WO2010110383A1 - 電源システムおよび電源管理装置 - Google Patents

電源システムおよび電源管理装置 Download PDF

Info

Publication number
WO2010110383A1
WO2010110383A1 PCT/JP2010/055263 JP2010055263W WO2010110383A1 WO 2010110383 A1 WO2010110383 A1 WO 2010110383A1 JP 2010055263 W JP2010055263 W JP 2010055263W WO 2010110383 A1 WO2010110383 A1 WO 2010110383A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
power
value
power supply
voltage value
Prior art date
Application number
PCT/JP2010/055263
Other languages
English (en)
French (fr)
Inventor
賢二 中北
清隆 竹原
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Publication of WO2010110383A1 publication Critical patent/WO2010110383A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell

Definitions

  • the present invention relates to a power supply system, and more particularly to a power supply system that uses a solar cell to supply DC power to a load, and further relates to a power management device used therefor.
  • Document 1 Japanese Patent No. 3394996 discloses an apparatus for tracking the maximum power point (maximum output point) of a solar cell.
  • the device disclosed in Document 1 includes a switching converter as a power converter that converts output power of a solar cell into DC power.
  • the apparatus disclosed in Document 1 further includes a current detection circuit, a discrimination circuit, an integration circuit, and a switching pulse generation circuit in order to control the switching converter so that the solar cell operates at the maximum power point.
  • the maximum power point tracking (MPPT) function is realized by continuously controlling the operation of the power converter according to the output power of the solar cell.
  • the MPPT function can be easily realized by continuously controlling the operation of the power converter.
  • a period for searching for the maximum power point is required to realize the MTTP function.
  • search process when the operation instruction to the power converter is intermittently performed by communication, it takes a relatively long time to search for the maximum power point of the solar cell (search process).
  • the time available for the process (MPPT process) for maintaining the operating point of the solar cell 11 at the maximum power point becomes shorter. If the time of the MPPT process is shortened, the time for the solar cell to operate at the maximum power point is reduced accordingly.
  • the maximum power point can be set even if the same technology as that for continuously controlling the power converter is adopted. It cannot be maintained. Therefore, there is a possibility that the utilization efficiency of the electric power generated by the solar cell is lowered.
  • An object of the present invention is to provide a power supply system capable of operating the solar cell in the vicinity of the maximum power point while intermittently controlling a power converter that converts the output power of the solar cell into DC power, and a power management used for the power system. To provide an apparatus.
  • a power supply system includes a main power supply device that is connected to a load device via a power supply line and supplies DC power to the load device by applying a predetermined DC voltage to the power supply line, a solar cell, and the power supply line. And a power supply management device.
  • the sub power supply device includes a current sensor that measures an output current value of the solar cell, a voltage sensor that measures an output voltage value of the solar cell, and a direct current to the power supply line based on electric power obtained from the solar cell.
  • a power converter that outputs.
  • the power management apparatus communicates with the sub power supply apparatus and intermittently obtains the output current value measured by the current sensor and the output voltage value measured by the voltage sensor from the sub power supply apparatus.
  • a data input / output unit and a search for determining a maximum output voltage value corresponding to the maximum output point of the solar cell in a predetermined search range based on the output current value and the output voltage value acquired by the data input / output unit And the maximum output voltage value determined by the search unit as a target voltage value, and when the data input / output unit obtains the output voltage value from the sub power supply device, the output voltage value is converted into the target voltage value.
  • a voltage maintaining unit that calculates a current command value for output to the data input / output unit.
  • the data input / output unit is configured to transmit the current command value obtained from the voltage maintaining unit to the power converter.
  • the power converter is configured to set the direct current value to the received current command value when the current command value is received.
  • the sub power supply device includes a smoothing capacitor that smoothes the output voltage of the solar cell and inputs the smoothed output voltage to the power converter.
  • the power management apparatus includes a determination unit and a pre-search unit. The determination unit activates the pre-search unit if the output voltage value acquired by the data input / output unit is less than or equal to a predetermined value, and if the output voltage value acquired by the data input / output unit exceeds a predetermined value.
  • the search unit is configured to be activated. When activated, the pre-search unit is configured to control the data input / output unit to provide a stop signal to the power converter.
  • the power converter is configured to stop the operation of outputting the direct current to the power line when receiving the stop signal.
  • the pre-search unit sets the maximum output point of the solar cell based on the output voltage value and the output current value acquired by the data input / output unit while the power converter stops the operation. It is configured to determine a corresponding temporary maximum output voltage value.
  • a predetermined range including the temporary maximum output voltage value that is narrower than a width of the output voltage value that has changed while the power converter has stopped the operation is set as the search range.
  • the power converter is configured to start the operation upon receiving the start signal.
  • the voltage maintaining unit is configured to cause the search unit to determine the maximum power voltage value when a predetermined time elapses after setting the target voltage value.
  • the voltage maintaining unit is a power value corresponding to the output power value of the solar cell and the maximum power point of the solar cell obtained from the output voltage value and the output current value acquired by the data input / output unit. If the difference between the output voltage value obtained by the data input / output unit and the target voltage value exceeds a predetermined voltage value, the search unit receives the maximum power voltage. Configured to determine a value.
  • the voltage maintaining unit is configured to output the current command value smaller than the previous current command value when the output voltage value acquired by the data input / output unit is smaller than the target voltage value. Is done.
  • the voltage maintaining unit is configured to output the current command value larger than the previous current command value when the output voltage value acquired by the data input / output unit is larger than the target voltage value. Is done.
  • the voltage maintaining unit outputs the current command value changed by a predetermined value from the previous current command value. Configured to do.
  • the power converter is configured to measure a DC voltage value applied to the power line.
  • the data input / output unit is configured to acquire the DC voltage value measured by the power converter from the sub power supply device.
  • the voltage maintaining unit determines the solar cell from the output voltage value and the output current value acquired by the data input / output unit. An output power value is obtained, and the current command value is determined based on the output power value of the solar cell and the DC voltage value acquired by the data input / output unit.
  • a power management apparatus includes a main power supply device that is connected to a load device via a power supply line and supplies a DC power to the load device by applying a predetermined DC voltage to the power supply line, a solar cell, and the power supply.
  • a power supply system is configured together with a sub power supply device that is interposed between the power supply line and outputs direct current to the power supply line based on the electric power obtained from the solar cell.
  • the power management device is based on the data input / output unit that receives the output current value of the solar cell and the output voltage value of the solar cell, and the output current value and the output voltage value received by the data input / output unit.
  • a search unit for determining a maximum output voltage value corresponding to the maximum output point of the solar cell within a predetermined search range; and the data input / output unit using the maximum output voltage value determined by the search unit as a target voltage value. Obtains the output voltage value, calculates a current command value for adjusting the DC value output from the sub power supply so that the output voltage value becomes the target voltage value, and calculates the data input / output unit.
  • a voltage maintaining unit that outputs to The data input / output unit is configured to transmit the current command value obtained from the voltage maintaining unit to the sub power supply device.
  • the power supply system of the present embodiment includes a main power supply device 30, a DC power supply device (sub power supply device) 10, and a power management device 20, as shown in FIG.
  • the main power supply device 30 and the DC power supply device 10 are connected to a power supply line (DC supply line) 70.
  • a load device (DC load) 40 and an auxiliary power supply device 50 are connected to the power line 70.
  • a plurality of load devices 40 may be connected to the power supply line 70, or a plurality of auxiliary power supply devices 50 may be connected.
  • the power supply line 70 is wired in a building, for example.
  • the main power supply device 30 includes a power converter (main power converter) 31.
  • the power converter 31 is an AC / DC converter that converts AC power obtained from an AC power source 80 such as a commercial power source into DC power. More specifically, the power converter 31 is an AC / DC converter using a switching power supply, and is configured to output a constant voltage. That is, the power converter 31 is a constant voltage source. Therefore, the power converter 31 supplies DC power to the load device 40 by applying a predetermined DC voltage to the power line 70.
  • the main power supply 30 uses the AC power supply 80 as a power source. Further, the main power supply device 30 has a capacity that does not substantially cause fluctuations in the output voltage. That is, the voltage of the power supply line 70 is determined by the output voltage of the main power supply device 30. Accordingly, the detection voltage of the voltage detection unit 63 described later is substantially constant although it instantaneously varies due to the variation of the output of the step-down chopper circuit 61 described later.
  • the DC power supply 10 is interposed between solar cell 11 and power line 70.
  • the DC power supply device 10 includes a smoothing capacitor 12, a power converter 13, a current sensor 14, a voltage sensor 15, and a communication unit 16.
  • the power converter 13 is configured to output a direct current to the power line 70 based on the power obtained from the solar cell 11.
  • the power converter 13 outputs DC power using the solar cell 11 as a power source (input power source). That is, the DC power supply device 10 supplies DC power to the power supply line 70. As a result, the DC power supply 10 supplies power to the load device 40 via the power supply line 70.
  • the solar cell 11 is installed on the roof of a building such as a house, for example.
  • the smoothing capacitor 12 is connected between the output terminals of the solar cell 11. In other words, the smoothing capacitor 12 is connected between the input ends of the power converter 13.
  • the power generation amount (output power) of the solar cell 11 varies depending on changes in solar radiation intensity and panel temperature.
  • the smoothing capacitor 12 suppresses fluctuations in the voltage applied between the input terminals of the power converter 13 due to fluctuations in the amount of power generated by the solar cell 11. Therefore, by connecting the smoothing capacitor 12 between the input ends of the power converter 13, it is possible to reduce the influence of the fluctuation in the power generation amount of the solar cell 11 on the power converter 13.
  • the smoothing capacitor 12 When the power generation amount of the solar cell 11 exceeds the power required by the power converter 13 for the solar cell 11, the smoothing capacitor 12 accumulates surplus power of the solar cell 11. As a result, an increase in DC power output from the power converter 13 to the power supply line 70 is suppressed. On the other hand, when the power generation amount of the solar cell 11 is lower than the power required by the power converter 13 for the solar cell 11, the smoothing capacitor 12 is discharged. As a result, a decrease in DC power output from the power converter 13 to the power supply line 70 is suppressed.
  • the current sensor 14 detects the output current of the solar cell 11. That is, the current sensor 14 is configured to measure the output current value A11 of the solar cell 11.
  • the current sensor 14 is, for example, a DC current transformer provided between the solar cell 11 and the smoothing capacitor 12.
  • the voltage sensor 15 detects the output voltage of the solar cell 11.
  • the voltage sensor 15 is, for example, a voltage dividing resistor that detects an input voltage of the power converter 13.
  • the input voltage of the power converter 13 is equal to the voltage across the smoothing capacitor 12 and corresponds to the terminal voltage of the output terminal of the solar cell 11. That is, the voltage sensor 15 is configured to measure the output voltage value V11 of the solar cell 11.
  • the voltage sensor 15 detects the input voltage of the power converter 13 as the output voltage of the solar cell 11.
  • the power converter 13 has a function of adjusting the value of the direct current (output current) output to the power line 70 of the power converter 13 based on a current command value given from the outside.
  • the power converter 13 has a function of monitoring a DC voltage (output voltage) applied to the power line 70 of the power converter 13 and a DC voltage (output current) output to the power line 70 of the power converter 13.
  • the power converter 13 includes a DC voltage value (output voltage value) V13 applied to the power line 70 by the power converter 13 and a DC value (output current value) output from the power converter 13 to the power line 70.
  • V13 DC voltage value
  • the communication unit 16 is configured to communicate with the power management apparatus 20 via the power line 70.
  • the communication unit 16 includes an output current value A11 of the solar cell 11 measured by the current sensor 14, an output voltage value V11 of the solar cell 11 measured by the voltage sensor 15, an output current value A13 of the power converter 13, and a power conversion.
  • the output voltage value V ⁇ b> 13 of the device 13 is configured to be transmitted to the power management device 20.
  • the communication unit 16 may periodically transmit the output current values A11 and A13 and the output voltage values V11 and V13 to the power management device 20, or may transmit them in response to a request from the power management device 20. .
  • the communication unit 16 is configured to receive a current command value from the power management device 20 and pass it to the power converter 13.
  • the load device 40 includes a load 41 that operates when DC power is supplied from the power line 70, and a communication unit 42.
  • the communication unit 42 is configured to communicate with the power management apparatus 20 via the power line 70.
  • the auxiliary power supply device 50 includes a secondary battery 51 that stores surplus power of the DC power supply device 10 and a communication unit 52.
  • the communication unit 52 is configured to communicate with the power management apparatus 20 via the power line 70.
  • the power supply line 70 may be connected to a DC power source including a wind power generator, a generator driven by an internal combustion engine, a fuel cell, and the like.
  • the power supply management device 20 includes a communication unit 21 that communicates with the DC power supply device 10, the load device 40, and the auxiliary power supply device 50 via the power supply line 70 (see FIG. 6).
  • the power management device 20 communicates with the DC power supply device 10, the main power supply device 30, the load device 40, and the auxiliary power supply device 50, so that the DC power supply device 10, the main power supply device 30, the load device 40, and the auxiliary power supply device 50 are connected. Each state is monitored, and the operations of the DC power supply device 10, the main power supply device 30, the load device 40, and the auxiliary power supply device 50 are controlled.
  • the power management device 20 receives power (required power) required by the load device 40 from the DC power supply device 10, the main power supply device 30, and the auxiliary power supply device 50 so as to be supplied to the load device 40.
  • the total power (supply power) is configured to be distributed to the load device 40.
  • the power management device 20 is configured to control the operations of the DC power supply device 10 and the auxiliary power supply device 50 so that the solar cell 11 always generates power at the maximum power point (maximum output point).
  • the power management device 20 manages charging / discharging of the secondary battery 51 so that the charging rate of the secondary battery 51 of the auxiliary power device 50 is maintained within a predetermined range.
  • the secondary battery 51 is charged with the surplus power of the DC power supply device 10.
  • the output power of the DC power supply device 10 is smaller than the required power of the load device 40 and the charging rate of the secondary battery 51 is equal to or higher than the lower limit of the predetermined range, the secondary battery 51 is discharged.
  • the auxiliary power supply device 50 is used to reduce the influence of fluctuations in the output power of the DC power supply device 10 on the load device 40.
  • the main power supply device 30 is short of the required power of the load device 40. Outputs the corresponding power. Since the power converter 31 of the main power supply device 30 is a constant voltage source, the main power supply device 30 automatically compensates for the shortage of required power of the load device 40.
  • the signal transmission method used by each communication unit 16, 21, 42, 52 for communication is a method in which a high-frequency transmission signal is superimposed on a DC voltage applied to the power supply line 70. That is, the power supply system of the present embodiment uses DC power line carrier communication that shares the power supply line 70 for power supply and signal transmission. Therefore, in the power supply system of the present embodiment, it is not necessary to provide a communication signal line separately from the power supply line 70 for supplying DC power.
  • the power management device 20 communicates with the DC power supply device 10, the load device 40, and the auxiliary power supply device 50 at a relatively long time interval (for example, every 2 seconds). That is, in the power supply system of this embodiment, communication is performed intermittently. This prevents signal collision and congestion.
  • FIG. 2A and 2B show the relationship between the output power and output voltage of the solar cell 11 (power-voltage characteristics).
  • the power voltage characteristic of the solar cell 11 has only one peak. The position of the peak (maximum power point) varies depending on the solar radiation intensity and the panel temperature.
  • Curve P10 in FIG. 2A shows the power voltage characteristic when the solar radiation intensity is high
  • curve P11 shows the power voltage characteristic when the solar radiation intensity is low.
  • the maximum power in the curve P10 is larger than that in the curve P11.
  • the voltage V P10 corresponding to the maximum power point in the curve P10 is lower than the voltage V P11 corresponding to the maximum power point in the curve P11.
  • the DC power supply device 10 (power converter 13) has a constant voltage-current characteristic (representing the relationship between the output voltage and the output current of the power converter 13) when the current command value is constant. It is comprised so that it may become a straight line with the inclination. It is assumed that the voltage Vo is applied to the power supply line 70 and the current command value is I1. In this case, the voltage-current characteristic of the power converter 13 is a straight line L11 having a certain slope and passing through the intersection of the voltage Vo and the current command value I1. On the other hand, it is assumed that the voltage Vo is applied to the power supply line 70 and the current command value is I2.
  • the voltage-current characteristic of the power converter 13 is a straight line L12 having a certain slope and passing through the intersection of the voltage Vo and the current command value I2.
  • the control that gives the power converter 13 the above-described characteristics is referred to as tilt control.
  • the power converter 13 includes a step-down chopper 61, a current detection unit 62, a voltage detection unit 63, an error amplifier 64, a differential amplifier 65, as shown in FIG.
  • a triangular wave generator 66 and a comparator 67 are provided.
  • the step-down chopper circuit 61 is configured to output a voltage obtained by lowering the output voltage of the solar cell 11.
  • the step-down chopper circuit 61 includes a switching element (not shown).
  • the output voltage of the step-down chopper circuit 61 changes according to the on-duty of the switching element. In particular, the output voltage of the step-down chopper circuit 61 decreases as the on-duty of the switching element decreases.
  • the power converter 13 performs PWM control on the step-down chopper circuit 61.
  • the current detector 62 is configured to detect the output current of the step-down chopper circuit 61.
  • the current detection unit 62 outputs a detection current obtained by smoothing the output current of the step-down chopper circuit 61 to the error amplifier 64.
  • the time constant of the current detection unit 62 is a value such that an instantaneous change in the output current of the step-down chopper circuit 61 does not affect the detection current.
  • the detection current of the current detection unit 62 corresponds to the output current of the DC power supply device 10 (power converter 13).
  • the voltage detection unit 63 is configured to detect a voltage applied between the output terminals of the power converter 13 (that is, a voltage applied to the power supply line 70).
