WO2021172096A1 - 空隙を有する複合銅部材 - Google Patents

空隙を有する複合銅部材 Download PDF

Info

Publication number
WO2021172096A1
WO2021172096A1 PCT/JP2021/005700 JP2021005700W WO2021172096A1 WO 2021172096 A1 WO2021172096 A1 WO 2021172096A1 JP 2021005700 W JP2021005700 W JP 2021005700W WO 2021172096 A1 WO2021172096 A1 WO 2021172096A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
copper member
layer containing
composite
member according
Prior art date
Application number
PCT/JP2021/005700
Other languages
English (en)
French (fr)
Inventor
直貴 小畠
快允 小鍛冶
牧子 佐藤
Original Assignee
ナミックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナミックス株式会社 filed Critical ナミックス株式会社
Priority to JP2022503279A priority Critical patent/JPWO2021172096A1/ja
Priority to CN202180017199.7A priority patent/CN115176047A/zh
Priority to KR1020227033642A priority patent/KR20220148865A/ko
Publication of WO2021172096A1 publication Critical patent/WO2021172096A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/285Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/288Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • B32B38/004Heat treatment by physically contacting the layers, e.g. by the use of heated platens or rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/63Treatment of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Definitions

  • the present invention relates to a composite copper member having voids.
  • Copper foil used for printed wiring boards is required to have adhesion to an insulating resin base material.
  • a method has been used in which the surface of the copper foil is roughened by etching or the like to increase the mechanical adhesive force by the so-called anchor effect.
  • flattening of the copper foil surface has been required.
  • copper surface treatment methods such as performing an oxidation step and a reduction step have been developed (International Publication No. 2014/126193).
  • the copper foil is pre-conditioned and immersed in a chemical solution containing an oxidizing agent to oxidize the surface of the copper foil to form irregularities of copper oxide, and then immersed in a chemical solution containing a reducing agent to obtain copper oxide.
  • a method for improving the adhesion in the treatment of copper foil using oxidation / reduction a method of adding a surface active molecule in the oxidation step (Japanese Patent Laid-Open No. 2013-534054) and an aminothiazole-based method after the reduction step.
  • a method of forming a protective film on the surface of a copper foil using a compound or the like Japanese Patent Laid-Open No. 8-97559) has been developed.
  • the bond between the resin base material and the metal includes 1) the physical bond force caused by the intermolecular force between the resin and the metal, and 2) the covalent bond between the functional group of the resin and the metal. It is said that the chemical binding force caused by the above is also involved. Insulating resins for high-frequency circuits have a low dielectric constant and low dielectric loss tangent, so the proportion of OH groups (hydroxyl groups) is reduced. The chemical binding force with is weakened (International Publication No. 2017/150043). Therefore, stronger mechanical adhesive force is required for adhesion between the insulating resin for high frequency circuits and copper foil.
  • the inventors of the present application have also developed a composite copper foil having excellent adhesion, which is obtained by plating Ni on a roughened copper foil by electrolytic plating (International Publication No. 2019/093494).
  • a new composite copper member a printed wiring board using the composite copper member, and a metal-plated copper member in which the copper member functions as a carrier.
  • the inventors of the present application increase the strength of the layer containing copper oxide forming irregularities by creating voids in the layer containing copper oxide generated by the roughening treatment, but rather decrease it. Therefore, it is suitable for circuit formation of printed wiring boards and semiconductor package substrates, and in particular, it is suitable for the semi-additive method (Semi-Adaptive Process) (SAP method) and M-SAP (Modified Semi-Adaptive Process) (MSAP method). It was newly discovered that a composite copper member can be produced.
  • the present invention has the following embodiments: [1] A composite copper member in which a layer containing a copper oxide is formed on at least a part of the surface of the copper member. A composite copper member having a plurality of voids in the layer containing the copper oxide. [2] The composite copper member according to [1], wherein at least a part of the plurality of voids is present at the interface between the layer containing the copper oxide and the surface of the copper member. [3] The composite copper member according to [1] or [2], wherein the peel strength between the layer containing the copper oxide and the surface of the copper member is 0.001 kgf / cm or more and 0.30 kgf / cm or less. ..
  • the detected voids are detected at an arbitrary 3.8 ⁇ m measured in a direction parallel to the layer containing the copper oxide.
  • the composite copper member according to any one of [1] to [3], wherein the number is 30 or more.
  • the surface of the layer containing the copper oxide of the composite copper member is thermocompression-bonded to the resin base material under predetermined conditions to form a laminate, and an image of a cross section of the laminate taken by a scanning electron microscope is obtained and photographed.
  • the number of the voids detected is 30 or more per arbitrary 3.8 ⁇ m measured in a direction parallel to the stacked surfaces, [1] to [4].
  • [6] The composite copper member according to [4] or [5], wherein the average distance between the voids is 100 nm or less in the photographed image of the binarized cross section.
  • [7] The composite copper member according to [4] or [5], wherein the ratio of the distance between the gaps of 50 nm or less is 40% or more of the entire gap in the photographed image of the binarized cross section.
  • the resin base material is polyphenylene ether (PPE), epoxy, polyphenylene oxide (PPO), polybenzoxazole (PBO), polytetrafluoroethylene (PTFE), liquid crystal polymer (LCP), or triphenylfosite (TPPI).
  • PPE polyphenylene ether
  • PPO polyphenylene oxide
  • PBO polybenzoxazole
  • PTFE polytetrafluoroethylene
  • LCP liquid crystal polymer
  • TPPI triphenylfosite
  • a metal foil with a carrier wherein the layer containing the copper oxide is used as the metal foil, and the copper member is used as a carrier for the metal foil.
  • the resin base material is polyphenylene ether (PPE), epoxy, polyphenylene oxide (PPO), polybenzoxazole (PBO), polytetrafluoroethylene (PTFE), liquid crystal polymer (LCP), or triphenylfosite (TPPI).
  • [16] which contains at least one insulating resin selected from the group consisting of fluororesins, polyetherimides, polyetheretherketones, polycycloolefins, bismaleimide resins, low dielectric constant polyimides and cyanate resins.
  • Laminated body [18] The composite copper member according to any one of [1] to [14] for producing a printed wiring board. [19] The composite copper member according to [18] for producing a printed wiring board by a semi-additive method (Semi-Adaptive Process) (SAP method) or an M-SAP (Modified Semi-Adaptive Process) (MSAP) method.
  • SAP method semi-additive method
  • MSAP Modified Semi-Adaptive Process
  • [20] A method for manufacturing a printed wiring board using the composite copper member according to any one of [1] to [14]. 1) A step of thermocompression bonding a resin base material on a layer containing a copper oxide of the composite copper member under predetermined conditions; 2) A step of peeling the copper member from the resin base material under predetermined conditions to obtain a resin base material having a part or all of the metal forming the layer containing the copper oxide; and 3) the copper oxide. A step of performing a copper plating treatment on the surface of a resin base material having a part or all of a metal forming a layer containing A method of manufacturing a printed wiring board, including. [21] A method for manufacturing a resin base material having a metal.
  • Manufacturing method including. [22] The method for manufacturing a composite copper member according to any one of [1] to [11]. 1) a step of partially coating the surface of the copper member with a silane coupling agent; and 2) a step of oxidizing the partially coated surface;
  • a method for manufacturing a composite copper member including.
  • [23] The method for manufacturing a composite copper member according to any one of [1] to [11]. 1) A step of partially coating the surface of the copper member with a silane coupling agent; 2) a step of oxidizing the partially coated surface; and 3) a step of treating the surface of the formed layer containing the copper oxide with a modifier.
  • the modifiers are Ni chloride, zinc chloride, iron chloride, chromium chloride, ammonium citrate, ammonium chloride, potassium chloride, ammonium sulfate, nickel ammonium sulfate, ethylenediaminetetraacetic acid, diethanolglycine, diacetic acid L-glutamate.
  • a step of partially coating the surface of the copper member with a silane coupling agent 1) A step of forming by oxidizing the partially coated surface; 3) A step of forming a layer containing a metal other than copper on the oxidized surface;
  • a method for manufacturing a composite copper member including. [25] The method for manufacturing a composite copper member according to [12].
  • the modifiers are Ni chloride, zinc chloride, iron chloride, chromium chloride, ammonium citrate, ammonium chloride, potassium chloride, ammonium sulfate, nickel ammonium sulfate, ethylenediaminetetraacetic acid, diethanolglycine, diacetic acid L-glutamate.
  • the modifiers are Ni chloride, zinc chloride, iron chloride, chromium chloride, ammonium citrate, ammonium chloride, potassium chloride, ammonium sulfate, nickel ammonium sulfate, ethylenediaminetetraacetic acid, diethanolglycine, diacetic acid L-glutamate.
  • FIG. 1 is a schematic view of an example of a cross section of the composite copper member of the present invention before heat crimping and after peeling.
  • FIG. 2 is an image of a peeled surface after the composite copper foils of Examples and Comparative Examples were heat-bonded to a resin base material and peeled off. The numerical value indicates the peel strength when peeled off.
  • FIG. 3 is a cross-sectional image (magnification of 30,000 times) observed by a scanning electron microscope (SEM) after the composite copper foils of Examples 1 to 3 and Comparative Examples 2 and 3 are heat-bonded to a resin base material. The interface between the layer containing the copper oxide and the copper member is shown by the dotted line.
  • FIG. 4 is an inverted and binarized cross-sectional image of FIG.
  • FIG. 5 is a graph showing the number and size of voids (A), the average distance between voids (B), and the distribution of gap distances (C) obtained by image analysis of FIG. 4.
  • FIG. 6 is an SEM image obtained by observing a cross section of the composite copper foil after the composite copper foils of Example 3 and Comparative Example 3 were heat-bonded to a resin base material and peeled off.
  • FIG. 7 shows a cross section in each treatment step when the composite copper foil (“transfer + transfer”) of one embodiment of the present invention and the conventional copper foil for transfer (“transfer only”) are applied to the SAP method. It is a schematic diagram of.
  • the copper member contains Cu as a main component and constitutes a part of the structure.
  • Specific examples of the copper member include, but are not limited to, copper foils such as electrolytic copper foils, rolled copper foils, and copper foils with carriers, copper wires, copper plates, copper lead frames, and copper powder.
  • the copper member is preferably one that can be electroplated.
  • the copper member is preferably made of pure copper having a Cu purity of 99.9% by mass or more, more preferably formed of tough pitch copper, deoxidized copper, or oxygen-free copper, and has an oxygen content of 0.001% by mass. It is more preferably formed of about 0.0005% by mass of oxygen-free copper.
  • the copper member is a copper foil
  • its thickness is not particularly limited, but is preferably 0.1 ⁇ m or more and 100 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 50 ⁇ m or less.
  • the thickness thereof is preferably more than 100 ⁇ m. In particular, but not limited to, 1 mm or more, 2 mm or more or 10 mm or more is more preferable, and 10 cm or less, 5 cm or less or 2.5 cm or less is further preferable.
  • a layer containing a copper oxide is formed on the surface of the copper member includes a copper oxide (CuO) and / or cuprous oxide (Cu 2 O).
  • the layer containing the copper oxide can be formed by oxidizing the surface of the copper member. By this oxidation treatment, the surface of the copper member is roughened. The shape of the convex portion on the surface of the oxidized copper member may be adjusted with respect to the layer containing the copper oxide by using a dissolving agent. Further, the surface of the layer containing the copper oxide may be reduced with a reducing agent. Since the specific resistance value of pure copper is 1.7 ⁇ 10-8 ( ⁇ m), copper oxide is 1 to 10 ( ⁇ m) and cuprous oxide is 1 ⁇ 10 6 to 1 ⁇ 10 7 ( ⁇ m).
  • the layer containing copper oxide has low conductivity, and even if the amount of the layer containing copper oxide transferred to the resin substrate is large, the composite copper member is used to form a circuit of a printed wiring board or a semiconductor package substrate. When doing so, transmission loss due to the skin effect is unlikely to occur.
  • the layer containing copper oxide has a plurality of voids.
  • the void may be connected to the outside world or may be closed. Even if the resin base material is thermocompression bonded onto the layer containing the copper oxide, it is preferable that the resin base material does not enter the voids and the voids are maintained.
  • the voids can be detected in the SEM cross-sectional image of the composite copper member.
  • the voids are present in the layer containing the copper oxide, but preferably include those existing at the interface between the layer containing the copper oxide and the surface of the copper member. For example, this interface can be discriminated by the difference in shading due to the composition in the SEM cross-sectional image, or the difference in shading due to the presence or absence of the copper crystal structure constituting the copper member (FIG.
  • the voids can be identified from the SEM image of the cross section of the composite copper member by, for example, the following procedure. 1) Obtain an SEM cross-sectional image so that the copper oxide layer is on the top and the copper member is on the bottom. 2) On the screen, a straight line parallel to the layer containing copper oxide passing through the apex of the region surrounded by copper and copper oxide or the region surrounded by copper oxide existing on the copper member side, and the copper oxide. The measurement range is the region surrounded by a straight line parallel to the layer containing copper oxide, which passes through the apex of the highest convex portion of the layer containing.
  • the inversion process is performed to reverse the bright part and the dark part of the image.
  • the inversion process is performed to reverse the bright part and the dark part of the image.
  • Each region (1) to (N) determined here is a void.
