WO2021177393A1 - 新規なタングステン系溶射被膜及びそれを得るための溶射用材料 - Google Patents

新規なタングステン系溶射被膜及びそれを得るための溶射用材料 Download PDF

Info

Publication number
WO2021177393A1
WO2021177393A1 PCT/JP2021/008344 JP2021008344W WO2021177393A1 WO 2021177393 A1 WO2021177393 A1 WO 2021177393A1 JP 2021008344 W JP2021008344 W JP 2021008344W WO 2021177393 A1 WO2021177393 A1 WO 2021177393A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal
tungsten
thermal spray
silicon
boron
Prior art date
Application number
PCT/JP2021/008344
Other languages
English (en)
French (fr)
Inventor
和雄 浜島
森笹 真司
真亮 穴井
Original Assignee
トーカロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トーカロ株式会社 filed Critical トーカロ株式会社
Priority to JP2022504451A priority Critical patent/JPWO2021177393A1/ja
Priority to CN202180019377.XA priority patent/CN115244209B/zh
Priority to KR1020227028143A priority patent/KR20220151610A/ko
Priority to US17/796,886 priority patent/US20230220531A1/en
Publication of WO2021177393A1 publication Critical patent/WO2021177393A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32477Vessel characterised by the means for protecting vessels or internal parts, e.g. coatings
    • H01J37/32495Means for protecting the vessel against plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Definitions

