WO2021170226A1 - Halogenierte tetrasilylboranate - Google Patents

Halogenierte tetrasilylboranate Download PDF

Info

Publication number
WO2021170226A1
WO2021170226A1 PCT/EP2020/054972 EP2020054972W WO2021170226A1 WO 2021170226 A1 WO2021170226 A1 WO 2021170226A1 EP 2020054972 W EP2020054972 W EP 2020054972W WO 2021170226 A1 WO2021170226 A1 WO 2021170226A1
Authority
WO
WIPO (PCT)
Prior art keywords
compounds
sicl
halogenated
radicals
tetrasilylboranates
Prior art date
Application number
PCT/EP2020/054972
Other languages
English (en)
French (fr)
Inventor
Elke Fritz-Langhals
Sebastian Bochmann
Lars RUPPEL
Original Assignee
Wacker Chemie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie Ag filed Critical Wacker Chemie Ag
Priority to EP20708060.7A priority Critical patent/EP3999515A1/de
Priority to KR1020227017378A priority patent/KR20220086658A/ko
Priority to PCT/EP2020/054972 priority patent/WO2021170226A1/de
Priority to CN202080056733.0A priority patent/CN114206815B/zh
Priority to JP2022551397A priority patent/JP7450054B2/ja
Priority to US17/802,859 priority patent/US20230104349A1/en
Publication of WO2021170226A1 publication Critical patent/WO2021170226A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F19/00Metal compounds according to more than one of main groups C07F1/00 - C07F17/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/025Silicon compounds without C-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • C07F7/121Preparation or treatment not provided for in C07F7/14, C07F7/16 or C07F7/20
    • C07F7/123Preparation or treatment not provided for in C07F7/14, C07F7/16 or C07F7/20 by reactions involving the formation of Si-halogen linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/10Chlorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0275Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 also containing elements or functional groups covered by B01J31/0201 - B01J31/0269
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/06Boron halogen compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/06Boron halogen compounds
    • C01B35/061Halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/12Polycyclic non-condensed hydrocarbons
    • C07C15/16Polycyclic non-condensed hydrocarbons containing at least two phenyl groups linked by one single acyclic carbon atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • C07F7/121Preparation or treatment not provided for in C07F7/14, C07F7/16 or C07F7/20
    • C07F7/125Preparation or treatment not provided for in C07F7/14, C07F7/16 or C07F7/20 by reactions involving both Si-C and Si-halogen linkages, the Si-C and Si-halogen linkages can be to the same or to different Si atoms, e.g. redistribution reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • C07F7/121Preparation or treatment not provided for in C07F7/14, C07F7/16 or C07F7/20
    • C07F7/126Preparation or treatment not provided for in C07F7/14, C07F7/16 or C07F7/20 by reactions involving the formation of Si-Y linkages, where Y is not a carbon or halogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • C07F7/16Preparation thereof from silicon and halogenated hydrocarbons direct synthesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/005General concepts, e.g. reviews, relating to methods of using catalyst systems, the concept being defined by a common method or theory, e.g. microwave heating or multiple stereoselectivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4277C-X Cross-coupling, e.g. nucleophilic aromatic amination, alkoxylation or analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/001General concepts, e.g. reviews, relating to catalyst systems and methods of making them, the concept being defined by a common material or method/theory
    • B01J2531/002Materials

