WO2021180139A1 - 用于检测来自dna或rna生物体的样品靶标的可掺入参照标准品 - Google Patents

用于检测来自dna或rna生物体的样品靶标的可掺入参照标准品 Download PDF

Info

Publication number
WO2021180139A1
WO2021180139A1 PCT/CN2021/080053 CN2021080053W WO2021180139A1 WO 2021180139 A1 WO2021180139 A1 WO 2021180139A1 CN 2021080053 W CN2021080053 W CN 2021080053W WO 2021180139 A1 WO2021180139 A1 WO 2021180139A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
virus
rna
nucleic acid
seq
Prior art date
Application number
PCT/CN2021/080053
Other languages
English (en)
French (fr)
Inventor
杨淑伟
黄连成
冯菲菲
粟龙稳
林坤
唐灿
梁晨
汪元梅
蔡艳清
庞艺琳
沈川
余治学
Original Assignee
广州复能基因有限公司
广州易锦生物技术有限公司
美国锦可贝生物技术公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州复能基因有限公司, 广州易锦生物技术有限公司, 美国锦可贝生物技术公司 filed Critical 广州复能基因有限公司
Priority to US17/998,467 priority Critical patent/US20240117451A1/en
Publication of WO2021180139A1 publication Critical patent/WO2021180139A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/65Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression using markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/10011Adenoviridae
    • C12N2710/10041Use of virus, viral particle or viral elements as a vector
    • C12N2710/10043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/10041Use of virus, viral particle or viral elements as a vector
    • C12N2740/10043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15051Methods of production or purification of viral material
    • C12N2740/15052Methods of production or purification of viral material relating to complementing cells and packaging systems for producing virus or viral particles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/166Oligonucleotides used as internal standards, controls or normalisation probes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention belongs to the field of diagnosis. Specifically, the present invention relates to recombinant virus particles for quantitative detection of nucleic acid targets in samples and applications thereof.
  • Coronavirus infection of the human body can cause pneumonia, such as COVID-19.
  • the rapid nucleic acid detection of the coronavirus has become one of the important technologies for controlling the spread of the virus, patient diagnosis, treatment and prevention.
  • 2019-nCoV the International Committee for Classification of Viruses named the new coronavirus "SARS-CoV-2" on February 12, 2020
  • infection of the human body has caused a new coronavirus pneumonia epidemic (World Health Organization
  • the pneumonia caused by the new coronavirus is named "COVID-19”
  • the pneumonia caused by the new coronavirus is named "COVID-19”
  • the pneumonia caused by the new coronavirus is named "COVID-19”
  • 2019-nCoV carriers, susceptible groups, morbidity, curative rate and mortality has become a very sensitive and sensitive issue for governments and people at home and abroad.
  • the rapid nucleic acid detection of 2019-nCoV has become one of the important technologies for controlling the spread of the virus, patient diagnosis, treatment and prevention.
  • kits for 2019-nCoV have been developed at home and abroad.
  • the National Medical Products Administration approved a total of 10 new coronavirus nucleic acid detection reagents and 5 antibody detection reagents ( Figure 1).
  • the accuracy of the detection results obtained by these nucleic acid detection kits and related equipment cannot be verified ( Positive and negative) make a good judgment.
  • the US CDC stated that their self-developed test kit was confirmed to be defective and was subsequently withdrawn urgently. A component defect in this batch of test kits made it unavailable for many public health laboratories across the United States.
  • the reference standard that can accurately reflect the detection accuracy and quantify 2019-nCoV can also be used in new drug experiments, passing the viral load in different periods (Zou, et al. 2020, Kim, et al. 2020, Pan , Et al. 2020) to evaluate the effect and quality of the drug.
  • PCR Polymerase chain reaction
  • the first method to control false negative results is to add exogenous nucleic acid with a sequence different from the detected target nucleic acid in the polymerase chain reaction, as the spike in internal controls of the reaction system, usually plasmid DNA. The presence of any PCR amplification inhibiting substance in it will reduce or completely inhibit nucleic acid amplification.
  • the ideal reference substance should be a nucleic acid that can be protected, and it needs to be similar in structure to the virus particles to be tested and have the entire process of RT-PPCR viral nucleic acid detection.
  • the construction of protected DNA or RNA will protect the nucleic acid from nuclease or hydrolytic degradation after long-term storage. This is especially important if viral RNA is used as a reference.
  • Virus or pseudoviral particles containing the same type of nucleic acid (DNA or RNA) as the nucleic acid target to be tested, have a stable structure, and are designed to undergo the same steps as the pathogen to be tested at the same time. They have been used for the detection and analysis of viral targets (Cleland et al. 1999, Garson et al. 2005, Clancy et al. 2008). For the safety of humans and animals, scientists have preferentially selected non-pathogenic viruses as the basic skeleton for modification, and can be incorporated into the internal standard of the sample to be tested (Dreier et al. 2005, Gerriets et al. 2008, Ninove et al. .2011).
  • the non-competitive incorporation of internal standards that are completely different from the target sequence can be designed and prepared to be suitable for several target sequences to be tested; the amplification of non-competitive control products usually cannot reflect the amplification kinetics of the target sequence to be tested ( Rosenstraus et al. 1998, Hoorfar et al. 2004, Sharma et al. 2014). Therefore, it is necessary to choose competitive and non-competitive internal standards according to different testing requirements.
  • bovine diarrhea virus (Cleland et al. 1999), canine distemper virus (Clancy et al. 2008), murine cytomegalovirus (Garson et al. 2005), and T4 and MS2 phage (Dreier et al. al. 2005, Rolfe et al. 2007, Gerriets et al. 2008, Ninove et al. 2011), prepare non-competitive internal standards and use them for the detection of a variety of DNA and RNA viruses including hepatitis C virus (HCV) .
  • HCV hepatitis C virus
  • Zambenedetti et al. reported that on the basis of MS2 phage, they constructed a simulated virus using E. coli as a host to prepare a competitive internal standard, and tested the use of various competitive internal standard pseudoviruses in the diagnosis of hepatitis C virus. Monitor extraction, reverse transcription, amplification and detection steps. The difference between the target sequence of this simulated virus and the virus to be tested is limited to the difference in arrangement of 14 of the 21 bases of the fluorescent probe binding sequence (Zambenedetti et al.
  • the present invention is to solve the above shortcomings of the competitive internal standard.
  • the qualitative detection of the target to be tested can be more accurate by using the incorporated internal standard that has been accurately and quantitatively incorporated, and it can be based on the copy number of the simulated virus incorporated into the internal standard or derived from it.
  • the number of DNA, RNA, and cDNA incorporated into the internal standard molecule can accurately calculate the copy number of the target (virus, DNA or RNA) in the sample to be tested.
  • HHV6 herpes type six
  • the present invention relates, for example, to recombinant virus particles for quantitative detection of nucleic acid targets in a sample. Specifically, the present invention relates to a positive reference for qualitatively and quantitatively detecting the spike-in of the novel coronavirus (SARS-CoV-2) RNA incorporation (Spike-in) and its application.
  • SARS-CoV-2 novel coronavirus
  • the present invention relates to the following aspects:
  • a mimic virus vector characterized in that the backbone of the virus (preferably lentivirus or adenovirus) is used as the vector, and the lentivirus backbone contains one or more quantitative detection nucleic acid fragments and fluorescent protein coding genes for tracking,
  • the length of the quantitative detection nucleic acid fragment is the same as the length of the nucleic acid target sequence of the detection sample, and contains the same percentage of base composition as the nucleic acid target sequence of the detection sample, wherein the 5′ end sequences A and 3′ of the nucleic acid fragment are quantitatively detected
  • the end sequence B is the same or different from the corresponding 5'end sequence A'and 3'end sequence B'of the nucleic acid target sequence of the test sample, wherein the sequence A is used to amplify the 5'end of the nucleic acid target sequence of the test sample.
  • the primer sequence is composed of 2 bases adjacent to the downstream, and sequence B is composed of the 3'end primer sequence used to amplify the nucleic acid target sequence of the test sample and 2 bases adjacent to the upstream, and the 5'of the nucleic acid fragment is quantitatively detected. All bases of the sequence between the end sequence A and the 3'end sequence B and the sequence between the 5'end sequence A'and the 3'end sequence B'of the nucleic acid target sequence of the test sample
  • the arrangement order is completely different (preferably there is no more than three consecutive bases, for example, the same arrangement sequence of 4, 5, 6, 7 consecutive bases or more, preferably 8-30 bases are arranged differently),
  • the one or more quantitative detection nucleic acid fragments and the fluorescent protein are connected to each other through a linker, more preferably, the linker is 6-800bp in length, preferably 20-800bp or 6-200bp, preferably Specifically, the linker contains transcription control elements, including, but not limited to, CMV (promoter), IRES (ribosome binding site).
  • CMV promoter
  • IRES ribosome binding site
  • nucleic acid target sequence of the test sample is derived from an organism selected from the group consisting of viruses, bacteria, fungi, plants, animals (including lower animals and higher animals, preferably , Lower animals include but are not limited to nematodes, fruit flies, higher animals include, but are not limited to salmon, zebrafish, and mammals. More preferably, the mammals include, but are not limited to, humans, orangutans, monkeys, and mice).
  • the simulated virus vector of item 2 wherein the virus is selected from DNA virus (such as herpes simplex virus, hepatitis A virus, hepatitis B virus, human papilloma virus, adenovirus, HPV) or RNA virus (such as Hepatitis C virus, human immunodeficiency virus, coronavirus, influenza virus such as avian influenza virus or swine influenza virus);
  • the bacteria include but are not limited to tuberculosis, gonorrhea, anthracnose, syphilis, plague, trachoma, etc.
  • the fungus is selected From but not limited to molds, yeasts, truffles and other mushrooms well known to mankind;
  • the coronavirus is selected from SARS virus, MERS virus and SARS-CoV-2 virus.
  • lentivirus vector is a lentivirus virus vector (preferably pEZ-Lv201) or a FIV virus vector.
  • nucleic acid target sequence of the test sample is at least two selected from the following coding genes: Orf1ab
  • the quantitative detection of nucleic acid fragments is selected from one or more of the following:
  • Detection target sequence 1 (corresponding to the Orf1ab encoding gene fragment of the test sample) includes a sequence selected from SEQ ID NO: 1 to SEQ ID NO: 2 or a combination thereof, or at least selected from SEQ ID NO: 1 to SEQ ID NO: 2. The sequence of or its combination;
  • Detection target sequence 2 (corresponding to the S protein coding gene fragment of the detection sample) includes or at least consists of SEQ ID NO: 3 sequence;
  • Detection target sequence 3 (corresponding to the E protein coding gene fragment of the test sample) includes or at least consists of SEQ ID NO: 4 sequence;
  • Detection target sequence 4 (corresponding to the N protein encoding gene fragment of the test sample) includes a sequence selected from the following SEQ ID NO: 5 to SEQ ID NO: 8 or any combination thereof, or at least selected from the following SEQ ID NO: 5 to SEQ ID NO: the sequence of 8 or any combination thereof;
  • nucleic acid targets in samples for example, as nucleic acid targets in test samples (for example, from COVID-19 patients, SARS-CoV-2 carriers, COVID-19 suspected patients, or SARS-CoV-2 in samples)
  • test samples for example, from COVID-19 patients, SARS-CoV-2 carriers, COVID-19 suspected patients, or SARS-CoV-2 in samples
  • reference standard quantitative: such as positive and negative judgment
  • quality analysis and quality control in sample collection, sample storage and sample RNA extraction, or for quantitative detection of SARS-CoV in samples -2 application
  • RNA which is prepared by extracting the simulated virus particles described in item 10, wherein the organism is an RNA virus.
  • RNA is the quality analysis and quality control in the reverse transcription reaction system of the sample.
  • Qualitative and quantitative reference standard cDNA or DNA wherein the qualitative or quantitative reference standard cDNA is prepared by the qualitative or quantitative reference standard RNA described in item 12 of reverse transcription, and the quantitative reference standard DNA is extracted by extracting the simulated virus of item 10 DNA preparation of particles, wherein the genetic material of the organism is DNA.
  • RNA viruses such as SARS-CoV-2
  • DNA Amplification efficiency and fluorescence signal quality molecule and quality control during DNA amplification is used in the process of detecting organisms whose genetic material.
  • a kit for qualitatively and quantitatively detecting the nucleic acid target sequence of a sample which contains
  • the primers in (3) and (4) are the same, and the labels of the probes in (2), (3) and (4) are different from each other.
  • primer and probe sequences in the kit are composed of primers and probes for housekeeping genes and primers and probes for detecting target sequences, as follows:
  • the primers for amplification and detection of targeting sequence 1 are shown in SEQ ID NO: 30 to SEQ ID NO: 33;
  • the primers for amplification and detection of targeting sequence 2 are shown in SEQ ID NO: 34 to SEQ ID NO: 41;
  • the primers for amplification and detection of targeting sequence 3 are shown in SEQ ID NO: 42 and SEQ ID NO: 43;
  • a method for qualitatively and quantitatively detecting the nucleic acid target sequence of a sample comprising using the kit described in any one of items 16-19.
  • Amplification step 1 Use at least 2 pairs of primers of the target sequence 1 to 4 to amplify the Orf1ab, S protein gene, E protein gene, and N protein gene of the sample SARS-CoV-2 using the amplification detection kit described in item 19 At least 2 kinds of
  • Amplification step 2 Amplify the detection target sequence 1-4;
  • Amplification step 3 Amplify the housekeeping gene.
  • Fig. 20 (and several example diagrams of Fig. 28) for the design schematic diagram of the quantitative detection of nucleic acid fragments of the present invention.
  • Fig. 20 (and several example diagrams of Fig. 28) for the design schematic diagram of the quantitative detection of nucleic acid fragments of the present invention.
  • Figure 21 and Figure 22 for the design schematic diagram of the quantitative detection of nucleic acid fragments.
  • Figure 24 shows the raw materials for the novel coronavirus (SARS-CoV-2) nucleic acid detection kit and the "quality control products" used in the quality analysis and quality control of the kit production process.
  • Figure 25 is a novel coronavirus (SARS-CoV-2) nucleic acid detection kit (quantitative), showing that the positive reference substance incorporated in the present invention is added to the sampling tube in the flow of Figure 24.
  • Table A Exemplary design principles for incorporating the sample to be tested or the sample collection device (tube) incorporating the internal standard (DNA or RNA) sequence
  • Simulated virus also known as pseudovirus (Pseudovirus).
  • Target to be tested refers to a partial sequence fragment selected from the genome of an organism with a known DNA or RNA sequence, such as the nucleic acid target sequence of the sample to be tested, the SARS-Coy-2 gene N of the sample infected with the SARS-CoV-2 virus Target sequence.
  • Quality control material Refers to a simulated virus and its derived DNA, RNA or DNA that contain the same base percentage composition and the same arrangement sequence as the target (DNA or RNA) sequence from a certain organism. cDNA.
  • Standard quantitative and quantitative reference standard
  • Reference material refers to the same number of base sequences (bp) as the target (DNA or RNA) from the organism, and the same base percentage composition, but The base sequence can be 8-25%, 4-10%, 2-5% identical to mimic viruses and their derived DNA, RNA or cDNA.
  • Quantitative detection of nucleic acid fragments refers to the incorporation of internal controls (ICs).
  • the incorporation fragments are the same nucleic acid sequence fragments as the standard, and also refer to the standard that can be incorporated into the sample to be tested or the sample collection device (tube) Taste.
  • design criteria for incorporating internal standards include:
  • reference product is also called “reference standard”, which means that it has one or more biological measurement characteristics that are sufficiently uniform and well-defined for content, sequence, activity, structure, or typing. (Quantity) Value, a substance used to calibrate an instrument, evaluate a biological measurement method, or assign a value to a material.
  • sequence between the 5'end sequence A and the 3'end sequence B of the nucleic acid fragment and the 5'end sequence A'and the 5'end sequence A'of the nucleic acid target sequence of the test sample means that there are no more than three consecutive bases between the two, for example, 4, 5, 6, 7 consecutive bases.
  • sequence of the same arrangement above the bases for example, preferably 8-30 bases are arranged differently.
  • lentivirus vectors and adenovirus vectors that can be used are vectors that are routinely used in the field, and have been proven to have no biological safety problems, including lentivirus vectors (Gene delivery by lentivirus vector, Cockrell, Adam S., et al., Molecular Biotechnology 36(3), 184-204; Lentiviral Vector System for Gene Transfer, Gilbert, James R., et al., 2003, https: //books.goole .com/books?) or FIV virus vector (Feline Immunodeficiency Virus(FIV) as a Model for Study of Lentvirus Infections: Parallels with HIV, John, H.
  • lentivirus vectors Gene delivery by lentivirus vector, Cockrell, Adam S., et al., Molecular Biotechnology 36(3), 184-204; Lentiviral Vector System for Gene Transfer, Gilbert, James R., et al., 2003, https: //books.goole .com/books
  • FIV virus vector
  • the lentiviral vector is pEZ-Lv201.
  • Figure 1 is a list of new coronavirus detection reagents approved by the State Medical Products Administration as of March 6, 2020.
  • Figure 2 is the construction of the "simulated virus” vector backbone that can be incorporated into the reference standard for NGS and RT-PCR detection of 2019-nCov.
  • Figure 3 is an electrophoresis diagram of the synthesized fragment. Lane 1: Marker 6000; Lane 2: PCR synthesis product L (362bp).
  • Figure 4 is an electrophoresis diagram of colony PCR detection results.
  • Lane 1 Marker 6000;
  • Lane 2 Colony PCR product (640bp);
  • Lane 3 Colony PCR product (640bp);
  • Lane 4 Colony PCR product (640bp);
  • Lane 5 Colony PCR product (640bp);
  • Lane 6 Colony PCR product (640bp);
  • Lane 7 Colony PCR product (640bp).
  • Figure 5 shows the blast results of orf1ab and G119753.
  • Figure 6 is a schematic diagram of the preparation process of recombinant lentiviral particles.
  • Fig. 7 is a standard curve diagram of the Ct value corresponding to the log (initial copy number) of a reference product of a gradient dilution.
  • Ct value amplification threshold cycle number
  • log initial copy number
  • Ct value amplification threshold cycle number
  • Figure 8 is a fluorescence image of H1299 cells after infection with lentivirus. Legend: Count all the green fluorescent bright spots in the figure, and the arrow in the figure indicates one of the fluorescent spots.
  • Figure 9 is a graph of data analyzed by flow cytometry of cells with eGFP fluorescence.
  • Flow cytometry measures cells with eGFP fluorescence to obtain the percentage of cells with labeled fluorescence.
  • Figure 10 is a ddPCR one-dimensional droplet distribution map and copy number concentration quantitative curve (Figure d-f) of the ORF1ab target ( Figure a), N gene target ( Figure b) and S gene target ( Figure c) in gradient dilution cDNA samples.
  • Figure 11 is a one-dimensional image of ddPCR droplets. Blue droplets are positive droplets, gray droplets are negative droplets, and red is the baseline. The abscissa represents the number of droplets, and the ordinate represents the fluorescence intensity.
  • Figure 12 is a graph of RNA amplification efficiency.
  • the abscissa represents Log 10 Copies, where Copies are 200000, 100000, 10000, 1000, 100, and the ordinate represents Ct.
  • Figure 13 is a graph of the original droplet data of ddPCR, the abscissa is the number of droplets, and the ordinate is the fluorescence intensity. Taking ORF1ab as the detection target, adding 2ul template for reaction, the number of positive droplets is 2360copies.
  • Figure 14 is the cDNA Standard #2 gradient qPCR standard curve-ORF1ab, the abscissa is Log 10 Copies, and the ordinate is the Ct value.
  • Figure 15 is the cDNA Standard #2 gradient qPCR standard curve-S, the abscissa is Log 10 Copies, and the ordinate is the Ct value.
  • Figure 16 is the cDNA Standard #2 gradient qPCR standard curve ---E, the abscissa is Log 10 Copies, and the ordinate is the Ct value.
  • Figure 17 is the cDNA Standard #2 gradient qPCR standard curve ---N, the abscissa is Log 10 Copies, and the ordinate is the Ct value.
  • Figure 18 is the amplification curve of each gene.
  • a the amplification curve of ORF1ab-FAM gene, the abscissa is the cycle number, the ordinate is ⁇ Rn ( ⁇ Rn is the normalized result obtained after the baseline is subtracted from Rn);
  • b the amplification curve of the N-FAM gene, the abscissa is the cycle number , The ordinate is ⁇ Rn;
  • c the amplification curve of the S-FAM gene, the abscissa is the cycle number, and the ordinate is ⁇ Rn;
  • d the amplification curve of the E-FAM gene, the abscissa is the cycle number, and the ordinate is ⁇ Rn.
  • Figure 19 is the calculation of the copy number concentration of the N gene "can be incorporated" in the simulated virus based on the standard curve of the Ct value and the copy number.
  • Figure 20 is a schematic diagram of the design of the quantitative detection of nucleic acid fragments of the present invention. A method for designing positive standards for all species with known DNA or RNA sequences that can be incorporated into the sample to be tested or the sample collection device (tube).
