WO2021182261A1 - アーク検出装置、屋内電力線システム、太陽光発電システム及び蓄電池システム - Google Patents

アーク検出装置、屋内電力線システム、太陽光発電システム及び蓄電池システム Download PDF

Info

Publication number
WO2021182261A1
WO2021182261A1 PCT/JP2021/008295 JP2021008295W WO2021182261A1 WO 2021182261 A1 WO2021182261 A1 WO 2021182261A1 JP 2021008295 W JP2021008295 W JP 2021008295W WO 2021182261 A1 WO2021182261 A1 WO 2021182261A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
arc
converter
converters
power source
Prior art date
Application number
PCT/JP2021/008295
Other languages
English (en)
French (fr)
Inventor
和憲 木寺
達雄 古賀
圭太 金森
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US17/907,847 priority Critical patent/US20230126245A1/en
Priority to CN202180016318.7A priority patent/CN115151831A/zh
Priority to JP2022505984A priority patent/JP7304532B2/ja
Priority to EP21767146.0A priority patent/EP4119956A4/en
Publication of WO2021182261A1 publication Critical patent/WO2021182261A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/083Locating faults in cables, transmission lines, or networks according to type of conductors in cables, e.g. underground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/0015Using arc detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio

Definitions

  • the present invention relates to an arc detection device, an indoor power line system, a photovoltaic power generation system, and a storage battery system.
  • an arc may be generated for each of the plurality of power lines. If an arc detecting means is provided for each of the plurality of power lines, it is possible to detect the arcs generated in the plurality of power lines, but the system becomes large and the cost increases.
  • the present invention provides an arc detection device or the like that can easily detect an arc generated in a plurality of power lines.
  • One aspect of the arc detection device is an arc detection device in a system having at least one power source, a plurality of converters for adjusting the voltage of the at least one power source, and a plurality of load devices.
  • the at least one power source and the plurality of converters, and the plurality of converters and the plurality of load devices are connected by a plurality of power lines, and the arc detection device is connected to the plurality of power lines.
  • a current detection unit that has a magnetic core through which two or more of the power lines pass through and detects a combined current flowing through the two or more power lines according to a magnetic field generated in the magnetic core, and a current detection unit that detects the combined current.
  • An arc determination unit for determining the generation of an arc based on the combined current is provided, and at least one of the plurality of converters is connected to the at least one power source, and the plurality of load devices are connected. At least one of the plurality of converters is connected to each of them.
  • One aspect of the indoor power line system according to the present invention includes the above arc detection device, one of the at least one power source is composed of a system power source, and the plurality of converters are AC / DC. It consists of a converter.
  • One aspect of the photovoltaic power generation system includes the above-mentioned arc detection device, and one or more power sources of the at least one power source are composed of a solar cell, and the at least one power source.
  • the other one of the power sources is composed of a system power supply, and one of the plurality of load devices is composed of a DC / AC converter connected to the system power supply.
  • One aspect of the storage battery system operates as the arc detection device and one or more power sources of the at least one power source or one or more load devices of the plurality of load devices.
  • a storage battery and a system power source that operates as one or more power sources of the at least one power source or one or more of the plurality of load devices, and when the storage battery is charged,
  • the system power supply operates as a power source
  • the converter connected to the system power supply operates as an AC / DC converter
  • the storage battery and the converter connected to the storage battery operate as a load device
  • the storage battery is discharged.
  • the storage battery operates as a power source
  • a converter connected to the storage battery operates as a DC / DC converter
  • the system power supply and the converter connected to the system power supply operate as a load device.
  • arcs generated in a plurality of power lines can be easily detected.
  • FIG. 1 is a configuration diagram showing an example of the system according to the first embodiment.
  • FIG. 2 is a configuration diagram showing an example of a system according to a modified example of the first embodiment.
  • FIG. 3 is a configuration diagram showing an example of the indoor power line system according to the second embodiment.
  • FIG. 1 is a configuration diagram showing an example of the system 1a according to the first embodiment.
  • the system 1a is also a photovoltaic power generation system and a storage battery system (for example, a system having a photovoltaic power generation function and a storage function).
  • System 1a is a system having at least one power source, a plurality of converters for adjusting the voltage of at least one power source, and a plurality of load devices.
  • the system 1a also includes an arc detection device 10a.
  • the solar cell 62, the system power supply 48, and the storage batteries 51 and 52 are shown as at least one power source.
  • DC / DC converters 41, 42 and 43 and an inverter 44 are shown as a plurality of converters.
  • the system power supply 48, the inverter 44, and the storage batteries 51 and 52 can also serve as load devices depending on the situation.
  • At least one of a plurality of converters is connected to at least one power source, and at least one of a plurality of converters is connected to each of the plurality of load devices.
  • the DC / DC converter 41 is connected to the solar battery 62 that operates as a power source
  • the inverter 44 is connected to the system power supply 48 that operates as a power source or load device.
  • a DC / DC converter 42 is connected to the storage battery 51 that operates as a power source or a load device
  • a DC / DC converter 43 is connected to the storage battery 52 that operates as a power source or a load device.
  • a plurality of power lines are connected between at least one power source and a plurality of converters, and between a plurality of converters and a plurality of load devices.
  • the solar battery 62 and the DC / DC converter 41 between the system power supply 48 and the inverter 44, between the storage battery 51 and the DC / DC converter 42, and between the storage battery 52 and the DC / DC converter.
  • a plurality of power lines are connected between the device 43 and between the DC / DC converter 41, the DC / DC converter 42, the DC / DC converter 43, and the inverter 44.
  • the solar cell 62 and the DC / DC converter 41 are connected by power lines 140a and 140b, and the system power supply 48 and the inverter 44 are connected by power lines 150a and 150b, and the storage battery 51 and DC / DC /
  • the DC converter 42 is connected by power lines 120a and 120b, and the storage battery 52 and the DC / DC converter 43 are connected by power lines 130a and 130b, and the DC / DC converter 41 and the DC / DC converter 42 are connected.
  • the DC / DC converter 43 and the inverter 44 are connected by power lines 110a and 110b.
  • the solar cell 62 is a power source that generates DC power by generating electricity from sunlight.
  • the DC power generated by the solar cell 62 is supplied to the DC / DC converter 41, and one of the plurality of load devices (inverter 44 connected to the system power supply 48 (specifically, the DC / AC converter)). ) Is supplied to the load device).
  • the solar cell 62 has a positive electrode and a negative electrode, and a power line 140a is connected to the positive electrode and a power line 140b is connected to the negative electrode.
  • the grid power supply 48 is a power supply that supplies AC power generated at a power plant or the like. As described above, the system power supply 48 can also be a load device to which electric power is supplied depending on the situation.
  • the storage batteries 51 and 52 operate as one or more power sources of at least one power source or one or more load devices of a plurality of load devices.
  • the system power supply 48 operates as a power source
  • the converter that is, the inverter 44
  • the storage batteries 51 and 52 and the storage batteries 51 and 52 operate as an AC / DC converter
  • the converters that is, DC / DC converters 42 and 43 connected to the storage batteries 51 and 52 operate as a load device.
  • the storage batteries 51 and 52 when the storage batteries 51 and 52 are discharged, the storage batteries 51 and 52 operate as power sources, and the converters connected to the storage batteries 51 and 52 operate as DC / DC converters 42 and 43, and the system power supply 48 and the system power supply 48
  • the converter that is, the inverter 44
  • the inverter 44 connected to the converter (that is, the inverter 44) operates as a load device.
  • the DC / DC converter 41 boosts or lowers the DC power supplied from the solar cell 62 and outputs it to the DC / DC converters 42 and 43 and the inverter 44.
  • the DC / DC converter 41 has a positive electrode and a negative electrode, and a power line 110a is connected to the positive electrode and a power line 110b is connected to the negative electrode.
  • the DC / DC converter 42 boosts or lowers the DC power supplied from the DC / DC converter 41 or the inverter 44, and outputs the DC power to the storage battery 51. Further, the DC / DC converter 42 boosts or lowers the DC power supplied from the storage battery 51 and outputs the DC power to the DC / DC converter 43 or the inverter 44.
  • the DC / DC converter 42 has a positive electrode and a negative electrode, and a power line 120a is connected to the positive electrode and a power line 120b is connected to the negative electrode.
  • the DC / DC converter 43 boosts or lowers the DC power supplied from the DC / DC converter 41 or the inverter 44, and outputs the DC power to the storage battery 52. Further, the DC / DC converter 43 boosts or lowers the DC power supplied from the storage battery 52 and outputs it to the DC / DC converter 42 or the inverter 44.
  • the DC / DC converter 43 has a positive electrode and a negative electrode, and a power line 130a is connected to the positive electrode and a power line 130b is connected to the negative electrode.
  • the power lines 110a and 120a are examples of two or more power lines penetrating the magnetic core 21a described later.
  • the inverter 44 operates as a DC / AC converter that converts the DC power supplied from the DC / DC converters 41, 42, and 43 into AC power and outputs the AC power. Further, the inverter 44 operates as an AC / DC converter that converts the AC power supplied from the system power supply 48 into DC power and supplies it to the DC / DC converters 42 and 43. For example, the inverter 44 converts DC power into AC power having a frequency of 50 Hz or 60 Hz. AC power is used in household electrical appliances and the like. AC current flows through the power lines 150a and 150b that connect the inverter 44 and the system power supply 48.
  • the two or more power lines penetrating the magnetic core 21a are, for example, a power line connected to one input / output end of the first converter among the plurality of converters and a power line connected to the other input / output end. ..
  • the first converter is a DC / DC converter 42
  • two or more power lines penetrating the magnetic core 21a described later are a power line 110a connected to one input / output end of the DC / DC converter 42 and the other. It is a power line 120a connected to the input / output end of the above.
  • the power line 110a connected to one input / output end of the DC / DC converter 42 is a branch power line branched into a plurality of branch paths 111a, 111b, 111c and 111d.
  • the connection points of the plurality of branch paths 111a, 111b, 111c and 111d on the power line 110a are designated as branch points N.
  • the path connecting the branch point N and the DC / DC converter 41 is the branch path 111a
  • the route connecting the branch point N and the DC / DC converter 43 is the branch path 111b
  • the branch point N The path connecting the inverter 44 and the inverter 44 is the branch path 111c
  • the path connecting the branch point N and the DC / DC converter 42 is the branch path 111d.
  • the branch path 111d penetrates the magnetic core 21a described later.
  • the power line 110a connected to one input / output end of the DC / DC converter 42 and the power line 120a connected to the other input / output end of the DC / DC converter 42. Since the flowing current is a direct current, an arc may occur in both the power lines 110a and 120a. If the arc detecting means is provided in the power line 110a, the arc generated in the power line 110a can be detected, but the high frequency component due to the arc generated in the power line 120a is blocked by the capacitor or the like existing in the DC / DC converter 42. , It is difficult to detect the arc generated by the power line 120a.