  • the voltage detector 63 outputs a detection voltage indicating the detected voltage to the differential amplifier 65.
  • the detection voltage of the voltage detection unit 63 corresponds to the output voltage of the DC power supply device 10 (power converter 13).
  • the error amplifier 64 compares the value of the current detected by the current detection unit 62 with a current command value given from the outside (power supply management device 20).
  • the error amplifier 64 is configured to provide the differential amplifier 65 with a voltage signal whose voltage value is proportional to the difference between the value of the current detected by the current detector 62 and the current command value.
  • the differential amplifier 65 is configured to change the output voltage output to the comparator 67 in accordance with the voltage signal of the error amplifier 64 and the detection voltage of the voltage detector 63.
  • the differential amplifier 65 increases the output voltage output to the comparator 67 as the detected current value becomes smaller than the current command value, and decreases the output voltage output to the comparator 67 as the detected current value becomes larger than the current command value. Let The differential amplifier 65 decreases the output voltage as the detection voltage increases.
  • the triangular wave generator 66 is configured to output a triangular wave to the comparator 67.
  • the comparator 67 is configured to output a rectangular wave signal to the switching element of the step-down chopper circuit 61 based on the result of comparing the output voltage of the differential amplifier 65 and the triangular wave voltage. That is, the switching element of the step-down chopper circuit 61 is controlled by the rectangular wave signal of the comparator 67.
  • the output voltage of the differential amplifier 65 increases.
  • the duty ratio of the rectangular wave signal of the comparator 67 is reduced, and the ON period of the switching element of the step-down chopper circuit 61 is shortened.
  • the output voltage of the step-down chopper circuit 61 is lowered.
  • the output voltage of the differential amplifier 65 decreases.
  • the power converter 13 feedback-controls the step-down chopper circuit 61 so that the value of the detected current of the current detector 62 becomes equal to the current command value.
  • the output voltage of the differential amplifier 65 decreases.
  • the duty ratio of the rectangular wave signal of the comparator 67 is increased, and the ON period of the switching element of the step-down chopper circuit 61 is extended.
  • the output voltage of the step-down chopper circuit 61 increases.
  • the detection voltage of the voltage detection unit 63 decreases, the input voltage of the comparator 67 increases.
  • the duty ratio of the rectangular wave signal of the comparator 67 is reduced, and the ON period of the switching element of the step-down chopper circuit 61 is shortened.
  • the output voltage of the step-down chopper circuit 61 decreases.
  • the duty ratio of the rectangular wave signal increases (the pulse width increases), and when the output voltage of the power converter 13 decreases, the duty ratio of the rectangular wave signal decreases. (The pulse width becomes narrower).
  • the duty ratio of the rectangular wave signal decreases, and when the output current of the power converter 13 decreases, the duty ratio of the rectangular wave signal increases.
  • the change in the output voltage of the power converter 13 changes the duty ratio of the rectangular wave signal in the opposite direction to the change in the output current of the power converter 13. Therefore, the above-described tilt control is realized.
  • the output voltage of the solar cell 11 fluctuates. Assume that the output voltage of the solar battery 11 fluctuates instantaneously. Since the instantaneous fluctuation of the solar cell 11 is alleviated by the smoothing capacitor 12, the input voltage of the power converter 13 does not change. On the other hand, when the output voltage of the solar cell 11 fluctuates so much that the smoothing capacitor 12 cannot suppress it, the input voltage of the power converter 13 changes. As a result, the output voltage and output current of the power converter 13 change. For example, when the input voltage of the power converter 13 changes without changing the load amount to the power converter 13, the output voltage of the power converter 13 changes. The amount of load applied to the power converter 13 is the power required by the aggregate of loads (the load device 40 and the auxiliary power supply device 50 during charging) connected to the power supply line 70 to the DC power supply device 10.
  • the voltage-current characteristic of the output of the power converter 13 is determined by the current command value.
  • the duty ratio of the rectangular wave signal changes, and thereby the voltage current so that the output current value A13 of the power converter 13 matches the current command value.
  • the output voltage value V13 of the power converter 13 changes according to the characteristics.
  • the power generation amount of the solar cell 11 varies as described above.
  • the output power of the solar battery 11 may be less than or greater than the power required for the power converter 13 to output the output current determined by the current command value. That is, the output power of the solar cell 11 may be insufficient or excessive.
  • the main power supply device 20 and the auxiliary power supply device 50 adjust the power supplied according to the shortage or surplus of the output power of the solar cell 11. .
  • the output power of the power converter 13 is kept substantially constant regardless of the load amount variation until the current command value is changed.
  • the load amount to the power converter 13 fluctuates.
  • the detection voltage of the voltage detector 63 fluctuates. Therefore, the duty ratio of the rectangular wave signal supplied to the step-down chopper circuit 61 changes. Since the power converter 13 performs tilt control, the output current changes along a straight line determined according to the current command value. The output current of the power converter 13 changes until the output voltage value of the power converter 13 reaches the line voltage of the power supply line 70 (voltage applied to the power supply line 70) Vo. Finally, the value of the output current (output current value) A13 of the power converter 13 becomes a value indicated by the current command value.
  • the output power of the solar cell 11 may be insufficient or excessive. Even in such a case, as described above, the main power supply device 20 and the auxiliary power supply device 50 adjust the power to be supplied according to the shortage or surplus of the output power of the solar cell 11.
  • the shortage of the output power of the solar cell 11 can be compensated for by the main power supply device 30 and the auxiliary power supply device 50 supplying power.
  • the DC power supply device 10 converts the output power of the solar cell 11 into DC power and supplies it to the load device 40 through the power supply line 70. Therefore, the reverse power flow which supplies the surplus output power of the solar cell 11 to the commercial power supply system cannot be performed. Therefore, the surplus output power of the solar cell 11 is accumulated in the auxiliary power supply device 50.
  • the power management device 20 gives instructions to the main power supply device 30 and the auxiliary power supply device 50 when the above-described shortage or surplus occurs.
  • the current command value is changed from I1 to I2 ( ⁇ I1).
  • the detected current value of the current detector 62 is larger than the current command value I2. Therefore, the duty ratio of the square wave signal output to the step-down chopper circuit 61 is shortened. Therefore, the output voltage of the step-down chopper circuit 61 is lowered. Therefore, the detection voltage value of the voltage detection unit 63 decreases.
  • the voltage-current characteristic of the power converter 13 becomes a straight line L12 passing through the intersection of the line voltage Vo of the power supply line 70 and the current command value I2. Therefore, the duty ratio of the square wave signal output to the step-down chopper circuit 61 changes so that the detected current value changes along the straight line L12. Finally, the detected current value matches the current command value I2. That is, the output current of the power converter 13 becomes the current indicated by the current command value I2.
  • the line voltage of the power supply line 70 is kept almost constant by the main power supply device 30. Therefore, by changing the current command value and adjusting the output current of the power converter 13, the output power of the power converter 13 can be adjusted while keeping the output voltage of the DC power supply device 10 (power converter 13) substantially constant. Can be changed.
  • the output power of the DC power supply 10 changes, the power required by the power converter 13 for the input power (solar cell 11 and smoothing capacitor 12) (required power of the power converter 13), that is, the load on the solar cell 11 Changes.
  • the MTTP function is realized by determining the required power of the power converter 13 so that the output power of the solar cell 11 is maximized. That is, by giving an appropriate current command value to the power converter 13, the output power of the solar cell 11 can be maintained at the maximum power. In other words, the solar cell 11 can be operated at the maximum output point.
  • the power management device 20 gives a current command value for realizing the MTTP function to the power converter 13 of the DC power supply device 10.
  • the output current value A11 of the solar cell 11, the output voltage value V11 of the solar cell 11, the output power of the solar cell 11, and the DC power supply are used.
  • the power voltage characteristic of the solar cell 11 is a single peak type having only one peak (maximum output point). Since the maximum value of the output power of the solar cell 11 has a one-to-one correspondence with the output voltage value of the solar cell 11, the output power of the solar cell 11 is maintained at the maximum value (the solar cell 11 is operated at the maximum output point). ), The output voltage of the solar cell 11 may be adjusted so that the output voltage corresponding to the maximum power point is obtained.
  • the power management device 20 is configured to adjust the load amount of the power converter 13 by performing communication at time intervals such that the maximum power point hardly changes. In this way, the maximum output point of the solar cell 11 can be followed.
  • the power management device 20 of the present embodiment is configured to first obtain an output voltage value corresponding to the maximum power point of the solar cell 11 as a target voltage value.
  • the power management device 20 adjusts the current command value given to the power converter 13 so that the output voltage value of the solar cell 11 is maintained at the target voltage value while the change in the maximum power point of the solar cell 11 is small. Composed.
  • the power management device 20 first searches for a voltage (actually the input voltage of the power converter 13) corresponding to the maximum power point of the solar cell 11 ((1), FIG. 5). (See (2)). The power management apparatus 20 sets the detected voltage value as the target voltage value Vd. The power management device 20 adjusts the current command value given to the power converter 13 so that the output voltage value of the solar cell 11 is maintained at the target voltage value Vd. Thereafter, when a condition such that the maximum power point exceeds the allowable range Vii ⁇ Vss is satisfied, the power management device 20 searches for the maximum power point again and updates the target voltage value Vd (see (3) in FIG. 5). ). Thereby, the power management apparatus 20 implement
  • the MTTP function described above is realized by the power management device 20 provided in the main power supply device 30 communicating with the DC power supply device 10.
  • the power management device 20 includes a microcomputer as a main component. In the power management apparatus 20, the following functions are realized by the microcomputer executing a predetermined program.
  • the power management device 20 includes a communication unit 21, a data input / output unit 22, a determination unit 23, a pre-search unit 24, a search unit (main search unit) 25, and a voltage maintaining unit 26. And an instruction unit 27 and a monitoring unit 28.
  • the communication unit 21 is configured to exchange data by communicating with the communication unit 16 of the DC power supply device 10, the communication unit 42 of the load device 40, and the communication unit 52 of the auxiliary power supply device 50.
  • the data input / output unit 22 receives data from the DC power supply device 10, the load device 40, and the auxiliary power supply device 50 through the communication unit 21, or receives data from the DC power supply device 10, the load device 40, and the auxiliary power supply device 50. Configured to transmit.
  • the monitoring unit 28 is connected to the data input / output unit 22. As described above, the monitoring unit 28 is configured to control the operations of the DC power supply device 10 and the auxiliary power supply device 50 so as to satisfy the required power of the load device 40.
  • Data obtained by the data input / output unit 22 from the DC power supply device 10 via the communication unit 21 (for example, the output current value A11 of the solar cell 11 and the output voltage value V11 of the solar cell 11) is given to the determination unit 23. .
  • the determination unit 23 determines that the smoothing capacitor 12 is not charged when the output voltage value of the solar cell 11 (that is, the input voltage value of the power converter 13) V11 is equal to or less than a predetermined value (for example, 10V) (the solar cell 11 is not charged). It is configured to determine a stopped state. The determination unit 23 is configured to determine that the smoothing capacitor 12 is stored (the solar cell 11 is operating) when the output voltage value V11 of the solar cell 11 exceeds the predetermined value. .
  • a predetermined value for example, 10V
  • the determination unit 23 determines that the solar cell 11 is in a stopped state not only when the solar cell 11 is initially started but also when the solar cell is restarted after power generation is stopped. For example, the determination unit 23 also determines that the power generation of the solar cell 11 is stopped at night, the electric charge of the smoothing capacitor 12 is discharged, and the power generation of the solar cell 11 is restarted the next morning. In addition, when the electric power generation amount of the solar cell 11 falls at night and the both-ends voltage of the smoothing capacitor 12 falls below a predetermined value, it is preferable to stop the operation of the power converter 13.
  • Determining unit 23 is configured to activate pre-search unit 24 when it is determined to be in a stopped state.
  • the pre-search unit 24 is configured to search for the maximum power point of the solar cell 11 in substantially the entire range of the lower limit and the upper limit of the output voltage of the solar cell 11.
  • the determination unit 23 is configured to activate the main search unit 25 when it is determined that the driving state is set.
  • the main search unit 25 is configured to search for the maximum power point of the solar cell 1 in a specific search range of the output voltage of the solar cell 11.
  • the voltage maintaining unit 26 is configured to calculate a current command value to be given to the DC power supply device 10 so that the solar cell 11 operates at the maximum power point. Is done.
  • the voltage maintaining unit 26 sets the output voltage value (for example, 17 V) of the solar cell 11 corresponding to the maximum power point of the solar cell 11 as the target voltage value Vd (see FIG. 5) of the output voltage of the solar cell 11.
  • the voltage maintaining unit 26 determines the current command value so that the output voltage value V11 of the solar cell 11 becomes the target voltage value Vd.
  • the voltage maintaining unit 26 is configured to output a current command value to the data input / output unit 22.
  • the data input / output unit 22 is configured to transmit the current command value obtained from the voltage maintaining unit 26 to the power converter 13. Therefore, the current command value determined by the voltage maintaining unit 26 is notified to the DC power supply device 10 through the data input / output unit 22 and the communication unit 21.
  • the DC power supply device 10 outputs an output current corresponding to the current command value received from the power management device 20. As a result, the DC power supply device 10 adjusts the load amount on the solar cell 11 and consequently maintains the output voltage value V11 of the solar cell 11 at the target voltage value Vd. In this way, the power supply system performs feedback control of the solar cell 11.
  • the determination unit 23 acquires the output voltage value V11 of the solar cell 11 and compares it with a predetermined value (S1).
  • the determination unit 23 determines that the stop state is set (S1: no) and activates the pre-search unit 24.
  • the pre-search unit 24 controls the data input / output unit 22 to provide a stop signal to the power converter 13.
  • the power converter 13 stops the operation of outputting direct current to the power supply line 80.
  • the pre-search unit 24 stops the operation of the power converter 13 (S2).
  • the power converter 13 is disconnected from the solar cell 11, and the load of the solar cell 11 is only the smoothing capacitor 12. In this state, the voltage across the smoothing capacitor 12, that is, the output voltage of the solar cell 11, rises in a relatively short time.
  • the pre-search unit 24 determines the output current value A11 of the solar cell 11 and the solar power until the input voltage value of the power converter 13 (the output voltage value V11 of the solar cell 11) reaches the predetermined value (for example, 20V) (S4).
  • the output voltage value V11 of the battery 11 is acquired and stored (S3).
  • the pre-search unit 24 obtains the output power value of the solar cell 11.
  • the output power value of the solar cell 11 is the product of the acquired output current value A11 and the output voltage value V11.
  • the pre-search unit 24 sets the output voltage value V11 when the output power value of the solar cell 11 is maximum as the voltage value (maximum output voltage value) corresponding to the maximum power point (S5).
  • the pre-search unit 24 acquires the output voltage value V11 and the output current value A11 from the DC power supply device 10 at every communication interval between the power management device 20 and the DC power supply device 10. Therefore, the output power value of the solar cell 11 can be obtained only for each communication interval. However, if the communication interval is made shorter than the time until the input voltage value of the power converter 13 (the voltage value across the smoothing capacitor 12) reaches the upper limit voltage value (the predetermined value), the maximum power point can be detected.
  • the maximum output voltage value (temporary maximum output voltage value) detected by the pre-search unit 24 is stored in the power management device 20.
  • the pre-search unit 24 compares the current output power value of the solar cell 11 with the previous output power value of the solar cell 11. If the current output power value of the solar cell 11 is greater than the previous output power value of the solar cell 11, the pre-search unit 24 updates the previous output power value of the solar cell 11 to the current output power value of the solar cell 11. To do. On the other hand, if the current output power value of the solar cell 11 is smaller than the previous output power value of the solar cell 11, the pre-search unit 24 discards the current output power value of the solar cell 11, and the previous solar cell 11. Do not update the output power value. The pre-search unit 24 obtains the maximum power point by repeating such processing until the input voltage value of the power converter 13 reaches the upper limit voltage value. In this way, the pre-search unit 24 obtains the maximum power point roughly (with low accuracy) compared to the main search unit 25.
  • the determination unit 23 does not perform voltage determination (S1).
  • the predetermined value is smaller than the open circuit voltage value of the solar cell 11.
  • the output voltage value V11 of the solar cell 11 is usually equal to or higher than the predetermined value. Therefore, the determination unit 23 determines that the driving state is set (S1: yes), and activates the main search unit 25.
  • the main search unit 25 when activated, first sets a range for searching for the maximum power point (S6).
  • the main search unit 25 sets, as the search range, a predetermined range that is narrower than the width of the output voltage value V11 that has changed while the power converter 13 has stopped operating, and includes the temporary maximum output voltage value.
  • the search range is set to a predetermined range (for example, a range of ⁇ 30%) around the voltage (temporary maximum output voltage value) corresponding to the maximum power point detected by the pre-search unit 24.
  • the main search unit 25 controls the data input / output unit 22 after setting the search range and gives a start signal to the power converter 13.
  • the power converter 13 starts the operation when receiving the start signal. Therefore, the main search unit 25 causes the power converter 13 to start operation (S7).
  • the main search unit 25 changes the input voltage value of the power converter 13 from the predetermined value toward the lower limit value of the search range. That is, the main search unit 25 gradually decreases the input voltage value of the power converter 13 by gradually increasing the current command value given to the power converter 13 (S8).
  • the current command value cannot be changed continuously, the current command value is changed by a predetermined step size (for example, 0.1 A) for each communication. That is, the current command value is changed by a predetermined value.
  • This step size is appropriately selected according to the accuracy (search accuracy) for obtaining the voltage corresponding to the maximum power point and the time (search time) used for searching for the maximum power point. That is, if the step size is increased, the search accuracy is lowered, but the search time can be shortened. If the step size is reduced, the search time is increased, but the search accuracy is increased.
  • the main search unit 25 gradually increases the current command value until the output voltage value V11 acquired from the DC power supply device 10 reaches the lower limit value of the search range (S10).
  • the main search unit 25 acquires the output current value A11 and the output voltage value V11 from the DC power supply device 10 every time the current command value is increased (S9).
  • the main search unit 25 calculates the output power value of the solar cell 11.
  • the main search unit 25 performs the same processing as the pre-search unit 24 to obtain the maximum power point, and thereby obtains a voltage value (maximum output voltage value) corresponding to the maximum power point.