  • Figure 21 is an example of the orf1ab gene of the new coronavirus SARS-Coy-2 recommended by the Chinese CDC, exemplarily showing the design schematic diagram of the quantitative detection nucleic acid fragment of the present invention, where A represents the RNA sequence of wild-type SARS-CoV-2 ( 2019-nCoV RNA Sequence); B represents the SARS-CoV-2 RNA sequence (Amplicon for Virus target detection) selected as the nucleic acid target sequence of the detection sample, where the underline represents the sequence complementary to the probe, and the two arrows are respectively Represents the upstream and downstream primers used to amplify the nucleic acid target sequence of the test sample; C represents the RNA sequence (Selected amplifier for positive reference) containing the quantitative detection nucleic acid fragment of the present invention, where the underline represents the complementary probe The sequence can be seen from the sequence shown in C.
  • A represents the RNA sequence of wild-type SARS-CoV-2 ( 2019-nCoV RNA Sequence)
  • B represents the SARS-Co
  • the 5'end and 3'end of the quantitative detection nucleic acid fragment are the same as the corresponding 5'end and 3'end of the nucleic acid target sequence of the test sample.
  • the same sequence length is used for amplification
  • the lengths of the 5'end primer and the 3'end primer of the nucleic acid target sequence of the test sample are respectively the sum of the lengths of 2 bases downstream of the 5'end primer and 2 bases upstream of the 3'end primer.
  • Figure 22 is an example of the spike protein encoding gene of the new coronavirus SARS-CoV-2 selected in the present invention, exemplarily showing the design schematic diagram of the quantitative detection of nucleic acid fragments of the present invention.
  • Figure 23 shows the effect of the amount of cDNA added in the "simulated virus that can be incorporated” on the quantitative results of the new coronavirus target in the "simulated virus” cDNA.
  • the abscissa is the logarithm of the cDNA addition amount of the "simulated virus that can be incorporated”
  • the ordinate is the Ct value of the ORF1ab and S targets in the "simulated virus” cDNA
  • Figure 24 shows the raw materials used for the novel coronavirus (SARS-Coy-2) nucleic acid detection kit and the "quality control products" used in the quality analysis and quality control of the kit production process.
  • SARS-Coy-2 novel coronavirus
  • Figure 25 is a new coronavirus (SARS-Coy-2) nucleic acid detection kit (quantitative).
  • Figure 26 is a one-step RT-ddPCR one-dimensional droplet distribution map ( Figure a-b) and copy number concentration quantitative curve (Figure c) of the "simulated virus” incorporated into the N gene and S gene in the standard RNA ( Figure b).
  • Figure 28 is a diagram of a method for designing positive standards of all species with known DNA or RNA sequences that can be incorporated into the sample to be tested or sample collection device (tube), where a: the conceptual diagram of the positive standard method design; b: one An example of an "N" gene target inserted into SARS-CoV-2; c: an example of an E6 gene target inserted into HPV; d: an example of an ACE2 gene target inserted into the human genome.
  • Figure 29 is a graph of RNA amplification efficiency.
  • the abscissa represents Log 10 Copies, where Copies are 10000, 1000, 100, and 10, and the ordinate represents Ct.
  • Fig. 30 is a quantitative standard curve diagram of quality control RNA after incorporating standard RNA.
  • the abscissa represents the copy number concentration of the quality control RNA, and the ordinate represents the average Ct value.
  • Fig. 31 is a quantitative standard curve diagram of standard RNA after incorporating the quality control RNA, the abscissa represents the copy number concentration of the standard RNA, and the ordinate represents the average Ct value.
  • DNA Polymerase (Gencopoeia, C0103A); primer Oligo (Invitrogen); cloning vector pEZ-Lv201 (Genecopoeia); Fast-Fusion TM Cloning Kit (Gencopoeia, FFPC-C020); Gel Recovery Kit (Omega); 2T1 Competent (Genecopoeia, U0104A); STBL3 Competent (Genecopoeia, U0103A); Restriction endonuclease (Fermentas); DNA Ladder (Genecopoeia); Gel Extraction Kit (OMEGA); UltraPF TM DNA Polymerase Kit (Genecopoeia, C0103A); Plasmid Mini Kit I (OMEGA); Endotoxin-free plasmid small/medium extraction kit (Omega).
  • the coronavirus nucleic acid detection target sequence and the fluorescent protein gene sequence are inserted into the lentiviral vector, and the specific steps are as follows:
  • the orf1ab sequence fragment specifically targeted by SARS-CoV-2 was cloned into a lentiviral cloning vector.
  • the insert sequence is amplified by synthetic PCR: the primer mixture in Table 1 is used as a template, cCDC-orf1ab-PF1+cCDC-orf1ab-PF10 is used as primers, and the reaction system in Table 2 and the reaction program in Table 3 are used to amplify the insert fragment M, the result of electrophoresis detection is shown in Figure 3.
  • the product L fragment is about 362bp, and then OMEGA Cycle Pure Kit purifies PCR products and synthetic fragments.
  • Reagent name 1 ⁇ volume 5 ⁇ UltraPF TM Buffer 5 ⁇ l dNTP (25mM) 0.2 ⁇ l Mg 2+ (50mM) 0.75 ⁇ l UltraPF TM DNA Polymerase(5U/ ⁇ l) 0.2 ⁇ l Table 1 Primer Mix 1 ⁇ l Primer (5pmol/L) 2 ⁇ l ddH 2 O Add to 25 ⁇ l
  • Each PCR reaction system is divided into 16 ⁇ l ddH 2 O and 1 ⁇ l vector primers SEQ ID NO:47 and SEQ ID NO:48 (5pmol/ ⁇ l,).
  • the PCR reaction procedure is shown in Table 5; the PCR products are detected by electrophoresis, and the detection results are shown in Figure 4. , Control the Marker to estimate the size of the DNA fragments, and select the positive clones containing the target DNA fragments.
  • OMEGA Plasmid Mini Kit I extracts the plasmid DNA and sends the plasmid for sequencing.
  • recombinant lentiviral particles After obtaining the recombinant lentiviral vector, recombinant lentiviral particles can be prepared. Flow detection chart 6.
  • the lentivirus preparation steps are as follows:
  • the supernatant contains lentiviral particles (named LPP-WH-Fragment3-Lv201).
  • Lentivirus Concentration Solution (6X) (GeneCopoeia, LT007), PBS (GeneCopoeia, PE002).
  • the supernatant contains the lentiviral particles.
  • the supernatant can be centrifuged at 2000g for 10 min at 4°C to remove cell debris.
  • centrifugal sediment which is a lentiviral particle (in some cases, the sediment may not be visible to the naked eye).
  • step 5 According to the volume of the lentiviral supernatant collected in step 1 and used for concentration, measure 1/10-1/100 of the volume of DMEM or PBS, and re-pipette to suspend the lentiviral pellet (for example: as in step 1 There is 10 mL of the clear solution, then the amount of DMEM or PBS measured in this step is 0.1 mL-1 mL).
  • the resuspended lentivirus solution has been concentrated and can be stored at -80°C after aliquoting. At the same time, a small amount is taken to determine the titer of the concentrated lentivirus.
  • culture medium CORNING, 10-013-CV
  • fetal bovine serum Excell Bio, FSP500
  • PBS GeneCopoeia, PE002
  • Trypsin CORNING, 25-053-CI
  • Lenti-Pac TM lentivirus titer Detection kit GeneCopoeia, LT006
  • penicillin-streptomycin double antibody solution HyClone
  • RNaseLock TM RNase inhibitor TM RNase inhibitor.
  • Method i Use a real-time fluorescent quantitative PCR instrument to detect the physical titer of lentivirus.
  • Method ii Use fluorescence microscopy cell counting method to determine the copy number (titer) of lentivirus organisms.
  • Method iii Use flow cytometry to measure lentivirus biotiter.
  • Method iv ddPCR method to detect the copy number of lentiviral RNA.
  • TE buffer is DEPC-treated water to prepare 100 ⁇ M TE buffer, which is used in the present invention to dissolve the RNA precipitation in this TE buffer).
  • Plasmid DNA copy number the copy number determined by the qPCR reaction using the reverse transcription product as a template minus the plasmid DNA copy number determined by the control, is the RNA copy number in the sample.
  • RNA-Primer Mix Prepare RNA-Primer Mix according to Table 8, mix RNA-Primer Mix, incubate at 70°C for 5 minutes, and place the centrifuge tube on ice immediately to cool.
  • the random primers in the kit can be used to replace HIV cDNA Synthesis Primer. There is no need to use cDNA Synthesis Primer and random primers at the same time.
  • the product can be used as a sample to be tested directly for qPCR detection experiments, or stored at -20°C.
  • Diluted positive reference standard (Lenti-Pac TM lentivirus titer kit (GeneCopoeia, LT006) from the kit, which copy number is 1x10 9 copies / ⁇ L).
  • NTC no template
  • the reaction procedure according to Table 11 is applicable to the Bio-Rad iQ5 real-time PCR detection system.
  • the melting curve program is shown in Table 12. Those skilled in the art can perform routine fine-tuning according to the detection system used.
  • Figure 7 Remarks: Perform qPCR reaction on all the reference samples with gradient dilutions, and obtain the Ct value (amplification threshold cycle number) of each sample, taking log (initial copy number) as the abscissa X and the Ct value as the ordinate Y. Obtain the standard curve, and obtain the curve formula and the correlation coefficient R 2 .
  • each lentiviral particle contains two single-stranded positive-stranded RNA genomes, the number of lentiviral particles obtained should be 1/2 of the copy number. Therefore, the physical titer of the number of lentiviral particles (copies/ml) is the number of copies of the original sample divided by 2.
  • Table 13 is a data table of the calculation process of the physical titer of lentiviral particles.
  • lentivirus corresponds to 3 wells of the cell culture plate.
  • the lentivirus is fluorescently labeled, and the detection titer can be determined by the fluorescence microscope cell counting method.
  • inoculate lentivirus in a gradient add 0.03 ⁇ L, 0.3 ⁇ L, 0.3 ⁇ L lentivirus stock solution to each well (three replicate wells each).
  • appropriate DMEM medium add 10% heat-inactivated fetal bovine serum, penicillin-streptomycin double antibody solution
  • the blank control well serves as a reference.
  • the number of fluorescent cells can be calculated if the number of fluorescent cells is moderate.
  • the average number of fluorescent cells in the 5 fields of view in the hole is X, which is calculated according to the following formula:
  • the fluorescence picture as shown in Figure 8 is obtained through an inverted fluorescence microscope. (Using an inverted fluorescence microscope, 100 times the field of view, using GFP fluorescence to take pictures and count, count all the fluorescent bright spots in the figure, the arrow in the figure indicates one of the fluorescent spots).
  • Figure 8 Note: Count all the fluorescent bright spots in the figure, and the arrow in the figure indicates one of the fluorescent spots.
  • Steps 1 to 4 are the same as steps 1-4 in method ii.
  • Cells with eGFP fluorescence can be counted by FACS (Flow Cytometry). Use a fluorescence microscope to observe eGFP fluorescence. After observing the fluorescence status, the cells were trypsinized, the digestion was terminated with DMEM complete medium, and then centrifuged at 500g for 10min. The cells were suspended in 1ml PBS, and the total number of cells in each well was measured with a hemocytometer. Then perform analysis on the flow cytometer to obtain the percentage of fluorescent cells, and obtain the following Figure 9 (data diagram of flow cytometer analysis of cells with eGFP fluorescence), and calculate according to the following formula:
  • the biological titer of lentivirus is shown in Table 15.
  • Figure 9 Remarks: Flow cytometry measures eGFP fluorescent cells, and obtains the percentage of labeled fluorescent cells.
  • ddH 2 O DNase free
  • the PCR reaction should be carried out within 30 minutes, or the PCR reaction should be carried out within 4 hours in the refrigerator at 4°C, and the PCR reaction should be carried out according to Table 17, and the temperature rise and fall rate should be set to 2°C/sec.
  • RNAzolTM RT RNA Isolation Reagent, isopropanol, 75% ethanol, ddH 2 O (RNase and DNase free).
  • RNA Discard the supernatant, air-dry the pellet naturally, add 50 ⁇ l TE (RNase and DNase free) to dissolve it, which is the total RNA.
  • Reagents GeneCopoeia SureScript TM First-Strand cDNA Synthesis Kit, lentiviral RNA, DEPC water.
  • RNAzol RNA Isolattion reagent (GeneCopoeia), MgCl 2 .6H 2 O (sigma), DEPC (MBCHEM), isopropanol (Guangzhou Chemical Reagent Factory), Trizma Base (Sigma), EDTA (Sigma), RNaseLock (GeneCopoeia) , DNase I (NEB), 1-step Taqman qPCR Mix (GeneCopoeia), 2-step Taqman qPCR Mix (GeneCopoeia), BlazeTaq RTase Mix (GeneCopoeia), ddPCR Supermix for Probes (No dUTP) (Bio-rad), FAM marker Probe (Invitrogen), pipette tip (Axygen), 50ml centrifuge tube (BIOFIL), 1.5ml centrifuge tube (Axygen).
  • RNA 58 ⁇ l RNA 58 ⁇ l
  • Dnase I 14 ⁇ l 10 ⁇ Dnase I buffer 8 ⁇ l, 37°C 15min or 75°C 10min;
  • ddPCR was used to detect RNA copy number and DNA residue.
  • the added amount of each component was 2 ⁇ ddPCR Supermix 10 ⁇ L, Primer mix 900nM, Probe 250nM, RNA 2 ⁇ L, DEPC H2O to 20 ⁇ l, and the reaction procedure is shown in Table 22.
  • RT-qPCR detects RNA amplification efficiency.
  • the amount of each component added is 5 ⁇ 1-step Taqman mix 4 ⁇ l, primers and Probe Mix (10 ⁇ M) 0.25 ⁇ l, RNA 2 ⁇ l, DEPC H2O to 20 ⁇ l, the reaction procedure is as shown in Table 23 Show.
  • the residual rate of plasmid after DNase I digestion is less than 1/10,000 compared to RNA, which has no effect on the quantitative analysis of RNA reference standards.
  • Figure 11 One-dimensional image of ddPCR droplets. Blue droplets are positive droplets, gray droplets are negative droplets, and red is the baseline. The abscissa represents the number of droplets, and the ordinate represents the fluorescence intensity.
  • RNA amplification efficiency graph The abscissa represents Log 10 Copies, where Copies are 200000, 100000, 10000, 1000, 100, and the ordinate represents Ct.
  • the PCR reaction should be carried out within 30 minutes, or the PCR should be carried out within 4 hours in a refrigerator at 4°C.
  • the PCR program is shown in Table 31, and the temperature rise and fall rate is set to 2°C/s.
  • cDNA Mix is the mixture of cDNA purification 567tube
  • Figure 18 The amplification curve of each gene.
  • a the amplification curve of ORF1ab-FAM gene, the abscissa is the cycle number, the ordinate is ⁇ Rn ( ⁇ Rn is the normalized result obtained after the baseline is subtracted from Rn);
  • b the amplification curve of the N-FAM gene, the abscissa is the cycle number , The ordinate is ⁇ Rn;
  • c the amplification curve of the S-FAM gene, the abscissa is the cycle number, and the ordinate is ⁇ Rn;
  • d the amplification curve of the E-FAM gene, the abscissa is the cycle number, and the ordinate is ⁇ Rn.
  • Example 9 Amplification efficiency that can be incorporated into standards
  • Figure 19 Calculate the copy number concentration of the "incorporated" simulated virus N gene based on the standard curve of Ct value and copy number.
  • Example 10 The influence of the amount of cDNA added in "simulated virus that can be incorporated" on the quantitative results of the new coronavirus target in "simulated virus” cDNA
  • Figure 23 The effect of the amount of cDNA added in the "simulated virus that can be incorporated” on the quantitative results of the new coronavirus target in the "simulated virus” cDNA.
  • the abscissa is the logarithm of the cDNA addition amount of the "simulated virus that can be incorporated”
  • the ordinate is the Ct value of the ORF1ab and S target in the "simulated virus” cDNA.
  • Example 11 Specific method for quantification of lentivirus v: One-step RT-ddPCR method to detect the copy number concentration of N gene and S gene in the standard RNA of "simulated virus"
  • step temperature time Number of cycles Reverse transcription 42°C 60min 1 Enzyme activation 95°C 10min 1 transsexual 95°C 30s 40
  • Example 12 New coronavirus 2019-nCoV nucleic acid qualitative and quantitative detection kit (fluorescence PCR method) and can be mixed with positive standard and quality control RNA model detection
  • This method is based on the one-step RT-PCR technology (RNA reverse transcription reaction and polymerase chain reaction (PCR) combined with Taqman technology), and the specific conservative sequences of the 2019 novel coronavirus (2019-nCoV) N gene and S gene are selected as amplification Target area, design specific primers and fluorescent probes (N gene probes are labeled with HEX, S gene probes are labeled with FAM) for the detection of 2019 novel coronavirus RNA in specimens; at the same time, an endogenous internal standard detection system ( The internal standard gene H probe adopts CY5 label, and the unique positive standard S gene and N gene probe adopts AP593 standard), that is, 3 pairs of primers and 4 probes for qualitative and quantitative analysis of the target gene.
  • PCR RNA reverse transcription reaction and polymerase chain reaction
  • Standard product the length of the nucleic acid sequence, the percentage of bases, the Tm value, the primer and the quality control product (or target to be tested) are the same, but the sequence fragments are arranged differently.
  • TE buffer is DEPC-treated water to prepare 100 ⁇ M TE buffer, which is used in the present invention Use this TE buffer to dissolve RNA precipitation in medium).
  • RNA After the two kinds of RNA are extracted, they are treated with DNase I, the purpose is to remove the genomic DNA and plasmid DNA residues in the RNA. Refer to the reaction system in Table 44 to process RNA with DNase I. After sample loading, centrifuge immediately, heat at 37°C for 10 minutes, and heat at 72°C for 10 minutes to inactivate DNase I. Store at -80°C for later use.
  • qPCR and RT-PCR detect genomic DNA and plasmid DNA residues.
  • the target gene is not detected by qPCR, it means that the digestion is clean, and the RNA can be used for subsequent experiments.
  • the qPCR reaction system is shown in Table 45
  • the RT-PCR reaction system 1 is shown in Table 46
  • the computer program is shown in Table 47.
  • Concentration copies/ ⁇ L Concentration dilution step 1 1.0 ⁇ 10 5 The concentration is 1.0 ⁇ 10 5 copies/ ⁇ L 2 1.0 ⁇ 10 4 Take 10 ⁇ L1add 90 ⁇ L diluent 3 1.0 ⁇ 10 3 Take 10 ⁇ L2add 90 ⁇ L diluent 4 100 Take 10 ⁇ L3add 90 ⁇ L diluent 5 50 Take 50 ⁇ L 4 and add 50 ⁇ L diluent 6 25 Take 50 ⁇ L 5 and add 50 ⁇ L diluent 7 12.5 Take 50 ⁇ L 6 and add 50 ⁇ L diluent
  • the sample signal is detected on ABI ivva7.
  • the computer program is the same as Table 47.
  • the FAM channel detects the quality control product or clinical sample S gene
  • the VIC (HEX) channel detects the quality control product or clinical sample N gene
  • CY5 The channel detects the endogenous human GAPDH gene
  • the ROX (AP593) channel detects the S gene or N gene in the standard product.
  • the standard N gene with a mother liquor concentration of 2.4 ⁇ 10 6 was diluted with 6 gradients according to Table 48, and then single-channel signal detection was carried out.
  • the ROX channel was selected to detect the signal intensity of the standard N gene.
  • the logarithm is the abscissa and the Ct is the ordinate.
  • the concentration gradient standard curve of the standard N gene is calculated.
  • the result is shown in Figure 27.
  • N gene detection concentration of the fixed standard is 100 copies/rxn; NA means: Ct value is not detected.
  • N gene detection concentration of the fixed standard is 12.5copies/rxn; NA means: Ct value is not detected.
  • the parameter model established by this method is relatively accurate and can be used for the screening of new coronavirus carriers in the population; for the detection of elevated body temperature in the population, one of the important basis for the diagnosis of new coronavirus pneumonia after admission; New coronavirus pneumonia drug screening, treatment plan determination and efficacy evaluation; use this model to analyze the dynamic distribution of new coronavirus RNA load (2019-nCoV, Sars-cov-2 RNA Load); it can also be used for new coronavirus
  • the reference basis for drug use guidance in the later stage of viral pneumonia is one of the important indicators for screening whether patients with new coronary pneumonia under treatment can be discharged from the hospital and enter a normal living community.
  • test results are shown in Table 52.
  • the clinical samples are 5 positive and 5 negative samples that have been tested with a kit that has been approved by China.
  • samples 1-4 are positive clinical samples
  • samples 5-9 are negative clinical samples
  • sample 10 is a negative control.
  • the results are shown in Table 11.
  • MixC#1 is a 50-molecule positive standard
  • MixC#3 is a 200-molecule positive standard.
  • No Ct N is equivalent to No Ct
  • CY5 and ROX can be detected in all samples, that is, human RNA and incorporated standard RNA can be detected, indicating that the entire reaction is normal and the result is credible.
  • the result of our company’s product is that sample 1/3/4/5 is positive, and sample 2/6/7/8/9/10 is negative, which is different from the results of the Chinese approved kit, that is, the positive sample No. 2 is identified as a negative sample . Therefore, this product can be tested simultaneously with other companies for comprehensive analysis to prevent virus carriers from entering the society.
  • N target means that the target to be tested is N;
  • GAPDH target means internal standard;
  • RNA-S target means internal standard that can be incorporated.
  • Example 13 Determination of the number of mRNA molecules of the novel coronavirus receptor ACE2 in human 239 cells
  • QPCR&RT-PCR was used to detect DNA residue, and One-Step RT-ddPCR was used to detect RNA copy number concentration.
  • the relevant primers and probes for plasmid construction and qPCR detection are shown in Table 53.
  • RNA copy number concentration was carried out according to the new crown experimental method.
  • the results showed that the copy number concentration of each quality control RNA (detection probe ACE2-HEX) after mixing was about 2 ⁇ 10 9 Copies/ ⁇ l ,
  • the primers and probes in Table 53 were used to detect the quality of the extracted two kinds of cellular RNA.
  • the results are shown in Table 55 and Table 56.
  • the quality of RNA extracted this time is better. Yes, it can be used for follow-up testing.
  • Example 14 The influence of standard substances that can be incorporated on the quantitative results of intracellular target ACE2 mRNA
  • quality control RNA standard RNA that can be incorporated and SL 221-293T RNA
  • RNA quantitative data of ddPCR
  • gradient the quality control RNA, standard RNA, and 293T RNA in the biological safety cabinet. Dilute to get 2000/200/20/2copies/ ⁇ l quality control RNA, 1000/100/50copies/ ⁇ l standard RNA and 1000/333/111/37/12/4/1/0pg/ ⁇ l SL 221-2 293T RNA/293T RNA.
  • Table 58 Fixed standard RNA copy number, quality control RNA concentration gradient detection
  • Table 60 Copy number of fixed standard RNA mixed with internal standard, SL 221-293T RNA concentration gradient detection
  • Result analysis referring to the quality control RNA test results, the number of mRNA molecules transcribed by ACE2 in the cell is 50 copies/10 pg RNA. Because the total RNA extracted from one cell is about 10 pg, that is, 10 pg/cell. Therefore, the expression of ACE2 in SL 221-293T cells is about 50 ⁇ 5 copies/cell.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