  • the arc detecting means is provided on the power line 120a, the arc generated on the power line 120a can be detected, but it is difficult to detect the arc generated on the power line 110a in the same manner. If the arc detecting means is provided on both the power lines 110a and 120a, both the arc generated on the power line 110a and the arc generated on the power line 120a can be detected, but the system becomes large and the cost increases.
  • an arc detection device 10a is used.
  • the arc detection device 10a includes a current detection unit 20a and an arc determination unit 30a.
  • the current detection unit 20a has a magnetic core 21a through which the power lines 110a and 120a pass, and detects the combined current flowing through the power lines 110a and 120a according to the magnetic field generated in the magnetic core 21a.
  • the current detection unit 20a has a branch path 111d connecting the branch point N in the power line 110a and one input / output end of the DC / DC converter 42, and a magnetic core 21a through which the power line 120a penetrates.
  • the combined current flowing through the branch path 111d and the power line 120a is detected according to the magnetic field generated in the magnetic core 21a.
  • the power line 110a connected to one input / output end of the DC / DC converter 42 and the power line 120a connected to the other input / output end are bundled in the magnetic core 21a as shown in FIG. It penetrates the magnetic core 21a.
  • two or more power lines include a power line in which a direct current flows in the opposite direction to the other power lines.
  • the power lines 110a and 120a penetrate the magnetic core 21a so that the direction of the direct current flowing through the power line 110a and the direction of the direct current flowing through the power line 120a are opposite to each other.
  • the magnetic core 21a has an annular shape (here, an annular shape) through which a power line can penetrate, and a magnetic field corresponding to the current is generated in the core by a current flowing through the power line penetrating its own hole.
  • the magnetic core 21a is not limited to an annular shape, and may have a rectangular annular shape or the like.
  • the current detection unit 20a includes, for example, a Hall element (not shown) that detects a magnetic field generated in the magnetic core 21a and generates a voltage corresponding to the magnetic field generated in the magnetic core 21a.
  • the voltage generated by the Hall element is input to the arc determination unit 30a as a signal indicating a magnetic field generated in the magnetic core 21a, that is, a current flowing through the power lines 110a and 120a penetrating the magnetic core 21a.
  • the arc determination unit 30a is realized by, for example, a microcomputer (microcontroller).
  • the microcomputer includes a ROM (Read Only Memory) in which the program is stored, a RAM (Randam Access Memory), a processor (CPU: Central Processing Unit) that executes the program, a timer, an A / D converter, a D / A converter, and the like. It is a semiconductor integrated circuit or the like.
  • the arc determination unit 30a is realized in terms of hardware by a dedicated electronic circuit composed of an A / D converter, a logic circuit, a gate array, a D / A converter, or the like, or an amplifier and a filter circuit. May be good.
  • the arc determination unit 30a determines the generation of an arc based on the combined current detected by the current detection unit 20a. For example, the arc determination unit 30a determines the generation of an arc on the power line 110a or 120a by frequency-analyzing the combined current detected by the current detection unit 20a.
  • the current generated by the generation of the arc includes a frequency component caused by the arc, and the generation of the arc can be determined by detecting the frequency component.
  • the arc determination unit 30a determines that an arc has occurred, it can be seen that an arc has occurred in either the power lines 110a or 120a. That is, only one current detection unit 20a (specifically, the magnetic core 21a) can detect arcs in two or more power lines (here, power lines 110a and 120a).
  • the two or more power lines penetrating the magnetic core 21a may include power lines other than the power lines 110a (specifically, the branch path 111d) and 120a.
  • the two or more power lines may further include at least one of the power lines 130a or 130b and the power lines 140a or 140b. That is, at least one of the power line 130a or 130b and the power line 140a or 140b may further penetrate the magnetic core 21a.
  • the arc detection device 10a has at least one power source (for example, a power source selected from the solar cell 62, the system power supply 48, and the storage batteries 51 and 52) and at least one power source.
  • a plurality of converters eg, a plurality of converters selected from DC / DC converters 41, 42 and 43 and an inverter 44
  • a plurality of load devices for example, storage batteries 51 and 52, a grid power supply 48 and an inverter. It is an arc detection device in the system 1a having a plurality of load devices selected from 44).
  • the arc detection device 10a has a magnetic core 21a through which two or more power lines (for example, power lines 110a and 120a) of the plurality of power lines pass through, and the composition flows through the two or more power lines according to the magnetic field generated in the magnetic core 21a.
  • a current detection unit 20a for detecting a current and an arc determination unit 30a for determining the generation of an arc based on the combined current detected by the current detection unit 20a are provided. At least one of the plurality of converters is connected to at least one power source, and at least one of the plurality of converters is connected to each of the plurality of load devices.
  • the DC / DC converters 41, 42 and 43 and the inverter 44 are stopped, or a breaker or the like (not shown) provided in each power line is operated based on the detection result. Therefore, the current flowing through each power line can be cut off.
  • two or more power lines are a power line 110a connected to one input / output end of a first converter (for example, a DC / DC converter 42) of a plurality of converters and a power line connected to the other input / output end. It may be 120a.
  • a first converter for example, a DC / DC converter 42
  • a power line connected to the other input / output end. It may be 120a.
  • two or more power lines may include power lines in which the current flows in opposite directions.
  • the magnetic core 21a since a large direct current flows through two or more power lines, magnetic saturation may occur in the magnetic core 21a. Therefore, when an arc is generated in two or more power lines, the current (alternating current) due to the arc superimposed on the DC current flowing in the two or more power lines may not be accurately detected due to magnetic saturation due to the direct current.
  • the direct current flows by passing two or more power lines through the magnetic core 21a so as to include a power line in which the direction of the direct current flows is opposite to that of the other power lines.
  • the magnetic field due to the direct current flowing through the power lines whose flow directions are opposite to each other can be canceled and magnetic saturation can be prevented. Therefore, it is possible to accurately detect arcs generated in two or more power lines.
  • the direct current flowing through the power line connected to one input / output end of the first converter (specifically, the branch path 111d in the power line 110a) is connected to the other input / output end of the first converter.
  • the power line 110a connected to one input / output end of the first converter is wound around the magnetic core 21a at least once.
  • the power line 110a may be passed through the magnetic core 21a more than once.
  • the magnetic field due to the direct current flowing through the power line 110a connected to one input / output end of the first converter and the magnetic field due to the direct current flowing through the power line 120a connected to the other input / output end of the first converter are separated. It becomes easier to offset evenly.
  • the photovoltaic power generation system (for example, system 1a) according to the present embodiment includes an arc detection device 10a, and one or more power sources of at least one power source are composed of a solar cell 62 and at least one.
  • the other one of the power sources is composed of a grid power supply 48, and one of the plurality of load devices is a DC / AC converter (for example, an inverter 44) connected to the grid power supply 48. Consists of.
  • the storage battery system (for example, system 1a) according to the present embodiment includes an arc detection device 10a and one or more power sources of at least one power source or one or more load devices of a plurality of load devices. It includes operating storage batteries 51 and 52, and a system power supply 48 that operates as one or more power sources of at least one power source or one or more load devices of a plurality of load devices.
  • the system power supply 48 operates as a power source
  • a converter for example, an inverter 44
  • the converters eg, DC / DC converters 42 and 43
  • the converters connected to the above operate as a load device.
  • the storage batteries 51 and 52 When the storage batteries 51 and 52 are discharged, the storage batteries 51 and 52 operate as power sources, the converters connected to the storage batteries 51 and 52 operate as DC / DC converters 42 and 43, and are connected to the system power supply 48 and the system power supply 48.
  • the converted converter (for example, the inverter 44) operates as a load device.
  • one or more power sources of at least one power source may be composed of a solar cell 62.
  • FIG. 2 is a configuration diagram showing an example of the system 1b according to the modified example of the first embodiment.
  • the system 1b is different from the system 1a according to the first embodiment in that the arc detection device 10b is provided instead of the arc detection device 10a. Since other points are the same as those in the first embodiment, the description thereof will be omitted.
  • the arc detection device 10b includes current detection units 20a and 20b and an arc determination unit 30b.
  • a signal indicating the current flowing through the power lines 110a and 120a penetrating the magnetic core 21a in the current detection unit 20a is input to the arc determination unit 30b.
  • the current detection unit 20b has a magnetic core 21b through which the power lines 110a and 130a pass, and detects the current flowing through the power lines 110a and 130a according to the magnetic field generated in the magnetic core 21b.
  • the current detection unit 20b is a branch path 111b connecting the branch point N and the DC / DC converter 43 in the power line 110a, and a power line connected to the other input / output end of the DC / DC converter 43. It has a magnetic core 21b through which 130a penetrates, and detects a current flowing through a branch path 111b and a power line 130a according to a magnetic field generated in the magnetic core 21b.
  • the power line 110a connected to one input / output end of the DC / DC converter 43 and the power line 130a connected to the other input / output end are bundled in the magnetic core 21b as shown in FIG. It penetrates the magnetic core 21b.
  • the power lines 110a and 130a include power lines in which the direction in which the direct current flows in the magnetic core 21b is opposite to that of the other power lines.
  • the power lines 110a and 130a penetrate the magnetic core 21b so that the direction of the direct current flowing through the power line 110a and the direction of the direct current flowing through the power line 130a are opposite to each other.
  • the magnetic core 21b has an annular shape (here, an annular shape) through which a power line can penetrate, and a magnetic field corresponding to the current is generated in the core by a current flowing through the power line penetrating its own hole.
  • the magnetic core 21b is not limited to an annular shape, and may have a rectangular annular shape or the like.
  • the current detection unit 20b includes, for example, a Hall element (not shown) that detects a magnetic field generated in the magnetic core 21b and generates a voltage corresponding to the magnetic field generated in the magnetic core 21b.
  • the voltage generated by the Hall element is input to the arc determination unit 30b as a signal indicating a magnetic field generated in the magnetic core 21b, that is, a current flowing through the power lines 110a and 130a penetrating the magnetic core 21b.
  • the arc determination unit 30b is realized by a microcomputer in the same manner as the arc determination unit 30a, but may be realized in hardware by a dedicated electronic circuit, an amplifier, a filter circuit, or the like.
  • the arc determination unit 30b identifies the location where the arc is generated based on the currents detected by the current detection units 20a and 20b. For example, the arc determination unit 30b determines the occurrence of an arc on the power line 110a or 120a by frequency-analyzing the current detected by the current detection unit 20a, and frequency-analyzes the current detected by the current detection unit 20b. The generation of the arc on the power line 110a or 130a is determined.