  • the present invention relates to a novel tungsten-based thermal spray coating suitable as a member for a plasma etching apparatus using a halogen gas, and a thermal spray material for obtaining the thermal spray coating.
  • Plasma etching in the semiconductor manufacturing process is adopted in the step of manufacturing a circuit on a wafer.
  • the wafer Before starting plasma etching, the wafer is coated with a photoresist or hard mask (usually an oxide or nitride) and exposed to a circuit pattern during photolithography.
  • Plasma etching removes only the material after tracing the pattern, and this patterning and etching sequence is repeated multiple times in the semiconductor chip manufacturing process.
  • plasma etching not only the physical sputtering effect but also the chemical sputtering effect is removed by exposing the wafer to plasma using a halogen-based gas such as fluorine-based or chlorine-based gas.
  • Patent Document 1 proposes a method of suppressing damage by forming a thin film of aluminum oxide on the inner surface of a quartz peephole of a reaction vessel in a CVD apparatus using plasma by a sputtering method.
  • Patent Document 2 describes that a film of aluminum oxide or yttrium oxide is formed on the inner wall of a plasma etching chamber by a thermal spraying method or the like to suppress dust generation due to wear and improve the yield in semiconductor chip manufacturing in the plasma etching process. It is disclosed. Further, Patent Document 3 proposes to select a film forming material for thermal spraying from various compounds such as lanthanoid metal and iridium for the same purpose. Further, in many cases, a gas whose main chemical reaction source is oxygen or fluorine is used as the plasma gas. Therefore, in Patent Documents 4 and 5, oxyfluoride of a rare earth metal such as yttrium is effective as a protective film. Is disclosed.
  • the permissible size of dust in the etching process is also at the level of several tens of nm or less, and further, it is required to reduce the permissible number of dusts as much as possible.
  • the ceramic film containing the oxyfluoride of a rare earth metal as described above is consumed to some extent by plasma exposure, so that these requirements are not sufficiently satisfied.
  • Patent Documents 6 and 7 as a surface modifier of a chamber constituent material, fluoride that gasifies at room temperature when exposed to a gas plasma containing fluorine is generated, and this fluoride is exhausted to the outside of the chamber.
  • the same silicon material as the dischargeable wafer material has been proposed.
  • the consumption rate of the silicon material is high, and many practical problems remain, such as the need for frequent recoating work.
  • the present invention provides physical spraying and fluoride generated when the equipment material constituting the chamber for performing plasma etching using a halogen gas such as fluorine gas in the above semiconductor manufacturing process is exposed to plasma.
  • a thermal spray coating suitable as a material capable of effectively suppressing the generation of dust due to a reaction or the like, a thermal spray material for obtaining such a thermal spray coating, and a method for producing a thermal spray coating from such a thermal spray material.
  • the present inventor has reached the present invention capable of solving this. That is, the present inventor paid attention to tungsten as a thermal spraying material for the above-mentioned purpose, as a material in which fluoride is gasified and easily discharged even if it reacts with fluorine gas plasma in a room temperature range, like a silicon material. .. Since tungsten is an extremely dense metal, it is thought that the consumption rate due to physical sputtering will be low. However, C. Moreau et.al, “Thermal diffusivity of plasma-sprayed tungsten coating”, Surface and Coating technology, 61 (1993), pp.
  • the reaction product becomes a residue even if the obtained thermal spray coating is exposed to a plasma gas containing fluorine or oxygen.
  • a plasma gas containing fluorine or oxygen was found to be less likely to occur.
  • boron and silicon contained in the thermal spray material are more easily oxidized than tungsten, but unlike tungsten oxide, a protective film that prevents oxygen from entering the inner surface of the molten particles can be formed.
  • boron has a low oxidation start temperature, and the generated boron oxide melts at 500 ° C. or lower to form an oxidation protective film for particles mainly composed of tungsten.
  • silicon oxide when a material containing boron and silicon is sprayed in the atmosphere together with tungsten, silicon is oxidized following the oxidation of boron to produce silicon oxide. Then, it is considered that silicon oxide easily binds to boron oxide, raises the melting point while maintaining the glass state, and prevents the oxidation protective film from scattering during the flight of the particles.
  • the thermal spray coating thus produced has tungsten as a matrix phase, and further has a structure in which oxides containing boron and silicon are dispersed. Oxides containing boron and silicon form a glass phase with a low softening point, which is well wetted with tungsten, so that the matrix is hardly cracked during solidification.
  • the present invention has the following aspects.
  • the tungsten - silicon - ternary compounds of boron, W 5 spraying material according to (10) is a compound represented by SiB 2 and / W 5 Si 1.5 B 1.5 .. (12)
  • (13) A method for producing a thermal spray coating by spraying the thermal spraying material according to any one of (8) to (12) above.
  • a thermal spray coating capable of suppressing dust generated during a process, which is suitable for forming in a chamber or the like to be subjected to dry etching by a gas plasma containing fluorine.
  • a thermal spraying material for obtaining the thermal spray coating, particularly by thermal spraying.
  • a material suitable as a member for a plasma etching apparatus such as a chamber to be subjected to dry etching by gas plasma containing fluorine.
  • the cross-sectional structure of the coating film of Example 1 and the locations (a, b, c, d) where the component analysis was performed are shown.
  • the cross-sectional structure of the coating film of Comparative Example 1 and the locations (e, f, g, h) where the component analysis was performed are shown.
  • the cross-sectional structure of the coating film of Comparative Example 2 and the locations (i, j, k, l) where the component analysis was performed are shown.
  • the results of the suga wear test on the sprayed coatings of Example 1 and Comparative Examples 1 and 2 are shown.
  • the outline of the parallel plate type dry etching apparatus used for the plasma exposure test of the sprayed coatings of Example 1 and Comparative Examples 1 and 2 is shown.
  • the results of the plasma exposure test of the sprayed coatings of Example 1 and Comparative Examples 1 and 2 are shown.
  • the thermal spray coating of the present invention contains tungsten as a matrix phase (hereinafter, also simply referred to as a matrix) and an oxide containing silicon and boron as a dispersed phase.
  • Tungsten forming a matrix which is the main constituent phase of the thermal spray coating of the present invention, is known as a metal having a large specific gravity and the largest atomic binding energy, and has extremely high resistance to physical sputtering.
  • tungsten hexafluoride which is a compound of tungsten and fluorine, has a boiling point of 17.5 ° C. and gasifies at a temperature at which dry etching of the semiconductor is performed.
  • Tungsten which is the matrix in the thermal spray coating
  • silicon and / or boron may be dissolved in tungsten as a solid solution, and may be dispersed as fine tungsten silicide or tungsten boride.
  • silicon is a component in which the reaction product with fluorine vaporizes at room temperature or lower
  • boron is also a component that easily vaporizes, so that it does not interfere with the characteristics of tungsten as a plasma-resistant protective coating material.
  • the matrix contains silicon, the silicon content is preferably 0.2 atomic% or more, more preferably 15 atomic% or less, and more preferably 10 atomic% or less, based on the total amount of the matrix.
  • the content of boron is preferably 0.5 atomic% or more, more preferably 20 atomic% or less, and more preferably 15 atomic% or less, based on the total amount of the matrix.
  • the inclusion of silicon and / or boron in tungsten improves mechanical properties such as the hardness of the coating, but if it exceeds the above range, the consumption rate for plasma increases.
  • a part of the molten sprayed raw material droplets is usually oxidized before being laminated on the base material to form an extremely unstable tungsten oxide. do. Since this tungsten oxide is fragile, large-scale cracks parallel to the substrate interface occur in the coating film due to thermal stress generated during cooling. When cracks occur, thermal or mechanical stress is generated in the sprayed coating, internal cracks develop in the coating, and the surface portion of the coating is chipped off. On the other hand, in the thermal spray coating formed from the thermal spray raw material containing silicon and boron together with tungsten, the amount of the above-mentioned fragile tungsten oxide is small and the particle size is also small. As a result, the obtained sprayed coating does not easily develop large-scale cracks or partially chip even when thermal or mechanical stress is generated.
  • the oxides containing silicon and boron contained as the dispersed phase in the sprayed coating of the present invention are easily eutectic, form a glass phase at a high cooling rate during thermal spraying, and are often average particles. It exists as an amorphous particle having a diameter of 100 ⁇ m or less.
  • the bonding between tungsten, which is a matrix, and a glass phase made of an oxide containing silicon and boron is good, and cracks and pores do not occur at the interface.
  • the softening temperature of the glass phase composed of oxides containing silicon and boron is relatively low, and when the film surface temperature rises due to thermal spraying or plasma exposure and thermal stress is applied, the glass phase softens. The stress can be relieved.
  • the content of the dispersed phase in the sprayed coating of the present invention is preferably 2% or more and 8% or less in terms of volume ratio with respect to the total amount of the matrix and the dispersed phase. If the volume ratio of the dispersed phase is less than 2%, the amount of residual tungsten oxide increases and it is difficult to exhibit the function as a stress relaxation phase. On the other hand, when the volume ratio of the dispersed phase exceeds 8%, the physical spatter resistance of the entire coating film is significantly reduced. Among them, the content of the dispersed phase is more preferably 3% or more and more preferably 6% or less in terms of volume ratio.
  • the dispersed phase is preferably a binary system composed of oxides of silicon and boron, but may contain oxides of tungsten and / or rare earth elements.
  • the rare earth element here include scandium, yttrium, lanthanum, cerium, neodium, samarium, gadolinium, erbium, ytterbium, and lutetium.
  • the content of tungsten is preferably 3 atomic% or more, preferably 30 atomic% or less, and more preferably 25 atomic% or less, based on the total amount of the dispersed phase.
  • the content of the rare earth element is preferably 1 to 6 atomic%, more preferably 2 to 4 atomic%, based on the total amount of the dispersed phase.
  • the glass temperature and softening temperature can be adjusted by adding an appropriate amount of tungsten or a rare earth element to the dispersed phase.
  • the thermal spray coating of the present invention has a thickness of preferably 50 to 1000 ⁇ m, more preferably 100 to 500 ⁇ m.
  • a thermal spray coating having a thickness within such a range can be easily obtained, and the thermal spray coating having this thickness is suitable as a protective coating for covering a chamber member to be subjected to plasma dry etching containing fluorine in a semiconductor. be.
  • the protective coating which is inevitably exposed to plasma, is required to be resistant to both physical sputtering and chemical sputtering. Since damage to the protective film due to plasma causes minute defects in semiconductor products, various requirements for the protective film have become extremely high as the degree of semiconductor integration increases.
  • One of the coatings satisfying this requirement is a coating having high resistance to physical sputtering, and even if consumption occurs due to physical sputtering, the consumables react with the halogen component and become a gas that is easily discharged.
  • the sprayed coating of the present invention can sufficiently satisfy the above requirements.
  • the thermal spray coating of the present invention is produced by thermal spraying of a thermal spray material containing tungsten, silicon and boron.