用于定性和定量检测病毒RNA的掺入采集样品的阳性参考品。

Description

用于检测来自DNA或RNA生物体的样品靶标的可掺入参照标准品 技术领域
本发明属于诊断领域。具体地,本发明涉及用于定量检测样品中的核酸靶标的重组病毒颗粒及其应用。
背景技术
冠状病毒感染人体可导致肺炎,如COVID-19等。对冠状病毒的核酸快速检测已成为控制病毒扩散、病人诊断、治疗及预防的重要技术之一。自2019年12月由新型冠状病毒2019-nCoV(2020年2月12日国际病毒分类委员会将新型冠状病毒命名为“SARS-CoV-2”),感染人体产生新型冠状病毒肺炎流行(世界卫生组织将新型冠状病毒感染的肺炎命名为“COVID-19”),发现2019-nCoV携带者、易感人群、发病率、治病率和死亡率,已成为国内外政府和人们十分关注和敏感的问题。对2019-nCoV的核酸快速检测已成为控制病毒扩散、病人诊断、治疗及预防的重要技术之一。
目前,国内外已针对2019-nCoV研发试剂盒。3月6日,国家药品监督管理局共批准新冠病毒核酸检测试剂10个,抗体检测试剂5个(图1)。但由于缺乏可用于2019-nCoV核酸检测试剂盒及相关设备的与2019-nCoV相似的阳性对照品,不能对这些已推出使用的核酸检测试剂盒,及其相关设备获得的检测结果的精确性(阳性和阴性)作出很好的判断,即便出现假阴性,也并不可靠,更不能计算待测样本的单位体积病毒颗粒数量(如500病毒颗粒/ml)。2月12日,美国CDC表示,他们自研的检测试剂盒被证实存在缺陷,随后被紧急撤回。这批测试套件中的一个部件缺陷,导致全美众多公共卫生实验室无法使用。
鉴于此,迫切需要能准确反映检测准确性及定量2019-nCoV的参照标准品去确认假阳性,并从定性提升到定量,以便更好地观察冠状病毒RNA 的动态分析,并用于对病人治疗标准的判断。
此外,能准确反映检测准确性及定量2019-nCoV的参照标准品也可用于新药实验,通过不同时期的病毒载量(viral load)(Zou,et al.2020,Kim,et al.2020,Pan,et al.2020)来评估药物的作用及其质量。
聚合酶链反应(PCR)自20世纪90年代初以来被广泛用作诊断工具。聚合酶链反应的使用通过在各种样品中提供快速、特异和灵敏的微生物核酸检测,彻底改变了微生物的诊断检测。最初,假阳性结果是以前产生的扩增子反应污染的结果,是使用这种新技术的人主要关心的问题。采取措施避免预扩增核酸的污染,并通过引入实时聚合酶链反应实现了实质性的改进。这是因为实时聚合酶链反应是一个封闭的管系统,不需要扩增子的聚合酶链反应后分析;当应用这项技术时,仍然被认为是污染和假阳性结果的主要来源。此外,人们越来越重视将假阴性结果的影响降至最低;即确保阴性结果真正代表聚合酶链反应诊断靶的缺失。这是因为假阴性结果可能由测试步骤之一(核酸提取、反转录反应、聚合酶链反应建立或扩增)的失败而产生。第一种控制假阴性结果的方法是在聚合酶链反应中加入与被检测靶标核酸序列不同的外源核酸,作为反应体系的掺入内标(Spike in Internal controls)通常是质粒DNA,在样品中存在任何PCR扩增抑制物质都会降低或完全抑制核酸的扩增。基于此原理,公开的文献已披露使用质粒的单个和多个内部质控品,用于几种病原体的诊断(
Figure PCTCN2021080053-appb-000001
et al.2003,Dingle et al.2004,Hymas et al.2005,Maaroufi et al.2006)。
然而,这种掺入内标方法仅可用于评估扩增步骤引起的假阴性。在检测病毒核酸的情况下,也有必要控制扩增前的各个步骤,例如从血浆中收集病毒颗粒和提取病毒核酸,使用咽拭子采集新冠病毒并保存在一定的储存液,在一定的时限内提取病毒RNA再进行RT-PCR核酸检测。需要使用新的方法克服这种局限性。最初,在核酸提取之前加入外源核酸,用来评估核酸提取的效率,但无法正确评估在样本采集过程中病毒颗粒的丢失。因此,理想的对照品(标准品)应该是能被保护的核酸,需要有在结构上和待检病毒颗粒有相似并存在与RT-PPCR病毒核酸检测的全过程。此外,受保护的DNA或RNA的构建将保护核酸在长期储存后免受核酸酶 或水解的降解,如果病毒RNA作为对照品,这一点尤其重要。
病毒或假病毒颗粒,含有与待测核酸靶标相同种类的核酸(DNA或RNA),结构稳定,设计为与待测病原体同时经历相同的步骤,已用于病毒靶标的检测分析(Cleland et al.1999,Garson et al.2005,Clancy et al.2008)。出于人类和动物的安全性,科学家优先选择了非致病性病毒为基本骨架进行改造,并可掺入待测样本的内标(Dreier et al.2005,Gerriets et al.2008,Ninove et al.2011)。
在本发明前,实时荧光PCR反应分析中使用了两类外源性内标。竞争性掺入内标具有与待测样本靶标相同引物的序列,可以在同一PCR反应中使用和待测靶标相同的引物对,但使用掺入内标和待测靶标的探针序列不同。非竞争性内标碱基百分比组成和序列与待测样本靶标完全不同的检测序列。竞争性内标可以模拟靶序列的扩增动力学;然而,它会在低浓度待测靶标PCR反应体系中与待测靶序列竞争。完全与靶标序列不同的非竞争性掺入内标可以被设计和制备成适合使用于几个待测靶序列;非竞争性质控品的扩增通常不能反映待测靶序列的扩增动力学(Rosenstraus et al.1998,Hoorfar et al.2004,Sharma et al.2014)。因此,需要根据不同的检测需求选择竞争性和非竞争性内标。
已发表的相关文献中,利用牛腹泻病毒(Cleland et al.1999)、犬瘟热病毒(Clancy et al.2008)、鼠巨细胞病毒(Garson et al.2005)以及T4和MS2噬菌体(Dreier et al.2005,Rolfe et al.2007,Gerriets et al.2008,Ninove et al.2011),制备非竞争性内标并用于包括丙型肝炎病毒(HCV)在内的多种DNA和RNA病毒的检测。
以噬菌体λ和Qβ为骨架基础研发的竞争性内标的模拟假病毒已用于多种病毒的检测(
Figure PCTCN2021080053-appb-000002
et al.2003,
Figure PCTCN2021080053-appb-000003
& Berg 2004,Villanova et al.2007,Meng et al.2009);针对待测靶标的竞争性假病毒内标包含病原体特异性靶标核酸序列和由噬菌体λ和病毒的外壳蛋白,例如基于MS2外壳蛋白制备的第一个被称为“装甲RNA”的商业化竞争内标(Pasloske et al.1998)。还有多种竞争性内标使用的报道(WalkerPeach et al.1999,Drosten et al.2001,Beld et al.2004,Cheng et al.2006,Zhao et al.2007,Wei et al.2008, Meng et al.2009,Zhan et al.2009,Felder &
Figure PCTCN2021080053-appb-000004
2014,Sharma et al.2014)。Zambenedetti等人报道了以MS2噬菌体为基础,构建了利用大肠杆菌为宿主制备的竞争性内标的模拟病毒,并经测试把各种竞争性内标的假病毒用于丙型肝炎病毒的诊断过程中的监控提取、反转录、扩增和检测等步骤。这种模拟病毒和待测病毒靶标序列的不同之处只限于荧光探针结合序列的21个碱基中的14个碱基排列的差别(Zambenedetti et al.2017)。此模拟病毒设计作为竞争性内标,并没有解决二十几年前Gibson报道的竞争性内标设计的(Gibson et al.1996)。在实时定量PCR或RT-PCR反应体系中,含有竞争性内标的模拟病毒颗粒数和待测样本靶标病毒颗粒数相差太多时,多者减少少者的扩增效率,甚至完全完全抑制少者的扩增,这种抑制机制是很复杂的,包括在PCR或RT-PCR过程中反应体系的dNTP、二价Mg2+、酶活性和磷酸化(PPi)的变化引起的动力学的变化。
本发明是为解决上述竞争性内标的缺点,利用含有掺入已精确定量的掺入内标使待测靶标的定性检测更准确,并且可根据掺入内标的模拟病毒拷贝数或由其衍生的DNA、RNA、cDNA掺入内标分子数(拷贝数),可以较精准的计算待测样本中待测靶标(病毒、DNA或RNA)的拷贝数。
参考文献:
Beld M,Minnaar R,Weel J,Sol C,Damen M,Van der Avoort H,et al.Highly sensitive assay for detection of enterovirus in clinical specimens by reverse transcription-PCR with an armored RNA internal control.J Clin Microbiol.2004;42(7):3059-64.
Cheng Y,Niu J,Zhang Y,Huang J,Li Q.Preparation of His-tagged armored RNA phage particles as a control for real-time reverse transcription-PCR detection of severe acute respiratory syndrome coronavirus.J Clin Microbiol.2006;44(10):3557-61.
Clancy A,Crowley B,Niesters H,Herra C.The development of a qualitative real-time RT-PCR assay for the detection of hepatitis C virus.Eur J Clin Microbiol Infect Dis.2008;27(12):1177-82.
Cleland A,Nettleton P,Jarvis L,Simmonds P.Use of bovine viral diarrhea virus as an internal control for amplification of hepatitis C virus.Vox Sang.1999;76(3):170-4.
Dingle KE,Crook D,Jeffery K.Stable and noncompetitive RNA internal control for routine clinical diagnostic reverse transcription-PCR.J Clin Microbiol.2004;42(3):1003-11.
Dreier J,
Figure PCTCN2021080053-appb-000005
 M,Kleesiek K.Use of bacteriophage MS2 as an internal control in viral reverse transcription-PCR assays.J Clin Microbiol.2005;43(9):4551-7.
Drosten C,Seifried E,Roth WK.TaqMan 5’-nuclease human immunodeficiency virus type 1 PCR assay with phage-packaged competitive internal control for high-throughput blood donor screening.J Clin Microbiol.2001;39(12):4302-8.
Felder E,
Figure PCTCN2021080053-appb-000006
 R.Development of a versatile and stable internal control system for RT-qPCR assays.J Virol Methods.2014;208:33-40.
Garson JA,Grant PR,Ayliffe U,Ferns RB,Tedder RS.Real-time PCR quantitation of hepatitis B virus DNA using automated sample preparation and murine cytomegalovirus internal control.J Virol Methods.2005;126(1-2):207-13.
Gerriets JE,Greiner TC,Gebhart CL.Implementation of a T4 extraction control for molecular assays of cerebrospinal fluid and stool specimens.J Mol Diagn.2008;10(1):28-32.
Hoorfar J,Malorny B,Abdulmawjood A,Cook N,Wagner M,Fach P.Practical considerations in design of internal amplification controls for diagnostic PCR assays.J Clin Microbiol.2004;42(5):1863-8.
Hymas W,Stevenson J,Taggart EW,Hillyard D.Use of lyophilized standards for the calibration of a newly developed real time PCR assay for human herpes type six(HHV6)variants A and B.J Virol Methods.2005;128(1-2):43-50.
Jin Yong Kim,Jae-Hoon Ko,Yeonjae Kim et al,.(2020)Viral Load Kinetics of SARS-CoV-2 Infection in First Two Patients in Korea.J Korean Med Sci,35(7):e86.
Lirong Zou,Feng Ruan,Mingxing Huang et al,.(2020)SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients.N ENGL JMED,1-3.
Maaroufi Y,de Bruyne JM,Duchateau V,Scheen R,Crokaert F.Development of a multiple internal control for clinical diagnostic real-time amplification assays.FEMS Immunol Med Microbiol.2006;48(2):183-91.
Meng S,Zhan S,Li J.Nuclease-resistant double-stranded DNA controls or standards for hepatitis B virus nucleic acid amplification assays.Virol J.2009;6(226):1-7.
Miriam Ribas Zambenedetti,Daniela Parada Pavoni,Andreia Cristine Dallabona,Alejandro Correa Dominguez,Celina de Oliweira poersch,Stenio Perdigao Fragoso,Marco Aurelio Krieger,ea al.Inernal control for real-time polymerase chain reaction based on MS2bacteriophage for RNA viruses diagnostics.Mem inst Oswaldo Cruz.2017;112(5):339-347.
Ninove L,Nougairede A,Gazin C,Thirion L,Delogu I,Zandotti C,et al.RNA and DNA bacteriophages as molecular diagnosis controls in clinical virology:a comprehensive study of more than 45,000routine PCR tests.PLoS ONE.2011;6(2):1-7.
Pasloske BL,Walkerpeach CR,Obermoeller RD,Winkler M,DuBois DB.Armored RNA technology for production of ribonuclease-resistant viral RNA controls and standards.J Clin Microbiol.1998;36(12):3590-4.
Rolfe KJ,Parmar S,Mururi D,Wreghitt TG,Jalal H,Zhang H,et al.An internally controlled,one-step,real-time RT-PCR assay for norovirus detection and genogrouping.J Clin Virol.2007;39(4):318-21.
Rosenstraus M,Wang Z,Chang SY,DeBonville D,Spadoro JP.An internal control for routine diagnostic PCR:design,properties,and effect on  clinical performance.J Clin Microbiol.1998;36(1):191-7.
Sharma N,Chand D,Shukla A,Singh M,Govil RK,Bihari B,et al.Internal controls for the quality assessment of polymerase chain reaction methods for the diagnosis of infectious & autoimmune disease.Sch J App Med Sci.2014;2(1D):485-8.
Figure PCTCN2021080053-appb-000007
 M,Berg J.Internal control DNA for PCR assays introduced into lambda phage particles exhibits nuclease resistance.Clin Chem.2004;50(11):2163-6.
Figure PCTCN2021080053-appb-000008
 M,Leb V,Berg J.A convenient approach to the generation of multiple internal control DNA for a panel of real-time PCR assays.J Virol Methods.2003;108(1):1-8.
Ursula E.M,Gibson,Christian A.Heid,and P.Mickey Williams,et al.A Novel Method for Real Time Quantitative RT-PCR.Genome Res.1996;6:995-1001.
Villanova GV,Gardiol D,Taborda MA,Reggiardo V,Tanno H,Rivadeneira ED,et al.Strategic approach to produce low-cost,efficient,and stable competitive internal controls for detection of RNA viruses by use of reverse transcription-PCR.J Clin Microbiol.2007;45(11):3555-63.
WalkerPeach CR,Winkler M,DuBois DB,Pasloske BL.Ribonuclease-resistant RNA controls(Armored RNA)for reverse transcription-PCR,branched DNA,and genotyping assays for hepatitis C virus.Clin Chem.1999;45(12):2079-85.
Wei Y,Yang C,Wei B,Huang J,Wang L,Meng S,et al.RNaseresistant virus-like particles containing long chimeric RNA sequences produced by two-plasmid coexpression system.J Clin Microbiol.2008;46(5):1734-40.
Yang Pan,Daitao Zhang,Peng Yang.(2020)Viral load of SARS-CoV-2 in clinical samples.Lancet Infect Dis,https://doi.org/10.1016/S1473-3099(20)30113-4.
Zhan S,Li J,Xu R,Wang L,Zhang K,Zhang R.Armored long RNA  controls or standards for branched DNA assay for detection of human immunodeficiency virus type 1.J Clin Microbiol.2009;47(8):2571-6.
Zhao L,Ma Y,Zhao S,Yang N.Armored RNA as positive control and standard for quantitative reverse transcription-polymerase chain reaction assay for rubella virus.Arch Virol.2007;152(1):219-24.
发明内容
本发明例如涉及用于定量检测样品中的核酸靶标的重组病毒颗粒。具体地,本发明涉及定性和定量检测新型冠状病毒(SARS-CoV-2)RNA的掺入(Spike-in)采集样品的阳性参考品及其应用。
具体地,本发明涉及以下方面:
1.模拟病毒载体,其特征在于以病毒(优选慢病毒或腺病毒)骨架为载体,在慢病毒骨架中包含一个或多个定量检测核酸片段和用于示踪的荧光蛋白的编码基因,
所述定量检测核酸片段的长度与检测样品的核酸靶标序列长度相同,且与所述检测样品的核酸靶标序列含有相同百分比的碱基组成,其中定量检测核酸片段的5’端序列A和3’端序列B与检测样品的核酸靶标序列的相应5’端序列A’和3’端序列B’的序列相同或不相同,其中序列A由用于扩增检测样品的核酸靶标序列的5’端引物序列与其临近下游2个碱基组成,序列B由用于扩增检测样品的核酸靶标序列的3’端引物序列与其临近上游2个碱基组成,所述定量检测核酸片段的所述5’端序列A和所述3’端序列B之间的序列与所述检测样品的核酸靶标序列的所述5’端序列A’和所述3’端序列B’之间的序列的所有碱基排列顺序完全不同(优选不存在连续三个碱基以上,例如,连续4个、5个、6个、7个碱基以上相同的排列序列,优选8-30个碱基排序不同),
优选地,在所述1个或多个定量检测核酸片段与所述荧光蛋白之间彼此通过接头连接,更优选地,所述接头长度为6-800bp,优选20-800bp或6-200bp,优选地,所述接头含转录控制元件,包括但不限于如CMV(promoter)、IRES(核糖体结合位点)。
2.项目1所述的模拟病毒载体,其中所述检测样品的核酸靶标序列来自生物体,所述生物体选自病毒、细菌、真菌、植物、动物(包括低等动物和高等动物,优选地,低等动物包括但不限于线虫、果蝇,高等动物包括但不限于马哈鱼、斑马鱼和哺乳动物,更优选地,所述哺乳动物包括但不限于人、猩猩、猴子、鼠)。