Definitions

  • the invention relates to halogenated tetrasilylboranates, processes for their production and their use.
  • Tetrasilylboranates are already known. For example, refer to the publication by Nöth et al. in Chem. Ber. 1982, 115, 934, in which the synthesis of Li + B (SiCH 3 ) 4 - is described by reacting trimethoxyborane with trimethylsilyllithium under organometallic conditions.
  • halogenated tetrasilylboranates are also weakly coordinating and stabilizing anions for organic cations, which are of great industrial importance as catalysts.
  • Halogenated tetrasilylboranates are technically important, especially with the cation Ph 3 C + , since they can easily be converted into catalytically active compounds; they are technically important catalyst precursors.
  • Protonic acid compounds are compounds that are able to donate protons. The weaker the proton is bound to the anion in the protonic acid compound, the easier it can be transferred to a substrate and the greater its acidity. Tetrafluoroboric acid (H + BF 4 -), perchloric acid (H + C10 4 -), trifluoromethanesulfonic acid (CF 3 SO 3 H) and hexafluoroantimonic acid (H + SbF6 ⁇ ) therefore have high acid strengths. These acids are also known as super acids because they have a very high acid strength. However, disadvantages of these acids are that they are difficult to prepare, difficult to handle because of their high corrosiveness and their decomposability.
  • Tetrafluoroboric acid is only stable in water or water-like solvents and can only be produced in solution. This also applies to perchloric acid. If the water content is reduced, there is a risk of explosions with perchloric acid; in addition, perchloric acid has an oxidizing effect, which is a further disadvantage.
  • Trifluoromethanesulfonic acid is produced by the electrochemical fluorination of methanesulfonic acid chloride, hexafluoroantimonic acid by the reaction of anhydrous hydrogen fluoride with SbF 5 . These procedures can only be carried out in special systems. These properties of the known very strong acids therefore make their technical use considerably more difficult.
  • the present invention therefore relates to halogenated tetrasilylboranates of the general formula
  • M z + is an inorganic or organic cation where z is 1 or 2, preferably 1,
  • R is identical or different and represents a hydrogen atom or a hydrocarbon radical with 1 to 3 carbon atoms
  • X is identical or different and denotes halogen atom
  • the radical X is preferably F, CI or Br, particularly preferably F or Cl, in particular Cl.
  • the radical R is preferably a hydrogen atom or the methyl radical.
  • cation M z + examples include H + , cations of the alkali metals and alkaline earth metals, cationic nitrogen compounds, phosphonium cations and carbocations.
  • the cations M z + are preferably H + , Li + , Na + ,
  • R 4 and R 5 can each independently be the same or different and are hydrogen atoms or C1 -C20 denote alkyl, aryl or aralkyl radicals which can be interrupted by heteroatoms, where two or more of the C1-C20 radicals can form one or more rings, which optionally can be (hetero) aromatic, phosphonium cations PR 6 4 + , where R 6 can be the same or different and has the meaning of halogen atom, in particular chlorine atom, or C1-C20 alkyl, aryl or aralkyl radical, or carbocations of the general formula R 7 3 C + , where R 7 is the same or can be different and denotes aryl radical which can optionally be substituted.
  • the cations M z + are particularly preferably H + or Ph 3 C + , in particular H + , where Ph denotes a phenyl radical.
  • the cation M z + in particular the proton H + , in the compound according to the invention can also be complexed by oxygen-containing electron donors (D).
  • Oxygen-containing electron donors (D) are, for example, ethers or alcohols of the general formula (II)
  • radicals R 1 are alkyl radicals, such as methyl,
  • radicals R 2 are the examples given for radicals R 1 and the hydrogen atom.
  • the radicals R 1 and R 2 are preferably alkyl radicals having 1 to 6 carbon atoms, particularly preferably methyl, ethyl, n-propyl or isopropyl radicals.
  • the electron donors (D) are preferably diethyl ether, diisopropyl ether, di-n-propyl ether, dibenzyl ether, methoxybenzene, methanol, ethanol, n-propanol and n-butanol.
  • Examples of the inventive tetrasilylboranates of the formula (I) are H + B (SiCl 3 ) - 4 -, H + B (SiHCl 2 ) (SiCl 3 ) 3 -, H + B (SiHCl 2 ) 2 (SiCl 3 ) 2 -, H + B (SiHCl 2 ) 3 (SiCl 3 ) -, H + B (SiHCl 2 ) 4 -,
  • Ph 3 C + B ((SiCl 3 ) 4- particularly preferably H + B (SiCl 3 ) 4 - or Ph 3 C + B (SiCl 3 ) 4-, in particular around H + B (SiCl 3 ) 4 -, where Me is methyl radical, Et is ethyl radical, Bu is butyl radical and Ph is phenyl radical.
  • H + B (SiCl 3 ) 4 - and Ph 3 C + B (SiCl 3 ) 4- show high thermal stability.
  • H + B (SiCl 3 ) 4 - melts undecomposed at 187 ° C and can be cooled several times below the melting point and melted again to over 200 ° C without decomposition. Decomposition is only observed at significantly higher temperatures of more than 200 ° C.
  • the tetrasilylboranates according to the invention can be prepared by processes known per se, preferably by reacting boron trihalides with halosilanes.
  • a further subject of the present invention is therefore a process for the preparation of the tetrasilyl boranates according to the invention by reacting boron trihalides with at least two different, Si-bonded hydrogen-containing halosilanes, with the boranate thus obtained in an optionally carried out further step with a Proton acceptor (B) is implemented.
  • silanes (S1) used according to the invention are preferably those of the formula HSiX 3 where X is as defined above, particularly preferably trichlorosilane.
  • silanes (S2) used according to the invention are preferably those of the formula H 2 SiX 2 where X is as defined above, particularly preferably dichlorosilane.
  • the molar ratio of the boron halides BX 3 to the molar sum of the silanes (S1) and (S2) is preferably at least 1: 0.1 and at most 1:10 10 , particularly preferably at least 1: 1 and at most 1: 10 8 , in particular at least 1:10 and at most 1.-10 6 .
  • the molar ratio of the silanes (S1) to the silanes (S2) is in the range of preferred 10 8 : 1 to 1:10 6 , particularly preferably from 10 5 : 1 to 1:10 4 , in particular from 10 2 : 1 to 1:10 2 , very particularly preferably from 20: 1 to 1:20.
  • the reaction according to the invention is preferably carried out at temperatures between -20 and + 400.degree. C., particularly preferably between 0.degree. C. and + 200.degree. C., in particular between + 20.degree. C. and + 100.degree.
  • the reaction according to the invention is preferably carried out at pressures from 10 to 100,000 hPa, particularly preferably from 100 hPa to 10,000 hPa.
  • the reaction can also be carried out in the presence of metallic surfaces, preferably transition metal surfaces, particularly preferably iron, chromium, nickel, manganese or their alloys, in particular stainless steel.
  • metallic surfaces preferably transition metal surfaces, particularly preferably iron, chromium, nickel, manganese or their alloys, in particular stainless steel.
  • the reaction according to the invention is preferably carried out under protective gas, such as, for example, nitrogen and argon. It can be carried out with or without the addition of a solvent, the reaction without a solvent being preferred. If the reaction is carried out with a solvent, saturated hydrocarbons, aromatic hydrocarbons or ethers are preferred, preferably in proportions of 1% by weight to 90% by weight, based in each case on the total weight of the reaction mass.
  • protective gas such as, for example, nitrogen and argon. It can be carried out with or without the addition of a solvent, the reaction without a solvent being preferred. If the reaction is carried out with a solvent, saturated hydrocarbons, aromatic hydrocarbons or ethers are preferred, preferably in proportions of 1% by weight to 90% by weight, based in each case on the total weight of the reaction mass.