  • the thermal spray material is preferably in the form of powder or particles.
  • any single compound, a compound composed of a plurality of elements, or a metal powder can be used, and a plurality of combinations thereof can be selected.
  • As the thermal spraying material for forming the thermal spray coating a mixture of individual powders of tungsten, silicon and boron blended so as to have a content in the obtained thermal spray coating can be used.
  • the thermal spraying material is not limited to the mixed powder, and a binary compound powder of silicon disilicate can be used as the silicon source and tungsten boring can be used as the boron source. Furthermore, a tungsten-silicon-boron ternary compound powder can also be used. Further, a mixture of these compounds and / or a single element powder can also be used.
  • the thermal spraying material in the present invention mainly contains tungsten, and also contains silicon and boron.
  • the content of silicon in the sprayed material Is preferably 1 to 7% by weight, more preferably 2 to 5% by weight, and the content of boron is preferably 0.5 to 3% by weight, more preferably 1.5 to 3% by weight. Is preferable.
  • the silicon content is 1% by weight or less, the amount of glass phase dispersed in the coating film after thermal spraying is reduced, and it becomes difficult to exert the effect.
  • the silicon content exceeds 7% by weight, a large amount of fragile tungsten silicide is deposited in the coating film after thermal spraying, and the coating film is liable to crack or peel off.
  • the boron content exceeds 3% by weight, a large amount of fragile tungsten boride is deposited in the coating film after thermal spraying, and the coating film is liable to crack or peel off.
  • the content of boron is 0.5% by weight or less, the number of glass phases dispersed in the coating film after thermal spraying is reduced, and the effect cannot be exhibited.
  • a powder of a ternary compound of tungsten-silicon-boron is preferable in order to obtain macro-uniformity of the thermal spray coating.
  • the ternary compounds those having a composition of W 5 Si x B y is preferred.
  • x is preferably 0.8 to 1.7, more preferably 0.9 to 1.6
  • y is preferably 1.3 to 2.2, more preferably 1.4 to 2.1.
  • W 5 Si 1.5 B 1.5, or W 5 SiB 2 is preferred.
  • the thermal spray coating of the present invention can be produced by a known thermal spraying method using the above-mentioned thermal spray material, but is preferably produced by the following procedure.
  • the compound powder and / or metal powder, which are the above-mentioned thermal spraying materials of the thermal spray coating, are weighed and mixed and pulverized in an organic solvent such as alcohol using a rotary ball mill or a vibrating ball mill. These raw material powders are as pure as possible, and it is preferable that they are fine in order to obtain a sprayed coating having excellent properties.
  • the average particle size (D50) of the compound powder is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and particularly preferably 1 to 3 ⁇ m. ..
  • the raw material powder pulverized and mixed by a rotary ball mill or a vibrating ball mill may be used as a thermal spraying material as it is, but it is preferable to use an organic binder and perform granulation treatment using a spray dryer or the like in a non-oxidizing atmosphere. ..
  • the organic binder it is preferable to select a binder that is easily removed during sintering, and acrylic resin, polyethylene glycol and the like can be used.
  • the granulated powder is generally spherical and has good fluidity, but in order to have strength to withstand transportation by a pressurized gas or the like, this granulated powder is preferably used in a non-oxidizing atmosphere such as argon. Is preferably baked at 1000 to 1800 ° C, more preferably 1200 to 1600 ° C. As a result, the organic binder is removed, and the primary particles in the granulated powder can be sintered while maintaining the spherical shape. Then, when this is crushed, it becomes substantially spherical and does not easily collapse even when transported by pressurized gas.
  • the obtained sintered granulated powder is preferably classified so as to have a desired particle size, and then used as a thermal spraying raw material.
  • the average particle size (D50) of the thermal spraying raw material powder is preferably 10 to 100 ⁇ m, more preferably 15 to 75 ⁇ m.
  • As the working gas of plasma argon, nitrogen, helium, hydrogen and the like can be used. Among them, it is preferable to use a mixed gas such as argon-hydrogen and nitrogen-hydrogen by taking advantage of the characteristics of each gas.
  • the thermal spray output defined by the product of the operating voltage and the operating current is in the range of about 20 to 100 kW, and can be selected according to the type and size of the thermal spray material and the base material.
  • the thermal spraying distance which is the distance between the plasma gun and the thermal spray target, is preferably set to about 50 mm to 200 mm according to the thermal spray material, thermal spraying conditions, and the like.
  • thermal spraying method used in the present invention a thermal spraying method using plasma such as an atmospheric plasma thermal spraying method or a reduced pressure plasma thermal spraying method is preferable, and an atmospheric plasma thermal spraying method is particularly preferable.
  • Thermal spraying device Throughzer Meteco, 9MB Operating voltage: 65V Operating current: 700A Primary gas (Ar) flow rate: 60NL / min Secondary gas (H 2 ) flow rate: 5NL / min Thermal spraying distance: 140 mm
  • Example 1 Tungsten powder (manufactured by Nippon Shinkin Co., Ltd., particle size: 1.5 to 2.0 ⁇ m), tungsten blazed powder (manufactured by Nippon Shinkin Co., Ltd., particle size: 3 to 6 ⁇ m) and tungsten silicate powder (manufactured by Nippon Shinkin Co., Ltd., particle size) : 2 to 5 ⁇ m) were weighed so as to have the following predetermined contents, and mixed and pulverized using a rotary ball mill using ethanol as a solvent to prepare a slurry.
  • This slurry is used as a raw material for granulation treatment using a spray dryer and heated to 1600 ° C. in argon gas to contain 3.5% by weight of silicon, 2.2% by weight of boron and porous spheres containing unavoidable impurities.
  • a powder was prepared. The particle size of this spherical powder was 15 to 75 ⁇ m.
  • one side surface (surface roughness Ra: 2 to 5 ⁇ m) roughened by sandblasting the following two substrates X and Y made of aluminum alloy (A5052).
  • a thermal spray coating having a thickness of about 0.2 mm was formed by thermal spraying with the above-mentioned atmospheric plasma spraying device under the above-mentioned thermal spraying conditions.
  • the two substrates X and Y were square plates [length 50 mm, width 50 mm, thickness 3 mm] and [length 20 mm, width 20 mm, thickness 5 mm, respectively].
  • the cross-sectional observation and component analysis of the thermal spray coating formed on the substrate X were performed.
  • the cross section is exposed using a cross-session polisher (SM-09010 manufactured by JEOL Ltd.), the cross section is observed using a field emission scanning electron microscope (JSM-7200F manufactured by JEOL Ltd.), and energy dispersive X-rays are used.
  • the components were analyzed by the analytical method (EDX).
  • the cross-sectional structure of the sprayed coating and the locations (a, b, c, d) where the component analysis was performed are shown in FIG. 1a.
  • the cross section has a structure in which dispersed particles are arranged in a matrix structure, and as shown in Table 1, the composition (unit: atomic%, the same applies hereinafter) of the matrix (analysis points a and b) is 87 to 89 for tungsten. %, Boron is 3-8% and Oxygen is 5-8%, and the dispersed phase (analysis points c and d) is tungsten 4-20%, silicon 12-21%, boron 15-16% and oxygen. Was 53-59%.
  • the substrate Y (sprayed sample) is ultrasonically cleaned in pure water, dried in a constant temperature bath kept at 85 ° C., and then subjected to mechanical stress by the Suga wear test method as follows. The ease with which the particles fell off from the coating was evaluated. The surface of the sprayed sample used in this test was left as it was sprayed without polishing. In the Suga wear test, the sprayed surface of the flat plate sample slides back and forth while being pressed against the outer peripheral surface of the disk to which the abrasive paper is attached with a constant load. Since the abrasive grains of the polishing paper scratch the sprayed surface, the wear of the sprayed coating becomes remarkable when there are open cracks or the like.
  • the test was carried out using abrasive paper made of # 180 SiC abrasive grains and a pressing force of 15 N. The test results are shown in FIG. 2.
  • the increase in the amount of wear with respect to the number of times the coating film of Example 1 is slid is very gradual, and the amount of wear is significantly smaller than that of the samples of Comparative Examples 1 and 2 described later. I understand.
  • the sprayed surface of the substrate Y (sprayed sample) is polished with # 800 wet emery paper, ultrasonically cleaned in pure water, then dried at 85 ° C. in a constant temperature bath, and then subjected to a plasma exposure test. Served.
  • a parallel plate type dry etching apparatus outlined in FIG. 3 was used, and the thermal spray sample was placed on a silicon wafer arranged on the cathode side so that the thermal spray surface faced the anode and exposed to plasma. bottom.
  • the conditions for plasma generation are A, which can evaluate the resistance to chemical sputtering, and B, which can evaluate the resistance to physical sputtering, and each condition is as follows.
  • Condition A Plasma gas type and flow rate: CF 4 ... 50 sccm, O 2 ... 10 sccm, Ar ⁇ ⁇ ⁇ 50sccm RF output ... 800W, bias ... 600W
  • Condition B Plasma gas type and flow rate: O 2 ... 10 sccm, Ar ... 100 sccm RF output ... 1000W, bias ... 1000W
  • Example 1 The result of the plasma exposure test is shown in FIG. 4 with the wear rate of Comparative Example 1 described later as 100.
  • the consumption rate of Example 1 is small under any of the plasma conditions A and B, and its superiority is particularly remarkable under the condition where consumption by physical sputtering is the main condition.
  • Comparative Examples 1 and 2 In Comparative Example 1, powder (tungsten: 99.8% by mass and unavoidable impurities, particle size: 10 to 40 ⁇ m, manufactured by Nippon Shinkinzoku Co., Ltd., WL) was used as the thermal spray material. In Comparative Example 2, a powder (tungsten: 91.6% by weight and silicon: 8.4 wt%, W 5 Si 3 compound (average particle size (D50): 12.5 .mu.m, with Japan New Metals Co., Ltd.). Then, by the atmospheric plasma spraying method under the same conditions as in Example 1, a sprayed coating was formed on the surface roughened by sandblasting two substrates X and Y having the same shape as in Example 1, respectively.
  • FIG. 1b shows the cross-sectional structure and component analysis of the sprayed coating of Comparative Example 1 (e, f, g, h), and FIG. 1c shows the cross-sectional structure and component analysis of the sprayed coating of Comparative Example 2. (I, j, k, l) is shown.
  • the thermal sprayed cross section of Comparative Example 1 had a structure in which many coarse cracks were present in a substantially uniform structure. Further, as shown in Table 2, the composition of the matrix (analysis points e and f) is 92 to 95% for tungsten and 5 to 8% for oxygen, and the thin layer portion (analysis points g and h) on the inner surface of the crack is. Tungsten was 17-22% and oxygen was 78-83%. As can be seen in FIG. 1c, the thermal sprayed cross section of Comparative Example 2 also had a structure in which many coarse cracks were present in a substantially uniform structure.
  • the composition of the matrix (analysis points i and j) is 93 to 96% for tungsten and 4 to 7% for oxygen, and the thin layer portion (analysis points k and l) on the inner surface of the crack is tungsten.
  • the thermal spray coatings of Comparative Examples 1 and 2 are composed of tungsten and tungsten oxide, and coarse cracks are generated starting from the tungsten oxide.
  • the substrate X (sprayed sample) having the thermal spray coatings of Comparative Examples 1 and 2 was subjected to the same plasma exposure test as in Example 1.
  • the results of the plasma exposure test are shown in FIG. 4 with the wear rate of Comparative Example 1 as 100.
  • the consumption rate of the substrate X is higher than that of the first embodiment, and the difference is particularly remarkable under the condition B where the consumption due to physical sputtering is the main.
  • the thermal spray coating of the present invention is effective in a wide range including members for plasma dry etching chambers that use halogen gas such as fluorine gas in the semiconductor manufacturing process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

