いて説明する。
 図9Aは、実施の形態5に係る太陽光発電システム1dの一例を示す構成図である。
 太陽光発電システム1dは、パワコン60aの代わりにパワコン60dを備える点が、実施の形態2に係る太陽光発電システム1aと異なる。その他の点については、実施の形態2に係る太陽光発電システム1aと同じであるため、説明は省略する。
 パワコン60dは、アーク検出装置10aの代わりにアーク検出装置10eを備える点が、実施の形態2に係るパワコン60aと異なる。その他の点については、実施の形態2に係るパワコン60aと同じであるため、説明は省略する。
 アーク検出装置10eは、実施の形態1の変形例4におけるものと機能は同じであり、磁気コア21を貫通する経路が経路110aとなっている点以外は、実施の形態1の変形例4に対応しているため、詳細な説明は省略する。実施の形態5についても、実施の形態1の変形例4と同様にアークを正確に検出できるという効果が奏される。
 (実施の形態5の変形例)
 実施の形態5では、電流検出部20eが備える磁気コア21に分岐前の経路が貫通している例について説明したが、これに限らない。これについて、図9Bを用いて説明する。
 図9Bは、実施の形態5の変形例に係る太陽光発電システム1daの一例を示す構成図である。
 太陽光発電システム1daは、パワコン60dの代わりにパワコン60daを備える点が、実施の形態5に係る太陽光発電システム1dと異なる。その他の点については、実施の形態5に係る太陽光発電システム1dと同じであるため、説明は省略する。
 パワコン60daは、アーク検出装置10eの代わりにアーク検出装置10eaを備える点が、実施の形態5に係るパワコン60dと異なる。その他の点については、実施の形態5に係るパワコン60dと同じであるため、説明は省略する。
 アーク検出装置10eaは、電流検出部20ea、20eb及び20ec並びにアーク判定部30aを備える。
 電流検出部20eaは、実施の形態1の変形例4に係る電流検出部20eと機能は同じであり、磁気コア21を貫通する経路が経路110cとなっている点以外は、実施の形態1の変形例4に対応しており、詳細な説明は省略する。電流検出部20ebは、実施の形態1の変形例4に係る電流検出部20eと機能は同じであり、磁気コア21を貫通する経路が経路110dとなっている点以外は、実施の形態1の変形例4に対応しており、詳細な説明は省略する。電流検出部20ecは、実施の形態1の変形例4に係る電流検出部20eと機能は同じであり、磁気コア21を貫通する経路が経路110bとなっている点以外は、実施の形態1の変形例4に対応しており、詳細な説明は省略する。
 アーク判定部30aは、電流検出部20ea、20eb及び20ecにより検出された電流に基づいて、アークの発生を判定する。例えば、アーク判定部30aは、電流検出部20eaにより検出された電流を周波数分析することで経路110c又は120cにおけるアークの発生を判定し、電流検出部20ebにより検出された電流を周波数分析することで経路110d又は120dにおけるアークの発生を判定し、電流検出部20ecにより検出された電流を周波数分析することで経路110b又は120bにおけるアークの発生を判定する。
 これにより、分岐後の複数の経路(例えば、経路110b、110c、110d、120b、120c及び120d)のどこでアークが発生したとしても、分岐後の経路が磁気コア21を貫通しているため、電流検出部20ea、20eb又は20ecにより検出された電流に基づいてアークを検出できる。特に、分岐後のどの経路においてアークが発生したかを特定できる。
 (実施の形態6)
 アーク検出装置は、屋内配線システムに備えられてもよい。これについて、図10を用いて説明する。
 図10は、実施の形態6に係る屋内配線システム2の一例を示す構成図である。なお、図10には、屋内配線システム2に接続された系統電源43も示している。
 系統電源43は、発電所等で生成された交流電力を供給する電源である。
 屋内配線システム2は、AC/DCコンバータ42、配線111及び121、照明器具57、58及び59並びにアーク検出装置10aを備える。AC/DCコンバータ42、配線111及び121、照明器具57、58及び59並びにアーク検出装置10aは、戸建て、集合住宅、ビル又は工場等の施設の屋内に設置される。
 AC/DCコンバータ42は、系統電源43から交流電力が供給され、供給された交流電力を直流電力に変換して出力する電力変換器である。AC/DCコンバータ42からは直流電力が出力されるため、AC/DCコンバータ42を直流電源とみなすことができる。