3.项目2所述的模拟病毒载体,其中所述病毒选自DNA病毒(如单纯疱疹病毒,甲型肝炎病毒,乙型肝炎病毒,人乳头瘤病毒,腺病毒,HPV)或RNA病毒(如丙型肝炎病毒,人类免疫缺陷病毒,冠状病毒,流感病毒如禽流感病毒或猪流感病毒);所述细菌包括但不限于肺结核、淋病、炭疽病、梅毒、鼠疫、沙眼等,所述真菌选自但不限于霉菌、酵母、块菌以及其他人类所熟知的菌菇类;
优选所述冠状病毒选自SARS病毒,MERS病毒和SARS-CoV-2病毒。
4.项目3所述的模拟病毒载体,其特征在于,定量检测核酸片段的长度为80bp-60kb,优选80bp-19.5kb,80bp-17.5kb,80bp-1.5kb,80bp-1kb,80bp-500bp,更优选地80bp-200bp,并且所述定量检测核酸片段及定量检测核酸片段之间的接头序列的总长度不超过8.5kb,8kb或7kb。
5.项目1-4任一项所述模拟病毒载体,其中所述慢病毒载体为lentivirus病毒载体(优选pEZ-Lv201)或FIV病毒载体。
6.项目1-5任一项所述模拟病毒载体,其中所述慢病毒载体包括但不限于二代、三代慢病毒载体。
7.项目5或6所述的模拟病毒载体,其中当所述检测样品的核酸来自SARS-CoV-2时,所述检测样品的核酸靶标序列为选自下述编码基因的至少2种:Orf1ab编码基因全长或其片段、S蛋白编码基因全长或其片段、E蛋白编码基因全长或其片段、N蛋白编码基因全长或其片段。
8.项目7所述的模拟病毒载体,其中
所述定量检测核酸片段选自下述一种或多种:
检测靶向序列1(对应检测样品的Orf1ab编码基因片段)包括选自SEQ ID NO:1至SEQ ID NO:2的序列或其组合或至少由选自SEQ ID NO:1至SEQ ID NO:2的序列或其组合组成;
检测靶向序列2(对应检测样品的S蛋白编码基因片段)包括或至少由SEQ ID NO:3序列组成;
检测靶向序列3(对应检测样品的E蛋白编码基因片段)包括或至少由SEQ ID NO:4序列组成;
检测靶向序列4(对应检测样品的N蛋白编码基因片段)包括选自以下SEQ ID NO:5至SEQ ID NO:8的序列或其任意组合或至少由选自以下SEQ ID NO:5至SEQ ID NO:8的序列或其任意组合组成;
9.项目8所述的模拟病毒载体,其中所述模拟病毒的序列SEQ ID NO:9
10.利用项目1-9任一项的模拟病毒载体制备的模拟病毒颗粒,优选将所述模拟病毒载体转染到人293T细胞株中来制备所述模拟病毒颗粒。
11.项目1-9任一项所述的模拟病毒载体或项目10所述的模拟病毒颗粒在选自以下用途中的应用:
(1)定性和定量检测样品中的核酸靶标;例如作为检测样品中核酸靶标存在(例如来自COVID-19患者、SARS-CoV-2携带者、COVID-19疑似患者或样品中SARS-CoV-2)的参照标准品(定性:如阳性和阴性的判断)的应用,例如用于样本采集、样品保存和样品RNA提取过程中的质量分析和质量控制,或例如用于定量检测样品中SARS-CoV-2中的应用
(2)制备检测样品中核酸靶标的试剂或试剂盒中的应用;
(3)用于评价例如携带所述核酸靶标的患者治疗效果中的应用
(4)用于评价或筛选治疗所述生物体(例如细胞,病毒或真菌)导致的疾病的药物中的应用。
12.定性和定量参照标准品RNA,其通过提取项目10所述模拟病毒颗粒制备,其中所述生物体为RNA病毒。
13.项目12所述的定性和定量参照标准品RNA,其在检测RNA病毒如SARS-CoV-2的过程涉及的从RNA反转录为cDNA的过程中用作参照标准品,例如用于以RNA为样本的反转录反应体系中的质量分析和质量控制。
14.定性和定量参照标准品cDNA或DNA,其中定性或定量参照标准 品cDNA通过反转录项目12所述的定性或定量参照标准品RNA制备,定量参照标准品DNA通过提取项目10的模拟病毒颗粒的DNA制备,其中所述生物体的遗传物质为DNA。
15.项目14所述的定性和定量参照标准品cDNA或DNA,其用于检测RNA病毒(如SARS-CoV-2)的过程中或用于检测遗传物质为DNA的生物体的过程中涉及的DNA扩增过程中扩增效率和荧光信号的质量分子和质量控制。
16.定性和定量检测样品的核酸靶标序列的试剂盒,其包含
(1)项目10所述的模拟病毒颗粒、项目12或13的定性或定量参照标准品RNA或项目14或15的定性或定量参照标准品cDNA或DNA,
(2)用于扩增持家基因的引物和探针,
(3)用于扩增项目12或13的定性或定量参照标准品RNA或项目14或15的定性和定量参照标准品cDNA或DNA的引物和探针,
(4)用于扩增检测样品的核酸靶标的引物和探针,
其中(3)和(4)中的引物相同,(2)、(3)和(4)中的探针的标记彼此不同。
17.项目16所述的试剂盒,其中所述引物的长度为12-30bp,探针长度20-30bp,引物与探针的退火温度差值10℃左右。
18.项目16或17所述的试剂盒,其中(2)、(3)和(4)中的探针标记选自Cy5,Fam或Hex或AP593。
19.项目18所述的试剂盒,其中试剂盒中的引物和探针序列由持家基因的引物和探针以及检测靶向序列的引物和探针组成,具体如下:
(1)持家基因的引物和探针序列见SEQ ID NO:10至SEQ ID NO:21;
(2)检测靶向序列1(对应检测样品的Orf1ab编码基因片段)的探针序列见SEQ ID NO:22、SEQ ID NO:23;
(3)检测靶向序列2(对应检测样品的N蛋白编码基因片段)的探针序列见SEQ ID NO:24至SEQ ID NO:27;
(4)检测靶向序列3(对应检测样品的S蛋白编码基因片段)的探针序列见SEQ ID NO:28;
(5)检测靶向序列4(对应检测样品的E蛋白编码基因片段)的探针序列见SEQ ID NO:29;
(6)扩增检测靶向序列1的引物见序列SEQ ID NO:30至SEQ ID NO:33;
(7)扩增检测靶向序列2的引物见序列SEQ ID NO:34至SEQ ID NO:41;
(8)扩增检测靶向序列3的引物见序列SEQ ID NO:42、SEQ ID NO:43;
(9)扩增检测靶向序列4的引物见序列SEQ ID NO:44、SEQ ID NO:45;
20.定性和定量检测样品的核酸靶标序列的方法,包括使用项目16-19任一项所述的试剂盒。
21.项目20所述的方法,包括:
扩增步骤1:用项目19所述试剂盒中的扩增检测靶向序列1-4的至少2对引物扩增样品SARS-CoV-2的Orf1ab、S蛋白基因,E蛋白基因,N蛋白基因的至少2种,
扩增步骤2:扩增所述检测靶向序列1-4;
扩增步骤3:扩增持家基因。
22.项目2-21任一项所述的方法,其中扩增步骤1-扩增步骤3在相同或不同的反应体系中进行。
23.本发明的上述任一项项目可以用于任何DNA或RNA病毒,包括但不限于HBV,HCV,HPV,HIV。本发明的定量检测核酸片段的设计示意图参见图20(以及图28几种实例图)。以中国CDC推荐的新冠状病毒SARS-CoV-2的orf1ab基因和本发明选择的spike蛋白编码基因为例,定量检测核酸片段的设计示意图参见图21和图22。图24是用于新型冠状病毒(SARS-CoV-2)核酸检测试剂盒的原料和试剂盒生产流程中质量分析和质量控制的“质控品”。图25是新型冠状病毒(SARS-CoV-2)核酸检测试剂盒(定量),显示了本发明的掺入阳性参考品添加到图24流程的采样管中。
为了更好解决竞争和非竞争的定量检测核酸片段(掺入内标)存在的问题,需要更好的确定对待测靶标检测的最低极限值和精确的计算待测样 本中待测靶标的分子数。
对于一种特定生物体的待测靶标的核酸序列的竞争性和非竞争性的的定量检测核酸片段(掺入内标)的设计,按掺入内标扩增子区域的引物区域、探针区域及其之间的间隔区的序列和待测靶标序列扩增子区域的相对应的引物区域、探针区域和间隔区域的碱基序列排列的差异,可设计的掺入内标的种类很多,其设计基本原则见表A。
表A 掺入待测样本或样本采集装置(管)掺入内标(DNA或RNA)序列示例性的设计基本原则
Figure PCTCN2021080053-appb-000009
定义
为了促进对本发明的理解,下文给出术语的解释:
模拟病毒:又称假病毒(Pseudovirus)。
待测靶标:是指选自来源于已知DNA或RNA序列的生物体基因组的部分序列片段,例如待检测样品的核酸靶标序列,感染SARS-CoV-2病毒样 本的SARS-Coy-2基因N靶标序列。
质控品(Reference standard,Reference material):是指含有和来自某种生物体待测靶标(DNA或RNA)序列相同的碱基百分比组成和相同排列序列的模拟病毒及其衍生的DNA、RNA或cDNA。
标准品(定性和定量参照标准品)(Reference standard,Reference material):是指含有和来自生物体待测靶标(DNA或RNA)碱基序列数目(bp)相同,碱基百分比组成也相同,但碱基排列序列可有8-25%,4-10%,2-5%相同的模拟病毒及其衍生的DNA、RNA或cDNA。
定量检测核酸片段:是指掺入内标(Internal controls,简写ICs),其掺入片段是与标准品一样的核酸序列片段,也是指可掺入待测样品或样品采集装置(管)的标准品。
例如,掺入内标设计标准包括:
(1)可监测诊断程序的所有步骤(采样、核酸提取、RT、PCR,或RT-PCR);
(2)可用于DNA或RNA待测靶标;
(3)生产模拟病毒(假病毒)载体的DNA残留拷贝数需要有最低量限制;
(4)可以是单一或多重的形式,用于一步或两步法RT-PCR反应。
如本文使用的术语“参照品”也有称“参照标准品(reference standard)”,是指具有一种或多种足够均匀并很好确定了含量、序列、活性、结构或分型等生物测量特性(量)值,用以校准仪器、评价生物测量方法或给材料赋值的物质。
在本发明中,“定量检测核酸片段的所述5’端序列A和所述3’端序列B之间的序列与所述检测样品的核酸靶标序列的所述5’端序列A’和所述3’端序列B’之间的序列的所有碱基排列顺序完全不同”是表示两者之间不存在连续三个碱基以上,例如,连续4个、5个、6个、7个碱基以上相同的排列序列,例如,优选8-30个碱基排序不同。
在本发明中,可以使用的慢病毒载体(lentivirus vector)和腺病毒载体(Adenovirus vector)为本领域中常规使用的载体,且已被证明无生物 安全性问题,包括lentivirus病毒载体(Gene delivery by lentivirus vector,Cockrell,Adam S.,et al.,Molecular Biotechnology 36(3),184-204;Lentiviral Vector System for Gene Transfer,Gilbert,James R.,et al.,2003,https://books.goole.com/books?)或FIV病毒载体(Feline Immunodeficiency Virus(FIV)as a Model for Study of Lentvirus Infections:Parallels with HIV,John,H.Elder et al.,Curr HIV Res 2010,January,8(1):73-80;Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors,Eric M.Poeschla et al.,Nature Medicine,volume 4,No.3,March 1998;FIV:from lentvirus to lentivector,Dyana T.Saenz et al.,J.Gene Med 2004,6,S95-S104)。在具体的实施方案中,所述慢病毒载体为pEZ-Lv201。
附图说明
图1是截至2020年3月6日,国家药品监督管理局应急审批通过的新冠病毒检测试剂清单。
图2是构建用于NGS、RT-PCR方法检测2019-nCov可掺入参照标准的“模拟病毒”载体骨架。
图3是合成片段电泳图。Lane 1:Marker 6000;Lane 2:PCR合成产物L(362bp)。
图4是菌落PCR检测结果电泳图。Lane 1:Marker 6000;Lane 2:菌落PCR产物(640bp);Lane 3:菌落PCR产物(640bp);Lane 4:菌落PCR产物(640bp);Lane 5:菌落PCR产物(640bp);Lane 6:菌落PCR产物(640bp);Lane 7:菌落PCR产物(640bp)。
图5是orf1ab与G119753的blast结果图。
图6是重组慢病毒颗粒的制备流程示意图。
图7是梯度稀释的参考品log(起始拷贝数)对应Ct值的标准曲线图。图注:将所有梯度稀释的参照标准品进行qPCR反应,获得每一个样品的Ct值(扩增阈值循环数),以log(起始拷贝数)为横坐标X、Ct值为纵坐标Y,获得标准曲线,并获得曲线公式及相关系数R 2
图8是慢病毒感染H1299细胞后的荧光图。图注:将图中所有绿色荧光亮点计数,图中箭头表示其中一个荧光点。
图9是带eGFP荧光的细胞流式细胞仪分析的数据图图注:流式细胞仪测定带eGFP荧光的细胞,获得标记荧光的细胞所占百分比。纵坐标:SSC-A指相对颗粒度或内部复杂程度;横坐标:FITC-A指颗粒相对大小;P1-1,P1-2,P1-3:指不是带荧光的目标细胞;P1-4指分选出来的带荧光的目标细胞,阳性率为2.23%。
图10是梯度稀释cDNA样品中ORF1ab靶标(图a),N基因靶标(图b)和S基因靶标(图c)的ddPCR一维液滴分布图与拷贝数浓度定量曲线(图d-f)。
图11是ddPCR液滴一维图。蓝色液滴为阳性液滴,灰色液滴为阴性液滴,红色为基线。横坐标表示液滴数,纵坐标表示荧光强度。
图12是RNA扩增效率图。横坐标表示Log 10Copies,其中Copies为200000、100000、10000、1000、100,纵坐标表示Ct。
图13是ddPCR原始液滴数据图,横坐标为液滴数,纵坐标为荧光强度。以ORF1ab为检测靶标,加入2ul模板进行反应,阳性液滴数为2360copies。
图14是cDNA Standard #2梯度qPCR标准曲线——ORF1ab,横坐标为Log 10Copies,纵坐标为Ct值。
图15是cDNA Standard #2梯度qPCR标准曲线——S,横坐标为Log 10Copies,纵坐标为Ct值。
图16是cDNA Standard #2梯度qPCR标准曲线---E,横坐标为Log 10Copies,纵坐标为Ct值。
图17是cDNA Standard #2梯度qPCR标准曲线---N,横坐标为Log 10Copies,纵坐标为Ct值。
图18是各基因扩增曲线。a,ORF1ab-FAM基因的扩增曲线,横坐标为循环数,纵坐标为ΔRn(ΔRn是Rn扣除基线后得到的标准化结果);b,N-FAM基因的扩增曲线,横坐标为循环数,纵坐标为ΔRn;c,S-FAM基因的扩增曲线,横坐标为循环数,纵坐标为ΔRn;d,E-FAM基因的扩增曲线, 横坐标为循环数,纵坐标为ΔRn。
图19是根据Ct值与拷贝数的标准曲线计算“可掺入”模拟病毒N基因的拷贝数浓度。
图20是本发明的定量检测核酸片段的设计示意图。设计已知DNA或RNA序列的所有物种的可掺入待测样本或样本采集装置(管)的阳性标准品的方法。
图21是以中国CDC推荐的新冠状病毒SARS-Coy-2的orf1ab基因为例,示例性显示本发明的定量检测核酸片段的设计示意图,其中A表示野生型SARS-CoV-2的RNA序列(2019-nCoV RNA Sequence);B表示选择的用作检测样品的核酸靶标序列的SARS-CoV-2RNA序列(Amplicon for Virus target detection),其中下划线表示的是与探针互补的序列,两个箭头分别表示用于扩增检测样品的核酸靶标序列的上游引物和下游引物;C表示含有本发明的定量检测核酸片段的RNA序列(Selected amplicon for阳性参考品),其中下划线表示的是与探针互补的序列,从C中显示的序列可见,定量检测核酸片段的5’端和3’端与检测样品的核酸靶标序列的相应5’端和3’端的序列相同,序列相同的长度为用于扩增检测样品的核酸靶标序列的5’端引物和3’端引物的长度分别与5’端引物的下游2个碱基和3’端引物的上游两个碱基长度之和。
图22是以本发明选择的新冠状病毒SARS-CoV-2的spike蛋白编码基因为例,示例性显示本发明的定量检测核酸片段的设计示意图,
图23是“可掺入的模拟病毒“cDNA添加量对”模拟病毒“cDNA中新冠病毒靶标定量结果的影响。横坐标为“可掺入的模拟病毒”cDNA添加量的对数,纵坐标为”模拟病毒“cDNA中ORF1ab和S靶标的Ct值
图24是用于新型冠状病毒(SARS-Coy-2)核酸检测试剂盒的原料和试剂盒生产流程中质量分析和质量控制的“质控品”。
图25是新型冠状病毒(SARS-Coy-2)核酸检测试剂盒(定量)。
图26是“模拟病毒”掺入标准品RNA中N基因,S基因(图b)的One-step RT-ddPCR一维液滴分布图(图a-b)与拷贝数浓度定量曲线(图c)。
图27标准品N基因浓度梯度标准曲线。
图28是设计已知DNA或RNA序列的所有物种的可掺入待测样本或样本采集装置(管)的阳性标准品的方法图,其中,a:阳性标准品方法设计概念图;b:一种插入SARS-CoV-2的“N”基因靶标的实例;c:一种插入HPV的E6基因靶标的实例;d:一种插入人类基因组ACE2基因靶标的实例。
图29是RNA扩增效率图,横坐标表示Log 10Copies,其中Copies为10000、1000、100、10,纵坐标表示Ct。对系列点进行线性拟合,根据趋势线的斜率k来进行扩增效率E的计算:E=(10 (-1/k)-1)×100%。
图30为掺入标准品RNA之后的质控品RNA定量标准曲线图,横坐标表示质控品RNA的拷贝数浓度,纵坐标表示平均Ct值。
图31为掺入质控品RNA之后的标准品RNA定量标准曲线图,横坐标表示标准品RNA的拷贝数浓度,纵坐标表示平均Ct值。
具体实施方式
虽然本发明已对其具体实施方式进行描述,然而某些修改和等同物对于本领域技术人员是显而易见的,并且旨在包括在本发明的范围之内。
通过以下实施例对本发明进行阐述,以下实施例不以任何方式限制本发明。
实施例1:重组质粒的构建方法
1.实验材料
试剂:DNA Polymerase(Gencopoeia,C0103A);引物Oligo(Invitrogen);克隆载体pEZ-Lv201(Genecopoeia);Fast-Fusion TM Cloning Kit(Gencopoeia,FFPC-C020);胶回收试剂盒(Omega);2T1感受态(Genecopoeia,U0104A);STBL3感受态(Genecopoeia,U0103A);限制性内切酶(Fermentas);DNA Ladder(Genecopoeia);
Figure PCTCN2021080053-appb-000010
Gel Extraction Kit(OMEGA);UltraPF TM DNA Polymerase Kit(Genecopoeia,C0103A);
Figure PCTCN2021080053-appb-000011
Plasmid Mini Kit I(OMEGA);无内毒素质粒小/ 中提试剂盒(Omega)。
2.实验步骤
本实施例将冠状病毒核酸检测靶向序列和荧光蛋白基因序列插入慢病毒载体,具体步骤如下:
A.载体设计
1.载体骨架如图2所示
2.表达克隆信息
将SARS-CoV-2特异靶向orf1ab序列片段克隆至慢病毒克隆载体。
SARS-CoV-2特异靶向orf1ab序列见SEQ ID NO:1
3.构建步骤
(1)SARS-CoV-2特异靶向orf1ab序列片段合成
根据插入序列设计并合成表1中片段合成引物
表1.插入片段合成引物
Figure PCTCN2021080053-appb-000012
将表1中引物进行稀释至50pmol/μl,各取1μl混合均匀,备用;
插入序列进行合成PCR扩增:以表1中引物混合物为模板,以cCDC-orf1ab-PF1+cCDC-orf1ab-PF10为引物,采用表2的反应体系和表3 的反应程序,扩增获得插入片段M,电泳检测结果见图3,得到产物L片段约362bp,随后用OMEGA的
Figure PCTCN2021080053-appb-000013
Cycle Pure Kit纯化PCR产物和合成片段。
合成用于可掺入的例如NGS、RT-PCR方法检测2019-nCov参照标准的“模拟病毒”的靶向序列插入片段M,其序列见SEQ ID NO:46;
表2.PCR反应体系
试剂名称 1×体积
5×UltraPF TMBuffer 5μl
dNTP(25mM) 0.2μl
Mg 2+(50mM) 0.75μl
UltraPF TMDNA Polymerase(5U/μl) 0.2μl
表1引物混合物 1μl
引物(5pmol/L) 2μl
ddH 2O 加至25μl
表3.PCR反应程序
Figure PCTCN2021080053-appb-000014
B.将合成插入片段M克隆至目的载体
1.载体的酶切
按表4建立酶切体系。用OMEGA的
Figure PCTCN2021080053-appb-000015
Gel Extraction Kit回收载体酶切产物。
表4 酶切体系
试剂 用量
pEZ-Lv201 3μg
10×NEB buffer 4μl
EcoRI(NEB) 0.4μl(10μ/μl)
XhoI(NEB) 0.4μl(10μ/μl)
ddH 2O 加至40μl
2.合成插入片段M和质粒载体的连接
用Fast-Fusion Cloning Kit进行In-fusion反应,反应结束后取5μl用于转化大肠杆菌感受态细胞2T1。
3.PCR法筛选基因重组克隆
每个PCR反应体系分装16μl ddH 2O和1μl载体引物SEQ ID NO:47和SEQ ID NO:48(5pmol/μl,),PCR反应程序如表5;电泳检测PCR产物,检测结果见图4,对照Marker估计DNA片段的大小,选择出含目的DNA片段的阳性克隆。用OMEGA的
Figure PCTCN2021080053-appb-000016
Plasmid Mini Kit I提取质粒DNA,质粒送测序,通过图5中比对结果获知测序质粒G119753为预期正确克隆,其中表达出RNA序列从5’LTR到3’LTR序列(插入2019-nCov“模拟病毒”RNA序列)为片段N,见序列SEQ ID NO:49,质粒全序列(“模拟病毒”载体全序列)为片段W,见序列SEQ ID NO:9;
表5.PCR反应程序
Figure PCTCN2021080053-appb-000017
实施例2:慢病毒制备
获得重组慢病毒载体后,可以制备重组慢病毒颗粒。流程检测图6。
1.实验材料试剂:培养基(CORNING,10-013-CV),胎牛血清(Excell Bio,FSP500),Lenti-Pac TM HIV慢病毒包装试剂盒(GeneCopoeia,LT003)
2.实验步骤
慢病毒制备步骤如下:
1. 293T
Figure PCTCN2021080053-appb-000018
细胞在10%胎牛血清的DMEM培养基中、在含5%CO 2、37℃下培养,按照Lenti-Pac TM HIV慢病毒包装试剂盒推荐流程使用实施例1制备的重组质粒和含有Gag-pol和Rev的辅助质粒共转染细胞);
2.转染12h后,更换含有新鲜培养基,继续培养24h;
3.收集培养细胞的上清液,上清液中含有慢病毒颗粒(命名为LPP-WH-Fragment3-Lv201)。
实施例3:慢病毒浓缩
1.实验材料
试剂:Lentivirus Concentration Solution(6X)(GeneCopoeia,LT007),PBS(GeneCopoeia,PE002)。
2.实验步骤
1).从工具细胞培养板或培养瓶收集上清液,上清液即含有慢病毒颗粒。上清液可通过4℃2000g离心10min去除细胞碎片。
2).浓缩试剂购买于GeneCopoeia公司(Lenti-Pac TM慢病毒浓缩试剂,LT007)。按慢病毒液体积∶浓缩试剂体积=5∶1的比例混合慢病毒上清液和浓缩试剂(直接添加慢病毒浓缩试剂6X原液即可),在0~4℃温度下孵育2h或以上(也可孵育过夜)。在慢病毒的稳定保存期内,适当延长孵育时间可提高慢病毒的回收率。注意:慢病毒在0~4℃下可稳定保存约3天。
3).完成孵育后,混合液在4℃下3500g离心25min。
4).离心后,小心吸走、弃去上清液,留下沉淀物为慢病毒颗粒。
注意:请避免吸走离心沉淀物,该沉淀物为慢病毒颗粒(部分情况下,沉淀物不一定肉眼可见)。