ハロゲンガスを用いたプラズマエッチング装置用部材等として好適な新規なタングステン系溶射被膜及び該溶射被膜を得るための溶射材料の提供。 タングステンをマトリックス相として含有し、シリコン及びボロンを含む酸化物を分散相して含有することを特徴とする溶射被膜、及び該溶射被膜を有するプラズマエッチング装置用部材。シリコンを1~7重量%、ボロンを0.5~3重量%、及び残部としてタングステン及び不可避不純物を含むことを特徴とする溶射用材料。該溶射用材料を溶射して溶射被膜を製造する方法。

Description

新規なタングステン系溶射被膜及びそれを得るための溶射用材料
 本発明は、ハロゲンガスを用いたプラズマエッチング装置用部材などとして好適な新規なタングステン系溶射被膜、及び該溶射被膜を得るための溶射材料などに関する。
 半導体製造工程におけるプラズマエッチングは、ウェーハに回路を作製するステップで採用されている。プラズマエッチングを開始する前に、ウェーハはフォトレジスト若しくはハードマスク(通常、酸化物若しくは窒化物)でコーティングされ、フォトリソグラフィーの間に回路パターンに露光される。プラズマエッチングはパターンのトレース後の材料のみ除去し、このパターニングとエッチングのシークェンスは半導体チップ製造プロセスにおいて、複数回繰り返される。プラズマエッチングは、物理的なスパッタ効果のみではなく、フッ素系や塩素系などのハロゲン系ガスを用いたプラズマをウェーハに浴びせて、化学的なスパッタの効果も併せて材料を除去している。
 プラズマエッチングでは、昨今の高集積度の半導体回路を形成するために、ほぼ垂直のプロファイルを作製する必要があり、プラズマからは高エネルギーのイオンやラジカルが高密度に放出される。このため、エッチング対象であるウェーハのみでなくエッチングが行われるチャンバーの内面を構成する材料もプラズマ照射の影響を受け消耗する。このため、このようにして生じた生成物がウェーハの回路上に付着して、半導体チップ製造における歩留りを低下させる一因となっている。
 上記プラズマエッチングを行うチャンバーを構成する材料は、通常、アルミニウム合金などの金属材料であり、ハロゲン系ガスプラズマの暴露に対する耐性は高くない。これに対して、金属酸化物などのセラミックス材料は結晶構造が複雑であり、化学的な安定性も高いため、プラズマの暴露に対して良好な耐久性を示すことが期待できる。特許文献1には、プラズマを用いたCVD装置における反応槽の石英製のぞき窓の内面に、酸化アルミニウムの薄膜をスパッタ法によって成膜して損傷を抑制する方法が提案されている。
 特許文献2には、プラズマエッチングチャンバーの内壁に酸化アルミニウムや酸化イットリウムの被膜を溶射法などによって成膜し、損耗による発塵を抑制しプラズマエッチング工程での半導体チップ製造における歩留まりを向上させることが開示されている。更に、特許文献3には、同様な目的で、溶射における成膜材料を各種ランタノイド金属やイリジウムなどの化合物から選定することが提案されている。また、多くの場合、プラズマガスとして酸素やフッ素を主たる化学反応源とするガスが用いられることから、特許文献4及び特許文献5には、保護被膜としてイットリウムなどの希土類金属のオキシフッ化物が効果的であることが開示されている。
 一方、近年、先端技術分野に供される半導体は、増々高集積化し、チップに形成される回路の線幅は加速的に細くなっている。このため、エッチング工程におけるダストが許容される大きさも数十nmレベル以下となっており、更には、許容されるダストの個数も極力少なくすることを要求されている。これに対して、前述したような希土類金属のオキシフッ化物などを含むセラミックス被膜はプラズマ暴露によって一定程度消耗するため、これらの要求を十分に満たすものとはなっていない。更に、特許文献6、7には、チャンバー構成材の表面改質材として、フッ素を含むガスプラズマに晒されると室温域でガス化するフッ化物が生成し、このフッ化物を排気によりチャンバー外に排出し得るウェーハ材と同一のシリコン材料が提案されている。しかし、シリコン材料の消耗速度は早く、頻繁な再被覆作業が必要となるなど実用上の課題が多く残されている。
日本特開平09-95764号公報 日本特表2011-528755号公報 日本特表2012-508467号公報 日本特表2012-508684号公報 日本特開2014-009361号公報 日本特開2007-250569号公報 日本特開2018-48378号公報
 本発明は、上記した事情に鑑みて、上記した半導体製造工程のフッ素ガスなどのハロゲンガスを用いたプラズマエッチングを行うチャンバーを構成する機器材料がプラズマに晒された際に生じる物理スパッタやフッ化反応などに起因するダストの発生を効果的に抑制し得る材料として好適である新規な溶射被膜、かかる溶射被膜を得るための溶射材料、及びかかる溶射材料からの溶射被膜の製造方法を提供することを目的とする。
 本発明者は、上記目的を達成するために鋭意研究を進めたところ、これを解決し得る本発明に到達した。
 すなわち、本発明者は、上記目的の溶射材料として、シリコン材料と同様に、室温域でフッ素ガスプラズマと反応しても、そのフッ化物がガス化し容易に排出される材料として、タングステンに注目した。タングステンは極めて密度の大きな金属であることから、物理スパッタによる消耗速度も低くなるものと考えた。しかし、C.Moreau et.al, “Thermal diffusivity of plasma-sprayed tungsten coating”, Surface and Coating technology, 61(1993), 67-71頁には、タングステン原料を用いて大気中で溶射を行うと、被膜には基板との界面に平行に開口したクラックが不可避的に多数生じ、溶射被膜の熱拡散率がバルク体に比べてはるかに小さくなることが明らかにされている。
 また、H.K.Kang, “Thermal properties of plasma-sprayed tungsten deposits”, J. of Nuclear Mate.. 335(2004), 1-4頁には、タングステンの融点が極めて高いことや耐酸化性の乏しさから、溶射時に酸化物が容易に形成されることがクラック発生の原因であることが明らかにされている。タングステンの酸化物の安定性は乏しく、比較的低温において昇華することやその脆弱さから、これを含む溶射被膜は機械的特性が低い極めて脆い被膜となるため、プラズマに暴露された際の表面温度変化などによって、薄層の剥離などが生じ易いと考えられる。
 本発明者は、溶射材料が、タングステンだけでなく、タングステンとともに、ボロン及びシリコンを含む場合には、得られる溶射被膜がフッ素や酸素を含むプラズマガスに暴露されても、残渣となる反応生成物が生じ難くなることを見出した。
 すなわち、溶射材料に含まれるボロン及びシリコンはタングステンに比べて酸化しやすいが、タングステンの酸化物と異なり、溶融粒子内面への酸素の侵入を妨げる保護膜を形成することができる。特にボロンは酸化開始温度が低く、生成した酸化ホウ素は500℃以下で溶融してタングステンを主体とする粒子の酸化保護膜となる。具体的には、タングステンとともにボロン及びシリコンを含む材料を大気中で溶射すると、ボロンの酸化に引き続いてシリコンが酸化して酸化ケイ素が生成する。そして、酸化ケイ素は容易に酸化ホウ素と結びつき、ガラス状態を維持したまま融点を引き上げ、酸化保護膜が粒子の飛行中に飛散することを防止すると考えられる。
 こうして作製された溶射被膜は、タングステンをマトリックス相として有し、さらにボロンとシリコンを含む酸化物が分散した組織となる。ボロンとシリコンを含む酸化物はタングステンへの濡れが良好な軟化点の低いガラス相を形成することから、凝固中にマトリックスにクラックを発生させることも殆どない。
 かくして、本発明は、下記の態様を有するものである。
(1)タングステンをマトリックス相として含有し、シリコン及びボロンを含む酸化物を分散相として含有することを特徴とする溶射被膜。
(2)前記分散相の体積比が、マトリックス相と分散相の合計量に対して2~6%である上記(1)に記載の溶射被膜。
(3)前記マトリックス相が、シリコン及び/又はボロンを含む上記(1)又は(2)に記載の溶射被膜。
(4)前記分散相が、タングステンを含む上記(1)~(3)のいずれか1項に記載の溶射被膜。
(5)厚みが50~1000μmである上記(1)~(4)のいずれか1項に記載の溶射被膜。
(6)上記(1)~(5)のいずれか1項に記載の溶射被膜を有するプラズマエッチング装置用部材。
(7)前記プラズマエッチング装置が、フッ素を含むガスプラズマによるドライエッチング装置である上記(6)に記載のプラズマエッチング装置用部材。
(8)シリコンを1~7重量%、ボロンを0.5~3重量%、及び残部としてタングステン及び不可避不純物を含むことを特徴とする溶射用材料。
(9)シリコンを2~5重量%及びボロンを1.5~3重量%含む上記(8)に記載の溶射用材料。
(10)タングステン、シリコン及びボロンを、WSi(但し、xは0.8~1.7であり、yは1.3~2.2である。)で表される、タングステン-シリコン-ホウ素の三元系化合物を主体として含有する上記(8)又は(9)に記載の溶射用材料。
(11)前記タングステン-シリコン-ホウ素の三元系化合物が、WSiB及び/又はWSi1.51.5で表される化合物である上記(10)に記載の溶射用材料。
(12)上記(1)~(5)のいずれか1項に記載の溶射被膜を製造するための上記(8)~(11)のいずれか1項に記載の溶射用材料。
(13)上記(8)~(12)のいずれか1項に記載の溶射用材料を溶射して溶射被膜を製造する方法。
(14)前記溶射用材料を大気プラズマ溶射で溶射する上記(13)に記載の溶射被膜を製造する方法。
(15)上記(1)~(5)のいずれか1項に記載の溶射被膜を製造する上記(13)又は(14)に記載の溶射被膜を製造する方法。
 本発明によれば、フッ素を含むガスプラズマによるドライエッチングに供されるチャンバーなどに形成するのに適した、プロセス中に生じる塵埃を抑制することのできる溶射被膜が提供される。また、本発明によれば、上記溶射被膜を特に大気プラズマ溶射により得るための溶射材料が提供される。
 更に、本発明によれば、フッ素を含むガスプラズマによるドライエッチングに供されるチャンバーなどのプラズマエッチング装置用部材として好適な材料が提供される。
実施例1の被膜の断面組織と成分分析を行った箇所(a,b,c,d)を示す。 比較例1の被膜の断面組織と成分分析を行った箇所(e,f,g,h)を示す。 比較例2の被膜の断面組織と成分分析を行った箇所(i,j,k,l)を示す。 実施例1、比較例1、2の溶射被膜についてのスガ摩耗試験の結果を示す。 実施例1、比較例1、2の溶射被膜のプラズマ暴露試験に供した平行平板型のドライエッチング装置の概略を示す。 実施例1、比較例1、2の溶射被膜のプラズマ暴露試験の結果を示す。
(溶射被膜)
 本発明の溶射被膜は、タングステンをマトリックス相(以下、単に、マトリックスともいう。)として含有し、シリコン及びボロンを含む酸化物を分散相として含有する。
 本発明の溶射被膜の主たる構成相であるマトリックスを形成するタングステンは比重が大きく、また最も大きな原子結合エネルギーを有する金属として知られており、物理スパッタへの耐性は非常に高い。更に、タングステンとフッ素の化合物である六フッ化タングステンの沸点は17.5℃であり、半導体のドライエッチングが実施される温度ではガス化する。
 溶射被膜中のマトリックスであるタングステンにはシリコン及び/又はボロンを含むことができる。この場合、シリコン及び/又はボロンはタングステンに固溶してもよく、微細なタングステンケイ化物やタングステンほう化物として分散することもできる。シリコンはタングステンと同様にフッ素との反応生成物が室温以下で気化する成分であり、ボロンもガス化しやすい成分であることから、タングステンの耐プラズマ保護被膜材料としての特長を妨げることはない。