  • the arc determination unit 30b determines that an arc has been generated in the power line 110a or 120a from the current detected by the current detection unit 20a, and an arc has been generated in the power line 110a or 130a from the current detected by the current detection unit 20b. When it is determined, the location where the arc is generated can be identified as the power line 110a. This is because when an arc is generated in the power line 110a, the current generated by the generation of the arc flows in both the branch paths 111d and 111b connected at the branch point N, and the current is detected by both the current detection units 20a and 20b. ..
  • the arc determination unit 30b determines that an arc has been generated in the power line 110a or 120a from the current detected by the current detection unit 20a, and an arc is generated in the power line 110a or 130a from the current detected by the current detection unit 20b. If it is determined that this is not the case, the location where the arc is generated can be identified as the power line 120a.
  • the current detection unit 20a detects the current, but the current generated by the generation of the arc does not flow in the power lines 110a and 130a. This is because the detection unit 20b does not detect the current.
  • the arc determination unit 30b determines that no arc is generated in the power line 110a or 120a from the current detected by the current detection unit 20a, and arcs in the power line 110a or 130a from the current detected by the current detection unit 20b. When it is determined that the above is generated, the place where the arc is generated can be identified as the power line 130a. When an arc is generated in the power line 130a, a current generated by the generation of the arc flows in the power line 130a, and the current detection unit 20b detects the current, but the current generated by the generation of the arc does not flow in the power lines 110a and 120a. This is because the detection unit 20a does not detect the current.
  • the two or more power lines penetrating the magnetic core 21b may include power lines other than the power lines 110a (specifically, the branch path 111b) and 130a.
  • the two or more power lines may further include power lines 140a or 140b. That is, the power line 140a or 140b may further penetrate the magnetic core 21b.
  • the arc detection device 10b includes a plurality of current detection units, and the arc determination unit 30b is a location where an arc is generated based on the currents detected by the plurality of current detection units (for example, current detection units 20a and 20b). To judge.
  • the arc is generated in the branch power line (that is, the power line 110a) in which each current detection unit detects the arc in common.
  • the power line for example, power line 120a or 130a, etc.
  • the current detection unit independently detects the arc.
  • FIG. 3 is a configuration diagram showing an example of the indoor power line system 2 according to the second embodiment.
  • the indoor power line system 2 is a system having at least one power source, a plurality of converters for adjusting the voltage of at least one power source, and a plurality of load devices. Further, the indoor power line system 2 includes an arc detection device 10.
  • the system power supply 63 is shown as at least one power source. Further, AC / DC converters 45, 46 and 47 are shown as a plurality of converters. Further, as a plurality of load devices, load devices 53, 54 and 55 are shown.
  • At least one of a plurality of converters is connected to at least one power source, and at least one of a plurality of converters is connected to each of the plurality of load devices.
  • the system power supply 63 is connected to the AC / DC converters 45, 46 and 47
  • the load device 53 is connected to the AC / DC converter 45
  • the load device 54 is connected to the AC / DC converter.
  • 46 is connected
  • the AC / DC converter 47 is connected to the load device 55.
  • a plurality of power lines are connected between at least one power source and a plurality of converters, and between a plurality of converters and a plurality of load devices.
  • the system power supply 63 and the AC / DC converters 45, 46 and 47 between the AC / DC converter 45 and the load device 53, and between the AC / DC converter 46 and the load device 54.
  • a plurality of power lines are connected between the AC / DC converter 47 and the load device 55.
  • the system power supply 63 and the AC / DC converters 45, 46 and 47 are connected by power lines 14a and 14b
  • the AC / DC converter 45 and the load device 53 are connected by power lines 11a and 11b.
  • the AC / DC converter 46 and the load device 54 are connected by power lines 12a and 12b
  • the AC / DC converter 47 and the load device 55 are connected by power lines 13a and 13b.
  • the AC / DC converters 45, 46 and 47, the power lines 11a, 11b, 12a, 12b, 13a, 13b, 14a and 14b, the load devices 53, 54 and 55 and the arc detection device 10 are detached houses, apartment houses, buildings or factories. It is installed indoors of facilities such as.
  • the grid power supply 63 is a power supply that supplies AC power generated at a power plant or the like. AC current flows through the power lines 14a and 14b that connect the system power supply 63 and the AC / DC converters 45, 46, and 47.
  • AC / DC converters 45, 46, and 47 are supplied with AC power from the system power supply 63, and convert the supplied AC power into DC power for output.
  • the AC / DC converter 45 converts the AC power supplied from the system power supply 63 into DC power and outputs it to the load device 53.
  • the AC / DC converter 45 has a positive electrode and a negative electrode, and a power line 11a is connected to the positive electrode and a power line 11b is connected to the negative electrode.
  • the load device 53 is supplied with DC power from the AC / DC converter 45.
  • the AC / DC converter 46 converts the AC power supplied from the system power supply 63 into DC power and outputs it to the load device 54.
  • the AC / DC converter 46 has a positive electrode and a negative electrode, and a power line 12a is connected to the positive electrode and a power line 12b is connected to the negative electrode.
  • the load device 54 is supplied with DC power from the AC / DC converter 46.
  • the AC / DC converter 47 converts the AC power supplied from the system power supply 63 into DC power and outputs it to the load device 55.
  • the AC / DC converter 47 has a positive electrode and a negative electrode, and a power line 13a is connected to the positive electrode and a power line 13b is connected to the negative electrode.
  • the load device 55 is supplied with DC power from the AC / DC converter 47.
  • the power lines 11a, 12a and 13a are examples of two or more power lines penetrating the magnetic core 21 described later.
  • the load devices 53, 54 and 55 are not particularly limited as long as they are installed indoors and driven by DC.
  • the load devices 53, 54 and 55 may be lighting fixtures, fans, speakers, microphones and the like.
  • an arc may occur in the power lines 11a, 12a, and 13a through which a direct current flows. If arc detecting means is provided in all of the power lines 11a, 12a and 13a, it is possible to detect an arc generated by the power line 11a, an arc generated by the power line 12a and an arc generated by the power line 13a, but the system (for example, an indoor power line) can be detected. The system 2) becomes large and the cost increases.
  • the arc detection device 10 is used to easily detect the arc generated in two or more power lines (here, for example, power lines 11a, 12a and 13a) among the plurality of power lines in the indoor power line system 2.
  • the arc detection device 10 includes a current detection unit 20 and an arc determination unit 30.
  • the current detection unit 20 has a magnetic core 21 through which the power lines 11a, 12a and 13a penetrate, and detects a combined current flowing through the power lines 11a, 12a and 13a according to the magnetic field generated in the magnetic core 21.
  • power lines 11a, 12a and 13a connected to the respective output ends of the AC / DC converters 45, 46 and 47 are bundled at the magnetic core 21 and penetrate the magnetic core 21 as shown in FIG. ..
  • two or more power lines include a power line in which a direct current flows in the opposite direction to the other power lines.
  • the power lines 11a, 12a, and 13a penetrate the magnetic core 21 so that the direction of the direct current flowing through the power line 12a is opposite to the direction of the direct current flowing through the other power lines 11a and 13a.
  • the power line 12a in which the direction of the direct current flowing is opposite to that of the other power lines 11a and 13a is the power line in which the largest direct current is assumed to flow among the power lines 11a, 12a and 13a. Is.
  • the power line 12a where the largest direct current is assumed to flow is opposite to the other power lines 11a and 13a, so that the magnetic field due to the direct current flowing through the power line 12a It becomes easy to cancel the magnetic field due to the direct current flowing through the power line 11a and the magnetic field due to the direct current flowing through the power line 13a, and it becomes easy to prevent magnetic saturation.
  • the magnetic core 21 has an annular shape (here, an annular shape) through which a power line can penetrate, and a magnetic field corresponding to the current is generated in the core by a current flowing through the power line penetrating its own hole.
  • the magnetic core 21 is not limited to an annular shape, but may have a rectangular annular shape or the like.
  • the current detection unit 20 includes, for example, a Hall element (not shown) that detects a magnetic field generated in the magnetic core 21 and generates a voltage corresponding to the magnetic field generated in the magnetic core 21.
  • the voltage generated by the Hall element is input to the arc determination unit 30 as a signal indicating a magnetic field generated in the magnetic core 21, that is, a current flowing through the power lines 11a, 12a, and 13a penetrating the magnetic core 21.
  • the arc determination unit 30 is realized by a microcomputer in the same manner as the arc determination unit 30a, but may be realized in hardware by a dedicated electronic circuit, an amplifier, a filter circuit, or the like.
  • the arc determination unit 30 determines the generation of an arc based on the combined current detected by the current detection unit 20. For example, the arc determination unit 30 determines the generation of an arc on the power lines 11a, 12a, or 13a by frequency-analyzing the combined current detected by the current detection unit 20.
  • the current generated by the generation of the arc includes a frequency component caused by the arc, and the generation of the arc can be determined by detecting the frequency component.
  • the arc determination unit 30 determines that an arc has occurred, it can be seen that an arc has occurred in any of the power lines 11a, 12a, and 13a. That is, only one current detection unit 20 (specifically, the magnetic core 21) can detect arcs in two or more power lines (here, power lines 11a, 12a and 13a).
  • the number of power lines penetrating the magnetic core 21 is not limited to three, and may be two or four or more.
  • the indoor power line system 2 includes an arc detection device 10, one power source of at least one power source is composed of a system power supply 63, and a plurality of converters are included. , AC / DC converters 45, 46 and 47.
  • the arc detection device 10 may be applied to the indoor power line system 2, and the indoor power line system 2 capable of easily detecting the arc generated in a plurality of (two or more) power lines can be provided.
  • the systems 1a and 1b have been described as having one solar cell 62, but the systems 1a and 1b may be provided with two or more solar cells. ..
  • the systems 1a and 1b have been described as having two storage batteries 51 and 52, but the systems 1a and 1b may be provided with three or more storage batteries. ..
  • the systems 1a and 1b have been described as having three DC / DC converters 41, 42 and 43, but the systems 1a and 1b have four or more DCs.
  • a / DC converter may be provided.
  • the systems 1a and 1b have described an example in which the solar cell 62 is provided, but the system 1a and 1b may not be provided. That is, the systems 1a and 1b may be storage battery systems that do not have a photovoltaic power generation function.
  • the systems 1a and 1b have described an example in which the storage batteries 51 and 52 are provided, but the systems 1a and 1b may not be provided. That is, the systems 1a and 1b may be a photovoltaic power generation system that does not have a power storage function.
  • the system 1b includes the two current detection units 20a and 20b, but the system 1b depends on, for example, the number of DC / DC converters provided. It may include three or more current detectors.
  • the indoor power line system 2 includes three AC / DC converters 45, 46 and 47, but the indoor power line system 2 has two or four or more AC / DC converters.
  • a DC converter may be provided.
  • the indoor power line system 2 includes three load devices 53, 54 and 55, but the indoor power line system 2 includes two or four or more load devices. You may.
  • the two or more power lines include a power line in which the direction in which the direct current flows is opposite to that of the other power lines in the magnetic core has been described.
  • the directions of the direct currents flowing through the above power lines may all be the same.
  • the arc determination unit included in the arc detection device may be realized by software in a general-purpose computer such as a personal computer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