  • the main search unit 25 obtains the maximum power point by performing the above-described operation. Therefore, the main search unit 25 can obtain the maximum power point with higher accuracy than the pre-search unit 24. Therefore, the main search unit 25 can obtain the voltage value corresponding to the maximum power point with higher accuracy than the pre-search unit 24.
  • the search range of the main search unit 25 (the range in which the input voltage value of the power converter 13 changes) is narrower than the search range of the pre-search unit 24. Therefore, even if the current command value is changed with a relatively small step size, the voltage value corresponding to the maximum power point can be obtained in a relatively short time.
  • the main search unit 25 When the main search unit 25 obtains a voltage value (maximum output voltage value) corresponding to the maximum power point of the solar cell 11 (S11: yes), the main search unit 25 gives the maximum output voltage value to the voltage maintaining unit 26.
  • the voltage maintaining unit 26 sets the maximum output voltage value received from the main search unit 25 as the target voltage value Vd (see FIG. 5) (S12).
  • the voltage maintaining unit 26 generates a current command value for making the output voltage value V11 of the solar cell 11 coincide with the target voltage value Vd, and supplies the current command value to the data input / output unit 22.
  • the data input / output unit 22 transmits the current command value received from the voltage maintaining unit 26 to the DC power supply device 10.
  • the power converter 13 receives the current command value from the power management device 20. In this way, the power management device 20 gives a current command value to the power converter 13 every time it communicates with the DC power supply device 10.
  • the voltage maintaining unit 26 is activated when the target voltage value Vd is obtained by the main search unit 25.
  • the voltage maintaining unit 26 acquires the output current value A11 and the output voltage value V11 of the solar cell 11 every time the power management device 20 communicates with the DC power supply device 10 (S13).
  • the voltage maintaining unit 26 compares the output voltage value V11 with the target voltage value Vd (S14, S15).
  • the voltage maintaining unit 26 determines that the output voltage value V11 is smaller than the target voltage value Vd (S15: low), it decreases the current command value by the step size (predetermined value) (S16).
  • the current command value is reduced, the load on the solar cell 11 (the power required by the power converter 13 from the solar cell 11) is reduced. Therefore, the output voltage of the solar cell 11 increases.
  • the voltage maintaining unit 26 determines that the output voltage value V11 is larger than the target voltage value Vd (S15: high), the voltage maintaining unit 26 increases the current command value by the step size (S17).
  • the current command value increases, the power required by the power converter 13 for the solar cell 11 increases. Therefore, the output voltage of the solar cell 11 is lowered.
  • the voltage maintaining unit 26 changes the voltage maintaining unit 26 at a constant step size (for example, 0.1 A), similarly to the operation of the main search unit 25.
  • a constant step size for example, 0.1 A
  • the voltage maintaining unit 26 determines that the output voltage value V11 substantially matches the target voltage value Vd (when the output voltage value V11 is within a predetermined range including the target voltage value Vd), Does not change the command value.
  • the voltage maintaining unit 26 performs feedback control of the power converter 13 so that the output voltage value V11 of the solar cell 11 is maintained at the target voltage value Vd.
  • the maximum power point of the solar cell 11 does not change greatly, so the voltage value corresponding to the maximum power point of the solar cell 11 remains substantially equal to the target voltage value Vd. is there.
  • the maximum power point of the solar cell 11 changes greatly, so that the voltage value corresponding to the maximum power point of the solar cell 11 may deviate greatly from the target voltage value Vd.
  • the voltage maintaining unit 26 determines that the maximum power point has changed when at least one of the output power value and the output voltage value V11 of the solar cell 11 is outside the allowable range (S14). When determining that the maximum power point has changed, the voltage maintaining unit 26 newly sets a search range (S18). After setting the search range, the voltage maintaining unit 26 causes the main search unit 25 to re-search for the maximum output voltage value (S8).
  • the allowable range is a range indicated by Vi-Vs in FIG.
  • the allowable range for the output power value is, for example, a range of ⁇ 20% of the maximum power value of the solar cell 11 obtained by the main search unit 25.
  • the allowable range for the output voltage value V11 is, for example, a range of ⁇ 0.3 V of the target voltage value Vd.
  • the allowable range may be a fixed width that does not change with respect to the reference value (the power value at the maximum power point or the target voltage value Vd), or a change width that changes at a predetermined rate according to the reference value. May be.
  • only one of the output power value and the output voltage value V11 of the solar cell 11 may be used. For example, in FIG. 7, only the output voltage value V11 of the solar cell 11 is used. However, the output power value and the output voltage value V11 may be properly used according to the maximum power value of the solar cell 11.
  • the power voltage characteristic of the solar cell 11 is a bell shape having a single peak. Further, the peak half-value width becomes narrower as the maximum power value becomes larger. For this reason, the rate of change of the output power value with respect to the output voltage value is high near the tip of the peak, and the rate of change of the output power value with respect to the output voltage value V11 is low near the tail of the peak. Focusing on this point, the re-search condition may be switched depending on whether the maximum power value is greater than or equal to a predetermined threshold value or less than the threshold value. For example, when the output power value of the solar cell is greater than or equal to the threshold value, the re-search condition is that the output power value is outside the allowable range. When the output power value is less than the threshold value, the output voltage value V11 is outside the allowable range. This may be a condition for re-search.
  • the voltage maintaining unit 26 When performing the re-search, the voltage maintaining unit 26 first generates a current command value that is smaller than the current current command value by a predetermined percentage (for example, 30%). As a result, the power required by the power converter 13 for the solar cell 11 is reduced, and the amount of charge accumulated in the smoothing capacitor 12 is increased. That is, the voltage maintaining unit 26 sets the search range Vii-Vss (see FIG. 5) for re-search using the current current command value (S18). Thereby, the output voltage of the solar cell 11 is once increased. Thereafter, the main search unit 25 searches for the maximum power point.
  • a predetermined percentage for example, 30%
  • the voltage maintaining unit 26 may increase the voltage across the smoothing capacitor 12 to the open voltage of the solar cell 11 by stopping the power converter 13.
  • the direct current (supply current) output from the direct current power supply device 10 to the power supply line 70 rapidly decreases.
  • the line voltage of the power supply line 70 varies greatly, which may adversely affect the operation of the load device 40. Therefore, it is preferable to reduce the load amount (power required by the power converter 13 from the solar battery 11) of the solar cell 11 without stopping the power converter 13.
  • the voltage maintaining unit 26 determines whether or not the time during which the same target voltage value Vd is used has reached a predetermined maintaining time (for example, 15 minutes) (S19). Even if the output voltage value V11 of the solar cell 11 is within the allowable range, the voltage maintaining unit 26 sets the maximum to the main search unit 25 when the time during which the same target voltage value Vd is used reaches the above maintenance time. Re-search output voltage value. Since the voltage maintaining unit 26 performs such a process (the process of step S19), the power supply system of the present embodiment has a solar radiation intensity or a change in the solar altitude, the movement of clouds, the position of the shadow of buildings and trees, or the like. Can respond to changes in panel temperature.
  • a predetermined maintaining time for example, 15 minutes
  • the main search unit 25 detects the voltage value (maximum output voltage value) corresponding to the maximum power point of the solar cell 11.
  • the voltage maintaining unit 26 sets the maximum output voltage value detected by the main search unit 25 as the target voltage value Vd.
  • the voltage maintaining unit 26 adjusts the current command value so that the output voltage value V11 of the solar cell 11 becomes the target voltage value Vd if the variation of the maximum power point of the solar cell 11 is within the allowable range, thereby reducing the power. Feedback control of the converter 13 is performed. As a result, the solar cell 11 operates in the vicinity of the maximum power point.
  • the voltage maintaining unit 26 activates the main search unit 25 and performs a re-search for the voltage value corresponding to the maximum power point. Make it. Therefore, when the maximum power point of the solar cell 11 changes greatly, the maximum output voltage value (target voltage value Vd) can be changed according to the change of the maximum power point. In this way, the power management apparatus 20 realizes the MTTP function by controlling the DC power supply apparatus 10.
  • the current command value Ia may be determined by the following equation (1).
  • Ia Ie ⁇ (Ip ⁇ Ie) (1)
  • Ip is the previous current command value.
  • Pe is the latest output power value of the solar cell 11.
  • Ve is the latest output voltage value V13 of the power converter 13.
  • is the conversion efficiency (for example, 0.9) of the power converter 13.
  • is a constant representing the speed at which the output voltage value V11 is restored to the target voltage value Vd.
  • the speed at which the output voltage value V11 returns to the target voltage value Vd can be determined by the constant ⁇ . In this way, unlike the case where the current command value is changed at a constant step size, both the accuracy of maintaining the output voltage value V11 of the solar cell 11 at the target voltage value Vd and the speed of response can be achieved.
  • FIG. 8 shows a flowchart when the current command value is determined by the above equation (1).
  • steps S15, S16, and S17 are replaced with step S20 in the flowchart of FIG.
  • the voltage maintaining unit 26 calculates a current command value using the above equation (1).
  • the current command value calculated by the voltage maintaining unit 26 is transmitted to the DC power supply device 10 by the data input / output unit 22.
  • the power management device 20 is built in the main power device 30.
  • the power management device 20 is not necessarily built in the main power supply device 30. That is, the power management device 20 can be provided separately from the main power supply device 30.
  • the power management device 20 does not necessarily need to communicate with the DC power supply device 10 via the power line 70. That is, the communication path is not limited to the power line 70, and may be a wired communication path or a wireless communication path different from the power line 70, for example.
  • the main power supply device 30 may be a constant voltage source, and it is not always necessary to obtain power from the AC power supply 80.
  • the main power supply device 30 preferably has a capacity capable of stably supplying power even when the load of the load device 40 fluctuates.
  • the power supply system is connected to the load device 40 via the power supply line 70 and supplies a DC power to the load device 40 by applying a predetermined DC voltage to the power supply line 70.
  • a secondary power supply device (DC power supply device) 10 interposed between the solar cell 11 and the power supply line 70, and a power supply management device 20.
  • the sub power supply device 10 is based on the current sensor 14 that measures the output current value A11 of the solar cell 11, the voltage sensor 15 that measures the output voltage value V11 of the solar cell 11, and the power obtained from the solar cell 11. And a power converter 13 that outputs a direct current to the line 70.
  • the power management device 20 includes a data input / output unit 22, a search unit (main search unit) 25, and a voltage maintaining unit 26.
  • the data input / output unit 22 communicates with the sub power supply device 10 and intermittently obtains the output current value A11 measured by the current sensor 14 and the output voltage value V11 measured by the voltage sensor 15 from the sub power supply device 10. Configured to do. That is, the data input / output unit 22 is configured to receive the output current value A11 of the solar cell 11 and the output voltage value V11 of the solar cell 11.
  • the main search unit 25 determines a maximum output voltage value corresponding to the maximum output point of the solar cell 11 within a predetermined search range based on the output current value A11 and the output voltage value V11 acquired by the data input / output unit 22. Configured.
  • the voltage maintaining unit 26 sets the maximum output voltage value determined by the main search unit 25 as the target voltage value Vd, and when the data input / output unit 22 acquires the output voltage value V11 from the sub power supply device 10, the sub power supply device 10 A current command value for determining a DC value to be output to the line 70 is calculated and output to the data input / output unit 22.
  • the current command value is used to set the output voltage value V11 of the solar battery 11 as the target voltage value Vd.
  • the current command value is a value for adjusting the direct current value output from the sub power supply apparatus 10 so that the output voltage value V11 becomes the target voltage value Vd.
  • the current command value indicates a direct current value when the output voltage value V11 of the solar battery 11 becomes the target voltage value Vd.
  • the data input / output unit 22 is configured to transmit the current command value obtained from the voltage maintaining unit 26 to the power converter 13. When receiving the current command value, the power converter 13 is configured to set the direct current value to the received current command value.
  • the power management device 20 intermittently acquires the output voltage value V11 and the output current value A11 of the solar cell 11 and intermittently gives a current command value to the power converter 13. .
  • the power management device 20 sets the voltage value corresponding to the maximum output point of the solar cell 11 as the target voltage value Vd, and determines the current command value so that the output voltage value V11 of the solar cell 11 becomes the target voltage value Vd. Therefore, even when the time interval for obtaining the output voltage value V11 and the output current value A11 of the solar cell 11 and the time interval for giving the current command value to the power converter 13 are relatively long, the solar cell 11 is operated near the maximum power point. Can be made. Therefore, the solar cell 11 can efficiently generate power.
  • the sub power supply device 10 includes a smoothing capacitor 12 that smoothes the output voltage of the solar cell 11 and inputs the smoothed output voltage to the power converter 13.
  • the power management apparatus 20 includes a determination unit 23 and a presearch unit 24.
  • the determination unit 23 activates the pre-search unit 24 if the output voltage value V11 acquired by the data input / output unit 22 is equal to or less than a predetermined value, and the output voltage value V11 acquired by the data input / output unit 22 exceeds the predetermined value.
  • the main search unit 25 is activated. When activated, the pre-search unit 24 is configured to control the data input / output unit 22 to provide a stop signal to the power converter 13.
  • the power converter 13 is configured to stop the operation of outputting a direct current to the power line 80 when receiving the stop signal.
  • the pre-search unit 24 corresponds to the maximum output point of the solar cell based on the output voltage value V11 and the output current value A11 acquired by the data input / output unit 22 while the power converter 13 stops the operation. Is configured to determine a temporary maximum output voltage value.
  • the main search unit 25 When the main search unit 25 is activated, the main search unit 25 sets a predetermined range including the temporary maximum output voltage value, which is narrower than the width of the output voltage value V11 that has changed while the power converter 13 stops the above operation, as the search range. Then, after the search range is set, the data input / output unit 22 is controlled to provide a start signal to the power converter 13.
  • the power converter 13 is configured to start the above operation when receiving the start signal.
  • the output voltage of the solar cell 11 is smoothed by the smoothing capacitor 12. Therefore, fluctuations in the output power of the power converter 13 due to temporary fluctuations in the output power of the solar battery 11 due to shadows of clouds or the like can be suppressed.
  • the output voltage of the solar cell rises from 0 V or a low voltage, such as when starting for the first time or in the morning, the voltage across the smoothing capacitor 12 is rapidly increased with the power converter 13 stopped. Since it is raised, the maximum power point can be detected in a relatively short time.
  • the main search unit 25 sets a relatively narrow search range based on the maximum power point obtained by the pre-search unit 24.
  • the main search unit 25 obtains the maximum power point within the narrowed search range. Therefore, the maximum power point can be obtained with high accuracy in a relatively short time. That is, the time required for the search process for the maximum power point can be shortened. Therefore, during the operation period of the power supply system, it is possible to increase the proportion of time used for processing (maintenance processing) for maintaining the operating point of the solar cell 11 near the maximum power point. Therefore, the utilization efficiency of the electric power generated by the solar cell can be further increased.
  • the voltage maintaining unit 26 is configured to cause the main search unit 25 to determine the maximum power voltage value when a predetermined time has elapsed after setting the target voltage value Vd.
  • the target voltage value Vd can be changed in response to a gradual change in the amount of sunlight and panel temperature due to changes in the altitude of the sun. Therefore, it is possible to improve the followability to the change of the maximum power point.
  • the voltage maintaining unit 26 supplies the maximum power to the main search unit 25 when the difference between the output voltage value V11 acquired by the data input / output unit 22 and the target voltage value Vd exceeds a predetermined voltage value. A voltage value is determined.
  • the power supply system of the present embodiment when the output voltage of the solar cell 11 changes beyond the allowable range, the target voltage value Vd is immediately updated. Therefore, the power supply system can follow a rapid change in the maximum power point.
  • the voltage maintaining unit 26 outputs the output power value of the solar cell 11 obtained from the output voltage value V11 and the output current value A11 acquired by the data input / output unit 22, and the power value corresponding to the maximum power point of the solar cell 11. If the difference exceeds a predetermined power value, the main search unit 25 may be configured to determine the maximum power voltage value.
  • the power supply system can follow a sudden change in the maximum power point.
  • the voltage maintaining unit 26 is configured to output a current command value smaller than the previous current command value when the output voltage value V11 acquired by the data input / output unit 22 is smaller than the target voltage value Vd.
  • the load amount of the solar cell 11 decreases. As a result, the output voltage of the solar cell 11 can be increased.
  • the voltage maintaining unit 26 is configured to output a current command value larger than the previous current command value when the output voltage value V11 acquired by the data input / output unit 22 is larger than the target voltage value Vd.
  • the load amount of the solar cell 11 increases. As a result, the output voltage of the solar cell 11 can be reduced.
  • the voltage maintaining unit 26 determines that the output voltage value V11 acquired by the data input / output unit 22 is different from the target voltage value Vd by a predetermined value (a constant step) from the previous current command value.
  • the current command value changed by (width) is output.
  • the current command value is set to a constant increment every time the power management device 20 communicates with the DC power supply device 10. Only change. That is, the power supply system changes the load amount of the solar cell 11 stepwise to bring the output voltage value V11 of the solar cell 11 closer to the target voltage value Vd. Therefore, even if the output voltage of the solar cell 11 changes temporarily temporarily, the load amount of the solar cell 11 can be changed gently. Therefore, overshoot and undershoot are less likely to occur.
  • the power converter 13 is configured to measure a DC voltage value applied to the power supply line 70.
  • the data input / output unit 22 is configured to acquire the DC voltage value measured by the power converter 13 from the sub power supply device 10.
  • the voltage maintaining unit 26 determines the solar cell 11 from the output voltage value V11 and the output current value A11 acquired by the data input / output unit 22.
  • the output power value Pe may be obtained, and the current command value may be determined based on the output power value Pe of the solar cell 11 and the DC voltage value V13 (Ve) acquired by the data input / output unit 22.
  • the voltage maintaining unit 26 performs the next operation based on the output power value Pe of the solar cell 11 and the output voltage value Ve of the power converter 13.
  • Current command value Ia is determined (see the above equation (1)). Therefore, the change width of the current command value can be changed appropriately. Therefore, the output voltage value V11 of the solar cell 11 can be brought close to the target voltage value Vd accurately and quickly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 電源システムは、太陽電池(11)と電源線(70)との間に介在される副電源装置(10)と、電源管理装置(20)と、を備える。上記副電源装置(10)は、上記太陽電池(11)の出力電流値と出力電圧値とを測定する。上記副電源装置(10)は、上記太陽電池(11)より得た電力を元にして上記電源線(70)に直流を出力する。上記電源管理装置(20)は、上記副電源装置から上記出力電流値と上記出力電圧値とを間欠的に取得する。取得した上記出力電流値と上記出力電圧値とに基づいて上記太陽電池の最大出力点に対応する最大出力電圧値(目標電圧値)を決定する。電源管理装置(20)は、上記副電源装置(10)から上記出力電圧値を取得すると、上記出力電圧値を上記目標電圧値にするための電流指令値を上記副電源装置に送信する。上記副電源装置(10)は、上記電流指令値を受信すると、上記直流の値を受信した上記電流指令値に設定する。