 上記マトリックスが、シリコンを含む場合、シリコンの含有量は、マトリックスの総量に対して、0.2原子%以上が好ましく、一方、15原子%以下が好ましく、10原子%以下がより好ましい。
 また、上記マトリックスが、ボロンを含む場合、ボロンの含有量は、マトリックスの総量に対して、0.5原子%以上が好ましく、一方、20原子%以下が好ましく、15原子%以下がより好ましい。タングステンにシリコン、及び/又はボロンを含むことによって被膜の硬さなどの機械的特性が向上するが、上記の範囲を超えるとプラズマに対する消耗速度が上昇する。
 タングステンのみからなる溶射原料から形成された溶射被膜では、通常、溶融した溶射原料飛沫が基材に積層するまでの間に、通常、その一部が酸化し、極めて不安定なタングステン酸化物が生成する。このタングステン酸化物は脆弱であるため、被膜内には冷却時に生じる熱応力などによって基板界面に平行な大規模クラックが生じる。クラックが生じると、溶射被膜に熱的、あるいは機械的な応力が生じ、被膜に内部クラックが進展したり、被膜の表面部位が欠け落ちたりする。
 一方、タングステンとともにシリコン及びボロンを含有する溶射原料から形成された溶射被膜では、上記した脆弱である酸化タングステンは少量であり、粒子サイズも小さくなっている。この結果、得られた溶射被膜は熱的、機械的応力が生じても容易に大規模なクラックの進展や部分的な欠落が生じることがなくなる。
 本発明の溶射被膜における分散相として含まれるシリコン及びボロンを含む酸化物は、共晶化しやすく、溶射成膜時の大きな冷却速度においてガラス相を形成しており、そして、多くの場合、平均粒子径が100μm以下の不定形な粒子として存在している。マトリックスであるタングステンと、シリコン及びボロンを含む酸化物からなるガラス相の接合は良好であり、界面にクラックや気孔が生じることはない。また、シリコン及びボロンを含む酸化物からなるガラス相の軟化温度は比較的低く、溶射による成膜時やプラズマ暴露などによって被膜表面温度が上昇し熱応力が付加された場合には、軟化して応力を緩和することができる。
 本発明の溶射被膜における分散相の含有量は、マトリックス及び分散相の合計量に対して体積比で2%以上、8%以下であるのが好ましい。分散相の体積比が2%未満であると、残存するタングステン酸化物が増大するとともに、応力緩和相としての機能を発揮することが困難である。一方、分散相の体積比が8%を超えると、被膜全体の耐物理スパッタ性が大幅に低下する。なかでも、分散相の含有量は、体積比で、3%以上がより好ましく、6%以下がより好ましい。
 上記分散相はシリコン及びボロンの酸化物から成る二元系であることが好ましいが、タングステン及び/又は希土類元素の酸化物を含有していてもよい。ここにおける希土類元素としては、スカンジウム、イットリウム、ランタン、セリウム、ネオジウム、サマリウム、ガドリニウム、エルビウム、イッテルビウム、ルテチウムなどが挙げられる。
 分散相にタングステンが含有される場合、タングステンの含有量は、分散相の総量に対して、3原子%以上が好ましく、一方、30原子%以下が好ましく、25原子%以下がより好ましい。また、希土類元素の含有量は、分散相の総量に対して、1~6原子%が好ましく、2~4原子%がより好ましい。分散相にタングステンや希土類元素を適量添加することによって、そのガラス温度や軟化温度を調整することができる。
 本発明の溶射被膜は、厚みが好ましくは50~1000μm、より好ましくは100~500μmである。本発明では、かかる範囲の厚みの溶射被膜を容易に得ることができるが、この厚みを有する溶射被膜は、半導体のフッ素を含むプラズマドライエッチングに供されるチャンバー用部材を覆う保護被膜として好適である。これは、プラズマによる暴露が避けられない保護被膜には物理スパッタと化学スパッタの双方に対する耐性が求められるためである。プラズマによる保護被膜の損傷は半導体製品の微小欠点の要因となるため、半導体集積度の上昇に伴って保護被膜に対する諸要求は格段に高度なものとなっている。この要求を満たす被膜の一つは物理スパッタに対する耐性が高く、たとえ物理スパッタによる消耗が生じても、その消耗物がハロゲン成分と反応して容易に排出されるガスとなる被膜である。本発明の溶射被膜は、上記要求を十分に満たすことができる。
(溶射材料)
 本発明の溶射被膜は、タングステン、シリコン及びボロンを含む溶射材料の溶射によって製造される。溶射材料は、粉末乃至粒子状であるのが好ましい。溶射材料は、単一化合物、複数の元素からなる化合物、又は金属粉末の何れも使用することができ、これらの複数の組み合わせを選択することもできる。
 溶射被膜を成膜するための溶射材料としては、得られる溶射被膜における含有量となるように配合したタングステン、シリコン及びボロンの個々の粉末を混合したものを使用することができる。溶射材料は、混合粉末に限定されることはなく、シリコン源としては、二ケイ化シリコン、ボロン源としては、ほう化タングステンの二元系化合物粉末を使用することができる。更には、タングステン-シリコン-ボロンの三元系化合物粉を使用することもできる。また、これらの化合物同士、及び/又は単元素粉末の混合物を使用することもできる。
 本発明における溶射材料としては、タングステンを主体としてシリコン及びボロンを含有する。なかでも、得られる溶射被膜における、シリコンとボロンの酸化物を含むガラス相の体積比が、マトリックスとガラス相の合計に対して2~8%にするために、溶射材料中のシリコンの含有率は好ましくは1~7重量%、より好ましくは2~5重量%にし、また、ボロンの含有率は好ましくは0.5~3重量%に、より好ましくは1.5~3重量%にすることが好ましい。
 シリコンの含有率が1重量%以下であると、溶射成膜後の被膜中に分散するガラス相が少なくなり、その効果を発揮し難くなる。一方、シリコンの含有率が7重量%を超えると、溶射成膜後の被膜内に脆弱なタングステンケイ化物が多量に析出し、被膜の割れや箔剥離が生じやすくなる。一方、ボロンの含有率が3重量%を超えると、溶射成膜後の被膜内に脆弱なタングステンほう化物が多量に析出し、被膜の割れや箔剥離が生じやすくなる。また、ボロンの含有率が0.5重量%以下であると、溶射成膜後の被膜中に分散するガラス相が少なくなり、その効果を発揮できなくなる。
 本発明における溶射材料としては、溶射被膜のマクロ的な均一性を得るために、タングステン-シリコン-ボロンの三元系化合物の粉末が好ましい。なかでも、三元系化合物としては、WSiの組成を有するものが好ましい。但し、xは0.8~1.7が好ましく、0.9~1.6がより好ましく、yは、1.3~2.2が好ましく、1.4~2.1がより好ましい。特に、WSi1.51.5、又はWSiBが好ましい。
(溶射被膜の製造方法)
 本発明の溶射被膜は、上記した溶射材料を使用し既知の溶射法により製造できるが、好ましくは、以下の手順により製造できる。
 溶射被膜の上記した溶射材料である化合物粉末、及び/又は金属粉末などをそれぞれ秤量し、回転ボールミルや振動ボールミルなどを用いて、アルコール等の有機溶媒中で混合粉砕する。これらの原料粉末はできるかぎり純度が高く、微細である方が優れた特性の溶射被膜を得るために好ましい。特に、得られる溶射被膜の均質性を確保するために、化合物粉末の平均粒径(D50)が10μm以下であることが好ましく、5μm以下であることがより好ましく、なかでも、1~3μmが好ましい。
 回転ボールミルや振動ボールミル等で粉砕混合した原料粉末は、そのまま溶射材料としてもよいが、好ましくは有機バインダーを使用し、非酸化性雰囲気中でスプレードライヤー等を用いて造粒処理を行うことが好ましい。有機バインダーとしては、焼結時に除去され易いものを選ぶことが好ましく、アクリル樹脂、ポリエチレングリコール等を用いることができる。
 造粒処理を行った粉末は、一般に球形であり、流動性は良いが、加圧ガスなどによる搬送に耐える強度をもたせるために、この造粒粉を、アルゴンなどの非酸化性雰囲気中において好ましくは1000~1800℃、より好ましくは1200~1600℃でか焼するのが好ましい。これにより、有機バインダーが除去されるとともに、球形を保ったまま造粒粉内の一次粒子同士が焼結できる。次いで、これを解砕すると概ね球状となり、加圧ガスによる搬送を行っても容易に崩れなくなる。
 得られた焼結造粒粉は、所望の粒径になるように好ましくは分級した後、溶射原料として用いられる。溶射原料粉末の平均粒径(D50)は10~100μmが好ましく、15~75μmがより好ましい。プラズマの作動ガスとしては、アルゴン、窒素、ヘリウム、水素などが使用できる。なかでも、各々のガスの特性を生かしてアルゴン-水素、窒素-水素などの混合ガスを使用することが好ましい。作動電圧と作動電流の積で定義される溶射出力は20~100kW程度の範囲で、溶射材料や基材の材種や大きさに合わせて選定することができる。また、プラズマガンと溶射対象間の距離である溶射距離は、溶射材料や溶射条件などに合わせて、50mm程度から200mm程度の間で設定されるのが好ましい。
 本発明で使用する溶射法は、大気プラズマ溶射法、又は減圧プラズマ溶射法などのプラズマを用いた溶射法が好ましく、特に、大気プラズマ溶射法が好ましい。
 以下に本発明の実施例を挙げて、本発明について具体的に説明するが、本発明は、これらの実施例に限定して解釈されない。
 なお、下記の実施例及び比較例において使用した大気プラズマ溶射装置及び溶射条件は以下のとおりである。
 溶射装置:スルーザーメテコ社製、9MB
 作動電圧:65V
 作動電流:700A
 一次ガス(Ar)流量:60NL/min
 二次ガス(H)流量:5NL/min
 溶射距離:140mm
(実施例1)
 タングステン粉末(日本新金属社製、粒度:1.5~2.0μm)、ほう化タングステン粉末(日本新金属社製、粒度:3~6μm)及びケイ化タングステン粉末(日本新金属社製、粒度:2~5μm)を、それぞれ、下記する所定の含有量になるように秤量し、エタノールを溶媒として回転ボールミルを用いて混合・粉砕してスラリーを作製した。このスラリーを原料としてスプレードライヤーを用いて造粒処理し、アルゴンガス中で1600℃に加熱して、シリコンを3.5重量%、ボロンを2.2重量%及び不可避不純物を含有する多孔質球状粉末を作製した。この球状粉末の粒度は15~75μmであった。
 上記で調製した球状粉末を溶射材料として使用し、いずれも、アルミニウム合金(A5052)製の下記する2つの基板X、Yのサンドブラストにより粗面化した片側表面(表面粗さRa:2~5μm)上に、上記した大気プラズマ溶射装置により、上記溶射条件にて大気プラズマ溶射することにより、厚みが約0.2mmの溶射被膜を形成した。なお、上記X及びYの2つの基板は、それぞれ、[縦50mm、横50mm、厚み3mm]、及び[縦20mm、横20mm、厚み5mm]の正方形板であった。
 上記基板X(溶射試料)に製膜した溶射被膜の断面観察と成分分析を行った。クロスセッションポリッシャ(日本電子社製SM-09010)を用いて断面を露出させ、電界放出型走査電子顕微鏡(日本電子社製JSM-7200F)を用いて断面の観察を行うとともに、エネルギー分散型X線分析法(EDX)により成分の分析を行った。
 図1a中に溶射被膜の断面組織と成分分析を行った箇所(a、b、c、d)を示した。断面はマトリックス組織に分散粒子を配した組織となっており、表1に示すように、マトリックス(分析箇所a、b)の組成(単位:原子%、以下でも同じ。)はタングステンが87~89%、ボロンが3~8%及び酸素が5~8%であり、分散相(分析箇所c、d)はタングステンが4~20%、シリコンが12~21%、ボロンが15~16%及び酸素が53~59%であった。
Figure JPOXMLDOC01-appb-T000001
 
