WO2021181815A1 - 電池用セパレータ - Google Patents

電池用セパレータ Download PDF

Info

Publication number
WO2021181815A1
WO2021181815A1 PCT/JP2020/047877 JP2020047877W WO2021181815A1 WO 2021181815 A1 WO2021181815 A1 WO 2021181815A1 JP 2020047877 W JP2020047877 W JP 2020047877W WO 2021181815 A1 WO2021181815 A1 WO 2021181815A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
barium sulfate
heat
volume
particles
Prior art date
Application number
PCT/JP2020/047877
Other languages
English (en)
French (fr)
Inventor
二宮裕一
越前絹似
古山夏帆
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202080061385.6A priority Critical patent/CN114303281A/zh
Priority to KR1020227000170A priority patent/KR20220148153A/ko
Priority to US17/768,689 priority patent/US20230411791A1/en
Priority to JP2021500760A priority patent/JPWO2021181815A1/ja
Priority to EP20924944.0A priority patent/EP4120459A1/en
Publication of WO2021181815A1 publication Critical patent/WO2021181815A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polyolefin porous membrane and a battery separator having a heat-resistant porous layer on at least one side of the porous membrane.
  • the battery separator according to the embodiment of the present invention can be usefully used as a lithium ion secondary battery separator.
  • thermoplastic resin porous membrane is widely used as a substance separation, selective permeation, and a separating material.
  • battery separators used in lithium-ion secondary batteries, nickel-hydrogen batteries, nickel-cadmium batteries, polymer batteries, etc., separators for electric double layer capacitors, back-penetration filtration membranes, ultrafiltration membranes, and precision filtration membranes.
  • filters such as, breathable waterproof clothing, medical materials, etc.
  • a separator for a lithium ion secondary battery it has ion permeability due to impregnation with an electrolytic solution, is excellent in electrical insulation, electrolytic solution resistance and oxidation resistance, and at a temperature of about 120 to 150 ° C. when the battery is abnormally heated.
  • a porous polyolefin film having a pore-blocking effect that cuts off an electric current and suppresses an excessive temperature rise is preferably used.
  • the porous polyolefin membrane may rupture. This phenomenon is not limited to the case where polyolefin is used, and cannot be avoided above the melting point of the resin constituting the porous film.
  • separators for lithium-ion secondary batteries are deeply involved in battery characteristics, battery productivity and battery safety, and have excellent mechanical characteristics, heat resistance, permeability, dimensional stability, hole closing characteristics (shutdown characteristics), etc. And melt-breaking characteristics (melt-down characteristics) and the like are required.
  • melt-breaking characteristics melting-down characteristics
  • the improvement of output characteristics has become even higher as a requirement for separators. Therefore, studies have been made so far on laminating various modified porous layers on the porous membrane.
  • a polyamide-imide resin having both heat resistance and electrolytic solution permeability a polyimide resin, a polyamide resin, and / or a fluorine-based resin having excellent electrode adhesion are preferably used.
  • a water-soluble or water-dispersible binder in which a modified porous layer can be laminated by using a relatively simple washing step or a drying step is also widely used.
  • the modified porous layer refers to a layer containing a resin that imparts or improves at least one function such as heat resistance, adhesiveness to an electrode material, high ion permeability, and high output characteristics.
  • Example 1 of Patent Document 1 heat resistance and battery stability are improved by applying a slurry containing barium sulfate particles and poly (meth) acrylamide on a polyethylene separator having a thickness of 12 ⁇ m by gravure coating. Separators are disclosed.
  • Patent Document 2 discloses a separator capable of detecting the relative position of an electrode and a separator in an X-ray inspection by containing 2 to 20 parts by weight of barium sulfate per 100 parts by weight of the microporous membrane.
  • DMAc dimethylacetamide
  • TPG tripropylene glycol
  • the average particle size D20 of the inorganic particles is made larger than the average pore diameter of the pores that open on the surface of the microporous membrane, so that the inorganic particles do not enter the pores on the surface of the microporous membrane.
  • a separator that makes it difficult to crush and has both high ion permeability and pressure resistance is disclosed.
  • Japanese Patent No. 6337512 Japanese Patent No. 5898405 Japanese Patent No. 6526359 Japanese Patent No. 6115602
  • the battery separator is a member for insulating the flow of electrons when the temperature of the lithium secondary battery rises abnormally, and the heat-resistant porous layer is required to have higher heat resistance in order to improve the safety of the battery.
  • Inorganic particles may be blended in addition to the heat-resistant resin in order to improve heat resistance, and shrinkage of the separator due to heat can be further suppressed.
  • the proportion of inorganic particles in the heat-resistant porous layer increases, the gaps between the particles become narrower, and the air permeation resistance and the electrical resistance increase, so that there is a problem that the output characteristics deteriorate.
  • lithium-ion secondary batteries contain electrolytes that are important for battery reactions, and react very sensitively to water, causing gas generation such as hydrogen fluoride and deterioration of battery performance due to electrolyte consumption. May cause.
  • boehmite contained as inorganic particles in the modified porous layer of a general battery separator as an example, boehmite contains water molecules in its structure and has many hydroxyl groups on the particle surface in the air. It has the property of adsorbing a large amount of water by forming a hydrogen bond with the water of.
  • the modified porous layer also contains water, and when it comes into contact with the electrolytic solution in the battery, it reacts with the electrolyte, causing gas generation such as hydrofluoric acid and deterioration of battery performance.
  • Patent Document 1 proposes to use a mixture of a specific barium sulfate and a specific synthetic resin, but gas may be generated, which is not sufficient.
  • An object of the present invention is to provide a battery separator having low air permeation resistance and electrical resistance, excellent high output characteristics, low water content, and suppressed gas generation.
  • a battery separator having a porous polyolefin membrane and a heat-resistant porous layer provided on at least one surface of the porous membrane.
  • the heat-resistant porous layer contains barium sulfate particles and an organic synthetic resin component.
  • the barium sulfate particles are 20% by volume or less of particles having a particle size of 0.5 ⁇ m or less, and 10% by volume or less of particles having a particle size of 3.0 ⁇ m or more.
  • the barium sulfate particles contain 70% by volume or more and 98% by volume or less, with the total of the barium sulfate particles and the organic synthetic resin component as 100% by volume.
  • the average thickness of the heat-resistant porous layer is 2 ⁇ m or more and 10 ⁇ m or less.
  • the moisture content of the separator is 400 ppm or less, It has been found that this problem can be solved by using a battery separator characterized by a hydrogen sulfide content of 0.2 ⁇ 10 -3 mg / m 2 or less.
  • a more preferable mode is (1)
  • the barium sulfate particles are sedimentary barium sulfate.
  • the precipitated barium sulfate is produced from barium chloride as a raw material by the sword-glass method.
  • the BET specific surface area of the barium sulfate particles is 2.0 m 2 / g or more and less than 3.0 m 2 / g.
  • the organic synthetic component is Contains one or more selected from the group of (meth) acrylic acid copolymer resin, polyacrylamide resin, polyvinylidene fluoride resin, polyvinyl alcohol resin, polyimide resin, polyamideimide resin, polyamide resin, and poly (meth) aramid resin.
  • the air permeation resistance of the polyolefin porous membrane is 30 seconds / 100 cm 3 Air or more and 200 seconds / 100 cm 3 or less. Is.
  • the present invention it is possible to provide a battery separator having low air permeation resistance and electrical resistance, good high output characteristics, low water content, and suppressed hydrogen sulfide generation.
  • the battery separator according to the embodiment of the present invention has a polyolefin porous membrane and a heat-resistant porous layer provided on at least one surface of the porous membrane.
  • the thickness of the porous polyolefin membrane in the embodiment of the present invention is not particularly limited as long as it has the function of a battery separator, but is preferably 25 ⁇ m or less. It is more preferably 7 ⁇ m or more and 20 ⁇ m or less, and further preferably 9 ⁇ m or more and 16 ⁇ m or less. When the thickness of the porous polyolefin membrane is 25 ⁇ m or less, it is possible to achieve both practical membrane strength and pore closing function, the area per unit volume of the battery case is not restricted, and it is suitable for increasing the capacity of the battery. ..
  • Air resistance of the polyolefin porous membrane is 30 sec / 100 cm 3 Air or more, preferably not more than 200 sec / 100 cm 3 Air. More preferably 40 sec / 100 cm 3 Air or more, or less 150 sec / 100 cm 3 Air, more preferably 50 sec / 100 cm 3 Air more or less 100 sec / 100 cm 3 Air.
  • the air permeation resistance is 30 sec / 100 cm 3 Air or more, sufficient mechanical strength and insulation are obtained, and the possibility of a short circuit during charging / discharging of the battery is reduced.
  • the porosity of the polyolefin porous membrane is preferably 20% or more and 70% or less. It is more preferably 30% or more, 60% or less, and further preferably 55% or less.
  • the vacancy ratio is 30% or more and 70% or less, sufficient battery charge / discharge characteristics, particularly ion permeability (charge / discharge operating voltage) and battery life (closely related to the amount of electrolyte retained).
  • the function as a battery can be fully exhibited, and sufficient mechanical strength and insulating properties are obtained, so that a short circuit is less likely to occur during charging / discharging.
  • the average pore size of the polyolefin porous membrane has a great influence on the pore closing performance, and therefore is preferably 0.01 ⁇ m or more and 1.0 ⁇ m or less. It is more preferably 0.02 ⁇ m or more and 0.5 ⁇ m or less, and further preferably 0.03 ⁇ m or more and 0.3 ⁇ m or less. If the average pore size of the polyolefin porous membrane is less than 0.01 ⁇ m, the pores may be clogged by the organic synthetic component when the heat-resistant porous layer is deposited, and the air permeation resistance and the electrical resistance may deteriorate. be.
  • the pores may be clogged by the heat-resistant porous layer composition, the air permeation resistance and the electrical resistance may be deteriorated, or the safety of the battery may be lowered due to the occurrence of a slight short circuit. ..