  • the voids may be identified by the same procedure from the SEM image of the cross section of the composite copper member after laminating the resin base material. Binarization is performed by cutting off the shading of the image at a predetermined threshold value, setting 1 for those above the threshold value and 0 for those below the threshold value, and treating the image. Binarization can be performed by Otsu's method (discriminant analysis method), Sauvola's method, Goto's method, or the like.
  • the maximum horizontal chord length of the void is preferably a size that can be detected when a SEM cross-sectional image having a magnification of 30,000 times and a resolution of 1024 x 768 pixels is binarized. Although not particularly limited, it is preferably 500 nm square or less, 400 nm square or less, 300 nm square or less, 200 nm square or less, 100 nm square or less, or 50 nm square or less, and 4 nm square or more, 5 nm square or more, 10 nm square or more, 15 nm square or more, 20 nm square or less.
  • the number of voids is 25 or more, 30 or more, 40 or more per arbitrary 3.8 ⁇ m measured in a direction parallel to the plane on which the layer containing the copper oxide is formed in the binarized SEM cross-sectional image. It is preferably 500 or less, or 50 or more, and preferably 500 or less, 400 or less, 300 or less, 200 or less, 100 or less, 90 or less, 80 or less, 70 or less, or 60 or less. Further, the distance between the voids can be calculated on the image, and the distance between the voids can be calculated.
  • the average distance between the voids is preferably 200 nm or less, 150 nm or less, 100 nm or less, 90 nm or less, 80 nm or less, 70 nm or less, 60 nm or less or 50 nm or less, and 40 nm or more, 30 nm or more, 20 nm or more, or 10 nm or more.
  • the distribution of the distance between the voids is preferably 50 nm or less, preferably 35%, 40%, 45% or 50% or more of the entire gap.
  • the peel strength between the layer containing the copper oxide and the surface of the copper member is 0.30 kgf / cm or less, 0.20 kgf / cm or less, 0.15 kgf / cm or less, or 0.15 kgf. / Cm or less is preferable, and 0.001 kgf / cm or more, 0.002 kgf / cm or more, 0.003 kgf / cm or more, or 0.004 kgf / cm or more is preferable.
  • Peel strength is 90 ° peel test after thermocompression bonding of a resin base material on a layer containing copper oxide (Japanese Industrial Standards (JIS) C5016 "Flexible Printed Wiring Board Test Method”; Corresponding International Standard IEC249-1: 1982 , IEC326-2: 1990), it can be measured as the peel strength at the time of peeling.
  • JIS Japanese Industrial Standards
  • the layer containing the copper oxide may contain a metal other than copper.
  • the metal contained is not particularly limited, but at least one metal selected from the group consisting of Sn, Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, Au and Pt is contained. May be good.
  • metals having higher acid resistance and heat resistance than copper such as Ni, Pd, Au and Pt, are contained.
  • Metals other than copper may be formed on the surface of the copper member by plating.
  • the plating method is not particularly limited, and electroplating, electroless plating, vacuum vapor deposition, chemical conversion treatment, and the like can be exemplified, but electrolytic plating is preferable because a uniform and thin plating layer is preferably formed.
  • electroplating the surface of an oxidized copper foil the copper oxide on the surface is first reduced and the charge is used to become cuprous oxide or pure copper, which causes a time lag before plating. After that, the metal forming the metal layer begins to precipitate.
  • the amount of charge varies depending on the type of plating solution and the amount of copper oxide. For example, when Ni plating is applied to a copper member, in order to keep the thickness within a preferable range, 15 C per area dm 2 of the copper member to be electroplated.
  • the average thickness of the metal other than copper formed on the outermost surface of the copper member by plating is not particularly limited, but is preferably 6 nm or more, preferably 10 nm or more, 14 nm or more, 18 nm or more, or 20 nm or more. Is even more preferable. However, it is preferably 80 nm or less, and more preferably 70 nm or less and 60 nm or less.
  • the average thickness of the metal other than copper contained in the layer containing copper oxide in the vertical direction is determined by dissolving the layer containing copper oxide in an acidic solution and measuring the amount of metal by ICP analysis to obtain a composite copper member. It can be calculated by dividing by the area of. Alternatively, it can be calculated by dissolving the composite copper member itself and measuring the amount of only the metal contained in the layer containing the copper oxide.
  • the surface of the composite copper member on which the layer containing the copper oxide is formed is thermocompression bonded (thermal press fitting) to the resin base material, the surface profile of the composite copper member is transferred to the resin base material. Then, when the composite copper member is peeled off from the resin base material after thermocompression bonding, the metal contained in the layer containing the copper oxide is transferred from the composite copper member to the resin base material.
  • An embodiment of the composite copper member is illustrated in FIG.
  • the resin base material is a material containing resin as a main component, and can be used for forming circuits such as printed wiring boards and semiconductor package substrates.
  • the resin is not particularly limited, but may be a thermoplastic resin or a thermosetting resin, and may be a polyphenylene ether (PPE), an epoxy, a polyphenylene oxide (PPO), a polybenzoxazole (PBO), or a polytetrafluoroethylene. (PTFE), liquid crystal polymer (LCP), triphenylfosite (TPPI), fluororesin, polyetherimide, polyetheretherketone, polycycloolefin, bismaleimide resin, low dielectric constant polyimide, cyanate resin, or a mixture thereof. It is preferably a resin.
  • the resin base material may further contain an inorganic filler or glass fiber.
  • the resin base material and the composite copper member are adhered and laminated, and then treated under predetermined conditions to bond the resin base material and the composite copper member. It should be glued.
  • predetermined conditions for example, temperature, pressure, time
  • the recommended conditions of each base material manufacturer may be used.
  • a predetermined condition for example, the following conditions can be considered.
  • a composite copper member is formed on the resin base material by applying a pressure of 0 to 20 MPa at a temperature of 50 ° C. to 300 ° C. for 1 minute to 5 hours. It is preferable to heat-press. for example, 1-1)
  • the resin base material is R-1551 (manufactured by Panasonic) Heat under a pressure of 1 MPa, reach 100 ° C. and hold at that temperature for 5-10 minutes; Then, it is further heated under a pressure of 3.3 MPa, reaches 170 to 180 ° C., and then held at that temperature for 50 minutes for thermal pressure bonding.
  • a composite copper member is applied to the resin base material by applying a pressure of 0 to 20 MPa at a temperature of 50 ° C. to 350 ° C. for 1 minute to 5 hours. Is preferably heat-bonded. for example, 2-1) When the resin base material is R5620 (manufactured by Panasonic) After heat-bonding while heating to 100 ° C. under a pressure of 0.5 MPa, raise the temperature and pressure and hold at 2.0-3.0 MPa and 200-210 ° C. for 120 minutes for further heat-bonding. .. 2-2) When the resin base material is R5670 (manufactured by Panasonic) After heat-bonding while heating to 110 ° C.
  • heat-bonding is performed by raising the temperature and pressure and holding at 2.94 MPa and 210 ° C. for 120 minutes. 2-3)
  • the resin base material is R5680 (manufactured by Panasonic)
  • heat pressure is applied while heating to 110 ° C. under a pressure of 0.5 MPa, and then the temperature and pressure are raised to 3.0 to 4.0 MPa.
  • Heat-bonding is performed by holding at 195 ° C. for 75 minutes.
  • the resin base material is N-22 (manufactured by Nelco), heat while pressurizing at 1.6 to 2.3 MPa, hold at 177 ° C for 30 minutes, then further heat and heat at 216 ° C for 60 minutes. It is heat-bonded by holding it.
  • the composite copper member heat is applied to the resin base material by applying a pressure of 0 to 20 MPa at a temperature of 50 ° C. to 400 ° C. for 1 minute to 5 hours. Is preferably crimped. for example, 3-1)
  • the resin base material is NX9255 (manufactured by Park Electrochemical)
  • the conditions for peeling the copper member from the resin base material are not particularly limited, but the 90 ° peeling test (Japanese Industrial Standards (JIS) C5016 "Flexible Printed Wiring Board Test Method”; Corresponding International Standards IEC249-1: 1982, IEC326-2 : 1990).
  • the metal contained in the layer containing the copper oxide is transferred to the resin base material after the copper member is peeled off.
  • the metal transferred to the surface of the resin substrate after the copper member is peeled off can be subjected to various methods (for example, X-ray photoelectron spectroscopy (XPS), energy dispersion X-ray spectroscopy (EDS), ICP emission spectroscopic analysis). (High frequency inductively coupled plasma emission spectroscopic analysis, ICP-OES / ICP-AES)) can be used for detection.
  • XPS is irradiated with X-rays to an object, the photoelectron is emitted with the ionization of the object e - a method of performing energy analysis by trapping.
  • the diameter of the analysis spot (that is, the diameter of the cross section when the columnar portion that can be analyzed is cut into a circle) is preferably 1 ⁇ m or more and 1 mm or less.
  • the arithmetic mean roughness (Ra) of the surface of the composite copper member on which the layer containing the copper oxide is formed is preferably 0.04 ⁇ m or more, more preferably 0.1 ⁇ m or more, and preferably 0.3 ⁇ m or less. , 0.2 ⁇ m or less is more preferable.
  • the maximum height roughness (Rz) of the surface of the composite copper member on which the layer containing the copper oxide is formed is preferably 0.2 ⁇ m or more, more preferably 1.0 ⁇ m or more, and more preferably 2.0 ⁇ m or less. It is preferably 1.7 ⁇ m or less, and more preferably 1.7 ⁇ m or less.
  • Ra and Rz can be calculated by the method specified in JIS B 0601: 2001 (based on international standard ISO4287-197).
  • the ratio of Ra after peeling to Ra before thermocompression bonding on the surface of the composite copper member on which the layer containing copper oxide was formed was less than 100%, less than 96%, less than 95%, less than 94%, less than 93%, It is preferably less than 92%, less than 91%, less than 90%, less than 80%, less than 70%, less than 65% or less than 60%. The smaller this ratio is, the more the metal forming the layer containing the copper oxide is transferred to the resin base material.
  • the ratio of the surface area after peeling to the surface area before thermocompression bonding of the composite copper member on which the layer containing copper oxide is formed is less than 100%, less than 98%, less than 97%, less than 96%, less than 95%, 94%. Less than, less than 93%, less than 92%, less than 91%, less than 90%, less than 80% or less than 75%. The smaller this ratio is, the more the metal forming the layer containing the copper oxide is transferred to the resin base material.
  • the surface area can be measured using a confocal microscope or an atomic force microscope.
  • the average length (RSm) of the surface roughness curve element of the composite copper member on which the layer containing the copper oxide is formed is not particularly limited, but is 1500 nm or less and 1400 nm.
  • RSm represents the average of the lengths (that is, the lengths of contour curve elements: Xs1 to Xsm) in which unevenness for one cycle included in the roughness curve at a certain reference length (lr) occurs.
  • the ⁇ E * ab of the surface of the composite copper member before thermocompression bonding and the surface of the copper member after being peeled off is 13 or more, 15 or more, 20 or more, 25 or more, 30 or more, or 35 or more.
  • the larger the difference the more the metal forming the layer containing the copper oxide (that is, the metal forming the unevenness) is transferred to the resin base material.
  • One embodiment of the present invention is a method for producing a composite copper member, which comprises a step of providing voids in a layer containing a copper oxide to facilitate breakage from the copper member.
  • the method of providing voids in the layer containing the copper oxide to make it easier to break from the copper member is not particularly limited, but 1) the surface of the copper member is partially coated with a coating agent such as a silane coupling agent before the oxidation treatment. 2) After the oxidation treatment, the layer containing the copper oxide is treated with a modifier such as Ni chloride, or a combination thereof.
  • the layer containing the copper oxide is preferably formed by treating the surface of the copper member with an oxidizing agent.
  • the oxidizing agent is not particularly limited, and for example, an aqueous solution of sodium chlorite, sodium hypochlorite, potassium chlorate, potassium perchlorate, potassium persulfate or the like can be used.
  • Various additives for example, phosphates such as trisodium phosphate twelve hydrate may be added to the oxidizing agent.
  • the oxidation reaction conditions are not particularly limited, but the reaction temperature is preferably 40 to 95 ° C, more preferably 45 to 80 ° C.
  • the reaction time is preferably 0.5 to 30 minutes, more preferably 1 to 10 minutes.
  • degreasing treatment, natural oxide film removal and uniform treatment may be performed, or after the acid cleaning, alkali treatment may be performed to prevent acid from being brought into the oxidation step.
  • the acid cleaning can be performed, for example, by immersing the copper surface in sulfuric acid having a liquid temperature of 20 to 50 ° C. and 5 to 20% by weight for 1 to 5 minutes, and then washing with water.
  • an alkali treatment may be further performed in order to reduce uneven treatment and prevent the acid used in the cleaning treatment from being mixed with the oxidizing agent.
  • the method of alkaline treatment is not particularly limited, but is preferably 0.1 to 10 g / L, more preferably 1 to 2 g / L in an alkaline aqueous solution, for example, a sodium hydroxide aqueous solution at 30 to 50 ° C. for 0.5 to 2 minutes. It should be processed to some extent.
  • the layer containing the copper oxide may be dissolved with a dissolving chemical solution containing a dissolving agent to adjust the convex portion on the surface of the copper member, or the layer containing the copper oxide with the reducing chemical solution containing a reducing agent. Copper oxide may be reduced.
  • the solubilizing agent is not particularly limited, but is preferably a chelating agent, particularly a biodegradable chelating agent, such as tetrasodium L-glutamate diacetate (CMG-40), ethylenediaminetetraacetic acid (sodium salt), diethanolglycine, and L-glutamic acid.
  • CMG-40 tetrasodium L-glutamate diacetate
  • ethylenediaminetetraacetic acid sodium salt
  • diethanolglycine diethanolglycine
  • L-glutamic acid tetrasodium L-glutamate diacetate
  • Examples thereof include disodium iminodiacetic acid and sodium
  • DMAB dimethylamine borane
  • diborane sodium borohydride
  • hydrazine hydrazine
  • the chemical solution for reduction is a liquid containing a reducing agent, an alkaline compound (for example, sodium hydroxide, potassium hydroxide, etc.), and a solvent (for example, pure water, etc.).
  • the layer containing copper oxide may contain a metal other than copper.
  • a metal other than copper can be contained, for example, by plating a layer containing a copper oxide with a metal other than copper.
  • a plating treatment method a known technique can be used.