Description

電源システムおよび電源管理装置
 本発明は、電源システムに関し、特に太陽電池を利用して負荷に直流電力を供給する電源システムに関し、さらにそれに用いられる電源管理装置に関する。
 文献1(特許第3394996号公報)は、太陽電池の最大電力点(最大出力点)を追尾する装置を開示する。文献1に開示された装置は、太陽電池の出力電力を直流電力に変換する電力変換器としてスイッチングコンバータを備える。文献1に開示された装置は、太陽電池が最大電力点で動作するようにスイッチングコンバータを制御するために、電流検出回路と、弁別回路と、積分回路と、スイッチングパルス発生回路と、をさらに備える。文献1では、太陽電池の出力電力に合わせて電力変換器の動作を連続的に制御することで、最大電力点追尾(MPPT)機能を実現する。このように、電力変換器の動作を連続的に制御すれば、MPPT機能を容易に実現できる。
 しかしながら、通信技術を用いて電力変換器の動作を他の装置から指示する場合には、MPPT機能を実現することが難しい。すなわち、通信技術を用いる場合には、通信路のトラフィックなどの制限によって、電力変換器の動作の指示を間欠的にしか与えることができない。そのため、太陽電池の動作点を最大電力点に維持することが困難である。
 また、MTTP機能を実現するには最大電力点を探索する期間が必要である。上述したように電力変換器への動作の指示を通信により間欠的に行う場合には、太陽電池の最大電力点を探索する処理(探索処理)に比較的長い時間がかかってしまう。
 探索処理が長くなると、太陽電池11の動作点を最大電力点に維持する処理(MPPT処理)に利用できる時間が短くなってしまう。MPPT処理の時間が短くなれば、それだけ太陽電池が最大電力点で動作する時間が減ってしまう。
 このように、通信により電力変換器の制御を間欠的に行いながらMTTP機能を実現しようとすれば、電力変換器を連続的に制御する場合と同様の技術を採用しても、最大電力点を維持することができない。そのため、太陽電池が発生した電力の利用効率が低下してしまうおそれがある。
 本発明は上記事由に鑑みて為された。本発明の目的は、太陽電池の出力電力を直流電力に変換する電力変換器を間欠的に制御しながらも上記太陽電池を最大電力点付近で動作させることができる電源システムおよびそれに用いられる電源管理装置を提供することにある。
 本発明に係る電源システムは、電源線を介して負荷機器に接続され上記電源線に所定の直流電圧を与えることで上記負荷機器に直流電力を供給する主電源装置と、太陽電池と上記電源線との間に介在される副電源装置と、電源管理装置と、を備える。上記副電源装置は、上記太陽電池の出力電流値を測定する電流センサと、上記太陽電池の出力電圧値を測定する電圧センサと、上記太陽電池より得た電力を元にして上記電源線に直流を出力する電力変換器と、を備える。上記電源管理装置は、上記副電源装置と通信して、上記電流センサで測定された上記出力電流値と上記電圧センサで測定された上記出力電圧値とを上記副電源装置から間欠的に取得するデータ入出力部と、上記データ入出力部が取得した上記出力電流値と上記出力電圧値とに基づいて所定の探索範囲で上記太陽電池の最大出力点に対応する最大出力電圧値を決定するサーチ部と、上記サーチ部で決定された上記最大出力電圧値を目標電圧値とし、上記データ入出力部が上記副電源装置から上記出力電圧値を取得すると、上記出力電圧値を上記目標電圧値とするための電流指令値を算出して上記データ入出力部に出力する電圧維持部と、を備える。上記データ入出力部は、上記電圧維持部から得た上記電流指令値を上記電力変換器に送信するように構成される。上記電力変換器は、上記電流指令値を受信すると、上記直流の値を受信した上記電流指令値に設定するように構成される。
 好ましくは、上記副電源装置は、上記太陽電池の上記出力電圧を平滑して上記電力変換器に入力する平滑コンデンサを備える。上記電源管理装置は、判断部と、プレサーチ部を備える。上記判断部は、上記データ入出力部が取得した上記出力電圧値が所定値以下であれば上記プレサーチ部を起動し、上記データ入出力部が取得した上記出力電圧値が所定値を越えれば上記サーチ部を起動するように構成される。上記プレサーチ部は、起動されると、上記データ入出力部を制御して停止信号を上記電力変換器に与えるように構成される。上記電力変換器は、上記停止信号を受け取ると上記電源線に上記直流を出力する動作を停止するように構成される。上記プレサーチ部は、上記電力変換器が上記動作を停止している間に上記データ入出力部が取得した上記出力電圧値と上記出力電流値とに基づいて、上記太陽電池の最大出力点に対応する一時最大出力電圧値を決定するように構成される。上記サーチ部は、起動されると、上記電力変換器が上記動作を停止している間に変化した上記出力電圧値の幅より狭く、上記一時最大出力電圧値を含む所定範囲を上記探索範囲に設定し、上記探索範囲の設定後に上記データ入出力部を制御して開始信号を上記電力変換器に与えるように構成される。上記電力変換器は、上記開始信号を受け取ると、上記動作を開始するように構成される。
 好ましくは、上記電圧維持部は、上記目標電圧値を設定してから所定時間が経過すると、上記サーチ部に上記最大電力電圧値を決定させるように構成される。
 好ましくは、上記電圧維持部は、上記データ入出力部が取得した上記出力電圧値と上記出力電流値とから求めた上記太陽電池の出力電力値と上記太陽電池の最大電力点に対応する電力値との差が所定の電力値を越える、または、上記データ入出力部が取得した上記出力電圧値と上記目標電圧値との差が所定の電圧値を越えると、上記サーチ部に上記最大電力電圧値を決定させるように構成される。
 好ましくは、上記電圧維持部は、上記データ入出力部が取得した上記出力電圧値が上記目標電圧値よりも小さい場合、前回の上記電流指令値よりも小さい上記電流指令値を出力するように構成される。
 好ましくは、上記電圧維持部は、上記データ入出力部が取得した上記出力電圧値が上記目標電圧値よりも大きい場合、前回の上記電流指令値よりも大きい上記電流指令値を出力するように構成される。
 好ましくは、上記電圧維持部は、上記データ入出力部が取得した上記出力電圧値が上記目標電圧値と異なる場合、前回の上記電流指令値よりも所定値だけ変化させた上記電流指令値を出力するように構成される。
 好ましくは、上記電力変換器は、上記電源線に与える直流電圧値を測定するように構成される。上記データ入出力部は、上記電力変換器で測定された上記直流電圧値を上記副電源装置から取得するように構成される。上記電圧維持部は、上記データ入出力部が取得した上記出力電圧値が上記目標電圧値と異なる場合、上記データ入出力部が取得した上記出力電圧値と上記出力電流値とから上記太陽電池の出力電力値を求め、上記太陽電池の出力電力値と上記データ入出力部が取得した上記直流電圧値とに基づいて上記電流指令値を決定するように構成される。
 本発明に係る電源管理装置は、電源線を介して負荷機器に接続され上記電源線に所定の直流電圧を与えることで上記負荷機器に直流電力を供給する主電源装置と、太陽電池と上記電源線との間に介在され上記太陽電池より得た電力を元にして上記電源線に直流を出力する副電源装置と、ともに電源システムを構成する。上記電源管理装置は、上記太陽電池の出力電流値と上記太陽電池の出力電圧値とを受け取るデータ入出力部と、上記データ入出力部が受け取った上記出力電流値と上記出力電圧値とに基づいて所定の探索範囲で上記太陽電池の最大出力点に対応する最大出力電圧値を決定するサーチ部と、上記サーチ部で決定された上記最大出力電圧値を目標電圧値とし、上記データ入出力部が上記出力電圧値を取得すると、上記出力電圧値が上記目標電圧値になるように上記副電源装置が出力する上記直流の値を調整するための電流指令値を算出して上記データ入出力部に出力する電圧維持部と、を備える。上記データ入出力部は、上記電圧維持部から得た上記電流指令値を上記副電源装置に送信するように構成される。
本発明の一実施形態の電源システムを示すブロック図である。 太陽電池の動作特性を示す図である。 電力変換器の出力特性を示す図である。 電力変換器を示すブロック図である。 電源システムの動作を説明する図である。 電源管理装置を示すブロック図である。 電源システムの動作を説明する図である。 電源システムの変形例の動作を説明する図である。
 以下に、本発明の一実施形態の電源システムおよびそれに用いられる電源管理装置20について説明する。
 本実施形態の電源システムは、図1に示すように、主電源装置30と、直流電源装置(副電源装置)10と、電源管理装置20と、を備える。
 主電源装置30および直流電源装置10は、電源線(直流供給線路)70に接続されている。また、電源線70には、負荷機器(直流負荷)40と、補助電源装置50とが接続されている。なお、電源線70には、複数の負荷機器40が接続されていてもよいし、複数の補助電源装置50が接続されていてもよい。電源線70は、たとえば、建物内に配線される。
 主電源装置30は、電力変換器(主電力変換器)31を備える。電力変換器31は、商用電源のような交流電源80から得た交流電力を直流電力に変換するAC/DCコンバータである。より詳しくは、電力変換器31は、スイッチング電源を用いたAC/DCコンバータであり、定電圧を出力するように構成されている。すなわち、電力変換器31は、定電圧源である。よって、電力変換器31は、電源線70に所定の直流電圧を与えることで負荷機器40に直流電力を供給する。
 このように、主電源装置30は、交流電源80を電源としている。また、主電源装置30は、出力電圧の変動が実質的に生じない容量を有している。すなわち、電源線70の電圧は、主電源装置30の出力電圧によって決定される。したがって、後述する電圧検出部63の検出電圧は、後述する降圧チョッパ回路61の出力の変動により瞬時的には変動するものの、ほぼ一定である。
 直流電源装置10は、太陽電池11と電力線70との間に介在される。直流電源装置10は、平滑コンデンサ12と、電力変換器13と、電流センサ14と、電圧センサ15と、通信部16と、を備える。
 電力変換器13は、太陽電池11より得た電力を元にして電源線70に直流を出力するように構成される。電力変換器13は、太陽電池11を電源(入力電源)に用いて直流電力を出力する。すなわち、直流電源装置10は、電源線70に直流電力を供給する。これによって、直流電源装置10は、電源線70を介して負荷機器40に給電する。太陽電池11は、たとえば、住宅などの建物の屋根に設置される。
 平滑コンデンサ12は、太陽電池11の出力端間に接続されている。言い換えれば、平滑コンデンサ12は、電力変換器13の入力端間に接続されている。太陽電池11の発電量(出力電力)は、日射強度やパネル温度の変化によって変動する。平滑コンデンサ12は、太陽電池11の発電量の変動によって、電力変換器13の入力端間に印加される電圧が変動することを抑制する。よって、電力変換器13の入力端間に平滑コンデンサ12を接続することにより、太陽電池11の発電量の変動が電力変換器13に与える影響を小さくできる。
 電力変換器13が太陽電池11に要求する電力を太陽電池11の発電量が超えるときは、太陽電池11の余剰電力を平滑コンデンサ12が蓄積する。これによって、電力変換器13が電源線70に出力する直流電力の増加が抑制される。一方、電力変換器13が太陽電池11に要求する電力を太陽電池11の発電量が下回るときは、平滑コンデンサ12が放電する。これによって、電力変換器13が電源線70に出力する直流電力の低下が抑制される。平滑コンデンサ12は、たとえば、電気二重層コンデンサ(EDLC=Electric Double Layer Capacitor)である。
 電流センサ14は、太陽電池11の出力電流を検出する。すなわち、電流センサ14は、太陽電池11の出力電流値A11を測定するように構成される。電流センサ14は、たとえば、太陽電池11と平滑コンデンサ12との間に設けられた直流変流器である。
 電圧センサ15は、太陽電池11の出力電圧を検出する。電圧センサ15は、たとえば、電力変換器13の入力電圧を検出する分圧抵抗である。電力変換器13の入力電圧は、平滑コンデンサ12の両端電圧に等しく、太陽電池11の出力端子の端子電圧に相当する。すなわち、電圧センサ15は、太陽電池11の出力電圧値V11を測定するように構成される。本実施形態では、電圧センサ15は、電力変換器13の入力電圧を太陽電池11の出力電圧として検出する。
 電力変換器13は、後述するように、外部から与えられる電流指令値に基づいて電力変換器13の電源線70に出力する直流(出力電流)の値を調節する機能を有する。また、電力変換器13は、電力変換器13の電源線70に印加する直流電圧(出力電圧)と、電力変換器13の電源線70に出力する直流(出力電流)と、を監視する機能を有する。すなわち、電力変換器13は、電力変換器13が電源線70に印加する直流電圧の値(出力電圧値)V13と、電力変換器13が電源線70に出力する直流の値(出力電流値)A13と、を測定するように構成される。
 通信部16は、電源線70を介して電源管理装置20と通信するように構成される。通信部16は、電流センサ14が測定した太陽電池11の出力電流値A11と、電圧センサ15が測定した太陽電池11の出力電圧値V11と、電力変換器13の出力電流値A13と、電力変換器13の出力電圧値V13とを、電源管理装置20に送信するように構成される。通信部16は、出力電流値A11,A13と出力電圧値V11,V13とを定期的に電源管理装置20に送信してもよいし、電源管理装置20からの要求に応じて送信してもよい。また、通信部16は、電源管理装置20から電流指令値を受信して電力変換器13に渡すように構成される。
 負荷機器40は、電源線70から直流電力が供給されることにより動作する負荷41と、通信部42と、を備える。通信部42は、電源線70を介して電源管理装置20と通信するように構成される。
 補助電源装置50は、直流電源装置10の余剰電力を蓄える二次電池51と、通信部52とを備える。通信部52は、電源線70を介して電源管理装置20と通信するように構成される。
 なお、電源線70には、風力発電機や、内燃機関で駆動される発電機、燃料電池などを備える直流電源が接続されていてもよい。
 直流電源装置10と、主電源装置30に内蔵された電源管理装置20と、負荷機器40と、補助電源装置50とは、電源線70を介して互いに通信を行う。
 電源管理装置20は、電源線70を介して直流電源装置10と負荷機器40と補助電源装置50と通信する通信部21を備える(図6参照)。電源管理装置20は、直流電源装置10と主電源装置30と負荷機器40と補助電源装置50と通信することによって、直流電源装置10と主電源装置30と負荷機器40と補助電源装置50とのそれぞれの状態を監視したり、直流電源装置10と主電源装置30と負荷機器40と補助電源装置50との動作を制御したりするように構成される。