  • the average pore size of the polyolefin porous film is 0.01 ⁇ m or more and 1.0 ⁇ m or less, sufficient adhesion strength of the heat-resistant porous layer to the polyolefin porous film is obtained due to the anchor effect of the binder, and the heat-resistant porous layer is obtained.
  • the air permeation resistance and the electrical resistance do not deteriorate significantly when the layers are laminated, and the response to the temperature of the pore closing phenomenon does not become slow, and the pore closing temperature due to the change in the heating rate is higher on the higher temperature side. Shifts rarely appear in.
  • the average pore diameter referred to in the present invention is a measured value obtained by the bubble point method defined by JIS K 3832: 1990.
  • the polyolefin resin constituting the polyolefin porous film is not particularly limited, but polyethylene or polypropylene is preferable. Further, it may be a single compound or a mixture of two or more different polyolefin resins, for example, a mixture of polyethylene and polypropylene, or a copolymer of different olefins. This is because, in addition to basic characteristics such as electrical insulation and ion permeability, it is possible to have a hole closing effect of blocking the current and suppressing an excessive temperature rise when the battery temperature rises abnormally. Of these, polyethylene is particularly preferable from the viewpoint of excellent pore closing performance.
  • polyethylene will be described in detail as an example of the polyolefin resin used in the present invention, but the embodiments of the present invention are not limited thereto.
  • polyethylene examples include ultra-high molecular weight polyethylene, high density polyethylene, medium density polyethylene, low density polyethylene and the like.
  • the polymerization catalyst is also not particularly limited, and examples thereof include a Ziegler-Natta catalyst, a Philips catalyst, and a metallocene catalyst.
  • These polyethylenes may be not only ethylene homopolymers but also copolymers containing a small amount of other ⁇ -olefins.
  • ⁇ -olefins other than ethylene include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, (meth) acrylic acid, (meth) acrylic acid ester, and styrene. Is preferable.
  • the polyethylene may be a single compound, but is preferably a mixture of two or more types of polyethylene.
  • a mixture of two or more types of polyethylene selected from the group consisting of high-density polyethylene, medium-density polyethylene and low-density polyethylene may be used.
  • the porous polyolefin membrane has a function of closing the pores when the charge / discharge reaction is abnormal.
  • the melting point (softening point) of the constituent resin is preferably 70 ° C. or higher and 150 ° C. or lower. It is more preferably 80 ° C. or higher and 140 ° C. or lower, and further preferably 100 ° C. or higher and 130 ° C. or lower.
  • the melting point of the constituent resin is 70 ° C. or higher and 150 ° C. or lower, the pore closing function is not exhibited during normal use and the battery is not disabled, and the pore closing function is exhibited during an abnormal reaction. This can ensure safety.
  • the battery separator according to the embodiment of the present invention is provided with a heat-resistant porous layer on at least one surface of the polyolefin porous film, and contains barium sulfate particles and an organic synthetic resin component.
  • the heat-resistant porous layer may be provided on only one side of the polyolefin porous membrane, or may be provided on both sides. If it is provided on only one side, the number of steps for forming a heat-resistant porous layer is reduced, and the production cost can be further suppressed. The shrinkage rate due to heat of the battery separator can be effectively reduced.
  • the barium sulfate particles are 20% by volume or less of particles having a particle size of 0.5 ⁇ m or less and 10% by volume or less of particles having a particle size of 3.0 ⁇ m or more.
  • particles having a particle size of 0.5 ⁇ m or less are 15% by volume or less
  • particles having a particle size of 3.0 ⁇ m or more are 8% by volume or less
  • more preferably particles having a particle size of 0.5 ⁇ m or less are 10% by volume or less
  • the particle size is 3.
  • Particles of 0.0 ⁇ m or more are 6% by volume or less.
  • the particles having a particle diameter of 0.5 ⁇ m or less are larger than 20% by volume, the gaps between the inorganic particles in the heat-resistant porous layer are filled, and the movement path of lithium ions inside the battery becomes narrow or long, resulting in a large film resistance.
  • the particles may be clogged in the pores of the porous polyolefin film, which may significantly reduce the performance of the battery.
  • the number of particles having a particle diameter of 3.0 ⁇ m or more exceeds 10% by volume, the number of contacts between individual inorganic particles in the heat-resistant porous layer is reduced, so that the structure of the heat-resistant porous layer becomes brittle and the polyolefin is porous at high temperature.
  • the number of coarse particles may increase, the surface shape of the heat-resistant porous layer may be uneven, and streaks or the like may occur in the method for producing the heat-resistant porous layer described later. ..
  • the particles having a particle size of 0.5 ⁇ m or less are 20% by volume or less and the particles having a particle size of 3.0 ⁇ m or more are 10% by volume or less, the gaps between the inorganic particles in the heat-resistant porous layer are not filled and the polyolefin is porous. Since the particles are less likely to be clogged in the pores of the quality film, the film resistance can be reduced.
  • the particle size referred to here refers to the particle size when the cumulative curve is obtained with the total product as 100% when measured using a laser diffraction type particle size distribution measuring device.
  • the average particle size of the barium sulfate particles was measured using a laser diffraction type particle size distribution measuring device (LA-960V2, manufactured by Horiba Seisakusho Co., Ltd.) according to JISZ8825 (2013).
  • ⁇ m) particle size when the volume-based integration rate was 50%.
  • the barium sulfate particles of the present invention are produced by a synthetic method.
  • barium sulfate obtained by adding sulfuric acid to barium carbonate or barium sulfide to obtain barium sulfate (sulfuric acid method), or adding sodium sulfate to barium chloride to obtain barium sulfate (barium sulfate method). It is a particle.
  • the barium sulfate particles used in the present invention are expensive, but the precipitated barium sulfate particles obtained by the synthetic method, especially barium sulfate synthesized by the barium sulfate method in which barium chloride is used as a starting material and reacted with sodium sulfate (glauber's salt). It is preferable to use particles.
  • the reason for this is that the barium sulfate particles synthesized by the barium sulfate method in the process of examining the barium sulfate particles generate extremely little hydrogen sulfide and can suppress the generation of corrosive gas.
  • the shape of the barium sulfate particles in the embodiment of the present invention is not particularly specified, and various shapes of barium sulfate particles can be used. Specific examples thereof include a true sphere shape, a substantially sphere shape, a plate shape, a needle shape, a polyhedral shape, and the like, and any of them may be used.
  • the organic synthetic resin component in the embodiment of the present invention has an effect of binding barium sulfate particles constituting the heat-resistant porous layer to each other and an effect of adhering the heat-resistant porous layer to the polyolefin porous film.
  • the above can be used, and a commercially available aqueous solution or aqueous dispersion can be used.
  • acrylic resins include “Polysol” series manufactured by Showa Denko Corporation, “BM” series manufactured by Nippon Zeon Co., Ltd., and “Julimer” (registered trademark) AT-210 manufactured by Toa Synthetic Co., Ltd. ET-410, "Aron” (registered trademark) A-104, AS-2000, NW-7060, "LIOACCUM” (registered trademark) series manufactured by Toyochem Co., Ltd., TRD202A, TRD102A manufactured by JSR Co., Ltd., Arakawa Chemical Co., Ltd.
  • the heat-resistant porous layer may appropriately contain a thickener, a wetting agent, etc. for the purpose of improving coatability, and a thermosetting resin, a cross-linking agent, etc. for the purpose of improving heat resistance.
  • the content of the barium sulfate particles contained in the heat-resistant porous layer in the embodiment of the present invention is 70% by volume or more and 98% by volume or less, assuming that the total of the barium sulfate particles and the organic synthetic resin component is 100% by volume. It is more preferably 77% by volume or more and 93% by volume or less, and further preferably 85% by volume or more and 90% by volume or less.
  • the content of the barium sulfate particles is less than 70% by volume, the gaps between the individual barium sulfate particles in the heat-resistant porous layer are clogged with the organic synthetic resin component, so that the ion movement path becomes narrow or long. As a result, the electrical resistance and air permeation resistance increase.
  • the content of the barium sulfate particles is 70% by volume or more and 98% by volume or less, the gaps between the individual barium sulfate particles in the heat-resistant porous layer are less likely to be clogged with the organic synthetic resin component, and good electricity is obtained. Since resistance and air permeation resistance can be obtained and there is no shortage of binder that holds barium sulfate particles together, shrinkage of the polyolefin porous film due to heat can be suppressed.
  • the average thickness of the heat-resistant porous layer in the embodiment of the present invention is preferably 2.0 ⁇ m or more and 10 ⁇ m or less. It is more preferably 2.5 ⁇ m or more and 6 ⁇ m or less, and further preferably 3.0 ⁇ m or more and 4.0 ⁇ m or less. If the thickness of the heat-resistant porous layer is smaller than 2.0 ⁇ m, it may not be possible to suppress the shrinkage of the polyolefin porous membrane due to heat.
  • the average thickness of the heat-resistant porous layer is larger than 10 ⁇ m, the ion movement path becomes long, so that the air permeation resistance becomes large, and the distance between the positive and negative electrodes of the battery cell becomes large, so that the battery cell capacity
  • the ratio of the battery separator to the total increases, and the electrical resistance may increase.
  • the average thickness of the heat-resistant porous layer is 2.0 ⁇ m or more and 10 ⁇ m or less, the air permeation resistance is hardly increased or the electric resistance is hardly increased.
  • the specific surface area of the barium sulfate particles is preferably 1.0 m 2 / g or more and 18.0 m 2 / g or less. It is more preferably 2.0 m 2 / g or more and 12.0 m 2 / g or less, and further preferably 2.0 m 2 / g or more and 3.0 m 2 / g or less.
  • the particle size of the individual barium sulfate particles in the heat-resistant porous layer may be larger than the thickness of the heat-resistant porous layer.
  • Barium sulfate particles may fall off from the battery, or the distance between the positive and negative poles of the battery cell may increase, so that the ratio of the separator to the battery cell capacity increases and the battery capacity density may decrease.