  • Sn, Ag, Zn, Al, Ti, Bi, Cr, Fe, Co, Ni, Pd, Au, Pt, or Various alloys can be used.
  • the plating step is not particularly limited, and plating can be performed by electrolytic plating, electroless plating, vacuum deposition, chemical conversion treatment, or the like, but electrolytic plating is preferable because a uniform and thin plating layer is preferably formed.
  • nickel plating and nickel alloy plating are preferable.
  • the metals formed by nickel plating and nickel alloy plating are, for example, pure nickel, Ni—Cu alloy, Ni—Cr alloy, Ni—Co alloy, Ni—Zn alloy, Ni—Mn alloy, Ni—Pb alloy, Ni—. Examples include P alloy.
  • Metal salts used for plating include, for example, nickel sulfate, nickel sulfamate, nickel chloride, nickel bromide, zinc oxide, zinc chloride, diammine dichloropalladium, iron sulfate, iron chloride, chromic anhydride, chromium chloride, sodium chromium sulfate, and the like.
  • the bath composition includes, for example, nickel sulfate (100 g / L or more and 350 g / L or less), sulfamine nickel (100 g / L or more and 600 g / L or less), nickel chloride (0 g / L or more and 300 g / L or less) and Those containing a mixture of these are preferable, but sodium citrate (0 g / L or more and 100 g / L or less) or boric acid (0 g / L or more and 60 g / L or less) may be contained as an additive.
  • electroless nickel plating electroless plating using a catalyst is preferable.
  • the catalyst iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, or salts thereof are preferably used.
  • One embodiment of the method for producing a composite copper member of the present invention is 1) a step of partially coating a copper member surface with a silane coupling agent; and 2) oxidizing a partially coated copper member surface. Steps; or 1) partially coating the surface of the copper member with a silane coupling agent; 2) oxidizing the partially coated surface of the copper member; and 3) being oxidized.
  • a method for manufacturing a composite copper member which comprises a step of forming a layer containing a metal other than copper on the surface of the copper member. By partially coating the surface of the copper member with a coating agent such as a silane coupling agent, that portion is prevented from undergoing oxidation treatment, and voids are formed in the layer containing the copper oxide, especially near the interface with the copper member.
  • treatment with a silane coupling agent partially eg, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% or more, less than 100%
  • a silane coupling agent partially (eg, 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% or 90% or more, less than 100%) is preferably coated, for which the silane coupling agent is applied at a concentration of 0.1%, 0.5%, 1% or 2% or more at room temperature for 30 seconds, 1 It is preferable to react for 1 minute or 2 minutes or more.
  • the silane coupling agent is not particularly limited, but silane, tetraorgano-silane, aminoethyl-aminopropyl-trimethoxysilane, (3-aminopropyl) trimethoxysilane, (1- [3- (trimethoxysilyl) propyl]].
  • Urea ((l- [3- (Trimethoxysilyl) probeyl] urea)), (3-aminopropyl) triethoxysilane, ((3-glycidyloxypropyl) trimethoxysilane), (3-chloropropyl) trimethoxysilane , (3-Glysidyloxypropyl) trimethoxysilane, dimethyldichlorosilane, 3- (trimethoxysilyl) propylmethacrylate, ethyltriacetoxysilane, triethoxy (isobutyl) silane, triethoxy (octyl) silane, tris (2-methoxyethoxy) Examples thereof include (vinyl) silane, chlorotrimethylsilane, methyltrichlorosilane, silicon tetrachloride, tetraethoxysilane, phenyltrimethoxysilane, chlorotriethoxys
  • the treatment with the silane coupling agent may be performed at any time before the oxidation treatment, and the acid is brought into the oxidation step after the degreasing treatment, the removal of the natural oxide film and the uniform treatment, or the acid cleaning. It may be carried out with an alkali treatment to prevent it.
  • One embodiment of the method for producing a composite copper member of the present invention includes 1) a step of oxidizing the surface of the copper member; and 2) a step of treating the surface of the oxidized copper member with a modifier;
  • a method for manufacturing a member or 1) a step of oxidizing the surface of a copper member; 2) a step of treating the surface of an oxidized copper member with a modifier; and 3) a step of treating the surface of a composite copper member treated with a modifier. It is a method for manufacturing a composite copper member including a step of forming a layer containing a metal other than copper.
  • the treatment with the modifier partially dissolves the copper oxide near the interface between the copper member and the layer containing the copper oxide, creates voids, and makes it easier for the layer containing the copper oxide to break from the copper member. Be done.
  • the modifier for facilitating the breakage of the layer containing the copper oxide from the copper member is not limited to Ni chloride, but chloride (zinc chloride, iron chloride, chromium chloride, etc.), ammonium salt (ammonium citrate, ammonium chloride, etc.).
  • chelating agents ethylenediaminetetraacetic acid, diethanolglycine, diacetate L-glutamate / tetrasodium, ethylenediamine-N, N'-disuccinic acid, 3-hydroxy-2, 2'-sodium iminodicosuccinate , Methylglycine diacetate 3 sodium, aspartate diacetate 4 sodium, N- (2-hydroxyethyl) imino diacetate disodium, sodium gluconate, etc.
  • chelating agents ethylenediaminetetraacetic acid, diethanolglycine, diacetate L-glutamate / tetrasodium, ethylenediamine-N, N'-disuccinic acid, 3-hydroxy-2, 2'-sodium iminodicosuccinate , Methylglycine diacetate 3 sodium, aspartate diacetate 4 sodium, N- (2-hydroxyethyl) imino diacetate disodium, sodium glucon
  • the copper member having a layer containing a copper oxide is immersed in a Ni chloride solution (concentration: 45 g / L or more) at room temperature or a temperature higher than room temperature for 5 seconds or more. Is preferable. Further, not only the treatment with nickel chloride alone may be carried out, but also the treatment may be carried out at the same time as the oxidation treatment, or may be carried out at the same time as the plating treatment after the oxidation treatment. For example, a layer containing copper oxide is contained in the plating solution for 5 seconds, 10 seconds, 15 seconds, 20 seconds, 30 seconds, 1 minute, or 2 minutes before plating. The formed copper member may be immersed. The immersion time can be appropriately changed depending on the oxide film thickness.
  • One embodiment of the method for producing a composite copper member of the present invention is 1) a step of partially coating a copper member surface with a silane coupling agent; 2) a step of oxidizing a partially coated copper member surface; And 3) a step of treating the surface of the oxidized copper member with a modifier; or 1) a step of partially coating the surface of the copper member with a silane coupling agent; 2) a portion.
  • the composite copper member according to the present invention is (1) heat-bonded to a resin base material to produce a laminate; (2) A resin base material having a part or all of a metal forming a layer containing a copper oxide is obtained by thermocompression bonding to a resin base material and peeling off; (3) In the SAP method or the MSAP method, a resin base material having a part or all of a metal forming a layer containing a copper oxide is obtained by thermocompression bonding to a resin base material and peeled off.
  • the conditions for heat-pressing the resin base material and the resin base material may be the same as or different from the conditions for acquiring the SEM cross-sectional image.
  • the conditions for peeling may be the same as or different from the conditions for acquiring the SEM cross-sectional image.
  • the method of copper plating may be electrolytic plating or electroless plating.
  • the method of applying metal plating to the outermost surface of the layer containing a copper oxide may be electroplating or electroless plating, and the metal may be an alloy.
  • Examples 1 to 3 and Comparative Examples 2 and 3 are shiny surfaces (glossy surfaces, which are flat when compared with the opposite surfaces) of copper foil (DR-WS, thickness: 18 ⁇ m) manufactured by Furukawa Electric Co., Ltd. ) Was used.
  • the matte surface of a copper foil (FV-WS, thickness: 18 ⁇ m) manufactured by Furukawa Electric Co., Ltd. was used as a test piece without being treated.
  • Pretreatment Examples 1 and 2 were immersed in a solution of potassium carbonate 5 g / L; KBE-903 (3-aminopropyltriethoxysilane; manufactured by Shin-Etsu Silicone Co., Ltd.) at 25 ° C. for 1 minute.
  • Comparative Examples 2 and 3 and Example 3 were immersed in a solution of potassium carbonate 5 g / L at 25 ° C. for 1 minute.
  • the pretreated copper foil was immersed in an oxidizing agent to perform an oxidation treatment.
  • a solution of sodium chlorite 52.5 g / L; potassium hydroxide 18 g / L; potassium carbonate 35 g / L was used as an oxidizing agent.
  • the solution was used.
  • Comparative Example 2 as an oxidizing agent, sodium chlorite 53.5 g / L; potassium hydroxide 8 g / L; potassium carbonate 2 g / L; KBM-403 (3-glycidoxypropyltrimethoxysilane; manufactured by Shin-Etsu Silicone Co., Ltd.) ) A 1.5 g / L solution was used.
  • Comparative Example 3 is a solution of sodium chlorite 195 g / L; potassium hydroxide 18 g / L; KBM-403 (3-glycidoxypropyltrimethoxysilane; manufactured by Shin-Etsu Silicone Co., Ltd.) 0.5 g / L as an oxidizing agent. Was used.
  • Examples 1 and 2 were immersed in the oxidizing agent at 73 ° C. for 6 minutes
  • Example 3 and Comparative Example 2 were immersed in the oxidizing agent at 73 ° C. for 2 minutes
  • Comparative Example 3 was immersed in the oxidizing agent at 50 ° C. for 1 minute. .. (3)
  • Electroplating Treatment After the oxidation treatment, Examples 2 and 3 and Comparative Example 2 are electroplated with Ni electrolytic plating solution (nickel sulfate 250 g / L; nickel chloride 50 g / L; sodium citrate 25 g / L). Was done.
  • electrolytic plating was performed using a Ni electrolytic plating solution (nickel sulfate 250 g / L; boric acid 35 g / L).
  • Example 3 was immersed in a Ni electrolytic plating solution for 1 minute before electrolytic plating.
  • test pieces of Examples 1 to 3 and Comparative Examples 1 to 3 were sufficiently dried after removing the solution used in the treatment immediately before laminating the prepreg.
  • a prepreg (R5670KJ, manufactured by Panasonic) is laminated on these test pieces, and thermocompression bonding is performed in a vacuum using a vacuum high-pressure press machine under the conditions of a press pressure of 2.9 MPa, a temperature of 210 ° C., and a press time of 120 minutes.
  • a laminate sample was obtained.
  • the cross section of the obtained laminate sample was obtained by FIB (focused ion beam) processing under the conditions of an acceleration voltage of 30 kV and a probe current of 4 nA.
  • FIB focused ion beam
  • a focused ion beam scanning electron microscope (Auriga, manufactured by Carl Zeiss) was used to observe the obtained cross section under the conditions of a magnification of 30,000 times and a resolution of 1024x768 to obtain an SEM cross section image (FIG. 3).
  • the copper member was peeled off from the resin base material according to a 90 ° peeling test (Japanese Industrial Standards (JIS) C5016) for these laminated samples.
  • JIS Japanese Industrial Standards
  • Image processing ⁇ enhancement (brightness ⁇ 0, contrast +20) Adjust the contrast to facilitate image processing.
  • Image processing->Emphasis-> Inversion In order to select voids by binarization processing, inversion processing is performed to reverse the bright and dark parts of the image.
  • Automatic binarization (discriminant analysis method) Perform automatic binarization and select a region surrounded by copper and copper oxide and a region surrounded by copper oxide. The threshold value is determined by a discriminant analysis method.
  • Noise removal 1 noise angle is used as noise, and noise with an area of 15 nm 2 or less is deleted.
  • Comparative Examples 2 and 3 only the region surrounded by the copper oxide (that is, the gap between the irregularities of the copper oxide layer) is counted as the void, whereas in the examples, the copper oxide is used. Since the enclosed region and the region surrounded by copper and copper oxide (that is, the region existing at the interface between the layer containing copper oxide and the copper foil) are counted as voids, the example counts more. The number of voids formed is large, and the distance between the voids is short. Further, in the examples, the ratio of those having a distance between voids of 50 nm or less was 40% or more of the whole.
  • the object lens was set to x100, the contact lens was set to x14, the digital zoom was set to x1, the Z pitch was set to 10 nm, data was acquired at three locations, and the surface area was set to the average value of the three locations.
  • Table 2 Ra and surface area decreased in Examples before and after peeling, but increased in Comparative Examples. This indicates that in the example, all or part of the convex portion of the composite copper member was transferred to the resin side, whereas in the comparative example, a part of the resin was transferred to the composite copper member.
  • Such a composite copper member is suitable for the SAP method and the MSAP method (FIG. 7).
  • the shape of the recess needs to be large to some extent, which is not suitable for forming fine wiring (Japanese Patent Laid-Open No. 2017-034216).
  • Japanese Patent Laid-Open No. 2017-034216 Japanese Patent Laid-Open No. 2017-034216.
  • the composite copper foil of the present invention is used, the layer itself containing the copper oxide forming the unevenness is transferred, so that it is not necessary to allow the plating solution to penetrate to the deepest part of the recess, and the transferred copper oxide is transferred.
  • (Pattern) copper plating may be performed on a layer having no unevenness including, and even if the shape of the recess on the surface of the original composite copper member is long and thin, there is a gap between the resin base material and the (pattern) copper plating layer. Is unlikely to occur and is suitable for forming fine wiring.
  • the binding affinity of copper plating to the layer containing copper oxide is high, and the peel strength between the resin substrate and the (pattern) copper plating layer is high. , It will be secured by the bonding of the layer containing the copper oxide bonded to the copper plating layer.
  • the peel strength is not stable even when a carrier foil is produced by using an oxidized metal as a release layer (International Publication No. 2010/027052).
  • the composite copper member according to the present invention can be used as it is for a copper member that functions as a carrier-attached (ultra-thin) metal leaf, or for manufacturing the same. Even with the carrier foil, the too thin metal foil could not withstand the heat-bonding process to the resin base material due to its strength.
  • the copper foil portion acts as a carrier and the layer containing the copper oxide and the Ni plating layer can be transferred, so that conductive Ni having a thickness of only several tens of nm is used as a resin. It is shown that the base material can be thermally pressure-bonded. Since the layer containing the copper oxide is also transferred, the physical strength of the Ni layer is reinforced by the presence of the layer containing the copper oxide that is transferred together, while the layer containing the copper oxide is highly conductive. Since the rate is low, electricity does not flow and transmission loss due to the presence of the layer containing copper oxide hardly occurs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