5).根据步骤1收集并用于浓缩的慢病毒上清液体积,量取其1/10-1/100体积的DMEM或PBS,重新吹打悬起慢病毒沉淀(举例:如步骤1收集的上清液有10mL,则本步骤量取的DMEM或PBS为0.1mL-1mL)。
注意:重新悬浮慢病毒沉淀时,吹打操作要轻柔。
6).重悬的慢病毒液已完成浓缩操作,可分装后保存在-80℃,并同时取少量测定浓缩后的慢病毒检测滴度。
实施例4:慢病毒定量
1.实验材料
试剂:培养基(CORNING,10-013-CV),胎牛血清(Excell Bio,FSP500),PBS(GeneCopoeia,PE002),Trypsin(CORNING,25-053-CI),Lenti-Pac TM慢病毒滴度检测试剂盒(GeneCopoeia,LT006),青霉素-链霉素双抗溶液(HyClone),RNaseLock TMRNase抑制剂。
2.实验步骤
我们可以采用四种方法测定慢病毒滴度:
方法i:使用实时荧光定量PCR仪检测慢病毒物理滴度。
方法ii:使用荧光显微镜细胞计数法测定慢病毒生物拷贝数(滴度)。
方法iii:使用流式细胞荧光计数法测定慢病毒生物滴度。
方法iv:ddPCR方法检测慢病毒RNA拷贝数。
表6.四种测定结果比较:
Figure PCTCN2021080053-appb-000019
具体方法i:实时荧光定量PCR仪检测慢病毒物理滴度
1.RNA提取
按照分子克隆实验操作指南提取RNA。最后用50μL的TE缓冲液溶 解RNA沉淀(此处TE缓冲液为DEPC处理过的水配制成100μM TE缓冲液,其在本发明中溶解RNA沉淀均使用此TE缓冲液)。
2.用DNase I处理(去除游离细胞基因组及质粒)
DNase I反应。用1.5mL管子,按表7进行以下反应(总体积25μL):
表7 DNase I反应体系
试剂 用量
DEPC水 1.5μL
Lentiviral RNA 20.0μL
DNase I buffer(10×) 2.5μL
DNase I 1.0μL
总量 25.0μL
孵育:1)37℃,30-60min;2)75℃,10min(使DNase I失活)
注意:如果遗漏了DNase I消化步骤,必须在qPCR反应步骤中加上以未反转录的RNA样品为模板的qPCR反应作为对照,该对照确定(未经过DNase I消化的)样品中所携带的质粒DNA拷贝数,用反转录产物作为模板进行的qPCR反应所确定的拷贝数减去该对照确定的质粒DNA拷贝数,即为样品中RNA拷贝数。
3.反转录
按表8制备RNA-Primer Mix,混匀RNA-Primer Mix,在70℃温育5min后,将离心管立即置于冰上至冷却。
表8 RNA和cDNA Synthesis Primer结合反应体系
试剂 用量
RNA(经过DNase I消化过的) 10.0μL
cDNA Synthesis Primer(4.0μM) 5.0μL(终浓度1.0μM)
注意:试剂盒里的随机引物(在反转录反应液中的终浓度为10μM)可用于替代HIV cDNA Synthesis Primer。无需同时使用cDNA Synthesis  Primer和随机引物。
1)按表9准备反转录反应体系,继续加入其它组分(总体积20μL),37℃温育60min。
表9 反转录反应体系
试剂 用量
Reverse Transcription Buffer(10×) 2.0μL
25mM dNTP 1.0μL
RNaseLock TMRNase抑制剂 1.0μL
Reverse Transcription Enzyme 1.0μL
总量 20.0μL
2)90℃,10min。该产物作为待测样品可直接用于qPCR检测实验,或者保存于-20℃。
4.qPCR反应
1)准备制作标准曲线样品
稀释阳性参照标准品(来自试剂盒Lenti-Pac TM慢病毒滴度检测试剂盒(GeneCopoeia,LT006),其拷贝数为1x10 9copies/μL)。
制作标准曲线(后续每个稀释梯度取2μL作为模板进行qPCR反应)。
①起始拷贝数:1x10 8copies/μL(操作方法:5μL qPCR standard(DNA)+45μL ddH 2O)
②起始拷贝数:1x10 7copies/μL(操作方法:5μL①+45μL ddH 2O)
③起始拷贝数:1x10 6copies/μL(操作方法:5μL②+45μL ddH 2O)
④起始拷贝数:1x10 5copies/μL(操作方法:5μL③+45μL ddH 2O)
⑤起始拷贝数:1x10 4copies/μL(操作方法:5μL④+45μL ddH 2O)
⑥起始拷贝数:1x10 3copies/μL(操作方法:5μL⑤+45μL  ddH 2O)
2)按表10进行准备qPCR反应体系(总体积20μL):
表10 qPCR反应体系
Figure PCTCN2021080053-appb-000020
注意:
①将反应体系中的各个组分进行预混(除了阳性参照标准品和样品)后再进行分管。
②qPCR反应中要设置无模板(NTC)组。
③参考品取样,每个稀释管取2μL:
3)qPCR反应程序
按表11反应程序适用于Bio-Rad iQ5 real time PCR检测系统。溶解曲线程序见表12。本领域技术人员可以根据所使用的检测系统进行常规微调。
表11 qPCR反应程序
Figure PCTCN2021080053-appb-000021
表12 溶解曲线程序
Figure PCTCN2021080053-appb-000022
4)数据分析
①qPCR反应后,读取每一个参考品的Ct值(扩增阈值循环数),以log(起始拷贝数)为横坐标、Ct值为纵坐标绘制标准曲线,如图7(梯度稀释的参考品log(起始拷贝数)对应Ct值的标准曲线图),并获得曲线公式。标准曲线的相关系数应高于0.99。
图7备注:将所有梯度稀释的参考品进行qPCR反应,获得每一个样品的Ct值(扩增阈值循环数),以log(起始拷贝数)为横坐标X、Ct值为纵坐标Y,获得标准曲线,并获得曲线公式及相关系数R 2
②将读取待测样品的Ct值,代入①中(图7中所示)标准曲线的公式(y=-3.4363x+35.451),计算其对应的log(起始拷贝数)及其起始拷贝数。
③将上述起始拷贝数乘以稀释系数(以下为稀释倍数的计算公式),得到原始样本的拷贝数(copies/ml)。
Figure PCTCN2021080053-appb-000023
注意:
(A)RNA体积:50μL(根据本实验流程)
(B)原始样品体积:用于RNA抽提的慢病毒颗粒溶液体积10μl
(C)DNase反应体积:25μL(根据本实验流程)
(D)DNase反应中的RNA体积:20μL(根据本实验流程)
(E)RT反应体积:20μL(根据本实验流程)
(F)RT反应中的RNA体积:10μL(根据本实验流程)
(G)PCR反应中的cDNA体积:2μL(根据本实验流程)
④由于每一个慢病毒颗粒含有2个单股正链的RNA基因组,因此,得到的慢病毒颗粒数应为拷贝数的1/2。故而,慢病毒颗粒数物理滴度(copies/ml)为原始样本拷贝数除以2。表13为慢病毒颗粒物理滴度计算 过程数据表。
表13 慢病毒颗粒物理滴度计算过程数据表
Figure PCTCN2021080053-appb-000024
具体方法ii:使用荧光显微镜细胞计数法测定慢病毒生物拷贝数(滴度)
第一天:培养H1299细胞
Figure PCTCN2021080053-appb-000025
1.使用24孔培养板,每孔各加入细胞5×10 4、DMEM全培养基0.5mL(添加10%热灭活胎牛血清、青霉素-链霉素双抗),在5%CO 2、37℃条件下培养过夜(约24h)。
第二天:感染H1299细胞
2.细胞培养24h后,去除细胞培养液,先加入250μl的DMEM培养基(添加10%热灭活胎牛血清、青霉素-链霉素双抗溶液),再加入以下步骤3所示的稀释慢病毒。每种慢病毒分别对应细胞培养板的3个板孔。
3.慢病毒带有荧光标记可使用荧光显微镜细胞计数法测定检测滴度。先梯度接种慢病毒,每孔添加0.03μL、0.3μL、0.3μL慢病毒原液(各三个复孔)。各孔分别加入适当DMEM培养基(添加10%热灭活胎牛血清、青霉素-链霉素双抗溶液)至终容量为每孔0.5mL。空白对照孔作为参照。
第三天:更换培养基
4.去除旧培养基,以DMEM培养基(添加5%热灭活胎牛血清、青霉素-链霉素双抗溶液)培养24小时。
5.使用倒置荧光显微镜,以荧光显微镜细胞计数法测定慢病毒滴度
选取荧光细胞数量能在显微镜下计算的孔,在显微镜下随机挑选5个视野拍照,计算孔板里荧光数量。
在加入0.03μl病毒的孔中,荧光细胞数量适中能计算细胞数,孔里5 个视野的荧光细胞平均数是X,按下面的公式计算:
慢病毒液滴度(TU/mL)=X(荧光细胞平均数)×63.3(24孔板的面积/显微镜观察视野的面积)/0.03μl(实际添加的慢病毒液体积)。
得到表14使用荧光显微镜细胞计数法测定的慢病毒生物滴度。
表14 荧光显微镜细胞计数法测定的慢病毒生物滴度
Figure PCTCN2021080053-appb-000026
备注:1TU/ml约等于100copies/ml
慢病毒感染H1299细胞后,通过倒置荧光显微镜,得到如图8的荧光图片。(用倒置荧光显微镜,100倍视野,用GFP荧光拍照计数,将图中所有荧光亮点计数,图中箭头表示其中一个荧光点)。图8注:将图中所有荧光亮点计数,图中箭头表示其中一个荧光点。
具体方法iii:流式细胞荧光计数法测定慢病毒生物滴度
步骤1~4,与方法ii中1-4步骤相同。
第四天:以流式细胞荧光计数法测定慢病毒滴度
5.以流式细胞荧光计数法测定慢病毒滴度(流式细胞仪型号:BD FACSMelody)
带上eGFP荧光的细胞可用FACS(流式细胞分析技术)进行计数。使用荧光显微镜可进行eGFP荧光观察。观察荧光状态后,细胞以胰酶消化,用DMEM完全培养基终止消化,再离心500g,10min,使用1ml PBS悬浮细胞,用血细胞计数器测定每孔细胞总数。然后上流式细胞仪进行分析,得出荧光细胞百分比,获得如下图9(带eGFP荧光的细胞流式细胞 仪分析的数据图),按下面的公式计算:
慢病毒液滴度(TU/mL)=荧光细胞百分比×孔的细胞总数÷实际添加的慢病毒液体积(单位:mL)。慢病毒的生物滴度表见表15。
表15 慢病毒的生物滴度表
Figure PCTCN2021080053-appb-000027
备注:1TU/ml约等于100copies/ml
图9备注:流式细胞仪测定带eGFP荧光的细胞,获得标记荧光的细胞所占百分比。纵坐标:SSC-A指相对颗粒度或内部复杂程度;横坐标:FITC-A指颗粒相对大小;P1-1,P1-2,P1-3:指不是带荧光的目标细胞;P1-4指分选出来的带荧光的目标细胞,阳性率为2.23%。
具体方法iv:ddPCR方法检测慢病毒RNA拷贝数
(一)实验材料
试剂:Bio-Rad ddPCR TM Supermix for Probes(No dUTP)
设备:Bio-Rad QX200 droplet digital PCR System
(二)实验步骤
1.将逆转录慢病毒颗粒RNA得到的cDNA用ddH 2O(DNase free)进行10倍梯度稀释,得到4个ddPCR待测样品;
2.将ddPCR TM Supermix for Probes(No dUTP)在室温下融解,上下颠倒混匀并进行短暂离心;
3.按表16配制ddPCR Reaction Mix(FAM/HEX双通道)
表16 ddPCR反应体系
Figure PCTCN2021080053-appb-000028
Figure PCTCN2021080053-appb-000029
4.配好的体系震荡混匀离心后,小心地将其转移到微滴发生卡中间一排的样品孔内,并在下排的孔中加入70μL微滴发生油,然后在微滴生成仪中生成微滴。
5.将生成好微滴的样品(40μL)从微滴发生卡的上排孔中转移到ddPCR专用96孔板中,盖上铝膜后用PX1热封仪对96孔板进行封膜。
6.封好膜之后应该在30min内进行PCR反应,或者放于4℃冰箱4h之内进行PCR,按表17进行PCR反应,升降温速度设置为2℃/sec。
表17 PCR反应
Figure PCTCN2021080053-appb-000030
7.PCR结束后,将96孔板取出,在微滴读取仪上进行微滴读取。
8.微滴读取结束后,在Bio-rad QuantaSoft软件上分析数据结果,按图10计算“模拟病毒”cDNA中ORF1ab和N基因的拷贝数浓度。图10.为梯度稀释cDNA样品中ORF1ab靶标(图a),N基因(图b)和S基因(图c)的ddPCR一维液滴分布图与拷贝数浓度定量曲线(图d-f)
实施例5:提取RNA
1.实验材料
试剂:GeneCopoeia RNAzolTM RT RNA Isolation Reagent,异丙醇,75%乙醇,ddH 2O(RNase and DNase free)。
设备:漩涡震荡器。
2.实验步骤
1.样品处理
取约400μl病毒悬液加入装有1ml RNAzol RT的1.5~2ml离心管中,振荡混匀后室温静置约5min;
2.相分离
每1ml RNAzol RT加入400μl ddH 2O(RNase and DNase free),或补充ddH 2O(RNase and DNase free)至1.4ml,盖上盖子,振荡混匀约15sec,室温静置5~15min。10000rpm离心15min;
3.沉淀
转移上清至新的1.5~2ml离心管中,加入等体积的异丙醇,室温静置10min。10000g离心10min。
4.洗涤
弃上清,余下沉淀加入400μl 75%乙醇,混匀后7500g离心1~3min,此步重复一次。
5.溶解
弃上清,自然风干沉淀,加入50μl TE(RNase and DNase free)溶解,即为总RNA。
实施例6:cDNA制备
1.实验材料
试剂:GeneCopoeia SureScript TM First-Strand cDNA Synthesis Kit,慢病毒RNA,DEPC水。
设备:普通PCR仪。
2.实验步骤
1).配制逆转录体系
按GeneCopoeia TM SureScript TM First-Strand cDNA Synthesis Kit说明书的表18配制逆转录体系:
表18 cDNA制备的逆转录体系
Figure PCTCN2021080053-appb-000031
2).逆转录反应
在普通PCR仪上按19表进行逆转录程序。
表19 cDNA制备的逆转录程序
反应温度 时长
25℃ 5min
50℃ 60min
85℃ 5min
逆转录后的cDNA置于-20℃保存。
实施例7:
RNA制备方法和质控分析
1.实验材料
试剂:RNAzol RNA Isolattion reagent(GeneCopoeia)、MgCl 2.6H 2O(sigma)、DEPC(MBCHEM)、异丙醇(广州化学试剂厂)、Trizma Base(Sigma)、EDTA(Sigma)、RNaseLock(GeneCopoeia)、DNase I(NEB)、1-step Taqman qPCR Mix(GeneCopoeia)、2-step Taqman qPCR Mix(GeneCopoeia)、BlazeTaq RTase Mix(GeneCopoeia)、ddPCR Supermix for Probes(No dUTP)(Bio-rad)、FAM标记探针(Invitrogen)、移液吸头(Axygen)、50ml离心管(BIOFIL)、1.5ml离心管(Axygen)。
2.实验步骤
1)准备80ml模拟病毒培养液,经PEG浓缩沉淀后,病毒保存于PBS缓冲液中,体积为10ml,并经过Benzonase处理2次,以去除质粒DNA 的残留;
2)冰上操作:300μl模拟病毒+1ml RNAzol,混匀,静置5min,再加入100μl DEPC水,补齐至1.4ml体积;
3)10,000rpm,4℃离心10min后,集中所有的上清至50ml离心管中,加入等体积异丙醇;
4)混匀后,分装1.4ml/管,室温静置5min;
5)10000rpm,4℃离心15min,弃上清,沉淀加入400μl 75%乙醇(DEPC水配制),混匀,7500rpm,4℃离心2min,再重复洗涤一次;
6)弃上清,室温放置约5min自然风干沉淀后,加入50μl TE(含RNaseLock:0.02U/μl)溶解,将所有RNA溶液混匀后分装,并保存于-80℃冰箱中;
7)采用DNase I处理RNA中残留质粒DNA,DNase I活性单位为7U/1.5μg RNA。各成分的用量为:RNA 58μl、Dnase I 14μl、10×Dnase I buffer 8μl,37℃15min或75℃10min;
8)采用qPCR检测DNA残留,相关引物如表20,各成分的加入量为:5×2-step Taqman mix 4μl、primers and Probe Mix(10uM)0.25μl、RNA 2μl、DEPC H 2O to 20μl,反应体系如表21所示。
表20 采用qPCR检测DNA残留的相关引物
Figure PCTCN2021080053-appb-000032
Figure PCTCN2021080053-appb-000033
表21 qPCR检测DNA残留的反应程序
Figure PCTCN2021080053-appb-000034
9)采用ddPCR检测RNA拷贝数与DNA残留,各成分的加入量为2×ddPCR Supermix 10μL、Primer mix 900nM、Probe 250nM、RNA 2μL,DEPC H2O to 20μl,反应程序如表22所示。
表22 采用ddPCR检测RNA拷贝数与DNA残留的反应程序
Figure PCTCN2021080053-appb-000035
Figure PCTCN2021080053-appb-000036
10)RT-qPCR检测RNA扩增效率,各成分的加入量为5×1-step Taqman mix 4μl、primers and Probe Mix(10μM)0.25μl、RNA 2μl,DEPC H2O to 20μl,反应程序如表23所示。
表23.RT-qPCR检测RNA扩增效率的反应程序
Figure PCTCN2021080053-appb-000037
3.实验结果
1)根据表24进行RNA标准品的DNA残留检测
表24.RNA标准品的DNA残留检测结果
检测基因 ORF1ab-FAM S-FAM
qPCR(Ct) 35.6 35.6
ddPCR(Copies) 0 8
DNase I消化后质粒残留率相较于RNA在万分之一以下,对RNA参考标准品的定量分析无影响。
2)RNA拷贝数定量
选择ORF1ab-FAM进行RNA拷贝数定量,如图11,混匀后分装的每份RNA靶标基因(1ab)的总拷贝数为1.75×10 7Copies。
图11.ddPCR液滴一维图。蓝色液滴为阳性液滴,灰色液滴为阴性液滴,红色为基线。横坐标表示液滴数,纵坐标表示荧光强度。
3)RNA扩增效率,如表25和图12所示。
表25 RNA扩增效率
RNA Copies Log 10Copies ORF1ab-FAM S-FAM E-FAM N-FAM
200000 5.30 16.05 15.80 15.19 15.41
100000 5.00 16.94 16.73 15.77 16.25
10000 4.00 20.19 19.61 18.93 19.24
1000 3.00 23.08 22.66 21.85 22.45
100 2.00 27.03 26.59 25.89 26.06
  E 1.02 1.05 1.04 1.05
图12.RNA扩增效率图。横坐标表示Log 10Copies,其中Copies为200000、100000、10000、1000、100,纵坐标表示Ct。
实施例8:
cDNA制备和质量分析
1.实验材料
试剂:DNase I(NEB 2U/μl)、5×BlazeTaq TM Probe qPCR Master Mix(with ROX)(Genecopoeia,Cat.QP036)、5×FL SureScript TM RT buffer(Genecopoeia)、10×RTase Mix(S+M)(Genecopoeia)、ddPCR TM Supermix for Probes(No dUTP)(Bio-rad)、DEPC水、PD-10 Desalting Columns(GE Healthcare Life Sciences)、FAM标记探针(Invitrogen)、移液吸头(Axygen)、50ml离心管(BIOFIL)、1.5ml离心管(AXYGEY)、200μl PCR管(SARSTEDT)、MicroAmp Optical 96-Well Reaction Plate(ABI)。
2.实验步骤
(1)将-80℃保存的模拟病毒RNA(100ng/μl,50μl/管)置于冰上溶解,涡旋震荡混匀,瞬时离心Dnase I消化RNA中的DNA,在通风橱中按下表26的消化体系配制,配置好的体系瞬时离心后水浴消化。DNase I消化程序如表27所示。涡旋震荡混匀消化后的体系,并瞬时离心待用。
表26 DNA消化体系表
成份 1×体积
10×Dnase I buffer 8μl
DNase I(2U/μl) 14μl
模拟病毒RNA(100ng/μl) 50μl
DEPC水 8μl
表27 DNA消化程序表
反应温度 时长
37℃ 15min
75℃ 15min
(2)取出38个200μl PCR管(RNase and DNase-free),在通风橱中按下表28的逆转率体系配制,配置好的体系瞬时离心后普通PCR上机,按照表29程序进行逆转录。逆转录后涡旋震荡混匀逆转后的体系,并瞬时离心待用。
表28 RNA逆转录体系表
成份 1×体积
5×FL SureScript TM RT buffer 4μl
10×RTase Mix(S+M) 2μl
DNase I消化后的RNA 2μl
DEPC水 12μl
总体积 20μl
表29 RNA逆转录程序表
反应温度 时长
25℃ 5min
45℃ 60min
85℃ 5min
(3)在通风橱中将38管逆转录产物全部收集于1个1.5ml离心管(RNase and DNase-free),涡旋震荡混匀,瞬时离心。
(4)取500μl逆转录后的cDNA样品,在通风橱中进行P10柱子凝胶过滤层析法纯化,具体纯化步骤如下:
1)将P10柱子固定于试管架上,用已经酒精消毒的剪刀将柱子底部剪开;
2)往柱子中央加入1mL 1×TE Buffer平衡柱子,流出液废弃于废液缸中(重复5次);
3)往柱子中央加入1mL 1×Dillution Buffer,流出液废弃于废液缸中;
4)往柱子中央加入1mL 1×TE Buffer,流出液废弃于废液缸中(重复6次);
5)待柱子液体流完后,往柱子中央加入500μl cDNA样品;
6)向柱子周围缓慢加入500μl 1×TE Buffer,并同时用1.5mL离心管收集流出液,标记①号管;
7)向柱子周围缓慢加入500μl 1×TE Buffer,并同时用1.5mL离心管收集流出液,标记②号管;
8)重复上述收集流出液的步骤,直到收集到第20管流出液即可停止收集流出液,标记好①②③...
Figure PCTCN2021080053-appb-000038
9)将收集管⑤⑥⑦混为一管(标记为cDNA Mix),涡旋震荡混匀,瞬时离心。
(5)取50μl cDNA Mix,进行ddPCR检测拷贝数,ddPCR具体操作步骤如下:
1)将cDNA Mix进行100倍稀释:20μl cDNA Mix+180μl 1×TE buffer,涡旋混匀并进行短暂离心。
2)将ddPCR TM Supermix for Probes(No dUTP)在室温下融解,上下颠倒混匀并进行短暂离心。
3)配制ddPCR Reaction Mix(FAM/HEX双通道),体系配制如表30。
表30.ddPCR反应体系表
成份 1×体积 终浓度
2×Supermix for Probes(No dUTP) 10μL
ORF1ab Primer Mix(10μM) 1.8μL 0.9μM
ORF1ab Taqman Probe(5μM) 1μL 0.25μM
稀释后的cDNA 2μL  
ddH 2O 加至20μL  
总体积 20μL  
4)配好的体系震荡混匀离心后,小心地将其转移到微滴发生卡中间一排的样品孔内,并在下排的孔中加入70μL微滴发生油,然后在微滴生成仪中生成微滴。
5)将生成好微滴的样品(40μL)从微滴发生卡的上排孔中转移到ddPCR 专用96孔板中,盖上铝膜后用PX1热封仪对96孔板进行封膜。