  • the specific surface area of the barium sulfate particles is larger than 18.0 m 2 / g, the amount of water adsorbed on the surface of the barium sulfate particles increases, and the water content of the battery separator may increase.
  • the moisture content referred to here is a curl fisher moisture content meter (Kyoto Denshi Kogyo Co., Ltd. MKC-610) and a moisture vaporizer (ADP manufactured by Kyoto Denshi Kogyo Co., Ltd.) placed in a dry box with a dew point of -60 ° C.
  • the amount of hydrogen sulfide contained in the battery separator according to the embodiment of the present invention is 0.2 ⁇ 10 -3 mg / m 2 or less. It is preferably 0.15 ⁇ 10 -3 mg / m 2 or less, and more preferably 0.1 ⁇ 10 -3 mg / m 2 or less. If it is larger than 0.2 ⁇ 10 -3 mg / m 2 , gas is generated inside the battery cell, or the current collector of the electrode and hydrogen sulfide undergo an oxidation reaction, resulting in deterioration of the current collector and battery life. May decrease.
  • the content of hydrogen sulfide referred to here is defined by JIS K 0804: 2014 after the battery separator 5 m 2 is sealed in a closed container having a capacity of 1 L and left for 24 hours in an atmosphere of 60 ° C.
  • the measured value obtained by the gas detector tube method was defined as X [volume ppm], and the amount of hydrogen sulfide [mg / m 2 ] contained in the unit area of the separator was calculated by the following calculation.
  • the method for reducing the amount of hydrogen sulfide contained in the battery separator generated from around 1 m 2 of the battery separator to 0.2 ⁇ 10 -3 mg / m 2 or less is not particularly limited.
  • the method may be a method of heat-treating barium sulfate produced by the method, or a method of washing with sufficient water and then drying the water.
  • the battery separator according to the embodiment of the present invention even when the hydrogen sulfide contained in the battery separator is larger than 0.2 ⁇ 10 -3 mg / m 2 , the battery separator is appropriately heated. It can be obtained by applying treatment.
  • the heat-resistant porous layer for obtaining the present invention can be obtained by the following steps.
  • a known method can be used as a method of coating at least one side or both sides of the polyolefin porous film with the coating dispersion liquid for the heat-resistant porous layer.
  • a known method can be used as a method of coating at least one side or both sides of the polyolefin porous film with the coating dispersion liquid for the heat-resistant porous layer.
  • examples thereof include a reverse roll coating method, a gravure coating method, a small diameter gravure coater method, a kiss coating method, a roll brush method, an air knife coating method, a Meyer bar coating method, a pipe doctor method, a blade coating method and a die coating method. , These methods can be performed alone or in combination.
  • the battery separator according to the embodiment of the present invention includes a nickel-hydrogen battery, a nickel-cadmium battery, a nickel-zinc battery, a silver-zinc battery, a lithium ion secondary battery, a lithium polymer secondary battery, a lithium-sulfur battery, and the like. It can be used as a battery separator for secondary batteries and the like. In particular, it is preferably used as a separator for a lithium ion secondary battery.
  • Air permeability resistance sec / 100cm 3 Air
  • EGO-1T Oken type air permeability resistance meter
  • each sample of the polyolefin porous membrane and the battery separator was fixed so as not to cause wrinkles, and measured according to JIS P8117. ..
  • the sample was 100 mm square, the measurement points were a total of 5 points at the center and 4 corners of the sample, and the average value was used as the air permeation resistance (sec / 100 cm 3 Air). If the length of one side of the sample is less than 100 mm, the values measured at 5 points at intervals of 50 mm may be used.
  • Thickness ( ⁇ m) The thickness of the porous polyolefin membrane and the separator for a battery was determined by averaging the measured values at 5 points using a contact type film thickness meter (“Lightmatic” (registered trademark) series 318 manufactured by Mitutoyo Co., Ltd.). The measurement was carried out under the condition of a weight of 0.01 N using a carbide spherical probe ⁇ 9.5 mm. Further, for the thickness ( ⁇ m) of the heat-resistant porous layer, the battery separator was washed with the same liquid as the solvent contained in the slurry, and the polyolefin porous film from which the heat-resistant porous layer was removed was used as the contact type film thickness meter. And obtained by the following formula.
  • Thickness of heat-resistant porous layer Thickness of battery separator ( ⁇ m) -Thickness of polyolefin porous membrane ( ⁇ m) 3. 3. Particle size ( ⁇ m) The particle size of the barium sulfate particles was measured according to JISZ8825 (2013) using a laser diffraction type particle size distribution measuring device (LA-960V2, manufactured by HORIBA, Ltd.) as follows.
  • Moisture content (weight ppm)
  • Karl Fisher moisture content meter Karl Fisher moisture content meter
  • a moisture vaporizer Karl Fisher Moisture vaporizer
  • a dry box with a dew point of -60 ° C.
  • Connect with a gas outlet pipe leave 1 g of the battery separator at a dew point of -60 ° C for 24 hours, and then heat it with the moisture vaporizer under a nitrogen atmosphere for 10 minutes at a temperature of 150 ° C. from the gas outlet pipe.
  • the water content in the gas flowing out to the Karl Fisher Moisture Analyzer was measured.
  • the electric resistance of the battery separator was measured by the following method. CR2032 type coin cells were manufactured so that the number of battery separators was 3, 4, and 5, respectively. Specifically, the cut-out battery separator is impregnated with an electrolytic solution (1M-LiPF6 / EC: EMC (4: 6 vol%)). This was sealed under reduced pressure in a coin-shaped case to prepare a cell. The cell was placed in a constant temperature bath at 25 ° C., and the resistance of the cell was measured by an AC impedance method at an amplitude of 20 mV and a frequency of 200 kHz. The measured resistance value of the cell was plotted against the number of battery separators, and this plot was linearly approximated to obtain the slope. This inclination was multiplied by the measured area to obtain the electrical resistance (ohm ⁇ cm 2 ) per battery separator.
  • Heat shrinkage rate (%) The heat resistance of the battery separator was measured in the MD direction (longitudinal direction) and the TD direction (horizontal direction) of the battery separator by the following method. The detailed procedure will be described below.
  • the battery separator was sandwiched between two sheets of A3 size paper, placed in an oven at a temperature of 130 ° C., and left for 1 hour. Then, the battery separator was taken out and allowed to cool for 30 minutes.
  • Heat shrinkage rate (%) ⁇ initial dimension (mm) -dimension after shrinkage (mm) ⁇ / initial dimension (mm) x 100.
  • aqueous solution containing 1.0 part by mass of sodium carboxymethyl cellulose is added to 98 parts by mass of artificial graphite as an active material and mixed, and styrene-butadiene latex containing 1.0 part by mass as a solid content is further added and mixed as a binder to prepare a negative electrode.
  • a mixture-containing slurry was used. This negative electrode mixture-containing slurry is uniformly applied to both sides of a negative electrode current collector made of copper foil having a thickness of 10 ⁇ m and dried to form a negative electrode layer, and then compression-molded by a roll press to collect current.
  • a negative electrode was prepared by setting the density of the negative electrode layer excluding the body to 1.45 g / cm 3.
  • C represents the current value that the battery can fully charge in 1 hour and is set to 300mA in the case of this battery
  • the 5C discharge capacity retention rate was calculated by the following formula.
  • 5C discharge capacity retention rate [5C discharge capacity] / [0.2C discharge capacity] This was processed in the same manner with a total of three test batteries, and the average value of the 5C discharge capacity retention rate was used as the output characteristic.
  • polyacrylic acid-based dispersant (“Aron” (registered trademark) A-6114 manufactured by Toagosei Co., Ltd.) 0 .5 parts by weight (active ingredient) and water were added and dispersed on a bead mill to obtain a dispersion liquid having an active ingredient ratio of 60% by weight.
  • the obtained coating liquid is applied to one side (one side) of the polyethylene porous membrane a (thickness 10 ⁇ m, "SETELA” (registered trademark) manufactured by Toray Industries, Inc.) shown in Table 2 by the microgravure method and dried. Then, a battery separator having a heat-resistant porous layer having a thickness of 4 ⁇ m was prepared. The prepared battery separator was evaluated for heat-resistant porous layer thickness, hydrogen sulfide content, moisture content, battery high load test and cycle test, and heat shrinkage, and the results are shown in Table 3.
  • Example 2 Comparative Examples 1 to 5
  • Battery separators were prepared and evaluated in the same manner as in Example 1 except that the particles A of Example 1 were changed to the particles B to G shown in Table 1, and the results are shown in Table 3.
  • Example 3 (Examples 3 to 5, Comparative Examples 6 to 7) A battery separator was prepared and evaluated in the same manner as in Example 1 except that the single-sided coating of the heat-resistant porous layer of Example 1 and the film thickness of 4 ⁇ m were changed to the coated surface and the film thickness shown in Table 3. The results are shown in Table 3.
  • Examples 6 to 7, Comparative Examples 8 to 9 A battery separator was prepared and evaluated in the same manner as in Example 1 except that the weight ratio of the active ingredient of the coating liquid of Example 1 was changed as shown in Table 3, and the results are shown in Table 3.
  • a battery separator was prepared and evaluated in the same manner as in Example 1 except that the polyolefin porous membrane a of Example 1 was changed to the polyolefin porous membrane shown in Table 2, and is shown in Table 3.
  • Example 8 to 10 The polyethylene micropolyhard film of Example 1 is shown in Table 2 as a polyethylene porous membrane b (thickness 15.8 ⁇ m, “SETELA” (registered trademark) manufactured by Toray Industries, Inc.), and a polyethylene micropolyhard film c (thickness 5). .2 ⁇ m, “SETELA” (registered trademark) manufactured by Toray Industries, Inc., and polyethylene porous membrane d (thickness 14.5 ⁇ m, “SETELA” (registered trademark) manufactured by Toray Industries, Inc.) Then, it was applied and dried by the micrograving method to prepare a separator for a battery having a heat-resistant porous layer having a thickness of 4 ⁇ m.
  • the battery separators of Examples 1 to 10 show good discharge characteristics of 65% or more in a high load test, and have good heat resistance of 130 ° C. and a heat shrinkage rate of 5% or less. Moreover, the battery capacity retention rate after 2000 cycles was as good as 70% or more.
  • the separator of the present invention can be suitably used as a battery separator preferably used for non-aqueous electrolyte batteries such as lithium ion batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Separators (AREA)

