WO2021170080A1 - 量子点发光器件、发光层及制备方法、显示装置 - Google Patents

量子点发光器件、发光层及制备方法、显示装置 Download PDF

Info

Publication number
WO2021170080A1
WO2021170080A1 PCT/CN2021/078105 CN2021078105W WO2021170080A1 WO 2021170080 A1 WO2021170080 A1 WO 2021170080A1 CN 2021078105 W CN2021078105 W CN 2021078105W WO 2021170080 A1 WO2021170080 A1 WO 2021170080A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
layer
halogen element
polymer film
perovskite quantum
Prior art date
Application number
PCT/CN2021/078105
Other languages
English (en)
French (fr)
Inventor
张爱迪
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/435,369 priority Critical patent/US20230174855A1/en
Publication of WO2021170080A1 publication Critical patent/WO2021170080A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present disclosure relates to the field of display, in particular to a quantum dot light-emitting device, a light-emitting layer, a preparation method, and a display device.
  • Perovskite quantum dot light-emitting diodes currently generally adopt a multilayer planar structure similar to QLEDs. There are two problems with such a structure.
  • non-polar solvents such as hexane, heptane, octane, toluene or chloroform are usually used for the film formation of the light-emitting layer material.
  • the electron transport layer usually uses zinc oxide nanoparticles, and zinc oxide is dispersed in a polar solvent such as ethanol. Ethanol has a great destructive effect on the ionic perovskite quantum dots, reducing or quenching the fluorescence performance of the perovskite.
  • the relatively large energy level difference between the quantum dot light-emitting layer and the hole transport layer will block the injection of holes, resulting in an imbalance in the injection rate of electrons and holes, and excessive accumulation of charge carriers At the interface barrier, it not only acts as a non-radiative recombination center, but also increases the starting voltage of the device and shortens the working stability of the device.
  • a quantum dot light-emitting device includes:
  • a siloxane polymer film layer, the siloxane polymer film layer is arranged on one side of the perovskite quantum dot layer containing the second halogen element, and the perovskite quantum dot containing the second halogen element
  • the layer and the siloxane polymer film layer are connected by a chemical bond.
  • the siloxane polymer film layer has a -(Si-O-R)m- structure, R is an alkyl group, and m is an integer greater than 1.
  • the second halogen element includes Cl and/or Br.
  • the hole injection layer is arranged on the anode
  • a hole transport layer is provided on the hole injection layer, and the perovskite quantum dot layer containing a second halogen element is provided on the hole transport layer;
  • the electron transport layer is arranged on the siloxane polymer film layer
  • the electron transport layer is arranged between the siloxane polymer film layer and the cathode.
  • the method for preparing a quantum dot light-emitting layer according to an embodiment of the present disclosure includes:
  • the perovskite quantum dot layer containing the first halogen element has a carboxyl group
  • the silane containing the second halogen element is added to the perovskite quantum dot layer containing the first halogen element to react, so that at least part of the perovskite quantum dot layer containing the first halogen element is converted into the first halogen element-containing perovskite quantum dot layer.
  • a perovskite quantum dot layer containing a dihalogen element, and a siloxane polymer film layer is formed on the side of the perovskite quantum dot layer containing the second halogen element close to the silane containing the second halogen element,
  • the perovskite quantum dot layer containing the second halogen element and the siloxane polymer film layer are connected by a chemical bond.
  • the first halogen element includes Br
  • the second halogen element includes Cl
  • the first halogen element includes I
  • the second halogen element includes Br
  • adding the silane containing the second halogen element to the perovskite quantum dot layer containing the first halogen element for reaction includes:
  • the hydroxyl O atom in the carboxyl group in the perovskite quantum dot layer containing the first halogen element and the Si atom in the silane containing the second halogen element are connected by a chemical bond, so that the second halogen element-containing
  • the O atom in the carboxyl group in the ligand that forms a coordination bond with the quantum dot in the perovskite quantum dot layer and the Si atom in the siloxane polymer film layer are connected by a chemical bond.
  • the siloxane polymer film layer has a -(Si-O-R)m- structure, R is an alkyl group, and m is an integer greater than 1.
  • the method for manufacturing a quantum dot light-emitting device includes:
  • the quantum dot light-emitting layer is formed by the method for preparing the quantum dot light-emitting layer described in the foregoing embodiment.
  • the step of forming a quantum dot light-emitting layer includes:
  • the preparation method further includes: after forming the quantum dot light emitting layer, sequentially forming an electron transport layer and a cathode on the siloxane polymer film layer in the quantum dot light emitting layer.
  • a display device includes the quantum dot light-emitting device as described in the above-mentioned embodiment.
  • FIG. 1 is a schematic diagram of a structure of a quantum dot light-emitting device according to an embodiment of the disclosure
  • FIG. 2 is another schematic diagram of the structure of the quantum dot light-emitting device according to an embodiment of the disclosure
  • FIG. 3 is another schematic diagram of the structure of a quantum dot light-emitting device according to an embodiment of the disclosure.
  • FIG. 4 is a schematic flow chart of a method for preparing a quantum dot light-emitting layer according to an embodiment of the disclosure
  • Figure 5a is a schematic diagram after forming a hole injection layer and a hole transport layer on the anode
  • 5b is a schematic diagram of forming a perovskite quantum dot layer containing the first halogen element
  • Figure 5c is a schematic diagram of forming a siloxane polymer film layer
  • Figure 5d is a schematic diagram of forming an electron transport layer on a siloxane polymer film layer.
  • Siloxane polymer film layer 11 Perovskite quantum dot layer 12 containing the first halogen element;
  • Electron transport layer 50
  • a quantum dot light-emitting device includes:
  • a siloxane polymer film layer, the siloxane polymer film layer is arranged on one side of the perovskite quantum dot layer containing the second halogen element, and the perovskite quantum dot containing the second halogen element
  • the layer and the siloxane polymer film layer are connected by a chemical bond.
  • the siloxane polymer film layer has a -(Si-OR) m -structure, R is an alkyl group, and m is an integer greater than 1.
  • the second halogen element includes Cl and/or Br.
  • the hole injection layer is arranged on the anode
  • a hole transport layer is provided on the hole injection layer, and the perovskite quantum dot layer containing a second halogen element is provided on the hole transport layer;
  • the electron transport layer is arranged on the siloxane polymer film layer
  • the electron transport layer is arranged between the siloxane polymer film layer and the cathode.
  • the method for preparing a quantum dot light-emitting layer according to an embodiment of the present disclosure includes:
  • the perovskite quantum dot layer containing the first halogen element has a carboxyl group
  • the silane containing the second halogen element is added to the perovskite quantum dot layer containing the first halogen element to react, so that at least part of the perovskite quantum dot layer containing the first halogen element is converted into the first halogen element-containing perovskite quantum dot layer.
  • a perovskite quantum dot layer containing a dihalogen element, and a siloxane polymer film layer is formed on the side of the perovskite quantum dot layer containing the second halogen element close to the silane containing the second halogen element,
  • the perovskite quantum dot layer containing the second halogen element and the siloxane polymer film layer are connected by a chemical bond.
  • the first halogen element includes Br
  • the second halogen element includes Cl
  • the first halogen element includes I
  • the second halogen element includes Br
  • adding the silane containing the second halogen element to the perovskite quantum dot layer containing the first halogen element for reaction includes:
  • the hydroxyl O atom in the carboxyl group in the perovskite quantum dot layer containing the first halogen element and the Si atom in the silane containing the second halogen element are connected by a chemical bond, so that the second halogen element-containing
  • the O atom in the carboxyl group in the ligand that forms a coordination bond with the quantum dot in the perovskite quantum dot layer and the Si atom in the siloxane polymer film layer are connected by a chemical bond.
  • the siloxane polymer film layer has a -(Si-OR) m -structure, R is an alkyl group, and m is an integer greater than 1.
  • the method for manufacturing a quantum dot light-emitting device includes:
  • the quantum dot light-emitting layer is formed by the method for preparing the quantum dot light-emitting layer described in the foregoing embodiment.
  • the step of forming a quantum dot light-emitting layer includes:
  • the preparation method further includes: after forming the quantum dot light emitting layer, sequentially forming an electron transport layer and a cathode on the siloxane polymer film layer in the quantum dot light emitting layer.
  • a display device includes the quantum dot light-emitting device as described in the above-mentioned embodiment.
  • FIG. 1 is a schematic diagram of a structure of a quantum dot light-emitting device according to an embodiment of the disclosure
  • FIG. 2 is another schematic diagram of the structure of the quantum dot light-emitting device according to an embodiment of the disclosure
  • FIG. 3 is another schematic diagram of the structure of a quantum dot light-emitting device according to an embodiment of the disclosure.
  • FIG. 4 is a schematic flow chart of a method for preparing a quantum dot light-emitting layer according to an embodiment of the disclosure
  • Figure 5a is a schematic diagram after forming a hole injection layer and a hole transport layer on the anode
  • 5b is a schematic diagram of forming a perovskite quantum dot layer containing the first halogen element
  • Figure 5c is a schematic diagram of forming a siloxane polymer film layer
  • Figure 5d is a schematic diagram of forming an electron transport layer on a siloxane polymer film layer.
  • Siloxane polymer film layer 11 Perovskite quantum dot layer 12 containing the first halogen element;
  • Electron transport layer 50
  • the quantum dot light emitting device according to the embodiment of the present disclosure will be specifically described below.
  • the quantum dot light-emitting device, light-emitting layer, preparation method, and display device provided in the present disclosure are used to solve the problem that polar solvents are easy to cause damage to the perovskite quantum dots, and reduce the fluorescence performance of the perovskite quantum dots, and the electron and hole injection rate Unbalance, too many charge carriers accumulate in the interface barrier, reducing the stability and performance of the device.
  • the quantum dot light-emitting device includes: a perovskite quantum dot layer containing a second halogen element; a siloxane polymer film layer; On one side of the perovskite quantum dot layer containing the second halogen element, the perovskite quantum dot layer containing the second halogen element and the siloxane polymer film layer are connected by a chemical bond.
  • the quantum dot light-emitting device is mainly composed of a perovskite quantum dot layer containing a second halogen element and a siloxane polymer film layer, wherein the size of the perovskite quantum dot containing the second halogen element can be 3nm-20nm, a siloxane polymer film layer is provided on one side of the perovskite quantum dot layer containing the second halogen element.
  • the thickness of the siloxane polymer film layer can be 0.413nm-3.0nm.
  • the polymer film layer can coordinate and passivate the defect sites on the surface of the perovskite quantum dot layer.
  • the siloxane polymer film layer can isolate water and oxygen and avoid the damage of the perovskite quantum dots by polar solvents. Preventing the reduction or quenching of the fluorescence performance of the perovskite; the perovskite quantum dot layer containing the second halogen element and the siloxane polymer film layer are connected by chemical bonds, which can control the carrier injection balance, so that electrons The recombination with holes is carried out in the light-emitting layer to improve the performance of the device.
  • the O atom in the carboxyl group in the ligand that forms a coordination bond with the quantum dot in the perovskite quantum dot layer containing the second halogen element and the siloxane polymer film The Si atoms in the layer are connected by chemical bonds, so that the perovskite quantum dot layer containing the second halogen element and the siloxane polymer film layer can be connected by chemical bonds to form an organic whole.