 一方、上記基板Y(溶射試料)については、純水中で超音波洗浄を行い、85℃に保持した恒温槽内で乾燥した後、スガ摩耗試験法により、次のようにして機械的応力による被膜からの粒子の脱落し易さを評価した。なお、本試験に供した溶射試料の表面は研磨などを行わない溶射したままの状態とした。
 スガ摩耗試験では研磨紙を張り付けた円板の外周面に、平板試料の溶射面が一定荷重で押し付けられながら往復摺動する。研磨紙の砥粒が溶射面を引っ掻くため、開口したクラックなどが存在すると、溶射被膜の減耗が顕著となる。試験は#180のSiC砥粒からなる研磨紙を用い、押し付け力は15Nとして行った。図2に試験結果を示しており、実施例1の被膜の摺動回数に対する損耗量の増加は非常に緩やかであり、後記する比較例1及び2の試料に比べて摩耗量は格段に少ないことがわかる。
 また、上記基板Y(溶射試料)の溶射面を#800の湿式エメリー紙で研磨し、純水中で超音波洗浄し、次いで、恒温槽での85℃乾燥を行った後、プラズマ暴露試験に供した。試験には図3に概略を示した平行平板型のドライエッチング装置を用い、カソード側に配したシリコンウエハの上に、溶射面をアノードに対向するように溶射試料を静置し、プラズマに暴露した。プラズマ生成の条件は、化学スパッタに対する耐性が評価できるAと、物理スパッタに対する耐性が評価できるBの2条件とし、各々の条件は以下の通りである。
 条件A:
  プラズマガス種と流量:
   CF・・50sccm、  O・・・10sccm、
   Ar・・・50sccm
   RF出力・・800W、   バイアス・・600W
 条件B:
  プラズマガス種と流量:
   O・・・10sccm、  Ar・・・100sccm
   RF出力・・1000W、  バイアス・・1000W
 プラズマ暴露試験の結果は図4において、後記する比較例1の損耗速度を100として示す。条件A、Bの何れのプラズマ条件に対しても実施例1の消耗速度は小さく、特に、物理スパッタによる消耗が主となる条件においてその優位性は顕著である。
(比較例1、2)
 比較例1では、溶射材料として、粉末(タングステン:99.8質量%及び不可避不純物、粒度:10~40μm、日本新金属社製、W-L)を用いた。比較例2では、粉末(タングステン:91.6質量%及びシリコン:8.4質量%,WSi化合物(平均粒径(D50):12.5μm、日本新金属社製)を用いた。そして、実施例1と同一条件の大気プラズマ溶射法により、それぞれ、実施例1と同じ形状を有する2つの基板X、Yのサンドブラストにより粗面化した表面上に溶射被膜を形成した。
 上記基板X(溶射試料)に製膜した、比較例1、2の溶射被膜の断面観察と成分分析を実施例1と同様に行った。図1bは比較例1の溶射被膜の断面組織と成分分析を行った箇所(e、f、g、h)を示し、図1cは比較例2の溶射被膜の断面組織と成分分析を行った箇所(i、j、k、l)を示す。
 比較例1の溶射断面は、図1bに見られるように、ほぼ均一な組織に多くの粗大なクラックが存在する組織となっていた。また、表2に示すように、マトリックス(分析箇所e、f)の組成はタングステンが92~95%及び酸素が5~8%であり、クラック内面の薄層部(分析箇所g、h)はタングステンが17~22%及び酸素が78~83%であった。
 比較例2の溶射断面も、図1cに見られるように、ほぼ均一な組織に多くの粗大なクラックが存在する組織となっていた。また、表2に示すようにマトリックス(分析箇所i、j)の組成はタングステンが93~96%及び酸素が4~7%であり、クラック内面の薄層部(分析箇所k、l)はタングステンが12~20%、酸素が65~73%、及びシリコンが7~23%であった。
 表2の結果は、比較例1、2の溶射被膜がタングステンとタングステン酸化物から構成され、タングステン酸化物を起点にして粗大クラックが生じていることを示している。
Figure JPOXMLDOC01-appb-T000002
 