 AC/DCコンバータ42は、系統電源43から供給された交流電力を直流電力に変換して、照明器具57、58及び59に出力する。AC/DCコンバータ42は正極と負極を有し、正極には配線111が接続され、負極には配線121が接続される。
 配線111及び121は、AC/DCコンバータ42と照明器具57、58及び59とを接続する。照明器具57、58及び59は、AC/DCコンバータ42と配線111及び121を介して接続される機器の一例である。配線111は、AC/DCコンバータ42の正極及び負極のうちの一方に接続された第1配線の一例である。ここでは、配線111は、AC/DCコンバータ42の正極及び負極のうちの一方として正極に接続される。配線121は、AC/DCコンバータ42の正極及び負極のうちの他方に接続された第2配線の一例である。ここでは、配線121は、AC/DCコンバータ42の正極及び負極のうちの他方として負極に接続される。
 配線111は、実施の形態2等における配線110と同じように、AC/DCコンバータ42の正極から照明器具57、58及び59のそれぞれへと分岐している配線である。配線121は、実施の形態2等における配線120と同じように、AC/DCコンバータ42の負極から照明器具57、58及び59のそれぞれへと分岐している配線である。
 なお、機器は照明器具に限らず、屋内に設置される機器であれば特に限定されない。例えば、機器は、スピーカ又はマイク等であってもよい。
 配線111及び121は、磁気コア21を貫通しており、配線111及び121における分岐前の経路が磁気コア21を貫通している。配線111の分岐前の経路は、AC/DCコンバータ42と照明器具57、58及び59とを接続する第1経路の一例である。配線121の分岐前の経路は、AC/DCコンバータ42と照明器具57、58及び59とを接続する第2経路の一例である。
 アーク検出装置10aは、実施の形態1におけるものと機能は同じであり、磁気コア21を貫通する経路が配線111及び121の分岐前の経路となっている点以外は、実施の形態1に対応しているため、詳細な説明は省略する。実施の形態6についても、実施の形態1と同様にアークを正確に検出できるという効果が奏される。
 以上説明したように、屋内配線システム2は、アーク検出装置10aと、第1経路(例えば配線111の分岐前の経路)と、第2経路(例えば配線121の分岐前の経路)と、屋内に設置された機器(例えば照明器具57、58及び59)と、を備える。
 このように、アーク検出装置10aは、屋内配線システム2に備えられていてもよく、アークを正確に検出できる屋内配線システム2を提供できる。
 なお、実施の形態2と同じように、配線111及び121は分岐配線であり、分岐配線の分岐前の経路と分岐後の複数の経路のそれぞれについてアークが発生する場合があるが、アーク検出装置10aが備える磁気コア21には、分岐前の経路が貫通しているため、分岐後の複数の経路のどこでアークが発生したとしても、アークによる高周波成分は磁気コア21を貫通している分岐前の経路を流れるため、磁気コア21を貫通する経路を流れる電流を検出する電流検出部20aにより検出された電流に基づいてアークを検出できる。
 また、実施の形態2の変形例と同じように、屋内配線システム2においても、アーク検出装置が分岐後の経路のそれぞれに設けられてもよい。
 さらに、実施の形態1の変形例1~4に係るアーク検出装置が屋内配線システムに備えられてもよい。
 (その他の実施の形態)
 以上、実施の形態に係るアーク検出装置等について説明したが、本発明は、上記実施の形態に限定されるものではない。
 例えば、低インピーダンス回路は、直流電源と接続される機器が備えているコンデンサを流用することで実現してもよい。
 例えば、実施の形態1の変形例2~4では、磁気コア21を一度貫通した後折り返して再度貫通する第1配線が直流電源40の正極に接続される例について説明したが、当該第1配線は直流電源40の負極に接続されていてもよい。つまり、直流電源40の正極及び負極の一方として負極に接続された第1配線が磁気コア21を一度貫通した後折り返して再度貫通してもよい。
 例えば、上記実施の形態では、アーク検出装置が太陽光発電システム(具体的にはパワコン)及び屋内配線システムに適用される例について説明したが、適用例はこれらに限らない。本発明に係るアーク検出装置(つまり、アークを正確に検出できるアーク検出装置)の他の適用例について図11を用いて説明する。