  • the protonic acid halogenated tetrasilylboranate produced according to the invention precipitates from the reaction mixture and can therefore be separated off very easily.
  • the acids obtained according to the invention can, if desired, be reacted with proton acceptors (B) in order to obtain compounds of the formula (I) with M z + different from H +.
  • This reaction is preferably carried out at ambient temperature and pressure, preferably with stirring, in the presence of one or more inert solvents, for example ethers, chlorinated hydrocarbons or dipolar aprotic solvents such as nitriles, amides or dimethyl sulfoxide.
  • the process according to the invention for preparing the tetrasilylboranates of the formula (I) can be carried out continuously, discontinuously or semicontinuously.
  • the compounds according to the invention can be used for all purposes for which boranates have also been used up to now.
  • the compounds of the formula (I) according to the invention where M z + is hydrogen can also be used for all purposes for which strong acids are required.
  • salts of tritylium cations, Ph 3 C + have so far been produced by reacting Ph1 3 COH with strong acids such as HBF 4 , HPF6, HCIO 4 , HSO 3 F and methanesulfonic acid.
  • Ph 3 COH can be converted very easily into the compound Ph 3 C + B (SiCl 3 ) 4- in an analogous manner with the compound H + B (SiCl 3) 4- according to the invention, with elimination of water.
  • the compounds (H) containing Si-bonded hydrogen used according to the invention can be all previously known organosilicon compounds with Si-bonded hydrogen, preferably those composed of units of the formula (III)
  • R 3 can be identical or different and represent monovalent, optionally substituted hydrocarbon radicals which can be interrupted by heteroatoms,
  • Y can be identical or different and represent halogen atoms or organyloxy radicals, a is 0, 1, 2 or 3, b is 0, 1, 2 or 3 and c is 0, 1 or 2, preferably 0 or 1, with the Provided that in at least one unit c ⁇ O and the sum a + b + c ⁇ 4.
  • the organosilicon compounds used according to the invention are preferably silanes.
  • radicals R 3 are the examples given for radicals R 1 , it also being possible for the radicals R 3 to be substituted by halogen radicals.
  • the radical R 3 is preferably hydrocarbon radicals with 1 to 12 carbon atoms, which can optionally be singly or multiply chlorinated, particularly preferably C1-C6 alkyl radicals, phenyl radicals, vinyl radicals or allyl radicals, which can optionally be singly or multiply chlorinated , in particular the methyl, ethyl, vinyl, allyl, chloromethyl, 3-chloropropyl or phenyl radical.
  • the radical Y is preferably a halogen atom, particularly preferably a chlorine atom.
  • Examples of compounds (H) used according to the invention are methyldichlorosilane, dimethylchlorosilane, trichlorosilane, ethyl dichlorosilane, methylethylchlorosilane, trimethylsilane, phenylmethylchlorosilane, vinylmethylchlorosilane, divinylchlorosilane, alylmethylchlorosilane and diphenylchlorosilane.
  • halogenated hydrocarbons (K) used according to the invention can be any previously known hydrocarbons in which one or more hydrogen atoms have been replaced by halogen atoms, compounds (K) being linear, branched, cyclic, saturated, aliphatically unsaturated or aromatic.
  • halogenated hydrocarbons (K) used according to the invention are dichloromethane, chloromethane, chloroform,
  • the halogenated hydrocarbons (K) used according to the invention are preferably hydrocarbons with 1 to 50 carbon atoms in which one or more hydrogen atoms have been replaced by halogen atoms, in particular chlorine atoms, particularly preferably chlorinated hydrocarbons with 1 to 20 carbon atoms, in particular chloromethane , Dichloromethane, chloroethane, 1-chloropropane, 2-chloropropane, 1,3-dichloropropene, 1,2-dichloroethane, 1,1,1-trichloroethane, allyl chloride, benzyl chloride, chlorobenzene or ortho-dichlorobenzene.
  • halogen atoms in particular chlorine atoms
  • chlorinated hydrocarbons with 1 to 20 carbon atoms in particular chloromethane , Dichloromethane, chloroethane, 1-chloropropane, 2-chloropropane, 1,3-dichloropropene, 1,2-dich
  • the molar ratio of Si-H groups in the organosilicon compounds (H) to C-Cl groups in the compounds (K) is preferably at least 100: 1 and at most 1:10 6 , particularly preferably at least 10 : 1 and at most 1: 1000, in particular at least 2: 1 and at most 1: 100.
  • the reaction according to the invention is preferably carried out under protective gas, such as nitrogen and argon, for example.
  • inert solvents (L) can also be used, preferably with aliphatic or aromatic hydrocarbons 3 to 50 carbon atoms. If solvents (L) are used in the process according to the invention, the amounts involved are preferably from 1% by weight to 99% by weight, particularly preferably from 10% by weight to 90% by weight , in each case based on the reaction mixture. Solvents (L) are not used with preference.
  • the process according to the invention is preferably carried out at pressures between 500 hPa and 50,000 hPa, particularly preferably at ambient pressure, i.e. a pressure between 900 and 1100 hPa.
  • the reaction according to the invention is preferably carried out at temperatures between -20.degree. C. and + 200.degree. C., particularly preferably between 0.degree. C. and + 100.degree.
  • the process according to the invention for converting Si-bonded hydrogen-containing compounds (H) into the corresponding Si-bonded halogen atom-containing compounds can be carried out continuously, batchwise or semicontinuously, the continuous reaction being preferred.
  • the compounds according to the invention in particular the protonic acid halogenated tetrasilylboranates and their tritylium salts, have the advantage that they have a high stability and, due to their non-volatility, can be handled in a very simple manner.
  • Organic cations are stabilized very well by the anion according to the invention and can therefore be used advantageously in technical processes.
  • their high Stability is an advantage for catalytic processes, as this avoids additional consumption.
  • the process according to the invention for the preparation of the compounds of the formula (I) is simple to carry out, and inexpensive starting materials that are commercially available, such as chlorosilanes and boron trichloride, can be used.
  • the method according to the invention also has the advantage that no waste products are created which have to be recycled or disposed of.
  • the process according to the invention for converting Si-bonded hydrogen into Si-bonded halogen can advantageously also be used for converting halogen-substituted hydrocarbons into halogen-free hydrocarbons. This is also of technical interest, since halogenated hydrocarbons are often toxic compounds which are expensive to dispose of.
  • the halosilane obtained can be easily removed by hydrolysis in water.
  • trichlorosilane and 2 g of dichlorosilane are placed in a steel autoclave at 0 ° C. under a nitrogen atmosphere.
  • 20 mg of boron trichloride are introduced with stirring.
  • the autoclave is closed and left to stand for 20 hours at 70 ° C. with a pressure regulator at about 2 bar overpressure.
  • the reaction mixture is volatilized at normal pressure at a bottom temperature of up to approx. 30 ° C.
  • the autoclave is then closed again and operated under a nitrogen atmosphere with a pressure regulator at 1 bar overpressure for 100 hours at 55 ° C.
  • a batch of 100 g of trichlorosilane with 5 g of dichlorosilane and 55 mg of boron trichloride is left to stand for 24 hours at 70 ° C. in a steel autoclave with pressure regulation at 2 bar overpressure and under a nitrogen atmosphere. Subsequent evaporation at approx. 30 ° C is followed by another reaction in a closed steel autoclave at 1 bar overpressure and 55 ° C for 120 hours. When the reaction solution is concentrated, 140 mg of H + B (SiCl 3 ) 4 - are obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Silicon Compounds (AREA)