  • the low carrier mobility can reduce the electron transmission rate to a certain extent, thereby regulating the carrier balance and improving the efficiency and stability of the device.
  • the siloxane polymer film layer has a -(Si-OR) m -structure
  • R is an alkyl group
  • m is an integer greater than 1
  • the -( The Si-OR) m -structure is relatively stable, and it has a good protective effect on the perovskite quantum dot layer containing the second halogen element, can isolate water and oxygen, and avoid the perovskite quantum dot layer containing the second halogen element The damage can reduce the electron transmission rate and regulate the carrier balance.
  • the second halogen element may include Cl and/or Br.
  • the perovskite quantum dot layer containing the second halogen element may include CsPbCl 3 quantum dots, CsPbBrCl 2 quantum dots, CsPbBr 2 Cl quantum dots, or CsPbBr 3 quantum dots.
  • the quantum dot light-emitting device may further include an anode 20, a hole injection layer 30, a hole transport layer 40, an electron transport layer 50 and a cathode 60, wherein, the anode 20 can be indium tin oxide (ITO), and holes can be generated through the anode 10.
  • the substrate 70 may also be included.
  • the substrate 70 may be transparent, such as transparent glass, and the anode 20 may be disposed on the substrate 70.
  • the hole injection layer 30 is disposed on the anode 20.
  • the hole injection layer 30 can be prepared by a spin coating process, and the hole injection layer 30 can be PEDOT (3,4-ethylenedioxythiophene monomer polymer): PSS (polystyrene sulfonate) hole injection material,
  • the hole injection layer 30 can be a PEDOT (3,4-ethylenedioxythiophene monomer polymer) hole injection material, which can be formed into a film layer through a spin coating process and heating, wherein the film formation temperature can be reasonable according to the actual material Selection, for example, 200-230°C or 130-150°C can be selected, and the film can be formed in the air.
  • the thickness of the hole injection layer 30 can be reasonably selected according to actual needs, and the thickness of the hole injection layer 30 can be adjusted according to the rotation speed of the homogenizer.
  • the hole transport layer 40 is provided on the hole injection layer 30, and the perovskite quantum dot layer 10 containing the second halogen element is provided on the hole transport layer 40.
  • organic materials can be used as the material of the hole transport layer to choose poly[(9,9-dioctylfluorene-2,7-diyl)-co-(4,4′-(N-(4-sec-butylbenzene) Base) diphenylamine)] (TFB) material
  • the hole transport layer 40 can be formed by a spin coating process and heated to form a film, wherein the film forming temperature can be reasonably selected according to the actual material, for example, it can be selected at 200-250 °C and The film is formed in an inert gas.
  • the film forming temperature of TFB can be 130-150°C and the film is formed in an inert gas.
  • the thickness of the hole transport layer 40 can be selected reasonably, and the thickness of the hole transport layer 40 can be adjusted by the speed of the homogenizer
  • the electron transport layer 50 is disposed on the siloxane polymer film layer 11.
  • the electron transport layer 50 can be ZnO material nanoparticles or ZnMgO materials.
  • the electron transport layer 50 can be formed by spin-coating ZnO nanoparticles, and the temperature is 80-120°C.
  • the film is formed by heating, wherein the material of the electron transport layer 50 can also be ZnO nanoparticles doped with different metals, such as doped nanoparticles such as magnesium zinc oxide, aluminum zinc oxide, or zirconium zinc oxide.
  • the cathode 60 is disposed on the electron transport layer 50, and the electron transport layer 50 is disposed between the siloxane polymer film layer 11 and the cathode 60.
  • the cathode 60 can be Al or Mg/Ag material, and the cathode 60 can be formed by evaporation, for example, an aluminum film can be formed by evaporation or an indium zinc oxide film can be formed by sputtering, and electrons can be generated by the cathode 60; Lid package, the device can be packaged with ultraviolet curing glue.
  • the electrons generated by the cathode 60 are transmitted through the electron transport layer 50 to the siloxane polymer film layer 11, and then through the siloxane polymer film layer 11 to the perovskite quantum dot layer 10 containing the second halogen element.
  • the siloxane polymerizes
  • the material film layer 11 has a low carrier mobility, which can reduce the electron transmission rate to a certain extent, thereby regulating the carrier balance, and improving the efficiency and stability of the device.
  • the embodiment of the present disclosure provides a method for preparing a quantum dot light-emitting layer.
  • the method for preparing a quantum dot light-emitting layer includes:
  • Step S11 forming a perovskite quantum dot layer containing a first halogen element, the perovskite quantum dot layer containing the first halogen element has a carboxyl group; the perovskite quantum dot containing the first halogen element can be dissolved in In a low-boiling solvent, such as chloroform, toluene, n-hexane, n-octane or n-heptane, a low-boiling solution of perovskite quantum dots containing the first halogen element can be spin-coated on the desired substrate, and then 80-120°C drying to form film, the specific low boiling point solvent and film forming temperature can be selected according to the actual situation.
  • a low-boiling solvent such as chloroform, toluene, n-hexane, n-octane or n-heptane
  • Step S12 adding silane containing a second halogen element to the perovskite quantum dot layer containing the first halogen element for reaction, so that at least part of the perovskite quantum dot layer containing the first halogen element is converted
  • a perovskite quantum dot layer containing a second halogen element is formed, and a siloxane polymer is formed on the side of the perovskite quantum dot layer containing the second halogen element close to the silane containing the second halogen element
  • the film layer, the perovskite quantum dot layer containing the second halogen element and the siloxane polymer film layer are connected by a chemical bond.
  • the silane containing the second halogen element can be spin-coated on the perovskite quantum dot layer containing the first halogen element through a spin coating process, and after the spin coating is formed into a liquid film, it is left for a period of time to react, and it can be selected Appropriate temperature and time, for example, it can be placed at room temperature for 30min-120min, and then the perovskite quantum dot layer containing the second halogen element is prepared in situ, and the perovskite quantum dot layer containing the second halogen element is prepared in situ.
  • the size can be 3nm-20nm, and a siloxane polymer film layer is formed on the side of the perovskite quantum dot layer containing the second halogen element close to the silane containing the second halogen element.
  • the thickness is between 0.413 nm and 3.0 nm, and the thickness of the siloxane polymer film layer can be adjusted according to actual reaction conditions.
  • the composition of the perovskite quantum dot layer can be adjusted, and the spectral range of the quantum dot light-emitting layer can be adjusted.
  • the silane containing the second halogen element is added to the perovskite quantum dot layer containing the first halogen element to carry out the reaction process, the silane containing the second halogen element and the carboxyl group in the perovskite quantum dot layer containing the first halogen element Reaction, the second halogen ion in the silane can replace the first halogen ion in the perovskite quantum dot layer containing the first halogen element, and the silane containing the second halogen element can react with a small amount of water molecules in the quantum dot layer to hydrolyze ,
  • the second halide ion can carry out rapid anion exchange (it can be completed between tens of microseconds to a few seconds), and at the same time, due to the slow reaction rate of the silicon-oxygen bond (it takes several hours to tens of hours to complete), finally Slowly form a siloxane polymer film layer.
  • the second halogen ion in the silane containing the second halogen element can replace part or all of the first halogen ion in the perovskite quantum dot layer containing the first halogen element, so that the perovskite quantum dot containing the first halogen element Part or all of the layer is converted into a perovskite quantum dot layer containing the second halogen element, and silicon oxide is formed on the side of the perovskite quantum dot layer containing the second halogen element close to the silane containing the second halogen element
  • the alkane polymer film layer and the siloxane polymer film layer can coordinate and passivate the defect sites on the surface of the perovskite quantum dot layer.
  • the siloxane polymer film layer can isolate water and oxygen and avoid polarity.
  • the solvent destroys the perovskite quantum dots to prevent the reduction or quenching of the perovskite's fluorescence performance; the perovskite quantum dot layer containing the second halogen element and the siloxane polymer film layer are connected by chemical bonds, which can be controlled.
  • the carrier injection is balanced, so that the recombination of electrons and holes is carried out in the light-emitting layer, and the performance of the device is improved.
  • the perovskite quantum dots containing the first halogen element may be CsPbBr 3 quantum dots or CsPbI 3 quantum dots.
  • the perovskite quantum dots containing the first halogen element may be CsPbBr 3 quantum dots.
  • the dihalogen element silane may be RSiCl 3 , where R is an alkyl group, for example, the silane containing the second halogen element may be trimethylchlorosilane, dodecyltrichlorosilane or phenyltrichlorosilane, RSiCl 3
  • the Cl ion in CsPbBr 3 can replace at least one Br ion in CsPbBr 3 to generate one or more of CsPbBrCl 2 , CsPbBr 2 Cl or CsPbBr 3; when the perovskite quantum dots containing the first halogen element are CsPbBr 3 quantum dots
  • a silane reagent containing a second halogen element blue light quantum dots with high fluorescence performance can be prepared in situ.
  • the second silane contains a halogen element may be RSiBr 3, wherein, R is an alkyl group, RSiBr Br ions 3 may be substituted in the CsPbI 3 At least one I ion generates one or more of CsPbIBr 2 , CsPbI 2 Br, or CsPbI 3.
  • the perovskite quantum dots in the perovskite quantum dot layer containing the first halogen element may be ABX 3 perovskite quantum dots and/or rare earth doped ABX 3 perovskite quantum dots, where A includes: Any one or more of organic amine group, formamidine, and cesium ion; B includes: lead ion, tin ion, bismuth ion or silver ion; at least one of the three halogen X is Br or I.
  • the perovskite quantum dots in the perovskite quantum dot layer containing the first halogen element lead-containing perovskite quantum dots, such as organic-inorganic lead halide MAPbX 3 quantum dots, all-inorganic cesium lead halide CsPbX 3 quantum dots Dots, rare earth-doped MAPbX 3 and CsPbX 3 quantum dots, where MA is CH 3 NH 3 , halogen X is Cl, Br or I, and at least one of the three halogen X is Br or I; bismuth-based, tin-based and silver Perovskite-based quantum dots, such as CsSnX 3 quantum dots, CsSbX 3 quantum dots, Cs 2 SnX 6 quantum dots, Bi-doped CsSnX 3 , Cs 2 SnX 6 quantum dots, Cs 2 AgInCl 6 quantum dots, MA 3 Bi 2 Br 9 quantum dots, CH 3 NH 3 SbX 3 quantum dots, CH 3
  • the first halogen element includes Br and the second halogen element includes Cl; and/or, the first halogen element includes I, and the second halogen element includes Br.
  • the Cl ion in the silane containing Cl can replace the Br ion in the perovskite quantum dot containing the first halogen element;
  • the first halogen element includes I
  • the second halogen element includes Br
  • the Br ion in the silane containing Br can replace the I ion in the perovskite quantum dots containing the first halogen element;
  • the first halogen element may include Br and I
  • the second halogen element may include Cl
  • the Cl ion in the silane containing the second halogen element can replace the Br ion in the perovskite quantum dot containing the first halogen element
  • the Br ion in the silane containing the second halogen element can replace the calcium
  • adding the silane containing the second halogen element to the perovskite quantum dot layer containing the first halogen element to perform the reaction includes:
  • the hydroxyl O atom in the carboxyl group in the perovskite quantum dot layer containing the first halogen element and the Si atom in the silane containing the second halogen element are connected by a chemical bond to make the perovskite quantum dot layer containing the second halogen element
  • the O atom in the carboxyl group in the ligand that forms a coordination bond with the quantum dot and the Si atom in the siloxane polymer film are connected by a chemical bond.
  • the perovskite quantum dot layer containing the second halogen element and the siloxane polymer film layer can be connected by chemical bonds to form an organic whole. Since the siloxane polymer substance has a lower carrier mobility, it can be Reduce the electron transmission rate to a certain extent, and then regulate the carrier balance.