6)封好膜之后应该在30分钟内进行PCR反应,或者放于4℃冰箱4小时之内进行PCR,PCR程序如表31,其中升降温速度设置为2℃/s。
表31 PCR反应程序
Figure PCTCN2021080053-appb-000039
7)PCR结束后,将96孔板取出,在微滴读取仪上进行微滴读取。
8)微滴读取结束后,在Bio-rad QuantaSoft软件上分析数据结果。
9)以ddPCR结果为准,将cDNA Mix(1.18×10 5copies/μl)至于冰上解冻并混匀离心后,使用1×TE buffer稀释为cDNA Standard #1(cDNA浓度为1×10 5copies/μl):1000μl cDNA Mix+180μl 1×TE buffer,上下颠倒混匀并进行短暂离心。再使用1×TE buffer将cDNA Standard #1进行梯度稀释。
具体稀释步骤如下:
1)cDNA Standard #2-1(5×10 4copies/μl):50μl cDNA Standard #1+50μl 1×TE buffer;
2)cDNA Standard #2-2(5×10 3copies/μl):20μl cDNA Standard #2-1+180μl 1×TE buffer;
3)cDNA Standard #2-3(5×10 2copies/μl):20μl cDNA Standard #2-2+180μl 1×TE buffer;
4)cDNA Standard #2-4(5×10copies/μl):20μl cDNA Standard #2-3+180μl 1×TE buffer;
5)将cDNA Standard #2的样品进行qPCR检测扩增效率,按表32和表33的体系和程序进行配制和上机。
表32.qPCR反应体系表
成份 1×体积
5×BlazeTaq TM Probe qPCR Master Mix 4μl
ORF1ab/N/S/E primers and Probe(10μM) 0.25μl
各稀释梯度的cDNA样品 2μl
ROX(30μM) 0.1μl
DEPC水 12μl
表33.qPCR反应程序表
Figure PCTCN2021080053-appb-000040
3.实验结果
(1)cDNA Mix的ddPCR结果
1)ddPCR原始液滴数据图13
图13.ddPCR原始液滴数据图,横坐标为液滴数,纵坐标为荧光强度。以ORF1ab为检测靶标,加入2ul模板进行反应,阳性液滴数为2360copies。
2)结果计算:
表34 以ddPCR数据计算cDNAMix浓度
样品 计算过程及最终浓度
cDNA Mix稀释100倍的浓度 2360÷2=1180copies/μl
cDNA Mix原液浓度 1180×100=1.18×10 5copies/μl
注释:cDNA Mix为cDNA纯化⑤⑥⑦管的混合液
(2)cDNA Standard #2各梯度的qPCR检测扩增效率结果:
1)Ct值,计算过程表10
表35.cDNA Standard #2梯度qPCR Ct值
Figure PCTCN2021080053-appb-000041
注释:E=10 [(-1/斜率)-1]
cDNA Standard #2梯度qPCR标准曲线见图14-17。
图14.cDNA Standard #2梯度qPCR标准曲线---ORF1ab,横坐标为Log 10Copies,纵坐标为Ct值
图15.cDNA Standard #2梯度qPCR标准曲线---S,横坐标为Log 10Copies,纵坐标为Ct值
图16.cDNA Standard #2梯度qPCR标准曲线---E,横坐标为Log 10Copies,纵坐标为Ct值
图17.cDNA Standard #2梯度qPCR标准曲线---N,横坐标为Log 10Copies,纵坐标为Ct值
2)各基因扩增曲线见图18
图18.为各基因扩增曲线。a,ORF1ab-FAM基因的扩增曲线,横坐标为循环数,纵坐标为ΔRn(ΔRn是Rn扣除基线后得到的标准化结果);b,N-FAM基因的扩增曲线,横坐标为循环数,纵坐标为ΔRn;c,S-FAM基因的扩增曲线,横坐标为循环数,纵坐标为ΔRn;d,E-FAM基因的扩增曲线,横坐标为循环数,纵坐标为ΔRn。
实施例9:可掺入标准品的扩增效率
1.实验材料
试剂:GeneCopoeia BlazeTaq SYBR Green qPCR mix
设备:ABI ViiA 7 qPCR仪
2.实验步骤
1)按照“模拟病毒”cDNA和“可掺入的模拟病毒”cDNA的预实验结果,参考ddPCR定量数据,在生物安全柜中将两种cDNA进行10倍梯度稀释,得到得到10 5拷贝/uL-10 2拷贝/uL的待测样品
2)在生物安全柜中进行染料法qPCR反应的配制,待测的靶标分别ORF1ab,S,E,N;体系见表36
表36 qPCR反应体系
组分 体积
5×BlazeTaq SYBR Green qPCR mix 4μL
Primer Mix 2μM) 2μL
cDNA(10 5~10 2copies/μL) 5μL
ddH 2O 9μL
总计 20μL
3)体系配制完成后,在qPCR仪(ABI ViiA7)上进行qPCR定量检测与熔解曲线分析,qPCR反应程序和溶解曲线程序分别如表37和表38:
表37 qPCR反应程序
Figure PCTCN2021080053-appb-000042
表38 溶解曲线程序
温度 间隔温度 时长
95℃→60℃ 1.6℃ 1sec/each
4)根据梯度稀释样品的Ct值,计算不同cDNA的不同靶标扩增效率,结果如表39
表39:“模拟病毒cDNA”与“可掺入的模拟病毒cDNA”中四个新冠病毒靶标的扩增效率计算
Figure PCTCN2021080053-appb-000043
Figure PCTCN2021080053-appb-000044
图19:根据Ct值与拷贝数的标准曲线计算“可掺入”模拟病毒N基因的拷贝数浓度。
图19注:以拷贝数的对数为横坐标,Ct值为纵坐标绘制X-Y散点图,对系列点进行线性拟合,根据趋势线的斜率k来进行扩增效率E的计算:E=(10^(-1/k)-1)×100%
实施例10:“可掺入的模拟病毒“cDNA添加量对”模拟病毒“cDNA中新冠病毒靶标定量结果的影响
1.实验材料
试剂:GeneCopoeia BlazeTaq qPCR mix for Probes
2.实验步骤
1)根据染料法qPCR对“可掺入的模拟病毒”cDNA的靶标定量结果,估算ORF1ab和S两个靶标的拷贝数浓度
2)在生物安全柜中,往用于检测试剂盒原料和质控品的“模拟病毒”cDNA中添加不同浓度梯度(5×10 5拷贝-50拷贝)的“可掺入的模拟病毒”cDNA
3)在生物安全柜中进行探针法qPCR反应的配制,待测的靶标是ORF1ab和S;qPCR体系与探针法qPCR试剂盒说明书中的相同
3.实验结果,见图23。
图23“可掺入的模拟病毒“cDNA添加量对”模拟病毒“cDNA中新冠病毒靶标定量结果的影响。横坐标为“可掺入的模拟病毒”cDNA添加量的对数,纵坐标为”模拟病毒“cDNA中ORF1ab和S靶标的Ct值。
实施例11:慢病毒定量的具体方法v:一步法RT-ddPCR方法检测“模拟病毒”掺入标准品RNA中N基因和S基因拷贝数浓度
(一)实验材料
试剂:Bio-Rad One-Step RT-ddPCR Advanced Kit for Probes
设备:Bio-Rad QX200 droplet digital PCR System
(二)实验步骤
1.将“模拟病毒”掺入标准品RNA用ddH 2O(DNase-free)进行100倍稀释后,再10倍稀释两个梯度,得到3个RT-ddPCR待测样品;
2.将Bio-Rad One-Step RT-ddPCR Advanced Kit for Probes的所有组分在室温下融解,上下颠倒混匀并进行短暂离心;
3.按表40配制RT-ddPCR Reaction Mix
表40 RT-ddPCR反应体系
成分 加入量/μL 终浓度
Supermix 5
Reverse Transcriptase 2 20U/μL
300mM DTT 1 15mM
Primer Mix(10μM) 1.8 0.9μM
Taqman Probe(5μM) 1 0.25μM
RNA 1  
ddH 2O 加至20  
总体积 21  
4.配好的体系震荡混匀离心后,小心地将其转移到微滴发生卡中间一排的样品孔内,并在下排的孔中加入70μL微滴发生油,然后在微滴生成仪中生成微滴。
5.将生成好微滴的样品(40μL)从微滴发生卡的上排孔中转移到ddPCR专用96孔板中,盖上铝膜后用PX1热封仪对96孔板进行封膜。
6.封好膜之后在30min内进行PCR反应,或者放于4℃冰箱4h之内进行PCR,按表17进行PCR反应,升降温速度设置为2℃/sec。
表41 PCR反应
步骤 温度 时间 循环数
逆转录 42℃ 60min 1
酶激活 95℃ 10min 1
变性 95℃ 30s 40
退火/延伸 60℃ 1min  
酶灭活 98℃ 10min 1
保温 4℃  
7.PCR结束后,将96孔板取出,在微滴读取仪上进行微滴读取。
8.微滴读取结束后,在Bio-rad QuantaSoft软件上分析数据结果,计算“模拟病毒”掺入标准品RNA中N基因和S基因的拷贝数浓度,参见图26。
实施例12:新型冠状病毒2019-nCoV核酸定性定量检测试剂盒(荧光PCR法)及可掺入阳性标准品及质控品RNA模型检测
本方法基于一步法RT-PCR技术(RNA逆转录反应以及聚合酶链式反应(PCR)结合Taqman技术),选取2019新型冠状病毒(2019-nCoV)N基因和S基因特异性保守序列作为扩增靶区域,设计特异性引物及荧光探针(N基因探针采用HEX标记,S基因探针采用FAM标记)用于标本中2019新型冠状病毒RNA的检测;同时包括内源性内标检测系统(内标基因H探针采用CY5标记,独有阳性标准品S基因和N基因探针采用AP593标),即3对引物,4个探针对目的基因进行定性定量分析。
标准品:核酸序列长度、碱基百分比、Tm值、引物与质控品(或待测靶标)相同,但序列片段排列不同。
1.实验材料
1.1.仪器
PCR仪器:ABI viia7
离心机:labnet,C1301
生物安全柜:苏州净化
1.2.耗材
96孔板:ABI,N8010560
1.3.试剂
Figure PCTCN2021080053-appb-000045
RT RNA Isolation Reagent:广州易锦生物技术有限公司,
QP020
DNase I:NEB,M0303L
引物:见表42
Taqman探针:见表43
表42:引物序列及相关信息
Figure PCTCN2021080053-appb-000046
表43:探针序列及荧光标记信息
Figure PCTCN2021080053-appb-000047
注:FL:广州复能基因有限公司,cCDC:中国疾病预防控制中心
2.实验步骤
2.1.RNA提取
参照
Figure PCTCN2021080053-appb-000048
RT RNA Isolation Reagent试剂盒说明书提取标准品RNA和质控品RNA,最后使用50μL的TE缓冲液溶解RNA沉淀(此处TE缓冲液为DEPC处理过的水配制成100μM TE缓冲液,其在本发明中 溶解RNA沉淀均使用此TE缓冲液)。
2.2.DNase I消化RNA
两种RNA提取后使用DNase I处理,目的是去除RNA中的基因组DNA和质粒DNA残留。参照表44的反应体系进行DNase I处理RNA,加样完成后瞬时离心,37℃加热10min,72℃加热10分钟使DNase I失活,-80℃储存备用。
表44 DNase I反应体系
试剂 用量/μL
DEPC水 10
RNA 30
DNase I buffer(10×) 5
DNase I 5
总量 50
qPCR及RT-PCR检测基因组DNA和质粒DNA残留,待qPCR检测不到目的基因时说明消化干净,RNA可用于后续实验。以N基因靶点为例,qPCR反应体系见表45,RT-PCR反应体系1见表46,上机程序见表47。
表45.qPCR反应体系
成分 体积/μL
(5×)two step qPCR Mix 4
10μM CCDC-N primer 0.25
10μM FL-N-AP593 0.25
ROX 0.1
DEPC水 10.4
RNA 5
表46 RT-PCR反应体系1
成分 体积/μL
5×)Probe One Step RT-qPCR Mix 4
10×RTase Mix 2
10μM CCDC-N primer 0.25
10μM FL-N-AP593 0.25
ROX 0.1
DEPC水 8.4
RNA 5
表47.qPCR及RT-PCR上机程序
Figure PCTCN2021080053-appb-000049
2.3.样品稀释及标准曲线制备
将处理干净的RNA使用Biorad ddPCR定量,之后使用稀释液(TE缓冲液+0.25U/μL RNase Inhibitor+10pg/μL ttRNA)10梯度稀释进行标准曲线制备,此外稀释两个低浓度拷贝数标准品RNA进行后续实验,低浓度拷贝数选择100copies/μL及12.5copies/μL。RNA稀释操作步骤详见表48。
表48.RNA稀释操作步骤
编号 浓度copies/μL 浓度稀释步骤
1.0×10 5 浓度为1.0×10 5copies/μL
1.0×10 4 取10μL①加90μL稀释液
1.0×10 3 取10μL②加90μL稀释液
100 取10μL③加90μL稀释液
50 取50μL④加50μL稀释液
25 取50μL⑤加50μL稀释液
12.5 取50μL⑥加50μL稀释液
2.4.RT-PCR检测反应
将稀释好的标准品RNA进行标准曲线制定;同时,固定标准品拷贝数,进行质控品浓度梯度检测。RT-PCR反应体系配制详见表49,配置好PCR反应Mix(除质控品外的其他成分)后开始加样,加样时每个反应孔先加入15μL配制好的Mix,然后再加入5μL质控品或待测样本。
表49:RT-PCR反应体系2
Figure PCTCN2021080053-appb-000050
Figure PCTCN2021080053-appb-000051
2.5.仪器检测
加样完成后,在ABI ivva7上检测样品信号,其中上机程序同表47,其中FAM通道检测质控品或临床样本S基因,VIC(HEX)通道检测质控品或临床样本N基因,CY5通道检测内源人GAPDH基因,ROX(AP593)通道检测标准品中的S基因或N基因。
3.实验结果
3.1.标准品N基因浓度梯度标准曲线制定
对母液浓度为2.4×10 6的标准品N基因参照表48进行10倍梯度稀释6个梯度,然后进行了单通道信号检测,选择了ROX通道检测标准品N基因的信号强度,以拷贝数的对数为横坐标,Ct值为纵坐标,计算出了标准品N基因的浓度梯度标准曲线,结果如图27,公式为y=-3.284x+38.363,其中y代表一定拷贝数测得的Ct值,k为-3.284,可参照这个公式计算出相应拷贝数的对数,从而计算出拷贝,对病毒拷贝数进行准确的定量,而R 2=0.9998,说明结果可信。
3.2.可掺入待测样本的阳性标准品和质控品参数模型测定
固定标准品N基因的拷贝数,对质控品RNA进行了梯度检测,3对 引物4个探针,选择4色通道对可掺入待测样本的阳性标准品和质控品参数模型测定,比对质控品和标准品定量是否准确,同时检测质控品的检测灵敏度。选择标准品N基因拷贝数100copies/rxn和12.5copies/rxn进行质控品梯度检测,结果如表50和表51。
表50.可掺入待测样本的阳性标准品和质控品参数模型qPCR测定结果1
Figure PCTCN2021080053-appb-000052
注:固定标准品N基因检测浓度为100copies/rxn;NA表示:未检测到Ct值。
表51 可掺入待测样本的阳性标准品和质控品参数模型qPCR测定结果2
Figure PCTCN2021080053-appb-000053
注:固定标准品N基因检测浓度为12.5copies/rxn;NA表示:未检测到Ct值。
结果发现,在标准品N基因拷贝数为100copies/rxn,Ct值平均值为28.62,与质控品RNA100拷贝数时CCDC-N-HEX组的Ct值28.67接近,说明定量比较准确;在标准品N基因拷贝数为12.5copies/rxn,Ct值平均值为33.3,与质控品RNA12.5拷贝数时CCDC-N-HEX组的Ct值有2个Ct的差异。以上结果说明本方法所建立的参数模型较为准确,可用于人群对新型冠状病毒携带者的筛选;对检测人群中有体温升高的,入院后诊断新型冠状病毒肺炎的重要依据之一;用于新冠病毒肺炎药物筛选、治疗方 案的确定以及疗效的评估;利用该模型对新型冠状病毒RNA载量(2019-nCoV,Sars-cov-2 RNA Load)的动态分布进行分析;还可以用于新型冠状病毒肺炎后期药物使用指导参考依据,是对甄别正在治疗的新冠肺炎患者是否可以出院,进入正常的生活社区的重要指标之一。
3.3.新冠病毒阳性样本实验数据:
使用与3.2相同的反应体系,将质控品RNA替换为临床样本进行检测。检测结果如表52,临床样本为用已获中国审批的试剂盒检测过的5份阳性和5份阴性样本。其中样本1-4为阳性临床样本,样本5-9为阴性临床样本,样本10为阴性对照。结果如表11所示,其中MixC#1为50分子阳性标准品;MixC#3为200分子阳性标准品,在选择四色通道检测临床样本时,所有样本中的S靶标均未检测到信号,即No Ct(N等同No Ct),所有样本均能检测到CY5和ROX,即能检测到人源RNA和掺入的标准品RNA,说明整个反应正常,结果可信。本公司产品结果为样本1/3/4/5为阳性,样本2/6/7/8/9/10为阴性,与中国审批试剂盒结果有差异,即2号阳性样本被鉴定为阴性样本。所以,本产品可与其他公司同时检测进行综合分析,杜绝病毒携带者流入社会。
表52.临床样本检测结果
Figure PCTCN2021080053-appb-000054
Figure PCTCN2021080053-appb-000055
注:N靶标是指待测靶标为N;GAPDH靶标,是指内标;RNA-S靶标,是指可掺入内标。
实施例13:人239细胞中新型冠状病毒受体ACE2的mRNA分子数的测定
1.实验步骤
采用qPCR&RT-PCR检测DNA残留,采用One-Step RT-ddPCR检测RNA拷贝数浓度,质粒构建及qPCR检测的相关引物及探针如表53。
带有掺入内标模拟病毒的制备(实施例2)、RNA提取(实施例4中具体方法i)和ddPCR定量方法(实施例4方法iv)已在上述章节中表述。
表53 质粒构建及qPCR检测的相关引物及探针
Figure PCTCN2021080053-appb-000056
Figure PCTCN2021080053-appb-000057
质控品全长序列见SEQ ID NO:50
标准品(掺入内标)序列见SEQ ID NO:51
2.实验结果
1)参入内标
根据新冠实验方法进行RNA拷贝数浓度的RT-ddPCR定量,结果显示混匀后分装的每份质控品RNA(检测探针ACE2-HEX)的拷贝数浓度约为2×10 9Copies/μl,标准品参入内标RNA(检测探针ACE2-ROX)的拷贝数浓度约为1×10 9Copies/μl。
据我们已获得的资料信息,至今尚未有较好方法测定人体细胞中待测基因转录mRNA分子数,在新冠病毒受体ACE2的ORF稳转细胞株中,将我们设计的掺入内标用于测定其中受体ACE2mRNA分子数。
2)标准品及质控品引物扩增效率检测
将体外转录制备的质控品RNA及标准品RNA浓度梯度稀释至10000/1000/100/10/0copies/rxn,检测引物扩增效率,确认标准品引物与质控品引物扩增效率一致。结果如表54、图29。
表54 引物扩增效率
Figure PCTCN2021080053-appb-000058
4)SL 221-293T RNA及293T RNA质量检测
使用表53中的引物及探针检测所提取的两种细胞RNA的质量,结果如表55、表56所示,参照NanoDrop ND-1000微量紫外分光光度计检测结果,本次提取的RNA质量较好,可用于后续检测。
表55 SL 221-293T RNA质量检测
Figure PCTCN2021080053-appb-000059
表56 293TRNA质量检测
Figure PCTCN2021080053-appb-000060
实施例14:可掺入的标准品对细胞内靶标ACE2 mRNA定量结果的影响
1.实验材料
试剂:
5×Probes One-Step RT-qPCR Mix(GeneCopoeia)
10×BlazeTaq TM RTase Mix(GeneCopoeia)
Primer(ACE2-1,ACE2-2,GAPDH)(金唯智)
Probe(ACE2-HEX,ACE2-ROX,GAPDH-CY5)(上海百力格)
SL 221-293T RNA/293T RNA(GeneCopoeia)
设备:ABI ViiA 7 qPCR仪
2.实验步骤
1)按照质控品RNA、可掺入标准品RNA及SL 221-293T RNA的预实验结果,参考ddPCR定量数据,在生物安全柜中将质控品RNA、标准品RNA、293T RNA分别进行梯度稀释,得到2000/200/20/2copies/μl的质控品RNA、1000/100/50copies/μl标准品RNA及1000/333/111/37/12/4/1/0pg/μl的SL 221-293T RNA/293T RNA。
2)在生物安全柜中进行RT-qPCR反应的配制,待测的靶标分别ACE2-HEX,ACE2-ROX;体系见表57,当检测质控品RNA和标准品RNA 时,需要添加293T RNA模拟细胞检测情况;当检测细胞内ACE2表达情况时,不用添加293T RNA。
表57 三重RT-qPCR反应体系
组分 体积
5×One-Step RT-qPCR Mix for Probes 5μl
10×BlazeTaq RTase Mix 2.5μl
ACE2-Primer1 0.25μl
ACE2-Primer2 0.25μl
GAPDH-Primer 0.25μl
ACE2-HEX-Primer1 0.25μl
ACE2-ROX 0.25μl
GAPDH-CY5 0.25μl
293T RNA 1μl
标准品RNA(1000/100/50copies/μl) 1μl
质控品RNA/SL 293T RNA 5μl
ddH2O 10μl
总计 25μl
3)体系配制完成后,在qPCR仪(ABI ViiA7)上进行RT-PCR定量检测。
3.实验结果
1)标准品及质控品标准曲线制备
标准品及质控品标准曲线如图30、图31所示。
固定标准品掺入内标RNA拷贝数时,质控品RNA浓度梯度稀释,结果如表58所示;在固定质控品RNA拷贝数时,标准品掺入内标RNA浓度梯度稀释,结果如表59所示。
表58 固定标准品RNA拷贝数,质控品RNA浓度梯度检测
Figure PCTCN2021080053-appb-000061
Figure PCTCN2021080053-appb-000062
表59 固定质控品RNA拷贝数,标准品RNA浓度梯度检测
Figure PCTCN2021080053-appb-000063
结果分析:在质控品RNA浓度为100copies/rxn时,检测ACE2-HEX的Ct值与标准品RNA100copies/rxn时ACE2-ROX的Ct值差异不大,ΔCt为0.1,说明定量准确,反应体系良好。
2)细胞内ACE2表达情况检测
在固定标准品RNA拷贝数时,浓度梯度稀释SL 221-293T RNA,检测ACE2表达情况,结果如表60所示。
表60 固定标准品掺入内标RNA拷贝数,SL 221-293T RNA浓度梯度检测
Figure PCTCN2021080053-appb-000064
Figure PCTCN2021080053-appb-000065
结果分析:参照质控品RNA检测结果,ACE2在细胞中转录的mRNA分子数为50copies/10pg RNA。因一个细胞提取的总RNA约为10pg,即10pg/cell。因此,ACE2在SL 221-293T细胞中的表达情况约为50±5copies/cell。
我们的结果表明本发明的掺入内标不仅可以用于生物体如RNA(新冠2019-nCoV)病毒拷贝数、病毒RNA分子拷贝数的较精确测定。也可用于生物体细胞中内源基因,或用基因编辑方法整合到基因组中的外源基因,因在生理变化时和不同调节因素变化情况下,转录水平的评估和相关mRNA分子数较精确测定,有着广泛地应用价值。