 本実施形態において、電源管理装置20は、負荷機器40の要求する電力(要求電力)が負荷機器40に供給されるように、直流電源装置10と主電源装置30と補助電源装置50とからの総電力(供給電力)を負荷機器40に配分するように構成される。また、電源管理装置20は、太陽電池11がつねに最大電力点(最大出力点)で発電を行うように直流電源装置10および補助電源装置50の動作を制御するように構成される。
 たとえば、電源管理装置20は、補助電源装置50の二次電池51の充電率が所定範囲内に維持されるように、二次電池51の充放電を管理する。具体的には、直流電源装置10が供給可能な電力(直流電源装置10の出力電力)が負荷機器40の要求電力よりも大きいときには、直流電源装置10の余剰電力で二次電池51を充電する。直流電源装置10の出力電力が負荷機器40の要求電力よりも小さく、かつ二次電池51の充電率が上記所定範囲の下限以上であるときには、二次電池51を放電させる。このように、補助電源装置50は、直流電源装置10の出力電力の変動が負荷機器40に与える影響を小さくするために用いられる。
 ところで、負荷機器40の要求電力が直流電源装置10の出力電力と補助電源装置50の出力電力との合計値を上回る場合には、主電源装置30は、負荷機器40の要求電力の不足分に相当する電力を出力する。主電源装置30の電力変換器31は定電圧源であるから、主電源装置30は、自動的に、負荷機器40の要求電力の不足分を補う。
 各通信部16,21,42,52が通信に用いる信号伝送方式は、電源線70に印加される直流電圧に高周波の伝送信号を重畳させる方式である。すなわち、本実施形態の電源システムは、電源線70を電力供給と信号伝送とに共用する直流電力線搬送通信を用いる。そのため、本実施形態の電源システムでは、直流電力を供給するための電源線70とは別に、通信用の信号線を設ける必要がない。本実施形態の電源システムでは、電源管理装置20は、直流電源装置10や、負荷機器40、補助電源装置50と、比較的長い時間間隔(たとえば、2秒間隔)で通信する。すなわち、本実施形態の電源システムでは、通信は間欠的に行われる。これによって、信号の衝突や輻輳を防止している。
 図2(a),(b)は、太陽電池11の出力電力と出力電圧との関係(電力電圧特性)を示す。太陽電池11の電力電圧特性は、ピークを1つだけ有する。ピーク(最大電力点)の位置は、日射強度やパネル温度に応じて変化する。図2(a)の曲線P10は日射強度が高い場合の電力電圧特性を示し、曲線P11は日射強度が低い場合の電力電圧特性を示す。曲線P10における最大電力は、曲線P11よりも多い。曲線P10における最大電力点に対応する電圧VP10は、曲線P11における最大電力点に対応する電圧VP11よりも低い。図2(b)の曲線P12はパネル温度が高い場合の電力電圧特性を示し、曲線P13はパネル温度が低い場合の電力電圧特性を示す。曲線P12と曲線P11とで最大電力はほぼ同じである。ただし、パネル温度が高くなると最大電力が少なくなる傾向がある。曲線P12における最大電力点に対応する電圧VP12は、曲線P13における最大電力点に対応する電圧VP13よりも低い。
 直流電源装置10(電力変換器13)は、図3に示すように、電流指令値が一定であるときに電圧電流特性(電力変換器13の出力電圧と出力電流との関係を示す)が一定の傾きを持つ直線になるように構成されている。電源線70に電圧Voが与えられており、電流指令値がI1であるとする。この場合、電力変換器13の電圧電流特性は、一定の傾きを持ち、電圧Voと電流指令値I1との交点を通る直線L11となる。一方、電源線70に電圧Voが与えられており、電流指令値がI2であるとする。この場合、電力変換器13の電圧電流特性は、一定の傾きを持ち、電圧Voと電流指令値I2との交点を通る直線L12となる。本実施形態では、上述したように、電力変換器13に上述の特性を持たせる制御を傾斜制御と呼ぶ。
 上述した傾斜制御を行うために、電力変換器13は、図4に示すように、降圧チョッパ61と、電流検出部62と、電圧検出部63と、誤差増幅器64と、差動増幅器65と、三角波発生部66と、コンパレータ67と、を備える。
 降圧チョッパ回路61は、太陽電池11の出力電圧を低くして得られた電圧を出力するように構成される。降圧チョッパ回路61は、スイッチング素子(図示せず)を備える。降圧チョッパ回路61の出力電圧は、スイッチング素子のオンデューティに応じて変化する。特に、降圧チョッパ回路61の出力電圧は、スイッチング素子のオンデューティが小さくなるほど低くなる。電力変換器13は、降圧チョッパ回路61をPWM制御する。
 電流検出部62は、降圧チョッパ回路61の出力電流を検出するように構成される。電流検出部62は、降圧チョッパ回路61の出力電流を平滑して得られる検出電流を誤差増幅器64に出力する。電流検出部62の時定数は、降圧チョッパ回路61の出力電流の瞬時的な変動が検出電流に影響を与えないような値である。電流検出部62の検出電流は、直流電源装置10(電力変換器13)の出力電流に対応する。
 電圧検出部63は、電力変換器13の出力端間に印加される電圧(つまり、電源線70に与えられる電圧)を検出するように構成される。電圧検出部63は、検出した電圧を示す検出電圧を差動増幅器65に出力する。電圧検出部63の検出電圧は、直流電源装置10(電力変換器13)の出力電圧に対応する。
 誤差増幅器64は、電流検出部62の検出電流の値を、外部(電源管理装置20)から与えられる電流指令値と比較する。誤差増幅器64は、電流検出部62の検出電流の値と電流指令値との差に電圧値が比例する電圧信号を差動増幅器65に与えるように構成される。
 差動増幅器65は、誤差増幅器64の電圧信号と電圧検出器63の検出電圧とに応じて、コンパレータ67に出力する出力電圧を変化させるように構成される。差動増幅器65は、電流指令値よりも検出電流の値が小さくなるほどコンパレータ67に出力する出力電圧を上昇させ、電流指令値よりも検出電流の値が大きくなるほどコンパレータ67に出力する出力電圧を低下させる。また、差動増幅器65は、検出電圧が増加するほど出力電圧を低下させる。
 三角波発生部66は、三角波をコンパレータ67に出力するように構成される。
 コンパレータ67は、差動増幅器65の出力電圧と三角波の電圧とを比較した結果に基づいて、矩形波信号を降圧チョッパ回路61のスイッチング素子に出力するように構成される。すなわち、降圧チョッパ回路61のスイッチング素子は、コンパレータ67の矩形波信号によって制御される。
 電力変換器13では、電流検出部62の検出電流の値が電流指令値よりも大きくなれば、差動増幅器65の出力電圧(コンパレータ67への入力電圧)が上昇する。これによって、コンパレータ67の矩形波信号のデューティ比が小さくなって、降圧チョッパ回路61のスイッチング素子のオン期間が短くなる。その結果、降圧チョッパ回路61の出力電圧が低くなる。一方、電流検出部62の検出電流の値が電流指令値よりも小さくなれば、差動増幅器65の出力電圧が低下する。これによって、コンパレータ67の矩形波信号のデューティ比が大きくなって、降圧チョッパ回路61のスイッチング素子のオン期間が長くなる。その結果、降圧チョッパ回路61の出力電圧が高くなる。このように、電力変換器13は、電流検出部62の検出電流の値が電流指令値と等しくなるように、降圧チョッパ回路61をフィードバック制御する。
 電圧検出部63の検出電圧が上昇した場合、差動増幅器65の出力電圧(コンパレータ67の入力電圧)が低下する。これによって、コンパレータ67の矩形波信号のデューティ比が大きくなって、降圧チョッパ回路61のスイッチング素子のオン期間が長くなる。その結果、降圧チョッパ回路61の出力電圧が上昇する。電圧検出部63の検出電圧が低下した場合、コンパレータ67の入力電圧が上昇する。これによって、コンパレータ67の矩形波信号のデューティ比が小さくなって、降圧チョッパ回路61のスイッチング素子のオン期間が短くなる。その結果、降圧チョッパ回路61の出力電圧が低下する。
 このように、電力変換器13の出力電圧が上昇すると矩形波信号のデューティ比が大きくなり(パルス幅が広くなり)、電力変換器13の出力電圧が低下すると矩形波信号のデューティ比が小さくなる(パルス幅が狭くなる)。一方、電力変換器13の出力電流が大きくなると矩形波信号のデューティ比が小さくなり、電力変換器13の出力電流が低下すると矩形波信号のデューティ比が大きくなる。電力変換器13の出力電圧の変化は、矩形波信号のデューティ比を、電力変換器13の出力電流の変化とは反対の方向に変化させる。したがって、上述した傾斜制御が実現される。
 以下に、電力変換器13の動作をさらに詳しく説明する。
 まず、太陽電池11の出力電圧が変動した場合について説明する。太陽電池11の出力電圧が瞬時的に変動したとする。太陽電池11の瞬時的な変動は、平滑コンデンサ12によって緩和されるため、電力変換器13の入力電圧は変化しない。一方、太陽電池11の出力電圧が平滑コンデンサ12では抑えきれないほど大きく変動した場合、電力変換器13の入力電圧が変化する。これによって、電力変換器13の出力電圧および出力電流が変化する。たとえば、電力変換器13への負荷量が変化せずに、電力変換器13の入力電圧が変化すると、電力変換器13の出力電圧が変化する。電力変換器13への負荷量とは、電源線70に接続された負荷(負荷機器40や充電時の補助電源装置50)の集合体が、直流電源装置10に要求する電力である。
 電力変換器13の出力の電圧電流特性は電流指令値によって決定される。電力変換器13の入力電圧の変動によって出力電圧が変動すると、矩形波信号のデューティ比が変化し、これによって、電力変換器13の出力電流値A13が電流指令値に一致するように、電圧電流特性に従って電力変換器13の出力電圧値V13が変化する。
 ところで、太陽電池11の発電量は上述したように変動する。そのため、太陽電池11の出力電力が、電流指令値により定められた出力電流を電力変換器13が出力するために必要な電力より少なくなったり、多くなったりすることがある。すなわち、太陽電池11の出力電力に不足や余剰が生じることがある。
 太陽電池11の出力電力に不足や余剰が生じた場合には、主電源装置20および補助電源装置50が、太陽電池11の出力電力の不足分や余剰分に応じて、供給する電力を調節する。これによって、電力変換器13の出力電力は、電流指令値が変更されるまで、負荷量の変動によらずに略一定に保たれる。
 次に、電力変換器13への負荷量が変動した場合について説明する。電力変換器13への負荷量が変動した直後には、電圧検出部63の検出電圧が変動する。そのため、降圧チョッパ回路61に与えられる矩形波信号のデューティ比が変化する。電力変換器13は傾斜制御を行っているから、電流指令値に応じて決まる直線に沿って出力電流が変化する。電力変換器13の出力電流は、電力変換器13の出力電圧値が電源線70の線間電圧(電源線70に与えられる電圧)Voに達するまで変化する。最終的に、電力変換器13の出力電流の値(出力電流値)A13は電流指令値により指示された値になる。
 この場合も、太陽電池11の出力電力に不足や余剰が生じることがある。このような場合においても、上述したように、主電源装置20および補助電源装置50が、太陽電池11の出力電力の不足分や余剰分に応じて、供給する電力を調節する。
 上述したように、太陽電池11の出力電力の不足分は、主電源装置30や補助電源装置50が電力を供給することで補うことができる。
 一方、本実施形態の電源システムでは、図1に示すように、直流電源装置10が、太陽電池11の出力電力を直流電力に変換して電源線70を通して負荷機器40に供給する。そのため、太陽電池11の出力電力の余剰分を商用電源の系統に供給する逆潮流を行うことができない。そのため、太陽電池11の出力電力の余剰分は補助電源装置50に蓄積する。上述した不足や余剰が生じた場合の主電源装置30や補助電源装置50への指示は電源管理装置20が行う。
 次に、電流指令値を変更する場合について説明する。たとえば、電流指令値がI1からI2(<I1)に変更されたとする。電流指令値がI2に変更された直後、電流検出部62の検出電流値は電流指令値I2よりも大きい。よって、降圧チョッパ回路61に出力される方形波信号のデューティ比が短くなる。よって、降圧チョッパ回路61の出力電圧が低下する。したがって、電圧検出部63の検出電圧値が低下する。
 電流指令値がI2に変更されると、電力変換器13の電圧電流特性は、電源線70の線間電圧Voと電流指令値I2との交点を通る直線L12になる。したがって、降圧チョッパ回路61に出力される方形波信号のデューティ比は、直線L12に沿って検出電流値が変化するように変化していく。最終的に、検出電流値が電流指令値I2に一致する。つまり、電力変換器13の出力電流が電流指令値I2により指示された電流になる。
 上述したように、電源線70の線間電圧は、主電源装置30によりほぼ一定に保たれている。よって、電流指令値を変化させて電力変換器13の出力電流を調節することによって、直流電源装置10(電力変換器13)の出力電圧をほぼ一定に保ちながら、電力変換器13の出力電力を変化させることができる。直流電源装置10の出力電力が変化すると、電力変換器13が入力電源(太陽電池11と平滑コンデンサ12)に要求する電力(電力変換器13の要求電力)、すなわち、太陽電池11への負荷量が変化する。
 したがって、電力変換器13の要求電力を、太陽電池11の出力電力が最大になるように決定することによって、MTTP機能が実現される。すなわち、電力変換器13に適正な電流指令値を与えることにより、太陽電池11の出力電力を最大電力に維持することが可能になる。言い換えれば、太陽電池11を最大出力点で動作させることができる。
 本実施形態の電源システムでは、電源管理装置20が、MTTP機能を実現するための電流指令値を直流電源装置10の電力変換器13に与える。
 本実施形態の電源システムでは、MTTP機能を実現するのに必要な情報として、太陽電池11の出力電流値A11と、太陽電池11の出力電圧値V11と、太陽電池11の出力電力と、直流電源装置10(電力変換器13)の出力電流値A13と、直流電源装置10(電力変換器13)の出力電圧値V13と、直流電源装置10(電力変換器13)の出力電力とを用いる。
 図2に示すように、太陽電池11の電力電圧特性はピーク(最大出力点)を1つだけ有する単峰型である。太陽電池11の出力電力の最大値は太陽電池11の出力電圧値と一対一に対応しているから、太陽電池11の出力電力を最大値に維持する(太陽電池11を最大出力点で動作させる)には最大電力点に対応する出力電圧が得られるように太陽電池11の出力電圧を調節すればよい。
 また、通常の使用時においては、比較的短い時間内では最大電力点の変化は小さいと考えられる。したがって、電源管理装置20は、最大電力点がほとんど変化しないような時間間隔で通信を行って、電力変換器13の負荷量を調節するように構成される。このようにすれば、太陽電池11の最大出力点に追従することができる。
 本実施形態の電源管理装置20は、最初に太陽電池11の最大電力点に相当する出力電圧値を目標電圧値として求めるように構成される。電源管理装置20は、太陽電池11の最大電力点の変化が小さい間は太陽電池11の出力電圧値が目標電圧値に維持されるように電力変換器13に与える電流指令値を調節するように構成される。