少なくとも1つの電力源と、少なくとも1つの電力源の電圧を調整する複数のコンバータと、複数の負荷装置とを有するシステム(1a)におけるアーク検出装置(10a)であって、少なくとも1つの電力源と複数のコンバータとの間、及び、複数のコンバータと複数の負荷装置との間は、複数の電力線で結線され、アーク検出装置(10a)は、複数の電力線のうちの2以上の電力線が貫通する磁気コア(21a)を有し、磁気コア(21a)に発生する磁界に応じて2以上の電力線を流れる合成電流を検出する電流検出部(20a)と、電流検出部(20a)により検出された合成電流に基づいて、アークの発生を判定するアーク判定部(30a)と、を備える。

Description

アーク検出装置、屋内電力線システム、太陽光発電システム及び蓄電池システム
 本発明は、アーク検出装置、屋内電力線システム、太陽光発電システム及び蓄電池システムに関する。
 従来、PV(Photo Voltaic)パネル(太陽電池)等から電力線を介して供給される直流電力をインバータ等の機器で交流電力に変換するシステムが知られている。このような電力線は、外的要因又は経年劣化等によって損傷又は破断を引き起こすことが報告されている。このような電力線の損傷等に起因してアーク(つまりアーク放電)が発生する場合がある。そこで、アークを検出するためのアーク検出手段が提案されている(例えば、特許文献1)。
特開2011-7765号公報
 今後、1つのシステム内において様々な機器が設けられ、様々な機器に電力を供給するために複数の電力線が設けられることが想定される。このとき、複数の電力線のそれぞれについてアークが発生する場合がある。複数の電力線のそれぞれにアーク検出手段を設ければ、複数の電力線において発生するアークを検出することができるが、システムが大型化し、また、高コスト化する。
 そこで、本発明は、複数の電力線において発生するアークを容易に検出できるアーク検出装置等を提供する。
 本発明に係るアーク検出装置の一態様は、少なくとも1つの電力源と、前記少なくとも1つの電力源の電圧を調整する複数のコンバータと、複数の負荷装置とを有するシステムにおけるアーク検出装置であって、前記少なくとも1つの電力源と前記複数のコンバータとの間、及び、前記複数のコンバータと前記複数の負荷装置との間は、複数の電力線で結線され、前記アーク検出装置は、前記複数の電力線のうちの2以上の電力線が貫通する磁気コアを有し、前記磁気コアに発生する磁界に応じて前記2以上の電力線を流れる合成電流を検出する電流検出部と、前記電流検出部により検出された合成電流に基づいて、アークの発生を判定するアーク判定部と、を備え、前記少なくとも1つの電力源には前記複数のコンバータのうちの少なくとも1つのコンバータが接続され、前記複数の負荷装置のそれぞれには前記複数のコンバータのうちの少なくとも1つのコンバータが接続される。
 本発明に係る屋内電力線システムの一態様は、上記のアーク検出装置を備え、前記少なくとも1つの電力源のうちの1つの電力源は、系統電源で構成され、前記複数のコンバータは、AC/DC変換器で構成される。
 本発明に係る太陽光発電システムの一態様は、上記のアーク検出装置を備え、前記少なくとも1つの電力源のうちの1つ以上の電力源は、太陽電池で構成され、前記少なくとも1つの電力源のうちの他の1つの電力源は、系統電源で構成され、前記複数の負荷装置のうちの1つの負荷装置は、前記系統電源に接続されたDC/AC変換器で構成される。
 本発明に係る蓄電池システムの一態様は、上記のアーク検出装置と、前記少なくとも1つの電力源のうちの1つ以上の電力源又は前記複数の負荷装置のうちの1つ以上の負荷装置として動作する蓄電池と、前記少なくとも1つの電力源のうちの1つ以上の電力源又は前記複数の負荷装置のうちの1つ以上の負荷装置として動作する系統電源と、を備え、前記蓄電池の充電時には、前記系統電源が電力源として動作し、前記系統電源に接続されたコンバータがAC/DC変換器として動作し、前記蓄電池と当該蓄電池に接続されたコンバータとが負荷装置として動作し、前記蓄電池の放電時には、前記蓄電池が電力源として動作し、前記蓄電池に接続されたコンバータがDC/DC変換器として動作し、前記系統電源と当該系統電源に接続されたコンバータとが負荷装置として動作する。
 本発明の一態様によれば、複数の電力線において発生するアークを容易に検出できる。
図1は、実施の形態1に係るシステムの一例を示す構成図である。 図2は、実施の形態1の変形例に係るシステムの一例を示す構成図である。 図3は、実施の形態2に係る屋内電力線システムの一例を示す構成図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。以下に説明する実施の形態は、いずれも本発明の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であって本発明を限定する主旨ではない。
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
 (実施の形態1)
 図1は、実施の形態1に係るシステム1aの一例を示す構成図である。システム1aは、太陽光発電システムでもあり、蓄電池システム(例えば太陽光発電機能と蓄電機能を有するシステム)でもある。
 システム1aは、少なくとも1つの電力源と、少なくとも1つの電力源の電圧を調整する複数のコンバータと、複数の負荷装置とを有するシステムである。また、システム1aは、アーク検出装置10aを備える。実施の形態1では、少なくとも1つの電力源として、太陽電池62、系統電源48並びに蓄電池51及び52を示している。また、複数のコンバータとして、DC/DC変換器41、42及び43並びにインバータ44を示している。また、系統電源48、インバータ44並びに蓄電池51及び52は、状況に応じて負荷装置にもなり得る。
 少なくとも1つの電力源には複数のコンバータのうちの少なくとも1つのコンバータが接続され、複数の負荷装置のそれぞれには複数のコンバータのうちの少なくとも1つのコンバータが接続される。実施の形態1では、電力源として動作する太陽電池62にはDC/DC変換器41が接続され、電力源又は負荷装置として動作する系統電源48にはインバータ44が接続され、電力源又は負荷装置として動作する蓄電池51にはDC/DC変換器42が接続され、電力源又は負荷装置として動作する蓄電池52にはDC/DC変換器43が接続される。
 少なくとも1つの電力源と複数のコンバータとの間、及び、複数のコンバータと複数の負荷装置との間は、複数の電力線で結線される。実施の形態1では、太陽電池62とDC/DC変換器41との間、系統電源48とインバータ44との間、蓄電池51とDC/DC変換器42との間、蓄電池52とDC/DC変換器43との間、及び、DC/DC変換器41とDC/DC変換器42とDC/DC変換器43とインバータ44との間は、複数の電力線で結線されている。具体的には、太陽電池62とDC/DC変換器41との間は電力線140a及び140bで結線され、系統電源48とインバータ44との間は電力線150a及び150bで結線され、蓄電池51とDC/DC変換器42との間は電力線120a及び120bで結線され、蓄電池52とDC/DC変換器43との間は電力線130a及び130bで結線され、DC/DC変換器41とDC/DC変換器42とDC/DC変換器43とインバータ44との間は電力線110a及び110bで結線されている。
 太陽電池62は、太陽光により発電し直流電力を発生する電力源である。太陽電池62で発生した直流電力はDC/DC変換器41に供給され、複数の負荷装置のうちの1つの負荷装置(系統電源48に接続されたインバータ44(具体的にはDC/AC変換器)で構成される負荷装置)に供給される。太陽電池62は正極と負極を有し、正極には電力線140aが接続され、負極には電力線140bが接続される。
 系統電源48は、発電所等で生成された交流電力を供給する電源である。なお、上述したように、系統電源48は、状況に応じて電力が供給される負荷装置にもなり得る。
 蓄電池51及び52は、少なくとも1つの電力源のうちの1つ以上の電力源又は複数の負荷装置のうちの1つ以上の負荷装置として動作する。例えば、蓄電池51及び52の充電時には、系統電源48が電力源として動作し、系統電源48に接続されたコンバータ(すわなちインバータ44)がAC/DC変換器として動作し、蓄電池51及び52と蓄電池51及び52に接続されたコンバータ(すなわちDC/DC変換器42及び43)とが負荷装置として動作する。また、蓄電池51及び52の放電時には、蓄電池51及び52が電力源として動作し、蓄電池51及び52に接続されたコンバータがDC/DC変換器42及び43として動作し、系統電源48と系統電源48に接続されたコンバータ(すなわちインバータ44)とが負荷装置として動作する。
 DC/DC変換器41は、太陽電池62から供給された直流電力を昇圧又は降圧して、DC/DC変換器42及び43並びにインバータ44に出力する。DC/DC変換器41は正極と負極を有し、正極には電力線110aが接続され、負極には電力線110bが接続される。
 DC/DC変換器42は、DC/DC変換器41又はインバータ44から供給された直流電力を昇圧又は降圧して、蓄電池51に出力する。また、DC/DC変換器42は、蓄電池51から供給された直流電力を昇圧又は降圧して、DC/DC変換器43又はインバータ44に出力する。DC/DC変換器42は正極と負極を有し、正極には電力線120aが接続され、負極には電力線120bが接続される。
 DC/DC変換器43は、DC/DC変換器41又はインバータ44から供給された直流電力を昇圧又は降圧して、蓄電池52に出力する。また、DC/DC変換器43は、蓄電池52から供給された直流電力を昇圧又は降圧して、DC/DC変換器42又はインバータ44に出力する。DC/DC変換器43は正極と負極を有し、正極には電力線130aが接続され、負極には電力線130bが接続される。
 電力線110a、110b、120a、120b、130a、130b、140a及び140bは、それぞれ直流電流が流れる。電力線110a及び120aは、後述する磁気コア21aを貫通する2以上の電力線の一例である。