銅部材の表面の少なくとも一部に銅酸化物を含む層が形成された複合銅部材であって、銅酸化物を含む層に空隙が存在する、複合銅部材を提供する。

Description

空隙を有する複合銅部材
 本発明は空隙を有する複合銅部材に関する。
 プリント配線板に使用される銅箔は、絶縁性樹脂基材との密着性が要求される。この密着性を向上させるため、エッチングなどで銅箔の表面を粗面化処理し、いわゆるアンカー効果による機械的接着力を上げる方法が用いられてきた。一方、プリント配線板の高密度化や高周波帯域での伝送損失の観点から、銅箔表面の平坦化が要求されるようになってきた。それらの相反する要求を満たすため、酸化工程と還元工程を行うなどの銅表面処理方法が開発されている(国際公開2014/126193号公報)。この方法では、銅箔をプリコンディショニングし、酸化剤を含有する薬液に浸漬することで銅箔表面を酸化させて酸化銅の凹凸を形成した後、還元剤を含有する薬液に浸漬し、酸化銅を還元することで、表面の凹凸を調整して表面の粗さを整える。その他にも、酸化・還元を利用した銅箔の処理における密着性の改善方法として、酸化工程において表面活性分子を添加する方法(特表2013-534054号公報)や、還元工程の後にアミノチアゾール系化合物等を用いて銅箔の表面に保護皮膜を形成する方法(特開平8-97559号公報)が開発されている。
 樹脂基材と金属間の接着には、機械的接着力以外に、1)樹脂と金属との間の分子間力に起因する物理的結合力や2)樹脂の官能基と金属の共有結合などに起因する化学的結合力も関与しているとされている。高周波回路用の絶縁性樹脂は、低誘電率、低誘電正接化のため、OH基(水酸基)の割合が減少しているが、樹脂のOH基は金属との結合に関与するため、銅箔との化学的結合力が弱まってしまう(国際公開2017/150043号公報)。従って、高周波回路用の絶縁性樹脂と銅箔の接着には、より強い機械的接着力が求められる。
 本願発明者らも、粗化処理した銅箔に電解めっきによりNiをめっきした、密着性にすぐれた複合銅箔を開発していた(国際公開2019/093494号公報)。
 新規の複合銅部材及びそれを用いたプリント配線板、並びに銅部材がキャリアとして機能する金属めっきされた銅部材を提供する。
 本願発明者らは鋭意研究の結果、粗化処理によって生じる銅酸化物を含む層に空隙を生じさせることにより、凹凸を形成する銅酸化物を含む層の強度を上げるのではなく、逆に下げることにより、プリント配線板及び半導体パッケージ基板の回路形成に適した、とりわけ、セミアディティブ工法(Semi-Additive Process)(SAP法)やM-SAP(Modified Semi-Additive Process)(MSAP法)に適した複合銅部材を作製できることを新たに見出した。
 本発明は以下の実施態様を有する:
[1]
 銅部材の表面の少なくとも一部に銅酸化物を含む層が形成された複合銅部材であって、
 前記銅酸化物を含む層に複数個の空隙を有する、複合銅部材。
[2]
 前記複数の空隙のうち、少なくとも一部が前記銅酸化物を含む層と前記銅部材の表面との界面に存在する、[1]に記載の、複合銅部材。
[3]
 前記銅酸化物を含む層と前記銅部材の表面との間のピール強度が、0.001kgf/cm以上、0.30kgf/cm以下である、[1]又は[2]に記載の複合銅部材。
[4]
 走査電子顕微鏡による断面の撮影像を取得して撮影像を二値化した時、前記銅酸化物を含む層に平行な方向で測ったときの任意の3.8μmあたり、検出される前記空隙の数が30個以上である、[1]~[3]のいずれか一項に記載の複合銅部材。
[5]
 樹脂基材に前記複合銅部材の前記銅酸化物を含む層の表面を所定の条件で熱圧着して積層体を形成し、前記積層体の走査電子顕微鏡による断面の撮影像を取得して撮影像を二値化した時、積層された面に平行な方向で測ったときの任意の3.8μmあたり、検出される前記空隙の数が30個以上である、[1]~[4]のいずれか一項に記載の複合銅部材。
[6]
 前記二値化した断面の撮影像において、前記空隙間の平均距離が100nm以下である、[4]または[5]に記載の複合銅部材。
[7]
 前記二値化した断面の撮影像において、前記空隙間の距離が50nm以下の割合が空隙間全体の40%以上である、[4]または[5]に記載の複合銅部材。
[8]
 前記樹脂基材は、ポリフェニレンエーテル(PPE)、エポキシ、ポリフェニレンオキシド(PPO)、ポリベンゾオキサゾール(PBO)、ポリテトラフルオロエチレン(PTFE)、液晶ポリマー(LCP)、またはトリフェニルフォサイト(TPPI)、フッ素樹脂、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリシクロオレフィン、ビスマレイミド樹脂、低誘電率ポリイミド及びシアネート樹脂からなる群から選択された少なくとも1つの絶縁性樹脂を含有する、[5]~[7]のいずれか一項に記載の複合銅部材。
[9]
 前記熱圧着の所定条件が、50℃~400℃の温度、0~20MPaの圧力、1分~5時間の時間、の範囲内にある、[5]~[8]のいずれか一項に記載の複合銅箔。
[10]
 前記銅酸化物を含む層が形成された表面のRaが0.04μm以上であって、熱圧着後に前記樹脂基材から前記銅部材を所定の条件で引き剥がした時、前記Raに対する、前記樹脂基材から引き剥がした前記銅部材の表面のRaの割合が100%未満である、[5]~[9]のいずれか一項に記載の複合銅部材。
[11]
 前記銅酸化物を含む層が形成された表面の表面積に対する、熱圧着後に前記樹脂基材から引き剥がした前記銅部材の表面積の割合が100%未満である、[5]~[10]のいずれか一項に記載の複合銅部材。
[12]
 前記銅酸化物を含む層に、銅以外の金属が含まれる、[1]~[11]のいずれか一項に記載の複合銅部材。
[13]
 前記銅以外の金属がNiである、[12]に記載の複合銅部材。
[14]
 前記前記銅酸化物を含む層に、銅めっき層が含まれる、[1]~[11]のいずれか一項に記載の複合銅部材。
[15]
 [12]~[14]のいずれか一項に記載の複合銅部材を含み、
 前記銅酸化物を含む層が金属箔として用いられ、前記銅部材が前記金属箔に対するキャリアとして用いられる、キャリア付金属箔。
[16]
 [1]~[14]のいずれか一項に記載の複合銅部材の前記銅酸化物を含む層のすくなくとも一部の表面に樹脂基材が積層されている、積層体。
[17]
 前記樹脂基材は、ポリフェニレンエーテル(PPE)、エポキシ、ポリフェニレンオキシド(PPO)、ポリベンゾオキサゾール(PBO)、ポリテトラフルオロエチレン(PTFE)、液晶ポリマー(LCP)、またはトリフェニルフォサイト(TPPI)、フッ素樹脂、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリシクロオレフィン、ビスマレイミド樹脂、低誘電率ポリイミド及びシアネート樹脂からなる群から選択された少なくとも1つの絶縁性樹脂を含有する、[16]に記載の積層体。
[18]
 プリント配線板作製のための、[1]~[14]のいずれか一項に記載の複合銅部材。
[19]
 セミアディティブ工法(Semi-Additive Process)(SAP法)やM-SAP(Modified Semi-Additive Process)(MSAP)法によるプリント配線板作製のための、[18]に記載の複合銅部材。
[20]
 [1]~[14]のいずれか一項に記載の複合銅部材を使用したプリント配線板の製造方法であって、
 1)前記複合銅部材の銅酸化物を含む層の上に樹脂基材を所定の条件で熱圧着する工程;
 2)前記樹脂基材から前記銅部材を所定の条件で引き剥がし、前記銅酸化物を含む層を形成する金属の一部又は全部を有する樹脂基材を得る工程;及び
 3)前記銅酸化物を含む層を形成する金属の一部又は全部を有する樹脂基材の表面に銅めっき処理を行う工程;
を含む、プリント配線板の製造方法。
[21]
 金属を有する樹脂基材の製造方法であって、
 1)[1]~[14]のいずれか一項に記載の複合銅部材の前記銅酸化物を含む層の上に樹脂基材を所定の条件で熱圧着する工程;及び
 2)前記樹脂基材から前記銅部材を所定の条件で引き剥がし、前記銅酸化物を含む層を形成する金属の一部又は全部を有する樹脂基材を得る工程;
を含む、製造方法。
[22]
 [1]~[11]のいずれか一項に記載の複合銅部材の製造方法であって、
 1)前記銅部材の表面をシランカップリング剤で部分コートする工程;及び
 2)前記部分コートされた前記表面を酸化処理する工程; 
を含む、複合銅部材の製造方法。
 [23]
 [1]~[11]のいずれか一項に記載の複合銅部材の製造方法であって、
 1)前記銅部材の表面をシランカップリング剤で部分コートする工程; 
 2)前記部分コートされた前記表面を酸化処理する工程;及び
 3)形成された銅酸化物を含む層の表面を修飾剤で処理する工程を含み、
ここで、前記修飾剤が、塩化Ni、塩化亜鉛、塩化鉄、塩化クロム、クエン酸アンモニウム、塩化アンモニウム、塩化カリウム、硫酸アンモニウム、硫酸ニッケルアンモニウム、エチレンジアミン四酢酸、ジエタノールグリシン、L-グルタミン酸二酢酸・四ナトリウム、エチレンジアミン-N,N’-ジコハク酸、3-ヒドロキシ-2、2’-イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N-(2-ヒドロキシエチル)イミノ二酢酸ジナトリウム及びグルコン酸ナトリウムからなる群から選択される化合物を含む、
複合銅部材の製造方法。
[24]
 [12]に記載の複合銅部材の製造方法であって、
 1)前記銅部材の前記表面をシランカップリング剤で部分コートする工程;
 2)前記部分コートされた前記表面を酸化処理する形成する工程;
 3)酸化処理された前記表面に、銅以外の金属を含む層を形成する工程;
を含む、複合銅部材の製造方法。
[25]
 [12]に記載の複合銅部材の製造方法であって、
 1)前記銅部材の前記表面を酸化処理する工程;
 2)前記酸化処理された前記表面を修飾剤で処理する工程;及び
 3)前記修飾剤で処理された前記表面に銅以外の金属を含む層を形成する工程;
を含み、
ここで、前記修飾剤が、塩化Ni、塩化亜鉛、塩化鉄、塩化クロム、クエン酸アンモニウム、塩化アンモニウム、塩化カリウム、硫酸アンモニウム、硫酸ニッケルアンモニウム、エチレンジアミン四酢酸、ジエタノールグリシン、L-グルタミン酸二酢酸・四ナトリウム、エチレンジアミン-N,N’-ジコハク酸、3-ヒドロキシ-2、2’-イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N-(2-ヒドロキシエチル)イミノ二酢酸ジナトリウム及びグルコン酸ナトリウムからなる群から選択される化合物を含む、
複合銅部材の製造方法。
[26]
 [12]に記載の複合銅部材の製造方法であって、
 1)前記銅部材の前記表面をシランカップリング剤で部分コートする工程;
 2)前記部分コートされた前記表面を酸化処理する工程;
 3)前記酸化処理された前記表面を修飾剤で処理する工程;そして
 4)前記修飾剤で処理された前記表面に銅以外の金属を含む層を形成する工程;
を含み、
ここで、前記修飾剤が、塩化Ni、塩化亜鉛、塩化鉄、塩化クロム、クエン酸アンモニウム、塩化アンモニウム、塩化カリウム、硫酸アンモニウム、硫酸ニッケルアンモニウム、エチレンジアミン四酢酸、ジエタノールグリシン、L-グルタミン酸二酢酸・四ナトリウム、エチレンジアミン-N,N’-ジコハク酸、3-ヒドロキシ-2、2’-イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N-(2-ヒドロキシエチル)イミノ二酢酸ジナトリウム及びグルコン酸ナトリウムからなる群から選択される化合物を含む、
複合銅部材の製造方法。
 ==関連文献とのクロスリファレンス==
 本出願は、2020年2月28日付で出願した日本国特許出願特願2020-033411に基づく優先権を主張するものであり、当該基礎出願を引用することにより、本明細書に含めるものとする。
図1は、熱圧着前と引き剥がし後における、本発明の複合銅部材の断面の一例の模式図である。 図2は、実施例及び比較例の複合銅箔を樹脂基材に熱圧着し、引き剥がした後の、引き剥がした面の画像である。数値は引き剥がした時のピール強度を示す。 図3は、実施例1~3及び比較例2、3の複合銅箔を樹脂基材に熱圧着した後の走査型電子顕微鏡(SEM)観察による断面画像(倍率30000倍)である。銅酸化物を含む層と銅部材の界面を点線で示す。 図4は、図3の断面画像を反転し二値化した図である。白抜きの部分が空隙である。実施例1の画像にのみ、空隙間の距離を示す直線を付した。 図5は図4を画像解析することにより得られた、空隙の数と大きさ(A)、空隙間の平均距離(B)、及び空隙間距離の分布(C)を示すグラフである。 図6は、実施例3及び比較例3の複合銅箔を樹脂基材に熱圧着し、引き剥がした後の複合銅箔の断面を観察したSEM画像である。 図7は、本発明の一実施態様の複合銅箔(“転写+転移”)と、従来の転写用の銅箔(“転写のみ”)をSAP法に適用した場合の、各処理工程における断面の模式図である。