  • the siloxane polymer film layer has a -(Si-OR) m -structure, R is an alkyl group, and m is an integer greater than 1.
  • the -(Si-OR) m -structure in the siloxane polymer film layer is relatively stable, which can protect the perovskite quantum dot layer containing the second halogen element, and can isolate water and oxygen, and avoid containing The perovskite quantum dot layer of the second halogen element is destroyed, which can reduce the electron transmission rate and regulate the carrier balance.
  • the quantum dot light-emitting device includes a perovskite quantum dot layer containing a second halogen element; a siloxane polymer film layer, the siloxane polymer film layer is arranged on the On one side of the perovskite quantum dot layer containing the second halogen element, the perovskite quantum dot layer containing the second halogen element and the siloxane polymer film layer are connected by a chemical bond.
  • a siloxane polymer film layer is provided on one side of the perovskite quantum dot layer containing the second halogen element, and the siloxane polymer film layer can isolate water and oxygen,
  • the siloxane polymer film layer can isolate water and oxygen, to prevent the polar solvent from damaging the perovskite quantum dots, to prevent the reduction or quenching of the fluorescence performance of the perovskite, pass between the perovskite quantum dot layer containing the second halogen element and the siloxane polymer film layer
  • the chemical bond connection can control the carrier injection balance, so that the recombination of electrons and holes is carried out in the light-emitting layer, and the performance of the device is improved.
  • the perovskite quantum dots of the first halogen element may be CsPbBr 3 quantum dots
  • the silane containing the second halogen element may be RSiCl 3 , where R is an alkyl group
  • the CsPbBr 3 quantum dots and The preparation method of RSiCl 3 for preparing the quantum dot light-emitting layer can be as follows:
  • the CsPbBr 3 quantum dot layer is formed first, and the CsPbBr 3 quantum dot layer has carboxyl groups;
  • RSiCl 3 silane is added to the CsPbBr 3 quantum dot layer to react, so that part or all of the CsPbBr 3 quantum dot layer is converted into one or more of CsPbBrCl 2 quantum dots, CsPbBr 2 Cl quantum dots or CsPbBr 3 quantum dots.
  • the CsPbBr 3 quantum dot layer is completely converted into a CsPbCl 3 quantum dot layer, and a siloxane polymer film layer is formed on the side of the CsPbCl 3 quantum dot layer close to RSiCl 3 silane, and the CsPbCl 3 quantum dot layer is combined with silica
  • the alkane polymer film layers are connected by a chemical bond.
  • the hydroxyl O atom in the carboxyl group in the original CsPbBr 3 quantum dot layer is connected to the Si atom in the original RSiCl 3 silane by a chemical bond, so that the quantum dots in the CsPbCl 3 quantum dot layer are formed
  • the O atom in the carboxyl group in the ligand of the coordination bond and the Si atom in the siloxane polymer film are connected by a chemical bond.
  • the silane can be reacted RSiCl 3 and oleic carboxyl ligands on the quantum dot layer CsPbBr 3 in the quantum dots, in the RSiCl 3 Cl can partially or completely replace Br in CsPbBr 3.
  • the specific reaction process can be as follows:
  • CsPbBr 3 quantum dots can be converted into CsPbCl 3 quantum dots, and can also be converted into CsPbBrCl 2 and CsPbBr 2 Cl, where QDs represents inorganic crystals of perovskite quantum dots.
  • the yield is lower, and the green light CsPbBr 3 quantum dots with higher yield can be prepared in situ by anion replacement to prepare blue CsPbCl 3 perovskite quantum dots Dots, high yield, can produce CsPbCl 3 quantum dots with high fluorescence performance, and maintain or improve the fluorescence performance of the light-emitting layer to the greatest extent.
  • RSiCl 3 silane can react with the carboxyl group in the oleic acid ligand on the quantum dots in the CsPbBr 3 quantum dot layer.
  • the specific reaction process can be as follows:
  • QDs represents the inorganic crystals of perovskite quantum dots.
  • the Cl produced in reaction (5) can react with CsPbBr 3 quantum dots (2)-(4), and then at least one Br in the CsPbBr 3 quantum dots is replaced with Cl produces CsPbCl 3 quantum dots, CsPbBrCl 2 quantum dots, CsPbBr 2 Cl quantum dots or CsPbBr 3 quantum dots.
  • RSiCl 3 silane can react with a small amount of water molecules in the quantum dot layer.
  • the specific reaction is as follows:
  • the hydroxyl group in the silicon-oxygen compound produced in reaction (6) can react with the product in reaction (5).
  • the specific reaction process is as follows:
  • the compound produced in reaction (8) can further undergo reactions similar to reaction processes (7) and (8) to form a network structure, and then form a siloxane polymer film layer on the quantum dot layer.
  • the structural formula of the polymer film layer can be abbreviated as follows: -(Si-OR) m -, R is an alkyl group, m is greater than 1, the -(Si-OR) m -structure in the siloxane polymer film layer is relatively stable, It has a good protective effect on the perovskite quantum dot layer, can isolate water and oxygen, prevent the perovskite quantum dot layer from being damaged, can reduce the electron transmission rate, and regulate the balance of carriers.
  • the embodiment of the present disclosure provides a method for manufacturing a quantum dot light-emitting device.
  • the preparation method of the quantum dot light-emitting device may include adopting the method for preparing the quantum dot light-emitting layer in the foregoing embodiments to form the quantum dot light-emitting layer.
  • a siloxane polymer film layer is formed on one side of the perovskite quantum dot layer containing the second halogen element, and the perovskite quantum dot layer containing the second halogen element is connected to the siloxane polymer film layer by a chemical bond .
  • the perovskite quantum dot layer containing the first halogen element is formed first, and the perovskite quantum dot layer containing the first halogen element has a carboxyl group;
  • the silane of the dihalogen element reacts so that at least part of the perovskite quantum dot layer containing the first halogen element is converted into the perovskite quantum dot layer containing the second halogen element, and the perovskite quantum dot layer contains the second halogen element.
  • a siloxane polymer film layer is formed on the side of the mineral quantum dot layer close to the silane containing the second halogen element, and the perovskite quantum dot layer containing the second halogen element and the siloxane polymer film layer are connected by a chemical bond .
  • the siloxane polymer film layer can coordinate and passivate the defect sites on the surface of the perovskite quantum dot layer.
  • the siloxane polymer film layer can isolate water and oxygen, and avoid polar solvents on the perovskite quantum dots.
  • the destruction of the dots, the perovskite quantum dot layer containing the second halogen element and the siloxane polymer film layer can be chemically bonded to form an organic whole, because the siloxane polymer film layer has a lower carrier mobility , Can reduce the electron transmission rate to a certain extent, and then regulate the carrier balance, which can improve the stability and life of the device.
  • the O atom in the carboxyl group in the ligand that forms the coordination bond with the quantum dot in the perovskite quantum dot layer containing the second halogen element and the Si in the siloxane polymer film layer The atoms are connected by chemical bonds. This enables the perovskite quantum dot layer containing the second halogen element and the siloxane polymer film layer to be connected by chemical bonds to form an organic whole. Since the siloxane polymer substance has a lower carrier mobility, It can reduce the electron transmission rate to a certain extent, thereby regulating the carrier balance.
  • the siloxane polymer film layer has a -(Si-OR) m -structure, R is an alkyl group, and m is an integer greater than 1.
  • the -(Si-OR) m -structure in the siloxane polymer film layer is relatively stable, which can protect the perovskite quantum dot layer containing the second halogen element, and can isolate water and oxygen, and avoid containing The perovskite quantum dot layer of the second halogen element is destroyed, which can reduce the electron transmission rate and regulate the carrier balance.
  • the second halogen element includes Cl and/or Br.
  • the first halogen element includes Br and the silane containing the second halogen element includes Cl
  • the second halogen element in the perovskite quantum dot layer containing the second halogen element may include Cl; when the first halogen element includes I.
  • the second halogen element in the perovskite quantum dot layer containing the second halogen element may include Br; when the first halogen element includes Br and I, it contains the second halogen
  • the elemental silane includes Cl and Br
  • the second halogen element in the perovskite quantum dot layer containing the second halogen element may include Cl and Br
  • the second halogen element specifically including Cl and/or Br may be selected according to actual needs It can be replaced by ion replacement method to obtain the required second halogen element perovskite quantum dot layer.
  • the step of forming a quantum dot light-emitting layer may include: sequentially forming an anode 20, a hole injection layer 30, and a hole transport layer 40, and forming a quantum dot light-emitting layer on the hole transport layer 40
  • the preparation method of the quantum dot light-emitting device may further include: after forming the quantum dot light-emitting layer, sequentially forming an electron transport layer 50 and a cathode 60 on the siloxane polymer film layer 11 in the quantum dot light-emitting layer.
  • the anode 20 is formed before forming the perovskite quantum dot layer 10 containing the second halogen element; the hole injection layer 30 and the hole transport layer 40 are sequentially formed on the anode 20; After the siloxane polymer film layer 11 is formed on one side of the perovskite quantum dot layer 10, an electron transport layer 50 and a cathode 60 are sequentially formed on the siloxane polymer film layer 11.
  • the anode 20 can be formed on the substrate first, the ITO and the substrate are cleaned by ultrasonic cleaning with water and isopropanol respectively, and treated with ultraviolet light for 5-10 minutes; as shown in Figure 5a, a hole injection layer 30 and a cavity are sequentially formed on the anode 20.
  • Hole transport layer 40 forming a perovskite quantum dot layer containing a second halogen element; forming a siloxane polymer film layer 11 on one side of the perovskite quantum dot layer containing a second halogen element, containing the second halogen element
  • the perovskite quantum dot layer and the siloxane polymer film layer 11 are connected by chemical bonds. As shown in FIG.
  • the perovskite quantum dot layer 12 containing the first halogen element can be formed first, and the first The perovskite quantum dot layer 12 containing the halogen element has a carboxyl group, and the silane containing the second halogen element is added to the perovskite quantum dot layer 12 containing the first halogen element to react, so that the perovskite containing the first halogen element At least part of the quantum dot layer 12 is transformed into a perovskite quantum dot layer 10 containing a second halogen element, as shown in FIG.
  • the siloxane polymer film layer 11 is formed on one side of the silane of the halogen element; as shown in FIG. 5d and FIG.
  • an electron transport layer 50 and a cathode 60 are sequentially formed on the siloxane polymer film layer 11.
  • the siloxane polymer film layer 11 can isolate water and oxygen. Since the surface functional group of the siloxane polymer film layer 11 is a hydroxyl group, in the process of forming the electron transport layer 50, the compatibility with the material solution of the electron transport layer can be enhanced , And prevent damage by the solvent of the electron transport layer material (ethanol, etc.), avoid the damage of the perovskite quantum dot layer by the polar solvent, and the polar solvent will not cause damage during the process of forming the electron transport layer 50.
  • the perovskite quantum dot layer of the dihalogen element and the siloxane polymer film layer 11 can be connected by chemical bonds to form an organic whole. Since the siloxane polymer film layer has a lower carrier mobility, it can be It reduces the electron transfer rate, and then regulates the carrier balance.
  • the embodiments of the present disclosure provide a display device, and the display device includes the quantum dot light-emitting device as in the above-mentioned embodiments.
  • the display device of the embodiment of the present disclosure has a quantum dot light-emitting device, and the siloxane polymer film layer in the quantum dot light-emitting device has a lower carrier mobility, which can reduce the electron transmission rate, thereby regulating the carrier balance, It can improve the stability and life of the device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