 すなわち、図5に示すように、電源管理装置20は、まず太陽電池11の最大電力点に対応する電圧(実際には電力変換器13の入力電圧)を探索する(図5における(1),(2)参照)。電源管理装置20は、検出した電圧の値を目標電圧値Vdとする。電源管理装置20は、太陽電池11の出力電圧値が目標電圧値Vdに維持されるように、電力変換器13に与える電流指令値を調節する。その後、最大電力点が許容範囲Vii-Vssを超えるなどの条件が成立するときには、電源管理装置20は、最大電力点をあらためて探索して目標電圧値Vdを更新する(図5における(3)参照)。これにより、電源管理装置20は、最大電力点に追従するMTTP機能を実現している。
 上述したMTTP機能は、主電源装置30に設けた電源管理装置20が直流電源装置10と通信することにより実現される。電源管理装置20は、マイクロコンピュータを主構成要素とする。電源管理装置20では、マイクロコンピュータが所定のプログラムを実行することにより以下の機能が実現される。
 電源管理装置20は、図6に示すように、通信部21と、データ入出力部22と、判定部23と、プレサーチ部24と、サーチ部(メインサーチ部)25と、電圧維持部26と、指示部27と、監視部28と、を備える。
 通信部21は、直流電源装置10の通信部16や、負荷機器40の通信部42、補助電源装置50の通信部52と通信を行うことによりデータを授受するように構成される。
 データ入出力部22は、通信部21を通して、直流電源装置10や、負荷機器40、補助電源装置50からデータを受信し、または、直流電源装置10や、負荷機器40、補助電源装置50にデータを送信するように構成される。
 監視部28は、データ入出力部22に接続される。監視部28は、上述したように、負荷機器40の要求電力を充足させるように、直流電源装置10および補助電源装置50の動作を制御するように構成される。
 データ入出力部22が通信部21を介して直流電源装置10から得たデータ(たとえば、太陽電池11の出力電流値A11、太陽電池11の出力電圧値V11など)は、判定部23に与えられる。
 判定部23は、太陽電池11の出力電圧値(つまり、電力変換器13の入力電圧値)V11が所定値(たとえば、10V)以下であるときには平滑コンデンサ12が蓄電されていない(太陽電池11が停止している)停止状態と判断するように構成される。判定部23は、太陽電池11の出力電圧値V11が上記所定値を超えているときには平滑コンデンサ12が蓄電されている(太陽電池11が運転している)運転状態と判断するように構成される。
 判断部23は、太陽電池11の初期起動時だけではなく、太陽電池の発電停止後の再起動時も停止状態と判断する。たとえば、判断部23は、夜間に太陽電池11の発電が停止して平滑コンデンサ12の電荷が放電され、翌朝に太陽電池11の発電が再開された場合も、停止状態と判断する。なお、夜間に太陽電池11の発電量が低下し、平滑コンデンサ12の両端電圧が所定値よりも低下したときには、電力変換器13の動作を停止させることが好ましい。
 判定部23は、停止状態と判断すると、プレサーチ部24を起動するように構成される。プレサーチ部24は、太陽電池11の出力電圧の下限と上限との略全範囲で、太陽電池11の最大電力点を探索するように構成される。判定部23は、運転状態と判断すると、メインサーチ部25を起動するように構成される。メインサーチ部25は、太陽電池11の出力電圧の特定の探索範囲で、太陽電池1の最大電力点を探索するように構成される。
 電圧維持部26は、プレサーチ部24またはメインサーチ部25が最大電力点を検出すると、太陽電池11が最大電力点で動作するように直流電源装置10に与える電流指令値を算出するように構成される。電圧維持部26は、太陽電池11の最大電力点に対応する太陽電池11の出力電圧値(たとえば、17V)を太陽電池11の出力電圧の目標電圧値Vd(図5参照)とする。電圧維持部26は、太陽電池11の出力電圧値V11が目標電圧値Vdとなるように電流指令値を決定する。
 電圧維持部26は、電流指令値をデータ入出力部22に出力するように構成される。データ入出力部22は、電圧維持部26から得た電流指令値を電力変換器13に送信するように構成される。したがって、電圧維持部26で決定された電流指令値は、データ入出力部22および通信部21を通して直流電源装置10に通知される。
 直流電源装置10は、電源管理装置20から受け取った電流指令値に応じた出力電流を出力する。これによって、直流電源装置10は、太陽電池11への負荷量を調節して、結果的に太陽電池11の出力電圧値V11を目標電圧値Vdに維持する。このようにして、電源システムは、太陽電池11のフィードバック制御を行う。
 以下では、電源管理装置20の判定部23とプレサーチ部24とメインサーチ部25と電圧維持部26との動作について、図7を用いてさらに詳しく説明する。
 まず、判定部23は、太陽電池11の出力電圧値V11を取得して所定値と比較する(S1)。ここで、判定部23は、太陽電池11の出力電圧値V11が所定値以下であるときには停止状態と判断して(S1:no)、プレサーチ部24を起動する。プレサーチ部24は、起動されると、データ入出力部22を制御して停止信号を電力変換器13に与える。電力変換器13は、停止信号を受け取ると電源線80に直流を出力する動作を停止する。したがって、プレサーチ部24は、起動されると、電力変換器13の動作を停止させる(S2)。これによって、太陽電池11から電力変換器13を切り離されたような状態となり、太陽電池11の負荷が平滑コンデンサ12のみとなる。この状態では、平滑コンデンサ12の両端電圧、すなわち太陽電池11の出力電圧が比較的短時間で上昇する。
 プレサーチ部24は、電力変換器13の入力電圧値(太陽電池11の出力電圧値V11)が上記所定値(たとえば、20V)に達するまで(S4)、太陽電池11の出力電流値A11と太陽電池11の出力電圧値V11とを取得するとともに記憶する(S3)。プレサーチ部24は、太陽電池11の出力電力値を求める。太陽電池11の出力電力値は、取得した出力電流値A11と出力電圧値V11との積である。プレサーチ部24は、太陽電池11の出力電力値が最大となるときの出力電圧値V11を最大電力点に対応する電圧値(最大出力電圧値)とする(S5)。
 プレサーチ部24は、電源管理装置20と直流電源装置10との通信間隔ごとに出力電圧値V11と出力電流値A11とを直流電源装置10から取得する。そのため、太陽電池11の出力電力値は、上記通信間隔ごとにしか得られない。しかしながら、電力変換器13の入力電圧値(平滑コンデンサ12の両端電圧値)が上限電圧値(上記所定値)に達するまでの時間よりも上記通信間隔を短くすれば、最大電力点を検出できる。プレサーチ部24が検出した最大出力電圧値(一時最大出力電圧値)は、電源管理装置20に保存される。
 プレサーチ部24は、現在の太陽電池11の出力電力値と前回の太陽電池11の出力電力値とを比較する。プレサーチ部24は、現在の太陽電池11の出力電力値が前回の太陽電池11の出力電力値より大きければ、前回の太陽電池11の出力電力値を現在の太陽電池11の出力電力値に更新する。一方、プレサーチ部24は、現在の太陽電池11の出力電力値が前回の太陽電池11の出力電力値より小さければ、現在の太陽電池11の出力電力値を破棄して、前回の太陽電池11の出力電力値を更新しない。プレサーチ部24は、このような処理を、電力変換器13の入力電圧値が上限電圧値に達するまで繰り返し行うことで、最大電力点を求める。このようにして、プレサーチ部24は、メインサーチ部25に比べて最大電力点を粗く(低精度で)求める。
 なお、プレサーチ部24が起動している間は、判定部23は、電圧の判定(S1)を行わない。また、上記所定値は、太陽電池11の開放電圧の値よりも小さい。プレサーチ部24の動作が終了した時点では、通常は太陽電池11の出力電圧値V11が上記所定値以上になっている。よって、判定部23は、運転状態と判断して(S1:yes)、メインサーチ部25を起動する。
 メインサーチ部25は、起動されると、最初に、最大電力点を探索する範囲を設定する(S6)。メインサーチ部25は、電力変換器13が動作を停止している間に変化した出力電圧値V11の幅より狭く、一時最大出力電圧値を含む所定範囲を探索範囲に設定する。たとえば、探索範囲は、プレサーチ部24の検出した最大電力点に対応する電圧(一時最大出力電圧値)を中心とする所定範囲(たとえば、±30%の範囲)に設定される。
 メインサーチ部25は、探索範囲の設定後にデータ入出力部22を制御して開始信号を電力変換器13に与える。電力変換器13は、開始信号を受け取ると、動作を開始する。したがって、メインサーチ部25は、電力変換器13に運転を開始させる(S7)。メインサーチ部25は、上記所定値から探索範囲の下限値に向かって電力変換器13の入力電圧値を変化させる。すなわち、メインサーチ部25は、電力変換器13に与える電流指令値を徐々に増加させることによって、電力変換器13の入力電圧値を低下させる(S8)。ただし、電流指令値を連続的に変化させることはできないから、1回の通信毎に所定の刻み幅(たとえば、0.1A)ずつ電流指令値を変化させる。すなわち、電流指令値を所定値ずつ変化させる。
 この刻み幅は、最大電力点に対応する電圧を求める精度(探索精度)と最大電力点の探索に用いる時間(探索時間)とに応じて適宜に選択される。つまり、刻み幅を大きくすれば、探索精度は低くなるが、探索時間を短くできる。刻み幅を小さくすれば、探索時間は長くなるが、探索精度は高くなる。
 メインサーチ部25は、直流電源装置10から取得した出力電圧値V11が探索範囲の下限値に達するまで(S10)、電流指令値を徐々に増加させる。メインサーチ部25は、電流指令値を増加させるたびに、直流電源装置10から出力電流値A11と出力電圧値V11とを取得する(S9)。メインサーチ部25は、出力電流値A11と出力電圧値V11とを取得すると、太陽電池11の出力電力値を算出する。メインサーチ部25は、プレサーチ部24と同様の処理を実行して最大電力点を求め、これによって最大電力点に対応する電圧値(最大出力電圧値)を求める。
 なお、電流指令値を増加させても出力電圧値V11が探索範囲の下限値に達しない場合には(S10、S11)、メインサーチ部25は、最大電力点が大幅に変化した(太陽電池11の出力電圧が大幅に低下した)と判断してプレサーチ部24を再起動する(S2)。
 メインサーチ部25は、上述の動作を行うことで最大電力点を求める。そのため、メインサーチ部25は、プレサーチ部24よりも高い精度で最大電力点を求めることができる。よって、メインサーチ部25は、プレサーチ部24よりも高い精度で最大電力点に対応する電圧値を求めることができる。メインサーチ部25の探索範囲(電力変換器13の入力電圧値が変化する範囲)はプレサーチ部24の探索範囲よりも狭い。よって、電流指令値を比較的小さい刻み幅で変化させても比較的短い時間で最大電力点に対応する電圧値を求めることができる。
 メインサーチ部25は、太陽電池11の最大電力点に対応する電圧値(最大出力電圧値)を求めると(S11:yes)、最大出力電圧値を電圧維持部26に与える。電圧維持部26は、メインサーチ部25から受け取った最大出力電圧値を目標電圧値Vd(図5参照)とする(S12)。電圧維持部26は、太陽電池11の出力電圧値V11を目標電圧値Vdに一致させるための電流指令値を生成して、データ入出力部22に与える。データ入出力部22は、電圧維持部26から受け取った電流指令値を直流電源装置10に送信する。これによって、電力変換器13が電源管理装置20から電流指令値を受け取る。このようにして、電源管理装置20は、直流電源装置10と通信する毎に電流指令値を電力変換器13に与える。
 電圧維持部26は、メインサーチ部25により目標電圧値Vdが求められると、起動される。電圧維持部26は、電源管理装置20が直流電源装置10と通信する毎に、太陽電池11の出力電流値A11と出力電圧値V11とを取得する(S13)。電圧維持部26は、太陽電池11の出力電圧値V11を取得すると、出力電圧値V11と目標電圧値Vdとを比較する(S14、S15)。
 電圧維持部26は、出力電圧値V11が目標電圧値Vdよりも小さいと判断すると(S15:低)、電流指令値を上記刻み幅(所定値)だけ小さくする(S16)。電流指令値が小さくなると、太陽電池11に対する負荷量(電力変換器13が太陽電池11に要求する電力)を減少する。そのため、太陽電池11の出力電圧が上昇する。一方、電圧維持部26は、出力電圧値V11が目標電圧値Vdよりも大きいと判断すると(S15:高)、電流指令値を上記刻み幅だけ大きくする(S17)。電流指令値が大きくなると、電力変換器13が太陽電池11に要求する電力が増加する。そのため、太陽電池11の出力電圧が低下する。上述したように、電圧維持部26は、メインサーチ部25の動作と同様に、電圧維持部26を一定の刻み幅(たとえば、0.1A)で変化させる。また、電圧維持部26は、出力電圧値V11が目標電圧値Vdと実質的に一致していると判断すると(出力電圧値V11が目標電圧値Vdを含む所定の範囲内であるとき)、電流指令値を変更しない。
 このように、電圧維持部26は、太陽電池11の出力電圧値V11が目標電圧値Vdに維持されるように、電力変換器13のフィードバック制御を行う。
 ここで、日射強度やパネル温度が大きく変化しなければ、太陽電池11の最大電力点は大きく変化しないから、太陽電池11の最大電力点に対応する電圧値は目標電圧値Vdとほぼ等しいままである。一方、日射強度やパネル温度が大きく変化すると、太陽電池11の最大電力点は大きく変化するから、太陽電池11の最大電力点に対応する電圧値は、目標電圧値Vdから大きくずれるおそれがある。
 電圧維持部26は、太陽電池11の出力電力値と出力電圧値V11との少なくとも一方が許容範囲外であるときには(S14)、最大電力点が変化したと判断する。電圧維持部26は、最大電力点が変化したと判断すると、探索範囲を新たに設定する(S18)。探索範囲の設定後、電圧維持部26は、メインサーチ部25に最大出力電圧値の再探索を行わせる(S8)。
 許容範囲は、図5ではVi-Vsで示す範囲である。出力電力値についての許容範囲は、たとえば、メインサーチ部25が求めた太陽電池11の最大電力値の±20%の範囲である。出力電圧値V11についての許容範囲は、たとえば、目標電圧値Vdの±0.3Vの範囲である。なお、許容範囲は、基準値(最大電力点の電力値や目標電圧値Vd)に対して変化しない固定幅であってもよいし、基準値に応じて所定の割合で変化する変化幅であってもよい。
 メインサーチ部25に再探索を行わせるか否かの判断には、太陽電池11の出力電力値と出力電圧値V11とのいずれか一方のみを用いてもよい。たとえば、図7では、太陽電池11の出力電圧値V11のみを用いている。しかしながら、太陽電池11の最大電力値に応じて、出力電力値と出力電圧値V11とを使い分けてもよい。