Abstract

Die Erfindung betrifft halogenierte Tetrasilylboranate der allgemeinen Formel (I) M2+[B(SiRmXn)4-]z wobei die Reste und Indizes die in Anspruch 1 angegebene Bedeutung haben mit der Maßgabe, dass m+n=3 ist, Verfahren zu deren Herstellung sowie deren Verwendung.

Description

Halogenierte Tetrasilylboranate
Die Erfindung betrifft halogenierte Tetrasilylboranate, Verfah- ren zu deren Herstellung sowie der Verwendung.
Tetrasilylboranate sind bereits bekannt. Hierzu sei beispiels- weise auf die Veröffentlichung von Nöth et al. in Chem. Ber. 1982, 115, 934 verwiesen, in der die Synthese von Li+B(SiCH3)4- durch Umsetzung von Trimethoxyboran mit Trimethylsilyllithium unter metallorganischen Bedingungen beschrieben wird.
Verbindungen mit hoher Säurestärke sind für technische Anwen- dungen von großem Interesse. Häufig werden sie katalytisch ein- gesetzt und sind daher besonders wertvolle Verbindungen. Weiter sind die halogenierten Tetrasilylboranate schwach koordinie- rende und stabilisierende Anionen für organische Kationen, wel- che große technische Bedeutung als Katalysatoren haben. Haloge- nierte Tetrasilylboranate sind, insbesondere mit dem Kation Ph3C+, technisch wichtig, da sie leicht zu katalytisch aktiven Verbindungen umgewandelt werden können, sie sind technisch wichtige Katalysatorvorstufen.
Protonsaure Verbindungen sind Verbindungen, die in der Lage sind, Protonen abzugeben. Je schwächer das Proton in der proto- nensauren Verbindung an das Anion gebunden ist, desto leichter kann seine Übertragung auf ein Substrat erfolgen und desto grö- ßer ist seine Säurestärke. Hohe Säurestärken haben daher z.B. Tetrafluorborsäure (H+BF4-), Perchlorsäure (H+C104-), Trifluorme- thansulfonsäure (CF3SO3H) und Hexafluorantimonsäure (H+SbF6~). Diese Säuren werden auch als Supersäuren bezeichnet, da sie eine sehr hohe Säurestärke haben. Nachteile dieser Säuren sind jedoch ihre schwierige Herstellung, ihre schwierige Handhabung aufgrund ihrer hohen Korrosivität und ihre Zersetzlichkeit. Tetrafluorborsäure ist nur in Wasser oder wasserähnlichen Löse- mitteln stabil und kann nur in Lösung hergestellt werden. Dies gilt auch für Perchlorsäure. Bei Verminderung des Wassergehalts besteht bei Perchlorsäure die Gefahr von Explosionen, zudem wirkt Perchlorsäure oxidierend, was einen weiteren Nachteil darstellt. Trifluormethansulfonsäure wird durch elektrochemi- sche Fluorierung von Methansulfonsäurechlorid hergestellt, He- xafluorantimonsäure durch Umsetzung von wasserfreiem Fluorwas- serstoff mit SbF5. Diese Verfahren können nur in speziellen An- lagen ausgeführt werden. Diese Eigenschaften der bekannten sehr starken Säuren erschweren daher deren technischen Einsatz er- heblich.
Verbindungen mit hoher Säurestärke eignen sich als Katalysato- ren, welche die Umwandlung von Si-H-Gruppen in die entsprechen- den Halogengruppen katalysieren. So wird beispielsweise in DE-A 102007030948 ein Verfahren zur Umwandlung von Si-H in Si-Cl be- schrieben, bei dem Tetrabutylphosphoniumchlorid als Katalysator und gasförmige HCl als Chlorierungsmittel eingesetzt werden. Hierbei besteht der Nachteil, dass gasförmige HCl verhältnismä- ßig aufwändig in der Handhabung ist. In der DE-A 4240717 wird ein weiteres Verfahren zur Umwandlung von Si-H in Si-Cl mit Hilfe von Allylchlorid und Palladium- oder Platin-Katalysatoren beschrieben. Jedoch sind Edelmetallverbindungen kostenintensiv und müssen daher recycelt werden, was zu hohen Prozesskosten führt.
In der Angew. Chem 2019, 131, 12710 ist ein Verfahren beschrie- ben, bei dem die Umwandlung von Si-H zu Si-Cl mit Dichlormethan durch Bestrahlung in Gegenwart von 1 mol % Eosin Y in einer speziellen Bestrahlungsapparatur durchgeführt wird. Dieses Ver- fahren ist jedoch technisch sehr aufwändig, zudem ist der Farb- stoff Eosin in den technischen Produkten unerwünscht. Es bestand daher unter anderem die Aufgabe der vorliegenden Er- findung Verbindungen zu finden, welche die vorgenannten Nach- teile nicht haben,
Gegenstand der vorliegenden Erfindung sind daher halogenierte Tetrasilylboranate der allgemeinen Formel
Mz* [B(SiRmXn)4~]z (I), wobei
Mz+ gleich anorganisches oder organisches Kation bedeutet mit z gleich 1 oder 2, bevorzugt 1,
R gleich oder verschieden ist und Wasserstoffatom oder Kohlen- wasserstoffrest mit 1 bis 3 Kohlenstoffatomen darstellt,
X gleich oder verschieden ist und Halogenatom bedeutet, m gleich 0, 1 oder 2, bevorzugt 0 oder 1, besonders bevorzugt 0, ist und n gleich 1, 2 oder 3, bevorzugt 2 oder 3, besonders bevorzugt 3, ist, mit der Maßgabe, dass m+n=3 ist.
Bevorzugt handelt es sich bei Rest X um F, CI oder Br, beson- ders bevorzugt um F oder Cl, insbesondere um Cl.
Bevorzugt handelt es sich bei Rest R um Wasserstoffatom oder den Methylrest.
Beispiele für Kation Mz+ sind H+, Kationen der Alkalimetalle und Erdalkalimetalle, kationische Stickstoffverbindungen, Phospho- niumkationen sowie Carbokationen. Bevorzugt handelt es sich bei den Kationen Mz+ um H+, Li+, Na+,
K+, Cs+, Mg2+, Ca2+, Ba2+, Stickstoffverbindungen der Formeln NR44+ und =NR52+, wobei R4 und R5 jeweils unabhängig voneinander gleich oder verschieden sein können und Wasserstoffatom oder C1-C20 Alkyl-, Aryl- oder Aralkylrest bedeuten, die durch Heteroatome unterbrochen sein können, wobei zwei oder mehrere der C1-C20- Reste einen oder mehrere Ringe bilden können, die gegebenen- falls (hetero)aromatisch sein können, Phosphoniumkationen PR64+, wobei R6 gleich oder verschieden sein kann und die Bedeutung von Halogenatom, insbesondere Chloratom, oder C1-C20 Alkyl-, A- ryl- oder Aralkylrest hat, oder Carbokationen der allgemeinen Formel R7 3C+, wobei R7 gleich oder verschieden sein kann und A- rylrest bedeutet, der gegebenenfalls substituiert sein kann.
Besonders bevorzugt handelt es sich bei den Kationen Mz+ um H+ oder Ph3C+, insbesondere um H+, wobei Ph Phenylrest bedeutet.
Wenngleich in Formel (I) nicht dargestellt, kann das Kation Mz+, insbesondere das Proton H+, in der erfindungsgemäßen Verbindung auch durch Sauerstoff-haltige Elektronendonatoren (D) komple- xiert sein.
Sauerstoff-haltige Elektronendonatoren (D) sind beispielsweise Ether oder Alkohole der allgemeinen Formel (II)
R1-O-R2 (II), worin R1 einen Kohlenwasserstoffrest mit 1 bis 20 Kohlenstoff- atomen bedeutet und R2 Wasserstoffatom oder einen Kohlenwasser- stoffrest mit 1 bis 20 Kohlenstoffatomen darstellt.
Beispiele für Reste R1 sind Alkylreste, wie der Methyl-,