本公开实施例提供一种量子点发光器件、发光层及制备方法、显示装置,器件包括含有第二卤素元素的钙钛矿量子点层;硅氧烷聚合物膜层,所述硅氧烷聚合物膜层设在所述含有第二卤素元素的钙钛矿量子点层的一侧,所述含有第二卤素元素的钙钛矿量子点层与所述硅氧烷聚合物膜层之间通过化学键相连。

Description

量子点发光器件、发光层及制备方法、显示装置
相关申请的交叉引用
本申请主张在2020年2月28日在中国提交的中国专利申请号No.202010128003.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示领域,具体涉及一种量子点发光器件、发光层及制备方法、显示装置。
背景技术
钙钛矿量子点发光二极管(PQLED)目前普遍采用的是类似于QLED的多层平面结构,采用这样的结构存在两个问题。在PQLED功能层制备过程中,发光层材料的成膜通常选用非极性溶剂,如己烷、庚烷、辛烷、甲苯或氯仿等。而电子传输层通常采用氧化锌纳米粒子,氧化锌则分散在极性溶剂如乙醇中,乙醇对离子型的钙钛矿量子点具有非常大的破坏作用,降低或者淬灭钙钛矿的荧光性能,导致器件性能下降。另外,PQLED器件中电子注入过量,量子点发光层和空穴传输层之间相对较大的能级差会阻挡空穴的注入,导致电子和空穴注入速率不平衡,过多的电荷载子累积在界面势垒,不仅起到非辐射复合中心,而且会增加器件启动电压以及缩短器件的工作稳定性。
发明内容
本公开采用以下技术方案:
第一方面,根据本公开实施例的量子点发光器件,包括:
含有第二卤素元素的钙钛矿量子点层;
硅氧烷聚合物膜层,所述硅氧烷聚合物膜层设在所述含有第二卤素元素的钙钛矿量子点层的一侧,所述含有第二卤素元素的钙钛矿量子点层与所述硅氧烷聚合物膜层之间通过化学键相连。
其中,所述含有第二卤素元素的钙钛矿量子点层中与量子点形成配位键 的配体中的羧基中的O原子与所述硅氧烷聚合物膜层中的Si原子之间通过化学键相连。
其中,所述硅氧烷聚合物膜层中具有-(Si-O-R)m-结构,R为烷基,m为大于1的整数。
其中,所述第二卤素元素包括Cl和/或Br。
其中,还包括:
阳极;
空穴注入层,设置于所述阳极上;
空穴传输层,设置于所述空穴注入层上,所述含有第二卤素元素的钙钛矿量子点层设在所述空穴传输层上;
电子传输层,设置于所述硅氧烷聚合物膜层上;
阴极,所述电子传输层设置于所述硅氧烷聚合物膜层与所述阴极之间。
第二方面,根据本公开实施例的量子点发光层的制备方法,包括:
形成含有第一卤素元素的钙钛矿量子点层,所述含有第一卤素元素的钙钛矿量子点层中具有羧基;
在所述含有第一卤素元素的钙钛矿量子点层上加入含有第二卤素元素的硅烷进行反应,使得所述含有第一卤素元素的钙钛矿量子点层中的至少部分转化成含有第二卤素元素的钙钛矿量子点层,并在所述含有第二卤素元素的钙钛矿量子点层的靠近所述含有第二卤素元素的硅烷的一侧形成硅氧烷聚合物膜层,所述含有第二卤素元素的钙钛矿量子点层与所述硅氧烷聚合物膜层之间通过化学键相连。
其中,所述第一卤素元素包括Br,所述第二卤素元素包括Cl;
和/或,所述第一卤素元素包括I,所述第二卤素元素包括Br。
其中,在所述含有第一卤素元素的钙钛矿量子点层上加入含有第二卤素元素的硅烷进行反应,包括:
所述含有第一卤素元素的钙钛矿量子点层中的羧基中的羟基O原子与所述含有第二卤素元素的硅烷中的Si原子通过化学键相连,以使所述含有第二卤素元素的钙钛矿量子点层中与量子点形成配位键的配体中的羧基中的O原子与所述硅氧烷聚合物膜层中的Si原子之间通过化学键相连。
其中,所述硅氧烷聚合物膜层中具有-(Si-O-R)m-结构,R为烷基,m为大于1的整数。
第三方面,根据本公开实施例的量子点发光器件的制备方法,包括:
采用上述实施例中所述的量子点发光层的制备方法形成量子点发光层。
其中,所述形成量子点发光层的步骤包括:
依次形成阳极、空穴注入层和空穴传输层,在所述空穴传输层上形成所述量子点发光层;
所述制备方法还包括:在形成所述量子点发光层之后,在所述量子点发光层中的硅氧烷聚合物膜层上依次形成电子传输层和阴极。
第四方面,根据本公开实施例的显示装置包括如上述实施例中所述的量子点发光器件。
附图说明
图1为本公开实施例的量子点发光器件的一个结构示意图;
图2为本公开实施例的量子点发光器件的另一个结构示意图;
图3为本公开实施例的量子点发光器件的另一个结构示意图;
图4为本公开实施例的量子点发光层的制备方法的一个流程示意图;
图5a为在阳极上形成空穴注入层和空穴传输层后的示意图;
图5b为形成含有第一卤素元素的钙钛矿量子点层的示意图;
图5c为形成硅氧烷聚合物膜层的示意图;
图5d为在硅氧烷聚合物膜层上形成电子传输层的示意图。
附图标记
含有第二卤素元素的钙钛矿量子点层10;
硅氧烷聚合物膜层11;含有第一卤素元素的钙钛矿量子点层12;
阳极20;
空穴注入层30;
空穴传输层40;
电子传输层50;
阴极60;
基板70。
具体实施方式
本公开采用以下技术方案:
第一方面,根据本公开实施例的量子点发光器件,包括:
含有第二卤素元素的钙钛矿量子点层;
硅氧烷聚合物膜层,所述硅氧烷聚合物膜层设在所述含有第二卤素元素的钙钛矿量子点层的一侧,所述含有第二卤素元素的钙钛矿量子点层与所述硅氧烷聚合物膜层之间通过化学键相连。
其中,所述含有第二卤素元素的钙钛矿量子点层中与量子点形成配位键的配体中的羧基中的O原子与所述硅氧烷聚合物膜层中的Si原子之间通过化学键相连。
其中,所述硅氧烷聚合物膜层中具有-(Si-O-R) m-结构,R为烷基,m为大于1的整数。
其中,所述第二卤素元素包括Cl和/或Br。
其中,还包括:
阳极;
空穴注入层,设置于所述阳极上;
空穴传输层,设置于所述空穴注入层上,所述含有第二卤素元素的钙钛矿量子点层设在所述空穴传输层上;
电子传输层,设置于所述硅氧烷聚合物膜层上;
阴极,所述电子传输层设置于所述硅氧烷聚合物膜层与所述阴极之间。
第二方面,根据本公开实施例的量子点发光层的制备方法,包括:
形成含有第一卤素元素的钙钛矿量子点层,所述含有第一卤素元素的钙钛矿量子点层中具有羧基;
在所述含有第一卤素元素的钙钛矿量子点层上加入含有第二卤素元素的硅烷进行反应,使得所述含有第一卤素元素的钙钛矿量子点层中的至少部分转化成含有第二卤素元素的钙钛矿量子点层,并在所述含有第二卤素元素的 钙钛矿量子点层的靠近所述含有第二卤素元素的硅烷的一侧形成硅氧烷聚合物膜层,所述含有第二卤素元素的钙钛矿量子点层与所述硅氧烷聚合物膜层之间通过化学键相连。
其中,所述第一卤素元素包括Br,所述第二卤素元素包括Cl;
和/或,所述第一卤素元素包括I,所述第二卤素元素包括Br。
其中,在所述含有第一卤素元素的钙钛矿量子点层上加入含有第二卤素元素的硅烷进行反应,包括:
所述含有第一卤素元素的钙钛矿量子点层中的羧基中的羟基O原子与所述含有第二卤素元素的硅烷中的Si原子通过化学键相连,以使所述含有第二卤素元素的钙钛矿量子点层中与量子点形成配位键的配体中的羧基中的O原子与所述硅氧烷聚合物膜层中的Si原子之间通过化学键相连。
其中,所述硅氧烷聚合物膜层中具有-(Si-O-R) m-结构,R为烷基,m为大于1的整数。
第三方面,根据本公开实施例的量子点发光器件的制备方法,包括:
采用上述实施例中所述的量子点发光层的制备方法形成量子点发光层。
其中,所述形成量子点发光层的步骤包括:
依次形成阳极、空穴注入层和空穴传输层,在所述空穴传输层上形成所述量子点发光层;
所述制备方法还包括:在形成所述量子点发光层之后,在所述量子点发光层中的硅氧烷聚合物膜层上依次形成电子传输层和阴极。
第四方面,根据本公开实施例的显示装置包括如上述实施例中所述的量子点发光器件。
附图说明
图1为本公开实施例的量子点发光器件的一个结构示意图;
图2为本公开实施例的量子点发光器件的另一个结构示意图;
图3为本公开实施例的量子点发光器件的另一个结构示意图;
图4为本公开实施例的量子点发光层的制备方法的一个流程示意图;
图5a为在阳极上形成空穴注入层和空穴传输层后的示意图;
图5b为形成含有第一卤素元素的钙钛矿量子点层的示意图;
图5c为形成硅氧烷聚合物膜层的示意图;
图5d为在硅氧烷聚合物膜层上形成电子传输层的示意图。
附图标记
含有第二卤素元素的钙钛矿量子点层10;
硅氧烷聚合物膜层11;含有第一卤素元素的钙钛矿量子点层12;
阳极20;
空穴注入层30;
空穴传输层40;
电子传输层50;
阴极60;
基板70。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
下面具体描述根据本公开实施例的量子点发光器件。
本公开提供的量子点发光器件、发光层及制备方法、显示装置,用以解决极性溶剂对钙钛矿量子点易造成破坏,降低钙钛矿量子点的荧光性能,电子和空穴注入速率不平衡,过多的电荷载子累积在界面势垒,降低器件的稳定性和性能的问题。
如图1所示,根据本公开实施例的量子点发光器件包括:含有第二卤素元素的钙钛矿量子点层;硅氧烷聚合物膜层,硅氧烷聚合物膜层设在含有第二卤素元素的钙钛矿量子点层的一侧,含有第二卤素元素的钙钛矿量子点层与硅氧烷聚合物膜层之间通过化学键相连。
也就是说,量子点发光器件主要由含有第二卤素元素的钙钛矿量子点层和硅氧烷聚合物膜层构成,其中,含有第二卤素元素的钙钛矿量子点的尺寸大小可以为3nm-20nm,在含有第二卤素元素的钙钛矿量子点层的一侧设有硅氧烷聚合物膜层,硅氧烷聚合物膜层的厚度可以为0.413nm-3.0nm,硅氧烷聚合物膜层可以对钙钛矿量子点层表面的缺陷位点进行配位和钝化,硅氧烷聚合物膜层能够隔绝水和氧,避免极性溶剂对钙钛矿量子点的破坏,防止降低或者淬灭钙钛矿的荧光性能;含有第二卤素元素的钙钛矿量子点层与所述硅氧烷聚合物膜层之间通过化学键相连,能够调控载流子注入平衡,使得电子和空穴的复合在发光层进行,提高器件性能。
在本公开的一些实施例中,所述含有第二卤素元素的钙钛矿量子点层中与量子点形成配位键的配体中的羧基中的O原子与所述硅氧烷聚合物膜层中的Si原子之间通过化学键相连,使得含有第二卤素元素的钙钛矿量子点层与硅氧烷聚合物膜层能够通过化学键连接形成有机整体,由于硅氧烷聚合物类物质具有较低的载流子迁移率,可以在一定程度上削减电子传输速率,进而调控载流子平衡,提高器件效率和稳定性。