Claims (23)

  1. 模拟病毒载体,其特征在于以病毒(优选慢病毒或腺病毒)骨架为载体,在慢病毒骨架中包含一个或多个定量检测核酸片段和用于示踪的荧光蛋白的编码基因,
    所述定量检测核酸片段的长度与检测样品的核酸靶标序列长度相同,且与所述检测样品的核酸靶标序列含有相同百分比的碱基组成,其中定量检测核酸片段的5’端序列A和3’端序列B与检测样品的核酸靶标序列的相应5’端序列A’和3’端序列B’的序列相同或不相同,其中序列A由用于扩增检测样品的核酸靶标序列的5’端引物序列与其临近下游2个碱基组成,序列B由用于扩增检测样品的核酸靶标序列的3’端引物序列与其临近上游2个碱基组成,所述定量检测核酸片段的所述5’端序列A和所述3’端序列B之间的序列与所述检测样品的核酸靶标序列的所述5’端序列A’和所述3’端序列B’之间的序列的所有碱基排列顺序完全不同(优选不存在连续三个碱基以上,例如,连续4个、5个、6个、7个碱基以上相同的排列序列,优选8-30个碱基排序不同),
    优选地,在所述1个或多个定量检测核酸片段与所述荧光蛋白之间彼此通过接头连接,更优选地,所述接头长度为6-800bp,优选20-800bp或6-200bp,优选地,所述接头含转录控制元件,包括但不限于如CMV(promoter)、IRES(核糖体结合位点)。
  2. 权利要求1所述的模拟病毒载体,其中所述检测样品的核酸靶标序列来自生物体,所述生物体选自病毒、细菌、真菌、植物、动物(包括低等动物和高等动物,优选地,低等动物包括但不限于线虫、果蝇,高等动物包括但不限于马哈鱼、斑马鱼和哺乳动物,更优选地,所述哺乳动物包括但不限于人、猩猩、猴子、鼠)。
  3. 权利要求2所述的模拟病毒载体,其中所述病毒选自DNA病毒(如单纯疱疹病毒,甲型肝炎病毒,乙型肝炎病毒,人乳头瘤病毒,腺病毒,HPV)或RNA病毒(如丙型肝炎病毒,人类免疫缺陷病毒,冠状病毒,流感病毒如禽流感病毒或猪流感病毒);所述细菌包括但不限于肺结核、淋 病、炭疽病、梅毒、鼠疫、沙眼等,所述真菌选自但不限于霉菌、酵母、块菌以及其他人类所熟知的菌菇类;
    优选所述冠状病毒选自SARS病毒,MERS病毒和SARS-CoV-2病毒。
  4. 权利要求3所述的模拟病毒载体,其特征在于,定量检测核酸片段的长度为80bp-60kb,优选80bp-19.5kb,80bp-17.5kb,80bp-1.5kb,80bp-1kb,80bp-500bp,更优选地80bp-200bp,并且所述定量检测核酸片段及定量检测核酸片段之间的接头序列的总长度不超过8.5kb,8kb或7kb。
  5. 权利要求1-4任一项所述模拟病毒载体,其中所述慢病毒载体为lentivirus病毒载体(优选pEZ-Lv201)或FIV病毒载体。
  6. 权利要求1-5任一项所述模拟病毒载体,其中所述慢病毒载体包括但不限于二代、三代慢病毒载体。
  7. 权利要求5或6所述的模拟病毒载体,其中当所述检测样品的核酸来自SARS-CoV-2时,所述检测样品的核酸靶标序列为选自下述编码基因的至少2种:Orf1ab编码基因全长或其片段、S蛋白编码基因全长或其片段、E蛋白编码基因全长或其片段、N蛋白编码基因全长或其片段。
  8. 权利要求7所述的模拟病毒载体,其中
    所述定量检测核酸片段选自下述一种或多种:
    检测靶向序列1(对应检测样品的Orf1ab编码基因片段)包括选自SEQ ID NO:1至SEQ ID NO:2的序列或其组合或至少由选自SEQ ID NO:1至SEQ ID NO:2的序列或其组合组成;
    检测靶向序列2(对应检测样品的S蛋白编码基因片段)包括或至少由SEQ ID NO:3序列组成;
    检测靶向序列3(对应检测样品的E蛋白编码基因片段)包括或至少由SEQ ID NO:4序列组成;
    检测靶向序列4(对应检测样品的N蛋白编码基因片段)包括选自以下SEQ ID NO:5至SEQ ID NO:8的序列或其任意组合或至少由选自以下SEQ ID NO:5至SEQ ID NO:8的序列或其任意组合组成;
  9. 权利要求8所述的模拟病毒载体,其中所述模拟病毒的序列SEQ ID NO:9
  10. 利用权利要求1-9任一项的模拟病毒载体制备的模拟病毒颗粒,优选将所述模拟病毒载体转染到人293T细胞株中来制备所述模拟病毒颗粒。
  11. 权利要求1-9任一项所述的模拟病毒载体或权利要求10所述的模拟病毒颗粒在选自以下用途中的应用:
    (1)定性和定量检测样品中的核酸靶标;例如作为检测样品中核酸靶标存在(例如来自COVID-19患者、SARS-CoV-2携带者、COVID-19疑似患者或样品中SARS-CoV-2)的参照标准品(定性:如阳性和阴性的判断)的应用,例如用于样本采集、样品保存和样品RNA提取过程中的质量分析和质量控制,或例如用于定量检测样品中SARS-CoV-2中的应用
    (2)制备检测样品中核酸靶标的试剂或试剂盒中的应用;
    (3)用于评价例如携带所述核酸靶标的患者治疗效果中的应用
    (4)用于评价或筛选治疗所述生物体(例如细胞,病毒或真菌)导致的疾病的药物中的应用。
  12. 定性和定量参照标准品RNA,其通过提取权利要求10所述模拟病毒颗粒制备,其中所述生物体为RNA病毒。
  13. 权利要求12所述的定性和定量参照标准品RNA,其在检测RNA病毒如SARS-CoV-2的过程涉及的从RNA反转录为cDNA的过程中用作参照标准品,例如用于以RNA为样本的反转录反应体系中的质量分析和质量控制。
  14. 定性和定量参照标准品cDNA或DNA,其中定性或定量参照标准品cDNA通过反转录权利要求12所述的定性或定量参照标准品RNA制备,定量参照标准品DNA通过提取权利要求10的模拟病毒颗粒的DNA制备,其中所述生物体的遗传物质为DNA。
  15. 权利要求14所述的定性和定量参照标准品cDNA或DNA,其用于检测RNA病毒(如SARS-CoV-2)的过程中或用于检测遗传物质为DNA的生物体的过程中涉及的DNA扩增过程中扩增效率和荧光信号的质量分子和质量控制。
  16. 定性和定量检测样品的核酸靶标序列的试剂盒,其包含
    (1)权利要求10所述的模拟病毒颗粒、权利要求12或13的定性或定量参照标准品RNA或权利要求14或15的定性或定量参照标准品cDNA或DNA,
    (2)用于扩增持家基因的引物和探针,
    (3)用于扩增权利要求12或13的定性或定量参照标准品RNA或权利要求14或15的定性和定量参照标准品cDNA或DNA的引物和探针,
    (4)用于扩增检测样品的核酸靶标的引物和探针,
    其中(3)和(4)中的引物相同,(2)、(3)和(4)中的探针的标记彼此不同。
  17. 权利要求16所述的试剂盒,其中所述引物的长度为12-30bp,探针长度20-30bp,引物与探针的退火温度差值10℃左右。
  18. 权利要求16或17所述的试剂盒,其中(2)、(3)和(4)中的探针标记选自Cy5,Fam或Hex或AP593。
  19. 权利要求18所述的试剂盒,其中试剂盒中的引物和探针序列由持家基因的引物和探针以及检测靶向序列的引物和探针组成,具体如下:
    (1)持家基因的引物和探针序列见SEQ ID NO:10至SEQ ID NO:21;
    (2)检测靶向序列1(对应检测样品的Orf1ab编码基因片段)的探针序列见SEQ ID NO:22、SEQ ID NO:23;
    (3)检测靶向序列2(对应检测样品的N蛋白编码基因片段)的探针序列见SEQ ID NO:24至SEQ ID NO:27;
    (4)检测靶向序列3(对应检测样品的S蛋白编码基因片段)的探针序列见SEQ ID NO:28;
    (5)检测靶向序列4(对应检测样品的E蛋白编码基因片段)的探针序列见SEQ ID NO:29;
    (6)扩增检测靶向序列1的引物见序列SEQ ID NO:30至SEQ ID NO:33;
    (7)扩增检测靶向序列2的引物见序列SEQ ID NO:34至SEQ ID NO:41;
    (8)扩增检测靶向序列3的引物见序列SEQ ID NO:42、SEQ ID NO:43;
    (9)扩增检测靶向序列4的引物见序列SEQ ID NO:44、SEQ ID NO:45;
  20. 定性和定量检测样品的核酸靶标序列的方法,包括使用权利要求16-19任一项所述的试剂盒。
  21. 权利要求20所述的方法,包括:
    扩增步骤1:用权利要求19所述试剂盒中的扩增检测靶向序列1-4的至少2对引物扩增样品SARS-CoV-2的Orf1ab、S蛋白基因,E蛋白基因,N蛋白基因的至少2种,
    扩增步骤2:扩增所述检测靶向序列1-4;
    扩增步骤3:扩增持家基因。
  22. 权利要求2-21任一项所述的方法,其中扩增步骤1-扩增步骤3在相同或不同的反应体系中进行。
  23. 本发明的上述任一项权利要求可以用于任何DNA或RNA病毒,包括但不限于HBV,HCV,HPV,HIV。
PCT/CN2021/080053 2020-03-10 2021-03-10 用于检测来自dna或rna生物体的样品靶标的可掺入参照标准品 WO2021180139A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/998,467 US20240117451A1 (en) 2020-03-10 2021-03-10 Spike-in reference standard for use in detecting sample target from dna or rna organism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010160538.4 2020-03-10
CN202010160538 2020-03-10