 図11は、本発明に係るアーク検出装置の適用例を説明するための図である。
 本発明に係るアーク検出装置は、例えば、太陽光パネル310から配線を介して供給される直流電力を、パワコン500で交流電力に変換するシステムにおける各構成要素に適用される。ここでは、複数(例えば3つ)の太陽光パネル310が1つの配線600(ストリング)によって直列に接続されたものが複数(例えば3つ)並べられて、太陽電池アレイ300を形成している。複数の配線600は、接続箱400によってまとめられて、パワコン500へ接続される。直流電源は太陽光パネル310であり、第1経路及び第2経路は配線600である。
 例えば、配線600毎にブレーカ410が設けられており、ここでは、接続箱400内にブレーカ410が設けられている。なお、ブレーカ410は、接続箱400内に設けられなくてもよい。例えば、ブレーカ410は、接続箱400と太陽電池アレイ300との間に設けられていてもよいし、配線600毎に設けられず接続箱400とパワコン500との間に設けられていてもよい。
 太陽光パネル310は、例えば、太陽光パネル310から出力される信号の変換を行う太陽光パネル付属モジュール320を有する。太陽光パネル付属モジュール320は、例えば、太陽光パネル310毎の発電量を最適化するDC/DCコンバータである。なお、太陽光パネル310は、太陽光パネル付属モジュール320を有していなくてもよい。
 例えば、ブレーカ410がアーク検出装置を備えていてもよい。ブレーカ410は、異常が発生したと判定された場合に、配線600に流れる電流を遮断する。
 例えば、太陽光パネル310又は太陽光パネル付属モジュール320がアーク検出装置を備えていてもよい。太陽光パネル310又は太陽光パネル付属モジュール320は、アークが発生したと判定された場合に、配線600への出力を停止する。
 また、例えば、接続箱400がアーク検出装置を備えていてもよい。接続箱400は、アークが発生したと判定された場合に、例えばブレーカ410等を介して、配線600に流れる電流を遮断する。
 なお、本発明に係るアーク検出装置は、これらに限らず、アークの検出が必要なシステム全般に適用できる。
 このように、ブレーカ410は、アーク検出装置を備え、アークが発生したと判定された場合に、第1経路及び第2経路に流れる電流を遮断してもよい。また、太陽光パネル310は、アーク検出装置を備え、太陽光により発電してもよい。また、太陽光パネル付属モジュール320は、アーク検出装置を備え、太陽光パネル310から出力される信号の変換を行ってもよい。また、接続箱400は、アーク検出装置を備え、太陽光パネル310とパワコン500とを接続してもよい。
 例えば、アーク検出装置が備えるアーク判定部は、パーソナルコンピュータ等の汎用コンピュータにおいてソフトウェア的に実現されてもよい。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 1a、1aa、1b、1ba、1c、1ca、1d、1da 太陽光発電システム
 2 屋内配線システム
 10a、10aa、10b、10c、10ca、10d、10da、10e、10ea アーク検出装置
 11a、11b、11c、11d、11e 低インピーダンス回路
 20a、20aa、20ab、20ac、20b、20c、20ca、20cb、20cc、20d、20da、20db、20de、20e、20ea、20eb、20ec 電流検出部
 21 磁気コア
 30、30a アーク判定部
 40 直流電源
 41、310 太陽光パネル
 41a、41b、41c、41d、41e、42a、42b、42c、42d、42e、110、111、120、121、600 配線
 42 AC/DCコンバータ
 43 系統電源
 43a、43b、43c、43d、43e バイパス経路
 50 機器
 51、52、53、61 DC/DCコンバータ
 51a、51b、51c、51d、51e、52a、52b、52c、52d、52e、110a、110b、110c、110d、120a、120b、120c、120d 経路
 54、55、56 蓄電池
 57、58、59 照明器具
 60a、60aa、60b、60ba、60c、60ca、60d、60da、500 パワコン
 62 インバータ
 300 太陽電池アレイ
 320 太陽光パネル付属モジュール
 400 接続箱
 410 ブレーカ
 N1a、N1b、N1c、N1d、N1e、N2a、N2b、N2c、N2d、N2e 接続点
 N3、N4 分岐点