Abstract

【課題】本発明は、透気抵抗度および電気抵抗度が小さく高出力特性の良い、含有水分率が小さくかつガス発生を抑制した電池用セパレータを提供することを目的とする。 【解決手段】 本発明は、ポリオレフィン多孔質膜と、該多孔質膜の少なくとも片面に設けられた耐熱性多孔層とを有する電池用セパレータであって、前記耐熱性多孔層は、硫酸バリウム粒子有機合成樹脂成分とを含み、粒子径0.5μm以下の粒子が20体積%以下、粒子径3.0μm以上の粒子が10体積%以下であり、前記硫酸バリウム粒子は、硫酸バリウム粒子と有機合成樹脂成分の合計を100体積%として70体積%以上、98体積%以下で耐熱性多孔層に含まれ、前記耐熱性多孔層の平均厚さは、2μm以上、10μm以下であり、セパレータの水分率が400ppm以下であり、硫化水素の含有量が0.2×10-3mg/m以下であることを特徴とする電池用セパレータに関する。

Description

電池用セパレータ
 本発明は、ポリオレフィン多孔質膜と、該多孔質膜の少なくとも片面に耐熱性多孔層とを有する電池用セパレータに関する。本発明の実施形態に係る電池用セパレータはリチウムイオン二次電池用セパレータとして有用に用いることができる。
 熱可塑性樹脂多孔質膜は、物質の分離や選択透過及び隔離材等として広く用いられている。例えば、リチウムイオン二次電池、ニッケル-水素電池、ニッケル-カドミウム電池、及びポリマー電池等に用いる電池用セパレータや、電気二重層コンデンサ用セパレータ、逆浸透濾過膜、限外濾過膜、及び精密濾過膜等の各種フィルター、透湿防水衣料、及び医療用材料等である。
 特にリチウムイオン二次電池用セパレータとしては、電解液含浸によりイオン透過性を有し、電気絶縁性、耐電解液性及び耐酸化性に優れ、電池異常昇温時に120~150℃程度の温度において電流を遮断し、過度の昇温を抑制する孔閉塞効果をも備えているポリオレフィン多孔質膜が好適に使用されている。
 しかしながら、何らかの原因で孔閉塞後も昇温が続く場合、ポリオレフィン多孔質膜は破膜を生じることがある。この現象はポリオレフィンを用いた場合に限定される現象ではなく、その多孔質膜を構成する樹脂の融点以上では避けることができない。
 特にリチウムイオン二次電池用セパレータは、電池特性、電池生産性及び電池安全性に深く関わっており、優れた機械的特性、耐熱性、透過性、寸法安定性、孔閉塞特性(シャットダウン特性)、及び溶融破膜特性(メルトダウン特性)等が要求される。近年では特に車載用途のリチウムイオン電池に使用される場合、電池の充電時間の短縮や加速性の向上が必要であり、電池の要求特性として急速充電(大電流充電)や消費電力増加(大電流放電)が求められる。それに伴いセパレータへの要求事項として出力特性の改善も一層高いものとなってきている。そのために、これまでに多孔質膜にさまざまな改質多孔層を積層する検討がなされている。
 改質多孔層としては、耐熱性及び電解液浸透性を併せ持つポリアミドイミド樹脂、ポリイミド樹脂、ポリアミド樹脂及び/又は電極接着性に優れたフッ素系樹脂等が好適に用いられている。また、比較的簡易な水洗工程や乾燥工程を用いて改質多孔層が積層できる、水溶性又は水分散性バインダーも広く用いられている。なお、前記改質多孔層とは、耐熱性、電極材料との接着性、高イオン透過性及び高出力特性等の機能を少なくとも一つ以上付与又は向上させる樹脂を含む層をいう。
 特許文献1の実施例1では、厚さ12μmのポリエチレンセパレータ上に、硫酸バリウム粒子とポリ(メタ)アクリルアミドを配合したスラリーをグラビア塗布により塗工することで耐熱性と電池の安定性を向上させたセパレータが開示されている。
 特許文献2では微多孔膜100重量部あたり2~20重量部の硫酸バリウムを含むことで、X線検査において、電極とセパレータの相対的な位置を検出できるセパレータが開示されている。
 特許文献3の実施例1ではポリフッ化ビニリデン系樹脂(VDF-HFP共重合体、VDF:HFP(モル比)=97.6:2.4、重量平均分子量113万)を、樹脂濃度が4質量%となるように、ジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)の混合溶媒(DMAc:TPG=80:20[質量比])に溶解し、さらに硫酸バリウム粒子(平均一次粒径0.10μm)を攪拌混合し、得られた塗工液をポリエチレン微多孔膜に塗布したセパレータが開示されている。
 特許文献4では微多孔膜の表面に開口する細孔の平均細孔径よりも無機粒子の平均粒径D20を大きくすることにより、微多孔膜表面の細孔に無機粒子が入り込まないことで細孔をつぶれにくくし、高いイオン透過性と耐圧性とを両立するセパレータが開示されている。
特許第6337512号公報 特許第5898405号公報 特許第6526359号公報 特許第6115602号公報
 電池用セパレータは、リチウム二次電池の異常昇温時に電子の流れを絶縁するための部材であり、電池の安全性向上のため、耐熱性多孔層にはより高い耐熱性が求められる。耐熱性を向上させるため耐熱性樹脂以外にも無機粒子を配合することがあり、さらに熱によるセパレータの収縮を抑制することができる。しかしながら、耐熱性多孔層中の無機粒子の割合が増加することで、粒子の隙間が狭くなり、透気抵抗度及び電気抵抗度が大きくなることから出力特性が悪化するという問題がある。
 また、リチウムイオン二次電池には電池反応に重要な電解質が含まれており、水に対して非常に敏感に反応し、フッ化水素等のガス発生や、電解質の消費による電池性能の低下を引き起こす可能性がある。一般的な電池用セパレータの改質多孔層に、無機粒子として含まれるベーマイトを例に挙げると、ベーマイトは構造中に水分子を含む、また、粒子表面に水酸基を多数有しており、空気中の水分と水素結合を形成することで水分を多く吸着する性質がある。改質多孔質層中でも同様に水分を含み、電池の中で電解液に触れることで電解質と反応し、フッ酸等のガス発生や、電池性能の低下を引き起こす。特許文献1では特定の硫酸バリウムと特定の合成樹脂の混合物を用いることが提案されているが、ガス発生する場合があり、十分ではなかった。
 本発明の課題は、透気抵抗度および電気抵抗度が小さく高出力特性に優れ、含有水分率が小さくかつガス発生を抑制した電池用セパレータを提供することである。
 本発明者らは、鋭意検討し、
ポリオレフィン多孔質膜と、該多孔質膜の少なくとも片面に設けられた耐熱性多孔層とを有する電池用セパレータであって、
 前記耐熱性多孔層は、硫酸バリウム粒子と有機合成樹脂成分とを含み、
 前記硫酸バリウム粒子は、
粒子径0.5μm以下の粒子が20体積%以下、粒子径3.0μm以上の粒子が10体積%以下であり、
 前記硫酸バリウム粒子は、硫酸バリウム粒子と有機合成樹脂成分の合計を100体積%として70体積%以上、98体積%以下で含み、
 前記耐熱性多孔層の平均厚さは、2μm以上、10μm以下であり、
セパレータの水分率が400ppm以下であり、
硫化水素の含有量が0.2×10-3mg/m以下であることを特徴とする電池用セパレータであることにより、本課題を解決することを見出した。
 更に好ましい様態は、
(1)前記硫酸バリウム粒子が沈降性硫酸バリウムであること、
(2)前記沈降性硫酸バリウムが塩化バリウムを原料として芒硝法により製造されていること、
(3)前記硫酸バリウム粒子のBET比表面積が、2.0m/g以上、3.0m/g未満であること、
(4)前記有機合成成分が、
 (メタ)アクリル酸共重合樹脂、ポリアクリルアミド樹脂、ポリフッ化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリ(メタ)アラミド樹脂の群より選ばれる1つ以上を含有すること、
(5)前記ポリオレフィン多孔質膜の透気抵抗が、30秒/100cmAir以上、200秒/100cm以下であること、
である。
 本発明の実施形態によって、透気抵抗度および電気抵抗度が小さく高出力特性の良い、含有水分率が小さくかつ硫化水素発生を抑制した電池用セパレータを提供することができる。
本願発明の実施例および比較例で使用した粒子A,B,C,Dの体積基準積算分率を示すグラフである。
 以下、本発明の実施形態について詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。
 本発明の実施形態に係る電池用セパレータは、ポリオレフィン多孔質膜と、該多孔質膜の少なくとも片面に設けられた耐熱性多孔層とを有する。
 [ポリオレフィン多孔質膜]
本発明の実施形態におけるポリオレフィン多孔質膜の厚さは、電池用セパレータの機能を有する限りにおいて特に制限されるものではないが、25μm以下が好ましい。より好ましくは7μm以上、20μm以下であり、さらに好ましくは9μm以上、16μm以下である。ポリオレフィン多孔質膜の厚さが25μm以下であると、実用的な膜強度と孔閉塞機能を両立させることが出来、電池ケースの単位容積当たりの面積が制約されず、電池の高容量化に適する。