 以下、本発明の好ましい実施の形態につき、添付図面を用いて詳細に説明するが、必ずしもこれに限定するわけではない。なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。
==複合銅部材==
 本発明の一実施態様は、銅部材の少なくとも一部の表面に銅酸化物を含む層が形成されている複合銅部材である。銅部材には、Cuが主成分として含まれ、構造の一部を構成している。銅部材は、具体的には、電解銅箔や圧延銅箔およびキャリア付き銅箔等の銅箔、銅線、銅板、銅製リードフレーム、銅粉などであるが、これらに限定されない。銅部材は、電解めっきできるものが好ましい。銅部材は、Cu純度が99.9質量%以上の純銅からなる材料が好ましく、タフピッチ銅、脱酸銅、無酸素銅で形成されていることがより好ましく、含有酸素量が0.001質量%~0.0005質量%の無酸素銅で形成されていることがさらに好ましい。
 銅部材が銅箔の場合、その厚さは特に限定されないが、0.1μm以上100μm以下が好ましく、0.5μm以上50μm以下がより好ましい。
 銅部材が銅板の場合、その厚みが100μm超のものが好ましい。特に、限定しないが、1mm以上、2mm以上又は10mm以上がより好ましく、10cm以下、5cm以下又は2.5cm以下がさらに好ましい。
 銅酸化物を含む層は、銅部材の表面に形成され、酸化銅(CuO)及び/又は亜酸化銅(CuO)を含む。この銅酸化物を含む層は、銅部材表面を酸化処理することにより、形成することができる。この酸化処理によって、銅部材表面が粗面化される。銅酸化物を含む層に対し、溶解剤を用いて、酸化された銅部材表面の凸部の形状が調整されていてもよい。また、この銅酸化物を含む層の表面を還元剤により還元処理してもよい。純銅の比抵抗値が1.7×10-8(Ωm)なのに対して、酸化銅は1~10(Ωm)、亜酸化銅は1×10~1×10(Ωm)であるため、銅酸化物を含む層は導電性が低く、例え、樹脂基材に転移した銅酸化物を含む層の量が多くても、複合銅部材を用いてプリント配線板や半導体パッケージ基板の回路を形成する際、表皮効果による伝送損失が起こりにくい。
 銅酸化物を含む層は複数の空隙を有する。空隙は、外界とつながっていてもよいし、閉鎖されていてもよい。銅酸化物を含む層の上に樹脂基材を熱圧着しても、樹脂基材が空隙に入りこまず、空隙が維持されることが好ましい。空隙は、複合銅部材のSEM断面画像において検出することができる。空隙は銅酸化物を含む層に存在するが、銅酸化物を含む層と銅部材表面の間の界面に存在するものを含むことが好ましい。例えばこの界面は、SEM断面画像における組成に起因する濃淡の違い、あるいは銅部材を構成する銅結晶構造の有無に起因する濃淡の違いなどにより判別できる(図3)。特に限定しないが、空隙数の50%以上、60%以上、70%以上、80%以上、90%以上、95%以上、又は100%が、銅酸化物を含む層と銅部材表面の間の界面に存在することがより好ましい。
 具体的には、空隙は、例えば、以下の手順により複合銅部材の断面のSEM画像から特定することができる。
1)画像上銅酸化物層が上、銅部材が下になるように、SEM断面画像を取得する。
2)画面上、最も銅部材側に存在する銅および銅酸化物で囲われた領域あるいは銅酸化物で囲われた領域の頂点を通る銅酸化物を含む層に平行な直線と、銅酸化物を含む層の最も高い凸部の頂点を通る銅酸化物を含む層に平行な直線とで囲まれる領域を計測範囲とする。
3)計測範囲の画像のコントラストの調整を行った後、反転処理を行い、画像の明るい部分と暗い部分を逆にする。
4)自動2値化を行い、銅および銅酸化物で囲われた領域あるいは銅酸化物で囲われた領域を選択する。
5)1pixel角のものをノイズとして、削除する。
6)画像の左上を原点とし、画像下方向にX軸、右方向にY軸を取る。X=最大、Y=最小に存在する自動二値化で選択された領域(1)を始点とし、Y軸方向で最も近い距離にある領域を、領域(2)とする。領域(2)にY軸方向で最も近い距離にある領域を領域(3)とし、その後計測範囲でY=最大になるまで同じ手順で領域(4)~(N)を決定する。ここで決定された各領域(1)~(N)が空隙である。
 あるいは、空隙は、樹脂基材を積層後の複合銅部材の断面のSEM画像から同様の手順により特定されてもよい。
 二値化は、画像の濃淡を所定の閾値でカットオフし、閾値以上のものを1、閾値未満のものを0として画像を処置することによってなされる。二値化は、Otsuの手法(判別分析法)、Sauvolaの手法、Gotoの手法等により、二値化することができる。
 空隙の最大水平弦長は、倍率30000倍、解像度1024x768ピクセルのSEM断面画像を二値化したとき、検出できる大きさのものが好ましい。特に限定しないが、500nm角以下、400nm角以下、300nm角以下、200nm角以下、100nm角以下、または50nm角以下が好ましく、4nm角以上、5nm角以上、10nm角以上、15nm角以上、20nm角以上、25nm角以上、50nm角以上、100nm角以上または200nm角以上が好ましい。空隙の数は、二値化したSEM断面画像において、銅酸化物を含む層が形成された面に平行な方向で測ったときの任意の3.8μmあたり、25個以上、30個以上、40個以上、または50個以上が好ましく、500個以下、400個以下、300個以下、200個以下、100個以下、90個以下、80個以下、70個以下、または60個以下が好ましい。
 さらに、空隙間の距離を画像上で算出し、空隙間の距離を算出することもできる。
 空隙間の平均距離は、200nm以下、150nm以下、100nm以下、90nm以下、80nm以下、70nm以下、60nm以下または50nm以下が好ましく、40nm以上、30nm以上、20nm以上、または10nm以上が好ましい。
 また空隙間の距離の分布は、50nm以下の割合が、空隙間全体の35%、40%、45%又は50%以上が好ましい。
 かかる空隙の存在により、銅酸化物を含む層が銅部材より破断しやすくなる。特に限定しないが、銅酸化物を含む層と前記銅部材の表面との間のピール強度は、0.30kgf/cm以下、0.20kgf/cm以下、0.15kgf/cm以下、又は0.15kgf/cm以下が好ましく、0.001kgf/cm以上、0.002kgf/cm以上、0.003kgf/cm以上、又は0.004kgf/cm以上が好ましい。
 ピール強度は、銅酸化物を含む層の上に樹脂基材を熱圧着後、90°剥離試験(日本工業規格(JIS)C5016「フレキシブルプリント配線板試験方法」;対応国際規格IEC249-1:1982、IEC326-2:1990 )に基づいて、引き剥がす際のピール強度として計測することができる。
 銅酸化物を含む層は銅以外の金属を含んでいてもよい。含まれる金属は特に限定されないが、Sn、Ag、Zn、Al、Ti、Bi、Cr、Fe、Co、Ni、Pd、AuおよびPtからなる群から選ばれた少なくとも一種の金属が含まれていてもよい。特に耐酸性及び耐熱性を与えるために、銅よりも耐酸性及び耐熱性の高い金属、例えばNi、Pd、AuおよびPtが含まれることが好ましい。
 銅以外の金属は、めっきによって銅部材の表面に形成されていてもよい。めっきの方法は特に限定されず、電解めっき、無電解めっき、真空蒸着、化成処理などが例示できるが、一様で薄いめっき層を形成することが好ましいため、電解めっきが好ましい。酸化処理をされた銅箔表面に電解めっきを施す場合、まず表面の酸化銅が還元され、亜酸化銅又は純銅になるのに電荷が使われるため、めっきされるまでに時間のラグが生じ、その後、金属層を形成する金属が析出し始める。その電荷量はめっき液種や銅酸化物量によって異なるが、例えば、Niめっきを銅部材に施す場合、その厚さを好ましい範囲に収めるためには電解めっき処理する銅部材の面積dmあたり、15C以上75C以下の電荷を与えることが好ましく、25C以上65C以下の電荷を与えることがより好ましい。
 めっきによって銅部材の最表面に形成された銅以外の金属の垂直方向の平均の厚さは特に限定されないが、6nm以上であることが好ましく、10nm以上、14nm以上、18nm以上あるいは20nm以上であることがさらに好ましい。ただし、80nm以下であることが好ましく、70nm以下、60nm以下であることがさらに好ましい。
 なお、銅酸化物を含む層に含まれる銅以外の金属の垂直方向の平均の厚さは、銅酸化物を含む層を酸性溶液で溶解し、ICP分析によって金属量を測定し、複合銅部材の面積で除して算出できる。あるいは、複合銅部材そのものを溶解し、銅酸化物を含む層に含まれる金属のみの量を測定することにより、算出できる。
 銅酸化物を含む層が形成された、複合銅部材の表面を樹脂基材に熱圧着(thermal press fitting)すると、複合銅部材の表面プロファイルが樹脂基材に転写される。そして、熱圧着後に樹脂基材から複合銅部材を引き剥がした時、銅酸化物を含む層に含まれる金属が、複合銅部材から樹脂基材に転移する。複合銅部材の一実施態様を図1に例示する。
 樹脂基材は、樹脂を主成分として含有する材料であって、プリント配線板及び半導体パッケージ基板等の回路形成に用いることができる。樹脂は特に限定されないが、熱可塑性樹脂であっても、熱硬化性樹脂であってもよく、ポリフェニレンエーテル(PPE)、エポキシ、ポリフェニレンオキシド(PPO)、ポリベンゾオキサゾール(PBO)、ポリテトラフルオロエチレン(PTFE)、液晶ポリマー(LCP)、トリフェニルフォサイト(TPPI)、フッ素樹脂、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリシクロオレフィン、ビスマレイミド樹脂、低誘電率ポリイミド、シアネート樹脂、或いはこれらの混合樹脂であることが好ましい。樹脂基材はさらに無機フィラーやガラス繊維を含んでいてもよい。
 樹脂基材を複合銅部材の表面に熱圧着するには、例えば、樹脂基材と複合銅部材を密着させて積層した後、所定の条件で処理することにより、樹脂基材と複合銅部材を接着すればよい。所定の条件(例えば、温度、圧力、時間)として、各基材メーカーの推奨条件を用いてもよい。所定の条件として、例えば以下のような条件が考えられる。
 1)樹脂基材がエポキシ樹脂を含むか、またはエポキシ樹脂からなる場合、50℃~300℃の温度で0~20MPaの圧力を1分~5時間かけることにより、樹脂基材に複合銅部材を熱圧着することが好ましい。
 たとえば、
1-1)樹脂基材がR-1551(Panasonic製)の場合、
1MPaの圧力下で加熱し、100℃に到達後、その温度で5~10分保持し;
その後3.3MPaの圧力下でさらに加熱し、170~180℃に到達後、その温度で50分間保持することで熱圧着する。
1-2)樹脂基材がR-1410A(Panasonic製)の場合、
1MPaの圧力下で加熱し、130℃到達後、その温度で10分保持し;その後2.9MPaの圧力下でさらに加熱し、200℃到達後、その温度で70分間保持することで熱圧着する。
1-3)樹脂基材がEM-285(EMC製)の場合、
0.4MPaの圧力下で加熱し、100℃到達後、圧力を2.4~2.9MPaに上げてさらに加熱し、195℃到達後、その温度で50分間保持することで熱圧着する。
1-4)樹脂基材が、GX13(味の素製)の場合、1.0MPaで加圧しながら加熱し、180℃で60分間保持することで熱圧着する。
 2)樹脂基材が、PPE樹脂を含むか、またはPPE樹脂からなる場合、50℃~350℃の温度で0~20MPaの圧力を1分~5時間かけることにより、樹脂基材に複合銅部材を熱圧着することが好ましい。
 たとえば、
2-1)樹脂基材が、R5620(Panasonic製)の場合、
0.5MPaの圧力下で100℃になるまで加熱しながら熱圧着した後、温度と圧力を上げ、2.0~3.0MPa、200~210℃で、120分間保持することでさらに熱圧着する。
2-2)樹脂基材が、R5670(Panasonic製)の場合、
0.49MPaの圧力下で110℃になるまで加熱しながら熱圧着した後、温度と圧力を上げ、2.94MPa、210℃で120分間保持することで熱圧着する。
2-3)樹脂基材が、R5680(Panasonic製)の場合、0.5MPaの圧力下で110℃になるまで加熱しながら熱圧着した後、温度と圧力を上げ、3.0~4.0MPa、195℃で、75分間保持することで熱圧着する。
2-4)樹脂基材が、N-22(Nelco製)の場合、1.6~2.3MPaで加圧しながら加熱し、177℃で30分間保持後、さらに加熱し、216℃で60分間保持することで熱圧着する。
 3)樹脂基材が、PTFE樹脂を含むか、PTFE樹脂からなる場合、50℃~400℃の温度で0~20MPaの圧力を1分~5時間かけることにより、樹脂基材に複合銅部材熱を圧着することが好ましい。
 たとえば、
3-1)樹脂基材が、NX9255(パークエレクトロケミカル製)の場合、0.69MPaで加圧しながら260℃になるまで加熱し、1.03~1.72MPaに圧力をあげて385℃になるまで加熱し、385℃で10分間保持することで熱圧着する。
3-2)樹脂基材が、RO3003(ロジャース製)の場合、プレス開始50分(おおよそ220℃)以降、2.4MPaに加圧し、371℃で30~60分間保持することで熱圧着する。