 上述したように、太陽電池11の電力電圧特性は単一のピークを持つベル形である。また、最大電力値が大きくなるほどピークの半値幅が狭くなる。そのため、ピークの先端付近では出力電圧値に対する出力電力値の変化率が高くなり、ピークの裾付近では出力電圧値V11に対する出力電力値の変化率が低くなる。この点に着目して、最大電力値が所定の閾値以上か閾値未満かに応じて再探索の条件を切り換えてもよい。たとえば、太陽電池の出力電力値が閾値以上であるときには出力電力値が許容範囲外になることを再探索の条件とし、出力電力値が閾値未満であるときには出力電圧値V11が許容範囲外になることを再探索の条件としてもよい。
 電圧維持部26は、再探索を行う際には、まず現状の電流指令値よりも所定の割合(たとえば、30%)だけ小さい電流指令値を生成する。これによって、電力変換器13が太陽電池11に要求する電力を少なくして平滑コンデンサ12に蓄積される電荷量を増加させる。すなわち、電圧維持部26は、現状の電流指令値を用いて再探索用の探索範囲Vii-Vss(図5参照)を設定する(S18)。これによって、太陽電池11の出力電圧を一旦上昇させる。この後に、メインサーチ部25が最大電力点の探索を行う。
 なお、電圧維持部26は、電力変換器13を停止させることにより平滑コンデンサ12の両端電圧を太陽電池11の開放電圧まで上昇させてもよい。しかしながら、電力変換器13を停止させると、直流電源装置10が電源線70に出力する直流(供給電流)が急激に小さくなる。この場合には、電源線70の線間電圧が大きく変動し、これによって、負荷機器40の動作に悪影響を与えてしまうおそれがある。よって、電力変換器13を停止させずに太陽電池11の負荷量(電力変換器13が太陽電池11に要求する電力)を低下させることが好ましい。
 また、電圧維持部26は、同じ目標電圧値Vdを用いている時間が所定の維持時間(たとえば、15分間)に達したか否かを判定する(S19)。電圧維持部26は、太陽電池11の出力電圧値V11が許容範囲内であっても、同じ目標電圧値Vdを用いている時間が上記維持時間に達した場合には、メインサーチ部25に最大出力電圧値の再探索を行わせる。電圧維持部26がこのような処理(ステップS19の処理)を行うため、本実施形態の電源システムは、太陽高度の変化、雲の移動、建物や樹木の影の位置変化などに伴う日射強度あるいはパネル温度の変化に対応できる。
 以上説明したように、メインサーチ部25は、太陽電池11の最大電力点に対応する電圧値(最大出力電圧値)を検出する。電圧維持部26は、メインサーチ部25が検出した最大出力電圧値を目標電圧値Vdとする。電圧維持部26は、太陽電池11の最大電力点の変動が許容範囲内であれば、太陽電池11の出力電圧値V11が目標電圧値Vdとなるように電流指令値を調節することによって、電力変換器13のフィードバック制御を行う。これによって、太陽電池11が最大電力点の近傍で動作する。また、電圧維持部26は、太陽電池11の最大電力点の変動が許容範囲Vi-Vsを超える場合には、メインサーチ部25を起動して最大電力点に対応する電圧値の再探索を行わせる。そのため、太陽電池11の最大電力点が大きく変化したときには、最大電力点の変化に応じて最大出力電圧値(目標電圧値Vd)を変更できる。このようにして、電源管理装置20は、直流電源装置10を制御することで、MTTP機能を実現する。
 ところで、電流指令値Iaは、次式(1)により決定してもよい。
Ia=Ie-α(Ip-Ie)・・・(1)
 ここで、Ipは前回の電流指令値である。Ieは、Ie=ε(Pe/Ve)である。Peは、太陽電池11の最新の出力電力値である。Veは、電力変換器13の最新の出力電圧値V13である。εは、電力変換器13の変換効率(たとえば、0.9)である。αは、出力電圧値V11を目標電圧値Vdに復帰させる速さを表わす定数である。
 この場合、定数αによって、出力電圧値V11が目標電圧値Vdに復帰させる速さを決定できる。このようにすれば、一定の刻み幅で電流指令値を変更する場合とは異なり、太陽電池11の出力電圧値V11を目標電圧値Vdに維持する精度と応答の速さとを両立できる。
 このようにして電流指令値を決定すれば、出力電圧値V11と目標電圧値Vdとの比較(図7におけるステップS15)を行わなくて済む。図8は、上式(1)により電流指令値を決定する場合のフローチャートを示す。図8のフローチャートと図7のフローチャートとを比較すればわかるように、図8のフローチャートでは、ステップS15,S16,S17がステップS20に置き換えられている。ステップS20では、電圧維持部26は、上式(1)を用いて電流指令値を算出する。電圧維持部26で算出された電流指令値は、データ入出力部22により直流電源装置10に送信される。
 なお、本実施形態において、電源管理装置20は、主電源装置30に内蔵されている。しかしながら、電源管理装置20は必ずしも主電源装置30に内蔵されている必要はない。すなわち、電源管理装置20は、主電源装置30と分離させて設けることが可能である。
 電源管理装置20は、必ずしも電源線70を介して直流電源装置10と通信する必要はない。すなわち、通信路は、電源線70に限られず、たとえば、電源線70とは別の有線通信路や無線通信路であってもよい。
 主電源装置30は、定電圧源であればよく、必ずしも交流電源80から電力を得る必要はない。特に、主電源装置30は、負荷機器40の負荷が変動しても電力を安定に供給できるような容量を有することが好ましい。
 以上述べたように、本実施形態の電源システムは、電源線70を介して負荷機器40に接続され電源線70に所定の直流電圧を与えることで負荷機器40に直流電力を供給する主電源装置30と、太陽電池11と電源線70との間に介在される副電源装置(直流電源装置)10と、電源管理装置20と、を備える。副電源装置10は、太陽電池11の出力電流値A11を測定する電流センサ14と、太陽電池11の出力電圧値V11を測定する電圧センサ15と、太陽電池11より得た電力を元にして電源線70に直流を出力する電力変換器13と、を備える。電源管理装置20は、データ入出力部22と、サーチ部(メインサーチ部)25と、電圧維持部26と、を備える。データ入出力部22は、副電源装置10と通信して、電流センサ14で測定された出力電流値A11と電圧センサ15で測定された出力電圧値V11とを副電源装置10から間欠的に取得するように構成される。すなわち、データ入出力部22は、太陽電池11の出力電流値A11と太陽電池11の出力電圧値V11とを受け取るように構成される。メインサーチ部25は、データ入出力部22が取得した出力電流値A11と出力電圧値V11とに基づいて所定の探索範囲で太陽電池11の最大出力点に対応する最大出力電圧値を決定するように構成される。電圧維持部26は、メインサーチ部25で決定された最大出力電圧値を目標電圧値Vdとし、データ入出力部22が副電源装置10から出力電圧値V11を取得すると、副電源装置10が電源線70に出力する直流の値を決定する電流指令値を算出してデータ入出力部22に出力するように構成される。電流指令値は、太陽電池11の出力電圧値V11を目標電圧値Vdとするために用いられる。電流指令値は、出力電圧値V11が目標電圧値Vdになるように副電源装置10が出力する直流の値を調整するための値である。たとえば、電流指令値は、太陽電池11の出力電圧値V11が目標電圧値Vdとなるときの直流の値を示す。データ入出力部22は、電圧維持部26から得た電流指令値を電力変換器13に送信するように構成される。電力変換器13は、電流指令値を受信すると、直流の値を受信した電流指令値に設定するように構成される。
 本実施形態の電源システムによれば、電源管理装置20は、太陽電池11の出力電圧値V11および出力電流値A11を間欠的に取得して、電力変換器13に電流指令値を間欠的に与える。電源管理装置20は、太陽電池11の最大出力点に対応する電圧値を目標電圧値Vdとし、太陽電池11の出力電圧値V11が目標電圧値Vdとなるように電流指令値を決定する。そのため、太陽電池11の出力電圧値V11および出力電流値A11を取得する時間間隔および電力変換器13に電流指令値を与える時間間隔が比較的長い場合でも、太陽電池11を最大電力点付近で動作させることができる。よって、効率よく太陽電池11に発電を行わせることができる。
 本実施形態の電源システムでは、副電源装置10は、太陽電池11の出力電圧を平滑して電力変換器13に入力する平滑コンデンサ12を備える。電源管理装置20は、判断部23と、プレサーチ部24を備える。判断部23は、データ入出力部22が取得した出力電圧値V11が所定値以下であればプレサーチ部24を起動し、データ入出力部22が取得した出力電圧値V11が上記所定値を越えればメインサーチ部25を起動するように構成される。プレサーチ部24は、起動されると、データ入出力部22を制御して停止信号を電力変換器13に与えるように構成される。電力変換器13は、停止信号を受け取ると電源線80に直流を出力する動作を停止するように構成される。プレサーチ部24は、電力変換器13が上記動作を停止している間にデータ入出力部22が取得した出力電圧値V11と出力電流値A11とに基づいて、太陽電池の最大出力点に対応する一時最大出力電圧値を決定するように構成される。メインサーチ部25は、起動されると、電力変換器13が上記動作を停止している間に変化した出力電圧値V11の幅より狭く、一時最大出力電圧値を含む所定範囲を探索範囲に設定し、探索範囲の設定後にデータ入出力部22を制御して開始信号を電力変換器13に与えるように構成される。電力変換器13は、開始信号を受け取ると、上記動作を開始するように構成される。
 このように本実施形態の電源システムによれば、太陽電池11の出力電圧を平滑コンデンサ12により平滑している。よって、雲の影などによる太陽電池11の出力電力の一時的な変動によって、電力変換器13の出力電力が変動することを抑制できる。また、初起動時や朝に起動するときのように、太陽電池の出力電圧が0Vや低電圧から上昇する際に、電力変換器13を停止させた状態で平滑コンデンサ12の両端電圧を急速に上昇させるから、比較的短時間で最大電力点を検出できる。
 ただし、通信を間欠的に行っているから、平滑コンデンサ12の充電に伴って太陽電池11の出力電圧が上昇する間には、最大電力点を精度よく検出することが難しい。そこで、メインサーチ部25は、プレサーチ部24が求めた最大電力点に基づいて比較的狭い探索範囲を設定する。メインサーチ部25は、絞り込んだ探索範囲で最大電力点を求める。そのため、比較的短い時間で最大電力点を精度よく求めることが可能になる。すなわち、最大電力点の探索処理にかかる時間を短くできる。そのため、電源システムの運転期間において、太陽電池11の動作点を最大電力点付近に維持する処理(維持処理)に利用する時間の割合を増加させることができる。よって、太陽電池で発生された電力の利用効率をさらに高めることができる。
 本実施形態の電源システムでは、電圧維持部26は、目標電圧値Vdを設定してから所定時間が経過すると、メインサーチ部25に最大電力電圧値を決定させるように構成される。
 このように本実施形態の電源システムによれば、目標電圧値Vdを更新することなく所定時間(維持時間)が経過したときに、最大電力点が再探索されて目標電圧値Vdが更新される。そのため、太陽の高度の変化などによる日照量やパネル温度の緩やかな変化に対応して目標電圧値Vdを変更できる。したがって、最大電力点の変化に対する追従性を高めることができる。
 本実施形態の電源システムでは、電圧維持部26は、データ入出力部22が取得した出力電圧値V11と目標電圧値Vdとの差が所定の電圧値を越えると、メインサーチ部25に最大電力電圧値を決定させるように構成される。
 このように本実施形態の電源システムによれば、太陽電池11の出力電圧に許容範囲を超える変化が生じたときには、ただちに目標電圧値Vdが更新される。そのため、電源システムは、最大電力点の急激な変化に追従できる。
 なお、電圧維持部26は、データ入出力部22が取得した出力電圧値V11と出力電流値A11とから求めた太陽電池11の出力電力値と太陽電池11の最大電力点に対応する電力値との差が所定の電力値を越えると、メインサーチ部25に最大電力電圧値を決定させるように構成されていてもよい。
 この場合、太陽電池11の出力電力値に許容範囲を超える変化が生じたときには、ただちに目標電圧値Vdが更新される。したがって、電源システムは、最大電力点の急激な変化に追従できる。
 また、電圧維持部26は、データ入出力部22が取得した出力電圧値V11が目標電圧値Vdよりも小さい場合、前回の電流指令値よりも小さい電流指令値を出力するように構成される。
 電流指令値が小さくなると、太陽電池11の負荷量(電力変換器13が太陽電池11に要求する電力)が少なくなる。その結果、太陽電池11の出力電圧を上昇させることができる。
 また、電圧維持部26は、データ入出力部22が取得した出力電圧値V11が目標電圧値Vdよりも大きい場合、前回の電流指令値よりも大きい電流指令値を出力するように構成される。
 電流指令値が大きくなると、太陽電池11の負荷量が大きくなる。その結果、太陽電池11の出力電圧を低下させることができる。
 特に、本実施形態の電源システムでは、電圧維持部26は、データ入出力部22が取得した出力電圧値V11が目標電圧値Vdと異なる場合、前回の電流指令値よりも所定値(一定の刻み幅)だけ変化させた電流指令値を出力するように構成される。
 本実施形態の電源システムによれば、太陽電池11の出力電圧値V11が目標電圧値Vdと異なるときに、電源管理装置20が直流電源装置10と通信する毎に電流指令値を一定の刻み幅だけ変化させる。すなわち、電源システムは、太陽電池11の負荷量を段階的に変化させて、太陽電池11の出力電圧値V11を目標電圧値Vdに近づける。そのため、太陽電池11の出力電圧が一時的に大きく変化したとしても太陽電池11の負荷量を緩やかに変化させることができる。したがって、オーバーシュートやアンダーシュートが生じにくくなる。
 また、上述したように、電力変換器13は、電源線70に与える直流電圧値を測定するように構成される。データ入出力部22は、電力変換器13で測定された直流電圧値を副電源装置10から取得するように構成される。電圧維持部26は、データ入出力部22が取得した出力電圧値V11が目標電圧値Vdと異なる場合、データ入出力部22が取得した出力電圧値V11と出力電流値A11とから太陽電池11の出力電力値Peを求め、太陽電池11の出力電力値Peとデータ入出力部22が取得した直流電圧値V13(Ve)とに基づいて電流指令値を決定するように構成されていてもよい。
 この場合、電圧維持部26は、太陽電池11の出力電圧値V11が目標電圧値Vdと異なるときに、太陽電池11の出力電力値Peと電力変換器13の出力電圧値Veとに基づいて次の電流指令値Iaを決定する(上式(1)参照)。そのため、電流指令値の変化幅を適切に変化させることができる。よって、太陽電池11の出力電圧値V11を目標電圧値Vdに正確かつ迅速に近づけることが可能になる。