Publications (1)

Publication Number Publication Date
WO2021180139A1 true WO2021180139A1 (zh) 2021-09-16

Family

ID=76054234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080053 WO2021180139A1 (zh) 2020-03-10 2021-03-10 用于检测来自dna或rna生物体的样品靶标的可掺入参照标准品

Country Status (3)

Country Link
US (1) US20240117451A1 (zh)
CN (1) CN112877366A (zh)
WO (1) WO2021180139A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114134217A (zh) * 2021-11-10 2022-03-04 上海思路迪生物医学科技有限公司 一种配制检出限样本和企业参考品的方法、系统及设备
CN114277048A (zh) * 2022-01-17 2022-04-05 中国海关科学技术研究中心 一种内含新型冠状病毒ORF1ab基因、E基因和N基因装甲RNA标准物质及其应用
CN115992293A (zh) * 2022-06-24 2023-04-21 上海奥迪缇生物科技有限公司 用于rna病毒检测试剂盒的质控品及其制备方法和应用
CN116445546A (zh) * 2022-07-19 2023-07-18 广州医科大学 一种质粒载体及通过质粒载体制备的新冠病毒核酸检测标准品和制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115948472B (zh) * 2022-12-06 2024-02-06 广州市天河诺亚生物工程有限公司 诱导过表达的runx1在构建耗竭t细胞模型中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006031608A2 (en) * 2004-09-10 2006-03-23 Focus Diagnostics, Inc. Methods and compositions for detecting erythrovirus genotypes
CN102199674A (zh) * 2011-03-17 2011-09-28 中国疾病预防控制中心病毒病预防控制所 一种有包膜rna病毒核酸检测参照品/标准品平台及其应用方法
CN103484565A (zh) * 2013-09-02 2014-01-01 湖北朗德医疗科技有限公司 一种实时荧光rt-pcr检测冠状病毒的试剂盒及其应用
CN104845993A (zh) * 2015-05-13 2015-08-19 宝瑞源生物技术(北京)有限公司 一种含丙型肝炎病毒rna片段的假病毒颗粒及其制备方法
CN107557374A (zh) * 2017-09-14 2018-01-09 温州美众医学检验所 人乳头瘤病毒亚型l1基因的重组质粒构建方法
CN110698546A (zh) * 2019-11-13 2020-01-17 中国检验检疫科学研究院 一种猪瘟核酸病毒样颗粒的制备方法及应用
CN110819707A (zh) * 2019-11-24 2020-02-21 中南大学湘雅医院 一种针对多种来源细胞样本中内部核糖体结合位点元件的高通量鉴定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105734170A (zh) * 2010-04-23 2016-07-06 基因组影像公司 通过由分子梳检测基因组和感染性病毒dna的病毒感染的诊断
CN102559731B (zh) * 2011-12-27 2013-05-15 中国检验检疫科学研究院 一种假病毒载体及其制备方法和应用
CN103923887A (zh) * 2014-04-16 2014-07-16 辽宁医学院 含戊型肝炎病毒rna片段的假病毒颗粒及其制备方法
CN109402069A (zh) * 2018-11-13 2019-03-01 海南出入境检验检疫局检验检疫技术中心 一种假病毒颗粒及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006031608A2 (en) * 2004-09-10 2006-03-23 Focus Diagnostics, Inc. Methods and compositions for detecting erythrovirus genotypes
CN102199674A (zh) * 2011-03-17 2011-09-28 中国疾病预防控制中心病毒病预防控制所 一种有包膜rna病毒核酸检测参照品/标准品平台及其应用方法
CN103484565A (zh) * 2013-09-02 2014-01-01 湖北朗德医疗科技有限公司 一种实时荧光rt-pcr检测冠状病毒的试剂盒及其应用
CN104845993A (zh) * 2015-05-13 2015-08-19 宝瑞源生物技术(北京)有限公司 一种含丙型肝炎病毒rna片段的假病毒颗粒及其制备方法
CN107557374A (zh) * 2017-09-14 2018-01-09 温州美众医学检验所 人乳头瘤病毒亚型l1基因的重组质粒构建方法
CN110698546A (zh) * 2019-11-13 2020-01-17 中国检验检疫科学研究院 一种猪瘟核酸病毒样颗粒的制备方法及应用
CN110819707A (zh) * 2019-11-24 2020-02-21 中南大学湘雅医院 一种针对多种来源细胞样本中内部核糖体结合位点元件的高通量鉴定方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114134217A (zh) * 2021-11-10 2022-03-04 上海思路迪生物医学科技有限公司 一种配制检出限样本和企业参考品的方法、系统及设备
CN114277048A (zh) * 2022-01-17 2022-04-05 中国海关科学技术研究中心 一种内含新型冠状病毒ORF1ab基因、E基因和N基因装甲RNA标准物质及其应用
CN115992293A (zh) * 2022-06-24 2023-04-21 上海奥迪缇生物科技有限公司 用于rna病毒检测试剂盒的质控品及其制备方法和应用
CN116445546A (zh) * 2022-07-19 2023-07-18 广州医科大学 一种质粒载体及通过质粒载体制备的新冠病毒核酸检测标准品和制备方法
CN116445546B (zh) * 2022-07-19 2023-12-15 广州医科大学 一种质粒载体及通过质粒载体制备的新冠病毒核酸检测标准品和制备方法

Also Published As

Publication number Publication date
US20240117451A1 (en) 2024-04-11
CN112877366A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2021180139A1 (zh) 用于检测来自dna或rna生物体的样品靶标的可掺入参照标准品
Afzal Molecular diagnostic technologies for COVID-19: Limitations and challenges
Victoria et al. Viral nucleic acids in live-attenuated vaccines: detection of minority variants and an adventitious virus
Bae et al. Detection of yellow fever virus: a comparison of quantitative real-time PCR and plaque assay
Lautenschlager et al. Human herpesvirus‐6 infections in kidney, liver, lung, and heart transplantation
Feuer et al. Cell cycle status affects coxsackievirus replication, persistence, and reactivation in vitro
Heim et al. Rapid and quantitative detection of human adenovirus DNA by real‐time PCR
Bruce et al. Predicting infectivity: comparing four PCR‐based assays to detect culturable SARS‐CoV‐2 in clinical samples
Afzal et al. Absence of detectable measles virus genome sequence in blood of autistic children who have had their MMR vaccination during the routine childhood immunization schedule of UK
US8119338B2 (en) Methods and compositions for detecting rhinoviruses
CN109517927A (zh) 一种甲型、乙型流感病毒快速分型检测试剂盒及其应用
Ségéral et al. Usefulness of a serial algorithm of HBsAg and HBeAg rapid diagnosis tests to detect pregnant women at risk of HBV mother-to-child transmission in Cambodia, the ANRS 12328 pilot study
Michailidou et al. Salivary diagnostics of the novel coronavirus SARS‐CoV‐2 (COVID‐19)
Ogilvie Molecular techniques should not now replace cell culture in diagnostic virology laboratories
Wang et al. An overview of nucleic acid testing for the novel coronavirus SARS-CoV-2
CN113186226B (zh) Rna病毒核酸检测参照标准品及其用途
Zhang et al. Development of a one-step multiplex real-time PCR assay for the detection of viral pathogens associated with the bovine respiratory disease complex
CN110343784A (zh) 基于熔解曲线的四重流感病毒核酸检测的组合物及试剂盒
TW201245452A (en) Nucleic acid detection
KR102260264B1 (ko) 코로나바이러스 질병 2019(COVID-19)의 SARS-CoV-2에 대한 실험실-안전 및 저비용 검출 프로토콜
CN113234866B (zh) 一种同步检测多项血液循环系统病原体的检测试剂盒及其检测方法
Jiang et al. Case report: Clinical and virological characteristics of aseptic meningitis caused by a recombinant echovirus 18 in an immunocompetent adult
Zeidler et al. What do we know about SARS-CoV-2 virus and COVID-19 disease?
Abade dos Santos et al. Harmless or threatening? Interpreting the results of molecular diagnosis in the context of virus-host relationships
Houng et al. Development and evaluation of an efficient 3′-noncoding region based SARS coronavirus (SARS-CoV) RT-PCR assay for detection of SARS-CoV infections

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767178

Country of ref document: EP

Kind code of ref document: A1