 樹脂基材から銅部材を引き剥がす条件は、特に限定しないが、90°剥離試験(日本工業規格(JIS)C5016「フレキシブルプリント配線板試験方法」;対応国際規格IEC249-1:1982、IEC326-2:1990 )に基づいて、行うことができる。
 銅部材を引き剥がした後の樹脂基材には、銅酸化物を含む層に含まれる金属が転移している。銅部材を引き剥がした後の樹脂基材の表面に転移した金属は、様々な方法(たとえば、X線光電子分光法(XPS)、エネルギー分散型X線分光法(EDS)、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法、ICP-OES/ICP-AES))を用いて検出できる。
 XPSはX線を物体に照射し、物体のイオン化に伴い放出される光電子e-を捕捉することによりエネルギー分析を行う手法である。XPSによって、試料表面、あるいは表面から所定の深さまで(たとえば、6nmの深さまで)に存在する元素の種類、存在量、化学結合状態等を調べることができる。分析スポット径(すなわち、分析できる円柱形部分を断面が円になるように切った時の断面の直径)としては、1μm以上~1mm以下が適している。
 銅酸化物を含む層が形成された複合銅部材の表面の算術平均粗さ(Ra)は0.04μm以上が好ましく、0.1μm以上がより好ましく、また、0.3μm以下であることが好ましく、0.2μm以下であることがより好ましい。
 銅酸化物を含む層が形成された複合銅部材の表面の最大高さ粗さ(Rz)は0.2μm以上が好ましく、1.0μm以上がより好ましく、また、2.0μm以下であることが好ましく、1.7μm以下であることがより好ましい。
 Ra、Rzが小さすぎると樹脂基材との密着性が不足し、大きすぎると微細配線形成性や高周波特性が劣ることになる。
 ここで、算術平均粗さ(Ra)とは基準長さlにおいて、以下の式で表される輪郭曲線(y=Z(x))におけるZ(x)(すなわち山の高さと谷の深さ)の絶対値の平均を表す。
Figure JPOXMLDOC01-appb-M000001
 最大高さ粗さ(Rz)とは基準長さlにおいて、輪郭曲線(y=Z(x))の山高さZpの最大値と谷深さZvの最大値の和を表す。
 Ra、RzはJIS B 0601:2001(国際基準ISO4287-1997準拠)に定められた方法により算出できる。
 銅酸化物を含む層が形成された複合銅部材の表面の熱圧着前のRaに対する引き剥がし後のRaの割合が100%未満、96%未満、95%未満、94%未満、93%未満、92%未満、91%未満、90%未満、80%未満、70%未満、65%未満又は60%未満であることが好ましい。この割合が小さいほど、銅酸化物を含む層を形成する金属が樹脂基材に転移したことを意味している。
 銅酸化物を含む層が形成された複合銅部材の熱圧着前の表面積に対する引き剥がし後の表面積の割合が100%未満、98%未満、97%未満、96%未満、95%未満、94%未満、93%未満、92%未満、91%未満、90%未満、80%未満又は75%未満であることが好ましい。この割合が小さいほど、銅酸化物を含む層を形成する金属が樹脂基材に転移したことを意味している。
 表面積は、コンフォーカル顕微鏡や原子間力顕微鏡を用いて測定することができる。
 本発明の一実施態様における複合銅部材において、銅酸化物を含む層が形成された複合銅部材の表面の粗さ曲線要素の平均長さ(RSm)は、特に限定しないが、1500nm以下、1400nm以下、1300nm以下、1200nm以下、1100nm以下、1000nm以下、900nm以下、800nm以下、750nm以下、700nm以下、650nm以下、600nm以下、550nm以下、450nm以下、又は350nm以下が好ましく、100nm以上、200nm以上又は300nm以上が好ましい。ここで、RSmとは、ある基準長さ(lr)における粗さ曲線に含まれる1周期分の凹凸が生じている長さ(すなわち輪郭曲線要素の長さ:Xs1~Xsm)の平均を表し、以下の式で算出される。
Figure JPOXMLDOC01-appb-M000002
 ここで算術平均粗さ(Ra)の10%を凹凸における最小の高さとし、基準長さ(lr)の1%を最小の長さとして1周期分の凹凸を定義する。一例として、Rsmは「原子間力顕微鏡によるファインセラミック薄膜の表面粗さ測定方法(JIS R 1683:2007)」に準じて測定算出することができる。
 熱圧着前の複合銅部材の表面と引き剥がされた後の銅部材の表面のΔEabが13以上、15以上、20以上、25以上、30以上、又は35以上であることが好ましい。この差が大きいほど、銅酸化物を含む層を形成する金属(すなわち、凹凸を形成する金属)が樹脂基材に転移したことを意味している。
==複合銅部材の製造方法==
 本発明の一実施態様は、複合銅部材の製造方法であって、銅酸化物を含む層に空隙を設け、銅部材から破断しやすくする工程を含む。
 この工程で、銅酸化物を含む層に空隙を設け、銅部材から破断しやすくする方法は特に限定しないが、1)酸化処理前にシランカップリング剤等のコート剤で銅部材表面を部分コートする、2)酸化処理後に、銅酸化物を含む層を塩化Ni等の修飾剤で処理する、またはそれらの組み合わせなどによる。
 銅酸化物を含む層は、酸化剤を用いて銅部材表面を処理することにより形成されることが好ましい。酸化剤は特に限定されず、例えば、亜塩素酸ナトリウム、次亜塩素酸ナトリウム、塩素酸カリウム、過塩素酸カリウム、過硫酸カリウム等の水溶液を用いることができる。酸化剤には、各種添加剤(たとえば、リン酸三ナトリウム十二水和物のようなリン酸塩)を添加してもよい。
 酸化反応条件は特に限定されないが、反応温度は40~95℃であることが好ましく、45~80℃であることがより好ましい。反応時間は0.5~30分であることが好ましく、1~10分であることがより好ましい。
 酸化処理以前に、脱脂処理、自然酸化膜除去を行い均一処理するための酸洗浄、または酸洗浄後に酸化工程への酸の持ち込みを防止するためのアルカリ処理を行ってもよい。酸洗浄は、たとえば、銅表面を液温20~50℃、5~20重量%の硫酸に1~5分間浸漬した後、水洗することにより行うことができる。酸処理の後、処理ムラを軽減し、洗浄処理に用いた酸の酸化剤への混入を防ぐため、さらにアルカリ処理を行なってもよい。アルカリ処理の方法は特に限定されないが、好ましくは0.1~10g/L、より好ましくは1~2g/Lのアルカリ水溶液、例えば水酸化ナトリウム水溶液で、30~50℃、0.5~2分間程度処理すればよい。
 さらに、銅酸化物を含む層を、溶解剤を含む溶解用薬液で溶解して、銅部材表面の凸部を調整してもよいし、還元剤を含む還元用薬液で銅酸化物を含む層の酸化銅を還元してもよい。
 溶解剤は特に限定されないが、キレート剤、特に生分解性キレート剤であることが好ましく、L‐グルタミン酸二酢酸四ナトリウム(CMG-40)、エチレンジアミン四酢酸(ナトリウム塩)、ジエタノールグリシン、L-グルタミン酸二酢酸・四ナトリウム、エチレンジアミン-N,N’-ジコハク酸、3-ヒドロキシ-2、2’-イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N-(2-ヒドロキシエチル)イミノ二酢酸ジナトリウム、グルコン酸ナトリウムなどが例示できる。
 還元剤としては、DMAB(ジメチルアミンボラン)、ジボラン、水素化ホウ素ナトリウム、ヒドラジン等を用いることができる。また、還元用薬液は、還元剤、アルカリ性化合物(例えば、水酸化ナトリウム、水酸化カリウム等)、及び溶媒(例えば、純水等)を含む液体である。
 銅酸化物を含む層は銅以外の金属を含んでもよい。銅以外の金属は、例えば銅以外の金属で銅酸化物を含む層をめっき処理をすることで含ませることができる。めっき処理方法は、公知の技術を使うことができるが、例えば、銅以外の金属として、Sn、Ag、Zn、Al、Ti、Bi、Cr、Fe、Co、Ni、Pd、Au、Pt、あるいは様々な合金を用いることができる。めっき工程も特に限定されず、電解めっき、無電解めっき、真空蒸着、化成処理などによってめっきすることができるが、一様で薄いめっき層を形成することが好ましいため、電解めっきが好ましい。
 電解めっきの場合はニッケルめっき及びニッケル合金めっきが好ましい。ニッケルめっき及びニッケル合金めっきで形成される金属は、例えば、純ニッケル、Ni-Cu合金、Ni-Cr合金、Ni-Co合金 、Ni-Zn合金、Ni-Mn合金、Ni-Pb合金、Ni-P合金等が挙げられる。
 めっきに用いる金属塩として、例えば、硫酸ニッケル、スルファミン酸ニッケル、塩化ニッケル、臭化ニッケル、酸化亜鉛、塩化亜鉛、ジアンミンジクロロパラジウム、硫酸鉄、塩化鉄、無水クロム酸、塩化クロム、硫酸クロムナトリウム、硫酸銅、ピロリン酸銅、硫酸コバルト、硫酸マンガンなどが挙げられる。
 ニッケルめっきにおいて、その浴組成は、例えば、硫酸ニッケル(100g/L以上350g/L以下)、スルファミンニッケル(100g/L以上600g/L以下)、塩化ニッケル(0g/L以上300g/L以下)及びこれらの混合物を含むものが好ましいが、添加剤としてクエン酸ナトリウム(0g/L以上100g/L以下)やホウ酸(0g/L以上60g/L以下)が含まれていてもよい。
 無電解ニッケルめっきの場合、触媒を用いた無電解めっきが好ましい。触媒としては鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、またはそれらの塩を用いることが好ましい。触媒を用いた無電解めっきを行うことで、複合銅箔の耐熱性が向上する。
 本発明の複合銅部材の製造方法の一実施態様は、1)銅部材表面をシランカップリング剤で部分的にコートする工程;および、2)部分的にコートされた銅部材表面を酸化処理する工程;を含むか、或いは、1)銅部材表面をシランカップリング剤で部分的にコートする工程;2)部分的にコートされた銅部材表面を酸化処理する工程;そして、3)酸化処理された銅部材表面に、銅以外の金属を含む層を形成する工程;を含む、複合銅部材の製造方法である。
 シランカップリング剤等のコート剤で銅部材表面を部分的にコートすることにより、その部分が酸化処理を受けることを免れ、銅酸化物を含む層、特に銅部材との界面部分付近に空隙が生じ、銅部材から銅酸化物を含む層が破断しやすくなる。
 したがって、シランカップリング剤による処理は、銅部材表面を部分的に(例えば、1%、5%、10%、20%、30%、40%、50%、60%、70%、80%又は90%以上で、100%未満)コートすることが好ましく、そのためには、シランカップリング剤を0.1%、0.5%、1%又は2%以上の濃度で、室温で30秒、1分又は2分以上反応させることが好ましい。
 シランカップリング剤は特に限定しないが、シラン、テトラオルガノ‐シラン、アミノエチル‐アミノプロピルートリメトキシシラン、(3‐アミノプロピル)トリメトキシシラン、(1‐[3‐(トリメトキシシリル)プロピル]ウレア)((l-[3-(Trimethoxysilyl)propyl]urea))、(3‐アミノプロピル)トリエトキシシラン、((3‐グリシジルオキシプロピル)トリメトキシシラン)、(3‐クロロプロピル)トリメトキシシラン、(3‐グリシジルオキシプロピル)トリメトキシシラン、ジメチルジクロロシラン、3‐(トリメトキシシリル)プロピルメタクリレート、エチルトリアセトキシシラン、トリエトキシ(イソブチル)シラン、トリエトキシ(オクチル)シラン、トリス(2‐メトキシエトキシ)(ビニル)シラン、クロロトリメチルシラン、メチルトリクロロシラン、四塩化ケイ素、テトラエトキシシラン、フェニルトリメトキシシラン、クロロトリエトキシシラン、エチレン‐トリメトキシシランなどが例示される。
 シランカップリング剤による処理は、酸化処理前であればいつ行われてもよく、脱脂処理、自然酸化膜除去を行い均一処理するための酸洗浄、または酸洗浄後に酸化工程への酸の持ち込みを防止するためのアルカリ処理と共に行われてもよい。
 本発明の複合銅部材の製造方法の一実施態様は、1)銅部材表面を酸化処理する工程;および、2)酸化処理された銅部材表面を修飾剤で処理する工程;を含む、複合銅部材の製造方法、または、1)銅部材表面を酸化処理する工程;2)酸化処理された銅部材表面を修飾剤で処理する工程;および、3)修飾剤で処理された複合銅部材表面に銅以外の金属を含む層を形成する工程、を含む複合銅部材の製造方法である。
 修飾剤で処理することによって、銅部材と銅酸化物を含む層の界面付近の銅酸化物が部分的に溶解され、空隙が生じ、銅酸化物を含む層が銅部材から破断しやすくなると考えられる。
 銅酸化物を含む層を銅部材から破断させやすくするための修飾剤は、塩化Niに限定されず、塩化物(塩化亜鉛、塩化鉄、塩化クロムなど)、アンモニウム塩(クエン酸アンモニウム、塩化アンモニウム、硫酸アンモニウム、硫酸ニッケルアンモニウムなど)、キレート剤(エチレンジアミン四酢酸、ジエタノールグリシン、L-グルタミン酸二酢酸・四ナトリウム、エチレンジアミン-N,N’-ジコハク酸、3-ヒドロキシ-2、2’-イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N-(2-ヒドロキシエチル)イミノ二酢酸ジナトリウム、グルコン酸ナトリウムなど)などでもよい。