Ethyl-, n-Propyl-, iso-Propyl-, n-Butyl-, iso-Butyl-, tert.- Butyl-, n-Pentyl-, iso-Pentyl-, neo-Pentyl-, tert.-Pentylrest, Hexylreste, wie der n-Hexylrest, Heptylreste, wie der n-Heptyl- rest, Octylreste, wie der n-Octylrest und iso-Octylreste, wie der 2,2,4-Trimethylpentylrest, Nonylreste, wie der n-Nonylrest, Decylreste, wie der n-Decylrest, Dodecylreste, wie der n-Dode- cylrest; Alkenylreste, wie der Vinyl- und der Allylrest; Cyclo- alkylreste, wie Cyclopentyl-, Cyclohexyl-, Cycloheptylreste und Methylcyclohexylreste; Arylreste, wie der Phenyl- und der Naph- thylrest; Alkarylreste, wie o-, m-, p-Tolylreste, Xylylreste und Ethylphenylreste; sowie Aralkylreste, wie der Benzylrest, der a- und der ß-Phenylethylrest.
Beispiele für Reste R2 sind die für Reste R1 angegebenen Bei- spiele sowie das Wasserstoffatom.
Bevorzugt handelt es sich bei den Resten R1 und R2 unabhängig voneinander um Alkylreste mit 1 bis 6 Kohlenstoffatomen, beson- ders bevorzugt um Methyl-, Ethyl-, n-Propyl- oder Isopropyl- reste.
Bevorzugt handelt es sich bei den Elektronendonatoren (D) um Diethylether, Diisopropylether, Di-n-propylether, Dibenzyl- ether, Methoxybenzol, Methanol, Ethanol, n-Propanol und n-Buta- nol.
Beispiele für die erfindungsgemäßen Tetrasilylboranate der For- mel (I) sind H+B(SiCl3)-4-, H+B(SiHCl2)(SiCl3)3-, H+B(SiHCl2)2(SiCl3)2-, H+B(SiHCl2)3 (SiCl3)-, H+B(SiHCl2)4-,
Li+B(SiCl3)4-, NH4 +B(SiCl3)4-, Et3NH+B(SiCl3)4- , Et2NH2 +B(SiCl3 ) 4-, C5H5NH+B(SiCl3)4- , Imidazolium+B(SiCl3)4-, Ph4P+B(SiCl3)4-,
Bu4P+B(SiCl3)4-, Me4P+B(SiCl3) 4- und Ph3C+B(SiCl3 ) 4- wobei es sich bevorzugt um H+B(SiCl3)4-,H+B(SiHCl2)(SiCl3)3 _ oder um
Ph3C+B((SiCl3)4- handelt, besonders bevorzugt um H+B(SiCl3)4- oder Ph3C+B(SiCl3)4- , insbesondere um H+B(SiCl3)4- , wobei Me gleich Me- thylrest, Et gleich Ethylrest, Bu gleich Butylrest und Ph gleich Phenylrest ist.
Überraschenderweise zeigen die erfindungsgemäßen Verbindung H+B(SiCl3)4- und Ph3C+B(SiCl3)4- eine hohe Thermostabilität. H+B(SiCl3)4- schmilzt unzersetzt bei 187°C und kann mehrfach un- ter den Schmelzpunkt abgekühlt und wieder erneut ohne Zerset- zung auf über 200°C aufgeschmolzen werden. Zersetzung wird erst bei wesentlich höheren Temperaturen von größer 200°C beobach- tet.
Die Herstellung der erfindungsgemäßen Tetrasilylboranate kann nach an sich bekannten Verfahren erfolgen, bevorzugt durch Um- setzung von Bortrihalogeniden mit Halogensilanen.
Ein weiterer Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung der erfindungsgemäßen Tetrasilyl- boranate durch Umsetzung von Bortrihalogeniden mit mindestens zwei verschiedenen, Si-gebundenen Wasserstoff aufweisenden Ha- logensilanen, wobei in einem gegebenenfalls durchgeführten wei- teren Schritt das so erhaltene Boranat mit einem Protonenakzep- tor (B) umgesetzt wird.
Bevorzugt handelt es sich bei den erfindungsgemäß gegebenen- falls eingesetzten Protonenakzeptoren (B) um M'z+(OH)z mit M' gleich Kationen der Alkalimetalle mit z = 1 und Erdalkalime- talle mit z = 2, Ammoniumhydroxid der Formel NR4''4+OH-, Immonium- hydroxid der Formel =NR5'2 +OH-, wobei R4‘und R5' jeweils unabhän- gig voneinander gleich oder verschieden sein können und C1-C20 Alkyl-, Aryl- oder Aralkylrest bedeuten, die durch Heteroatome unterbrochen sein können, wobei zwei oder mehrere der C1-C20- Reste einen oder mehrere Ringe bilden können, die gegebenen- falls (hetero)aromatisch sein können, Phosphoniumhydroxide der Formel PR6'4 +OH_, wobei R6' gleich oder verschieden sein kann und die Bedeutung C1-C20 Alkyl-, Aryl- oder Aralkylrest hat, Carbi- nole der Formel R7 3COH mit R7 gleich der oben angegebenen Bedeu- tung oder um Stickstoffbasen, bevorzugt R4 3N oder =NR5, mit R4 und R5 gleich der oben dafür angegebenen Bedeutung.
Bevorzugt werden bei dem erfindungsgemäßen Verfahren Bortriha- logenide BX3 mit Silanen (Sl) der Formel HSiRmXn sowie Silanen (S2) der Formel H2SiRm'Xn' umgesetzt, wobei die Reste R und X je- weils gleich oder verschieden sein können und die obengenannten Bedeutungen haben, m und n die oben genannte Bedeutung haben, m' 0 oder 1, bevorzugt 0, ist und n' 1 oder 2, bevorzugt 2, ist, wobei m+n=3 und m'+n'=2 ist.
Bevorzugt handelt es sich bei den erfindungsgemäß eingesetzten Silanen (Sl) um solche der Formel HSiX3 mit X gleich der oben- genannten Bedeutung, besonders bevorzugt um Trichlorsilan.
Bevorzugt handelt es sich bei den erfindungsgemäß eingesetzten Silanen (S2) um solche der Formel H2SiX2 mit X gleich der oben- genannten Bedeutung, besonders bevorzugt um Dichlorsilan.
Bei dem erfindungsgemäßen Verfahren beträgt das molare Verhält- nis der Borhalogenide BX3 zur molaren Summe der Silane (S1) und (S2) bevorzugt mindestens 1:0,1 und höchstens 1:1010, besonders bevorzugt mindestens 1:1 und höchstens 1:108, insbesondere min- destens 1:10 und höchstens 1.-106.
Bei dem erfindungsgemäßen Verfahren liegt das molare Verhältnis der Silane (Sl) zu den Silanen (S2) im Bereich von bevorzugt 108 :1 bis 1:106, besonders bevorzugt von 105:1 bis 1:104, insbe- sondere von 102 :1 bis 1:102, ganz besonders bevorzugt von 20:1 bis 1:20.
Die erfindungsgemäße Umsetzung erfolgt bevorzugt bei Temperatu- ren zwischen -20 und +400°C, besonders bevorzugt zwischen 0°C und +200°C, insbesondere zwischen +20°C und +100°C.
Die erfindungsgemäße Umsetzung erfolgt bevorzugt bei Drücken von 10 bis 100000 hPa, besonders bevorzugt von 100 hPa bis 10 000 hPa.
Die Umsetzung kann auch in Gegenwart von metallischen Oberflä- chen, bevorzugt Übergangsmetalloberflächen, besonders bevorzugt Eisen, Chrom, Nickel, Mangan oder deren Legierungen, insbeson- dere von Edelstahlen, durchgeführt werden.
Die erfindungsgemäße Umsetzung erfolgt bevorzugt unter Schutz- gas, wie beispielsweise Stickstoff und Argon. Sie kann mit oder ohne Lösemittelzusatz durchgeführt werden, wobei die Umsetzung ohne Lösemittel bevorzugt ist. Wird die Umsetzung mit Lösemit- tel durchgeführt, so sind gesättigte Kohlenwasserstoffe, aroma- tische Kohlenwasserstoffe oder Ether bevorzugt, bevorzugt in Anteilen von 1 Gew.-% bis 90 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Reaktionsmasse.
Das erfindungsgemäß hergestellte protonensaure halogenierte Tetrasilylboranat fällt aus der Reaktionsmischung aus und kann dadurch sehr leicht abgetrennt werden. Bei der erfindungsgemä- ßen Umsetzung entstehen bevorzugt keine Abfallprodukte. Über- schüssige Reagenzien können weiterverwendet werden. Die erfindungsgemäß erhaltenen Säuren können, falls erwünscht, mit Protonenakzeptoren (B) umgesetzt werden, um zu Verbindungen der Formel (I) mit Mz+ verschieden H+ zu gelangen. Diese Umset- zung erfolgt bevorzugt bei Umgebungstemperatur und bei Umge- bungsdruck, bevorzugt unter Rühren, in Anwesenheit eines oder mehrerer inerter Lösungsmittel, beispielsweise Ethern, chlo- rierten Kohlenwasserstoffen oder dipolar aprotischen Lösemit- teln wie Nitrilen, Amiden oder Dimethylsulfoxid.
