WO2021171405A1 - V型8気筒エンジン - Google Patents

V型8気筒エンジン Download PDF

Info

Publication number
WO2021171405A1
WO2021171405A1 PCT/JP2020/007634 JP2020007634W WO2021171405A1 WO 2021171405 A1 WO2021171405 A1 WO 2021171405A1 JP 2020007634 W JP2020007634 W JP 2020007634W WO 2021171405 A1 WO2021171405 A1 WO 2021171405A1
Authority
WO
WIPO (PCT)
Prior art keywords
bank
crankshaft
engine
crank pin
crankpins
Prior art date
Application number
PCT/JP2020/007634
Other languages
English (en)
French (fr)
Inventor
岡田毅
黒田達也
大久保将美
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US17/798,899 priority Critical patent/US11821359B2/en
Priority to PCT/JP2020/007634 priority patent/WO2021171405A1/ja
Priority to JP2022502646A priority patent/JP7339424B2/ja
Publication of WO2021171405A1 publication Critical patent/WO2021171405A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/22Multi-cylinder engines with cylinders in V, fan, or star arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/04Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers
    • F02B61/045Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers for outboard marine engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1832Number of cylinders eight

Definitions

  • the present invention relates to a V8 engine in which the bank angles of the two banks are 60 °.
  • a large width and length outboard motor is not preferable in terms of product strategy in a multi-machine, for example, a ship in which five outboard motors are mounted in parallel. ..
  • the length direction of the outboard motor is the direction from the engine head to the crankshaft (the front-rear direction of the ship), and the width direction is the direction orthogonal to the length direction (the left-right direction of the ship).
  • outboard motor In the outboard motor, the engine occupies a large volume. In outboard motors, there is generally no rudder. Therefore, the effect of steering is obtained by swinging the outboard unit itself from side to side. In this case, not all outboard motors are swung in the same direction and at the same angle. For example, when entering or leaving a port, the direction and angle of the outboard motor may be slightly changed. At that time, if the width and length of the outboard motors are large, they interfere with each other, so that the number of outboard motors mounted on the ship is limited.
  • the intake system is banked as in the past.
  • the inside of the exhaust system must be outside the bank.
  • the bank angle is generally 90 ° from the combustion surface in a land vehicle, but is preferably narrower than 90 ° in an outboard motor due to the balance between width and length.
  • the timing of vibration and explosion becomes an issue.
  • the bank angle is set to 60 °
  • the offset of the crank pin between the two banks is generally set to 30 °.
  • the primary inertial force generated in the crankshaft is the primary inertial force.
  • Secondary inertial force, primary inertia couple and secondary inertia couple are offset by the conventional configuration.
  • the primary inertial force, the secondary inertial force, and the secondary inertia couple can be offset by the conventional configuration.
  • it is necessary to take measures such as installing a couple balancer that rotates in the opposite direction to the rotation of the engine.
  • a space for installing the balancer in the engine and additional parts for installing the balancer are required separately.
  • the present invention has been made in consideration of such a problem, and an object of the present invention is to provide a V-type 8-cylinder engine capable of offsetting a primary inertia couple without using special parts.
  • aspects of the present invention relate to a V8 engine in which the bank angles of the two banks are 60 °.
  • the four crankpins connected to the four piston pins via connecting rods are arranged at 90 ° intervals when viewed from one end of the crankshaft.
  • the four crank pins on the other bank side are offset by 60 ° with respect to the four crank pins on the one bank side when viewed from the one end portion.
  • crankpins are arranged at 90 ° intervals when viewed from one end of the crankshaft, and the four crankpins on one bank side are on the other bank side.
  • the four crank pins are offset by 60 °. This makes it possible to offset the primary inertia couple without adding any special parts.
  • FIG. 1A is a schematic plan view of the engine according to the present embodiment
  • FIG. 1B is a schematic front view of the engine of FIG. 1A.
  • It is a schematic plan view of the 1st Example of the engine which concerns on this Embodiment.
  • It is a schematic side view of the 1st Example of FIG.
  • It is a schematic side view of the 1st Example of FIG.
  • It is explanatory drawing which schematically illustrated the structure for one cylinder of the main motor system.
  • It is a schematic side view of the 2nd Example of FIG.
  • It is a schematic side view of the 2nd Example of FIG. It is explanatory drawing which shows the ignition order of an engine.
  • FIG. 13A is an explanatory diagram of the XB1 direction component of the primary inertial force acting on the one bank side at the coordinates with respect to one bank side
  • FIG. 13B is an explanatory diagram at the coordinates with respect to the one bank side. It is explanatory drawing of the YB1 direction component of the primary inertial force acting on the one bank side.
  • FIG. 14A is an explanatory diagram of the XB1 direction component of the secondary inertial force acting on the one bank side at the coordinates with respect to one bank side
  • FIG. 14B is the coordinates with respect to the one bank side. It is explanatory drawing of the YB1 direction component of the secondary inertial force acting on the one bank side.
  • FIG. 15A is an explanatory diagram of the XB1 axial component of the secondary inertia couple acting on the one bank side at the coordinates with respect to one bank side
  • FIG. 15B is based on one bank side. It is explanatory drawing of the YB1 axial component of the secondary inertia couple acting on the one bank side at the coordinate.
  • FIG. 15A is an explanatory diagram of the XB1 direction component of the secondary inertial force acting on the one bank side at the coordinates with respect to one bank side
  • FIG. 15B is based on one bank side. It is explanatory drawing of the YB1 axial component of
  • FIG. 16A is an explanatory diagram of the primary inertia couple of the first embodiment
  • FIG. 16B is an explanatory diagram of the primary inertia couple of the second embodiment. It is the schematic plan view which illustrated the offset angle of a crank pin. It is explanatory drawing which shows the relationship between an offset angle and a primary inertia couple.
  • V-type 8-cylinder engine according to the present invention will be described by exemplifying a suitable embodiment with reference to the attached drawings.
  • the bank angles of the two banks 12 and 14 are 60 °. Moreover, it is a V-type engine in which four cylinders 16 are provided in the banks 12 and 14, respectively.
  • the engine 10 according to the present embodiment is applied to, for example, an engine for an outboard motor.
  • the engine 10 has a crankshaft 20, a crankcase 22 for accommodating the crankshaft 20, a cylinder block 24 and the like in which two banks 12 and 14 extend at a bank angle (narrow angle) of 60 ° from the crankcase 22. ..
  • FIGS. 1A and 1B Four cylinders 16 are provided in each of the banks 12 and 14.
  • four cylinders 16 having cylinder numbers "# 1 to # 4" are provided in one bank 12 and the other bank 14 is provided along the Z direction in which the crankshaft 20 extends.
  • the case where four cylinders 16 of cylinder numbers of "# 5 to # 8" are provided is illustrated.
  • the cylinder 16 of the other bank 14 is offset along the Z direction between the four cylinders 16 of the one bank 12.
  • the positive direction (Z direction) of the Z axis is the direction toward one end 20a of the crankshaft 20. Therefore, the negative direction of the Z axis is the direction in which the other end 20b of the crankshaft 20 is directed.
  • the positive direction (Y direction) of the Y-axis is a direction orthogonal to the Z-axis and extending to the left from the Z-axis on the papers of FIGS. 1A and 1B.
  • the positive direction (X direction) of the X-axis is a direction orthogonal to the Y-axis and the Z-axis and extending upward from the Y-axis and the Z-axis on the paper surface of FIG. 1A.
  • the rotation direction of the engine 10 may be the direction of rotation around the axis of the crankshaft 20 on the paper surface of FIG. 1A.
  • the direction of rotation counterclockwise is the direction of rotation of the engine 10
  • the counterclockwise direction is defined as forward rotation. Therefore, for example, when the engine 10 is applied to the outboard motor, the engine 10 is mounted on the outboard motor with the Z direction as the upward direction, the X direction as the rear direction, and the Y direction as the left direction.
  • the engine 10 according to the present embodiment has the configurations shown in FIGS. 2 to 5 (first embodiment) and the configurations shown in FIGS. 6 to 8 as the configurations of the main motion system 26 of the engine 10 including the crankshaft 20.
  • first embodiment the configurations shown in FIGS. 2 to 5
  • second embodiment the configuration of the first embodiment will be described first, and then the configuration of the second embodiment will be described as being different from that of the first embodiment.
  • the engine 10 connects the crankshaft 20, a total of eight pistons 28 arranged in each of the cylinders 16 of the two banks 12 and 14, and the eight pistons 28 and the crankshaft 20. It has a total of eight connecting rods 30.
  • the small end portion 30a engages with the piston pin 32 provided on the corresponding piston 28, while the large end portion 30b engages with the crank pin 34 provided on the crankshaft 20. ..
  • the connected state of the piston 28, the piston pin 32, the connecting rod 30 and the crankpin 34 is typically shown by a broken line for the cylinder number of # 5.
  • the other cylinder numbers are also connected in the same manner as the cylinder number of # 5, but in the following description, for convenience, such a connected state is simplified and illustrated with a solid line.
  • each connecting rod 30 is schematically illustrated in a straight line.
  • the crankshaft 20 has five main rotation shafts 36 passing through the Z axis, eight crankpins 34 arranged between the main rotation shafts 36, and a crankpin 34 extending in the radial direction of the main rotation shaft 36. It is composed of a plurality of crank webs 38 that connect the main rotation shaft 36 and the crank web 38.
  • FIG. 3 is a configuration diagram of the main motion system 26 viewed from the X direction (viewed from above on the paper of FIG. 1A).
  • FIG. 4 is a configuration diagram of the main motion system 26 viewed from the Y direction (viewed from the left on the paper of FIG. 1B).
  • the main motion system 26 includes a crankshaft 20, each piston 28, each piston pin 32, and each connecting rod 30.
  • each of the crankshafts 20 has one end 20a (the positive side of the Z axis) to the other end 20b (the negative side of the Z axis) of the crankshaft 20.
  • Crank pins 34 corresponding to the cylinders 16 of the banks 12 and 14 are alternately arranged. That is, from one end 20a of the crankshaft 20 toward the other end 20b, each cylinder is in the order of the cylinder numbers of # 1, # 5, # 2, # 6, # 3, # 7, # 4, and # 8.
  • Crank pins 34 corresponding to 16 are arranged.
  • crankpins 34 on the side of one bank 12 are # 1, # 2, # 3, # 1 toward the other end 20b of the crankshaft 20 from one end 20a.