 インバータ44は、DC/DC変換器41、42及び43から供給された直流電力を交流電力に変換して出力するDC/AC変換器として動作する。また、インバータ44は系統電源48から供給された交流電力を直流電力に変換してDC/DC変換器42及び43に供給するAC/DC変換器として動作する。例えば、インバータ44は、直流電力を周波数50Hz又は60Hzの交流電力への変換を行う。交流電力は、家庭用電気機器等で使用される。インバータ44と系統電源48とを接続する電力線150a及び150bは、交流電流が流れる。
 後述する磁気コア21aを貫通する2以上の電力線は、例えば、複数のコンバータのうちの第1のコンバータの一方の入出力端に接続された電力線と他方の入出力端に接続された電力線である。例えば、第1のコンバータはDC/DC変換器42であり、後述する磁気コア21aを貫通する2以上の電力線は、DC/DC変換器42の一方の入出力端に接続された電力線110aと他方の入出力端に接続された電力線120aである。
 DC/DC変換器42の一方の入出力端に接続された電力線110aは、複数の分岐経路111a、111b、111c及び111dに分岐している分岐電力線である。電力線110aにおける複数の分岐経路111a、111b、111c及び111dの接続点を分岐点Nとする。具体的には、分岐点NとDC/DC変換器41とを結ぶ経路が分岐経路111aであり、分岐点NとDC/DC変換器43とを結ぶ経路が分岐経路111bであり、分岐点Nとインバータ44とを結ぶ経路が分岐経路111cであり、分岐点NとDC/DC変換器42とを結ぶ経路が分岐経路111dである。分岐経路111dは、後述する磁気コア21aを貫通している。
 例えば、DC/DC変換器42に着目すると、DC/DC変換器42の一方の入出力端に接続された電力線110a及びDC/DC変換器42の他方の入出力端に接続された電力線120aに流れる電流は直流電流であるため、電力線110a及び120aのいずれについてもアークが発生する可能性がある。電力線110aにアーク検出手段を設ければ、電力線110aで発生したアークを検出できるが、電力線120aで発生したアークによる高周波成分は、DC/DC変換器42内に存在するコンデンサ等によって遮断されるため、電力線120aで発生したアークについては検出することは難しい。一方で、電力線120aにアーク検出手段を設ければ、電力線120aで発生したアークを検出できるが、電力線110aで発生したアークについては同様に検出することは難しい。電力線110a及び120aの両方にアーク検出手段を設ければ、電力線110aで発生したアーク及び電力線120aで発生したアークの両方を検出することができるが、システムが大型化し、また、高コスト化する。
 そこで、システム1aにおける複数の電力線のうちの2以上の電力線(ここでは例えば電力線110a及び120a)において発生するアークを容易に検出するために、アーク検出装置10aが用いられる。
 アーク検出装置10aは、電流検出部20a及びアーク判定部30aを備える。
 電流検出部20aは、電力線110a及び120aが貫通する磁気コア21aを有し、磁気コア21aに発生する磁界に応じて電力線110a及び120aを流れる合成電流を検出する。具体的には、電流検出部20aは、電力線110aにおける分岐点NとDC/DC変換器42の一方の入出力端とを結ぶ分岐経路111d、及び、電力線120aが貫通する磁気コア21aを有し、磁気コア21aに発生する磁界に応じて分岐経路111d及び電力線120aを流れる合成電流を検出する。例えば、DC/DC変換器42の一方の入出力端に接続された電力線110aと他方の入出力端に接続された電力線120aとが、図1に示されるように、磁気コア21aにおいて束ねられ、磁気コア21aを貫通する。例えば、磁気コアにおいて、2以上の電力線には、直流電流の流れる向きが他の電力線と逆向きとなっている電力線が含まれる。ここでは、磁気コア21aにおいて、電力線110aを流れる直流電流の向きと電力線120aを流れる直流電流の向きとが逆向きとなるように、電力線110a及び120aが磁気コア21aを貫通している。
 磁気コア21aは、電力線が貫通可能な環状形状(ここでは円環形状)となっており、自身の孔を貫通する電力線に流れる電流によって、当該電流に応じた磁界がコアに発生する。なお、磁気コア21aは、円環形状に限らず、矩形状の環状形状等であってもよい。
 また、電流検出部20aは、例えば、磁気コア21aに発生する磁界を検出して、磁気コア21aに発生する磁界に応じた電圧を発生するホール素子(図示せず)を備える。ホール素子が発生する電圧は、磁気コア21aに発生した磁界、つまり、磁気コア21aを貫通する電力線110a及び120aを流れる電流を示す信号としてアーク判定部30aに入力される。
 アーク判定部30aは、例えばマイコン(マイクロコントローラ)により実現される。マイコンは、プログラムが格納されたROM(Read Only Memory)、RAM(Randam Access Memory)、プログラムを実行するプロセッサ(CPU:Central Processing Unit)、タイマ、A/D変換器及びD/A変換器等を有する半導体集積回路等である。なお、アーク判定部30aは、A/D変換器、論理回路、ゲートアレイ及びD/A変換器等で構成される専用の電子回路、又は、アンプ及びフィルタ回路等によってハードウェア的に実現されてもよい。
 アーク判定部30aは、電流検出部20aにより検出された合成電流に基づいて、アークの発生を判定する。例えば、アーク判定部30aは、電流検出部20aにより検出された合成電流を周波数分析することで電力線110a又は120aにおけるアークの発生を判定する。アークの発生により生じる電流には、アークに起因する周波数成分が含まれており、当該周波数成分を検出することでアークの発生を判定することができる。アーク判定部30aがアーク発生したと判定した場合、電力線110a及び120aのいずれかにアークが発生したことがわかる。つまり、1つの電流検出部20a(具体的には磁気コア21a)のみで、2以上の電力線(ここでは電力線110a及び120a)におけるアークを検出できる。
 なお、磁気コア21aを貫通する2以上の電力線には、電力線110a(具体的には分岐経路111d)及び120a以外の電力線が含まれていてもよい。例えば、当該2以上の電力線には、さらに、電力線130a又は130b、及び、電力線140a又は140bの少なくとも1つが含まれていてもよい。つまり、磁気コア21aに、さらに、電力線130a又は130b、及び、電力線140a又は140bの少なくとも1つが貫通していてもよい。
 以上説明したように、本実施の形態に係るアーク検出装置10aは、少なくとも1つの電力源(例えば太陽電池62、系統電源48並びに蓄電池51及び52から選択される電力源)と、少なくとも1つの電力源の電圧を調整する複数のコンバータ(例えばDC/DC変換器41、42及び43並びにインバータ44から選択される複数のコンバータ)と、複数の負荷装置(例えば蓄電池51及び52、系統電源48並びにインバータ44から選択される複数の負荷装置)とを有するシステム1aにおけるアーク検出装置である。少なくとも1つの電力源と複数のコンバータとの間、及び、複数のコンバータと複数の負荷装置との間は、複数の電力線(例えば、電力線110a、110b、120a、120b、130a、130b、140a、140b、150a及び150b)で結線される。アーク検出装置10aは、複数の電力線のうちの2以上の電力線(例えば電力線110a及び120a)が貫通する磁気コア21aを有し、磁気コア21aに発生する磁界に応じて2以上の電力線を流れる合成電流を検出する電流検出部20aと、電流検出部20aにより検出された合成電流に基づいて、アークの発生を判定するアーク判定部30aと、を備える。少なくとも1つの電力源には複数のコンバータのうちの少なくとも1つのコンバータが接続され、複数の負荷装置のそれぞれには複数のコンバータのうちの少なくとも1つのコンバータが接続される。
 これによれば、2以上の電力線(例えば電力線110a及び120a)が束ねられて1つの磁気コア21aを貫通しているため、2以上の電力線のうちのいずれの電力線でアークが発生したとしてもアークを検出できる。つまり、2以上の電力線のそれぞれ毎にアーク検出手段を設けなくても、2以上の電力線において発生するアークを検出できる。すなわち、システムを大型化したり、高コスト化したりしなくてもよく、1つの電流検出部20aを用いて、複数(2以上)の電力線において発生するアークを容易に検出できる。例えば、アークが検出された場合、当該検出結果に基づいて、DC/DC変換器41、42及び43並びにインバータ44を停止したり、各電力線に設けられたブレーカ等(図示せず)を操作したりして、各電力線を流れる電流を遮断することができる。
 例えば、2以上の電力線は、複数のコンバータのうちの第1のコンバータ(例えばDC/DC変換器42)の一方の入出力端に接続された電力線110aと他方の入出力端に接続された電力線120aであってもよい。
 これによれば、第1のコンバータの一方の入出力端に接続された電力線110a及び他方の入出力端に接続された電力線120aにおいて発生するアークを検出できる。
 例えば、磁気コア21aにおいて、2以上の電力線には電流の流れる向きが逆向きとなっている電力線が含まれていてもよい。
 例えば、2以上の電力線には、大きな直流電流が流れているため、磁気コア21aに磁気飽和が生じ得る。このため、2以上の電力線にアークが発生した場合、直流電流による磁気飽和によって、2以上の電力線に流れる直流電流に重畳したアークによる電流(交流電流)を正確に検出できないおそれがある。これに対して、磁気コア21aにおいて、直流電流の流れる向きが他の電力線と逆向きとなっている電力線が含まれるようにして、2以上の電力線を磁気コア21aに貫通させることで、直流電流の流れる向きが互いに逆向きになっている電力線を流れる直流電流による磁界を相殺でき磁気飽和を防止できる。したがって、2以上の電力線において発生するアークを正確に検出できる。なお、第1のコンバータの一方の入出力端に接続された電力線(具体的には電力線110aにおける分岐経路111d)を流れる直流電流が第1のコンバータの他方の入出力端に接続された電力線120aを流れる直流電流よりも小さい場合(例えば、DC/DC変換器42が降圧型の場合)、第1のコンバータの一方の入出力端に接続された電力線110aを磁気コア21aに1回以上巻いて、電力線110aを磁気コア21aに2回以上貫通させてもよい。これにより、第1のコンバータの一方の入出力端に接続された電力線110aを流れる直流電流による磁界と第1のコンバータの他方の入出力端に接続された電力線120aを流れる直流電流による磁界とを均等に相殺しやすくなる。