在本公开的实施例中,硅氧烷聚合物膜层中具有-(Si-O-R) m-结构,R为烷基,m为大于1的整数,硅氧烷聚合物膜层中的-(Si-O-R) m-结构较为稳定,能够对含有第二卤素元素的钙钛矿量子点层具有较好的保护作用,能够隔绝水和氧,避免含有第二卤素元素的钙钛矿量子点层受到破坏,可以削减电子传输速率,调控载流子平衡。
在本公开的实施例中,所述第二卤素元素可以包括Cl和/或Br,比如,含有第二卤素元素的钙钛矿量子点层中可以包括CsPbCl 3量子点、CsPbBrCl 2量子点、CsPbBr 2Cl量子点、或CsPbBr 3量子点。
在本公开的一些实施例中,如图2所示和图3所示,量子点发光器件还可以包括阳极20、空穴注入层30、空穴传输层40、电子传输层50和阴极60,其中,阳极20可以为氧化铟锡(Indium tin oxide,ITO),通过阳极10可以产生空穴。另外,还可以包括基板70,基板70可以为透明状,比如透明玻璃,可以将阳极20设置在基板70上。空穴注入层30设置于阳极20上。可以采用旋涂工艺制备空穴注入层30,空穴注入层30可以为PEDOT(3,4- 乙烯二氧噻吩单体的聚合物):PSS(聚苯乙烯磺酸盐)空穴注入材料,空穴注入层30可以为PEDOT(3,4-乙烯二氧噻吩单体的聚合物)空穴注入材料,可以通过旋涂工艺并加热成膜层,其中,成膜温度可以根据实际的材料合理选择,比如可以选择为200-230℃或130-150℃,可以在空气中成膜。空穴注入层30厚度可以根据实际需要合理选择,空穴注入层30的厚度可以根据匀胶机转速来调控。
空穴传输层40设置于空穴注入层30上,含有第二卤素元素的钙钛矿量子点层10设在空穴传输层40上。比如,有机物质做空穴传输层的材料可以选择聚[(9,9-二辛基芴-2,7-二基)-共-(4,4′-(N-(4-仲丁基苯基)二苯胺)](TFB)材料,可以通过旋涂工艺形成空穴传输层40并加热成膜,其中,成膜温度可以根据实际材料合理选择,比如可以在选择为200-250℃并在惰性气体中成膜,TFB的成膜温度可以为130-150℃并在惰性气体中成膜,空穴传输层40的厚度可以合理选择,空穴传输层40的厚度可以通过匀胶机转速来调控。
电子传输层50设置于硅氧烷聚合物膜层11上,电子传输层50可以为ZnO材料纳米粒子或ZnMgO材料,可以通过旋涂ZnO纳米粒子来形成电子传输层50,并在80-120℃加热成膜,其中,电子传输层50的材料还可以选择不同金属掺杂的ZnO纳米粒子,例如氧化镁锌、氧化铝锌或氧化锆锌等掺杂纳米粒子。阴极60设置于电子传输层50上,电子传输层50设置于硅氧烷聚合物膜层11与阴极60之间。阴极60可以为Al或Mg/Ag材料,可以通过蒸镀来形成阴极60,例如可以通过蒸镀形成铝膜或通过溅射形成铟锌氧化物膜,通过阴极60产生电子;形成阴极后可以加盖封装,可以采用紫外固化胶对器件进行封装。阴极60产生的电子经过电子传输层50传输至硅氧烷聚合物膜层11,经过硅氧烷聚合物膜层11至含有第二卤素元素的钙钛矿量子点层10中,硅氧烷聚合物膜层11具有较低的载流子迁移率,可以在一定程度上削减电子传输速率,进而调控载流子平衡,提高器件效率和稳定性。
本公开实施例提供一种量子点发光层的制备方法。
如图4所示,根据本公开实施例的量子点发光层的制备方法包括:
步骤S11,形成含有第一卤素元素的钙钛矿量子点层,所述含有第一卤素元素的钙钛矿量子点层中具有羧基;可以将含有第一卤素元素的钙钛矿量 子点溶解在低沸点溶剂中,比如,氯仿、甲苯、正己烷、正辛烷或正庚烷,可以将含有第一卤素元素的钙钛矿量子点的低沸点溶液旋涂到所需的基底上,并在80-120℃干燥成膜,具体的低沸点溶剂和成膜温度可以根据实际情况选择。
步骤S12,在所述含有第一卤素元素的钙钛矿量子点层上加入含有第二卤素元素的硅烷进行反应,使得所述含有第一卤素元素的钙钛矿量子点层中的至少部分转化成含有第二卤素元素的钙钛矿量子点层,并在所述含有第二卤素元素的钙钛矿量子点层的靠近所述含有第二卤素元素的硅烷的一侧形成硅氧烷聚合物膜层,所述含有第二卤素元素的钙钛矿量子点层与所述硅氧烷聚合物膜层之间通过化学键相连。在步骤S12中,可以将含有第二卤素元素的硅烷通过旋涂工艺旋涂在含有第一卤素元素的钙钛矿量子点层上,旋涂成液膜后,放置一段时间进行反应,可以选择合适的温度和时间,比如,可以在室温下,放置选择30min-120min,进而通过原位制备出含有第二卤素元素的钙钛矿量子点层,含有第二卤素元素的钙钛矿量子点的尺寸可以为3nm-20nm,并在含有第二卤素元素的钙钛矿量子点层的靠近含有第二卤素元素的硅烷的一侧形成硅氧烷聚合物膜层,硅氧烷聚合物膜层的厚度在0.413nm-3.0nm之间,可以根据实际反应条件对硅氧烷聚合物膜层的厚度进行调控。另外,通过含有第二卤素元素的硅烷处理含有第一卤素元素的钙钛矿量子点层后,钙钛矿量子点层的组成成分可调,进而可以调节量子点发光层的光谱范围。
在含有第一卤素元素的钙钛矿量子点层上加入含有第二卤素元素的硅烷进行反应过程中,含有第二卤素元素的硅烷和含有第一卤素元素的钙钛矿量子点层中的羧基反应,硅烷中的第二卤素离子可以置换含有第一卤素元素的钙钛矿量子点层中的第一卤素离子,含有第二卤素元素的硅烷可以与量子点层存在的少量水分子反应进行水解,第二卤素离子可以进行快速阴离子交换(可以在几十微秒到几秒之间完成),同时由于硅氧键的反应速率较慢(需要几个小时到几十个小时内完成),最后慢慢形成硅氧烷聚合物膜层。
含有第二卤素元素的硅烷中的第二卤素离子可以置换含有第一卤素元素的钙钛矿量子点层中的部分或全部的第一卤素离子,使得含有第一卤素元素的钙钛矿量子点层中的部分或全部转化成含有第二卤素元素的钙钛矿量子点 层,并在含有第二卤素元素的钙钛矿量子点层的靠近含有第二卤素元素的硅烷的一侧形成硅氧烷聚合物膜层,硅氧烷聚合物膜层可以对钙钛矿量子点层表面的缺陷位点进行配位和钝化,通过硅氧烷聚合物膜层能够隔绝水和氧,避免极性溶剂对钙钛矿量子点的破坏,防止降低或者淬灭钙钛矿的荧光性能;含有第二卤素元素的钙钛矿量子点层与硅氧烷聚合物膜层之间通过化学键相连,能够调控载流子注入平衡,使得电子和空穴的复合在发光层进行,提高器件性能。
在一些实施例中,含有第一卤素元素的钙钛矿量子点可以为CsPbBr 3量子点或CsPbI 3量子点,当含有第一卤素元素的钙钛矿量子点为CsPbBr 3量子点时,含有第二卤素元素的硅烷可以为RSiCl 3,其中,R为烷基,比如,含有第二卤素元素的硅烷可以为三甲基氯硅烷、十二烷基三氯硅烷或苯基三氯硅烷,RSiCl 3中的Cl离子可以置换CsPbBr 3中的至少一个Br离子生成CsPbBrCl 2、CsPbBr 2Cl或CsPbBr 3中的一种或多种;在含有第一卤素元素的钙钛矿量子点为CsPbBr 3量子点时,通过引入含有第二卤素元素的硅烷试剂,能够原位制备高荧光性能的蓝光量子点。当含有第一卤素元素的钙钛矿量子点为CsPbI 3量子点时,含有第二卤素元素的硅烷可以为RSiBr 3,其中,R为烷基,RSiBr 3中的Br离子可以置换CsPbI 3中的至少一个I离子生成CsPbIBr 2、CsPbI 2Br或CsPbI 3中的一种或多种。
其中,含有第一卤素元素的钙钛矿量子点层中的钙钛矿量子点可以为ABX 3钙钛矿量子点和/或稀土掺杂的ABX 3钙钛矿量子点,其中,A包括:有机胺基团、甲脒、铯离子中的任意一种或者多种;B包括:铅离子、锡离子、铋离子或银离子;三个卤素X中至少一个为Br或I。比如,含有第一卤素元素的钙钛矿量子点层中的钙钛矿量子点:含铅钙钛矿型量子点,如有机-无机铅卤MAPbX 3量子点、全无机铯铅卤CsPbX 3量子点、稀土掺杂的MAPbX 3及CsPbX 3量子点,其中MA为CH 3NH 3,卤素X为Cl、Br或I,三个卤素X中至少一个为Br或I;铋基、锡基及银基钙钛矿型量子点,如CsSnX 3量子点、CsSbX 3量子点、Cs 2SnX 6量子点,Bi掺杂的CsSnX 3、Cs 2SnX 6量子点、Cs 2AgInCl 6量子点、MA 3Bi 2Br 9量子点、CH 3NH 3SbX 3量子点、CH 3NH 3SnX 3量子点、CH 3NH 3BiX 3量子点或(CH 3NH 3) 3Bi 2X 9量子点等,其中,卤素X为Cl、 Br或I,三个卤素X中至少一个为Br或I。
在本公开的实施例中,第一卤素元素包括Br,第二卤素元素包括Cl;和/或,第一卤素元素包括I,第二卤素元素包括Br。比如,当第一卤素元素包括Br,第二卤素元素包括Cl时,含有Cl的硅烷中的Cl离子可以置换含有第一卤素元素钙钛矿量子点中的Br离子;当第一卤素元素包括I,第二卤素元素包括Br时,含有Br的硅烷中的Br离子可以置换含有第一卤素元素钙钛矿量子点中的I离子;第一卤素元素可以包括Br和I,第二卤素元素包括Cl和Br,含有第二卤素元素的硅烷中的Cl离子可以置换含有第一卤素元素钙钛矿量子点中的Br离子,含有第二卤素元素的硅烷中的Br离子可以置换含有第一卤素元素钙钛矿量子点中的I离子。通过离子置换能够获得高产率的含有第二卤素元素的钙钛矿量子点层,提高含有第二卤素元素的钙钛矿量子点层的荧光性能。
在本公开的一些实施例中,在含有第一卤素元素的钙钛矿量子点层上加入含有第二卤素元素的硅烷进行反应,包括:
含有第一卤素元素的钙钛矿量子点层中的羧基中的羟基O原子与含有第二卤素元素的硅烷中的Si原子通过化学键相连,以使含有第二卤素元素的钙钛矿量子点层中与量子点形成配位键的配体中的羧基中的O原子与硅氧烷聚合物膜层中的Si原子之间通过化学键相连。含有第二卤素元素的钙钛矿量子点层与硅氧烷聚合物膜层能够通过化学键连接能够形成有机整体,由于硅氧烷聚合物类物质具有较低的载流子迁移率,可以在一定程度上削减电子传输速率,进而调控载流子平衡。