  • the crankshaft 20 is provided on the crankshaft 20 at predetermined intervals along the Z direction in the order of the cylinder numbers of 4.
  • the four crankpins 34 on the other bank 14 (bank 14 on the right side in FIG. 2) side have four crankpins on the one bank 12 side from one end 20a of the crankshaft 20 toward the other end 20b.
  • Crankshafts 20 are provided on the crankshaft 20 at predetermined intervals along the Z direction in the order of cylinder numbers # 5, # 6, # 7, and # 8 so as to be arranged alternately with 34.
  • the four crankpins 34 connected to the four piston pins 32 via the connecting rod 30 are viewed from the Z direction as shown in FIG. They are arranged at 90 ° intervals (as viewed from one end 20a of the crankshaft 20). Further, the four crank pins 34 on the side of one bank 12 (bank 12 on the left side of FIG. 2) have the four crank pins 34 on the side of the other bank 14 (bank 14 on the right side of FIG. 2) in the Z direction. Seen from, it is offset by 60 °.
  • crankpin 34 on the one end 20a side of the crankshaft 20 (crank pin numbers of # 1 and # 5) and others. It is arranged point-symmetrically with the crank pin 34 on the end portion 20b side (cylinder numbers of # 4 and # 8) with the main rotation shaft 36 of the crankshaft 20 interposed therebetween. Further, when viewed from the Z direction, of the two crankpins 34 between the crankpin 34 on the one end 20a side and the crankpin 34 on the other end 20b side of the crankshaft 20, one end portion 20a is closer (#).
  • crank pin 34 of (2, # 6 cylinder number) is arranged so as to be offset by 270 ° with respect to the crank pin 34 on the one end portion 20a side. Further, the crankpin 34 closer to the other end 20b (cylinder numbers of # 3 and # 7) is arranged so as to be offset by 90 ° with respect to the crankpin 34 on the one end 20a side.
  • the four crank pins 34 on the other bank 14 side are offset by 60 ° with respect to the four crank pins 34 on the one bank 12 side.
  • the four crankpins 34 on one bank 12 side are in the order of the cylinder numbers of # 1, # 3, # 4, and # 2 in the rotation direction of the engine 10 (positive). It is arranged at 90 ° intervals in the direction).
  • the four crank pins 34 on the other bank 14 side are offset by 60 ° from the four crank pins 34 on the one bank 12 side, and the cylinder numbers of # 5, # 7, # 8, and # 6 are in that order.
  • the engine 10 is arranged at 90 ° intervals in the rotation direction (positive direction) of the engine 10. That is, the cylinders 16 of # 1 and # 5 are paired, and these two cylinders 16 are offset in an open state with a phase difference of 60 °.
  • the cylinders 16 of # 2 and # 6, the cylinders 16 of # 3 and # 7, and the cylinders 16 of # 4 and # 8 are opened in pairs with a phase difference of 60 °, respectively. It is offset.
  • the main movement system 26 in order to cancel the primary inertia couple, is configured as described above, and as shown in FIG. 5, one cylinder of the main movement system 26 is on the piston pin 32 side.
  • the reciprocating part mass mrec which is the mass of the reciprocating part
  • the rotating part mass which is the mass on the crankpin 34 side
  • the reciprocating mass mrec is the total value of the equivalent masses of the piston 28, the piston pin 32, and the connecting rod 30 on the piston 28 side.
  • the rotating portion mass rot indicates the total value of the equivalent mass on the crank radius of the crankpin 34 and the crankweb 38 and the equivalent mass on the crankpin 34 side of the connecting rod 30. Since the reciprocating part mass mrec and the rotating part mass rot are well known (for example, "Japan Society of Mechanical Engineers," Mechanical Engineering Handbook “, Maruzen Co., Ltd., September 25, 2001, p.A3-142 (13th). See Chapter “Mechanics of Reciprocating Machines)"), and the detailed explanation is omitted.
  • crank pin 34 means that the crank pin 34 is in a point-symmetrical position. This corresponds to a so-called crankshaft overbalance rate of 50%.
  • the weight 40 on the other end 20b side is added at an angle position of ⁇ wt with respect to the crankpin 34 of the cylinder number of # 1.
  • a weight 40 may be added to the crank shaft 20 so that the moments Mx and My generated by the equations (36) and (37) described later can be offset. That is, the weight 40 may be placed at an angle position of 11.57 ° from the phase of the crankpin 34 of the cylinder number # 1.
  • the weight 40 on the one end 20a side is added at a position symmetrical (opposite side) to the weight 40 on the other end 20b side with the main rotation shaft 36 interposed therebetween when viewed from the Z direction.
  • the weight 40 may be placed at an angle position of 191.57 ° from the phase of the crankpin 34 of the cylinder number # 1.
  • weight 40 can be distributed and added to each cylinder 16 on the crankshaft 20.
  • the configuration of the second embodiment is such that each of the banks 12 and 14 is on the side of one end 20a of the crankshaft 20 (cylinder numbers of # 1 and # 5) when viewed from the Z direction.
  • the other end of the crank pin 34 is closer to the other end 20b (cylinder numbers of # 3 and # 7).
  • the four crankpins 34 on one bank 12 side are in the order of the cylinder numbers of # 1, # 2, # 4, and # 3 in the rotation direction (forward direction) of the engine 10. ) Are arranged at 90 ° intervals. Further, the four crank pins 34 on the other bank 14 side are offset by 60 ° from the four crank pins 34 on the one bank 12 side, and the cylinder numbers of # 5, # 6, # 8, and # 7 are in that order. , The engine 10 is arranged at 90 ° intervals in the rotation direction (positive direction). That is, also in the second embodiment, the cylinders 16 of # 1 and # 5 are paired, and these two cylinders 16 are offset in an open state with a phase difference of 60 °. As for the other cylinders, the cylinders 16 of # 2 and # 6, the cylinders 16 of # 3 and # 7, and the cylinders 16 of # 4 and # 8 are opened in pairs with a phase difference of 60 °, respectively. It is offset.
  • the positions of the crankpins 34 corresponding to the cylinder numbers of # 2, # 3, # 6, and # 7 are located in FIGS. 3 and 4. It is different from the position of the crankpin 34 in the configuration of the first embodiment shown in the above. Therefore, in the second embodiment, the cylinders 16 of # 2, # 3, # 6, and # 7 are compared with the configurations of the first embodiment (see FIGS. 2 to 4) as shown in FIGS. 6 to 8. Note that the positions of the pistons 28 are also different.
  • the primary inertia couple can be offset without adding the weight 40 or by adding the weight 40. Since the method of adding the weight 40 is the same as that of the first embodiment, detailed description is omitted, but by providing weights 40 on each of the one end portion 20a side and the other end portion 20b side, a primary inertia couple is provided.
  • the power can be offset.
  • the weight 40 on the other end 20b side may be placed at an angle position of 48.43 ° from the phase of the crankpin 34 of the cylinder number # 1. Further, the weight 40 on the one end portion 20a side may be placed at an angle position of 228.43 ° from the phase of the crankpin 34 of the cylinder number # 1.
  • FIG. 9 is an explanatory diagram showing a list of firing orders of each cylinder 16 in the engine 10.
  • this firing order (explosion interval)
  • the rotation of the engine 10 makes the clockwise direction normal.
  • the ignition timings of the four cylinders 16 are non-equidistant explosions in a combination of 90 ° intervals, 180 ° intervals and 270 ° intervals.
  • there is an explosion interval of 180 ° between the first cylinder 16 of # 1 and the third cylinder 16 of # 4 (120 ° + 60 ° 180 °).
  • There is an explosion interval of 180 ° between the 4th # 2 cylinder 16 and the 6th # 3 cylinder 16 (120 ° + 60 ° 180 °).
  • the explosion interval in each of the banks 12 and 14 is such that the conventional 60 ° bank angle V-type engine in which the offset of the crankpin 34 is 30 ° and the bank angle of 90 ° such as the crossplane crankshaft.
  • the explosion interval is the same as that of a V8 engine.
  • the engine 10 according to the present embodiment has the same output performance as the conventional V-type 8-cylinder engine.
  • FIG. 10 illustrates the coordinate system in the configuration of the first embodiment.
  • FIG. 11 illustrates the coordinate system in the configuration of the second embodiment.
  • the direction extending from the crankshaft 20 along each cylinder 16 on the bank 12 side is the XB1 direction, and the direction orthogonal to the XB1 direction is the YB1 direction.
  • the direction extending from the crankshaft 20 along each cylinder 16 on the other bank 14 side is the XB2 direction, and the direction orthogonal to the XB2 direction is the YB2 direction.
  • the X-axis, Y-axis, and Z-axis coordinate systems are reference coordinate systems
  • the XB1 axis, YB1 axis, and Z-axis coordinate systems are coordinate systems based on one bank 12 side
  • the XB2 axis is coordinate systems based on the other bank 14 side.
  • r is the radius of the crankshaft 20.
  • L is the length of the connecting rod 30.
  • the first item “r ⁇ ⁇ 2 ⁇ (mrec + rot) ⁇ cos ⁇ ” in the equation (1) indicates the primary inertial force.
  • the second item “(r 2 / L) x ⁇ 2 x mrec x cos 2 ⁇ ” in the equation (1) indicates a secondary inertial force.
  • “r ⁇ ⁇ 2 ⁇ rot ⁇ sin ⁇ ” in the equation (2) indicates only the primary inertial force. That is, in the configuration of FIG. 5, the Y-direction component of the secondary inertial force is not generated.
  • the engine 10 according to the present embodiment is a V-type 8-cylinder engine.
  • the force generated when the engine 10 rotates will be described.
  • the XB1 direction component Fxb1 of the primary inertial force in the coordinate system (XB1-YB1-Z coordinate system) with respect to the one bank 12 side acting on one bank 12 side is Based on the above equation (1), it is represented by the following equation (3).
  • Fx11 to Fx41 are XB1 direction components of the primary inertial force generated in the cylinders 16 of # 1 to # 4. Further, FIG. 12 illustrates the changes of cos ⁇ , ⁇ cos ⁇ , sin ⁇ and ⁇ sin ⁇ with respect to ⁇ .
  • FIGS. 13A and 13B respectively illustrate the changes in the primary inertial force corresponding to the equations (3) and (4).
  • the other bank 14 side has a configuration in which the crank pin 34 is offset by 60 ° with respect to the one bank 12 side. Therefore, the primary inertial force of the other bank 14 side is 0 as in the case of the one bank 12 side. That is, the primary inertial forces are balanced in the banks 12 and 14, respectively. Therefore, in the configuration of the first embodiment, the primary inertial force is not generated in the crankshaft 20.
  • Fx12 to Fx42 are XB1 directional components of the secondary inertial force generated in the cylinders 16 of # 1 to # 4.
  • the changes in the secondary inertial force corresponding to the equation (5) and the like are shown in FIGS. 14A (results of the XB1 direction component) and FIG. 14B (results of the YB1 direction component).
  • the other bank 14 side has a configuration in which the crank pin 34 is offset by 60 ° with respect to the one bank 12 side, the other bank 14 side is the same as the one bank 12 side.
  • the secondary inertial force becomes 0. That is, the secondary inertial forces are balanced in the banks 12 and 14, respectively. Therefore, in the configuration of the first embodiment, no secondary inertial force is generated on the crankshaft 20.
  • L1 to L4 are Z coordinate values of points where the connecting rods 30 corresponding to the cylinders 16 of # 1 to # 4 are projected on the Z axis.