 比較例1、2の溶射被膜を有する基板Y(溶射試料)についても、実施例1の溶射被膜と同一条件のスガ摩耗試験法により、機械的応力による被膜からの粒子の脱落し易さを評価した。図2に試験結果を示しており、比較例被膜の摩耗量は実施例と比べて5~6倍となっていることがわかった。
 また、比較例1、2の溶射被膜を有する基板X(溶射試料)を実施例1と同様のプラズマ暴露試験に供した。プラズマ暴露試験の結果は、図4に、比較例1の損耗速度を100として示した。上記A、Bの何れのプラズマ条件においても、基板Xの消耗速度は実施例1に比べて大きくなり、特に物理スパッタによる消耗が主となる条件Bにおいてその差異は顕著である。
 本発明の溶射被膜は、半導体製造工程におけるフッ素ガスなどのハロゲンガスを使用するプラズマドライエッチングチャンバー用部材などを始めとする広い範囲において有効である。
 なお、2020年3月6日に出願された日本特許出願2020-38841号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 1:アノード   2:カソード   3:電源   4:ウエハ
 5:溶射試料   6:プラズマガス   7:プラズマ   8:排気
 a、b、c、d:実施例1の溶射被膜(図1a)の断面組織と成分分析を行った箇所
 e、f、g、h:比較例1の溶射被膜(図1b)の断面組織と成分分析を行った箇所
 i、j、k、l:比較例2の溶射被膜(図1c)の断面組織と成分分析を行った箇所
 
 
 

Claims (15)

  1.  タングステンをマトリックス相として含有し、シリコン及びボロンを含む酸化物を分散相として含有することを特徴とする溶射被膜。
  2.  前記分散相の体積比が、マトリックス相と分散相の合計量に対して2~6%である請求項1に記載の溶射被膜。
  3.  前記マトリックス相が、シリコン及び/又はボロンを含む請求項1又は2に記載の溶射被膜。
  4.  前記分散相が、タングステンを含む請求項1~3のいずれか1項に記載の溶射被膜。
  5.  厚みが50~1000μmである請求項1~4のいずれか1項に記載の溶射被膜。
  6.  請求項1~5のいずれか1項に記載の溶射被膜を有するプラズマエッチング装置用部材。
  7.  前記プラズマエッチング装置が、フッ素を含むガスプラズマによるドライエッチング装置である請求項6に記載のプラズマエッチング装置用部材。
  8.  シリコンを1~7重量%、ボロンを0.5~3重量%、及び残部としてタングステン及び不可避不純物を含むことを特徴とする溶射用材料。
  9.  シリコンを2~5重量%及びボロンを1.5~3重量%含む請求項8に記載の溶射用材料。
  10.  タングステン、シリコン及びボロンを、WSi(但し、xは0.8~1.7であり、yは1.3~2.2である。)で表される、タングステン-シリコン-ホウ素の三元系化合物を主体として含有する請求項8又は9に記載の溶射用材料。
  11.  前記タングステン-シリコン-ホウ素の三元系化合物が、WSiB及び/又はWSi1.51.5で表される化合物である請求項10に記載の溶射用材料。
  12.  請求項1~5のいずれか1項に記載の溶射被膜を製造するための請求項8~11のいずれか1項に記載の溶射用材料。
  13.  請求項8~12のいずれか1項に記載の溶射用材料を溶射して溶射被膜を製造する方法。
  14.  前記溶射用材料を大気プラズマ溶射で溶射する請求項13に記載の溶射被膜を製造する方法。
  15.  請求項1~5のいずれか1項に記載の溶射被膜を製造する請求項13又は14に記載の溶射被膜を製造する方法。
     
     
     
     
PCT/JP2021/008344 2020-03-06 2021-03-04 新規なタングステン系溶射被膜及びそれを得るための溶射用材料 WO2021177393A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022504451A JPWO2021177393A1 (ja) 2020-03-06 2021-03-04
CN202180019377.XA CN115244209B (zh) 2020-03-06 2021-03-04 新型的钨系喷镀覆膜和用于获得其的喷镀用材料
KR1020227028143A KR20220151610A (ko) 2020-03-06 2021-03-04 신규한 텅스텐계 용사 피막 및 그것을 얻기 위한 용사용 재료
US17/796,886 US20230220531A1 (en) 2020-03-06 2021-03-04 New tungsten-based thermal spray coating and material for thermal spraying to obtain it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020038841 2020-03-06
JP2020-038841 2020-03-06

Publications (1)

Publication Number Publication Date
WO2021177393A1 true WO2021177393A1 (ja) 2021-09-10

Family

ID=77613450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008344 WO2021177393A1 (ja) 2020-03-06 2021-03-04 新規なタングステン系溶射被膜及びそれを得るための溶射用材料

Country Status (6)

Country Link
US (1) US20230220531A1 (ja)
JP (1) JPWO2021177393A1 (ja)
KR (1) KR20220151610A (ja)
CN (1) CN115244209B (ja)
TW (1) TW202144597A (ja)
WO (1) WO2021177393A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235249A (ja) * 1991-01-07 1992-08-24 Daido Gakuen 超高温耐酸化材料および超高温耐酸化複合材料と、それらの成形体の製造方法
JP2001226773A (ja) * 1999-12-10 2001-08-21 Tokyo Electron Ltd 処理装置およびそれに用いられる耐食性部材
US20140113453A1 (en) * 2012-10-24 2014-04-24 Lam Research Corporation Tungsten carbide coated metal component of a plasma reactor chamber and method of coating
JP2018059174A (ja) * 2016-10-07 2018-04-12 東北電力株式会社 溶射皮膜

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3873982T2 (de) * 1987-05-14 1993-03-25 Philips Nv Verfahren zur halbleiterherstellung, wobei unter verwendung einer hilfsoxidation die tunnelausbildung bei der wolframabscheidung reduziert wird.
JP3908291B2 (ja) 1995-10-03 2007-04-25 株式会社神戸製鋼所 耐ハロゲン系ガス腐食性及び耐ハロゲン系プラズマ腐食性に優れたコーティング膜並びに該コーティング膜を施した積層構造体
JP2007250569A (ja) 2006-03-13 2007-09-27 Tokyo Electron Ltd プラズマ処理装置およびプラズマに曝される部材
KR100966132B1 (ko) 2008-07-25 2010-06-25 주식회사 코미코 내 플라즈마성 갖는 세라믹 코팅체
US8206829B2 (en) 2008-11-10 2012-06-26 Applied Materials, Inc. Plasma resistant coatings for plasma chamber components
US9017765B2 (en) 2008-11-12 2015-04-28 Applied Materials, Inc. Protective coatings resistant to reactive plasma processing
JP5396672B2 (ja) 2012-06-27 2014-01-22 日本イットリウム株式会社 溶射材料及びその製造方法
JP6550226B2 (ja) * 2014-10-31 2019-07-24 トーカロ株式会社 溶射用粉末、溶射皮膜の製造方法、溶射皮膜、及びロール
CN105256222A (zh) * 2015-09-30 2016-01-20 宁国市南方耐磨材料有限公司 一种防腐蚀高硬度耐磨合金铸球
JP6722073B2 (ja) 2016-09-21 2020-07-15 日本特殊陶業株式会社 シリコン溶射膜及びその製造方法
KR101849039B1 (ko) * 2017-01-05 2018-05-28 에스케이씨솔믹스 주식회사 텅스텐계 코팅층을 가진 플라즈마 장치용 부품 및 그 제조방법
CN107523777A (zh) * 2017-07-17 2017-12-29 河北工业大学 硼化钨复合涂层的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235249A (ja) * 1991-01-07 1992-08-24 Daido Gakuen 超高温耐酸化材料および超高温耐酸化複合材料と、それらの成形体の製造方法
JP2001226773A (ja) * 1999-12-10 2001-08-21 Tokyo Electron Ltd 処理装置およびそれに用いられる耐食性部材
US20140113453A1 (en) * 2012-10-24 2014-04-24 Lam Research Corporation Tungsten carbide coated metal component of a plasma reactor chamber and method of coating
JP2018059174A (ja) * 2016-10-07 2018-04-12 東北電力株式会社 溶射皮膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KOBAYASHI, AKIRA: "Tungsten Coating for Thermal fusion Material Produced by Gas Tunnel Type Plasma Spraying", TRANSACTIONS OF JWRI, vol. 37, no. 1, 11 July 2008 (2008-07-11), pages 63 - 67, XP055852097 *

Also Published As

Publication number Publication date
CN115244209A (zh) 2022-10-25
JPWO2021177393A1 (ja) 2021-09-10
CN115244209B (zh) 2024-05-24
TW202144597A (zh) 2021-12-01
US20230220531A1 (en) 2023-07-13
KR20220151610A (ko) 2022-11-15

Similar Documents

Publication Publication Date Title
US12043903B2 (en) Sprayed coating, method for manufacturing sprayed coating, sprayed member and spraying material
TWI571452B (zh) 減小曝露於含鹵素電漿下之表面腐蝕速率的方法與設備
US20100160143A1 (en) Semiconductor processing apparatus comprising a solid solution ceramic of yttrium oxide and zirconium oxide
JP4987238B2 (ja) 窒化アルミニウム焼結体、半導体製造用部材及び窒化アルミニウム焼結体の製造方法
KR102266655B1 (ko) 이트륨계 과립 분말을 이용한 용사 피막의 제조 방법 및 이를 이용하여 제조된 이트륨계 용사 피막
KR102266658B1 (ko) 용사용 이트륨계 과립 분말 및 이를 이용한 용사 피막
KR102266656B1 (ko) 용사용 이트륨계 과립 분말 및 이를 이용한 용사 피막
JP6926095B2 (ja) 溶射用材料
Huang et al. Fluoride-mediated corrosion mechanism of atmospheric-plasma-sprayed yttrium–aluminium garnet ceramic coatings
JP2006069843A (ja) 半導体製造装置用セラミック部材
WO2021177393A1 (ja) 新規なタングステン系溶射被膜及びそれを得るための溶射用材料
TWI779071B (zh) 熱噴塗材料、其熱噴塗皮膜及其製造方法
US20090226699A1 (en) Sintered body and member used for plasma processing apparatus
JP2005206402A (ja) 焼結体及びその製造方法
JP2009280483A (ja) 耐食性部材およびその製造方法ならびに処理装置
KR20230004730A (ko) 다수의 조각으로 형성된 플라즈마 저항성 세라믹체
JP6188004B2 (ja) セラミック溶射被膜の形成方法および機能性セラミック溶射被膜
JP2007277067A (ja) 導電性耐食部材及びその製造方法
WO2023223646A1 (ja) ウエハ支持体
Algatti et al. Characterization of SiC and Al 2 O 3 ceramics exposed to nitrogen ions from inverse-Z pinch plasma discharge
JP2008227420A (ja) 静電チャック
KR20240027142A (ko) 플라즈마 에칭 장치용 부재 등에 적합한 성막 재료 및 그 제조 방법
JP2024089127A (ja) イットリウム酸化物材料及びイットリウム酸化物材料の製造方法
KR20240111598A (ko) 용사 피막의 제조 방법 및 이를 이용하여 제조된 이트륨계 용사 피막

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21764410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022504451

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21764410

Country of ref document: EP

Kind code of ref document: A1