 本実施の形態に係る太陽光発電システム(例えばシステム1a)は、アーク検出装置10aを備え、少なくとも1つの電力源のうちの1つ以上の電力源は、太陽電池62で構成され、少なくとも1つの電力源のうちの他の1つの電力源は、系統電源48で構成され、複数の負荷装置のうちの1つの負荷装置は、系統電源48に接続されたDC/AC変換器(例えばインバータ44)で構成される。
 これによれば、複数(2以上)の電力線において発生するアークを容易に検出できる太陽光発電システムを提供できる。
 本実施の形態に係る蓄電池システム(例えばシステム1a)は、アーク検出装置10aと、少なくとも1つの電力源のうちの1つ以上の電力源又は複数の負荷装置のうちの1つ以上の負荷装置として動作する蓄電池51及び52と、少なくとも1つの電力源のうちの1つ以上の電力源又は複数の負荷装置のうちの1つ以上の負荷装置として動作する系統電源48と、を備える。蓄電池51及び52の充電時には、系統電源48が電力源として動作し、系統電源48に接続されたコンバータ(例えばインバータ44)がAC/DC変換器として動作し、蓄電池51及び52と蓄電池51及び52に接続されたコンバータ(例えばDC/DC変換器42及び43)とが負荷装置として動作する。蓄電池51及び52の放電時には、蓄電池51及び52が電力源として動作し、蓄電池51及び52に接続されたコンバータがDC/DC変換器42及び43として動作し、系統電源48と系統電源48に接続されたコンバータ(例えばインバータ44)とが負荷装置として動作する。
 これによれば、複数(2以上)の電力線において発生するアークを容易に検出できる蓄電池システムを提供できる。
 例えば、少なくとも1つの電力源のうちの1つ以上の電力源は、太陽電池62で構成されてもよい。
 これによれば、複数(2以上)の電力線において発生するアークを容易に検出できるシステムであって、太陽光発電機能と蓄電機能とを有するシステムを提供できる。
 (実施の形態1の変形例)
 実施の形態1では、アーク検出装置10aが1つの電流検出部20aを備える例について説明した。実施の形態1の変形例では、アーク検出装置が電流検出部を複数(例えば2つ)備える例について説明する。
 図2は、実施の形態1の変形例に係るシステム1bの一例を示す構成図である。
 システム1bは、アーク検出装置10aの代わりにアーク検出装置10bを備える点が、実施の形態1に係るシステム1aと異なる。その他の点については、実施の形態1におけるものと同じであるため、説明は省略する。
 アーク検出装置10bは、電流検出部20a及び20b並びにアーク判定部30bを備える。
 電流検出部20aは、実施の形態1において説明したものと同じであるため説明は省略する。なお、実施の形態1の変形例では、電流検出部20aにおける磁気コア21aを貫通する電力線110a及び120aを流れる電流を示す信号がアーク判定部30bに入力される。
 電流検出部20bは、電力線110a及び130aが貫通する磁気コア21bを有し、磁気コア21bに発生する磁界に応じて電力線110a及び130aを流れる電流を検出する。具体的には、電流検出部20bは、電力線110aにおける分岐点NとDC/DC変換器43とを結ぶ分岐経路111b、及び、DC/DC変換器43の他方の入出力端に接続された電力線130aが貫通する磁気コア21bを有し、磁気コア21bに発生する磁界に応じて分岐経路111b及び電力線130aを流れる電流を検出する。例えば、DC/DC変換器43の一方の入出力端に接続された電力線110aと他方の入出力端に接続された電力線130aとが、図2に示されるように、磁気コア21bにおいて束ねられ、磁気コア21bを貫通する。例えば、電力線110a及び130aには、磁気コア21bにおいて直流電流の流れる向きが他の電力線と逆向きとなっている電力線が含まれる。ここでは、磁気コア21bにおいて、電力線110aを流れる直流電流の向きと電力線130aを流れる直流電流の向きとが逆向きとなるように、電力線110a及び130aが磁気コア21bを貫通している。
 磁気コア21bは、電力線が貫通可能な環状形状(ここでは円環形状)となっており、自身の孔を貫通する電力線に流れる電流によって、当該電流に応じた磁界がコアに発生する。なお、磁気コア21bは、円環形状に限らず、矩形状の環状形状等であってもよい。
 また、電流検出部20bは、例えば、磁気コア21bに発生する磁界を検出して、磁気コア21bに発生する磁界に応じた電圧を発生するホール素子(図示せず)を備える。ホール素子が発生する電圧は、磁気コア21bに発生した磁界、つまり、磁気コア21bを貫通する電力線110a及び130aを流れる電流を示す信号としてアーク判定部30bに入力される。
 アーク判定部30bは、アーク判定部30aと同じように、マイコンにより実現されるが、専用の電子回路、又は、アンプ及びフィルタ回路等によってハードウェア的に実現されてもよい。
 アーク判定部30bは、電流検出部20a及び20bにより検出された電流に基づいて、アークが発生した個所を特定する。例えば、アーク判定部30bは、電流検出部20aにより検出された電流を周波数分析することで電力線110a又は120aにおけるアークの発生を判定し、電流検出部20bにより検出された電流を周波数分析することで電力線110a又は130aにおけるアークの発生を判定する。
 アーク判定部30bは、電流検出部20aにより検出された電流から電力線110a又は120aにおいてアークが発生したと判定し、かつ、電流検出部20bにより検出された電流から電力線110a又は130aにおいてアークが発生したと判定した場合、アークが発生した個所を電力線110aと特定できる。電力線110aにおいてアークが発生した場合、分岐点Nで繋がっている分岐経路111d及び111bの両方にアークの発生により生じる電流が流れ、電流検出部20a及び20bの両方で当該電流を検出するためである。
 アーク判定部30bは、電流検出部20aにより検出された電流から電力線110a又は120aにおいてアークが発生したと判定し、かつ、電流検出部20bにより検出された電流から電力線110a又は130aにおいてはアークが発生していないと判定した場合、アークが発生した個所を電力線120aと特定できる。電力線120aにおいてアークが発生した場合、電力線120aにアークの発生により生じる電流が流れ、電流検出部20aは当該電流を検出するが、電力線110a及び130aにはアークの発生により生じる電流が流れず、電流検出部20bは当該電流を検出しないためである。
 アーク判定部30bは、電流検出部20aにより検出された電流から電力線110a又は120aにおいてはアークが発生していないと判定し、かつ、電流検出部20bにより検出された電流から電力線110a又は130aにおいてアークが発生したと判定した場合、アークが発生した個所を電力線130aと特定できる。電力線130aにおいてアークが発生した場合、電力線130aにアークの発生により生じる電流が流れ、電流検出部20bは当該電流を検出するが、電力線110a及び120aにはアークの発生により生じる電流が流れず、電流検出部20aは当該電流を検出しないためである。
 なお、磁気コア21bを貫通する2以上の電力線には、電力線110a(具体的には分岐経路111b)及び130a以外の電力線が含まれていてもよい。例えば、当該2以上の電力線には、さらに、電力線140a又は140bが含まれていてもよい。つまり、磁気コア21bに、さらに、電力線140a又は140bが貫通していてもよい。
 このように、アーク検出装置10bは、電流検出部を複数備え、アーク判定部30bは、複数の電流検出部(例えば電流検出部20a及び20b)により検出された電流に基づいてアークが発生した個所を判定する。
 これによれば、アークの発生により生じる電流が複数の電流検出部から検出された場合、各電流検出部が共通してアークの検出を行う分岐電力線(つまり電力線110a)においてアークが発生したと特定でき、アークの発生により生じる電流が複数の電流検出部のうちのいずれかの電流検出部のみから検出された場合、当該電流検出部が単独でアークの検出を行う電力線(例えば電力線120a又は130a等)においてアークが発生したと特定できる。
 (実施の形態2)
 実施の形態1及びその変形例では、アーク検出装置が太陽光発電システム又は蓄電池システム等のシステムに備えられる例について説明したが、アーク検出装置は、屋内電力線システムに備えられてもよい。これについて、図3を用いて説明する。
 図3は、実施の形態2に係る屋内電力線システム2の一例を示す構成図である。
 屋内電力線システム2は、少なくとも1つの電力源と、少なくとも1つの電力源の電圧を調整する複数のコンバータと、複数の負荷装置とを有するシステムである。また、屋内電力線システム2は、アーク検出装置10を備える。実施の形態2では、少なくとも1つの電力源として、系統電源63を示している。また、複数のコンバータとして、AC/DC変換器45、46及び47を示している。また、複数の負荷装置として、負荷装置53、54及び55を示している。
 少なくとも1つの電力源には複数のコンバータのうちの少なくとも1つのコンバータが接続され、複数の負荷装置のそれぞれには複数のコンバータのうちの少なくとも1つのコンバータが接続される。実施の形態2では、系統電源63にはAC/DC変換器45、46及び47が接続され、負荷装置53にはAC/DC変換器45が接続され、負荷装置54にはAC/DC変換器46が接続され、負荷装置55にはAC/DC変換器47が接続される。