在本公开的实施例中,所述硅氧烷聚合物膜层中具有-(Si-O-R) m-结构,R为烷基,m为大于1的整数。硅氧烷聚合物膜层中的-(Si-O-R) m-结构较为稳定,能够对含有第二卤素元素的钙钛矿量子点层具有较好的保护作用,能够隔绝水和氧,避免含有第二卤素元素的钙钛矿量子点层受到破坏,可以削减电子传输速率,调控载流子平衡。
根据本公开实施例的量子点发光器件,量子点发光器件包括含有第二卤素元素的钙钛矿量子点层;硅氧烷聚合物膜层,所述硅氧烷聚合物膜层设在所述含有第二卤素元素的钙钛矿量子点层的一侧,所述含有第二卤素元素的 钙钛矿量子点层与所述硅氧烷聚合物膜层之间通过化学键相连。根据本公开实施例的量子点发光器件,在含有第二卤素元素的钙钛矿量子点层的一侧设有硅氧烷聚合物膜层,硅氧烷聚合物膜层能够隔绝水和氧,避免极性溶剂对钙钛矿量子点的破坏,防止降低或者淬灭钙钛矿的荧光性能,含有第二卤素元素的钙钛矿量子点层与所述硅氧烷聚合物膜层之间通过化学键相连,能够调控载流子注入平衡,使得电子和空穴的复合在发光层进行,提高器件性能。
在本公开的实施例中,第一卤素元素的钙钛矿量子点可以为CsPbBr 3量子点,含有第二卤素元素的硅烷可以为RSiCl 3,其中,R为烷基,通过CsPbBr 3量子点和RSiCl 3制备量子点发光层的制备方法可以如下:
先形成CsPbBr 3量子点层,CsPbBr 3量子点层中具有羧基;
然后,在CsPbBr 3量子点层上加入RSiCl 3硅烷进行反应,使得CsPbBr 3量子点层中的部分或全部转化成CsPbBrCl 2量子点、CsPbBr 2Cl量子点或CsPbBr 3量子点中的一种或多种,比如,CsPbBr 3量子点层全部转化成CsPbCl 3量子点层,并在CsPbCl 3量子点层的靠近RSiCl 3硅烷的一侧形成硅氧烷聚合物膜层,CsPbCl 3量子点层与硅氧烷聚合物膜层之间通过化学键相连,原CsPbBr 3量子点层中的羧基中的羟基O原子与原RSiCl 3硅烷中的Si原子通过化学键相连,以使CsPbCl 3量子点层中与量子点形成配位键的配体中的羧基中的O原子与硅氧烷聚合物膜层中的Si原子之间通过化学键相连。
在通过CsPbBr 3量子点和RSiCl 3制备量子点发光层的过程中,比如,RSiCl 3硅烷可以和CsPbBr 3量子点层中的量子点上的油酸配体中的羧基进行反应,RSiCl 3中的Cl可以部分或全部置换CsPbBr 3中的Br,具体的反应过程可以如下所示:
Figure PCTCN2021078105-appb-000001
CsPbBr 3+Cl→CsPbBr 2Cl+Br    (2)
CsPbBr 2Cl+Cl→CsPbBrCl 2+Br     (3)
CsPbBrCl 2+Cl→CsPbCl 3+Br    (4)
通过反应(1)至(4)可以将CsPbBr 3量子点转化成CsPbCl 3量子点,还可以转化成CsPbBrCl 2、CsPbBr 2Cl,其中,QDs代表钙钛矿量子点的无机晶体。
如果通过其他方法(比如高温热注入法)直接制备蓝光CsPbCl 3量子点,产率较低,将产率较高的绿光CsPbBr 3量子点通过阴离子置换实现原位制备蓝光CsPbCl 3钙钛矿量子点,产率高,能够产生高荧光性能的CsPbCl 3量子点,最大程度的保持或提高发光层的荧光性能。
其中,RSiCl 3硅烷可以和CsPbBr 3量子点层中的量子点上的油酸配体中的羧基进行反应,具体反应过程可以如下:
Figure PCTCN2021078105-appb-000002
其中,QDs代表钙钛矿量子点的无机晶体,反应(5)中产生的Cl可以与CsPbBr 3量子点进行(2)-(4)反应,进而将CsPbBr 3量子点中的至少一个Br置换为Cl,生成CsPbCl 3量子点、CsPbBrCl 2量子点、CsPbBr 2Cl量子点或CsPbBr 3量子点。
在反应过程中,RSiCl 3硅烷可以和量子点层中的少量水分子反应,具体反应如下:
Figure PCTCN2021078105-appb-000003
反应(6)中产生的硅氧化合物中的羟基可以与反应(5)中的产物反应,具体反应过程如下:
Figure PCTCN2021078105-appb-000004
反应(8)中产生的化合物可以进一步进行类似于反应过程(7)和(8)的反应,从而形成网状的结构,进而在量子点层上形成硅氧烷聚合物膜层,硅氧烷聚合物膜层的结构式可简写如下:-(Si-O-R) m-,R为烷基,m为大于1,硅氧烷聚合物膜层中的-(Si-O-R) m-结构较为稳定,能够对钙钛矿量子点层具有较好的保护作用,能够隔绝水和氧,避免钙钛矿量子点层受到破坏,可以削减电子传输速率,调控载流子平衡。
另外,上述反应的过程及原理也可以推广到由含I钙钛矿量子点制备含Br钙钛矿量子点。
本公开实施例提供一种量子点发光器件的制备方法。
量子点发光器件的制备方法可以包括采用上述实施例中的量子点发光层的制备方法形成量子点发光层。
根据本公开实施例的量子点发光器件的制备方法可以包括:
形成含有第二卤素元素的钙钛矿量子点层;
在含有第二卤素元素的钙钛矿量子点层的一侧形成硅氧烷聚合物膜层,含有第二卤素元素的钙钛矿量子点层与硅氧烷聚合物膜层之间通过化学键相连。
比如,先形成含有第一卤素元素的钙钛矿量子点层,含有第一卤素元素的钙钛矿量子点层中具有羧基;在含有第一卤素元素的钙钛矿量子点层上加入含有第二卤素元素的硅烷进行反应,使得含有第一卤素元素的钙钛矿量子点层中的至少部分转化成含有第二卤素元素的钙钛矿量子点层,并在含有第二卤素元素的钙钛矿量子点层的靠近含有第二卤素元素的硅烷的一侧形成硅氧烷聚合物膜层,含有第二卤素元素的钙钛矿量子点层与硅氧烷聚合物膜层之间通过化学键相连。硅氧烷聚合物膜层可以对钙钛矿量子点层表面的缺陷位点进行配位和钝化,通过硅氧烷聚合物膜层能够隔绝水和氧,避免极性溶剂对钙钛矿量子点的破坏,含有第二卤素元素的钙钛矿量子点层与硅氧烷聚合物膜层能够通过化学键连接能够形成有机整体,由于硅氧烷聚合物膜层具有较低的载流子迁移率,可以在一定程度上削减电子传输速率,进而调控载流子平衡,能够提高器件的稳定性和寿命。
在本公开的一些实施例中,含有第二卤素元素的钙钛矿量子点层中与量子点形成配位键的配体中的羧基中的O原子与硅氧烷聚合物膜层中的Si原子之间通过化学键相连。使得含有第二卤素元素的钙钛矿量子点层与硅氧烷聚合物膜层能够通过化学键连接,进而能够形成有机整体,由于硅氧烷聚合物类物质具有较低的载流子迁移率,可以在一定程度上削减电子传输速率,进而调控载流子平衡。
在本公开的另一些实施例中,硅氧烷聚合物膜层中具有-(Si-O-R) m-结构,R为烷基,m为大于1的整数。硅氧烷聚合物膜层中的-(Si-O-R) m-结构较为稳定,能够对含有第二卤素元素的钙钛矿量子点层具有较好的保护作用,能够隔绝水和氧,避免含有第二卤素元素的钙钛矿量子点层受到破坏,可以削减电子传输速率,调控载流子平衡。
其中,第二卤素元素包括Cl和/或Br。比如,当第一卤素元素包括Br,含有第二卤素元素的硅烷中包括Cl时,含有第二卤素元素的钙钛矿量子点层中的第二卤素元素可以包括Cl;当第一卤素元素包括I,含有第二卤素元素的硅烷中包括Br时,含有第二卤素元素的钙钛矿量子点层中的第二卤素元素可以包括Br;当第一卤素元素包括Br和I,含有第二卤素元素的硅烷中包括Cl和Br时,含有第二卤素元素的钙钛矿量子点层中的第二卤素元素可以包括 Cl和Br,第二卤素元素具体包括Cl和/或Br可以根据实际需要选择,可以通过离子置换法进行置换得到含有所需的第二卤素元素钙钛矿量子点层。
在本公开的一些实施例中,所述形成量子点发光层的步骤可以包括:依次形成阳极20、空穴注入层30和空穴传输层40,在空穴传输层40上形成量子点发光层;量子点发光器件的制备方法还可以包括:在形成量子点发光层之后,在量子点发光层中的硅氧烷聚合物膜层11上依次形成电子传输层50和阴极60。
也就是说,在形成含有第二卤素元素的钙钛矿量子点层10之前,形成阳极20;在阳极20上依次形成空穴注入层30和空穴传输层40;在含有第二卤素元素的钙钛矿量子点层10的一侧形成硅氧烷聚合物膜层11之后,在硅氧烷聚合物膜层11上依次形成电子传输层50和阴极60。可以先在基板上形成阳极20,将ITO和基板分别采用水、异丙醇通过超声清洗,并用紫外线处理5-10min;如图5a所示,在阳极20上依次形成空穴注入层30和空穴传输层40;形成含有第二卤素元素的钙钛矿量子点层;在含有第二卤素元素的钙钛矿量子点层的一侧形成硅氧烷聚合物膜层11,含有第二卤素元素的钙钛矿量子点层与硅氧烷聚合物膜层11之间通过化学键相连,其中,如图5b所示,可以先形成含有第一卤素元素的钙钛矿量子点层12,含有第一卤素元素的钙钛矿量子点层12中具有羧基,在含有第一卤素元素的钙钛矿量子点层12上加入含有第二卤素元素的硅烷进行反应,使得含有第一卤素元素的钙钛矿量子点层12中的至少部分转化成含有第二卤素元素的钙钛矿量子点层10,如图5c所示,并在含有第二卤素元素的钙钛矿量子点层10的靠近含有第二卤素元素的硅烷的一侧形成硅氧烷聚合物膜层11;如图5d和图2所示,在硅氧烷聚合物膜层11上依次形成电子传输层50和阴极60。通过硅氧烷聚合物膜层11能够隔绝水和氧,由于硅氧烷聚合物膜层11的表面官能团为羟基,在形成电子传输层50过程中,可以增强与电子传输层材料溶液的兼容性,并防止受到电子传输层材料溶剂的(乙醇等)破坏,避免极性溶剂对钙钛矿量子点层的破坏,在形成电子传输层50的过程中极性溶剂不会带来破坏,含有第二卤素元素的钙钛矿量子点层与硅氧烷聚合物膜层11能够通过化学键连接能够形成有机整体,由于硅氧烷聚合物膜层具有较低的载流子迁移率,可 以在一定程度上削减电子传输速率,进而调控载流子平衡。
本公开实施例提供一种显示装置,显示装置包括如上述实施例中的量子点发光器件。本公开实施例的显示装置中具有量子点发光器件,量子点发光器件中的硅氧烷聚合物膜层具有较低的载流子迁移率,可削减电子传输速率,进而调控载流子平衡,能够提高器件的稳定性和寿命。
除非另作定义,本公开中使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (12)