Das erfindungsgemäße Verfahren zur Herstellung der Tetra- silylboranate der Formel (I) kann kontinuierlich, diskontinu- ierlich oder semikontinuierlich durchgeführt werden.
Die erfindungsgemäßen Verbindungen können für alle Zwecke ein- gesetzt werden, für die auch bisher Boranate eingesetzt worden sind. Die erfindungsgemäßen Verbindungen der Formel (I) mit Mz+ gleich Wasserstoff können auch für alle Zwecke eingesetzt wer- den, für die starke Säuren benötigt werden. Beispielsweise wer- den Salze von Trityliumkationen, Ph3C+, bisher durch Umsetzung von Ph13COH mit starken Säuren wie HBF4, HPF6, HCIO4, HSO3F und Methansulfonsäure hergestellt. Überraschenderweise kann in ana- loger Weise Ph3COH mit erfindungsgemäßer Verbindung H+B(SiCl3)4- unter Wasserabspaltung sehr leicht in die Verbindung Ph3C+B(SiCl3)4- überführt werden.
Bevorzugt sind die erfindungsgemäßen Verbindungen der Formel (I) mit X gleich Cl, insbesondere die Verbindung H+B(SiCl3)4-, für den technischen Einsatz geeignete Katalysatoren, welche die Umwandlung von Si-H-Gruppen aufweisenden Silanen und Siloxanen in die entsprechenden Chlorsilane bzw. Chlorsiloxane in Gegen- wart von Chlorkohlenwasserstoffen katalysieren. Ein weiterer Gegenstand der Erfindung ist daher ein Verfahren zur Umwandlung von Si-gebundenen Wasserstoff aufweisenden Ver- bindungen (H) in die entsprechenden Si-gebundene Halogenatome aufweisenden Verbindungen mit Halogenkohlenwasserstoffen (K) in Gegenwart von Verbindungen der allgemeinen Formel (I) mit X gleich CI und Mz+ gleich H+ als Katalysator.
Die Umwandlung von Si-H in Si-Halogen-Gruppierungen ist tech- nisch wichtig, da Restgehalte an Hydridosiloxanen in Siliconma- terialien bei der Lagerung zur Bildung von Wasserstoffgas füh- ren können.
Bei den erfindungsgemäß eingesetzten Si-gebundenen Wasserstoff aufweisenden Verbindungen (H) kann es sich um alle bisher be- kannten Organosiliciumverbindungen mit Si-gebundenem Wasser- stoff handeln, bevorzugt um solche aus Einheiten der Formel (III)
R3aYbHcSiO(4-a-b-c) /2 (III), wobei
R3 gleich oder verschieden sein kann und einwertige, gegebenen- falls substituierte Kohlenwasserstoffreste, die mit Heteroato- men unterbrochen sein können, darstellen,
Y gleich oder verschieden sein kann und Halogenatom oder Or- ganyloxyreste bedeuten, a 0, 1, 2 oder 3 ist, b 0, 1, 2 oder 3 ist und c 0, 1 oder 2, bevorzugt 0 oder 1, ist, mit der Maßgabe, dass in mindestens einer Einheit c≠O ist und die Summe a+b+c ≤ 4 ist. Bei den erfindungsgemäß eingesetzten Organosiliciumverbindungen (H) kann es sich sowohl um Silane handeln, d.h. Verbindungen der Formel (III) mit a+b+c=4, als auch um Siloxane, d.h. Ver- bindungen aus Einheiten der Formel (III) mit a+b+c≤3. Vorzugs- weise handelt es sich bei den erfindungsgemäß eingesetzten Or- ganosiliciumverbindungen um Silane.
Beispiele für Reste R3 sind die für Reste R1 angegebenen Bei- spiele, wobei die Reste R3 auch mit Halogenresten substituiert sein können.
Bevorzugt handelt es sich bei Rest R3 um Kohlenwasserstoffreste mit 1 bis 12 Kohlenstoffatomen, die gegebenenfalls einfach oder mehrfach chloriert sein können, besonders bevorzugt um C1-C6 Alkylreste, Phenylreste, Vinylreste oder Allylreste, die gege- benenfalls ein- oder mehrfach chloriert sein können, insbeson- dere um den Methyl-, Ethyl-, Vinyl-, Allyl-, Chlormethyl-, 3- Chlorpropyl- oder Phenylrest.
Bevorzugt handelt es sich bei Rest Y um Halogenatome, besonders bevorzugt um Chloratom.
Beispiele für erfindungsgemäß eingesetzte Verbindungen (H) sind Methyldichlorsilan, Dimethylchlorsilan, Trichlorsilan, Ethyl- dichlorsilan, Methylethylchlorsilan, Trimethylsilan, Phenylme- thylchlorsilan, Vinylmethylchlorsilan, Divinylchlorsilan, Al- lylmethylchlorsilan und Diphenylchlorsilan.
Bei den erfindungsgemäß eingesetzten Halogenkohlenwasserstoffen (K) kann es sich um beliebige, bisher bekannte Kohlenwasser- stoffe handeln, bei denen ein oder mehrere Wasserstoffatome durch Halogenatome ersetzt sind, wobei Verbindungen (K) linear, verzweigt, cyclisch, gesättigt, aliphatisch ungesättigt oder aromatisch sein können.
Beispiele für die erfindungsgemäß eingesetzten Halogenkohlen- wasserstoffe (K) sind Dichlormethan, Chlormethan, Chloroform,
1,2-Dichlorethan, 2-Chlorpropan, Chlorbenzol, o-Dichlorbenzol, Allylchlorid oder Benzylchlorid.
Bevorzugt handelt es sich bei den erfindungsgemäß eingesetzten Halogenkohlenwasserstoffen (K) um Kohlenwasserstoffe mit 1 bis 50 Kohlenstoffatomen, bei denen ein oder mehrere Wasserstoff- atome durch Halogenatome, insbesondere Chloratome, ersetzt sind, besonders bevorzugt um Chlorkohlenwasserstoffe mit 1 bis 20 Kohlenstoffatomen, insbesondere um Chlormethan, Dichlorme- than, Chlorethan, 1-Chlorpropan, 2-Chlorpropan, 1,3-Dichlorpro- pen, 1,2-Dichlorethan, 1,1,1-Trichlorethan, Allylchlorid, Benzylchlorid, Chlorbenzol oder ortho-Dichlorbenzol.
Bei dem erfindungsgemäßen Verfahren beträgt das molare Verhält- nis von Si-H-Gruppen in den Organosiliciumverbindungen (H) zu C-Cl-Gruppen in den Verbindungen (K) bevorzugt mindestens 100:1 und höchstens 1:106, besonders bevorzugt mindestens 10:1 und höchstens 1:1000, insbesondere mindestens 2:1 und höchstens 1:100.
Die erfindungsgemäße Umsetzung wird bevorzugt unter Schutzgas, wie beispielsweise Stickstoff und Argon durchgeführt.
Bei dem erfindungsgemäßen Verfahren zur Umwandlung von Si-ge- bundenen Wasserstoff aufweisenden Verbindungen (H) in die ent- sprechenden Si-gebundene Halogenatome aufweisenden Verbindungen können zusätzlich auch inerte Lösemittel (L) eingesetzt werden, bevorzugt aliphatische oder aromatische Kohlenwasserstoffe mit 3 bis 50 Kohlenstoffatomen. Falls beim erfindungsgemäßen Ver- fahren Lösungsmittel (L) eingesetzt werden, handelt es sich be- vorzugt um Mengen von 1 Gew.-% bis 99 Gew.-%, besonders bevor- zugt von 10 Gew.-% bis 90 Gew.-%, jeweils bezogen auf das Reak- tionsgemisch. Lösungsmittel (L) werden nicht bevorzugt einge- setzt.
Das erfindungsgemäße Verfahren wird bevorzugt bei Drücken zwi- schen 500 hPa und 50000 hPa, besonders bevorzugt bei Umge- bungsdruck, d.h. einem Druck zwischen 900 und 1100 hPa, durch- geführt.
Die erfindungsgemäße Umsetzung wird bevorzugt bei Temperaturen zwischen -20°C und +200°C, besonders bevorzugt zwischen 0°C und +100°C durchgeführt.
Das erfindungsgemäße Verfahren zur Umwandlung von Si-gebundenen Wasserstoff aufweisenden Verbindungen (H) in die entsprechenden Si-gebundene Halogenatome aufweisenden Verbindungen kann konti- nuierlich, diskontinuierlich oder semikontinuierlich durchge- führt werden, wobei die kontinuierliche Umsetzung bevorzugt ist.
Die erfindungsgemäßen Verbindungen, insbesondere die protonen- sauren halogenierten Tetrasilylboranate und deren Tritylium- salze, haben den Vorteil, dass sie eine hohe Stabilität besit- zen und aufgrund ihrer Nichtflüchtigkeit auf sehr einfache Weise gehandhabt werden können.