 ポリオレフィン多孔質膜の透気抵抗度は30sec/100cmAir以上、200sec/100cmAir以下が好ましい。より好ましくは40sec/100cmAir以上、150sec/100cmAir以下であり、さらに好ましくは50sec/100cmAir以上、100sec/100cmAir以下である。透気抵抗度が30sec/100cmAir以上であると、十分な機械的強度と絶縁性が得られることで電池の充放電時に短絡が起こる可能性が低くなる。200sec/100cmAir以下であると、十分な電池の充放電特性、特にイオン透過性(充放電作動電圧)及び電池の寿命(電解液の保持量と密接に関係する)において十分であり、電池としての機能を十分に発揮することができる。
 ポリオレフィン多孔質膜の空孔率は20%以上、70%以下が好ましい。より好ましくは30%以上、60%以下であり、さらに好ましくは55%以下である。空孔率が30%以上、70%以下であると、十分な電池の充放電特性、特にイオン透過性(充放電作動電圧)及び電池の寿命(電解液の保持量と密接に関係する)において十分であり、電池としての機能を十分に発揮することができ、十分な機械的強度と絶縁性が得られることで充放電時に短絡が起こる可能性が低くなる。
 ポリオレフィン多孔質膜の平均孔径は、孔閉塞性能に大きく影響を与えるため、0.01μm以上、1.0μm以下が好ましい。より好ましくは0.02μm以上、0.5μm以下であり、さらに好ましくは0.03μm以上、0.3μm以下である。ポリオレフィン多孔質膜の平均孔径が0.01μm未満であると、耐熱性多孔層を堆積した際に有機合成成分による孔の目詰まりが発生し、透気抵抗度および電気抵抗度が悪化することがある。1μm以上であると、耐熱性多孔層組成物による孔の目詰まりが発生し、透気抵抗度および電気抵抗度が悪化したり、微短絡の発生のため電池の安全性が低下する場合がある。
ポリオレフィン多孔質膜の平均孔径が0.01μm以上、1.0μm以下であると、バインダーのアンカー効果により、ポリオレフィン多孔質膜に対する、十分な耐熱性多孔層の密着強度が得られ、耐熱性多孔層を積層した際に透気抵抗度及び電気抵抗度が大幅に悪化せず、かつ、孔閉塞現象の温度に対する応答が緩慢になることもなく、昇温速度の変化による孔閉塞温度がより高温側にシフトが現れることも少ない。本発明で言う平均孔径とはJIS K 3832:1990で規定されるバブルポイント法にて得た測定値である。
 ポリオレフィン多孔質膜を構成するポリオレフィン樹脂は特に制限されるものではないが、ポリエチレンやポリプロピレンが好ましい。また、単一物又は2種以上の異なるポリオレフィン樹脂の混合物、例えばポリエチレンとポリプロピレンとの混合物であってもよいし、異なるオレフィンの共重合体であってもよい。これは、電気絶縁性、及びイオン透過性等の基本特性に加え、電池異常昇温時において、電流を遮断し、過度の昇温を抑制する孔閉塞効果を具備することができるからである。
なかでもポリエチレンが優れた孔閉塞性能の観点から特に好ましい。以下、本発明で用いるポリオレフィン樹脂としてポリエチレンを例に詳述するが、本発明の実施形態はこれに限定されるものではない。
 ポリエチレンとしては、例えば、超高分子量ポリエチレン、高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレン等が挙げられる。また重合触媒にも特に制限はなく、チーグラー・ナッタ系触媒やフィリップス系触媒やメタロセン系触媒等が挙げられる。これらのポリエチレンはエチレンの単独重合体のみならず、他のα-オレフィンを少量含有する共重合体であってもよい。エチレン以外のα-オレフィンとしてはプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、(メタ)アクリル酸、(メタ)アクリル酸のエステル、スチレン等が好適である。
 ポリエチレンは単一物でもよいが、2種以上のポリエチレンからなる混合物であることが好ましい。ポリエチレン混合物としては重量平均分子量(Mw)の異なる2種類以上の超高分子量ポリエチレン同士の混合物、同様な高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレンの混合物を用いてもよいし、超高分子量ポリエチレン、高密度ポリエチレン、中密度ポリエチレン及び低密度ポリエチレンからなる群から選ばれる2種以上ポリエチレンの混合物を用いてもよい。
ポリオレフィン多孔質膜は、充放電反応の異常時に孔が閉塞する機能を有する。従って、構成する樹脂の融点(軟化点)は70℃以上、150℃以下が好ましい。より好ましくは80℃以上、140℃以下、さらに好ましくは100℃以上、130℃以下である。構成する樹脂の融点が70℃以上、150℃以下であると、正常使用時に孔閉塞機能が発現してしまって電池が使用不可になることがなく、また、異常反応時に孔閉塞機能が発現することで安全性を確保できる。
 [耐熱性多孔層]
 本発明の実施形態に係る電池用セパレータは、上記ポリオレフィン多孔質膜の少なくとも片面に耐熱性多孔層が設けられており、硫酸バリウム粒子と有機合成樹脂成分とを含む。
 前記耐熱性多孔層は、ポリオレフィン多孔質膜の片面のみに設けられていても、両面に設けられていてもよい。片面のみに設ける場合、耐熱性多孔層を形成する工程が少なくなり、より生産コストを抑えることができる、両面に設ける場合、ポリオレフィン多孔質膜の熱による収縮を、両面から抑制することで、より効果的に電池用セパレータの熱による収縮率を低減することができる。
 [硫酸バリウム粒子]
 硫酸バリウム粒子は、粒子径0.5μm以下の粒子が20体積%以下、粒子径3.0μm以上の粒子が10体積%以下である。好ましくは粒子径0.5μm以下の粒子が15体積%以下、粒子径3.0μm以上の粒子が8体積%以下、更に好ましくは粒子径0.5μm以下の粒子が10体積%以下、粒子径3.0μm以上の粒子が6体積%以下である。粒子径0.5μm以下の粒子が20体積%より大きいと耐熱性多孔層の無機粒子同士の隙間が埋め尽くされ、電池内部のリチウムイオンの移動経路が狭くなったり長くなることによって膜抵抗が大きくなり、また、ポリオレフィン多孔質膜の孔中に粒子が目詰まりすることによって、電池の性能を著しく低下させる場合がある。
粒子径3.0μm以上の粒子が10体積%を超えると、耐熱性多孔層中の個々の無機粒子同士の接点が少なくなることで、耐熱性多孔質層の構造がもろくなり、高温時にポリオレフィン多孔質膜の収縮を抑制することが困難となったり、粗大粒子が多くなり、耐熱性多孔層の表面形状にむらができ、後述する耐熱性多孔層の製造方法においてスジ等が発生する場合がある。粒子径0.5μm以下の粒子が20体積%以下、粒子径3.0μm以上の粒子が10体積%以下であると、耐熱性多孔層の無機粒子同士の隙間が埋め尽くされることなく、ポリオレフィン多孔質膜の孔中に粒子が目詰まりすることも少ないため、膜抵抗を小さくすることができる。
 ここでいう粒子径とは、レーザー回折式粒度分布測定装置を用いて測定した際、全体積を100%として累積カーブを求めたときの粒子径を指す。また、平均粒子径は、硫酸バリウム粒子の粒子径は、JISZ8825(2013)に従いレーザー回折式粒度分布測定装置((株)堀場製作所製、LA-960V2)を用いて測定し、体積平均粒子径(μm)=体積基準積算率が50%のときの粒子径とした。
本発明の硫酸バリウム粒子は、合成法により作製されたものである。具体的には、炭酸バリウム、又は硫化バリウムに硫酸を加えることによって硫酸バリウムを得る方法(硫酸法)、塩化バリウムに硫酸ナトリウムを加えることによって硫酸バリウムを得る方法(芒硝法)で得られる硫酸バリウム粒子である。
 本発明で用いる硫酸バリウム粒子は、コストが高くなるが、合成法で得られる沈降性硫酸バリウム粒子、中でも塩化バリウムを出発物質とし、硫酸ナトリウム(芒硝)と反応させる芒硝法により合成される硫酸バリウム粒子を用いることが好ましい。この理由は硫酸バリウム粒子の検討過程で芒硝法により合成される硫酸バリウム粒子は硫化水素の発生が極めて少なく、腐食性ガスの発生を抑制できるためである。
 本発明の実施形態における硫酸バリウム粒子の形状は、特に規定するものではなく、種々の形状の硫酸バリウム粒子を用いることができる。具体的には、真球形状、略球形状、板状、針状、及び多面体形状等が挙げられ、いずれでも構わない。
 [有機合成樹脂成分]
 本発明の実施形態における有機合成樹脂成分は耐熱性多孔層を構成する硫酸バリウム粒子同士が結着する効果、及び耐熱性多孔層をポリオレフィン多孔質膜と密着させる効果を兼ね備えている。
具体的には、(メタ)アクリル酸共重合樹脂、ポリアクリルアミド樹脂、ポリフッ化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリ(メタ)アラミド樹脂の群より選ばれる1つ以上を使用することができ、市販されている水溶液又は水分散体を使用することができる。アクリル系樹脂としては、具体的には、昭和電工(株)製“ポリゾール”シリーズ、日本ゼオン(株)製“BM”シリーズ、東亜合成(株)製“ジュリマー”(登録商標)AT-210、ET-410、“アロン”(登録商標)A-104、AS-2000、NW-7060、トーヨーケム(株)製“LIOACCUM”(登録商標)シリーズ、JSR(株)製 TRD202A、TRD102A、荒川化学(株)製“ポリストロン”(登録商標)117、705、1280、昭和電工(株)製“コーガム”(登録商標)シリーズ、大成ファインケミカル(株)製 WEM-200U、及びWEM-3000等が挙げられる。ポリビニルアルコールとしては、具体的には、クラレ(株)製“クラレポバール”(登録商標)3-98、3-88、三菱ケミカル(株)製“ゴーセノール”(登録商標)N-300、GH-20等が挙げられる。中でも汎用性が高く、硫酸バリウム粒子同士の結着がしやすいアクリル系樹脂が好ましい。