  • s is the bore pitch.
  • FIGS. 15A The changes in the secondary inertia couple corresponding to Eq. (6) and the like are shown in FIGS. 15A (results of the XB1 axial couple) and FIG. 15B (results of the YB1 axial component).
  • the other bank 14 side Since the other bank 14 side has a configuration in which the crank pin 34 is offset by 60 ° with respect to the one bank 12 side, the other bank 14 side is also the same as the one bank 12 side.
  • the next inertia couple is 0. That is, the secondary inertia couples are balanced in the banks 12 and 14, respectively. Therefore, in the configuration of the first embodiment, the secondary inertia couple does not occur in the crankshaft 20.
  • each inertial force and secondary inertia couple in the second embodiment >
  • the arrangement of the crank pins 34 of # 2 and # 3 and the arrangement of the crank pins 34 of # 6 and # 7 are merely interchanged.
  • the primary inertial force, the secondary inertial force and the secondary inertia couple are balanced in the banks 12 and 14, respectively, as in the configuration of the first embodiment. Therefore, even in the configuration of the second embodiment, the primary inertial force, the secondary inertial force, and the secondary inertia couple are not generated.
  • Fy11 to Fy41 are Y-direction components of the primary inertial force generated in the cylinders 16 of # 1 to # 4 in the coordinate system of each bank, that is, YB1-direction components of the primary inertial force.
  • the relationship between the bore pitch s and L1 to L4 is as shown in the following equations (10) and (11).
  • L1-L4 3 ⁇ s (10)
  • L2-L3 s (11)
  • L5 to L8 are Z coordinate values of points where the connecting rod 30 corresponding to the cylinders 16 of # 5 to # 8 is projected on the Z axis, as shown in FIGS. 3 and 4.
  • Fy51 to Fy81 are Y-direction components of the primary inertial force generated in the cylinders 16 of # 5 to # 8 in the coordinate system of each bank, that is, YB2 direction components of the primary inertial force.
  • the relationship between L5 to L8 and the bore pitch s is as shown in the following equations (18) and (19).
  • L5-L8 3 ⁇ s (18)
  • L6-L7 s (19)
  • Myb21 which is a moment around the YB2 axis, is represented by the following equation (21), similarly to the above Myb11.
  • the equations (23) to (25) are the coordinates (X, Y) of the points obtained by rotating an arbitrary point (x, y) around the origin by an angle of ⁇ in the two-dimensional Cartesian coordinate system. This is the formula to be calculated. Therefore, by using the equations (23) to (25), the moment of the primary inertia couple composed of the respective coordinate systems of XB1-YB1 and XB2-YB2 is converted into the moment of the XY coordinate system. be able to.
  • the equation of moment can be expanded from the equations (23) and (24) as follows.
  • Mx21 10 1/2 x r x ⁇ 2 x s x [(-1 / 2) x mrec ⁇ sin ⁇ -tan -1 (1/3) ⁇ -mrot ⁇ cos ⁇ -tan -1 (1/3) -30 ° ⁇ ] (29)
  • Mx11 which is the moment of the primary inertia couple on one bank 12 side around the Y-axis
  • My21 which is the moment of the primary inertia couple on the other bank 14 side around the Y-axis
  • Mx11 Similar to Mx21, it is represented by the following equations (30) and (31).
  • My11 10 1/2 x r x ⁇ 2 x s x [(mrec + rot) ⁇ cos ⁇ -tan -1 (1/3) ⁇ + (1/2) ⁇ mrec ⁇ sin ⁇ -30 ° -Tan -1 (1/3) ⁇ ]
  • My21 10 1/2 x r x ⁇ 2 x s x [-(mrec + rot) ⁇ sin ⁇ -30 ° -tan -1 (1/3) ⁇ -(1/2) ⁇ mrec ⁇ cos ⁇ -tan -1 (1/3) ⁇ ] (31)
  • Mx 10 1/2 x r x ⁇ 2 x s x ⁇ (-1 / 2) x mrec-mrot ⁇ ⁇ [(3 1/2/2 ) ⁇ cos ⁇ -tan -1 (1/3) ⁇ + (3/2) ⁇ sin ⁇ -tan -1 (1/3) ⁇ ] (35)
  • Equation (36) in order to organize the equations, the numerical parts are combined into one, the coefficients of mrec and rot are converted into integers, 180 ° is added to the sin part to invert the phase, and the minus sign of the entire equation. Is being erased.
  • the primary inertia couple can be offset. Further, when rot ⁇ ( ⁇ 1 / 2) ⁇ mrec, the primary inertia couple can be offset as described later.
  • the primary inertia couple is a precession motion in the same direction as the rotation direction of the engine 10. Therefore, the primary inertia couple can be offset by adding the weight 40 as the balance weight as shown in FIGS. 2 to 8.
  • the weight 40 is arranged on the other end 20b side at the angular position of ⁇ wt shown in FIGS. 2 and 10. Further, the weight 40 is also arranged on the one end portion 20a side at an angle position that is 180 ° out of phase with the weight 40 on the other end portion 20b side with the main rotation shaft 36 interposed therebetween. That is, two weights 40 are arranged.
  • the primary inertia couples Mx and My generated in the crankshaft 20 are calculated by the couple of the added weight 40 (moment Mxwt around the X axis due to the weight 40 and moment Mywt around the Y axis due to the weight 40). The case of offsetting is illustrated.
  • the moment Mxwt around the X axis by the weight 40 can be expressed by the following equation (38).
  • the phase of the moment Mxwt is a phase shifted by 180 ° from the phase of the sin portion of the equation (36).
  • Mxwt (30 1/2 / 2) ⁇ r ⁇ ⁇ 2 ⁇ s ⁇ (mrec + 2 ⁇ mrot) ⁇ sin ⁇ + 30 ° -tan -1 (1/3) ⁇ (38)
  • the moment Mywt around the Y axis by the weight 40 can be expressed by the following equation (39).
  • the phase of the moment Mywt is a phase shifted by 180 ° from the phase of the sin portion of the equation (37).
  • Mywt (30 1/2 / 2) ⁇ r ⁇ ⁇ 2 ⁇ s ⁇ (mrec + 2 ⁇ mrot) ⁇ sin ⁇ + 300 ° -tan -1 (1/3) ⁇ (39)
  • the weight 40 is arranged at an angular position of ⁇ wt on the other end 20b side, and the main rotation shaft 36 is also sandwiched on the one end 20a side.
  • the weight 40 is arranged at an angle position on the opposite side of the weight 40 on the other end 20b side.
  • the two weights 40 generate moments Mxwt and Mywt that are 180 ° out of phase with respect to the phases shown in Eqs. (36) and (37). This makes it possible to offset the primary inertia couple.
  • the weight 40 in the phase of 11.57 ° from the angular position of the crankpin 34 of the cylinder number # 1.
  • the weight 40 arranged on the one end portion 20a side may be provided at a position rotated by 180 ° with respect to the weight 40 on the other end portion 20b side.
  • FIG. 16A illustrates a case where the couples (moments Mxwt, Mywt) due to the added weight 40 cancel out the primary inertia couples Mx and My generated in the crankshaft 20.
  • Mx (30 1/2 / 2) ⁇ r ⁇ ⁇ 2 ⁇ s ⁇ (mrec + 2 ⁇ mrot) ⁇ sin ⁇ + 210 ° + tan -1 (1/3) ⁇ (42)
  • My (30 1/2 / 2) ⁇ r ⁇ ⁇ 2 ⁇ s ⁇ (mrec + 2 ⁇ mrot) ⁇ sin ⁇ + 120 ° + tan -1 (1/3) ⁇ (43)
  • the primary inertia couple is a normal rotation type precession motion as in the configuration of the first embodiment. Therefore, by adding the weight 40, it is possible to offset the primary inertia couple.
  • the weight 40 is arranged at an angle position of ⁇ wt from the crankpin 34 of the cylinder number # 1 shown in FIGS. 6 and 11.
  • ⁇ wt is expressed by the following equation (44).
  • the weight 40 on the other end 20b side in a phase of 48.43 ° from the angular position of the crank pin 34 of # 1 shown in FIGS. 6 and 11.
  • the weight 40 arranged on the one end portion 20a side may be provided at an angle position rotated by 180 ° with respect to the weight 40 on the other end portion 20b side.
  • FIG. 16B illustrates a case where the couples Mxwt and Mywt due to the added weight 40 cancel out the primary inertia couples Mx and My generated in the crankshaft 20.
  • Mx (10 1/2 / 2) ⁇ r ⁇ ⁇ 2 ⁇ s ⁇ mrec ⁇ ⁇ 2-2 ⁇ cos ( ⁇ -60 °) ⁇ 1/2 ⁇ sin [ ⁇ -tan -1 (1/3) -tan -1 ⁇ sin ( ⁇ -60 °) / (1-cos ( ⁇ -60 °)) ⁇ -60 °]
  • My (10 1/2 / 2) ⁇ r ⁇ ⁇ 2 ⁇ s ⁇ mrec ⁇ ⁇ 2-2 ⁇ cos ( ⁇ -60 °) ⁇ 1/2 ⁇ sin [ ⁇ -tan -1 (1/3) -tan -1 ⁇ sin ( ⁇ -60 °) / (1-cos ( ⁇ -60 °)) ⁇ + 30 °] (47)
  • Mmag (10 1/2 / 2) ⁇ r ⁇ ⁇ 2 ⁇ s ⁇ mrec ⁇ ⁇ 2-2 ⁇ cos ( ⁇ -60 °) ⁇ 1/2 (48)
  • the bank angles of the two banks 12 and 14 are 60 °, and the crankshaft 20 and the cylinders 16 of the banks 12 and 14 are provided.
  • the small end portion 30a engages with the eight pistons 28 arranged in each of the pistons 28 and the piston pin 32 provided on each piston 28, and the large end portion 30b engages with the crankpin 34 provided on the crankshaft 20. It has eight connecting rods 30 and eight connecting rods.
  • the four crankpins 34 connected to the four piston pins 32 via the connecting rod 30 are viewed from the Z direction (viewed from one end 20a of the crankshaft 20). , Are arranged at 90 ° intervals. Further, along the Z direction from one end 20a or the other end 20b, the four crank pins 34 on the other bank 14 side, which are paired with the four crank pins 34 on the one bank 12 side, are from the Z direction. As seen, it is offset by 60 °.
  • crankpins 34 are arranged at intervals of 90 ° for each of the banks 12 and 14, and the four crankpins 34 on the one bank 12 side are opposed to the four crankpins 34 on the other bank 14 side. Since 34 is offset by 60 °, it is possible to offset the primary inertia couple without adding any special parts.
  • the four crankpins 34 on the one bank 12 side are provided on the crankshaft 20 at predetermined intervals from one end 20a to the other end 20b of the crankshaft 20. ing. Further, the four crankpins 34 on the other bank 14 side are arranged between the four crankpins 34 on the one bank 12 side from one end 20a of the crankshaft 20 toward the other end 20b. It is provided on the crankshaft 20 at predetermined intervals.
  • 34 and 34 are arranged point-symmetrically with the crankshaft 20 in between.
  • the crank pin 34 closer to the one end 20a is the crank pin 34 on the one end 20a side. It is arranged so as to be offset by 270 °. Further, the crank pin 34 closer to the other end 20b is arranged so as to be offset by 90 ° with respect to the crank pin 34 on the one end 20a side.
  • the four crank pins 34 on the other bank 14 side are offset by 60 ° with respect to the four crank pins 34 on the one bank 12 side.
  • the primary inertia couple can be easily offset with a simple configuration.
  • crank pin 34 closer to the one end 20a is arranged so as to be offset by 270 ° from the crank pin 34 on the one end 20a side, and the crank pin 34 closer to the one end 20a is 90 ° with respect to the crank pin 34 on the one end 20a side. It differs from the configuration of the first embodiment in that it is arranged in a staggered manner. Even in this configuration, the primary inertia couple can be easily offset.
  • the ignition timing of each cylinder 16 is an unequal interval explosion of a combination of 60 ° intervals, 90 ° intervals, and 120 ° intervals.
  • the ignition timing of the four cylinders 16 is a combination of 90 ° intervals, 180 ° intervals and 270 ° intervals, which are non-equidistant explosions. That is, when viewed in the banks 12 and 14, the ignition timing is the same as that of the conventional V8 engine. This makes it possible to secure an output equivalent to that of a conventional V8 engine.
  • the reciprocating part mass mrec which is the mass on the piston pin 32 side
  • the rotating part mass rot which is the mass on the crank pin 34 side.
  • the rotating part mass mrot is not ⁇ 1/2 of the reciprocating part mass mrec (mrot ⁇ (-1 / 2) ⁇ mrec)
  • the weight 40 may be added to the crankshaft 20.
  • a plurality of weights 40 can be distributed to locations corresponding to each cylinder 16 on the crankshaft 20 and can be added in plurality. As a result, if the moment created by the weight 40 is set to be balanced with the primary inertia couple of the crankshaft 20 as a whole, the primary inertia couple can be offset.
  • the engine 10 according to the present embodiment can be suitably adopted as an engine for an outboard motor.