Claims (13)

  1.  直流電源と機器とを接続する第1経路及び第2経路が貫通する磁気コアを有し、前記磁気コアに発生する磁界に応じて前記第1経路及び前記第2経路を流れる電流を検出する電流検出部と、
     前記直流電源及び前記機器よりもインピーダンスが低い低インピーダンス回路であって、前記第1経路及び前記第2経路に接続され、前記第1経路及び前記第2経路のうちの一方の経路への高周波成分をバイパスするための低インピーダンス回路と、
     前記電流検出部により検出された電流に基づいて、アークの発生を判定するアーク判定部と、を備え、
     前記磁気コアにおいて、前記第1経路を流れる直流電流の向きと前記第2経路を流れる直流電流の向きとは逆向きである
     アーク検出装置。
  2.  前記直流電源は、前記直流電源の正極及び負極のうちの一方に接続された第1配線、並びに、前記直流電源の正極及び負極のうちの他方に接続された第2配線を介して前記機器に電力を供給し、
     前記第1経路は、前記第1配線における経路であり、
     前記第2経路は、前記第2配線における経路である
     請求項1に記載のアーク検出装置。
  3.  前記低インピーダンス回路は、前記直流電源の正極及び負極のうちの一方と前記磁気コアとの間における前記第1配線上の接続点と、前記磁気コアと前記機器との間における前記第2配線上の接続点とを結ぶバイパス経路に設けられる
     請求項2に記載のアーク検出装置。
  4.  前記直流電源は、前記直流電源の正極及び負極のうちの一方に接続された第1配線、並びに、前記直流電源の正極及び負極のうちの他方に接続された第2配線を介して前記機器に電力を供給し、
     前記第1経路及び前記第2経路は、前記第1配線における経路であり、
     前記第1配線は、前記第1経路において前記磁気コアを前記磁気コアの一方側から他方側へ貫通した後折り返し、前記第2経路において前記磁気コアを前記磁気コアの前記他方側から前記一方側へ貫通する
     請求項1に記載のアーク検出装置。
  5.  前記低インピーダンス回路は、前記折り返し部分における接続点と、前記磁気コアの前記一方側と前記機器との間における前記第1配線上の接続点とを結ぶバイパス経路に設けられる
     請求項4に記載のアーク検出装置。
  6.  前記低インピーダンス回路は、前記折り返し部分における接続点と、前記磁気コアの前記一方側と前記直流電源の正極及び負極のうちの一方との間における前記第1配線上の接続点とを結ぶバイパス経路に設けられる
     請求項4に記載のアーク検出装置。
  7.  前記低インピーダンス回路は、前記折り返し部分における接続点と、前記第2配線上の接続点とを結ぶバイパス経路に設けられる
     請求項4に記載のアーク検出装置。
  8.  請求項1~7のいずれか1項に記載のアーク検出装置と、
     前記直流電源の出力電力を変換する変換器と、を備える
     パワーコンディショナ。
  9.  請求項1~7のいずれか1項に記載のアーク検出装置と、
     前記第1経路と、
     前記第2経路と、
     屋内に設置された前記機器と、を備える
     屋内配線システム。
  10.  請求項1~7のいずれか1項に記載のアーク検出装置を備え、
     アークが発生したと判定された場合に、前記第1経路及び前記第2経路に流れる電流を遮断する
     ブレーカ。
  11.  請求項1~7のいずれか1項に記載のアーク検出装置を備え、
     太陽光により発電する
     太陽光パネル。
  12.  請求項1~7のいずれか1項に記載のアーク検出装置を備え、
     太陽光パネルから出力される信号の変換を行う
     太陽光パネル付属モジュール。
  13.  請求項1~7のいずれか1項に記載のアーク検出装置を備え、
     太陽光パネルとパワーコンディショナとを接続する
     接続箱。
PCT/JP2021/008293 2020-03-11 2021-03-03 アーク検出装置、パワーコンディショナ、屋内配線システム、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱 WO2021182260A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/802,632 US12088080B2 (en) 2020-03-11 2021-03-03 Arc detection device, solar inverter, indoor wiring system, breaker, solar panel, solar panel-attached module, and junction box
JP2022505983A JP7357228B2 (ja) 2020-03-11 2021-03-03 アーク検出装置、パワーコンディショナ、屋内配線システム、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱
CN202180015666.2A CN115151830A (zh) 2020-03-11 2021-03-03 电弧检测装置、功率调节器、室内布线系统、断路器、太阳能面板、太阳能面板附属模块以及接线盒
EP21767090.0A EP4120494A4 (en) 2020-03-11 2021-03-03 ARC DETECTION DEVICE, POWER CONDITIONER, INTERNAL WIRING SYSTEM, INTERRUPTER, SOLAR PANEL, SOLAR PANEL MOUNTED MODULE AND JUNCTION BOX