 前記耐熱性多孔層には塗工性を向上させる目的で増粘剤及び濡れ剤等、耐熱性を向上させる目的で熱硬化性樹脂及び架橋剤等を適宜含んでもよい。
 [耐熱性多孔層の体積組成比]
 本発明の実施形態における耐熱性多孔層中に含まれる硫酸バリウム粒子の含有量は、硫酸バリウム粒子と有機合成樹脂成分の合計を100体積%として70体積%以上、98体積%以下である。より好ましくは77体積%以上、93体積%以下であり、さらに好ましくは85体積%以上、90体積%以下である。
 硫酸バリウム粒子の含有量が70体積%より小さいと、耐熱性多孔層中の個々の硫酸バリウム粒子の隙間が有機合成樹脂成分で目詰まりしてしまうため、イオンの移動経路が狭くなったり長くなることで電気抵抗度や透気抵抗度が大きくなる。
 硫酸バリウム粒子の含有量が98体積%より大きいと、個々の硫酸バリウム粒子同士をつなぎ留めている有機合成樹脂成分が不足し、耐熱性多孔層としての構造が保てない。
 硫酸バリウム粒子の含有量が70体積%以上、98体積%以下であると、耐熱性多孔層中の個々の硫酸バリウム粒子の隙間が有機合成樹脂成分で目詰まりすることが少なくなり、良好な電気抵抗度や透気抵抗度を得ることができ、且つ、硫酸バリウム粒子同士をつなぎ留めているバインダーが不足することがなくなるため、熱によるポリオレフィン多孔質膜の収縮を抑制することができる。
 [耐熱性多孔層の平均厚さ]
本発明の実施形態における耐熱性多孔層の平均厚さは、2.0μm以上、10μm以下であることが好ましい。より好ましくは2.5μm以上、6μm以下であり、さらに好ましくは3.0μm以上、4.0μm以下である。耐熱性多孔層の厚さが2.0μmより小さいと、熱によるポリオレフィン多孔質膜の収縮を抑制することができなくなる場合がある。耐熱性多孔層の平均厚さが10μmより大きいと、イオンの移動経路が長くなるため、透気抵抗度が大きくなったり、電池セルの正極と負極の極間距離が大きくなることで電池セル容量に占める電池用セパレータの割合が多くなり、電気抵抗度が大きくなる場合がある。耐熱性多孔質層の平均厚さが2.0μm以上、10μm以下であると、透気抵抗度が大きくなったり、電気抵抗度が大きくなることがほとんどない。
 [硫酸バリウムの水分率]
硫酸バリウム粒子は粒子表面に水酸基を有しないため、表面に吸着する水分子の影響が少なく、水と電解液との反応により発生するフッ酸等のガス発生や、電解液の消費による電池特性の低下を抑制することができる。硫酸バリウム粒子の比表面積は1.0m/g以上、18.0m/g以下が好ましい。より好ましくは2.0m/g以上、12.0m/g以下、さらに好ましくは2.0m/g以上、3.0m/g以下である。
 硫酸バリウム粒子の比表面積が1.0m/gより小さいと、耐熱性多孔層中の個々の硫酸バリウム粒子の粒径が、耐熱性多孔層の厚さより大きくなる場合があるため、電池用セパレータからの硫酸バリウム粒子の脱落が起こったり、電池セルの正極と負極の極間距離が大きくなることで電池セル容量に占めるセパレータの割合が多くなり、電池の容量密度が低下する場合がある。硫酸バリウム粒子の比表面積が18.0m/gより大きいと、硫酸バリウム粒子表面に吸着する水分量が多くなり、電池用セパレータの水分率が高くなる場合がある。硫酸バリウム粒子の比表面積が1.0m/g以上、18.0m/g以下であると、硫酸バリウム粒子の脱落や、電池の容量密度の低下、及び電池用セパレータの水分率が高くならないため好ましい。ここでいう水分率とは、カールフィッシャー水分率計(京都電子工業(株)MKC-610)と、露点-60℃雰囲気下のドライボックスに置いた水分気化装置(京都電子工業(株)製ADP-611)をガス導出管で接続し、電池用セパレータ1gを露点-60℃雰囲気下に24時間静置後、前記水分気化装置にて、窒素雰囲気下、温度150℃条件下で10分間加熱してガス導出管から前記カールフィッシャー水分計に流出した気体中に含まれる水分を測定した値である。
 [硫化水素の含有量]
本発明の実施形態に係る電池用セパレータに含有する硫化水素は、0.2×10-3mg/m以下である。好ましくは、0.15×10-3mg/m以下であり、より好ましくは、0.1×10-3mg/m以下である。0.2×10-3mg/mより大きいと、電池セル内部でガスが発生したり、電極の集電体と硫化水素が酸化反応することにより集電体が劣化し、電池の寿命が低下する場合がある。0.2×10-3mg/m以下であると、電池セル内部でのガスの発生を抑制することができ、電極の集電体の劣化を抑制することができる。ここでいう硫化水素の含有量は、電池用セパレータ5mを容量1Lの密閉容器に封入し、60℃雰囲気下で24時間放置した後、容器内のガスをJIS K 0804:2014で規定されるガス検知管法にて得た測定値をX[体積ppm]とし、以下の計算によりセパレータの単位面積あたりに含有する硫化水素量[mg/m]を算出した。
Figure JPOXMLDOC01-appb-M000001
ここで硫化水素の気体密度は、1.5392[g/L](1atom、0℃;「改訂七版化学工学便覧(丸善出版)」)を使用した。
 電池用セパレータ1mあたりから発生する電池用セパレータに含有する硫化水素を、0.2×10-3mg/m以下とする方法は、特に限定されないが、例えば、沈降性硫酸バリウムの中でも硫酸法で製造された硫酸バリウムを加熱処理する方法、又は十分な水で洗った後、水分を乾燥させる方法でもよい。また、本発明の実施形態に係る電池用セパレータは、電池用セパレータに含有する硫化水素を、0.2×10-3mg/mより大きい場合であっても、電池用セパレータに適宜、加熱処理を施すことで得ることができる。
 次いで、本発明の実施形態におけるセパレータの製造方法について具体的に説明する。
 [耐熱性多孔層の形成方法]
 本発明を得るための耐熱性多孔層は以下の工程で得ることができる。
(a)耐熱性多孔層用塗工分散液の作製。
(b)ポリオレフィン多孔質膜の少なくとも片面、又は両面に前記スラリーをコーティングする工程。
(c)前記コーティング後、溶媒をドライヤーで乾燥させ、耐熱性多孔層を形成する工程。
 前記工程(b)において、ポリオレフィン多孔質膜の少なくとも片面又は両面に耐熱性多孔層用塗工分散液をコーティングする方法は公知の方法を用いることができる。例えば、リバースロール・コート法、グラビア・コート法、小径グラビアコーター法、キス・コート法、ロールブラッシュ法、エアナイフコート法、マイヤーバーコート法、パイプドクター法、ブレードコート法及びダイコート法等が挙げられ、これらの方法は単独又は組み
合わせて行うことができる。
 本発明の実施形態に係る電池用セパレータは、ニッケル-水素電池、ニッケル-カドミウム電池、ニッケル-亜鉛電池、銀-亜鉛電池、リチウムイオン二次電池、リチウムポリマー二次電池、及びリチウム-硫黄電池等の二次電池等の電池用セパレータとして用いる
ことができる。特に、リチウムイオン二次電池のセパレータとして用いるのが好ましい。
 以下、実施例を示して具体的に説明するが、本発明はこれらの実施例よって何ら制限されるものではない。なお、実施例中の測定値は以下の方法で得た値である。
 1.透気抵抗度(sec/100cmAir)
 王研式透気抵抗度計(旭精工(株)製、EGO-1T)を使用してポリオレフィン多孔質膜と電池用セパレータそれぞれの試料についてシワが入らないように固定し、JIS P8117に従って測定した。試料は100mm角とし、測定点は試料の中央部と4隅の計5点として、その平均値を透気抵抗度(sec/100cmAir)として用いた。なお、試料の1辺の長さが100mmに満たない場合は50mm間隔で5点測定した値を用いてもよい。
 2.厚さ(μm)
 ポリオレフィン多孔質膜及び電池用セパレータを接触式膜厚計((株)ミツトヨ製“ライトマチック”(登録商標)series318)を使用して5点の測定値を平均することによって厚さを求めた。超硬球面測定子φ9.5mmを用い、加重0.01Nの条件で測定した。さらに、耐熱性多孔層の厚さ(μm)は、電池用セパレータを前記スラリーに含まれる溶媒と同じ液で洗浄し、耐熱性多孔層を除去したポリオレフィン多孔質膜を前記接触式膜厚計にて測定し、下記計算式にて得た。
 耐熱性多孔層の厚さ(μm)=電池用セパレータの厚さ(μm)-ポリオレフィン多孔質膜の厚さ(μm)
 3.粒子径(μm)
硫酸バリウム粒子の粒子径は、JISZ8825(2013)に従いレーザー回折式粒度分布測定装置((株)堀場製作所製、LA-960V2)を用いて以下の物性値を測定した。
1)体積平均粒子径(μm)=体積基準積算率が50%のときの粒子径
2)0.5μm以下粒子の含有量(%)=(0.5μm以下の体積基準積算率)×100
3)3.0μm以上粒子の含有量(%)={1-(3.0μm以下の体積基準積算率)}×100。
 4 硫化水素の含有量