Abstract

V型8気筒エンジン(10)では、それぞれのバンク(12、14)について、4つのピストンピン(32)にコネクティングロッド(30)を介して連結される4つのクランクピン(34)がクランクシャフト(20)の一端部(20a)から視て90°間隔で配置されている。一方のバンク(12)側の4つのクランクピン(34)に対して、他方のバンク(14)側の4つのクランクピン(34)は、一端部(20a)から視て、60°オフセットされている。

Description

V型8気筒エンジン
 本発明は、2つのバンクのバンク角が60°であるV型8気筒エンジンに関する。
 近年、船外機の高出力化、船外機を搭載する船艇の高速化及び安定走行化が進行している。これに伴い、複数の船外機を多機掛けする船舶も登場している。また、船外機についても、搭載されるエンジンの大型化及び多気筒化が進行している。例えば、大型の船外機については、V型6気筒エンジン又はV型8気筒エンジンを搭載する船外機が主流となっている。このうち、一般的なV型8気筒エンジンでは、2つのバンクのバンク角(狭角)が60°~65°、90°、120°又は180°であるエンジンが既に開発されている。なお、特開平8-226493号公報には、90°以外のバンク角のV型8気筒エンジンの設計手法が開示されている。
 ここで、V型8気筒エンジンを搭載する船外機を設計する場合、船外機におけるエンジンの搭載空間のサイズ、冷却系及び排気系等、限られた空間に各コンポーネントを配置する必要がある。特に、現行の船外機の仕様との整合性は重要であり、機種毎に仕様がバラバラでは、製造、コスト及びメンテナンスの面で問題がある。例えば、V型のエンジンでは、バンクの内側及び外側に吸気系及び排気系を自由にレイアウトすることが可能である。しかしながら、機種毎に仕様がバラバラでは、製造工程が複雑化すると共に、共用部品が少なくなるので、コストがかかる。また、機種毎にメンテナンスの手法が異なれば、一層複雑化する。
 さらに、船外機の幅及び長さの関係上、多機掛け、例えば、5つの船外機を並列に搭載した船艇では、幅や長さの大きい船外機は、商品戦略上好ましくない。なお、船外機の長さ方向は、エンジンのヘッドからクランクシャフトの方向(船艇の前後方向)であり、幅方向は、長さ方向に直交する方向(船艇の左右方向)である。
 船外機において、大きな容積を占めるのはエンジンである。船外機では、一般に、舵は存在しない。そのため、船外機自身を左右に振ることで舵の効果を得ている。この場合、全ての船外機を同じ方向に同じ角度だけ振るとは限らない。例えば、入港又は出港の際は、船外機の向きや角度を微妙に変えることもある。その際、船外機の幅や長さが大きいと互いに干渉するので、船艇に搭載される船外機の個数には、制限がある。
 このように、現行の機種に対して、基本的な仕様及びサイズを大きく変更することなく、高出力のV型8気筒エンジンを設計するためには、例えば、従来と同様に、吸気系をバンクの内側、排気系をバンクの外側とする必要がある。この場合、バンク角は、陸上の車両では、燃焼面から90°が一般的であるが、船外機では、幅及び長さのバランスから90°よりも狭角であることが望ましい。
 以上のように、V型8気筒エンジンの仕様を設定した場合、振動と爆発のタイミングとが課題となる。例えば、バンク角を60°に設定した場合、2つのバンク間のクランクピンのオフセットを30°とすることが一般的だが、この場合、クランクシャフトに発生する主要な慣性力としては、一次慣性力、二次慣性力、一次慣性偶力及び二次慣性偶力等がある。このうち、一次慣性力、二次慣性力及び二次慣性偶力については、従来の構成でも相殺が可能である。これに対して、一次慣性偶力を相殺するためには、エンジンの回転に対して逆回転する偶力バランサを搭載する等の対策が必要となる。しかしながら、バランサを取り付けるためには、エンジン内にバランサを設置するための空間と、バランサを取り付けるための追加の部品とが別途必要となる。
 本発明は、このような課題を考慮してなされたものであり、特別な部品を用いることなく、一次慣性偶力を相殺することができるV型8気筒エンジンを提供することを目的とする。
 本発明の態様は、2つのバンクのバンク角が60°であるV型8気筒エンジンに関する。前記V型8気筒エンジンは、クランクシャフトと、前記各バンクの気筒の各々に配置された8つのピストンと、前記各ピストンに設けられたピストンピンに小端部が係合し、前記クランクシャフトに設けられたクランクピンに大端部が係合する8つのコネクティングロッドとを有する。この場合、それぞれのバンクについて、4つのピストンピンにコネクティングロッドを介して連結される4つのクランクピンは、前記クランクシャフトの一端部から視て、90°間隔で配置されている。また、一方のバンク側の4つのクランクピンに対して、他方のバンク側の4つのクランクピンは、前記一端部から視て、60°オフセットされている。
 本発明によれば、それぞれのバンクについて、クランクシャフトの一端部から視て、4つのクランクピンが90°間隔で配置され、一方のバンク側の4つのクランクピンに対して、他方のバンク側の4つのクランクピンが、60°オフセットされている。これにより、特別な部品を追加することなく、一次慣性偶力を相殺することが可能となる。
図1Aは、本実施形態に係るエンジンの概略平面図であり、図1Bは、図1Aのエンジンの概略正面図である。 本実施形態に係るエンジンの第1実施例の概略平面図である。 図2の第1実施例の模式的側面図である。 図2の第1実施例の模式的側面図である。 主運動系の1気筒分の構成を模式的に図示した説明図である。 本実施形態に係るエンジンの第2実施例の概略平面図である。 図6の第2実施例の模式的側面図である。 図6の第2実施例の模式的側面図である。 エンジンの点火順序を示す説明図である。 第1実施例の座標系を図示した概略平面図である。 第2実施例の座標系を図示した概略平面図である。 cosθ、-cosθ、sinθ及び-sinθの関係を示す図である。 図13Aは、一方のバンク側を基準とする座標において、該一方のバンク側に作用する一次慣性力のXB1方向成分の説明図であり、図13Bは、一方のバンク側を基準とする座標において、該一方のバンク側に作用する一次慣性力のYB1方向成分の説明図である。 図14Aは、一方のバンク側を基準とする座標において、該一方のバンク側に作用する二次慣性力のXB1方向成分の説明図であり、図14Bは、一方のバンク側を基準とする座標において、該一方のバンク側に作用する二次慣性力のYB1方向成分の説明図である。 図15Aは、一方のバンク側を基準とする座標において、該一方のバンク側に作用する二次慣性偶力のXB1軸回り成分の説明図であり、図15Bは、一方のバンク側を基準とする座標において、該一方のバンク側に作用する二次慣性偶力のYB1軸回り成分の説明図である。 図16Aは、第1実施例の一次慣性偶力の説明図であり、図16Bは、第2実施例の一次慣性偶力の説明図である。 クランクピンのオフセット角度を図示した概略平面図である。 オフセット角度と一次慣性偶力との関係を示す説明図である。
 以下、本発明に係るV型8気筒エンジンについて、好適な実施形態を例示し、添付の図面を参照しながら説明する。
[1.本実施形態の概略構成]
 本実施形態に係るV型8気筒エンジン10(以下、本実施形態に係るエンジン10という。)は、図1A~図2に示すように、2つのバンク12、14のバンク角が60°であり、且つ、それぞれのバンク12、14に4つの気筒16が設けられたV型のエンジンである。本実施形態に係るエンジン10は、例えば、船外機用のエンジンに適用される。
 エンジン10は、クランクシャフト20、クランクシャフト20を収容するクランクケース22、及び、クランクケース22から60°のバンク角(狭角)で2つのバンク12、14が延出するシリンダブロック24等を有する。
 それぞれのバンク12、14には、4つの気筒16が設けられている。図1A及び図1Bでは、クランクシャフト20が延在するZ方向に沿って、一方のバンク12に「#1~#4」の気筒番号の4つの気筒16が設けられると共に、他方のバンク14に「#5~#8」の気筒番号の4つの気筒16が設けられる場合を図示している。他方のバンク14の気筒16は、Z方向に沿って、一方のバンク12の4つの気筒16の間にオフセットして配設されている。
 なお、本実施形態において、Z軸の正方向(Z方向)は、クランクシャフト20の一端部20aを指向する方向である。そのため、Z軸の負方向は、クランクシャフト20の他端部20bを指向する方向である。また、Y軸の正方向(Y方向)は、図1A及び図1Bの紙面上、Z軸に直交し、且つ、Z軸から左方に延在する方向である。さらに、X軸の正方向(X方向)は、Y軸及びZ軸に直交し、且つ、図1Aの紙面上、Y軸及びZ軸から上方に延在する方向である。
 さらにまた、エンジン10の回転方向は、図1Aの紙面上、クランクシャフト20の軸回りに回転する方向であればよい。本実施形態では、図1Aのように、反時計回りに回転する方向がエンジン10の回転方向である場合を図示しており、反時計回りの方向を正転とする。そのため、例えば、エンジン10を船外機に適用する場合、Z方向を上方向、X方向を後方向、Y方向を左方向として、該エンジン10を船外機に搭載する。
 そして、本実施形態に係るエンジン10は、クランクシャフト20を含むエンジン10の主運動系26の構成として、図2~図5に示す構成(第1実施例)と、図6~図8に示す構成(第2実施例)との2つのタイプがある。ここでは、第1実施例の構成を最初に説明し、次に、第2実施例の構成について、第1実施例とは異なる点を説明する。
[2.第1実施例]
 第1実施例において、エンジン10は、クランクシャフト20と、2つのバンク12、14の気筒16の各々に配置された合計で8つのピストン28と、8つのピストン28とクランクシャフト20とを連結する合計で8つのコネクティングロッド30とを有する。それぞれのコネクティングロッド30は、対応するピストン28に設けられたピストンピン32に小端部30aが係合し、一方で、クランクシャフト20に設けられたクランクピン34に大端部30bが係合する。
 なお、図2では、各ピストンピン32及び各クランクピン34に対応する「#1~#8」の気筒番号を付記すると共に、各気筒16でのコネクティングロッド30を介したピストンピン32とクランクピン34との連結を模式的に図示している。また、図2では、#1、#5の気筒番号について、ピストン28の位置も併せて図示している。
 さらに、図2では、代表的に、#5の気筒番号について、ピストン28、ピストンピン32、コネクティングロッド30及びクランクピン34の連結状態を破線で図示している。実際には、他の気筒番号についても、#5の気筒番号と同様な連結状態となっているが、以下の説明では、便宜上、このような連結状態を実線で簡略化して図示する。
 さらに、図2では、X軸に対する#1の気筒番号のクランクピン34の角度をθとして図示する。また、図3及び図4では、各コネクティングロッド30を直線に模式化して図示している。
 クランクシャフト20は、Z軸を通る5つの主回転軸36と、各主回転軸36の間に配設される8つのクランクピン34と、主回転軸36の径方向に延出してクランクピン34と主回転軸36とを連結する複数のクランクウェブ38とから構成される。
 なお、図3は、X方向から視た(図1Aの紙面で上方向から視た)主運動系26の構成図である。図4は、Y方向から視た(図1Bの紙面で左方向から視た)主運動系26の構成図である。ここで、主運動系26とは、クランクシャフト20、各ピストン28、各ピストンピン32及び各コネクティングロッド30を含む。
 図3及び図4に示すように、クランクシャフト20には、クランクシャフト20の一端部20a(Z軸の正方向側)から他端部20b(Z軸の負方向側)に向かって、それぞれのバンク12、14の気筒16に対応するクランクピン34が交互に配設されている。すなわち、クランクシャフト20の一端部20aから他端部20bに向かって、#1、#5、#2、#6、#3、#7、#4、#8の気筒番号の順で、各気筒16に応じたクランクピン34が配設されている。
 つまり、一方のバンク12(図2の左側のバンク12)側の4つのクランクピン34は、クランクシャフト20の一端部20aから他端部20bに向かって、#1、#2、#3、#4の気筒番号の順に、Z方向に沿った所定の間隔でクランクシャフト20に設けられている。また、他方のバンク14(図2の右側のバンク14)側の4つのクランクピン34は、クランクシャフト20の一端部20aから他端部20bに向かって、一方のバンク12側の4つのクランクピン34と交互に配置されるように、#5、#6、#7、#8の気筒番号の順に、Z方向に沿った所定の間隔でクランクシャフト20に設けられている。
 そして、第1実施例では、それぞれのバンク12、14について、4つのピストンピン32にコネクティングロッド30を介して連結される4つのクランクピン34は、図2に示すように、Z方向から視て(クランクシャフト20の一端部20aから視て)、90°間隔で配置されている。また、一方のバンク12(図2の左側のバンク12)側の4つのクランクピン34に対して、他方のバンク14(図2の右側のバンク14)側の4つのクランクピン34は、Z方向から視て、60°オフセットされている。
 すなわち、それぞれのバンク12、14について、Z方向から視たときに、4つのクランクピン34のうち、クランクシャフト20の一端部20a側(#1、#5の気筒番号)のクランクピン34と他端部20b側(#4、#8の気筒番号)のクランクピン34とは、クランクシャフト20の主回転軸36を挟んで点対称に配置されている。また、Z方向から視たときに、クランクシャフト20の一端部20a側のクランクピン34と他端部20b側のクランクピン34との間における2つのクランクピン34のうち、一端部20a寄り(#2、#6の気筒番号)のクランクピン34は、一端部20a側のクランクピン34に対して270°ずらして配置される。さらに、他端部20b寄り(#3、#7の気筒番号)のクランクピン34は、一端部20a側のクランクピン34に対して90°ずらして配置されている。そして、一方のバンク12側の4つのクランクピン34に対して、他方のバンク14側の4つのクランクピン34は、60°オフセットされている。
 より詳しく説明すると、図2に示すように、一方のバンク12側の4つのクランクピン34は、#1、#3、#4、#2の気筒番号の順番に、エンジン10の回転方向(正方向)に90°間隔で配置されている。一方、他方のバンク14側の4つのクランクピン34は、一方のバンク12側の4つのクランクピン34から60°オフセットした状態で、#5、#7、#8、#6の気筒番号の順番に、エンジン10の回転方向(正方向)に90°間隔で配置されている。つまり、#1及び#5の気筒16が対となり、これら2つの気筒16は、60°の位相差で開いた状態でオフセットされている。また、他の気筒についても、#2及び#6の気筒16、#3及び#7の気筒16、#4及び#8の気筒16は、それぞれ、対となって60°の位相差で開いてオフセットされている。