 少なくとも1つの電力源と複数のコンバータとの間、及び、複数のコンバータと複数の負荷装置との間は、複数の電力線で結線される。実施の形態2では、系統電源63とAC/DC変換器45、46及び47との間、AC/DC変換器45と負荷装置53との間、AC/DC変換器46と負荷装置54との間、並びに、AC/DC変換器47と負荷装置55との間は、複数の電力線で結線されている。具体的には、系統電源63とAC/DC変換器45、46及び47との間は電力線14a及び14bで結線され、AC/DC変換器45と負荷装置53との間は電力線11a及び11bで結線され、AC/DC変換器46と負荷装置54との間は電力線12a及び12bで結線され、AC/DC変換器47と負荷装置55との間は電力線13a及び13bで結線されている。
 AC/DC変換器45、46及び47、電力線11a、11b、12a、12b、13a、13b、14a及び14b、負荷装置53、54及び55並びにアーク検出装置10は、戸建て、集合住宅、ビル又は工場等の施設の屋内に設置される。
 系統電源63は、発電所等で生成された交流電力を供給する電源である。系統電源63とAC/DC変換器45、46及び47とを接続する電力線14a及び14bは、交流電流が流れる。
 AC/DC変換器45、46及び47は、系統電源63から交流電力が供給され、供給された交流電力を直流電力に変換して出力する。
 AC/DC変換器45は、系統電源63から供給された交流電力を直流電力に変換して、負荷装置53に出力する。AC/DC変換器45は正極と負極を有し、正極には電力線11aが接続され、負極には電力線11bが接続される。負荷装置53は、AC/DC変換器45からの直流電力が供給される。
 AC/DC変換器46は、系統電源63から供給された交流電力を直流電力に変換して、負荷装置54に出力する。AC/DC変換器46は正極と負極を有し、正極には電力線12aが接続され、負極には電力線12bが接続される。負荷装置54は、AC/DC変換器46からの直流電力が供給される。
 AC/DC変換器47は、系統電源63から供給された交流電力を直流電力に変換して、負荷装置55に出力する。AC/DC変換器47は正極と負極を有し、正極には電力線13aが接続され、負極には電力線13bが接続される。負荷装置55は、AC/DC変換器47からの直流電力が供給される。
 電力線11a、11b、12a、12b、13a及び13bは、それぞれ直流電流が流れる。電力線11a、12a及び13aは、後述する磁気コア21を貫通する2以上の電力線の一例である。
 負荷装置53、54及び55は、屋内に設置され、DC駆動される機器であれば特に限定されない。例えば、負荷装置53、54及び55は、照明器具、ファン、スピーカ又はマイク等であってもよい。
 例えば、直流電流が流れる電力線11a、12a及び13aでアークが発生する可能性がある。電力線11a、12a及び13aの全てにアーク検出手段を設ければ、電力線11aで発生したアーク、電力線12aで発生したアーク及び電力線13aで発生したアークを検出することができるが、システム(例えば屋内電力線システム2)が大型化し、また、高コスト化する。
 そこで、屋内電力線システム2における複数の電力線のうちの2以上の電力線(ここでは例えば電力線11a、12a及び13a)において発生するアークを容易に検出するために、アーク検出装置10が用いられる。
 アーク検出装置10は、電流検出部20及びアーク判定部30を備える。
 電流検出部20は、電力線11a、12a及び13aが貫通する磁気コア21を有し、磁気コア21に発生する磁界に応じて電力線11a、12a及び13aを流れる合成電流を検出する。例えば、AC/DC変換器45、46及び47のそれぞれの出力端に接続された電力線11a、12a及び13aが、図3に示されるように、磁気コア21において束ねられ、磁気コア21を貫通する。例えば、磁気コアにおいて、2以上の電力線には、直流電流の流れる向きが他の電力線と逆向きとなっている電力線が含まれる。ここでは、磁気コア21において、電力線12aを流れる直流電流の向きが他の電力線11a及び13aを流れる直流電流の向きと逆向きとなるように、電力線11a、12a及び13aが磁気コア21を貫通している。例えば、磁気コア21において、流れる直流電流の向きが他の電力線11a及び13aと逆向きとなっている電力線12aは、電力線11a、12a及び13aのうちで最も大きい直流電流が流れると想定される電力線である。電力線11a、12a及び13aのうち、最も大きい直流電流が流れると想定される電力線12aが他の電力線11a及び13aと直流電流の流れる向きが逆向きであることで、電力線12aを流れる直流電流による磁界と、電力線11aを流れる直流電流による磁界及び電力線13aを流れる直流電流による磁界とを相殺しやすくなり磁気飽和を防止しやすくなる。
 磁気コア21は、電力線が貫通可能な環状形状(ここでは円環形状)となっており、自身の孔を貫通する電力線に流れる電流によって、当該電流に応じた磁界がコアに発生する。なお、磁気コア21は、円環形状に限らず、矩形状の環状形状等であってもよい。
 また、電流検出部20は、例えば、磁気コア21に発生する磁界を検出して、磁気コア21に発生する磁界に応じた電圧を発生するホール素子(図示せず)を備える。ホール素子が発生する電圧は、磁気コア21に発生した磁界、つまり、磁気コア21を貫通する電力線11a、12a及び13aを流れる電流を示す信号としてアーク判定部30に入力される。
 アーク判定部30は、アーク判定部30aと同じように、マイコンにより実現されるが、専用の電子回路、又は、アンプ及びフィルタ回路等によってハードウェア的に実現されてもよい。
 アーク判定部30は、電流検出部20により検出された合成電流に基づいて、アークの発生を判定する。例えば、アーク判定部30は、電流検出部20により検出された合成電流を周波数分析することで電力線11a、12a又は13aにおけるアークの発生を判定する。アークの発生により生じる電流には、アークに起因する周波数成分が含まれており、当該周波数成分を検出することでアークの発生を判定することができる。アーク判定部30がアーク発生したと判定した場合、電力線11a、12a及び13aのいずれかにアークが発生したことがわかる。つまり、1つの電流検出部20(具体的には磁気コア21)のみで、2以上の電力線(ここでは電力線11a、12a及び13a)におけるアークを検出できる。
 なお、磁気コア21を貫通する電力線の数は、3本に限らず、2本であってもよいし、4本以上であってもよい。
 以上説明したように、本実施の形態に係る屋内電力線システム2は、アーク検出装置10を備え、少なくとも1つの電力源のうちの1つの電力源は、系統電源63で構成され、複数のコンバータは、AC/DC変換器45、46及び47で構成される。
 このように、アーク検出装置10を屋内電力線システム2に適用してもよく、複数(2以上)の電力線において発生するアークを容易に検出できる屋内電力線システム2を提供できる。
 (その他の実施の形態)
 以上、実施の形態に係るアーク検出装置等について説明したが、本発明は、上記実施の形態に限定されるものではない。
 例えば、上記実施の形態1及びその変形例では、システム1a、1bは、1つの太陽電池62を備える例について説明したが、システム1a、1bは、2つ以上の太陽電池を備えていてもよい。
 例えば、上記実施の形態1及びその変形例では、システム1a、1bは、2つの蓄電池51及び52を備える例について説明したが、システム1a、1bは、3つ以上の蓄電池を備えていてもよい。
 例えば、上記実施の形態1及びその変形例では、システム1a、1bは、3つのDC/DC変換器41、42及び43を備える例について説明したが、システム1a、1bは、4つ以上のDC/DC変換器を備えていてもよい。
 例えば、上記実施の形態1及びその変形例では、システム1a、1bは、太陽電池62を備える例について説明したが、備えていなくてもよい。つまり、システム1a、1bは、太陽光発電機能を有していない蓄電池システムであってもよい。
 例えば、上記実施の形態1及びその変形例では、システム1a、1bは、蓄電池51及び52を備える例について説明したが、備えていなくてもよい。つまり、システム1a、1bは、蓄電機能を有していない太陽光発電システムであってもよい。
 例えば、上記実施の形態1の変形例では、システム1bは、2つの電流検出部20a及び20bを備える例について説明したが、システム1bは、例えば備えられるDC/DC変換器の数等に応じて3つ以上の電流検出部を備えていてもよい。
 例えば、上記実施の形態2では、屋内電力線システム2は、3つのAC/DC変換器45、46及び47を備える例について説明したが、屋内電力線システム2は、2つ又は4つ以上のAC/DC変換器を備えていてもよい。
 例えば、上記実施の形態2では、屋内電力線システム2は、3つの負荷装置53、54及び55を備える例について説明したが、屋内電力線システム2は、2つ又は4つ以上の負荷装置を備えていてもよい。
 例えば、上記実施の形態では、2以上の電力線には、磁気コアにおいて、直流電流の流れる向きが他の電力線と逆向きとなっている電力線が含まれる例について説明したが、磁気コアにおいて、2以上の電力線を流れる直流電流の向きは全て同じ向きであってもよい。
 例えば、アーク検出装置が備えるアーク判定部は、パーソナルコンピュータ等の汎用コンピュータにおいてソフトウェア的に実現されてもよい。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 1a、1b システム
 2 屋内電力線システム
 10、10a、10b アーク検出装置
 11a、11b、12a、12b、13a、13b、14a、14b、110a、110b、120a、120b、130a、130b、140a、140b、150a、150b 電力線
 20、20a、20b 電流検出部
 21、21a、21b 磁気コア
 30、30a、30b アーク判定部
 41、42、43 DC/DC変換器
 44 インバータ
 45、46、47 AC/DC変換器
 48、63 系統電源
 51、52 蓄電池
 53、54、55 負荷装置
 62 太陽電池
 111a、111b、111c、111d 分岐経路
 N 分岐点