 前記硫化水素の含有量の測定方法に従い、北川式検知器(光明理化学工業(株)製 AP-20)、硫化水素検知管(光明理化学工業(株)製 120U)を用いて3回測定を行い、その平均値を電池用セパレータ1m当たりの硫化水素含有量を算出した。ここでガス検知管を用いた測定値が、検出下限以下を示した場合、検出下限値を用いて平均値および硫化水素含有量を算出した。
 5.水分率(重量ppm)
 水分率は、カールフィッシャー水分率計(京都電子工業(株)MKC-610)と、露点-60℃雰囲気下のドライボックスに置いた水分気化装置(京都電子工業(株)製ADP-611)をガス導出管で接続し、電池用セパレータ1gを露点-60℃雰囲気下に24時間静置後、前記水分気化装置にて窒素雰囲気下、温度150℃条件下で10分間加熱してガス導出管から前記カールフィッシャー水分計に流出した気体中に含まれる水分を測定した。
 6.電気抵抗度
 電池用セパレータの電気抵抗度は、下記の方法にて測定した。CR2032型コインセルを電池用セパレータの枚数が3枚、4枚、5枚となるようにそれぞれ作製した。具体的には、切り出した電池用セパレータに電解液(1M-LiPF6 / EC:EMC (4:6 vol%))を含侵させる。これをコイン状のケースの中に減圧封入しセルを作製した。前記セルを25℃の恒温槽中に入れ、交流インピーダンス法で振幅20mV、周波数200kHzにて前記セルの抵抗を測定した。測定されたセルの抵抗値を、電池用セパレータの枚数に対してプロットし、このプロットを線形近似し傾きを求めた。この傾きに測定面積で乗じて、電池用セパレータ1枚当たりの電気抵抗度(ohm・cm)を求めた。
 7.熱収縮率(%)
 電池用セパレータの耐熱性は下記の方法にて、電池用セパレータのMD方向(長手方向)とTD方向(横手方向)について測定した。詳細な手順を下記に説明する。
 1)電池用セパレータ100mm×100mmの大きさで3枚切り出し、透明なガラススケール(測定精度0.1mm)を乗せ、電池用セパレータの対面する2辺の中点同士の距離を、それぞれMD方向の長さ、TD方向の長さとして計測し、初期寸法(mm)とする。
 2)電池用セパレータをA3サイズの紙2枚で挟み、温度130℃にしたオーブンに入れ1時間放置した。その後、電池用セパレータを取り出し30分放冷した。
 3)電池用セパレータの対面する2辺の中点同士の距離を再度、前記ガラススケールにて測定し、収縮後の寸法(mm)とした。この時の測定位置は初期寸法を測定した位置と同じ位置であり、電池用セパレータの端部がカールしていた場合は、広げて測定を実施した。得られた初期寸法と、収縮後の寸法を用い、下記計算式にてMD方向の長さ、及びTD方向の長さ、それぞれの熱収縮率(%)を得た。
  熱収縮率(%) = {初期寸法(mm)- 収縮後の寸法(mm)}/初期寸法(mm)×100。
 8.電池セルの物性
 [正極の作製]
バインダーとしてPVDFを1.2質量部含むNMP溶液を、活物質としてのコバルト酸リチウム97質量部、カーボンブラック1.8質量部に加えて混合し、正極合剤含有スラリーとした。この正極合剤含有スラリーを、厚みが20μmのアルミ箔からなる正極集電体の両面に均一に塗布して乾燥して正極層を形成し、その後、ロールプレス機により圧縮成型して集電体を除いた正極層の密度を3.6g/cmにして正極を作製した。
 [負極の作製]
 カルボキシメチルセルロースナトリウムを1.0質量部含む水溶液を、活物質としての人造黒鉛98質量部に加えて混合し、さらにバインダーとして固形分として1.0質量部含むスチレンブタジエンラテックスを加えて混合して負極合剤含有スラリーとした。この負極合剤含有スラリーを、厚みが10μmの銅箔からなる負極集電体の両面に均一に塗付して乾燥して負極層を形成し、その後、ロールプレス機により圧縮成形して集電体を除いた負極層の密度を1.45g/cmにして、負極を作製した。
 [試験用電池の作製]
上記正極、負極にタブ付けされたものと各微多孔膜を使用して巻回体を作製した。次いで、アルミラミネート袋内に巻回体を設置し、電解液(1.1mol/L,LiPF6,エチレンカーボネート/エチルメチルカーボネート/ジエチレンカーボネート=3/5/2(体積比)に0.5重量%ビニレンカーボネート、2重量%フルオロエチレンカーボネートを添加したもの)を滴下し真空ラミネータにて封止した。次いで0.2C(Cは電池が1時間で満充電できる電流値をあらわし、本電池の場合300mAとしている)にて全容
量の10%を充電後、ガス抜きの為にラミネートの1辺を開けすぐに再度真空シーラーで封止した。次いで0.1C、4.35V、カットオフ電流0.05Cの定電流定電圧充電し、さらに0.1Cで3Vまで定電流放電した。その後、0.2C、4.35V、カットオフ電流0.05Cの定電流定電圧充電しその後0.2C、3V定電流放電した。この0.2Cの充放電を3回繰り返した。これを300mAh級の試験用電池とした。
 [高負荷試験]
 上記試験用電池を用いて出力特性試験を実施した。0.2C、4.35V、カットオフ電流0.05Cの定電流定電圧充電したのち、0.2Cで3Vまで定電流放電しこの容量を0.2C放電容量として記録した。次いで0.2C、4.35V、カットオフ電流0.05Cの定電流定電圧充電し、その後5Cで3Vまで定電流放電しこの容量を5C放電容量として記録した。
 5C放電容量維持率を以下の式にて算出した。
 5C放電容量維持率=[5C放電容量]/[0.2C放電容量]
 これを計3個の試験用電池で同様の処理をし、5C放電容量維持率の平均値を出力特性とした。
 [サイクル特性試験]
 出力特性試験を終えた試験用電池を0.5C、4.35V、カットオフ電流0.05Cの定電流定電圧充電したのち、0.2Cで3Vまで定電流放電しこの容量を1回目の放電容量として記録した。この状態の電池を以下条件で充放電を実施した。
 充電:1C、4.35V定電流定電圧充電、カットオフ電流0.05C 放電:1C、3V定電流放電 測定温度:25℃ 計3個の試験用電池にて実施し、1回目の放電容量を基にした2000回目の放電容量の割合すなわち容量維持率の平均値を算出し、これをサイクル特性の指標とした。
 (実施例1)
 [電池用セパレータの作製]
 表1に示す粒子A(硫酸バリウム(芒硝法)、D50=1.2μm)を100重量部、ポリアクリル酸系分散剤(東亜合成(株)製 “アロン”(登録商標)A-6114)0.5重量部(有効成分)、および水を加え、ビーズミル分散し、有効成分率が60重量%である分散液を得た。
 得られた分散液に増粘剤として、中和度が50%のポリアクリル酸のナトリウム部分中和物(昭和電工(株)製、ビスコメートNP-700)1.5重量部、バインダーとして、アクリルエマルジョン(昭和電工(株)製、ポリゾールAP-4735)5.0重量部(有効成分)、濡れ剤(サンノプコ社製、商品名「SNウェット366」)0.5重量部(有効成分)、及び水を加え攪拌し、固形分率が50重量%の塗工液を作製した。
 得られた塗工液を、表2に示すポリエチレン多孔質膜a(厚さ10μm、東レ(株)製“SETELA“(登録商標))の片面(1面)に、マイクログラビア法に塗布、乾燥し、厚さ4μmの耐熱性多孔層を有する電池用セパレータを作製した。
作製した電池用セパレータについて、耐熱性多孔層厚み、硫化水素の含有量、水分率、電池の高負荷試験およびサイクル試験、熱収縮率の評価を実施し、結果を表3に示した。
 (実施例2、比較例1~5)
実施例1の粒子Aを表1に示す粒子B~Gに変えた以外は、実施例1と同様に電池用セパレータを作製し、評価を実施し、結果を表3に示した。
 (実施例3~5、比較例6~7)
実施例1の耐熱性多孔質層の片面コート、膜厚さ4μmを表3記載の塗布面および膜厚さ変えた以外は、実施例1と同様に電池用セパレータを作製し、評価を実施し、結果を表3に示した。
 (実施例6~7、比較例8~9)
実施例1の塗工液の有効成分重量比を表3に記載のとおり変えた以外は、実施例1と同様に電池用セパレータを作製し、評価を実施し、結果を表3に示した。
実施例1のポリオレフィン多孔質膜aを表2記載のポリオレフィン多孔質膜に変えた以外は、実施例1と同様に電池用セパレータを作製し、評価を実施し、表3に示した。
(実施例8~10)
 実施例1のポリエチレン微多硬膜を表2に示すポリエチレン多孔質膜b(厚さ15.8μm、東レ(株)製“SETELA” (登録商標))、ポリエチレン微多硬膜c(厚さ5.2μm、東レ(株)製”SETELA”(登録商標))、ポリエチレン多孔質膜d(厚さ14.5μm、東レ(株)製“SETELA”(登録商標))のそれぞれの片面(1面)に、マイクログラビア法に塗布、乾燥し、厚さ4μmの耐熱性多孔層を有する電池用セパレータを作製した。
表3から明らかなとおり、実施例1から実施例10の電池用セパレータは、高負荷試験で65%以上と良好な放電特性を示し、130℃熱収縮率が5%以下と良好な耐熱性を示し、且つ、2000サイクル後の電池容量維持率が70%以上と良好であった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明のセパレータは、リチウムイオン電池などの非水電解質電池に好ましく用いられるバッテリー用セパレータとして好適に用いることができる。