[3.第1実施例の一次慣性偶力]
 第1実施例では、一次慣性偶力を相殺するため、上記のように主運動系26を構成することで、図5に示すように、主運動系26の1気筒分について、ピストンピン32側の質量である往復部質量mrecと、クランクピン34側の質量である回転部質量mrotとについて、回転部質量mrotが往復部質量mrecの-1/2である場合(mrot=(-1/2)×mrec)には、クランクシャフト20に対して、後述するウェイト40の付加を不要にしている。
 ここで往復部質量mrecとは、ピストン28、ピストンピン32及びコネクティングロッド30のピストン28側の等価質量の合計値である。また、回転部質量mrotとは、クランクピン34及びクランクウェブ38のクランク半径上の等価質量と、コネクティングロッド30のクランクピン34側の等価質量との合計値を示す。なお、往復部質量mrec及び回転部質量mrotは、周知であるため(例えば、「日本機械学会、『機械工学便覧』、丸善株式会社、2001年9月25日、p.A3-142(第13章 往復機械の力学)」を参照)、その詳細な説明を省略する。
 また、回転部質量mrotが往復部質量mrecの-1/2である場合(mrot=(-1/2)×mrec)とは、往復部質量mrecの半分の質量が、主回転軸36を中心にクランクピン34とは点対称の位置にあることを意味する。いわゆるクランクシャフトのオーバーバランス率50%に相当する。
 一方、回転部質量mrotが往復部質量mrecの-1/2でない場合(mrot≠(-1/2)×mrec)には、エンジン10の回転時にクランクシャフト20に発生する一次慣性偶力に釣り合うウェイト40を、クランクシャフト20の一端部20a側及び他端部20b側の2箇所に付加している。図2~図4には、ウェイト40の配置例を図示している。
 この場合、他端部20b側のウェイト40は、#1の気筒番号のクランクピン34に対してθwtの角度位置に付加する。例えば、図2では、後述する(36)式及び(37)式によって発生するモーメントMx、Myを相殺することができるようにウェイト40をクランクシャフト20に付加すればよい。すなわち、#1の気筒番号のクランクピン34の位相から11.57°の角度位置にウェイト40を置けばよい。
 また、一端部20a側のウェイト40は、Z方向から見たときに、主回転軸36を挟んで、他端部20b側のウェイト40と点対称(反対側)の位置に付加する。例えば、図2では、#1の気筒番号のクランクピン34の位相から、191.57°の角度位置にウェイト40を置けばよい。
 さらに、ウェイト40は、クランクシャフト20において、気筒16毎に振り分けて付加することも可能である。
 なお、上記のように、ウェイト40を付加することなく、又は、ウェイト40を付加することにより、一次慣性偶力を相殺することができる理由については、後述する。
[4.第2実施例の一次慣性偶力]
 第2実施例は、図6~図8に示すように、クランクシャフト20における一端部20aと他端部20bとの間のクランクピン34の配置等が第1実施例の場合とは異なる。
 第2実施例の構成は、図6に示すように、それぞれのバンク12、14について、Z方向から視たときに、クランクシャフト20の一端部20a側(#1、#5の気筒番号)のクランクピン34と他端部20b側(#4、#8の気筒番号の)のクランクピン34との間における2つのクランクピン34のうち、他端部20b寄り(#3、#7の気筒番号)のクランクピン34が一端部20a側のクランクピン34に対して270°ずらして配置されると共に、一端部20a寄り(#2、#6の気筒番号)のクランクピン34が一端部20a側のクランクピン34に対して90°ずらして配置される点で、第1実施例の構成とは異なる。
 より詳しく説明すると、図6に示すように、一方のバンク12側の4つのクランクピン34は、#1、#2、#4、#3の気筒番号の順に、エンジン10の回転方向(正方向)に90°間隔で配置されている。また、他方のバンク14側の4つのクランクピン34は、一方のバンク12側の4つのクランクピン34から60°オフセットした状態で、#5、#6、#8、#7の気筒番号の順に、エンジン10の回転方向(正方向)に90°間隔で配置されている。つまり、第2実施例でも、#1及び#5の気筒16が対となり、これらの2つの気筒16は、60°の位相差で開いた状態でオフセットされている。また、他の気筒についても、#2及び#6の気筒16、#3及び#7の気筒16、#4及び#8の気筒16は、それぞれ、対となって60°の位相差で開いてオフセットされている。
 これにより、第2実施例の構成では、図7及び図8に示すように、#2、#3、#6、#7の気筒番号に対応するクランクピン34の位置が、図3及び図4に示す第1実施例の構成でのクランクピン34の位置とは異なる。従って、第2実施例において、#2、#3、#6、#7の気筒16では、図6~図8に示すように、第1実施例の構成(図2~図4参照)と比較して、ピストン28の位置も異なることに留意する。
 なお、第2実施例でも、第1実施例と同様に、ウェイト40を付加することなく、又は、ウェイト40を付加することにより、一次慣性偶力を相殺することができる。ウェイト40を付加する手法は、第1実施例と同様であるため、詳細な記述は省略するが、一端部20a側と他端部20b側との各々にウェイト40を設けることにより、一次慣性偶力を相殺することができる。この場合、他端部20b側のウェイト40は、#1の気筒番号のクランクピン34の位相から48.43°の角度位置にウェイト40を置けばよい。また、一端部20a側のウェイト40は、#1の気筒番号のクランクピン34の位相から、228.43°の角度位置にウェイト40を置けばよい。
[5.爆発間隔]
 図9は、エンジン10における各気筒16の点火順序の一覧を示す説明図である。この点火順序(爆発間隔)の説明では、図2及び図6でエンジン10の回転が時計回りの方向を正転とすることに留意する。第1実施例及び第2実施例について、それぞれ、点火順序は、4つのパターン(A~D)が存在する。第1実施例が図2~図4のように構成され、第2実施例が図6~図8のように構成されるので、各気筒16の点火タイミングは、60°間隔、90°間隔及び120°間隔の組み合わせの不等間隔爆発となる。
 例えば、第1実施例のパターンAの点火タイミングは、以下の通りである。1番目の#1の気筒16と2番目の#5の気筒16との間では、図2のように、2つのクランクピン34の間隔が60°で、且つ、一方のバンク12から他方のバンク14まで+60°となるため、爆発間隔は、120°となる(60°+60°=120°)。2番目の#5の気筒16と3番目の#4の気筒16との間では、2つのクランクピン34の間隔が120°で、且つ、他方のバンク14から一方のバンク14まで-60°となるため、爆発間隔は、60°となる(120°-60°=60°)。以下同様に、3番目の#4の気筒16と4番目の#2の気筒16との間では90°の爆発間隔となる。4番目の#2の気筒16と5番目の#6の気筒16との間では120°の爆発間隔となる。5番目の#6の気筒16と6番目の#3の気筒16との間では60°の爆発間隔となる。6番目の#3の気筒16と7番目の#7の気筒16との間では120°の爆発間隔となる。7番目の#7の気筒16と8番目の#8の気筒16との間では90°の爆発間隔となる。8番目の#8の気筒16と1番目の#1の気筒16との間では60°の爆発間隔となる。
 但し、それぞれのバンク12、14で着目すると、4つの気筒16の点火タイミングは、90°間隔、180°間隔及び270°間隔の組み合わせの不等間隔爆発となる。例えば、第1実施例のパターンAでは、1番目の#1の気筒16と3番目の#4の気筒16との間では180°の爆発間隔となる(120°+60°=180°)。3番目の#4の気筒16と4番目の#2の気筒16との間では90°の爆発間隔となる。4番目の#2の気筒16と6番目の#3の気筒16との間では180°の爆発間隔となる(120°+60°=180°)。6番目の#3の気筒16と1番目の#1の気筒16との間では270°の爆発間隔となる(120°+90°+60°=270°)。
 つまり、それぞれのバンク12、14における爆発間隔は、クランクピン34のオフセットが30°である従来の60°のバンク角のV型のエンジンや、クロスプレーンクランクシャフトのようなバンク角が90°のV型8気筒エンジンと同様の爆発間隔となる。この結果、本実施形態に係るエンジン10は、従来のV型8気筒エンジンと同等の出力性能を有するものと考えられる。
[6.エンジン10の回転によって主運動系26に発生する力]
 次に、本実施形態に係るエンジン10において、エンジン10の回転によって主運動系26に発生する各種の力と、第1実施例及び第2実施例の各構成によって、これらの力を相殺することができることについて、図10~図18を参照しながら説明する。ここでは、必要に応じて、図1A~図9も参照しながら説明する。
 図10は、第1実施例の構成における座標系を図示したものである。図11は、第2実施例の構成における座標系を図示したものである。図10及び図11において、クランクシャフト20から一方のバンク12側の各気筒16に沿って延びる方向をXB1方向とし、XB1方向に直交する方向をYB1方向とする。また、クランクシャフト20から他方のバンク14側の各気筒16に沿って延びる方向をXB2方向とし、XB2方向に直交する方向をYB2方向とする。すなわち、X軸、Y軸及びZ軸の座標系は、基準座標系であり、XB1軸、YB1軸及びZ軸の座標系は、一方のバンク12側を基準とする座標系であり、XB2軸、YB2軸及びZ軸の座標系は、他方のバンク14側を基準とする座標系である。
<6.1 単気筒エンジンの場合>
 先ず、図5の説明図を単気筒のエンジンの模式的構成とみなしたときに、該エンジンの回転によってクランクシャフト20に作用する主要な慣性力について説明する。ここで、前述の「機械工学便覧」(第13章 往復機械の力学、p.A3-142)の記載内容に基づけば、慣性力のX方向成分Fx及びY方向成分Fyは、次の(1)式及び(2)式で表わされる。
 Fx=r×ω×(mrec+mrot)×cosθ+(r/L)×ω
    ×mrec×cos2θ                (1)
 Fy=r×ω×mrot×sinθ             (2)
 ここで、rは、クランクシャフト20の半径である。ωは、角速度である(ω=2πf、f:エンジン(クランクシャフト20)の回転周波数)。Lは、コネクティングロッド30の長さである。
 なお、(1)式の第1項目「r×ω×(mrec+mrot)×cosθ」は、一次慣性力を示す。また、(1)式の第2項目「(r/L)×ω×mrec×cos2θ」は、二次慣性力を示す。さらに、(2)式中の「r×ω×mrot×sinθ」は、一次慣性力のみ示している。すなわち、図5の構成では、二次慣性力のY方向成分は発生しない。
<6.2 一次慣性力>
 これに対して、本実施形態に係るエンジン10は、V型8気筒である。ここで、代表的に、第1実施例の構成において、エンジン10が回転した際に発生する力について説明する。
 先ず、第1実施例の構成において、一方のバンク12側に作用する該一方のバンク12側を基準とする座標系(XB1-YB1-Z座標系)における一次慣性力のXB1方向成分Fxb1は、上記(1)式に基づき、下記の(3)式で表わされる。
 Fxb1=Fx11+Fx21+Fx31+Fx41
     =(mrec+mrot)×r×ω×cosθ
     +(mrec+mrot)×r×ω×cos(θ+270°)
     +(mrec+mrot)×r×ω×cos(θ+90°)
     +(mrec+mrot)×r×ω×cos(θ+180°)
     =(mrec+mrot)×r×ω×{cosθ
     +cos(θ+270°)+cos(θ+90°)
     +cos(θ+180°)}
     =(mrec+mrot)×r×ω×(cosθ+sinθ
     -sinθ-cosθ)
     =(mrec+mrot)×r×ω×0
     =0                        (3)
 なお、Fx11~Fx41は、#1~#4の気筒16に発生する一次慣性力のXB1方向成分である。また、図12には、θに対するcosθ、-cosθ、sinθ及び-sinθの変化を図示している。
 また、一方のバンク12側に作用する該一方のバンク12側を基準とする座標系における一次慣性力のYB1方向成分Fyb1についても、上記(2)式に基づき、(3)式と同様に計算すれば、下記の(4)式で表わされる。
 Fyb1=0                        (4)
 ここで、(3)式及び(4)式に対応する一次慣性力の変化を、図13A(XB1方向成分の結果)及び図13B(YB1方向成分の結果)に示す。
 なお、他方のバンク14側は、一方のバンク12側に対してクランクピン34を60°オフセットしている構成である。そのため、他方のバンク14側についても、一方のバンク12側と同様に、一次慣性力は0となる。つまり、それぞれのバンク12、14内で一次慣性力が釣り合う。従って、第1実施例の構成では、クランクシャフト20に一次慣性力が発生しない。
<6.3 二次慣性力>
 次に、第1実施例の構成における二次慣性力について検討する。単気筒エンジンの場合、(2)式からも明らかなように、二次慣性力のY方向成分は発生しない。そのため、ここでは、一方のバンク12側について、該一方のバンク12の座標系における二次慣性力のXB1方向成分Fxb2のみ検討する。Fxb2は、上記(1)式に基づき、下記の(5)式で表わされる。
 Fxb2=Fx12+Fx22+Fx32+Fx42
     =(r/L)×mrec×r×ω×cos2θ
     +(r/L)×mrec×r×ω×cos(2θ+540°)
     +(r/L)×mrec×r×ω×cos(2θ+180°)
     +(r/L)×mrec×r×ω×cos(2θ+360°)
     =(r/L)×mrec×r×ω×(cos2θ-cos2θ-cos2θ+cos2θ)
     =0                        (5)
 ここで、Fx12~Fx42は、#1~#4の気筒16に発生する二次慣性力のXB1方向成分である。(5)式等に対応する二次慣性力の変化を、図14A(XB1方向成分の結果)及び図14B(YB1方向成分の結果)に示す。