  1. 一种量子点发光器件,包括:
    含有第二卤素元素的钙钛矿量子点层;
    硅氧烷聚合物膜层,所述硅氧烷聚合物膜层设在所述含有第二卤素元素的钙钛矿量子点层的一侧,所述含有第二卤素元素的钙钛矿量子点层与所述硅氧烷聚合物膜层之间通过化学键相连。
  2. 根据权利要求1所述的量子点发光器件,其中,所述含有第二卤素元素的钙钛矿量子点层中与量子点形成配位键的配体中的羧基中的O原子与所述硅氧烷聚合物膜层中的Si原子之间通过化学键相连。
  3. 根据权利要求1所述的量子点发光器件,其中,所述硅氧烷聚合物膜层中具有-(Si-O-R) m-结构,R为烷基,m为大于1的整数。
  4. 根据权利要求1所述的量子点发光器件,其中,所述第二卤素元素包括Cl和/或Br。
  5. 根据权利要求1所述的量子点发光器件,还包括:
    阳极;
    空穴注入层,设置于所述阳极上;
    空穴传输层,设置于所述空穴注入层上,所述含有第二卤素元素的钙钛矿量子点层设在所述空穴传输层上;
    电子传输层,设置于所述硅氧烷聚合物膜层上;
    阴极,所述电子传输层设置于所述硅氧烷聚合物膜层与所述阴极之间。
  6. 一种量子点发光层的制备方法,包括:
    形成含有第一卤素元素的钙钛矿量子点层,所述含有第一卤素元素的钙钛矿量子点层中具有羧基;
    在所述含有第一卤素元素的钙钛矿量子点层上加入含有第二卤素元素的硅烷进行反应,使得所述含有第一卤素元素的钙钛矿量子点层中的至少部分转化成含有第二卤素元素的钙钛矿量子点层,并在所述含有第二卤素元素的钙钛矿量子点层的靠近所述含有第二卤素元素的硅烷的一侧形成硅氧烷聚合物膜层,所述含有第二卤素元素的钙钛矿量子点层与所述硅氧烷聚合物膜层 之间通过化学键相连。
  7. 根据权利要求6所述的制备方法,其中,所述第一卤素元素包括Br,所述第二卤素元素包括Cl;
    和/或,所述第一卤素元素包括I,所述第二卤素元素包括Br。
  8. 根据权利要求6所述的制备方法,其中,在所述含有第一卤素元素的钙钛矿量子点层上加入含有第二卤素元素的硅烷进行反应,包括:
    所述含有第一卤素元素的钙钛矿量子点层中的羧基中的羟基O原子与所述含有第二卤素元素的硅烷中的Si原子通过化学键相连,以使所述含有第二卤素元素的钙钛矿量子点层中与量子点形成配位键的配体中的羧基中的O原子与所述硅氧烷聚合物膜层中的Si原子之间通过化学键相连。
  9. 根据权利要求6所述的制备方法,其中,所述硅氧烷聚合物膜层中具有-(Si-O-R) m-结构,R为烷基,m为大于1的整数。
  10. 一种量子点发光器件的制备方法,包括:
    采用如权利要求6-9中任一项所述的制备方法形成量子点发光层。
  11. 根据权利要求10所述的制备方法,其中,所述形成量子点发光层的步骤包括:
    依次形成阳极、空穴注入层和空穴传输层,在所述空穴传输层上形成所述量子点发光层;
    所述制备方法还包括:在形成所述量子点发光层之后,在所述量子点发光层中的硅氧烷聚合物膜层上依次形成电子传输层和阴极。
  12. 一种显示装置,包括如权利要求1-5中任一项所述的量子点发光器件。
PCT/CN2021/078105 2020-02-28 2021-02-26 量子点发光器件、发光层及制备方法、显示装置 WO2021170080A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/435,369 US20230174855A1 (en) 2020-02-28 2021-02-26 Quantum dot light emitting device, light emitting layer and manufacturing method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010128003.9A CN113328041B (zh) 2020-02-28 2020-02-28 一种量子点发光器件及其制备方法、显示装置
CN202010128003.9 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021170080A1 true WO2021170080A1 (zh) 2021-09-02