Claims (9)

  1.  電源線を介して負荷機器に接続され上記電源線に所定の直流電圧を与えることで上記負荷機器に直流電力を供給する主電源装置と、
     太陽電池と上記電源線との間に介在される副電源装置と、
     電源管理装置と、を備え、
      上記副電源装置は、
       上記太陽電池の出力電流値を測定する電流センサと、
       上記太陽電池の出力電圧値を測定する電圧センサと、
       上記太陽電池より得た電力を元にして上記電源線に直流を出力する電力変換器と、
      を備え、
      上記電源管理装置は、
       上記副電源装置と通信して、上記電流センサで測定された上記出力電流値と上記電圧センサで測定された上記出力電圧値とを上記副電源装置から間欠的に取得するデータ入出力部と、
       上記データ入出力部が取得した上記出力電流値と上記出力電圧値とに基づいて所定の探索範囲で上記太陽電池の最大出力点に対応する最大出力電圧値を決定するサーチ部と、
       上記サーチ部で決定された上記最大出力電圧値を目標電圧値とし、上記データ入出力部が上記副電源装置から上記出力電圧値を取得すると、上記出力電圧値を上記目標電圧値にするための電流指令値を算出して上記データ入出力部に出力する電圧維持部と、
      を備え、
       上記データ入出力部は、上記電圧維持部から得た上記電流指令値を上記電力変換器に送信するように構成され、
       上記電力変換器は、上記電流指令値を受信すると、上記直流の値を受信した上記電流指令値に設定するように構成される
     ことを特徴とする電源システム。
  2.  上記副電源装置は、上記太陽電池の上記出力電圧を平滑して上記電力変換器に入力する平滑コンデンサを備え、
     上記電源管理装置は、判断部と、プレサーチ部を備え、
      上記判断部は、上記データ入出力部が取得した上記出力電圧値が所定値以下であれば上記プレサーチ部を起動し、上記データ入出力部が取得した上記出力電圧値が所定値を越えれば上記サーチ部を起動するように構成され、
      上記プレサーチ部は、起動されると、上記データ入出力部を制御して停止信号を上記電力変換器に与えるように構成され、
      上記電力変換器は、上記停止信号を受け取ると上記電源線に上記直流を出力する動作を停止するように構成され、
      上記プレサーチ部は、上記電力変換器が上記動作を停止している間に上記データ入出力部が取得した上記出力電圧値と上記出力電流値とに基づいて、上記太陽電池の最大出力点に対応する一時最大出力電圧値を決定するように構成され、
      上記サーチ部は、起動されると、上記電力変換器が上記動作を停止している間に変化した上記出力電圧値の幅より狭く、上記一時最大出力電圧値を含む所定範囲を上記探索範囲に設定し、上記探索範囲の設定後に上記データ入出力部を制御して開始信号を上記電力変換器に与えるように構成され、
      上記電力変換器は、上記開始信号を受け取ると、上記動作を開始するように構成される
     ことを特徴とする請求項1記載の電源システム。
  3.  上記電圧維持部は、上記目標電圧値を設定してから所定時間が経過すると、上記サーチ部に上記最大電力電圧値を決定させるように構成される
     ことを特徴とする請求項1記載の電源システム。
  4.  上記電圧維持部は、上記データ入出力部が取得した上記出力電圧値と上記出力電流値とから求めた上記太陽電池の出力電力値と上記太陽電池の最大電力点に対応する電力値との差が所定の電力値を越える、または、上記データ入出力部が取得した上記出力電圧値と上記目標電圧値との差が所定の電圧値を越えると、上記サーチ部に上記最大電力電圧値を決定させるように構成される
     ことを特徴とする請求項1記載の電源システム。
  5.  上記電圧維持部は、上記データ入出力部が取得した上記出力電圧値が上記目標電圧値よりも小さい場合、前回の上記電流指令値よりも小さい上記電流指令値を出力するように構成される
     ことを特徴とする請求項1記載の電源システム。
  6.  上記電圧維持部は、上記データ入出力部が取得した上記出力電圧値が上記目標電圧値よりも大きい場合、前回の上記電流指令値よりも大きい上記電流指令値を出力するように構成される
     ことを特徴とする請求項1記載の電源システム。
  7.  上記電圧維持部は、上記データ入出力部が取得した上記出力電圧値が上記目標電圧値と異なる場合、前回の上記電流指令値よりも所定値だけ変化させた上記電流指令値を出力するように構成される
     ことを特徴とする請求項1記載の電源システム。
  8.  上記電力変換器は、上記電源線に与える直流電圧値を測定するように構成され、
     上記データ入出力部は、上記電力変換器で測定された上記直流電圧値を上記副電源装置から取得するように構成され、
     上記電圧維持部は、上記データ入出力部が取得した上記出力電圧値が上記目標電圧値と異なる場合、上記データ入出力部が取得した上記出力電圧値と上記出力電流値とから上記太陽電池の出力電力値を求め、上記太陽電池の出力電力値と上記データ入出力部が取得した上記直流電圧値とに基づいて上記電流指令値を決定するように構成される
     ことを特徴とする請求項1記載の電源システム。
  9.  電源線を介して負荷機器に接続され上記電源線に所定の直流電圧を与えることで上記負荷機器に直流電力を供給する主電源装置と、太陽電池と上記電源線との間に介在され上記太陽電池より得た電力を元にして上記電源線に直流を出力する副電源装置と、ともに電源システムを構成する電源管理装置であって、
      上記電源管理装置は、
       上記太陽電池の出力電流値と上記太陽電池の出力電圧値とを受け取るデータ入出力部と、
       上記データ入出力部が受け取った上記出力電流値と上記出力電圧値とに基づいて所定の探索範囲で上記太陽電池の最大出力点に対応する最大出力電圧値を決定するサーチ部と、
       上記サーチ部で決定された上記最大出力電圧値を目標電圧値とし、上記データ入出力部が上記出力電圧値を取得すると、上記出力電圧値が上記目標電圧値になるように上記副電源装置が出力する上記直流の値を調整するための電流指令値を算出して上記データ入出力部に出力する電圧維持部と、
     を備え、
       上記データ入出力部は、上記電圧維持部から得た上記電流指令値を上記副電源装置に送信するように構成される
     ことを特徴とする電源管理装置。
PCT/JP2010/055263 2009-03-26 2010-03-25 電源システムおよび電源管理装置 WO2010110383A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009077712A JP2010231456A (ja) 2009-03-26 2009-03-26 電源システム
JP2009-077712 2009-03-26

Publications (1)

Publication Number Publication Date
WO2010110383A1 true WO2010110383A1 (ja) 2010-09-30

Family

ID=42781074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055263 WO2010110383A1 (ja) 2009-03-26 2010-03-25 電源システムおよび電源管理装置

Country Status (2)

Country Link
JP (1) JP2010231456A (ja)
WO (1) WO2010110383A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077065A (ja) * 2011-09-29 2013-04-25 Omron Corp 電源制御装置、パワーコンディショナ、電源システム、プログラム、および電源制御方法
CN104662484A (zh) * 2012-09-20 2015-05-27 京瓷株式会社 功率调节器及控制功率调节器的方法
WO2020039537A1 (ja) * 2018-08-23 2020-02-27 ソニー株式会社 制御装置、制御方法、及び制御システム
WO2021182261A1 (ja) * 2020-03-11 2021-09-16 パナソニックIpマネジメント株式会社 アーク検出装置、屋内電力線システム、太陽光発電システム及び蓄電池システム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012155581A (ja) * 2011-01-27 2012-08-16 Hitachi Ltd 電力変換装置
EP2822143B1 (en) * 2012-03-02 2018-02-21 JGC Corporation Power supply device, electricity storage device, and electricity storage system
JP5960080B2 (ja) * 2013-03-12 2016-08-02 株式会社デンソー 電力システム
JP6278715B2 (ja) * 2014-01-22 2018-02-14 株式会社デンソー 充電装置
CN106058927B (zh) * 2016-06-27 2020-07-17 扬州大学 基于峰值电流的光伏并网微逆变器最大功率点快速算法
TWI642251B (zh) * 2016-11-04 2018-11-21 朗天科技股份有限公司 使用最大電能使用點追蹤技術的電力系統
WO2021182259A1 (ja) * 2020-03-11 2021-09-16 パナソニックIpマネジメント株式会社 アーク検出装置、パワーコンディショナ、屋内配線システム、ブレーカ、太陽光パネル、太陽光パネル付属モジュール及び接続箱
JP7266777B1 (ja) 2022-09-26 2023-05-01 株式会社ターネラ 発電蓄電装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084630A (ja) * 1996-09-10 1998-03-31 N T T Facilities:Kk 太陽電池併用の直流電源装置及びその制御方法
WO2008125915A2 (en) * 2006-12-06 2008-10-23 Solaredge, Ltd. Monitoring of distributed power harvesting systems using dc power sources

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1084630A (ja) * 1996-09-10 1998-03-31 N T T Facilities:Kk 太陽電池併用の直流電源装置及びその制御方法
WO2008125915A2 (en) * 2006-12-06 2008-10-23 Solaredge, Ltd. Monitoring of distributed power harvesting systems using dc power sources

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077065A (ja) * 2011-09-29 2013-04-25 Omron Corp 電源制御装置、パワーコンディショナ、電源システム、プログラム、および電源制御方法
CN104662484A (zh) * 2012-09-20 2015-05-27 京瓷株式会社 功率调节器及控制功率调节器的方法
CN104662484B (zh) * 2012-09-20 2016-06-15 京瓷株式会社 功率调节器及控制功率调节器的方法
WO2020039537A1 (ja) * 2018-08-23 2020-02-27 ソニー株式会社 制御装置、制御方法、及び制御システム
WO2021182261A1 (ja) * 2020-03-11 2021-09-16 パナソニックIpマネジメント株式会社 アーク検出装置、屋内電力線システム、太陽光発電システム及び蓄電池システム
JPWO2021182261A1 (ja) * 2020-03-11 2021-09-16
JP7304532B2 (ja) 2020-03-11 2023-07-07 パナソニックIpマネジメント株式会社 アーク検出装置、屋内電力線システム、太陽光発電システム及び蓄電池システム

Also Published As

Publication number Publication date
JP2010231456A (ja) 2010-10-14

Similar Documents

Publication Publication Date Title
WO2010110383A1 (ja) 電源システムおよび電源管理装置
AU2016317031B2 (en) Method and apparatus for controlling energy flow between dissimilar energy storage devices
US20100263711A1 (en) Maximum power point tracking control apparatus for solar battery
US7944190B2 (en) Control circuit of power supply unit which controls output power of external power supply based upon current from the external power supply, power supply unit and control method thereof
US20210376790A1 (en) Optimizer, photovoltaic power generation system, and iv curve scanning method for photovoltaic module
US8810213B2 (en) Power control method and apparatus for tracking maximum power point in a photovoltaic system
US8963502B2 (en) Method for controlling secondary battery and power storage device
JP5998454B2 (ja) 制御装置、制御方法および制御システム
US10355492B2 (en) Rechargeable battery controller
US8174281B2 (en) Method and circuit for tracking maximum power of a photo-voltaic array
JP2013138530A (ja) 太陽電池発電システム
US20130300346A1 (en) Charge controlling system, charge controlling apparatus, charge controlling method and discharge controlling apparatus
US9991715B1 (en) Maximum power point tracking method and apparatus
JP2008090672A (ja) 電力変換装置および電力変換方法
WO2013175702A1 (ja) 制御システム
Pernía et al. A modular strategy for isolated photovoltaic systems based on microcontroller
JP2013099207A (ja) 制御装置および制御方法
US9257861B2 (en) Control apparatus and control method
CN109066881B (zh) 一种快速调节电池电流方法
JP2015192549A (ja) 電力変換装置及び電力変換方法
CN113890337A (zh) 光伏直流变换器输出电压控制方法、电子装置及存储介质
JP5047908B2 (ja) 最大電力制御装置および最大電力制御方法
JP2013090460A (ja) 太陽光発電システムの発電制御装置
CN107565644B (zh) 一种车载充电机输出电压的调节方法、装置及电动汽车
JP7080644B2 (ja) 充電制御装置及び充電制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10756179

Country of ref document: EP

Kind code of ref document: A1