Claims (6)

  1.  ポリオレフィン多孔質膜と、該多孔質膜の少なくとも片面に設けられた耐熱性多孔層とを有する電池用セパレータであって、 前記耐熱性多孔層は、硫酸バリウム粒子と有機合成樹脂成分とを含み、
     前記硫酸バリウム粒子は、粒子径0.5μm以下の粒子が20体積%以下、粒子径3.0μm以上の粒子が10体積%以下であり、
     前記硫酸バリウム粒子は、硫酸バリウム粒子と有機合成樹脂成分の合計を100体積%として70体積%以上、98体積%以下で耐熱性多孔層に含まれ、
     前記耐熱性多孔層の平均厚さは、2μm以上、10μm以下であり、
    セパレータの水分率が400ppm以下であり、
    硫化水素の含有量が0.2×10-3mg/m以下であることを特徴とする電池用セパレータ。
  2.  前記硫酸バリウム粒子が沈降性硫酸バリウムであることを特徴とする請求項1に記載の電池用セパレータ。
  3.  前記沈降性硫酸バリウムが塩化バリウムを原料として芒硝法により製造されていることを特徴とする請求項2に記載の電池用セパレータ。
  4.  前記硫酸バリウム粒子のBET比表面積が、2.0m/g以上、3.0m/g未満であることを特徴とする請求項1から請求項3のいずれかに記載の電池用セパレータ。
  5.  前記有機合成成分が、
    (メタ)アクリル酸共重合樹脂、ポリアクリルアミド樹脂、ポリフッ化ビニリデン樹脂、ポリビニルアルコール樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリ(メタ)アラミド樹脂の群より選ばれる1つ以上を含有することを特徴とする請求項1から請求項4のいずれかに記載の電池用セパレータ。
  6.  前記ポリオレフィン多孔質膜の透気抵抗が、30秒/100cmAir以上、200秒/100cm以下であることを特徴とする請求項1から請求項5のいずれかに記載の電池用セパレータ。
PCT/JP2020/047877 2020-03-11 2020-12-22 電池用セパレータ WO2021181815A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080061385.6A CN114303281A (zh) 2020-03-11 2020-12-22 电池用隔膜
KR1020227000170A KR20220148153A (ko) 2020-03-11 2020-12-22 전지용 세퍼레이터
US17/768,689 US20230411791A1 (en) 2020-03-11 2020-12-22 Separator for batteries
JP2021500760A JPWO2021181815A1 (ja) 2020-03-11 2020-12-22
EP20924944.0A EP4120459A1 (en) 2020-03-11 2020-12-22 Separator for batteries

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-041549 2020-03-11
JP2020041549 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021181815A1 true WO2021181815A1 (ja) 2021-09-16

Family

ID=77671566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047877 WO2021181815A1 (ja) 2020-03-11 2020-12-22 電池用セパレータ

Country Status (6)

Country Link
US (1) US20230411791A1 (ja)
EP (1) EP4120459A1 (ja)
JP (1) JPWO2021181815A1 (ja)
KR (1) KR20220148153A (ja)
CN (1) CN114303281A (ja)
WO (1) WO2021181815A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210787A1 (ja) * 2022-04-28 2023-11-02 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115602B2 (ja) 1978-02-22 1986-04-25 Nippon Electric Co
JPS6337512B2 (ja) 1982-07-27 1988-07-26 Shimadzu Corp
JPH0226359B2 (ja) 1984-07-27 1990-06-08 Mitsubishi Electric Corp
WO2014007390A1 (ja) * 2012-07-05 2014-01-09 帝人デュポンフィルム株式会社 白色反射フィルム
JP2015162313A (ja) * 2014-02-26 2015-09-07 日本ゼオン株式会社 非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜、及び二次電池
JP5898405B2 (ja) 2010-01-19 2016-04-06 セルガード エルエルシー X線感知可能電池セパレータ及び関連方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108352486A (zh) * 2015-11-11 2018-07-31 帝人株式会社 非水系二次电池用隔膜及非水系二次电池
PL3745492T3 (pl) * 2018-01-24 2022-11-28 Teijin Limited Separator do bezwodnej akumulatorowej baterii i bezwodna akumulatorowa bateria

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115602B2 (ja) 1978-02-22 1986-04-25 Nippon Electric Co
JPS6337512B2 (ja) 1982-07-27 1988-07-26 Shimadzu Corp
JPH0226359B2 (ja) 1984-07-27 1990-06-08 Mitsubishi Electric Corp
JP5898405B2 (ja) 2010-01-19 2016-04-06 セルガード エルエルシー X線感知可能電池セパレータ及び関連方法
WO2014007390A1 (ja) * 2012-07-05 2014-01-09 帝人デュポンフィルム株式会社 白色反射フィルム
JP2015162313A (ja) * 2014-02-26 2015-09-07 日本ゼオン株式会社 非水系二次電池多孔膜用組成物、非水系二次電池用多孔膜、及び二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Chemical Engineering Handbook", MARUZEN PUBLISHING CO., LTD.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210787A1 (ja) * 2022-04-28 2023-11-02 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池

Also Published As

Publication number Publication date
JPWO2021181815A1 (ja) 2021-09-16
CN114303281A (zh) 2022-04-08
US20230411791A1 (en) 2023-12-21
KR20220148153A (ko) 2022-11-04
EP4120459A1 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
KR101814921B1 (ko) 다공질층, 적층체, 다공질층을 포함하는 비수 전해액 이차 전지용 부재, 및 다공질층을 포함하는 비수 전해액 이차 전지
CN108352484B (zh) 非水系二次电池用隔膜及非水系二次电池
TWI553944B (zh) 非水系蓄電池用分隔器及非水系蓄電池
TWI548136B (zh) 非水系蓄電池用分隔器及非水系蓄電池
US9692028B2 (en) Separator for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP5356878B2 (ja) 非水系二次電池用セパレータ
EP3745492B1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
TW201733186A (zh) 非水系二次電池用隔板及非水系二次電池
US10714723B2 (en) Separator for a non-aqueous secondary battery, and non-aqueous secondary battery
KR20150091471A (ko) 비수계 이차전지용 세퍼레이터 및 비수계 이차전지
JP6078703B1 (ja) 非水系二次電池用セパレータ、非水系二次電池及び非水系二次電池の製造方法
JP2019216033A (ja) 非水系二次電池用セパレータ及び非水系二次電池
WO2008044761A1 (en) Separator for nonaqueous electrolyte secondary battery and multilayer separator for nonaqueous electrolyte secondary battery
EP3920264B1 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
WO2021181815A1 (ja) 電池用セパレータ
EP3920263B1 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
CN113574732B (zh) 非水系二次电池用隔膜及非水系二次电池
CN113678313B (zh) 非水系二次电池用隔膜及其制造方法以及非水系二次电池
WO2021029397A1 (ja) 電池用セパレータ及びその製造方法
JP7413180B2 (ja) 非水系二次電池
JP2016181439A (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7402766B2 (ja) 非水系二次電池
JP7482935B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7483154B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP7041195B2 (ja) 非水系二次電池用セパレータ及び非水系二次電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021500760

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020924944

Country of ref document: EP

Effective date: 20221011