 前述のように、他方のバンク14側は、一方のバンク12側に対してクランクピン34を60°オフセットしている構成であるため、他方のバンク14側についても、一方のバンク12側と同様に、二次慣性力は0となる。つまり、それぞれのバンク12、14内で二次慣性力が釣り合う。従って、第1実施例の構成では、クランクシャフト20に二次慣性力が発生しない。
<6.4 二次慣性偶力>
 次に、第1実施例の構成における二次慣性偶力について検討する。前述のように、一方のバンク12の座標系では、二次慣性力のYB1方向成分は発生しないので、二次慣性力のXB1方向成分によって発生するYB1軸回りのモーメントである二次慣性偶力Myb12を検討する。Myb12は、上記(1)式及び(5)式に基づき、下記の(6)式で表わされる。
 Myb12=Fx12×L1+Fx22×L2+Fx32×L3
       +Fx42×L4
      =(r/L)×mrec×r×ω×cos2θ×L1
  +(r/L)×mrec×r×ω×cos(2θ+540°)×L2
  +(r/L)×mrec×r×ω×cos(2θ+180°)×L3
  +(r/L)×mrec×r×ω×cos(2θ+360°)×L4
   =(r/L)×mrec×r×ω
    ×(cos2θ×L1-cos2θ×L2-cos2θ×L3
    +cos2θ×L4)
   =(r/L)×mrec×r×ω
    ×(cos2θ×s-cos2θ×s)
   =0                          (6)
 ここで、L1~L4は、#1~#4の気筒16に対応するコネクティングロッド30をZ軸に投影した点のZ座標値である。sは、ボアピッチである。(6)式において、L1~L4とボアピッチsとの関係は、下記(7)式及び(8)式の通りである。
 L1-L2=s                       (7)
 -L3+L4=-s                     (8)
 (6)式等に対応する二次慣性偶力の変化を、図15A(XB1軸回り成分の結果)及び図15B(YB1軸回り成分の結果)に示す。
 なお、他方のバンク14側は、一方のバンク12側に対してクランクピン34を60°オフセットしている構成であるため、他方のバンク14側についても、一方のバンク12側と同様に、二次慣性偶力は0となる。つまり、それぞれのバンク12、14内で二次慣性偶力が釣り合う。従って、第1実施例の構成では、クランクシャフト20に二次慣性偶力が発生しない。
<6.5 第2実施例での各慣性力及び二次慣性偶力>
 第2実施例の構成は、第1実施例の構成と比較して、#2及び#3のクランクピン34の配置と、#6及び#7のクランクピン34の配置とが入れ替わっているだけなので、第1実施例の構成と同様に、それぞれのバンク12、14内で一次慣性力、二次慣性力及び二次慣性偶力が釣り合う。従って、第2実施例の構成でも、一次慣性力、二次慣性力及び二次慣性偶力は発生しない。
<6.6 第1実施例の構成での一次慣性偶力>
 これに対して、第1実施例及び第2実施例の各構成とも、一次慣性偶力は発生する可能性がある。ここで、第1実施例について、一方のバンク12側の一次慣性偶力に関し、一方のバンク12の座標系において、XB1軸回りのモーメントであるMxb11は、下記の(9)式で表わされる。
 Mxb11=Fy11×L1+Fy21×L2+Fy31×L3
     +Fy41×L4
    =mrot×r×ω×{sin(θ-30°)×L1
     +sin(θ-30°+270°)×L2
     +sin(θ-30°+90°)×L3
     +sin(θ-30°+180°)×L4}
    =-mrot×r×ω×s
     ×{3×sin(θ-30°)-cos(θ-30°)}
                               (9)
 Fy11~Fy41は、#1~#4の気筒16に発生する一次慣性力の各バンクの座標系でのY方向成分、すなわち、一次慣性力のYB1方向成分である。また、(9)式において、ボアピッチsとL1~L4との関係は、下記の(10)式及び(11)式の通りである。
 L1-L4=3×s                    (10)
 L2-L3=s                      (11)
 ここで、下記(12)式の一般的な三角関数の合成式を用いて、上記の(9)式を後述する(13)式に変更する。
 A×sinφ+B×cosφ=(A+B1/2×sin(φ+α)
                              (12)
 この場合、α=tan-1(B/A)である。また、A及びBは、任意の数である。従って、(12)式を用いると、上記(9)式は、下記(13)式のように表わされる。
 Mxb11=-mrot×r×ω×s×(3+11/2
     ×sin{θ-30°-tan-1(1/3)}
      =-101/2×mrot×r×ω×s
     ×sin{θ-30°-tan-1(1/3)}    (13)
 また、一方のバンク12側の一次慣性偶力に関し、一方のバンク12の座標系において、YB1軸回りのモーメントであるMyb11は、下記の(14)式で表わされる。なお、(14)式中のボアピッチsは、上記(10)式及び(11)式の通りである。
 Myb11=Fx11×L1+Fx21×L2+Fx31×L3
     +Fx41×L4
    =(mrec+mrot)×r×ω×
     ×{cos(θ-30°)×L1
     +cos(θ-30°+270°)×L2
     +cos(θ-30°+90°)×L3
     +cos(θ-30°+180°)×L4}
    =(mrec+mrot)×r×ω×s
     ×{sin(θ-30°)+3×cos(θ-30°)}
                              (14)
 ここで、β=tan-1(A/B)とし、下記(15)式の一般的な三角関数の合成式を用いると、上記(14)式は、下記(16)式のように表わされる。
 A×sinφ+B×cosφ=(A+B1/2×cos(φ-β)
                              (15)
 Myb11=(mrec+mrot)×r×ω×s×(1+31/2
     ×cos{θ-30°-tan-1(1/3)}
      =101/2×(mrec+mrot)×r×ω×s
     ×cos{θ-30°-tan-1(1/3)}    (16)
 これに対して、他方のバンク14側の一次慣性偶力に関し、他方のバンク14の座標系(XB2-YB2-Z座標系)において、XB2軸回りのモーメントであるMxb21は、上記のMxb11と同様に、下記の(17)式で表わされる。
 Mxb21=Fy51×L5+Fy61×L6+Fy71×L7
     +Fy81×L8
    =-mrot×r×ω×s×(sinθ+3×cosθ)
                              (17)
 ここで、L5~L8は、図3及び図4のように、#5~#8の気筒16に対応するコネクティングロッド30をZ軸に投影した点のZ座標値である。また、Fy51~Fy81は、#5~#8の気筒16に発生する一次慣性力の各バンクの座標系でのY方向成分、すなわち、一次慣性力のYB2方向成分である。さらに、(17)式において、L5~L8とボアピッチsとの関係は、下記(18)式及び(19)式の通りである。
 L5-L8=3×s                    (18)
 L6-L7=s                      (19)
 そして、(15)式を用いると、上記の(17)式は、下記の(20)式で表わされる。
 Mxb21=-101/2×mrot×r×ω×s
       ×cos{θ-tan-1(1/3)}      (20)
 また、他方のバンク14側の一次慣性偶力に関し、他方のバンク14の座標系において、YB2軸回りのモーメントであるMyb21は、上記のMyb11と同様に、下記の(21)式で表わされる。
 Myb21=Fx51×L5+Fx61×L6+Fx71×L7
     +Fx81×L8
    =-(mrec+mrot)×r×ω×s
     ×(3×sinθ-cosθ)           (21)
 なお、Fx51~Fx81は、#5~#8の気筒16に発生する一次慣性力のXB2方向成分である。そして、(12)式を用いると、上記の(21)式は、下記の(22)式で表わされる。
 Myb21=-101/2×(mrec+mrot)×r×ω×s
     ×sin{θ-tan-1(1/3)}        (22)
 上記の(13)式、(16)式、(20)式及び(22)式は、図10及び図11に示すXB1-YB1-Zの座標系及びXB2-YB2-Zの座標系でそれぞれ表現されている。これらの式をX-Y-Zの座標系に座標変換すれば、一方のバンク12側の一次慣性偶力のX軸回りのモーメントMx11と、他方のバンク14側の一次慣性偶力のX軸回りのモーメントMx21とを求めることができる。ここで、一般的な座標変換の式は、下記の(23)式~(25)式で表わされる。
 X=x×cosφ-y×sinφ              (23)
 Y=x×sinφ+y×cosφ              (24)
Figure JPOXMLDOC01-appb-M000001
 ここで、(23)式~(25)式は、二次元直交座標系において、任意の点(x、y)を原点の回りにφの角度だけ回転させた点の座標(X、Y)を求める式である。従って、(23)式~(25)式を用いることで、XB1-YB1及びXB2-YB2の各座標系で構成されている一次慣性偶力のモーメントを、X-Y座標系のモーメントに変換することができる。ここで、一方のバンク12側で説明すると、XB1-YB1座標系の原点を中心に、時計回りに30°回転させれば、X-Y座標系に変換することができる。従って、(23)式及び(24)式から、以下のように、モーメントの式を展開することができる。
 すなわち、一方のバンク12側の一次慣性偶力のX軸回りのモーメントMx11は、(13)式及び(16)式と、#1の気筒16について(23)式中のφが30°であることから、下記の(26)式で表わされる。
 Mx11=Mxb11×cos(30°)-Myb11
      ×sin(30°)
   =101/2×r×ω×s×[-mrot
   ×sin{θ-30°-tan-1(1/3)}×cos(30°)
   -(mrec+mrot)
   ×cos{θ-30°-tan-1(1/3)}×sin(30°)]
   =101/2×r×ω×s×[-mrot
   ×{sin{θ-30°-tan-1(1/3)}×cos(30°)
   +cos{θ-30°-tan-1(1/3)}×sin(30°)}
   -mrec×cos{θ-30°-tan-1(1/3)}
   ×(1/2)]                    (26)
 ここで、下記(27)式の一般的な三角関数の加法定理の式を用いて、上記の(26)式を後述する(28)式に変更する。
 sinα×cosβ+cosα×sinβ=sin(α+β) (27)
 Mx11=101/2×r×ω×s
  ×[-mrot×sin{θ-30°-tan-1(1/3)+30°}
  -(1/2)×mrec×cos{θ-30°-tan-1(1/3)}]
     =101/2×r×ω×s×[-(1/2)×mrec
     ×cos{θ-30°-tan-1(1/3)}
     -mrot×sin{θ-tan-1(1/3)}]  (28)
 また、他方のバンク14側の一次慣性偶力のX軸回りのモーメントMx21についても、上記のMx11と同様に、下記(29)式で表わされる。
 Mx21=101/2×r×ω×s×[(-1/2)×mrec
     ×sin{θ-tan-1(1/3)}-mrot
     ×cos{θ-tan-1(1/3)-30°}]   (29)
 さらに、一方のバンク12側の一次慣性偶力のY軸回りのモーメントであるMy11と、他方のバンク14側の一次慣性偶力のY軸回りのモーメントであるMy21とについても、上記のMx11、Mx21と同様に、下記の(30)式及び(31)式で表わされる。
 My11=101/2×r×ω×s×[(mrec+mrot)
     ×cos{θ-tan-1(1/3)}
     +(1/2)×mrec×sin{θ-30°
     -tan-1(1/3)}]             (30)
 My21=101/2×r×ω×s×[-(mrec+mrot)
     ×sin{θ-30°-tan-1(1/3)}-(1/2)
     ×mrec×cos{θ-tan-1(1/3)}]  (31)
 そして、クランクシャフト20全体に作用する一次慣性偶力のX軸回りのモーメントMxは、Mx11の(28)式及びMx21の(29)式と、一般的な因数分解の公式であるA×C+A×D+B×C+B×D=(A+B)×(C+D)とを用いて、下記の(32)式で表わされる。
 Mx=Mx11+Mx21
   =101/2×r×ω×s×[(-1/2)×mrec
   ×cos{θ-30°-tan-1(1/3)}
   -mrot×sin{θ-tan-1(1/3)}]
   +101/2×r×ω×s×[(-1/2)×mrec
   ×sin{θ-tan-1(1/3)}-mrot
   ×cos{θ-tan-1(1/3)-30°}]
   =101/2×r×ω×s×{(-1/2)×mrec-mrot}
   ×[cos{θ-30°-tan-1(1/3)}
   +sin{θ-tan-1(1/3)}]         (32)
 ここで、下記(33)式の一般的な三角関数の加法定理の数式を用いて、上記の(32)式を変更する。
 cos(α-β)=cosα×cosβ+sinα×sinβ (33)
 なお、(33)式中、α及びβは、任意の角度である。従って、(33)式を用いると、(32)式中のcos{θ-30°-tan-1(1/3)}は、下記(34)式のように表わされる。
 cos{θ-30°-tan-1(1/3)}
  =cos{θ-tan-1(1/3)}×cos(30°)
  +sin{θ-tan-1(1/3)}×sin(30°)
  =cos{θ-tan-1(1/3)}×(31/2/2)
  +sin{θ-tan-1(1/3)}×(1/2)
  =(31/2/2)×cos{θ-tan-1(1/3)}
  +(1/2)×sin{θ-tan-1(1/3)}     (34)
 (34)式を(32)式に代入すると、Mxは、下記の(35)式のように表わされる。
 Mx=101/2×r×ω×s×{(-1/2)×mrec-mrot}
   ×[(31/2/2)×cos{θ-tan-1(1/3)}
   +(3/2)×sin{θ-tan-1(1/3)}]   (35)