Organische Kationen werden durch das erfindungsgemäße Anion sehr gut stabilisiert und können dadurch vorteilhaft in techni- sche Prozesse eingesetzt werden. Insbesondere ist deren hohe Stabilität für katalytische Prozesse von Vorteil, da hierdurch ein Mehrverbrauch vermieden wird.
Das erfindungsgemäße Verfahren zur Herstellung der Verbindungen der Formel (I) ist einfach in der Durchführung, und es können großtechnisch verfügbare, kostengünstige Edukte, wie Chlorsil- ane und Bortrichlorid, eingesetzt werden.
Das erfindungsgemäße Verfahren hat des Weiteren den Vorteil, dass keine Abfallprodukte entstehen, welche recycelt oder ent- sorgt werden müssen.
Die erfindungsgemäße Verwendung der Verbindungen der Formel (I) hat den Vorteil, dass auf einfache und effiziente Art und Weise Si-gebundener Wasserstoff in Si-gebundene Halogenatome umgewan- delt werden können.
Das erfindungsgemäße Verfahren zur Umwandlung von Si-gebundenem Wasserstoff in Si-gebundenes Halogen kann vorteilhafterweise auch zur Umwandlung von Halogen-substituierten Kohlenwasser- stoffen in halogenfreie Kohlenwasserstoffe verwendet werden. Dies ist ebenfalls technisch von Interesse, da Halogenkohlen- wasserstoffe häufig toxische Verbindungen sind, deren Entsor- gung aufwändig ist. Das erhaltene Halogensilan kann in einfa- cher Weise durch Hydrolyse in Wasser beseitigt werden.
In den nachfolgenden Beispielen beziehen sich alle Angaben von Teilen und Prozentsätzen, soweit nicht anders angegeben, auf das Gewicht. Sofern nicht anders angegeben, werden die folgen- den Beispiele bei einem Druck der umgebenden Atmosphäre, also bei etwa 1000 hPa, und bei Raumtemperatur, also etwa 20°C bzw. einer Temperatur, die sich beim Zusammengeben der Reaktanden bei Raumtemperatur ohne zusätzliche Heizung oder Kühlung ein- stellt, durchgeführt.
Beispiel 1: Synthese und Charakterisierung von H+B(SiCl3)4
In einem Stahlautoklaven werden unter Stickstoffatmosphäre 50 g Trichlorsilan und 2 g Dichlorsilan bei 0°C vorgelegt. Unter Rühren werden 20 mg Bortrichlorid eingeleitet. Der Autoklav wird verschlossen und 20 Stunden bei 70°C mit einer Druckrege- lung bei etwa 2 bar Überdruck stehengelassen. Der Reaktionsan- satz wird bei Normaldruck bei einer Sumpftemperatur von bis ca. 30°C entflüchtigt. Danach wird der Autoklav erneut verschlossen und unter Stickstoffatmosphäre mit einer Druckregelung bei 1 bar Überdruck für 100 Stunden bei 55°C betrieben.
Schließlich fallen beim Einengen der erhaltenen Reaktionslösung 40 mg kristalliner Rückstand von H+B(SiCl3)4- , der wie folgt charakterisiert ist: Schmelzpunkt 187°C; 29Si-NMR(CD2CI2, 99,4 MHz):d = 19,8 ppm (q, 1 Jsi,B = 89,0 Hz), 11B-NMR (CD2Cl2, 160 MHz): δ= - 26,84 ppm.
Beispiel 2; Synthese von H+B(SiCl3)4
Ein Ansatz von 100 g Trichlorsilan mit 5 g Dichlorsilan und 55 mg Bortrichlorid wird unter Rühren und unter Stickstoffat- mosphäre in einem Stahlautoklaven mit einer Druckregelung bei 2 bar Überdruck für 24 Stunden bei 70°C stehengelassen. Einer an- schließenden Entflüchtigung bei ca. 30°C folgt eine erneute Re- aktion im verschlossenen Stahlautoklaven bei 1 bar Überdruck und 55°C für 120 Stunden. Bei der Einengung der Reaktionslösung werden 140 mg H+B(SiCl3)4- erhalten.
Beispiel 3: Herstellung von Ph3C+ B(SiCl3)4-
Unter Argon werden 101 mg (0,18 mmol) H+B(SiCl3)4- in 3,36 g d6- Benzol gelöst und tropfenweise unter Rühren mit einer Lösung von 46,8 mg (0,18 mmol) Triphenylmethanol in 823 mg d6-Benzol versetzt. Die Reaktionslösung nimmt eine dunkelgelbe Farbe an, und das Produkt fällt als orangefarbener Feststoff aus, der sich am Boden absetzt. Die überstehende Lösung wird abdekan- tiert, und der Feststoff (Produkt) wird mit wenig d6-Benzol ge- waschen und im Vakuum bei Raumtemperatur getrocknet. Die Aus- beute beträgt 180 mg (90%).
1H-NMR (CD2Cl2, 500 MHz):d= 7,70 (mc, 6 aromat. H), 7,93 (mc, 6 aromat. H), 8,31 (mc, 3 aromat. H); 13C-NMR (CD2Cl2, 126 MHz):δ= 130,7, 139,9, 142,8, 143,7 ppm; 29Si-NMR(CD2Cl2, 99,4 MHz):δ= 21,58 ppm (q, 1 JSi,B = 89,0 Hz), 11B-NMR (CD2Cl2, 160 MHz): δ= - 30,74 ppm.
Beispiel 4: Herstellung von Methyltrichlorsilan
Eine Lösung von 102 mg (0,90 mmol) Methyldichlorsilan in 770 mg Dichlormethan wird unter Schütteln mit einer Lösung von 0,29 mg (0,53 pmol, 0,059 mol-%) H+B(SiCl3)4- in 43 mg Dichlormethan versetzt. Man lässt die Reaktionsmischung im verschlossenen Ge- fäß bei 23°C stehen und untersucht die Methyltrichlorsilanbil- dung NMR-spektroskopisch: 13 mol-% (45 min), 42 mol-% (3 Stun- den), 99 mol-% Umsatz (20 Stunden). Außerdem bildet sich Chlor- methan und Methan.
1H-NMR (CD2Cl2, 500 MHz): d = 1,17 (s, CH3); 29Si-NMR (CD2Cl2, 500 MHz): δ = 12,72 ppm.
Beispiel 5: Herstellung von Methyltrichlorsilan
Eine Lösung von 102 mg (0,90 mmol) Methyldichlorsilan in 800 mg d6-Benzol wird unter Schütteln mit einer Lösung von 0,44 mg (0,81 pmol, 0,09 mol-%) H+B(SiCl3)4- in 49 mg d6-Benzol ver- setzt. In die Lösung wird Chlormethan eingeleitet und 1H-NMR- spektroskopisch dessen Menge bestimmt: 67 mg (1,3 mmol). Man lässt die Reaktionsmischung im verschlossenen Gefäß bei 23°C stehen, es bilden sich dabei Methyltrichlorsilan und Methan. Umsatz zu Methyltrichlorsilan: 2 mol-% (40 Minuten), 10 mol-% (1,6 Stunden), 39 mol-% Umsatz (4,6 Stunden), 52 mol-% Umsatz (30 Stunden), 100 mol-% Umsatz (3 Tage).
1H-NMR (d6-Benzol, 500 MHz): δ = 1,17 (s, CH3); 29Si-NMR (CD2Cl2, 500 MHz): δ = 12,72 ppm.
1H-NMR (d6-Benzol, 500 MHz) des Produktes Methan: δ = 0,22.
Beispiel 6: Herstellung von Dimethyldichlorsilan
Eine Lösung von 0,50 mg (0,91 pmol) H+B(SiCl3)4- in 620 mg Dich- lormethan wird unter Schütteln mit einer Mischung aus 155 mg (2,02 mmol) Allylchlorid und 130 mg (1,38 mmol) Dimethylchlor- silan versetzt. Die Mischung erwärmt sich kurzzeitig auf 37°C und kühlt dann wieder auf Raumtemperatur ab. GC-Analyse ergibt vollständigen Umsatz und 80 Gew.-% Dimethyldichlorsilan. Zudem bildet sich Propen.
Beispiel 7; Herstellung von Chlorpentamethyldisiloxan
3,5 mg (6,6 pmol) H+B(SiCl3)4- , 152 mg (1,99 mmol) Allylchlorid und 196 mg (1,32 mmol) Pentamethyldisiloxan werden vermischt. GC-Analyse nach 20 Stunden Reaktionszeit ergibt 62 Gew.-% Chlorpentamethyldisiloxan. Zudem bildet sich Propen.
Beispiel 8: Herstellung von Di-tert-butyldichlorsilan
154 mg (2,01 mmol) Allylchlorid und 234 mg (1,32 mmol) Di-tert- butylchlorsilan werden gemischt und mit einer Lösung von 3,6 mg (6,5 mmol) H+B(SiCl3)4- in 300 mg Dichlormethan versetzt. Es setzt eine exotherme Reaktion unter Propen-Bildung ein, bei welcher sich Di-tert-butyldichlorsilan bildet.
Ausbeute (GC): 83 Gew.-%.
1H-NMR (CD2C12, 500 MHz): δ = 1,22 (s, tert-Butyl).