 塩化Niで処理する場合は、特に限定しないが、塩化Ni溶液(濃度45g/L以上)に室温または室温より高い温度で5秒以上、銅酸化物を含む層が形成された銅部材を浸漬することが好ましい。また、塩化Ni単独で処理するだけではなく、酸化処理と同時に行ってもよいし、酸化処理後、めっき処理と同時に行ってもよい。例えば、めっき液の中に塩化Niを含有させ、めっき前に5秒、10秒、15秒、20秒、30秒、1分、または2分間めっき液の中に、銅酸化物を含む層が形成された銅部材を浸漬してもよい。浸漬する時間は、酸化膜厚により適宜変更可能である。 
 本発明の複合銅部材の製造方法の一実施態様は、1)銅部材表面をシランカップリング剤で部分的にコートする工程;2)部分的にコートされた銅部材表面を酸化処理する工程;及び3)酸化処理された銅部材表面を修飾剤で処理する工程;を含む複合銅部材の製造方法、または、1)銅部材表面をシランカップリング剤で部分的にコートする工程;2)部分的にコートされた銅部材表面を酸化処理する工程;3)酸化処理された銅部材表面を修飾剤で処理する工程;そして4)修飾剤で処理された、銅部材表面に銅以外の金属を含む層を形成する工程、を含む複合銅部材の製造方法である。
==複合銅部材の使用方法==
 本発明に係る複合銅部材は
(1)樹脂基材に熱圧着して積層体を製造すること;
(2)樹脂基材に熱圧着して、引き剥がし、銅酸化物を含む層を形成する金属の一部又は全部を有する樹脂基材を得ること;
(3)SAP法やMSAP法において、樹脂基材に熱圧着して、引き剥がし、銅酸化物を含む層を形成する金属の一部又は全部を有する樹脂基材を得、引き剥がした樹脂基材の面に銅めっき処理を行うことにより、プリント配線板の製造すること;
(4)銅酸化物を含む層の上に、金属箔になるように銅又は銅以外の金属のめっきを施し、銅部材をキャリア、銅酸化物を含む層と銅又は銅以外の金属のめっきが金属箔として用いられる、キャリア付き金属箔を製造すること等に用いることができる。
 (1)~(3)において、樹脂基材及び、樹脂基材に熱圧着する条件は、SEM断面画像取得の際の条件と同じであってもよいし、異なっていてもよい。
 (2)~(3)において、引き剥がす条件は、SEM断面画像取得の際の条件と同じであってもよいし、異なっていてもよい。
 (3)において、銅めっきする方法は、電解めっきでも無電解めっきでもよい。
 (4)において、銅酸化物を含む層の最表面に金属めっきを施す方法は、電解めっきでも無電解めっきでもよく、金属は合金であってもよい。
<1.複合銅箔の製造>
 実施例1~3、比較例2,3は、古河電工株式会社製の銅箔(DR-WS、厚さ:18μm)のシャイニー面(光沢面。反対面と比較したときに平坦である面。)を用いた。比較例1は古河電工株式会社製の銅箔(FV-WS、厚さ:18μm)のマット面を未処理のまま試験片とした。
(1)前処理
 実施例1及び2は、炭酸カリウム5g/L;KBE-903(3-アミノプロピルトリエトキシシラン;信越シリコーン社製)1vol%の溶液に25℃1分間浸漬した。
 比較例2、3及び実施例3は、炭酸カリウム5g/Lの溶液に25℃1分間浸漬した。
(2)酸化処理
 前処理を行った銅箔を、酸化剤に浸漬して酸化処理を行った。
 実施例1、2は、酸化剤として、亜塩素酸ナトリウム52.5g/L;水酸化カリウム18g/L;炭酸カリウム35g/Lの溶液を用いた。
 実施例3は、酸化剤として亜塩素酸ナトリウム37.5g/L;水酸化カリウム10g/L;KBM-403(3-グリシドキシプロピルトリメトキシシラン;信越シリコーン社製)1.5g/Lの溶液を用いた。
 比較例2は、酸化剤として、亜塩素酸ナトリウム53.5g/L;水酸化カリウム8g/L;炭酸カリウム2g/L;KBM-403(3-グリシドキシプロピルトリメトキシシラン;信越シリコーン社製)1.5g/Lの溶液を用いた。
 比較例3は、酸化剤として、亜塩素酸ナトリウム195g/L;水酸化カリウム18g/L;KBM-403(3-グリシドキシプロピルトリメトキシシラン;信越シリコーン社製)0.5g/Lの溶液を用いた。
 実施例1及び2は酸化剤に73℃で6分間浸漬し、実施例3及び比較例2は酸化剤に73℃で2分間浸漬し、比較例3は酸化剤に50℃で1分間浸漬した。
(3)電解めっき処理
 酸化処理後、実施例2、3及び比較例2は、Ni電解めっき液(硫酸ニッケル250g/L;塩化ニッケル50g/L;クエン酸ナトリウム25g/L)を用いて電解めっきを行った。比較例3は、Ni電解めっき液(硫酸ニッケル250g/L;ホウ酸35g/L)を用いて電解めっきを行った。実施例3は電解めっき前にNi電解めっき液に1分間浸漬させた。比較例2,3及び実施例2,3は50℃で電流密度0.5A/dm × 45秒(=22.5C/dm2 銅箔面積)で電解めっきを行った。
 実施例及び比較例について、各々同じ条件で複数の試験片を作製した(表1)。
Figure JPOXMLDOC01-appb-T000003
<2.樹脂基材の圧着及び引き剥がし>
 実施例1~3及び比較例1~3の試験片は、プリプレグを積層する直前の処理に用いた溶液を除去し、十分に乾燥させておいた。これらの試験片に対し、プリプレグ(R5670KJ、Panasonic製)を積層し、真空高圧プレス機を用いて真空中でプレス圧2.9MPa、温度210℃、プレス時間120分の条件で熱圧着することにより、積層体試料を得た。得られた積層体試料の断面は、加速電圧30kV、プローブ電流4nAの条件でFIB(集束イオンビーム)加工することで得た。集束イオンビーム走査電子顕微鏡(Auriga、Carl Zeiss社製)を用いて倍率30000倍、解像度1024x768の条件で、得られた断面を観察し、SEM断面画像を得た(図3)。
 これらの積層体試料に対して90°剥離試験(日本工業規格(JIS)C5016)に準じて、銅部材を樹脂基材から引き剥がした。引きはがした後の試験片の画像及びピール強度(kgf/cm)を図2に、引き剥がし前後の積層体試料のSEM断面画像を図6に示す。図6において、比較例3については、加工面保護のためにPtデポを樹脂基材側に積層後、画像を取得した。図2及び図6が示すように、実施例においてのみ、針状(結)晶銅酸化物又は針状(結)晶銅酸化物に起因するほぼ同じ太さの、ニッケルめっきが施された針状の凸部のほぼ大半が銅箔から破断し、樹脂基材側に転移している。また、ピール強度も比較例に比べて実施例は極めて小さい。
<3.熱圧着後のSEM断面画像の二値化>
 得られた積層体試料のSEM断面画像(針状の凸部が画像の上を向くように配置;画像の幅=3.78μmx2.61μm;解像度 1024x768)を、画像解析ソフトWinROOF2018(三谷商事株式会社、Ver4.5.5)を用いて以下の手順で二値化した。
<操作>
1)範囲選択(長方形ROI)
 最も銅側に存在する空隙の頂点を通る積層された面に平行な直線と、銅表面に形成された最も高い凸部の頂点を通る積層された面に平行な直線とで囲まれる領域を計測範囲とする。
2)画像処理→強調 (明るさ±0、コントラスト+20)
 画像処理をしやすくするため、コントラストの調整を行う。
3)画像処理→強調→反転
 二値化処理で空隙を選択するため、反転処理を行い、画像の明るい部分と暗い部分を逆にする。
4)自動二値化(判別分析法)
 自動二値化を行い、銅及び銅酸化物で囲われた領域及び銅酸化物で囲われた領域を選択する。閾値の決定は判別分析法にて行なう。
5)ノイズ除去
 1pixel角のものをノイズとし、面積が15nm以下のものを削除する。
6)空隙間距離算出
 凸部の方向が画像の上側に向かうように画像を配置した際、画像の左上を原点とし、画像下方向にX軸、右方向にY軸を取る。X=最大、Y=最小に存在する自動2値化で選択された領域を始点とし、Y軸方向で最も近い距離にある領域との距離を2点間距離で求める。2点間距離を求める際に選択された各領域を空隙と定義する。
7)空隙サイズ測定
 空隙の最大水平弦長を求め、これを各空隙のサイズとする。
 反転二値化後の各積層体試料のSEM断面画像を図4に示す。
 また空隙及び空隙間の平均距離の算出結果を図5に示す。
 比較例2、3は、空隙として、銅酸化物で囲われた領域(すなわち、銅酸化物層の凹凸の隙間)のみをカウントしているのに対して、実施例においては、銅酸化物で囲われた領域と銅及び銅酸化物で囲われた領域(すなわち、銅酸化物を含む層と銅箔の界面に存在する領域)を空隙としてをカウントしているため、実施例のほうが、カウントされる空隙の数が多く、その空隙間の距離も短い。また、実施例では空隙間の距離が50nm以下のものの割合が全体の40%以上であった。
<4.熱圧着前と引き剥がし後の複合銅箔のRa及び表面積の測定>
(1)方法
 実施例1~3及び比較例1、2の複合銅箔試験片について、熱圧着前と引き剥がし後の表面積を、共焦点走査電子顕微鏡 OPTELICS H1200(レーザーテック株式会社製)を用いて算出した。測定条件として、モードはコンフォーカルモード、スキャンエリアは100μm×100μm、Light sourceはBlue、カットオフ値は1/5とした。オブジェクトレンズはx100、コンタクトレンズはx14、デジタルズームはx1、Zピッチは10nmの設定とし、3箇所のデータを取得し、表面積は3箇所の平均値とした。
(2)結果
 表2に記載のように、熱圧着前と引き剥がし後では、実施例ではRa及び表面積が減少したのに対し、比較例では逆に増加した。これは実施例では、複合銅部材の凸部全部または一部が樹脂側に転移したのに対して、比較例では逆に樹脂の一部が複合銅部材に転移したことを示している。
Figure JPOXMLDOC01-appb-T000004
 本発明によって、新規な複合銅部材を提供することができるようになった。かかる複合銅部材はSAP工法やMSAP工法に好適である(図7)。凹部の先最深部までめっき液を浸入させるためには、凹部の形状がある程度大きい必要があり、微細配線の形成には不向きであった(特開2017-034216号公報)。しかしながら、本発明の複合銅箔を用いた場合、凹凸を形作る銅酸化物を含む層そのものが転移されるため、めっき液を凹部の最深部まで浸透させる必要がなく、転移させた銅酸化物を含む、凹凸の無い層の上に(パターン)銅めっきを行えばよく、たとえ元の複合銅部材表面にある凹部の形状が長く細くても樹脂基材と(パターン)銅めっき層の間に隙間が生じる可能性が少なく、微細配線の形成に好適である。
 加えて、銅酸化物を含む層の上に銅をめっきするので、銅めっきの、酸化銅を含む層に対する結合親和性が高く、樹脂基材と(パターン)銅めっき層の間のピール強度は、銅めっき層と結合した銅酸化物を含む層の結合により担保されることになる。
 酸化された金属を剥離層としてキャリア箔を作製してもピール強度が安定しないことが知られていた(国際公開2010/027052号公報)。しかしながら、銅酸化物を含む層に空隙を形成することにより、本発明に係る複合銅部材は、そのままキャリア付(極薄)金属箔として機能する銅部材、あるいはその製造に用いることができる。キャリア箔といえども、あまりに薄い金属箔は強度の面から、樹脂基材への熱圧着工程に耐えられなかった。たとえば実施例2や3の複合銅箔は、銅箔部分がキャリアとして働き、銅酸化物を含む層とNiめっき層を転移させることができるので、わずか数十nm厚みの導電性のNiを樹脂基材の熱圧着させることができることを示している。銅酸化物を含む層も一緒に転移されるため、Ni層の物理的強度は、一緒に転移される銅酸化物を含む層の存在によって補強され、その一方銅酸化物を含む層は極めて導電率が低いため、電気が流れず、銅酸化物を含む層の存在による伝送損失はほとんど起こらない。