 ここで、(12)式を用いると、Mxは、下記の(36)式のように表わされる。(36)式では、式を整理するため、数値の部分を1つにまとめ、mrec及びmrotの係数を整数化し、sinの部分に180°を加えて位相を反転し、数式全体のマイナスの符号を消去している。
 Mx=101/2×r×ω×s×{(3/2)+(31/2/2)1/2
      ×(1/2)×2×{(-1/2)×mrec-mrot}
   ×sin[θ-tan-1(1/3)+30°]
   =-(301/2/2)×r×ω×s×(mrec+2×mrot)
    ×sin[θ-tan-1(1/3)+30°]
   =(301/2/2)×r×ω×s×(mrec+2×mrot)
    ×sin[θ+210°-tan-1(1/3)]    (36)
 一方、クランクシャフト20全体に作用する一次慣性偶力のY軸回りのモーメントMyは、(30)式及び(31)式を用いて、Mxと同様に座標変換すると、下記の(37)式で表わされる。
 My=My11+My12
   =101/2×r×ω×s×{(-1/2)×mrec-mrot}
     ×[sin{θ-30°-tan-1(1/3)}
     -cos{θ-tan-1(1/3)}]
   =(301/2/2)×r×ω×s×(mrec+2×mrot)
     ×sin{θ+120°-tan-1(1/3)}   (37)
 以上から、各気筒16毎に、mrot=(-1/2)×mrecとすれば、一次慣性偶力を相殺することができる。また、mrot≠(-1/2)×mrecの場合は、後述のようにして1次慣性偶力を相殺することができる。
 ここで、θの符号は正であり、Mx及びMyは、図16Aに示すように、振幅が同じで、位相が90°遅れる。そのため、一次慣性偶力は、エンジン10の回転方向と同じ方向のすりこぎ運動となる。従って、一次慣性偶力に対しては、図2~図8に示したように、バランスウェイトとしてのウェイト40を付加すれば、相殺することが可能である。
 この場合、ウェイト40は、図2及び図10に示すθwtの角度位置で他端部20b側に配置される。また、ウェイト40は、一端部20a側において、主回転軸36を挟んで、他端部20b側のウェイト40とは180°位相が異なる角度位置にも配置される。すなわち、2つのウェイト40が配置される。
 また、ウェイト40の慣性モーメントは、(36)式及び(37)式中に示したように、(301/2/2)×r×s×(mrec+2×mrot)となる。図16Aでは、付加したウェイト40による偶力(ウェイト40によるX軸回りのモーメントMxwt、ウェイト40によるY軸回りのモーメントMywt)によって、クランクシャフト20に発生する一次慣性偶力であるMx、Myを相殺する場合を図示している。
 ここで、ウェイト40によるX軸回りのモーメントMxwtは、下記の(38)式で表わすことができる。この場合、モーメントMxwtの位相は、(36)式のsinの部分の位相を180°ずらした位相となる。
 Mxwt=(301/2/2)×r×ω×s×(mrec+2×mrot)
     ×sin{θ+30°-tan-1(1/3)}    (38)
 また、ウェイト40によるY軸回りのモーメントMywtは、下記の(39)式で表わすことができる。この場合、モーメントMywtの位相は、(37)式のsinの部分の位相を180°ずらした位相となる。
 Mywt=(301/2/2)×r×ω×s×(mrec+2×mrot)
     ×sin{θ+300°-tan-1(1/3)}   (39)
 より詳しく説明すると、図2及び図10に示すように、他端部20b側にて、θwtの角度位置にウェイト40が配置されると共に、一端部20a側にも、主回転軸36を挟んで該他端部20b側のウェイト40とは反対側の角度位置にウェイト40が配置される。2つのウェイト40によって、(36)式及び(37)式に示す位相に対して、180°位相がずれたモーメントMxwt、Mywtが発生する。これにより、一次慣性偶力を相殺することができる。
 ここで、他端部20b側のウェイト40の位相であるθwtは、#1の気筒番号のクランクピン34からの角度であるため、それを求めると、tan-1(1/3)≒18.43°であるため、下記の(40)式で表わされる。
 θwt=210°-tan-1(1/3)-180°
    =30°-tan-1(1/3)
    ≒11.57°                   (40)
 従って、他端部20b側では、#1の気筒番号のクランクピン34の角度位置から、11.57°の位相にウェイト40を設けるとよい。
 また、一端部20a側に配置されるウェイト40については、他端部20b側のウェイト40に対して、180°回転した位置に設けるとよい。ここで、一端部20a側に配置されるウェイト40の角度位置θwaは、下記の(41)式で表わされる。
 θwa=θwt+180°=11.57°+180°
    =191.57°                  (41)
 また、ウェイト40の慣性モーメントは、(38)式及び(39)式中に示したように、(301/2/2)×r×s×(mrec+2×mrot)となる。図16Aでは、付加したウェイト40による偶力(モーメントMxwt、Mywt)によって、クランクシャフト20に発生する一次慣性偶力であるMx、Myを相殺する場合を図示している。
<6.7 第2実施例の構成での一次慣性偶力>
 第2実施例の構成においても、第1実施例での一次慣性偶力の数式と同様の計算を行うと、クランクシャフト20に発生する一次慣性偶力は、(36)式及び(37)式に対して、位相を2×tan-1(1/3)だけずらせばよいことが分かる。すなわち、第1実施例と同様に、2つのバンク12、14の各成分を座標変換することで、下記の(42)式及び(43)式で表わすことができる。
 Mx=(301/2/2)×r×ω×s×(mrec+2×mrot)
     ×sin{θ+210°+tan-1(1/3)}   (42)
 My=(301/2/2)×r×ω×s×(mrec+2×mrot)
     ×sin{θ+120°+tan-1(1/3)}   (43)
 第2実施例の構成でも、第1実施例の構成と同様に、一次慣性偶力は、正転型のすりこぎ運動となる。そのため、ウェイト40を付加することで、一次慣性偶力を相殺することが可能である。
 第1実施例と同様であるため、ここでは、詳細を省略し、結果のみ記載する。第2実施例においても、ウェイト40は、図6及び図11に示す#1の気筒番号のクランクピン34からθwtの角度位置に配置される。ここで、θwtは、下記の(44)式で表わされる。
 θwt=210°+tan-1(1/3)-180°
    =30°+tan-1(1/3)
    ≒48.43°                   (44)
 よって、図6及び図11に示す#1のクランクピン34の角度位置から48.43°の位相で、他端部20b側にウェイト40を設けるとよい。また、一端部20a側に配置されるウェイト40については、他端部20b側のウェイト40に対して、180°回転した角度位置に設けるとよい。ここで、一端部20aに配置されるウェイト40の角度位置θwaは、下記の(45)式で表わされる。
 θwa=48.43°+180°=228.43°    (45)
 また、ウェイト40の慣性モーメントは、(42)式及び(43)式中に示したように、(301/2/2)×r×s×(mrec+2×mrot)となる。図16Bでは、付加したウェイト40による偶力Mxwt、Mywtによって、クランクシャフト20に発生する一次慣性偶力であるMx、Myを相殺する場合を図示している。
<6.8 クランクピン34のオフセットと一次慣性偶力との関係>
 次に、本実施形態に係るエンジン10について、クランクピン34のオフセットと一次慣性偶力との関係について説明する。図17に示すように、X軸と#1の気筒番号のクランクピン34との成す角度をθとし、一方のバンク12側のクランクピン34に対する他方のバンク14側のクランクピン34のオフセット角度をΨとする。本実施形態では、上述した第1実施例及び第2実施例の各構成を採用することにより、図18に示すように、Ψ=60°において、一次慣性偶力の振幅Mmagを0にすることができる。なお、一次慣性力、二次慣性力及び二次慣性偶力については、各バンク毎に0であるので、オフセット角度Ψを変更しても、常に0のままである。
 具体的に、第1実施例において、一次慣性偶力Mx、Myは、mrot=(-1/2)×mrecの関係式を用いて、(36)式及び(37)式から(46)式及び(47)式に書き替えることができる。
 Mx=(101/2/2)×r×ω×s×mrec
×{2-2×cos(Ψ-60°)}1/2
×sin[θ-tan-1(1/3)-tan-1{sin(Ψ-60°)
/(1-cos(Ψ-60°))}-60°]         (46)
 My=(101/2/2)×r×ω×s×mrec
×{2-2×cos(Ψ-60°)}1/2
×sin[θ-tan-1(1/3)-tan-1{sin(Ψ-60°)
/(1-cos(Ψ-60°))}+30°]         (47)
 これにより、一次慣性偶力の振幅Mmagは、下記の(48)式で表わすことができる。
 Mmag=(101/2/2)×r×ω×s×mrec
      ×{2-2×cos(Ψ-60°)}1/2     (48)
 (48)式で表わされた振幅を0にするには、Ψ=60°にすればよいことが分かる。なお、第2実施例についても、同様の結果が得られる。
[7.本実施形態の効果]
 以上説明したように、本実施形態に係るエンジン10(V型8気筒エンジン)は、2つのバンク12、14のバンク角が60°であり、クランクシャフト20と、各バンク12、14の気筒16の各々に配置された8つのピストン28と、各ピストン28に設けられたピストンピン32に小端部30aが係合し、クランクシャフト20に設けられたクランクピン34に大端部30bが係合する8つのコネクティングロッド30とを有する。
 この場合、それぞれのバンク12、14について、4つのピストンピン32にコネクティングロッド30を介して連結される4つのクランクピン34は、Z方向から視て(クランクシャフト20の一端部20aから視て)、90°間隔で配置されている。また、一端部20a又は他端部20bからZ方向に沿って、一方のバンク12側の4つのクランクピン34に対して一対となる他方のバンク14側の4つのクランクピン34は、Z方向から視て、60°オフセットされている。
 このように、それぞれのバンク12、14について、4つのクランクピン34が90°間隔で配置され、一方のバンク12側の4つのクランクピン34に対して、他方のバンク14側の4つのクランクピン34が、60°オフセットされているので、特別な部品を追加することなく、一次慣性偶力を相殺することが可能となる。
 ここで、第1実施例の構成では、一方のバンク12側の4つのクランクピン34は、クランクシャフト20の一端部20aから他端部20bに向かって、所定の間隔でクランクシャフト20に設けられている。また、他方のバンク14側の4つのクランクピン34は、クランクシャフト20の一端部20aから他端部20bに向かって、一方のバンク12側の4つのクランクピン34間に配置されるように、所定の間隔でクランクシャフト20に設けられている。
 この場合、一端部20aから他端部20bを視たときに、それぞれのバンク12、14について、4つのクランクピン34のうち、一端部20a側のクランクピン34と他端部20b側のクランクピン34とがクランクシャフト20を挟んで点対称に配置されている。また、一端部20a側のクランクピン34と他端部20b側のクランクピン34との間の2つのクランクピン34のうち、一端部20a寄りのクランクピン34は、一端部20a側のクランクピン34に対して270°ずらして配置される。さらに、他端部20b寄りのクランクピン34は、一端部20a側のクランクピン34に対して90°ずらして配置されている。
 しかも、一方のバンク12側の4つのクランクピン34に対して、他方のバンク14側の4つのクランクピン34は、60°オフセットされている。
 このように構成することで、簡単な構成で一次慣性偶力を容易に相殺することができる。
 また、第2実施例の構成は、Z方向から視て、一端部20a側のクランクピン34と他端部20b側のクランクピン34との間の2つのクランクピン34のうち、他端部20b寄りのクランクピン34は、一端部20a側のクランクピン34に対して270°ずらして配置されると共に、一端部20a寄りのクランクピン34は、一端部20a側のクランクピン34に対して90°ずらして配置されている点で、第1実施例の構成とは異なる。この構成でも、一次慣性偶力を容易に相殺することができる。
 また、エンジン10において、各気筒16の点火タイミングは、60°間隔、90°間隔及び120°間隔の組み合わせの不等間隔爆発である。しかしながら、それぞれのバンク12、14で見ると、4つの気筒16の点火タイミングは、90°間隔、180°間隔及び270°間隔の組み合わせの不等間隔爆発である。つまり、それぞれのバンク12、14で見ると、従来のV型8気筒エンジンと点火タイミングは同じになる。これにより、従来のV型8気筒エンジンと同等の出力を確保することが可能となる。
 また、クランクシャフト20、各ピストン28及び各コネクティングロッド30を含む主運動系26において、ピストンピン32側の質量である往復部質量mrecと、クランクピン34側の質量である回転部質量mrotとについて、回転部質量mrotが往復部質量mrecの-1/2である場合(mrot=(-1/2)×mrec)には、クランクシャフト20に対するウェイト40の付加が不要である。一方、回転部質量mrotが往復部質量mrecの-1/2でない場合(mrot≠(-1/2)×mrec)には、エンジン10の回転時にクランクシャフト20に発生する一次慣性偶力に釣り合うウェイト40をクランクシャフト20に付加すればよい。
 これにより、エンジン10の回転方向とは逆回転するバランサ等が不要となり、一次慣性偶力を相殺することができる。この結果、エンジン10の軽量化、低コスト化、省スペース化を図ることができる。
 また、ウェイト40は、クランクシャフト20における各気筒16に対応する箇所に振り分けて複数付加することもできる。これにより、クランクシャフト20全体として、ウェイト40で作られるモーメントを一次慣性偶力と釣り合うように設定すれば、一次慣性偶力を相殺することができる。
 以上より、各種の振動を低減することができるので、本実施形態に係るエンジン10を船外機用のエンジンとして好適に採用することができる。
 なお、本発明は、上述の実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることは勿論である。