Claims (8)

  1.  少なくとも1つの電力源と、前記少なくとも1つの電力源の電圧を調整する複数のコンバータと、複数の負荷装置とを有するシステムにおけるアーク検出装置であって、
     前記少なくとも1つの電力源と前記複数のコンバータとの間、及び、前記複数のコンバータと前記複数の負荷装置との間は、複数の電力線で結線され、
     前記アーク検出装置は、
     前記複数の電力線のうちの2以上の電力線が貫通する磁気コアを有し、前記磁気コアに発生する磁界に応じて前記2以上の電力線を流れる合成電流を検出する電流検出部と、
     前記電流検出部により検出された合成電流に基づいて、アークの発生を判定するアーク判定部と、を備え、
     前記少なくとも1つの電力源には前記複数のコンバータのうちの少なくとも1つのコンバータが接続され、
     前記複数の負荷装置のそれぞれには前記複数のコンバータのうちの少なくとも1つのコンバータが接続される
     アーク検出装置。
  2.  前記磁気コアにおいて、前記2以上の電力線には電流の流れる向きが逆向きとなっている電力線が含まれる
     請求項1に記載のアーク検出装置。
  3.  前記2以上の電力線は、前記複数のコンバータのうちの第1のコンバータの一方の入出力端に接続された電力線と他方の入出力端に接続された電力線である
     請求項1又は2に記載のアーク検出装置。
  4.  前記アーク検出装置は、前記電流検出部を複数備え、
     前記アーク判定部は、複数の前記電流検出部により検出された電流に基づいてアークが発生した個所を特定する
     請求項3に記載のアーク検出装置。
  5.  請求項1~4のいずれか1項に記載のアーク検出装置を備え、
     前記少なくとも1つの電力源のうちの1つの電力源は、系統電源で構成され、
     前記複数のコンバータは、AC/DC変換器で構成される
     屋内電力線システム。
  6.  請求項1~4のいずれか1項に記載のアーク検出装置を備え、
     前記少なくとも1つの電力源のうちの1つ以上の電力源は、太陽電池で構成され、
     前記少なくとも1つの電力源のうちの他の1つの電力源は、系統電源で構成され、
     前記複数の負荷装置のうちの1つの負荷装置は、前記系統電源に接続されたDC/AC変換器で構成される
     太陽光発電システム。
  7.  請求項1~4のいずれか1項に記載のアーク検出装置と、
     前記少なくとも1つの電力源のうちの1つ以上の電力源又は前記複数の負荷装置のうちの1つ以上の負荷装置として動作する蓄電池と、
     前記少なくとも1つの電力源のうちの1つ以上の電力源又は前記複数の負荷装置のうちの1つ以上の負荷装置として動作する系統電源と、を備え、
     前記蓄電池の充電時には、
     前記系統電源が電力源として動作し、前記系統電源に接続されたコンバータがAC/DC変換器として動作し、前記蓄電池と当該蓄電池に接続されたコンバータとが負荷装置として動作し、
     前記蓄電池の放電時には、
     前記蓄電池が電力源として動作し、前記蓄電池に接続されたコンバータがDC/DC変換器として動作し、前記系統電源と当該系統電源に接続されたコンバータとが負荷装置として動作する
     蓄電池システム。
  8.  前記少なくとも1つの電力源のうちの1つ以上の電力源は、太陽電池で構成される
     請求項7に記載の蓄電池システム。
PCT/JP2021/008295 2020-03-11 2021-03-03 アーク検出装置、屋内電力線システム、太陽光発電システム及び蓄電池システム WO2021182261A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/907,847 US20230126245A1 (en) 2020-03-11 2021-03-03 Arc detection device, indoor power line system, solar power generation system, and storage battery system
CN202180016318.7A CN115151831A (zh) 2020-03-11 2021-03-03 电弧检测装置、室内电力线系统、太阳能发电系统以及蓄电池系统
JP2022505984A JP7304532B2 (ja) 2020-03-11 2021-03-03 アーク検出装置、屋内電力線システム、太陽光発電システム及び蓄電池システム
EP21767146.0A EP4119956A4 (en) 2020-03-11 2021-03-03 ARC DETECTION DEVICE, ROOM POWER CONDUCTION SYSTEM, SOLAR POWER GENERATION SYSTEM AND STORAGE BATTERY SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020041738 2020-03-11
JP2020-041738 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021182261A1 true WO2021182261A1 (ja) 2021-09-16

Family

ID=77672246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008295 WO2021182261A1 (ja) 2020-03-11 2021-03-03 アーク検出装置、屋内電力線システム、太陽光発電システム及び蓄電池システム

Country Status (5)

Country Link
US (1) US20230126245A1 (ja)
EP (1) EP4119956A4 (ja)
JP (1) JP7304532B2 (ja)
CN (1) CN115151831A (ja)
WO (1) WO2021182261A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4120496A4 (en) * 2020-03-11 2023-09-20 Panasonic Intellectual Property Management Co., Ltd. ARC DETECTION DEVICE, POWER CONDITIONER, INTERIOR WIRING SYSTEM, CIRCUIT BREAKER, SOLAR PANEL, SOLAR PANEL ATTACHED MODULE AND CONNECTION BOX

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986860A (en) * 1998-02-19 1999-11-16 Square D Company Zone arc fault detection
WO2010110383A1 (ja) * 2009-03-26 2010-09-30 パナソニック電工株式会社 電源システムおよび電源管理装置
JP2011007765A (ja) 2009-05-28 2011-01-13 Kyocera Corp アーク検出手段とそれを用いた制御手段及び連絡手段
WO2011065375A1 (ja) * 2009-11-25 2011-06-03 シャープ株式会社 電力変換装置、発電システム、及び充放電制御方法
US20130234722A1 (en) * 2009-07-09 2013-09-12 General Electric Company High sensitivity differential current transformer for insulation health monitoring
JP2015211606A (ja) * 2014-04-30 2015-11-24 三菱電機株式会社 直流発電システムおよび直流発電システムの保護方法
WO2019163364A1 (ja) * 2018-02-23 2019-08-29 オムロン株式会社 アーク放電検知装置
JP2020036511A (ja) * 2018-08-31 2020-03-05 田淵電機株式会社 パワーコンディショナ
JP2020530750A (ja) * 2017-07-31 2020-10-22 エレンベルガー ウント ペンスケン ゲゼルシャフト ミット ベシュレンクテル ハフツング 電気バッテリシステムの充電時の妨害アークを検出する方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356443A (en) * 1980-08-26 1982-10-26 Westinghouse Electric Corp. Detection of arcing faults in polyphase electric machines
US6782329B2 (en) * 1998-02-19 2004-08-24 Square D Company Detection of arcing faults using bifurcated wiring system
US6191589B1 (en) * 1999-03-29 2001-02-20 George A. Spencer Test circuit for an AFCI/GFCI circuit breaker
US7003435B2 (en) * 2002-10-03 2006-02-21 Leviton Manufacturing Co., Inc. Arc fault detector with circuit interrupter
US7936543B2 (en) * 2007-03-29 2011-05-03 Siemens Industry, Inc. Systems and methods for testing ground fault detection circuitry
US20140285010A1 (en) * 2011-05-24 2014-09-25 D. Kevin CAMERON System and method for integrating and managing demand/response between alternative energy sources, grid power, and loads
US8599523B1 (en) * 2011-07-29 2013-12-03 Leviton Manufacturing Company, Inc. Arc fault circuit interrupter
WO2019208026A1 (ja) * 2018-04-25 2019-10-31 パナソニックIpマネジメント株式会社 アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュール、接続箱、アーク検出方法およびプログラム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986860A (en) * 1998-02-19 1999-11-16 Square D Company Zone arc fault detection
WO2010110383A1 (ja) * 2009-03-26 2010-09-30 パナソニック電工株式会社 電源システムおよび電源管理装置
JP2011007765A (ja) 2009-05-28 2011-01-13 Kyocera Corp アーク検出手段とそれを用いた制御手段及び連絡手段
US20130234722A1 (en) * 2009-07-09 2013-09-12 General Electric Company High sensitivity differential current transformer for insulation health monitoring
WO2011065375A1 (ja) * 2009-11-25 2011-06-03 シャープ株式会社 電力変換装置、発電システム、及び充放電制御方法
JP2015211606A (ja) * 2014-04-30 2015-11-24 三菱電機株式会社 直流発電システムおよび直流発電システムの保護方法
JP2020530750A (ja) * 2017-07-31 2020-10-22 エレンベルガー ウント ペンスケン ゲゼルシャフト ミット ベシュレンクテル ハフツング 電気バッテリシステムの充電時の妨害アークを検出する方法
WO2019163364A1 (ja) * 2018-02-23 2019-08-29 オムロン株式会社 アーク放電検知装置
JP2020036511A (ja) * 2018-08-31 2020-03-05 田淵電機株式会社 パワーコンディショナ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4119956A4

Also Published As

Publication number Publication date
CN115151831A (zh) 2022-10-04
JP7304532B2 (ja) 2023-07-07
JPWO2021182261A1 (ja) 2021-09-16
EP4119956A1 (en) 2023-01-18
EP4119956A4 (en) 2023-08-30
US20230126245A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
WO2021182263A1 (ja) アーク検出装置、パワーコンディショナ、屋内配線システム、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱
US20090315404A1 (en) Solar power plant
WO2017175535A1 (ja) 地絡検出装置およびその制御方法、制御プログラム
US9401662B2 (en) Inverter with an AC interface for the connection of AC modules
WO2015051223A1 (en) Arc fault protection for power conversion
JP2020139925A (ja) アーク検出装置、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュールおよび接続箱
JP2011019312A (ja) 電力変換装置
WO2019208027A1 (ja) アーク検出回路、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュールおよび接続箱
JP7437812B2 (ja) アーク検出装置、パワーコンディショナ、屋内配線システム、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱
WO2021182261A1 (ja) アーク検出装置、屋内電力線システム、太陽光発電システム及び蓄電池システム
KR101920695B1 (ko) 동시 충방전 및 on-off 그리드 전환 사용이 가능한 에너지 저장 장치(ess)
JP7325010B2 (ja) アーク検出装置、ブレーカ、パワーコンディショナ、太陽光パネル、接続箱、アーク検出システム及びアーク検出方法
JP2016103915A (ja) 蓄電池システムおよび蓄電方法
US12088080B2 (en) Arc detection device, solar inverter, indoor wiring system, breaker, solar panel, solar panel-attached module, and junction box
WO2022168255A1 (ja) アーク検出装置、ブレーカ、パワーコンディショナ、太陽光パネル、太陽光パネル付属モジュール、接続箱、アーク検出システム及びアーク検出方法
KR101417572B1 (ko) 무정전 전원 장치 기능을 구비한 에너지 저장 시스템
JP7357249B2 (ja) 異常検知装置、異常検知方法、プログラム、屋内配線システム、パワーコンディショナ、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱
JP5891251B2 (ja) 電力変換装置の電源供給装置
WO2020065857A1 (ja) 電力変換装置
JP2013026242A (ja) 太陽光発電システム
JP7363858B2 (ja) パワーコンディショナ
Abdel-Rahim et al. Protection and common mode voltage of The Push-Pull Partial Power Converter
JP6366339B2 (ja) パワーコンディショナ
JP2016013010A (ja) パワーコンディショナ
JP2020061848A (ja) パワーコンディショナおよび配電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767146

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505984

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021767146

Country of ref document: EP

Effective date: 20221011