Family

ID=77412635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078105 WO2021170080A1 (zh) 2020-02-28 2021-02-26 量子点发光器件、发光层及制备方法、显示装置

Country Status (3)

Country Link
US (1) US20230174855A1 (zh)
CN (1) CN113328041B (zh)
WO (1) WO2021170080A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113856713A (zh) * 2021-09-26 2021-12-31 武汉理工大学 用于co2光催化还原的无铅双钙钛矿量子点@二维材料复合光催化剂及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116376547A (zh) * 2023-04-07 2023-07-04 极电光能有限公司 一种固态钙钛矿量子点复合材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107083240A (zh) * 2017-04-06 2017-08-22 南京理工大学 高稳定性全无机钙钛矿量子点制备方法
CN107195741A (zh) * 2017-04-06 2017-09-22 南京理工大学 一种全无机量子点背光led的制备方法
CN108929671A (zh) * 2018-08-06 2018-12-04 湖北文理学院 二氧化硅包覆钙钛矿量子点的纳米颗粒、其制备方法及光电纳米材料
CN110635057A (zh) * 2019-09-26 2019-12-31 京东方科技集团股份有限公司 量子点器件背板及其制作方法和量子点器件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449909B (zh) * 2016-12-05 2019-08-02 Tcl集团股份有限公司 无机钙钛矿量子点发光二极管及其制备方法
CN106634961B (zh) * 2016-12-19 2019-02-19 中央民族大学 一种有机无机杂化钙钛矿量子点及其制备方法
CN108531173B (zh) * 2018-06-04 2021-06-11 闽南师范大学 二氧化硅包覆的铯铅溴钙钛矿纳米晶复合物及其微波辅助加热合成方法
CN111057536A (zh) * 2019-11-15 2020-04-24 华东理工大学 一种硅基配体修饰的全无机钙钛矿量子点复合聚二甲基硅氧烷的荧光薄膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107083240A (zh) * 2017-04-06 2017-08-22 南京理工大学 高稳定性全无机钙钛矿量子点制备方法
CN107195741A (zh) * 2017-04-06 2017-09-22 南京理工大学 一种全无机量子点背光led的制备方法
CN108929671A (zh) * 2018-08-06 2018-12-04 湖北文理学院 二氧化硅包覆钙钛矿量子点的纳米颗粒、其制备方法及光电纳米材料
CN110635057A (zh) * 2019-09-26 2019-12-31 京东方科技集团股份有限公司 量子点器件背板及其制作方法和量子点器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113856713A (zh) * 2021-09-26 2021-12-31 武汉理工大学 用于co2光催化还原的无铅双钙钛矿量子点@二维材料复合光催化剂及其制备方法和应用
CN113856713B (zh) * 2021-09-26 2024-04-12 武汉理工大学 用于co2光催化还原的无铅双钙钛矿量子点@二维材料复合光催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN113328041B (zh) 2022-08-30
US20230174855A1 (en) 2023-06-08
CN113328041A (zh) 2021-08-31

Similar Documents

Publication Publication Date Title
Wang et al. Perovskite quantum dots and their application in light‐emitting diodes
WO2021170080A1 (zh) 量子点发光器件、发光层及制备方法、显示装置
TWI684635B (zh) 發光體、及具有發光體的發光膜、發光二極體、發光二極體封裝、顯示裝置和發光裝置
TWI760129B (zh) 電荷輸送性離子化合物及其製備方法、電荷輸送膜用組成物、電荷輸送膜及其形成方法、有機電致發光元件及其應用暨其製造方法
Zhang et al. High‐Efficiency Pure‐Color Inorganic Halide Perovskite Emitters for Ultrahigh‐Definition Displays: Progress for Backlighting Displays and Electrically Driven Devices
US20100224856A1 (en) Electroluminescent device
CN107438907A (zh) 电致发光器件
Li et al. High-efficiency perovskite light-emitting diodes with improved interfacial contact
JP2007529897A (ja) ポリシロキサンを含む正孔輸送材料
CN113130802B (zh) 一种蓝光钙钛矿薄膜及其制备、倒装准二维蓝光钙钛矿发光二极管
Liu et al. Organic additive engineering toward efficient perovskite light‐emitting diodes
JP5513479B2 (ja) シリコーン組成物および有機発光ダイオード
JP2007529896A (ja) 有機発光ダイオード
Zhang et al. Blue halide perovskite materials: preparation, progress, and challenges
KR101637062B1 (ko) 조성물 그리고 그 조성물을 사용한 막, 전하 수송층, 유기 전계 발광 소자, 및 전하 수송층의 형성 방법
Samaeifar et al. The Root Causes of the Limited Electroluminescence Stability of Solution-Coated Versus Vacuum-Deposited Small-Molecule OLEDs: A Mini-Review
Wen et al. Stability of electroluminescent perovskite quantum dots light‐emitting diode
KR20070026599A (ko) 선형 폴리실록산, 실리콘 조성물 및 유기 발광 다이오드
CN108886103B (zh) 电荷传输性清漆
Xing et al. Tuning Precursor–Amine Interactions for Light-Emitting Lead Bromide Perovskites
CN109423049A (zh) 封装薄膜及其应用
Chen et al. Perovskite‐Organic Coupling WLED: Progress and Perspective
Shin et al. Environmentally stable luminescent perovskite nanocrystals passivated and encapsulated by siloxane hybrids enabling reliable color-converted organic light-emitting diodes
WO2021254057A1 (zh) 发光基板及其制备方法和发光装置
Maheshwaran et al. Low-Temperature Cross-Linkable Hole Transport Materials for Solution-Processed Quantum Dot and Organic Light-Emitting Diodes with High Efficiency and Color Purity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760654

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760654

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21760654

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21760654

Country of ref document: EP

Kind code of ref document: A1