Claims (8)

  1.  2つのバンク(12、14)のバンク角が60°であるV型8気筒エンジン(10)において、
     クランクシャフト(20)と、
     前記各バンクの気筒(16)の各々に配置された8つのピストン(28)と、
     前記各ピストンに設けられたピストンピン(32)に小端部(30a)が係合し、前記クランクシャフトに設けられたクランクピン(34)に大端部(30b)が係合する8つのコネクティングロッド(30)と、
     を有し、
     それぞれのバンクについて、4つのピストンピンにコネクティングロッドを介して連結される4つのクランクピンは、前記クランクシャフトの一端部(20a)から視て、90°間隔で配置され、
     一方のバンク側の4つのクランクピンに対して、他方のバンク側の4つのクランクピンは、前記一端部から視て、60°オフセットされている、V型8気筒エンジン。
  2.  請求項1記載のV型8気筒エンジンにおいて、
     前記一方のバンク側の4つのクランクピンは、前記クランクシャフトの一端部から他端部(20b)に向かって、所定の間隔で前記クランクシャフトに設けられ、
     前記他方のバンク側の4つのクランクピンは、前記クランクシャフトの一端部から他端部に向かって、前記一方のバンク側の4つのクランクピンと交互に配置されるように、所定の間隔で前記クランクシャフトに設けられ、
     前記一端部から前記他端部を視たときに、
     それぞれのバンクについて、4つのクランクピンのうち、前記一端部側のクランクピンと前記他端部側のクランクピンとが前記クランクシャフトを挟んで点対称に配置され、
     前記一端部側のクランクピンと前記他端部側のクランクピンとの間の2つのクランクピンのうち、前記一端部寄りのクランクピンは、前記一端部側のクランクピンに対して270°ずらして配置されると共に、前記他端部寄りのクランクピンは、前記一端部側のクランクピンに対して90°ずらして配置され、
     前記一方のバンク側の4つのクランクピンに対して、前記他方のバンク側の4つのクランクピンは、60°オフセットされている、V型8気筒エンジン。
  3.  請求項1記載のV型8気筒エンジンにおいて、
     前記一方のバンク側の4つのクランクピンは、前記クランクシャフトの一端部から他端部に向かって、所定の間隔で前記クランクシャフトに設けられ、
     前記他方のバンク側の4つのクランクピンは、前記クランクシャフトの一端部から他端部に向かって、前記一方のバンク側の4つのクランクピンと交互に配置されるように、所定の間隔で前記クランクシャフトに設けられ、
     前記一端部から前記他端部を視たときに、
     それぞれのバンクについて、4つのクランクピンのうち、前記一端部側のクランクピンと前記他端部側のクランクピンとが前記クランクシャフトを挟んで点対称に配置され、
     前記一端部側のクランクピンと前記他端部側のクランクピンとの間の2つのクランクピンのうち、前記他端部寄りのクランクピンは、前記一端部側のクランクピンに対して270°ずらして配置されると共に、前記一端部寄りのクランクピンは、前記一端部側のクランクピンに対して90°ずらして配置され、
     前記一方のバンク側の4つのクランクピンに対して、前記他方のバンク側の4つのクランクピンは、軸方向視で、60°オフセットされている、V型8気筒エンジン。
  4.  請求項2又は3記載のV型8気筒エンジンにおいて、
     前記各気筒の点火タイミングは、60°間隔、90°間隔及び120°間隔の組み合わせの不等間隔爆発である、V型8気筒エンジン。
  5.  請求項4記載のV型8気筒エンジンにおいて、
     それぞれのバンクについて、4つの気筒の点火タイミングは、90°間隔、180°間隔及び270°間隔の組み合わせの不等間隔爆発である、V型8気筒エンジン。
  6.  請求項1~5のいずれか1項に記載のV型8気筒エンジンにおいて、
     前記クランクシャフト、前記各ピストン及び前記各コネクティングロッドを含む主運動系(26)において、
     前記ピストンピン側の質量である往復部質量と、前記クランクピン側の質量である回転部質量とについて、前記回転部質量が前記往復部質量の-1/2である場合には、前記クランクシャフトに対するウェイト(40)の付加が不要であり、
     一方で、前記回転部質量が前記往復部質量の-1/2でない場合には、前記V型8気筒エンジンの回転時に前記クランクシャフトに発生する一次慣性偶力に釣り合うウェイトを前記クランクシャフトに付加する、V型8気筒エンジン。
  7.  請求項6記載のV型8気筒エンジンにおいて、
     前記ウェイトは、前記クランクシャフトにおける前記各気筒に対応する箇所に振り分けて複数付加される、V型8気筒エンジン。
  8.  請求項1~7のいずれか1項に記載のV型8気筒エンジンにおいて、
     当該V型8気筒エンジンは、船外機用のエンジンである、V型8気筒エンジン。
PCT/JP2020/007634 2020-02-26 2020-02-26 V型8気筒エンジン WO2021171405A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/798,899 US11821359B2 (en) 2020-02-26 2020-02-26 V8 engine
PCT/JP2020/007634 WO2021171405A1 (ja) 2020-02-26 2020-02-26 V型8気筒エンジン
JP2022502646A JP7339424B2 (ja) 2020-02-26 2020-02-26 V型8気筒エンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/007634 WO2021171405A1 (ja) 2020-02-26 2020-02-26 V型8気筒エンジン

Publications (1)

Publication Number Publication Date
WO2021171405A1 true WO2021171405A1 (ja) 2021-09-02

Family

ID=77490832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007634 WO2021171405A1 (ja) 2020-02-26 2020-02-26 V型8気筒エンジン

Country Status (3)

Country Link
US (1) US11821359B2 (ja)
JP (1) JP7339424B2 (ja)
WO (1) WO2021171405A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143903U (ja) * 1977-04-19 1978-11-13
JPH08226493A (ja) * 1995-02-23 1996-09-03 Toyama Univ V型8気筒機関
JP2000314351A (ja) * 1999-05-07 2000-11-14 Toyota Motor Corp V型8気筒エンジンの吸気装置
JP2003042230A (ja) * 2001-07-26 2003-02-13 Suzuki Motor Corp V型エンジンのバランサ構造
JP2004286218A (ja) * 2004-05-10 2004-10-14 Yamaha Motor Co Ltd 4気筒エンジンのバランサ装置
JP2006161691A (ja) * 2004-12-07 2006-06-22 Toyota Motor Corp 内燃機関
US20120210958A1 (en) * 2011-02-18 2012-08-23 GM Global Technology Operations LLC Engine assembly including crankshaft for v8 arrangement
JP2017190693A (ja) * 2016-04-12 2017-10-19 ヤマハ発動機株式会社 V型エンジン

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1335143A (en) * 1915-12-06 1920-03-30 Packard Motor Car Co Hydrocarbon-motor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53143903U (ja) * 1977-04-19 1978-11-13
JPH08226493A (ja) * 1995-02-23 1996-09-03 Toyama Univ V型8気筒機関
JP2000314351A (ja) * 1999-05-07 2000-11-14 Toyota Motor Corp V型8気筒エンジンの吸気装置
JP2003042230A (ja) * 2001-07-26 2003-02-13 Suzuki Motor Corp V型エンジンのバランサ構造
JP2004286218A (ja) * 2004-05-10 2004-10-14 Yamaha Motor Co Ltd 4気筒エンジンのバランサ装置
JP2006161691A (ja) * 2004-12-07 2006-06-22 Toyota Motor Corp 内燃機関
US20120210958A1 (en) * 2011-02-18 2012-08-23 GM Global Technology Operations LLC Engine assembly including crankshaft for v8 arrangement
JP2017190693A (ja) * 2016-04-12 2017-10-19 ヤマハ発動機株式会社 V型エンジン

Also Published As

Publication number Publication date
JPWO2021171405A1 (ja) 2021-09-02
US20230109196A1 (en) 2023-04-06
JP7339424B2 (ja) 2023-09-05
US11821359B2 (en) 2023-11-21

Similar Documents

Publication Publication Date Title
JPH0260886B2 (ja)
JP6621268B2 (ja) エンジン及び鞍乗型車両
WO2021171405A1 (ja) V型8気筒エンジン
US4002087A (en) Machine crank-shaft with improved dynamic balance ratio
US4658777A (en) Balancer structure for three-cylinder engines
JPS6344984B2 (ja)
US4519344A (en) V-type internal combustion engine
JPH05501598A (ja) ピストン往復型内燃機関のための質量補償装置
KR100489100B1 (ko) 3기통 오프셋 엔진의 평형 구조
JP6578239B2 (ja) V型エンジン
JPH09166126A (ja) 並列多気筒エンジンのクランク構造
JP4430462B2 (ja) V型2気筒エンジンのバランサ構造
US9970508B2 (en) V-shaped engine
JP2772769B2 (ja) V型8気筒機関
JPH0776577B2 (ja) 自動二輪車用直列4気筒型エンジン
Doughty Multicylinder Engine Shaking Forces and Moments
JPH08193643A (ja) V型8気筒4サイクルエンジン用バランサ装置
JPS6410701B2 (ja)
JPS596274Y2 (ja) 内燃機関のバランサ−装置
JPS6145091B2 (ja)
JP2017172419A (ja) 直列4気筒エンジン
JPS6323625Y2 (ja)
KR100391408B1 (ko) 3기통 엔진의 불평형 관성 우력 저감 구조
Ito et al. Bank angle of a V-type 12-cylinder engine
JPS6334336B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022502646

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921845

Country of ref document: EP

Kind code of ref document: A1