Claims (26)

  1.  銅部材の表面の少なくとも一部に銅酸化物を含む層が形成された複合銅部材であって、
     前記銅酸化物を含む層に複数個の空隙を有する、複合銅部材。
  2.  前記複数個の空隙のうち、少なくとも一部の空隙が前記銅酸化物を含む層と前記銅部材の表面との界面に存在する、請求項1に記載の複合銅部材。
  3.  前記銅酸化物を含む層と前記銅部材の表面との間のピール強度が、0.001kgf/cm以上、0.30kgf/cm以下である、請求項1又は2に記載の複合銅部材。
  4.  走査電子顕微鏡による断面の撮影像を取得して前記撮影像を二値化し、前記銅酸化物を含む層に平行な方向で測ったときの任意の3.8μmあたり、検出される前記空隙の数が30個以上である、請求項1~3のいずれか一項に記載の複合銅部材。
  5.  樹脂基材に前記複合銅部材の前記銅酸化物を含む層の表面を所定の条件で熱圧着して積層体を形成し、前記積層体の走査電子顕微鏡による断面の撮影像を取得して前記撮影像を二値化した時、積層された面に平行な方向で測ったときの任意の3.8μmあたり、検出される前記空隙の数が30個以上である、請求項1~4のいずれか一項に記載の複合銅部材。
  6.  前記二値化した断面の撮影像において、前記空隙間の平均距離が100nm以下である、請求項4または5に記載の複合銅部材。
  7.  前記二値化した断面の撮影像において、前記空隙間の距離が50nm以下の割合が空隙間全体の40%以上である、請求項4または5に記載の複合銅部材。
  8.  前記樹脂基材は、ポリフェニレンエーテル(PPE)、エポキシ、ポリフェニレンオキシド(PPO)、ポリベンゾオキサゾール(PBO)、ポリテトラフルオロエチレン(PTFE)、液晶ポリマー(LCP)、またはトリフェニルフォサイト(TPPI)、フッ素樹脂、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリシクロオレフィン、ビスマレイミド樹脂、低誘電率ポリイミド及びシアネート樹脂からなる群から選択された少なくとも1つの絶縁性樹脂を含有する、請求項5~7のいずれか一項に記載の複合銅部材。
  9.  前記熱圧着の所定条件が、50℃~400℃の温度、0~20MPaの圧力、1分~5時間の時間、の範囲内にある、請求項5~8のいずれか一項に記載の複合銅部材。
  10.  前記銅酸化物を含む層が形成された表面のRaが0.03μm以上であって、熱圧着後に前記樹脂基材から前記銅部材を所定の条件で引き剥がした時、前記Raに対する、前記樹脂基材から引き剥がした前記銅部材の表面のRaの割合が100%未満である、請求項5~9のいずれか一項に記載の複合銅部材。
  11.  前記銅酸化物を含む層が形成された表面の表面積に対する、熱圧着後に前記樹脂基材から引き剥がした前記銅部材の表面積の割合が100%未満である、請求項5~10のいずれか一項に記載の複合銅部材。
  12.  前記銅酸化物を含む層に、銅以外の金属が含まれる、請求項1~11のいずれか一項に記載の複合銅部材。
  13.  前記銅以外の金属がNiである、請求項12に記載の複合銅部材。
  14.  前記前記銅酸化物を含む層に、銅めっき層が含まれる、請求項1~11のいずれか一項に記載の複合銅部材。
  15.  請求項12~14のいずれか一項に記載の複合銅部材を含み、
     前記銅酸化物を含む層が金属箔として用いられ、前記銅部材が前記金属箔に対するキャリアとして用いられる、キャリア付金属箔。
  16.  請求項1~14のいずれか一項に記載の複合銅部材の前記銅酸化物を含む層のすくなくとも一部の表面に樹脂基材が積層されている、積層体。
  17.  前記樹脂基材は、ポリフェニレンエーテル(PPE)、エポキシ、ポリフェニレンオキシド(PPO)、ポリベンゾオキサゾール(PBO)、ポリテトラフルオロエチレン(PTFE)、液晶ポリマー(LCP)、またはトリフェニルフォサイト(TPPI)、フッ素樹脂、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリシクロオレフィン、ビスマレイミド樹脂、低誘電率ポリイミド及びシアネート樹脂からなる群から選択された少なくとも1つの絶縁性樹脂を含有する、請求項16に記載の積層体。
  18.  プリント配線板作製のための、請求項1~14のいずれか一項に記載の複合銅部材。
  19.  セミアディティブ工法(Semi-Additive Process)(SAP法)やM-SAP(Modified Semi-Additive Process)(MSAP)法によるプリント配線板作製のための、請求項18に記載の複合銅部材。
  20.  請求項1~14のいずれか一項に記載の複合銅部材を使用したプリント配線板の製造方法であって、
     1)前記複合銅部材の銅酸化物を含む層の上に樹脂基材を所定の条件で熱圧着する工程;
     2)前記樹脂基材から前記銅部材を所定の条件で引き剥がし、前記銅酸化物を含む層を形成する金属の一部又は全部を有する樹脂基材を得る工程;及び
     3)前記銅酸化物を含む層を形成する金属の一部又は全部を有する樹脂基材の表面に銅めっき処理を行う工程;
    を含む、プリント配線板の製造方法。
  21.  金属を有する樹脂基材の製造方法であって、
     1)請求項1~14のいずれか一項に記載の複合銅部材の前記銅酸化物を含む層の上に樹脂基材を所定の条件で熱圧着する工程;及び
     2)前記樹脂基材から前記銅部材を所定の条件で引き剥がし、前記銅酸化物を含む層を形成する金属の一部又は全部を有する樹脂基材を得る工程;
    を含む、製造方法。
  22.  請求項1~11のいずれか一項に記載の複合銅部材の製造方法であって、
     1)前記銅部材の表面をシランカップリング剤で部分コートする工程;及び
     2)前記部分コートされた前記表面を酸化処理することにより前記銅酸化物を含む層を形成する工程; 
    を含む、複合銅部材の製造方法。
  23.  請求項1~11のいずれか一項に記載の複合銅部材の製造方法であって、
     1)前記銅部材の表面をシランカップリング剤で部分コートする工程; 
     2)前記部分コートされた前記表面を酸化処理する工程;そして
     3)形成された銅酸化物を含む層の表面を修飾剤で処理する工程を含み、
    ここで、前記修飾剤が、塩化Ni、塩化亜鉛、塩化鉄、塩化クロム、クエン酸アンモニウム、塩化アンモニウム、塩化カリウム、硫酸アンモニウム、硫酸ニッケルアンモニウム、エチレンジアミン四酢酸、ジエタノールグリシン、L-グルタミン酸二酢酸・四ナトリウム、エチレンジアミン-N,N’-ジコハク酸、3-ヒドロキシ-2、2’-イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N-(2-ヒドロキシエチル)イミノ二酢酸ジナトリウム及びグルコン酸ナトリウムからなる群から選択される化合物を含む、
    複合銅部材の製造方法。
  24.  請求項12に記載の複合銅部材の製造方法であって、
     1)前記銅部材の前記表面をシランカップリング剤で部分コートする工程;
     2)前記部分コートされた前記表面を酸化処理する工程;そして
     3)酸化処理された前記表面に、銅以外の金属を含む層を形成する工程;
    を含む、複合銅部材の製造方法。
  25.  請求項12に記載の複合銅部材の製造方法であって、
     1)前記銅部材の前記表面を酸化処理する工程;
     2)前記酸化処理された前記表面を修飾剤で処理する工程;そして
     3)前記修飾剤で処理された前記表面に銅以外の金属を含む層を形成する工程;
    を含み、
    ここで、前記修飾剤が、塩化Ni、塩化亜鉛、塩化鉄、塩化クロム、クエン酸アンモニウム、塩化アンモニウム、塩化カリウム、硫酸アンモニウム、硫酸ニッケルアンモニウム、エチレンジアミン四酢酸、ジエタノールグリシン、L-グルタミン酸二酢酸・四ナトリウム、エチレンジアミン-N,N’-ジコハク酸、3-ヒドロキシ-2、2’-イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N-(2-ヒドロキシエチル)イミノ二酢酸ジナトリウム及びグルコン酸ナトリウムからなる群から選択される化合物を含む、
    複合銅部材の製造方法。
  26.  請求項12に記載の複合銅部材の製造方法であって、
     1)前記銅部材の前記表面をシランカップリング剤で部分コートする工程;
     2)前記部分コートされた前記表面を酸化処理する工程;
     3)前記酸化処理された前記表面を修飾剤で処理する工程;そして
     4)前記修飾剤で処理された前記表面に銅以外の金属を含む層を形成する工程;
    を含み、
    ここで、前記修飾剤が、塩化Ni、塩化亜鉛、塩化鉄、塩化クロム、クエン酸アンモニウム、塩化アンモニウム、塩化カリウム、硫酸アンモニウム、硫酸ニッケルアンモニウム、エチレンジアミン四酢酸、ジエタノールグリシン、L-グルタミン酸二酢酸・四ナトリウム、エチレンジアミン-N,N’-ジコハク酸、3-ヒドロキシ-2、2’-イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N-(2-ヒドロキシエチル)イミノ二酢酸ジナトリウム及びグルコン酸ナトリウムからなる群から選択される化合物を含む、
    複合銅部材の製造方法。
PCT/JP2021/005700 2020-02-28 2021-02-16 空隙を有する複合銅部材 WO2021172096A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022503279A JPWO2021172096A1 (ja) 2020-02-28 2021-02-16
CN202180017199.7A CN115176047A (zh) 2020-02-28 2021-02-16 具有空隙的复合铜部件
KR1020227033642A KR20220148865A (ko) 2020-02-28 2021-02-16 공극을 갖는 복합 구리 부재

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020033411 2020-02-28
JP2020-033411 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021172096A1 true WO2021172096A1 (ja) 2021-09-02

Family

ID=77490326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005700 WO2021172096A1 (ja) 2020-02-28 2021-02-16 空隙を有する複合銅部材

Country Status (5)

Country Link
JP (1) JPWO2021172096A1 (ja)
KR (1) KR20220148865A (ja)
CN (1) CN115176047A (ja)
TW (1) TW202134053A (ja)
WO (1) WO2021172096A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022224683A1 (ja) * 2021-04-20 2022-10-27 ナミックス株式会社 複合銅部材の製造システム
EP4050123A4 (en) * 2019-10-25 2024-05-08 Namics Corp COMPOSITE COPPER ELEMENT

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168077A (ja) * 1986-12-29 1988-07-12 日立化成工業株式会社 プリント配線板の製造法
KR20160109731A (ko) * 2015-03-12 2016-09-21 주식회사 두하누리 금속과 고분자 간 접착 방법 및 이를 이용한 기판
WO2019093494A1 (ja) * 2017-11-10 2019-05-16 ナミックス株式会社 複合銅箔
JP2019091742A (ja) * 2017-11-10 2019-06-13 ナミックス株式会社 粗面化処理された銅表面を有する物体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015040998A1 (ja) * 2013-09-20 2015-03-26 三井金属鉱業株式会社 銅箔、キャリア箔付銅箔及び銅張積層板
JP6178035B1 (ja) * 2016-03-03 2017-08-09 三井金属鉱業株式会社 銅張積層板の製造方法
JP6832581B2 (ja) * 2016-07-15 2021-02-24 ナミックス株式会社 プリント配線板に用いる銅箔の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168077A (ja) * 1986-12-29 1988-07-12 日立化成工業株式会社 プリント配線板の製造法
KR20160109731A (ko) * 2015-03-12 2016-09-21 주식회사 두하누리 금속과 고분자 간 접착 방법 및 이를 이용한 기판
WO2019093494A1 (ja) * 2017-11-10 2019-05-16 ナミックス株式会社 複合銅箔
JP2019091742A (ja) * 2017-11-10 2019-06-13 ナミックス株式会社 粗面化処理された銅表面を有する物体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4050123A4 (en) * 2019-10-25 2024-05-08 Namics Corp COMPOSITE COPPER ELEMENT
WO2022224683A1 (ja) * 2021-04-20 2022-10-27 ナミックス株式会社 複合銅部材の製造システム

Also Published As

Publication number Publication date
CN115176047A (zh) 2022-10-11
KR20220148865A (ko) 2022-11-07
TW202134053A (zh) 2021-09-16
JPWO2021172096A1 (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
US11781236B2 (en) Composite copper foil
WO2021172096A1 (ja) 空隙を有する複合銅部材
WO2021132191A1 (ja) シランカップリング剤で処理された複合銅部材
WO2021079952A1 (ja) 複合銅部材
WO2022224684A1 (ja) 銅部材
JP7456578B2 (ja) 銅表面の加工装置
JP7352939B2 (ja) 複合銅部材
WO2020226160A1 (ja) 複合銅部材
JP7409602B2 (ja) 複合銅部材
WO2020226159A1 (ja) 金属層を有する金属部材の製造方法
WO2020226162A1 (ja) 積層体
EP4319494A1 (en) Laminate for wiring board
WO2022224683A1 (ja) 複合銅部材の製造システム
WO2022050001A1 (ja) 銅箔および積層体、並びにそれらの製造方法
WO2021193470A1 (ja) 複合銅配線及びレジスト層を有する積層体
TW202248460A (zh) 積層體的製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21759892

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503279

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227033642

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21759892

Country of ref document: EP

Kind code of ref document: A1