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-041708 2020-03-11
JP2020041708 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021182260A1 true WO2021182260A1 (ja) 2021-09-16

Family

ID=77672230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008293 WO2021182260A1 (ja) 2020-03-11 2021-03-03 アーク検出装置、パワーコンディショナ、屋内配線システム、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱

Country Status (5)

Country Link
US (1) US12088080B2 (ja)
EP (1) EP4120494A4 (ja)
JP (1) JP7357228B2 (ja)
CN (1) CN115151830A (ja)
WO (1) WO2021182260A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4120496A4 (en) * 2020-03-11 2023-09-20 Panasonic Intellectual Property Management Co., Ltd. ARC DETECTION DEVICE, POWER CONDITIONER, INTERIOR WIRING SYSTEM, CIRCUIT BREAKER, SOLAR PANEL, SOLAR PANEL ATTACHED MODULE AND CONNECTION BOX

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118111A (ja) * 1992-10-07 1994-04-28 Osaka Gas Co Ltd 漏電検出装置
JP2008113546A (ja) * 2006-10-02 2008-05-15 Tohoku Electric Power Co Inc 直流地絡回線の判別装置及び判別方法
JP2011007765A (ja) 2009-05-28 2011-01-13 Kyocera Corp アーク検出手段とそれを用いた制御手段及び連絡手段
JP2012145363A (ja) * 2010-11-03 2012-08-02 Easymore Industrial Co Ltd 直流給電システム故障探知保護回路
US20140218044A1 (en) * 2011-07-29 2014-08-07 Leviton Manufacturing Company Arc fault circuit interrupter
JP2015200638A (ja) * 2014-04-08 2015-11-12 高苑科技大學 高感度に非接地型直流給電の絶縁抵抗を検出する方法及びその電気回路
JP2017161241A (ja) * 2016-03-07 2017-09-14 オムロン株式会社 アーク検出装置
JP2018124251A (ja) * 2017-02-03 2018-08-09 オムロン株式会社 アーク検出装置
WO2019198791A1 (ja) * 2018-04-13 2019-10-17 日東工業株式会社 分電盤
JP2020139925A (ja) * 2019-03-01 2020-09-03 パナソニックIpマネジメント株式会社 アーク検出装置、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュールおよび接続箱

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516374B2 (ja) * 1987-08-07 1996-07-24 三井石油化学工業株式会社 電気スパ−クによる災害の防止装置
DE60030757T2 (de) * 1999-11-16 2007-09-13 Hydro-Quebec, Montreal Verfahren und vorrichtung zum erleichtern der wiederzündung in einem lichtbogenofen
US6421214B1 (en) * 2000-03-03 2002-07-16 Pass & Seymour, Inc. Arc fault or ground fault detector with self-test feature
US8373952B2 (en) * 2006-09-29 2013-02-12 Rockwell Automation Technologies, Inc. Integrated DC link inductor and common mode current sensor winding
GB2457766B (en) * 2008-02-29 2012-12-19 Nujira Ltd Transformer based voltage combiner with inductive shunt
US8218274B2 (en) * 2009-12-15 2012-07-10 Eaton Corporation Direct current arc fault circuit interrupter, direct current arc fault detector, noise blanking circuit for a direct current arc fault circuit interrupter, and method of detecting arc faults
JP5634240B2 (ja) * 2010-12-08 2014-12-03 パナソニック株式会社 漏電検出遮断器
WO2013053912A1 (en) * 2011-10-14 2013-04-18 Sma Solar Technology Ag Method and apparatus for detecting an arc in a dc circuit
WO2013187616A1 (ko) * 2012-06-15 2013-12-19 Chung Tae Young 다양한 아크 및 과부하를 감지하여 전력 공급을 차단할 수 있는 전원 차단 장치
TWI537570B (zh) 2015-11-20 2016-06-11 台達電子工業股份有限公司 改良型電弧偵測裝置
JP6037071B1 (ja) 2016-03-07 2016-11-30 オムロン株式会社 アーク検出装置
JP6547659B2 (ja) * 2016-03-07 2019-07-24 オムロン株式会社 アーク検出装置
ES2882034T3 (es) 2016-08-11 2021-12-01 Fimer S P A Disposición de detección de fallas de arco para un bus eléctrico de CC
JP6673237B2 (ja) 2017-01-23 2020-03-25 オムロン株式会社 アーク検出装置
JP6866819B2 (ja) 2017-10-06 2021-04-28 住友電気工業株式会社 電力変換装置及びその温度上昇抑制方法
JPWO2019159582A1 (ja) * 2018-02-15 2020-10-22 パナソニックIpマネジメント株式会社 アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュール、接続箱
JP2019158674A (ja) * 2018-03-14 2019-09-19 オムロン株式会社 アーク検出装置およびその制御方法、制御プログラム、並びに直流電源システム
JP7072982B2 (ja) * 2018-04-13 2022-05-23 日東工業株式会社 放電事故検出構造
JP7108859B2 (ja) * 2018-04-25 2022-07-29 パナソニックIpマネジメント株式会社 アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュールおよび接続箱
US11079424B2 (en) * 2018-12-07 2021-08-03 Schneider Electric USA, Inc. Combined low frequency and high frequency current sensor
JP7437812B2 (ja) * 2020-03-11 2024-02-26 パナソニックIpマネジメント株式会社 アーク検出装置、パワーコンディショナ、屋内配線システム、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06118111A (ja) * 1992-10-07 1994-04-28 Osaka Gas Co Ltd 漏電検出装置
JP2008113546A (ja) * 2006-10-02 2008-05-15 Tohoku Electric Power Co Inc 直流地絡回線の判別装置及び判別方法
JP2011007765A (ja) 2009-05-28 2011-01-13 Kyocera Corp アーク検出手段とそれを用いた制御手段及び連絡手段
JP2012145363A (ja) * 2010-11-03 2012-08-02 Easymore Industrial Co Ltd 直流給電システム故障探知保護回路
US20140218044A1 (en) * 2011-07-29 2014-08-07 Leviton Manufacturing Company Arc fault circuit interrupter
JP2015200638A (ja) * 2014-04-08 2015-11-12 高苑科技大學 高感度に非接地型直流給電の絶縁抵抗を検出する方法及びその電気回路
JP2017161241A (ja) * 2016-03-07 2017-09-14 オムロン株式会社 アーク検出装置
JP2018124251A (ja) * 2017-02-03 2018-08-09 オムロン株式会社 アーク検出装置
WO2019198791A1 (ja) * 2018-04-13 2019-10-17 日東工業株式会社 分電盤
JP2020139925A (ja) * 2019-03-01 2020-09-03 パナソニックIpマネジメント株式会社 アーク検出装置、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュールおよび接続箱

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4120494A4

Also Published As

Publication number Publication date
CN115151830A (zh) 2022-10-04
EP4120494A4 (en) 2023-09-13
EP4120494A1 (en) 2023-01-18
US12088080B2 (en) 2024-09-10
JP7357228B2 (ja) 2023-10-06
JPWO2021182260A1 (ja) 2021-09-16
US20230011371A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
WO2021182263A1 (ja) アーク検出装置、パワーコンディショナ、屋内配線システム、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱
Sher et al. Micro-inverters—Promising solutions in solar photovoltaics
JP6037071B1 (ja) アーク検出装置
US10424951B2 (en) Arc detection apparatus
CN109600115B (zh) 在串联型的光伏发电系统中定位故障的方法
US20090315404A1 (en) Solar power plant
WO2021182259A1 (ja) アーク検出装置、パワーコンディショナ、屋内配線システム、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱
WO2021182260A1 (ja) アーク検出装置、パワーコンディショナ、屋内配線システム、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱
JP2020139925A (ja) アーク検出装置、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュールおよび接続箱
EP3352315B1 (en) Arc detection apparatus
EP4080710A1 (en) Maximizing power in a photovoltaic distributed power system
WO2019208027A1 (ja) アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュールおよび接続箱
US20180226919A1 (en) Arc detection apparatus
JP6547659B2 (ja) アーク検出装置
JP6103095B1 (ja) アーク検出装置
WO2021182261A1 (ja) アーク検出装置、屋内電力線システム、太陽光発電システム及び蓄電池システム
JP2013026242A (ja) 太陽光発電システム
WO2021182262A1 (ja) 異常検知装置、異常検知方法、プログラム、屋内配線システム、パワーコンディショナ、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱
Abdel-Rahim et al. Protection and common mode voltage of The Push-Pull Partial Power Converter
CN118380976A (zh) 具有虚拟电厂运行特性的配电线路及虚拟电厂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767090

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505983

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021767090

Country of ref document: EP

Effective date: 20221011