Claims

Patentansprüche
1. Halogenierte Tetrasilylboranate der allgemeinen Formel
Mz+ [B(SiRmXn)4-]z (I), wobei
Mz+ gleich anorganisches oder organisches Kation bedeutet mit z gleich 1 oder 2, bevorzugt 1,
R gleich oder verschieden ist und Wasserstoffatom oder Kohlen- wasserstoffrest mit 1 bis 3 Kohlenstoffatomen darstellt,
X gleich oder verschieden ist und Halogenatom bedeutet, m gleich 0, 1 oder 2 ist und n gleich 1, 2 oder 3 ist, mit der Maßgabe, dass m+n=3 ist.
2. Halogenierte Tetrasilylboranate gemäß Anspruch 1, dadurch gekennzeichnet, dass Mz+ die Bedeutung von H+ oder Ph3C+ hat.
3. Halogenierte Tetrasilylboranate gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass X die Bedeutung von F oder Cl hat.
4 . Halogenierte Tetrasilylboranate gemäß einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich um H+B(SiCl3)4-, H+B(SiHCl2)(SiCl3)3- oder um Ph3C+B(SiCl3)4- handelt.
5. Verfahren zur Herstellung der erfindungsgemäßen Tetrasilyl- boranate durch Umsetzung von Bortrihalogeniden mit mindestens zwei verschiedenen, Si-gebundenen Wasserstoff aufweisenden Ha- logensilanen, wobei in einem gegebenenfalls durchgeführten wei- teren Schritt das so erhaltene Boranat mit einem Protonenakzep- tor (B) umgesetzt wird.
6. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, dass Bortrihalogenide BX3 mit Silanen (Sl) der Formel HSiRmXn sowie Silanen (S2) der Formel H2SiRm'Xn' umgesetzt werden, wobei die Reste R und X jeweils gleich oder verschieden sein können und die obengenannten Bedeutungen haben, m und n die oben genannte Bedeutung haben, m' 0 oder 1 ist und h' 1 oder 2 ist, wobei m+n=3 und m'+n'=2 ist.
7. Verfahren zur Umwandlung von Si-gebundenen Wasserstoff auf- weisenden Verbindungen (H) in die entsprechenden Si-gebundene
Halogenatome aufweisenden Verbindungen mit Halogenkohlenwasser- stoffen (K) in Gegenwart von Verbindungen der allgemeinen For- mel (I) mit X gleich Cl und Mz+ gleich H+ als Katalysator.
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass das molare Verhältnis von Si-H-Gruppen in den Organosiliciumverbin- dungen (H) zu C-Cl-Gruppen in den Verbindungen (K) mindestens 100:1 und höchstens 1:106 beträgt.
PCT/EP2020/054972 2020-02-26 2020-02-26 Halogenierte tetrasilylboranate WO2021170226A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20708060.7A EP3999515A1 (de) 2020-02-26 2020-02-26 Halogenierte tetrasilylboranate
KR1020227017378A KR20220086658A (ko) 2020-02-26 2020-02-26 할로겐화된 테트라실릴 보라네이트
PCT/EP2020/054972 WO2021170226A1 (de) 2020-02-26 2020-02-26 Halogenierte tetrasilylboranate
CN202080056733.0A CN114206815B (zh) 2020-02-26 2020-02-26 卤化四甲硅烷基硼酸盐
JP2022551397A JP7450054B2 (ja) 2020-02-26 2020-02-26 ハロゲン化テトラシリルボラネート
US17/802,859 US20230104349A1 (en) 2020-02-26 2020-02-26 Halogenated Tetrasilyl Boranates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2020/054972 WO2021170226A1 (de) 2020-02-26 2020-02-26 Halogenierte tetrasilylboranate

Publications (1)

Publication Number Publication Date
WO2021170226A1 true WO2021170226A1 (de) 2021-09-02

Family

ID=69726565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/054972 WO2021170226A1 (de) 2020-02-26 2020-02-26 Halogenierte tetrasilylboranate

Country Status (6)

Country Link
US (1) US20230104349A1 (de)
EP (1) EP3999515A1 (de)
JP (1) JP7450054B2 (de)
KR (1) KR20220086658A (de)
CN (1) CN114206815B (de)
WO (1) WO2021170226A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4240717A1 (de) 1992-12-03 1994-06-09 Wacker Chemie Gmbh Verfahren zur Entfernung von wasserstoffhaltigen Silanen aus Mehtylchlorsilanen
WO2009003806A1 (de) * 2007-07-04 2009-01-08 Wacker Chemie Ag Verfahren zur umwandlung von si-h-verbindungen in si-halogen-verbindungen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005067979A (ja) 2003-08-27 2005-03-17 Tokuyama Corp クロロシラン類の精製方法
KR101065381B1 (ko) 2009-01-22 2011-09-16 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지
JP6263605B2 (ja) * 2014-03-26 2018-01-17 日本曹達株式会社 有機薄膜形成用溶液及びそれを用いた有機薄膜形成方法
US20170275307A1 (en) * 2014-08-27 2017-09-28 Arkema Inc. Preparation of fluorosilicon compounds
JP6952113B2 (ja) * 2016-11-09 2021-10-20 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag トリアリールオルガノボレートの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4240717A1 (de) 1992-12-03 1994-06-09 Wacker Chemie Gmbh Verfahren zur Entfernung von wasserstoffhaltigen Silanen aus Mehtylchlorsilanen
WO2009003806A1 (de) * 2007-07-04 2009-01-08 Wacker Chemie Ag Verfahren zur umwandlung von si-h-verbindungen in si-halogen-verbindungen
DE102007030948A1 (de) 2007-07-04 2009-01-08 Wacker Chemie Ag Verfahren zur Umwandlung von Si-H-Verbindungen in Si-Halogen-Verbindungen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANGEW. CHEM, vol. 131, 2019, pages 12710
LIPPERT, WOLFGANG ET AL: "Contributions to the chemistry of boron. Part 244. Preparation and structural characterization of lithium silylborates", EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, vol. 5, 15 April 1999 (1999-04-15), pages 817 - 823, XP002800249, ISSN: 1434-1948, DOI: 10.1002/(SICI)1099-0682(199905)1999:5<817::AID-EJIC817>3.0.CO 10.1002/(SICI)1099-0682(199905)1999:5<817::AID-EJIC817>3.0.CO *
NÖTH ET AL., CHEM. BER., vol. 115, 1982, pages 934

Also Published As

Publication number Publication date
JP7450054B2 (ja) 2024-03-14
KR20220086658A (ko) 2022-06-23
EP3999515A1 (de) 2022-05-25
CN114206815A (zh) 2022-03-18
JP2023515966A (ja) 2023-04-17
US20230104349A1 (en) 2023-04-06
CN114206815B (zh) 2024-03-08

Similar Documents

Publication Publication Date Title
DE2260282C3 (de) Verfahren zur Herstellung von Silanen aus Disilanen
EP0278368B1 (de) Verfahren zur Herstellung von Chlorosilanen
DE3314734A1 (de) Verfahren zum umwandeln der polysilane in hochsiedenden resten
EP0626414B1 (de) Organosiliciumreste aufweisende Phosphazene, Verfahren zu deren Herstellung und deren Verwendung
EP0514737B1 (de) Verfahren zur Herstellung von Organopolysiloxanen mit mindestens einer an ein Si-Atom gebundenen Cyclopentadienylgruppe
DE112014005811B4 (de) Neutraler Komplex eines cyclischen Silans, Herstellungsverfahren dafür und Verfahren zur Herstellung eines cyclischen hydrierten Silans oder eines cyclischen organischen Silans
DE4111822C1 (de)
EP0205891B1 (de) Phenylengruppen-haltige Organosilane, Verfahren zu ihrer Herstellung
DE1264442B (de) Verfahren zum Austausch von Si-gebundenen Wasserstoff- und Chloratomen in Silanen
JP3288832B2 (ja) ボラジン変性ヒドリドポリシラザンポリマーの生成方法
WO2021170226A1 (de) Halogenierte tetrasilylboranate
DE102009033351B3 (de) Verfahren zur Herstellung von Oligo- und Polysilanen
EP2828270A1 (de) Verfahren zur herstellung von aminoalkylalkoxysilanen
EP0601578B1 (de) Verfahren zur Entfernung von Wasserstoffhaltigen Silanen aus Silanen
EP4041804B1 (de) Verfahren zur herstellung von siloxanen aus hydridosiliciumverbindungen
EP0600479A1 (de) Verfahren zur Herstellung von Dimethylchlorsilan
DE102009046121A1 (de) Verfahren zur Herstellung von Organosilanen
DE3918337A1 (de) Verfahren zur herstellung von organosiloxanen
US3655711A (en) Preparation of cyclic nitrogen-containing organosilicon compounds
WO2020025144A1 (de) Verfahren zur herstellung von triorganosilyloxygruppen aufweisenden organosiloxanen
WO2020169154A1 (de) Hybride silikonbausteine, verfahren zu deren herstellung und verwendung derselben
DE19962567C1 (de) Verfahren zur Herstellung von 1.3-Dihalogen-1.1.3.3-tetra(organyl)disiloxanen
AT248459B (de) Verfahren zur Herstellung von Organosiliciumverbindungen mit Si-gebundenen aromatischen Resten
JPH0470250B2 (de)
WO2000064909A1 (de) Verfahren zur herstellung von triorganylhalogensilanen und diorganyldihalogensilanen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20708060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020708060

Country of ref document: EP

Effective date: 20220217

ENP Entry into the national phase

Ref document number: 20227017378

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022551397

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE