WO2021170005A1 - 阵列基板及其制备方法、显示面板及显示装置 - Google Patents

阵列基板及其制备方法、显示面板及显示装置 Download PDF

Info

Publication number
WO2021170005A1
WO2021170005A1 PCT/CN2021/077721 CN2021077721W WO2021170005A1 WO 2021170005 A1 WO2021170005 A1 WO 2021170005A1 CN 2021077721 W CN2021077721 W CN 2021077721W WO 2021170005 A1 WO2021170005 A1 WO 2021170005A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving circuit
light
driving
emitting unit
voltage
Prior art date
Application number
PCT/CN2021/077721
Other languages
English (en)
French (fr)
Inventor
刘冬妮
玄明花
郑皓亮
赵蛟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/615,058 priority Critical patent/US20220231105A1/en
Publication of WO2021170005A1 publication Critical patent/WO2021170005A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels

Definitions

  • the present disclosure relates to the field of display technology, in particular an array substrate and a preparation method thereof, a display panel and a display device.
  • the ⁇ LED can be Micro LED (Micro Light Emitting Diode) or Mini LED (Mini Light Emitting Diode), etc.
  • Micro LED Micro Light Emitting Diode
  • Mini LED Mini Light Emitting Diode
  • an array substrate configured to carry a plurality of light-emitting units of different light-emitting colors, and the array substrate includes a plurality of pixel driving circuits, a first voltage input line, and a second voltage input line.
  • the plurality of pixel driving circuits include at least one first driving circuit and at least one second driving circuit; the first driving circuit and the second driving circuit are configured to drive light-emitting units of different light-emitting colors.
  • the first voltage input line is coupled to the at least one first driving circuit, and the first voltage input line is configured to transmit a first voltage to the at least one first driving circuit.
  • the second voltage input line is coupled to the at least one second driving circuit, and the second voltage input line is configured to transmit a second voltage to the at least one second driving circuit. Wherein, the first voltage is different from the second voltage.
  • each of the light-emitting units has a first pole and a second pole, and the first drive circuit and the second drive circuit are respectively coupled to the first poles of the light-emitting units of different light-emitting colors.
  • the array substrate further includes a common voltage input line, the common voltage input line is simultaneously coupled to the second poles of the plurality of light-emitting units of different light-emitting colors, and the common voltage input line is configured to provide The second pole of the light-emitting unit of the light-emitting color transmits the set voltage.
  • the plurality of light emitting units includes at least one red light emitting unit, at least one green light emitting unit, and at least one blue light emitting unit.
  • the first driving circuit is configured to drive the red light-emitting unit
  • the second driving circuit is configured to drive the green light-emitting unit or the blue light-emitting unit.
  • the voltage difference between the first voltage and the set voltage is greater than the voltage difference between the second voltage and the set voltage.
  • the first driving circuit includes a first driving transistor
  • the second driving circuit includes a second driving transistor; the aspect ratio of the first driving transistor is greater than that of the second driving transistor Compare.
  • the first driving circuit further includes a first switching transistor
  • the second driving circuit further includes a second switching transistor; the aspect ratio of the first switching transistor is greater than that of the second switching transistor. Aspect ratio.
  • the plurality of pixel driving circuits include at least one third driving circuit.
  • the array substrate further includes a third voltage input line, the third voltage input line is coupled to the at least one third driving circuit, and the third voltage input line is configured to transmit to the at least one third driving circuit A third voltage, which is different from both the first voltage and the second voltage.
  • the plurality of light emitting units includes at least one red light emitting unit, at least one green light emitting unit, and at least one blue light emitting unit.
  • the first driving circuit is coupled to the first pole of the red light-emitting unit, and the first driving circuit is configured to drive the red light-emitting unit;
  • the second driving circuit is coupled to the first pole of the green light-emitting unit , And the second driving circuit is configured to drive the green light-emitting unit;
  • the third driving circuit is coupled to the first pole of the blue light-emitting unit, and the third driving circuit is configured to drive the blue Color light-emitting unit.
  • the voltage difference between the first voltage and the set voltage is greater than the voltage difference between the second voltage and the set voltage, and the voltage difference between the second voltage and the set voltage is greater than the third voltage The voltage difference from the set voltage.
  • the first driving circuit includes a first driving transistor
  • the second driving circuit includes a second driving transistor
  • the third driving circuit includes a third driving transistor.
  • the aspect ratio of the first driving transistor is greater than that of the second driving transistor
  • the aspect ratio of the second driving transistor is greater than that of the third driving transistor.
  • the first driving circuit further includes a first switching transistor
  • the second driving circuit further includes a second switching transistor
  • the third driving circuit further includes a third switching transistor.
  • the aspect ratio of the first switching transistor is greater than the aspect ratio of the second switching transistor
  • the aspect ratio of the second switching transistor is greater than the aspect ratio of the third switching transistor.
  • the light-emitting unit is a miniature light-emitting diode or a sub-millimeter light-emitting diode.
  • the array substrate is configured to carry a plurality of light-emitting units of different light-emitting colors, and the array substrate includes a plurality of pixel driving circuits.
  • the plurality of pixel driving circuits include at least one first driving circuit and at least one second driving circuit; the first driving circuit and the second driving circuit are configured to drive light-emitting units of different light-emitting colors.
  • the first driving circuit includes a first driving transistor, and the second driving circuit includes a second driving transistor; the aspect ratio of the first driving transistor is greater than the aspect ratio of the second driving transistor.
  • the plurality of light-emitting units includes at least one red light-emitting unit, at least one green light-emitting unit, and at least one blue light-emitting unit
  • the first driving circuit is configured to drive the red light-emitting unit
  • the second driving circuit is configured to drive the green light-emitting unit or the blue light-emitting unit.
  • the plurality of pixel driving circuits includes at least one third driving circuit configured to drive the blue light-emitting unit, and the second driving circuit is configured to drive the Green light-emitting unit.
  • the third driving circuit includes a third driving transistor, and the aspect ratio of the third driving transistor is smaller than that of the second driving transistor.
  • a display panel in another aspect, includes the array substrate as described in any of the above embodiments and a plurality of light-emitting units with different light-emitting colors arranged on the array substrate.
  • a display device in another aspect, includes: the display panel as described in any of the above embodiments.
  • a method for manufacturing an array substrate includes: forming a plurality of pixel driving circuits, the plurality of pixel driving circuits including at least one first driving circuit and at least one second driving circuit; The first driving circuit and the second driving circuit are configured to drive light-emitting units of different light-emitting colors.
  • a second voltage input line is formed, the second voltage input line is coupled to the at least one second driving circuit, and the second voltage input line is configured to transmit a second voltage to the at least one second driving circuit ; Wherein, the first voltage is different from the second voltage.
  • the manufacturing method includes forming a plurality of pixel driving circuits, the plurality of pixel driving circuits including at least one first driving circuit and at least one second driving circuit.
  • the first driving circuit and the second driving circuit are configured to drive light-emitting units of different light-emitting colors;
  • the first driving circuit includes a first driving transistor, and the second driving circuit includes a second driving transistor
  • the aspect ratio of the first driving transistor is greater than the aspect ratio of the second driving transistor.
  • FIG. 1 is a structural diagram of an array substrate according to the related art
  • FIG. 2 is a side view of an array substrate carrying light-emitting units according to some embodiments
  • FIG. 3 is a top view of an array substrate according to some embodiments.
  • FIG. 4 is a top view of another array substrate according to some embodiments.
  • FIG. 5 is a structural diagram of a pixel driving circuit according to some embodiments.
  • FIG. 6 is a characteristic curve diagram of the driving transistor for driving the red light-emitting unit and the driving transistor for driving the green light-emitting unit when driving transistors of the same size are used in the related art;
  • FIG. 7 is a characteristic curve diagram of a driving transistor for driving a red light-emitting unit and a driving transistor for driving a green light-emitting unit when driving transistors of different sizes are used according to some embodiments;
  • FIG. 8 is a comparison diagram of a pixel layout design in the related art and a pixel layout design provided by some embodiments of the present disclosure
  • FIG. 9 is a top view of still another array substrate according to some embodiments.
  • FIG. 10 is a structural diagram of another pixel driving circuit according to some embodiments.
  • FIG. 11 is a structural diagram of yet another array substrate according to some embodiments.
  • FIG. 12 is a structural diagram of still another array substrate according to some embodiments.
  • FIG. 13 is a structural diagram of yet another array substrate according to some embodiments.
  • FIG. 14 is a structural diagram of a display panel according to some embodiments.
  • FIG. 15 is a frame diagram of a display device according to some embodiments.
  • FIG. 16 is a flowchart of a manufacturing method of an array substrate according to some embodiments.
  • FIG. 17 is a flowchart of another method for manufacturing an array substrate according to some embodiments.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, “plurality” means two or more.
  • Coupled may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact.
  • the term “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited to the content of this document.
  • At least one of A, B, and C has the same meaning as “at least one of A, B, or C", and both include the following combinations of A, B, and C: only A, only B, only C, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and the combination of A and B.
  • “approximately” includes the stated value and the average value within the acceptable deviation range of the specified value, where the acceptable deviation range is considered by those of ordinary skill in the art to consider the measurement being discussed and the The measurement-related error (ie, the limitations of the measurement system) of a specific quantity is determined.
  • the exemplary embodiments are described herein with reference to cross-sectional views and/or plan views as idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Therefore, variations in the shape with respect to the drawings due to, for example, manufacturing technology and/or tolerances can be envisaged. Therefore, the exemplary embodiments should not be construed as being limited to the shape of the area shown herein, but include shape deviations due to, for example, manufacturing.
  • an etched area shown as a rectangle will generally have curved features. Therefore, the areas shown in the drawings are schematic in nature, and their shapes are not intended to show the actual shape of the area of the device, and are not intended to limit the scope of the exemplary embodiments.
  • OLED Organic Light Emitting Diode, Organic Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • ⁇ LED such as Micro LED or Mini LED
  • the driving current of the ⁇ LED chip can reach several tens of uA (microamperes) to several hundreds of uA, which is a thousand times the magnitude of the nA-level driving current in an OLED display device. Therefore, the high power consumption of ⁇ LED products is one of its problems.
  • a pixel unit may include, for example, a red ⁇ LED chip, a green ⁇ LED chip, and a blue ⁇ LED chip.
  • the array substrate 1'of the ⁇ LED display device includes a driving circuit 111' for driving the red light-emitting unit R', a driving circuit 112' for driving the green light-emitting unit G', and The driving circuit 113' of the blue light-emitting unit B', and these driving circuits are connected to the same anode voltage input line VDD and the same cathode voltage input line VSS.
  • the structures of these driving circuits for driving different color light-emitting units are the same.
  • the luminous efficiency and lighting voltage of ⁇ LED chips of different colors are different.
  • the maximum driving current required by the ⁇ LED chips of different colors in the same display device is different when displaying the maximum gray scale. For example, in order to achieve white balance, the required brightness of red light is greater, while the luminous efficiency of the red ⁇ LED chip is the lowest, which leads to the maximum driving current of the red ⁇ LED chip (the driving current corresponding to the maximum luminous power) is greater than that of the blue ⁇ LED The maximum drive current of the chip and the green ⁇ LED chip.
  • the anode power input line VDD and the cathode power input line VSS of the blue ⁇ LED chip (or green ⁇ LED chip) are greater than the actual cross-voltage requirement of the pixel drive circuit corresponding to the blue ⁇ LED chip (or green ⁇ LED chip), and the excess cross-voltage will be consumed by the components in the corresponding pixel drive circuit (such as drive transistors, Switching transistors, etc.), thereby increasing the non-luminous power consumption of the display device.
  • the array substrate 1 is configured to carry a plurality of light-emitting units 2 of different light-emitting colors, and the array substrate 1 includes: A plurality of pixel driving circuits 11, a first voltage input line 121 and a second voltage input line 122.
  • the light-emitting unit 2 may be a miniature light-emitting diode (ie, Micro-LED) or a sub-millimeter light-emitting diode (ie, Mini-LED).
  • the plurality of pixel driving circuits 11 include at least one first driving circuit 111 and at least one second driving circuit 112; the first driving circuit 111 and the second driving circuit 112 are configured to drive the light-emitting units 2 of different light-emitting colors.
  • the structures of the first driving circuit 111 and the second driving circuit 112 are the same.
  • the first voltage input line 121 is coupled to at least one first driving circuit 111, and the first voltage input line 121 is configured to transmit the first voltage V1 to the at least one first driving circuit 111; and the second voltage input line 122 is connected to at least one One second driving circuit 112 is coupled, and the second voltage input line 122 is configured to transmit the second voltage V2 to at least one second driving circuit 112.
  • each light-emitting unit 2 has a first pole and a second pole, and the first driving circuit 111 and the second driving circuit 112 are respectively coupled to the first poles of the light-emitting units 2 of different light-emitting colors. catch.
  • the array substrate 1 further includes a common voltage input line 13, which is simultaneously coupled to the second poles of a plurality of light-emitting units 2 of different light-emitting colors, and the common voltage input line 13 is configured to emit light of a plurality of different light-emitting colors.
  • the second pole of unit 2 transmits the set voltage V0. In this way, the common voltage input line 13 can transmit the same set voltage V0 to the multiple light-emitting units 2 coupled thereto.
  • the voltage signal ie, the first voltage V1 provided by the first voltage input line 121 to the first driving circuit 111 and the second voltage input line 122 provided to the second driving circuit 112
  • the voltage signals ie, the second voltage V1 are of different magnitudes
  • the common voltage input line 13 provides the same voltage signal (ie, the set voltage V0) to the second poles of the light-emitting units 2 of different light-emitting colors, so that the first voltage
  • the overall voltage across the input line 121 and the common voltage input line 13 provided to the first driving circuit 111 and the light-emitting unit 2 corresponding to the first driving circuit 111 is different from that of the second voltage input line 122 and the common voltage input line 13 provided to the first driving circuit 111.
  • the light-emitting unit 2 is a light-emitting diode.
  • the first pole of the light-emitting unit 2 is the anode of the light-emitting diode, and the second pole is the cathode of the light-emitting diode.
  • the first pole of the light emitting unit 2 is the cathode of the light emitting diode, and the second pole is the anode of the light emitting diode.
  • the first voltage input line 121 and the second voltage input line 122 are respectively an anode voltage input line, and at this time, the common voltage input line 13 is a cathode voltage input line. In other examples, the first voltage input line 121 and the second voltage input line 122 are respectively a cathode voltage input line, and at this time, the common voltage input line 13 is an anode voltage input line.
  • the anode of the light emitting diode corresponds to the anode voltage input line
  • the cathode of the light emitting diode corresponds to the cathode voltage input line
  • the anode power source is independently driven (that is, the first voltage input line 121 and the second voltage input line 122 are respectively an anode voltage input line, and the common voltage input line 13 is a cathode voltage input line) or the cathode power source is independently driven (ie, the first voltage input line is a cathode voltage input line).
  • the voltage input line 121 and the second voltage input line 122 are respectively a cathode voltage input line, and the common voltage input line 13 is an anode voltage input line), which can make the first driving circuit 111 and the second driving circuit 112 have different cross voltages. Therefore, the cross voltage of the pixel driving circuit 11 corresponding to the light-emitting unit 2 that requires a smaller driving current is reduced, so that the power consumption of the array substrate 1 can be reduced when the white balance is achieved.
  • the plurality of light emitting units 2 include at least one red light emitting unit R, at least one green light emitting unit G, and at least one blue light emitting unit B
  • the first driving circuit 111 is configured to drive
  • the second driving circuit 112 is configured to drive the green light-emitting unit G or the blue light-emitting unit B
  • the voltage difference between the first voltage V1 and the set voltage V0 is greater than the voltage difference between the second voltage V2 and the set voltage V0 .
  • the independent driving of the anode power supply or the independent driving of the cathode power supply can make the first driving circuit 111 and the second driving circuit 112 have different cross voltages, so that the driving requirements of the first driving circuit 111 for the red light-emitting unit R and the first driving circuit 111 can be met respectively.
  • the driving requirement of the second driving circuit 112 for the green light-emitting unit G can avoid the invalid power consumption of the array substrate 1 when the first driving circuit 111 and the second driving circuit 112 both use the cross voltage corresponding to the driving requirement of the red light-emitting unit R This is a major problem, so that the power consumption of the array substrate 1 can be reduced.
  • the green light-emitting unit G and the blue light-emitting unit B can use the second driving circuit 112 with the same cross voltage, which will not significantly increase the power consumption of the array substrate 1.
  • the second driving circuits 112 corresponding to the green light-emitting unit G and the blue light-emitting unit B are respectively coupled to the same second voltage input line 122, so that the second driving circuit 112 and the second driving circuit 112 corresponding to the green light-emitting unit G can be
  • the second driving circuit 112 driving the blue light-emitting unit B transmits the second voltage V2 respectively, so that the number of the second voltage input lines 122 used can be reduced, and the load of the driving chip can be reduced.
  • each pixel driving circuit 11 has a driving transistor. As shown in FIG. 5, in some examples, the first driving circuit 111 includes a first driving transistor T11, and the second driving circuit 112 includes a second driving transistor T12.
  • the light-emitting units 2 of different light-emitting colors are driven by pixel driving circuits 11 with different voltages, and the power of the array substrate 1 is the power of each pixel unit and the number of pixel units.
  • the product of. Taking each pixel unit including a red light-emitting unit R, a green light-emitting unit G, and a blue light-emitting unit B, with a resolution of M ⁇ N as an example, the power of the array substrate 1 is:
  • each pixel unit includes a red light-emitting unit R'and a green light-emitting unit G'.
  • a blue light-emitting unit B' with a resolution of M ⁇ N as an example, the power of the array substrate 1'in the related art is:
  • P is the power of some of the present disclosure array substrate 1 in the embodiment
  • P0 present some of the power of each pixel unit disclosed in the embodiment
  • P R & lt some embodiments of the present disclosure red light emitting unit R power
  • P G is the power of the green light-emitting unit G in some embodiments of the disclosure
  • P B is the power of the blue light-emitting unit B in some embodiments of the disclosure
  • P′ is the power of the array substrate 1′ in the related art
  • P0′ is the power of each pixel in the related art
  • P R′ is the power of the red light-emitting unit R in the related art
  • P G′ is the green light-emitting in the related art
  • the power of unit G, P B′ is the power of blue light-emitting unit B in the related art
  • V ds-R is the cross voltage of the driving transistor driving the red light-emitting unit
  • V ds-G is the cross voltage of the driving transistor driving the green light-emitting unit
  • V ds-B is the cross voltage of the driving transistor driving the blue light-emitting unit
  • I R is the driving current of the red light-emitting unit R
  • I G is the driving current of the green light-emitting unit G
  • I B is the driving current of the blue light-emitting unit B.
  • the cross voltage of the first driving circuit 111 driving the red light-emitting unit R is greater than that of the second driving circuit 112 driving the green light-emitting unit G (or blue light-emitting unit B)
  • the pixel drive circuits of the green light-emitting unit G'and the blue light-emitting unit B' both adopt the same pixel drive as the red light-emitting unit R'.
  • the circuit has the same cross voltage, so that the cross voltage of the driving transistor corresponding to each light-emitting unit is V ds-R .
  • the driving current of each color light-emitting unit i.e., I R , I G , I B
  • the voltage across the driving transistors corresponding to the blue light-emitting unit B and the green light-emitting unit G is reduced. Therefore, the power of the array substrate 1 provided by some embodiments of the present disclosure is lower than that of the related art.
  • the power of the array substrate 1'in the middle that is, the reduction of the power consumption of the array substrate 1 is realized.
  • the aspect ratio of the first driving transistor T11 is equal to the aspect ratio of the second driving transistor T12. In this way, the layout arrangement of the pixel driving circuit 11 can be relatively simple.
  • the aspect ratio of the first driving transistor T11 is greater than that of the second driving transistor T12.
  • the aspect ratio of the first driving transistor T11 is W1/L1
  • the aspect ratio of the second driving transistor T12 is W2/L2.
  • the driving current of a certain light-emitting unit in the ⁇ LED display device is:
  • I is the driving current of the light-emitting unit
  • is the electron mobility
  • C is the gate oxide capacitance per unit area (gate-to-substrate capacitance)
  • W and L are the channel width and length
  • V gs is the gate-source voltage difference
  • V th is the threshold voltage.
  • V gs V data -VDD
  • V data is the data voltage.
  • the driving current of the red light-emitting unit R is larger than the driving current of the green light-emitting unit G and the blue light-emitting unit B.
  • the following takes the second driving circuit to drive the green light-emitting unit G as an example for description.
  • the red light-emitting unit R it can be seen from the above formula that when the width-to-length ratio (W/L) of the first driving transistor T11 driving the red light-emitting unit R and the width-to-length ratio (W/L) of the second driving transistor T12 driving the green light-emitting unit G /L) is the same, under the condition that ⁇ and C do not change, since the driving current of the red light-emitting unit R is larger than that of the green light-emitting unit G, for the first driving transistor T11, its (V gs -V th ) 2 is relatively large. If V th does not change, the adjustment range of V gs is relatively large. Therefore, the adjustment range of V data is also relatively large. In this way, the brightness adjustment fineness of the red light-emitting unit R is lower than that of the green light-emitting unit G.
  • the aspect ratio of the second driving transistor T12 for driving the green light-emitting unit G is smaller than the aspect ratio of the first driving transistor T11 for driving the red light-emitting unit R,
  • the adjustment range of the V data of the green light-emitting unit G can be relatively increased, thereby reducing the fineness of the brightness adjustment of the green light-emitting unit G, thereby reducing the difficulty of manufacturing the driving chip.
  • FIG. 6 shows the related art when light-emitting units of different colors (for example, red light-emitting unit R'and green light-emitting unit G') are driven to emit light by driving transistors of the same size (that is, the same width-to-length ratio).
  • the characteristic curve between the gate-source voltage difference of the adopted driving transistor and the driving current that is, V gs -I data ).
  • the abscissa is the gate-source voltage difference of the driving transistor, in volts (V)
  • the ordinate is the driving current of the driving transistor, in amperes (A).
  • the cut-off voltages of the driving transistors corresponding to the light-emitting units of different colors are the same (as shown in FIG. 6, the cut-off voltage is approximately 0V). Since the maximum driving current I R′(max) of the red light-emitting unit R′ is greater than the maximum driving current I G′(max) of the green light-emitting unit G′, the gate-source voltage difference V gs- of the driving transistor of the green light-emitting unit G′ G 'is less than the adjustment range of the red light emitting unit R' of the drive transistor gate-source voltage difference V gs-R 'adjustment range.
  • V gs V data -VDD, under the condition that VDD does not change, the adjustment range of the data signal (that is, V data ) of the green light-emitting unit G'is smaller than the adjustment range of the data signal of the red light-emitting unit R'.
  • the larger the adjustment range of the gate-source voltage difference is required, the larger the adjustment range of the driving transistor requires the data signal V data of the driven light-emitting unit to be, so when the driving transistor for driving the green light-emitting unit G'is used to drive the red light-emitting unit R
  • the adjustment accuracy required for the data signal of the green light-emitting unit G' is high, which increases the difficulty of manufacturing the driving chip and easily limits the gray-scale display range of the green light-emitting unit.
  • FIG. 7 shows that the aspect ratio of the first driving transistor T11 for driving the red light-emitting unit R is greater than the aspect ratio of the second driving transistor T12 for driving the green light-emitting unit G in some embodiments of the present disclosure.
  • the characteristic curve between the gate-source voltage difference of the driving transistor and the driving current ie V gs -I data ).
  • the first driving transistor T11 and the second driving transistor T12 have approximately the same cut-off voltage, but under the same gate-source voltage difference, the driving current IR (max) of the first driving transistor T11 is greater than that of the second driving transistor T12 Drive current I G(max) . Therefore, under the condition that the maximum driving current of the green light-emitting unit G does not change, by adjusting the aspect ratio of the first driving transistor T11 and the second driving transistor T12, the adjustment range of the gate-source voltage difference of the second driving transistor T12 can be adjusted. Increase, that is, the adjustment range of the data signal V data of the green light-emitting unit G is increased, thereby reducing the fineness of the brightness adjustment of the green light-emitting unit G, thereby reducing the difficulty of manufacturing the driving chip.
  • each pixel unit pixel' in the array substrate 1' (for example, includes a red light-emitting unit R', a green light-emitting unit G'and a blue light-emitting unit B')
  • the pixel layout design when the corresponding driving transistor size is the same.
  • the right side of FIG. 8 shows the size of the driving transistor corresponding to each pixel unit pixel (for example, including one red light-emitting unit R, one green light-emitting unit G, and blue light-emitting unit B) in the array substrate 1 provided by some embodiments of the present disclosure. Pixel layout design at different times.
  • the aspect ratio of the first driving transistor T11 is greater than the aspect ratio of the second driving transistor T12, and the driving transistor of the red light-emitting unit R with a larger driving current has a larger width-to-length ratio,
  • the arrangement space required is also larger; and the width and length of the driving transistor corresponding to the green light-emitting unit G (or blue light-emitting unit B) with a smaller driving current is relatively small, and the arrangement space required for a pixel unit pixel Also smaller.
  • this can reduce the pixel layout design space required for each pixel unit pixel, thereby increasing the resolution of the product; at the same time, according to It can be seen from the above that when driving transistors with different aspect ratios are used, for example, the aspect ratio of the driving transistor for driving the green light-emitting unit G or the blue light-emitting unit B is smaller than the aspect ratio of the driving transistor for driving the red light-emitting unit R, which can improve
  • the adjustment range of the data signal of the light-emitting unit with a small driving current reduces the difficulty of manufacturing the driving chip, and is beneficial to the display device to achieve more grayscale display.
  • a pixel unit pixel' including a driving circuit for driving a red light-emitting unit, a driving circuit for driving a green light-emitting unit, and a driving circuit for driving a blue light-emitting unit
  • the space required by the driving circuit of the color light-emitting unit is 250 ⁇ m ⁇ 500 ⁇ m.
  • one pixel unit pixel including a first driving circuit 111 and two second driving circuits 111)
  • the space required by the driving circuit 112) is 250 ⁇ m ⁇ 440 ⁇ m. It can be seen that the pixel layout design space required by each pixel unit can be greatly reduced, and thus the resolution of the display device can be significantly improved.
  • the pixel layout design space required by the unit and increase the data signal adjustment range of the light-emitting unit (such as the green light-emitting unit G and the blue light-emitting unit B) with a small driving current, reduce the difficulty of manufacturing the driving chip, and facilitate the realization of the display device.
  • Multi-gray scale display even if the voltage across the first driving circuit 111 and the second driving circuit 112 is the same, only the aspect ratio of the first driving transistor T11 is greater than that of the second driving transistor T12, which can reduce each pixel.
  • the pixel layout design space required by the unit and increase the data signal adjustment range of the light-emitting unit (such as the green light-emitting unit G and the blue light-emitting unit B) with a small driving current, reduce the difficulty of manufacturing the driving chip, and facilitate the realization of the display device. Multi-gray scale display.
  • the first driving circuit 111 further includes a first switching transistor T21
  • the second driving circuit 112 further includes a second switching transistor T22;
  • the aspect ratio of T21 is greater than the aspect ratio of the second switching transistor T22.
  • the aspect ratio of the first switching transistor T21 is the same as that of the first driving transistor T11, and the aspect ratio of the second switching transistor T22 is the same as that of the second driving transistor T12. This arrangement can reduce the manufacturing difficulty of the array substrate 1.
  • the first driving circuit 111 further includes a first storage capacitor C1 and a first data writing transistor T31
  • the second driving circuit 112 further includes a second storage capacitor C2 and a second data writing transistor.
  • Transistor T32 The first storage capacitor C1 and the second storage capacitor C2 may have the same size, or the sizes of the first storage capacitor C1 and the second storage capacitor C2 may be adjusted according to the design of the entire pixel driving circuit 11.
  • the first data writing transistor T31 and the second data writing transistor T32 may use the same aspect ratio to facilitate the adjustment of the data signal by the driving chip.
  • both the first driving circuit 111 and the second driving circuit 112 may further include devices such as reset transistors, and the number of switching transistors may also be set in multiples. That is, the specific circuits of the first driving circuit 111 and the second driving circuit 112 can be adjusted according to implementation conditions.
  • the plurality of pixel driving circuits 11 further include at least one third driving circuit 113
  • the array substrate 1 further includes a third voltage input line 123, which is coupled to the at least one third driving circuit 113.
  • the third voltage input line 123 is configured to transmit a third voltage V3 to at least one third driving circuit 113, and the third voltage V3 is different from both the first voltage V1 and the second voltage V2.
  • the light-emitting unit includes a red light-emitting unit R, a green light-emitting unit G, and a blue light-emitting unit B; a first driving circuit 111 is coupled to the first pole of a red light-emitting unit R.
  • a drive circuit 111 is configured to drive the red light-emitting unit R;
  • a second drive circuit 112 is coupled to the first pole of a green light-emitting unit G, and the second drive circuit 112 is configured to drive the green light-emitting unit G;
  • a third drive The circuit 113 is coupled to the first pole of a blue light-emitting unit B, and the third driving circuit 113 is configured to drive the blue light-emitting unit B.
  • the voltage difference between the first voltage V1 and the set voltage V0 is greater than the voltage difference between the second voltage V2 and the set voltage V0, and the voltage difference between the second voltage V2 and the set voltage V0 is greater than the voltage between the third voltage V3 and the set voltage V0 Difference.
  • the first driving circuit 111 includes a first driving transistor T11
  • the second driving circuit 112 includes a second driving transistor T12
  • the third driving circuit 113 includes a third driving transistor T13;
  • the aspect ratio of the transistor T11 is greater than that of the second driving transistor T12
  • the aspect ratio of the second driving transistor T12 is greater than that of the third driving transistor T13.
  • the array substrate 1 uses driving circuits with different cross voltages to drive the red light-emitting unit R, the green light-emitting unit G, and the blue light-emitting unit B separately, which can reduce the power of the array substrate 1 to a greater extent. Consumption.
  • the width-to-length ratio of the second driving transistor T12 for driving the green light-emitting unit G is greater than the width-to-length ratio of the third driving transistor T13 for driving the blue light-emitting unit B, the data signal adjustment range of the blue light-emitting unit B can be further improved.
  • the manufacturing difficulty of the driving chip is reduced, which is more conducive to the display device to achieve more grayscale display.
  • the first driving circuit 111 further includes a first switching transistor T21
  • the second driving circuit 112 further includes a second switching transistor T22
  • the third driving circuit 113 further includes a third switching transistor T23;
  • the aspect ratio of the first switching transistor T21 is greater than that of the second switching transistor T22
  • the aspect ratio of the second switching transistor T22 is greater than that of the third switching transistor T23.
  • the aspect ratio of the first switching transistor T21 may be the same as that of the first driving transistor T11, and the aspect ratio of the second switching transistor T22 may be the same as that of the second driving transistor T12.
  • the aspect ratio of the three-switch transistor T23 may be the same as that of the third driving transistor T13. This arrangement can reduce the manufacturing difficulty of the array substrate 1.
  • the first driving circuit 111 further includes a first storage capacitor C1 and a first data writing transistor T31
  • the second driving circuit 112 further includes a second storage capacitor C2 and a second data writing transistor.
  • the transistor T32 and the third driving circuit 113 further include a third storage capacitor C3 and a third data writing transistor T33.
  • the first storage capacitor C1, the second storage capacitor C2, and the third storage capacitor C3 can have the same size, or the sizes of the first storage capacitor C1, the second storage capacitor C2, and the third storage capacitor C3 can be adjusted according to the design of the entire driving circuit. Adjust separately.
  • the first data writing transistor T31, the second data writing transistor T32, and the third data writing transistor T33 may use the same aspect ratio, so that the driving chip can adjust the data signal.
  • the specific circuits of the first driving circuit 111, the second driving circuit 112, and the third driving circuit 113 can be adjusted according to implementation conditions.
  • the array substrate 1A is configured to carry a plurality of light-emitting units 2 of different light-emitting colors, and the array substrate 1A includes a plurality of pixel driving circuits 11,
  • the plurality of pixel driving circuits 11 include at least one first driving circuit 111 and at least one second driving circuit 112; the first driving circuit 111 and the second driving circuit 112 are configured to drive the light-emitting units 2 of different light-emitting colors.
  • the first driving circuit 111 includes a first driving transistor, and the second driving circuit includes a second driving transistor; the aspect ratio of the first driving transistor is greater than that of the second driving transistor.
  • the light emitting unit 2 includes a red light emitting unit R, a green light emitting unit G, and a blue light emitting unit B
  • the first driving circuit 111 is configured to drive the red light emitting unit R
  • the second driving circuit 112 It is configured to drive the green light emitting unit G or the blue light emitting unit B.
  • the driving current of the green light-emitting unit G (or the blue light-emitting unit B) is smaller than that of the red light-emitting unit R. It can be seen from the above that the adjustment range of the data signal V data of the green light-emitting unit G (or blue light-emitting unit B) corresponding to the driving transistor is relatively small. In this way, the brightness of the green light-emitting unit G (or blue light-emitting unit B) is adjusted The degree of fineness is relatively large, and the adjustment difficulty is relatively high.
  • the aspect ratio of the second driving transistor driving the green light-emitting unit G (or blue light-emitting unit B) is less than the aspect ratio of the first driving transistor driving the red light-emitting unit R, the green light-emitting unit G (or blue light-emitting unit B)
  • the adjustment range of the V data of the unit B) is relatively increased, which reduces the fineness of the brightness adjustment of the green light-emitting unit G (or the blue light-emitting unit B), thereby reducing the difficulty of manufacturing the driving chip, and is also beneficial to the display device Achieve more gray scale display.
  • each pixel unit pixel-A (for example, includes a red light-emitting unit R, a green light-emitting unit G, and The layout design of the driving transistor corresponding to the blue light-emitting unit B) is different in size. It can be seen from the above that the width-to-length ratio of the driving transistor corresponding to the green light-emitting unit G (or the blue light-emitting unit B) with a smaller driving current is relatively small.
  • the width-to-length ratio of the second driving transistor is smaller than that of the first driving transistor, which can reduce the pixel layout design space required for each pixel pixel-A, thereby helping to improve the resolution of the product.
  • first driving transistor and the second driving transistor in the array substrate 1A can be specifically designed with reference to the first driving transistor T11 and the second driving transistor T12 in the array substrate 1 described above, and their beneficial effects are also similar to those of the array substrate.
  • the beneficial effects of providing the first driving transistor T11 and the second driving transistor T12 in 1 are the same, and will not be repeated here.
  • the plurality of pixel driving circuits 11 include at least one third driving circuit 113, the second driving circuit 112 is configured to drive the green light-emitting unit G, and the third driving circuit 113 is configured to drive Blue light-emitting unit B.
  • the third driving circuit 113 further includes a third driving transistor T13; the aspect ratio of the second driving transistor T12 is greater than that of the third driving transistor T13.
  • the first driving circuit 111 may also include a switching transistor, a storage capacitor, a data writing transistor, etc., and the second driving circuit 112 and the first driving circuit 111 have the same structure.
  • the aspect ratio setting of the switching transistor and the data writing transistor and the size setting of the storage capacitor can be performed with reference to the above, and the beneficial effects thereof are also consistent with the above, and will not be repeated here.
  • the display panel 100 includes the array substrate 1 and the light emitting unit 2 in some of the above embodiments, and has the beneficial effects of the array substrate 1 in some of the above embodiments. , I won’t repeat it here.
  • the display panel 100 further includes an encapsulation structure 3 configured to encapsulate the light-emitting unit 2 on the array substrate 1 to protect the light-emitting unit 2 and the circuits on the array substrate 1.
  • the display panel 100 includes the array substrate 1A and the light-emitting unit 2 in some of the above embodiments, and has the benefits of the array substrate 1A in some of the above embodiments. The effect will not be repeated here.
  • the display panel 100A further includes an encapsulation structure 3 configured to encapsulate the light-emitting unit 2 on the array substrate 1A to protect the light-emitting unit 2 and the circuits on the array substrate 1A.
  • Some embodiments of the present disclosure provide a display device 200. As shown in FIG. Go into details again.
  • the display device 200 further includes a driving chip and a power supply.
  • the driving chip is configured to drive the display panel 100 for display
  • the power supply is configured to provide power to the display panel 100.
  • Some embodiments of the present disclosure provide another display device 200A, as shown in FIG. No longer.
  • the display device 200A further includes a driving chip and a power supply.
  • the driving chip is configured to drive the display panel 100A for display, and the power supply is configured to provide power to the display panel 100A.
  • Some embodiments of the present disclosure provide a manufacturing method of the array substrate 1, as shown in FIG. 3 and FIG. 16, the manufacturing method includes:
  • a plurality of pixel driving circuits 11 are formed, and the plurality of pixel driving circuits 11 include at least one first driving circuit 111 and at least one second driving circuit 112; the first driving circuit 111 and the second driving circuit 112 are configured to drive different light emission Color light-emitting unit 2.
  • each light-emitting unit 2 has a first pole and a second pole, and the first driving circuit 111 and the second driving circuit 112 are respectively coupled to the first pole of the light-emitting unit 2 of different light-emitting colors.
  • S2 forming a first voltage input line 121; the first voltage input line 121 is coupled to at least one first driving circuit 111, and the first voltage input line 121 is configured to transmit the first voltage V1 to the at least one first driving circuit 111 .
  • the array substrate 1 can also form a common voltage input line 13.
  • the common voltage input line 13 is simultaneously coupled to the second poles of a plurality of light-emitting units 2 of different light-emitting colors, and the common voltage input line 13 is configured to The second poles of the light-emitting units 2 with different light-emitting colors transmit the set voltage V0.
  • Some embodiments of the present disclosure provide a method for manufacturing the array substrate 1, which can manufacture the array substrate 1 in any one of the embodiments described above.
  • the first voltage input line 121 and the common voltage input The voltage across the line 13 provided to the first driving circuit 111 and the light-emitting unit 2 corresponding to the first driving circuit 111 is different from the second voltage input line 122 and the common voltage input line 13 provided to the second driving circuit 112 and the second driving circuit 112.
  • the present disclosure can provide different cross voltages for the driving requirements of the light-emitting units 2 of different colors, so that the light-emitting unit 2 with a smaller driving current and the corresponding pixel driving circuit 11 can obtain a smaller cross voltage. Also in the case of achieving white balance, the driving current of the light-emitting unit 2 with a smaller driving current remains unchanged, and the cross-voltage of the pixel driving circuit 11 corresponding to the light-emitting unit 2 is consistent with its actual cross-voltage requirements, so this can be reduced. The ineffective power consumption of the non-light emitting part in the pixel driving circuit 11 reduces the power consumption of the array substrate 1.
  • Some embodiments of the present disclosure also provide a preparation method of the array substrate 1A. As shown in FIG. 17, the preparation method includes:
  • a plurality of pixel driving circuits 11 are formed, and the plurality of pixel driving circuits 11 include at least one first driving circuit 111 and at least one second driving circuit 112; the first driving circuit 111 and the second driving circuit 112 It is configured to drive light-emitting units 2 of different light-emitting colors.
  • the first driving circuit 111 includes a first driving transistor
  • the second driving circuit 112 includes a second driving transistor; the aspect ratio of the first driving transistor is greater than that of the second driving transistor.
  • the light-emitting unit 2 further includes a red light-emitting unit R, a green light-emitting unit G, and a blue light-emitting unit B
  • the first driving circuit 111 is configured to drive the red light-emitting unit R
  • the second driving circuit 112 is configured to drive Green light-emitting unit G or blue light-emitting unit B.
  • Some embodiments of the present disclosure provide a method for preparing the array substrate 1A, which can produce the array substrate 1A in any one of the above-mentioned embodiments.
  • the green light-emitting unit G or blue The aspect ratio of the second driving transistor of the light emitting unit B
  • the adjustment range of the data signal of the green light emitting unit G or blue light emitting unit B
  • this can reduce the fineness of the brightness adjustment of the green light-emitting unit G (or the blue light-emitting unit B), thereby reducing the difficulty of manufacturing the driving chip, and at the same time, it is beneficial for the display device to achieve more grayscale display.
  • the aspect ratio of the second driving transistor is smaller than that of the first driving transistor, this can also reduce the pixel layout design space required for each pixel unit, thereby helping to improve the resolution of the product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

一种阵列基板(1),阵列基板(1)被配置为可承载多个不同发光颜色的发光单元(2),阵列基板(1)包括:多个像素驱动电路(11)、第一电压输入线(121)以及第二电压输入线(122)。多个像素驱动电路(11)包括至少一个第一驱动电路(111)和至少一个第二驱动电路(112);第一驱动电路(111)和第二驱动电路(112)被配置为驱动不同发光颜色的发光单元(2)。第一电压输入线(121)与至少一个第一驱动电路(111)耦接,且第一电压输入线(121)被配置为向至少一个第一驱动电路(111)输入第一电压(V1)。第二电压输入线(122)与至少一个第二驱动电路(112)耦接,且第二电压输入线(122)被配置为向至少一个第二驱动电路(112)输入第二电压(V2),第一电压(V1)与第二电压(V2)不同。

Description

阵列基板及其制备方法、显示面板及显示装置
本申请要求于2020年02月28日提交的、申请号为202010131149.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其一种阵列基板及其制备方法、显示面板及显示装置。
背景技术
μLED(Ultra Light Emitting Diode,极致发光二极管)可以为Micro LED(Micro Light Emitting Diode,微型发光二极管)或Mini LED(Mini Light Emitting Diode,次毫米发光二极管)等。通过在阵列基板上高密度地集成μLED,可以实现每一个μLED的定址以及单独发光。
发明内容
一方面,提供一种阵列基板。所述阵列基板被配置为可承载多个不同发光颜色的发光单元,所述阵列基板包括:多个像素驱动电路、第一电压输入线以及第二电压输入线。所述多个像素驱动电路包括至少一个第一驱动电路和至少一个第二驱动电路;所述第一驱动电路和所述第二驱动电路被配置为驱动不同发光颜色的发光单元。所述第一电压输入线与所述至少一个第一驱动电路耦接,且所述第一电压输入线被配置为向所述至少一个第一驱动电路传输第一电压。所述第二电压输入线与所述至少一个第二驱动电路耦接,且所述第二电压输入线被配置为向所述至少一个第二驱动电路传输第二电压。其中,所述第一电压与所述第二电压不同。
在一些实施例中,每个所述发光单元具有第一极和第二极,所述第一驱动电路和所述第二驱动电路分别与不同发光颜色的所述发光单元的第一极耦接。所述阵列基板还包括公共电压输入线,公共电压输入线同时与所述多个不同发光颜色的发光单元的第二极耦接,且所述公共电压输入线被配置为向所述多个不同发光颜色的发光单元的第二极传输设定电压。
在一些实施例中,所述多个发光单元包括至少一个红色发光单元、至少一个绿色发光单元和至少一个蓝色发光单元。所述第一驱动电路被配置为驱动红色发光单元,所述第二驱动电路被配置为驱动绿色发光单元或蓝色发光单元。所述第一电压与所述设定电压的电压差大于所述第二电压与所述设定电压的电压差。
在一些实施例中,所述第一驱动电路包括第一驱动晶体管,所述第二驱 动电路包括第二驱动晶体管;所述第一驱动晶体管的宽长比大于所述第二驱动晶体管的宽长比。
在一些实施例中,所述第一驱动电路还包括第一开关晶体管,所述第二驱动电路还包括第二开关晶体管;所述第一开关晶体管的宽长比大于所述第二开关晶体管的宽长比。
在一些实施例中,所述多个像素驱动电路包括至少一个第三驱动电路。所述阵列基板还包括第三电压输入线,第三电压输入线与所述至少一个第三驱动电路耦接,且所述第三电压输入线被配置为向所述至少一个第三驱动电路传输第三电压,所述第三电压与所述第一电压和所述第二电压均不同。
在一些实施例中,所述多个发光单元包括至少一个红色发光单元、至少一个绿色发光单元和至少一个蓝色发光单元。所述第一驱动电路与红色发光单元的第一极耦接,且所述第一驱动电路被配置为驱动所述红色发光单元;所述第二驱动电路与绿色发光单元的第一极耦接,且所述第二驱动电路被配置为驱动所述绿色发光单元;所述第三驱动电路与蓝色发光单元的第一极耦接,且所述第三驱动电路被配置为驱动所述蓝色发光单元。所述第一电压与所述设定电压的电压差大于所述第二电压与所述设定电压的电压差,所述第二电压与所述设定电压的电压差大于所述第三电压与所述设定电压的电压差。
在一些实施例中,所述第一驱动电路包括第一驱动晶体管,所述第二驱动电路包括第二驱动晶体管,所述第三驱动电路包括第三驱动晶体管。所述第一驱动晶体管的宽长比大于所述第二驱动晶体管的宽长比,所述第二驱动晶体管的宽长比大于所述第三驱动晶体管的宽长比。
在一些实施例中,所述第一驱动电路还包括第一开关晶体管,所述第二驱动电路还包括第二开关晶体管,所述第三驱动电路还包括第三开关晶体管。所述第一开关晶体管的宽长比大于所述第二开关晶体管的宽长比,所述第二开关晶体管的宽长比大于所述第三开关晶体管的宽长比。
在一些实施例中,所述发光单元为微型发光二极管或次毫米发光二极管。
另一方面,提供另一种阵列基板。阵列基板被配置为可承载多个不同发光颜色的发光单元,所述阵列基板包括多个像素驱动电路。所述多个像素驱动电路包括至少一个第一驱动电路和至少一个第二驱动电路;所述第一驱动电路和所述第二驱动电路被配置为驱动不同发光颜色的发光单元。所述第一驱动电路包括第一驱动晶体管,所述第二驱动电路包括第二驱动晶体管;所述第一驱动晶体管的宽长比大于所述第二驱动晶体管的宽长比。
在一些实施例中,多个所述发光单元包括至少一个红色发光单元、至少一个绿色发光单元和至少一个蓝色发光单元,所述第一驱动电路被配置为驱动所述红色发光单元,所述第二驱动电路被配置为驱动所述绿色发光单元或所述蓝色发光单元。
在一些实施例中,所述多个像素驱动电路包括至少一个第三驱动电路,所述第三驱动电路被配置为驱动所述蓝色发光单元,所述第二驱动电路被配置为驱动所述绿色发光单元。所述第三驱动电路包括第三驱动晶体管,所述第三驱动晶体管的宽长比小于所述第二驱动晶体管的宽长比。
再一方面,提供一种显示面板,所述显示面板包括如上述任一实施例所述的阵列基板和设置于所述阵列基板上的多个不同发光颜色的发光单元。
又一方面,提供一种显示装置。所述显示装置包括:如上述任一实施例所述的显示面板。
又一方面,提供一种阵列基板的制备方法,所述制备方法包括:形成多个像素驱动电路,所述多个像素驱动电路包括至少一个第一驱动电路和至少一个第二驱动电路;所述第一驱动电路和所述第二驱动电路被配置为驱动不同发光颜色的发光单元。形成第一电压输入线;所述第一电压输入线与所述至少一个第一驱动电路耦接,且所述第一电压输入线被配置为向所述至少一个第一驱动电路传输第一电压。形成第二电压输入线,所述第二电压输入线与所述至少一个第二驱动电路耦接,且所述第二电压输入线被配置为向所述至少一个第二驱动电路传输第二电压;其中,所述第一电压与所述第二电压不同。
又一方面,提供另一种阵列基板的制备方法,所述制备方法包括:形成多个像素驱动电路,所述多个像素驱动电路包括至少一个第一驱动电路和至少一个第二驱动电路。其中,所述第一驱动电路和所述第二驱动电路被配置为可驱动不同发光颜色的发光单元;所述第一驱动电路包括第一驱动晶体管,所述第二驱动电路包括第二驱动晶体管;所述第一驱动晶体管的宽长比大于所述第二驱动晶体管的宽长比。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流 程、信号的实际时序等的限制。
图1为根据相关技术的一种阵列基板的结构图;
图2为根据一些实施例的一种承载有发光单元的阵列基板的侧视图;
图3为根据一些实施例的一种阵列基板的俯视图;
图4为根据一些实施例的另一种阵列基板的俯视图;
图5为根据一些实施例的一种像素驱动电路的结构图;
图6为相关技术中采用相同尺寸的驱动晶体管时,驱动红色发光单元的驱动晶体管和驱动绿色发光单元的驱动晶体管的特性曲线图;
图7为根据一些实施例采用不同尺寸的驱动晶体管时,驱动红色发光单元的驱动晶体管和驱动绿色发光单元的驱动晶体管的特性曲线图;
图8为相关技术中的一种像素版图设计与本公开一些实施例提供的一种像素版图设计的对比图;
图9为根据一些实施例的再一种阵列基板的俯视图;
图10为根据一些实施例的另一种像素驱动电路的结构图;
图11为根据一些实施例的又一种阵列基板的结构图;
图12为根据一些实施例的又一种阵列基板的结构图;
图13为根据一些实施例的又一种阵列基板的结构图;
图14为根据一些实施例的一种显示面板的结构图;
图15为根据一些实施例的一种显示装置的框架图;
图16为根据一些实施例的一种阵列基板的制备方法流程图;
图17为根据一些实施例的另一种阵列基板的制备方法流程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)” 或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“大致”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
OLED(Organic Light Emitting Diode,有机发光二极管)显示装置中不同颜色的发光单元的驱动电流为几十nA(纳安),而μLED(例如Micro LED或Mini LED)显示装置中不同颜色的发光单元(即μLED芯片)的驱动电流可达几十uA(微安)到几百uA,是OLED显示装置中nA级的驱动电流的千倍量级。因此,μLED产品具有较高的功耗是其存在的问题之一。
此外,发明人注意到由于不同颜色的μLED芯片的发光效率不同,各μLED芯片的起亮电压也有所不同,因此,在一个像素单元的一个灰阶显示状态下,该像素单元中各μLED芯片的驱动电流存在差异。其中,一个像素单元例如可以包括一个红色μLED芯片、一个绿色μLED芯片以及一个蓝色μLED芯片。
相关技术中,如图1所示,μLED显示装置的阵列基板1'包括用于驱动红色发光单元R'的驱动电路111'、用于驱动绿色发光单元G'的驱动电路112'和用于驱动蓝色发光单元B'的驱动电路113',且这些驱动电路连接到同一阳极电压输入线VDD以及同一阴极电压输入线VSS。通常情况下,这些驱动不同颜色发光单元的驱动电路的结构是相同的。
不同颜色的μLED芯片的发光效率和起亮电压不同。为了满足显示装置发光亮度以及白平衡的要求,同一显示装置中不同颜色的μLED芯片在显示最大灰阶时所需的最大驱动电流有所不同。例如,为了实现白平衡,所需的红色光的亮度较大,而红色μLED芯片的发光效率最低,这导致红色μLED芯片的最大驱动电流(发光功率最大时所对应的驱动电流)大于蓝色μLED芯片和绿色μLED芯片的最大驱动电流。当阳极电源输入线VDD和阴极电源输入线VSS之间的跨压能够满足红色μLED芯片的驱动要求时,蓝色μLED芯片(或绿色μLED芯片)的阳极电源输入线VDD和阴极电源输入线VSS之间的跨压大于该蓝色μLED芯片(或绿色μLED芯片)所对应的像素驱动电路的实际跨压需求,多余的跨压会被消耗在对应的像素驱动电路中的元器件(例如驱动晶体管、开关晶体管等)中,从而增加显示装置的非发光功耗。
基于此,本公开一些实施例提供一种阵列基板1,如图2和图3所示,该阵列基板1被配置为可承载多个不同发光颜色的发光单元2,且该阵列基板1包括:多个像素驱动电路11,第一电压输入线121以及第二电压输入线122。
其中,发光单元2可以为微型发光二极管(即Micro-LED)或次毫米发光二极管(即Mini-LED)。
所述多个像素驱动电路11包括至少一个第一驱动电路111和至少一个第二驱动电路112;第一驱动电路111和第二驱动电路112被配置为驱动不同发 光颜色的发光单元2。其中,示例性的,第一驱动电路111和第二驱动电路112的结构相同。
第一电压输入线121与至少一个第一驱动电路111耦接,且第一电压输入线121被配置为向至少一个第一驱动电路111传输第一电压V1;而第二电压输入线122与至少一个第二驱动电路112耦接,且第二电压输入线122被配置为向至少一个第二驱动电路112传输第二电压V2。
在一些示例中,如图3所示,每个发光单元2具有第一极和第二极,第一驱动电路111和第二驱动电路112分别与不同发光颜色的发光单元2的第一极耦接。阵列基板1还包括公共电压输入线13,公共电压输入线13同时与多个不同发光颜色的发光单元2的第二极耦接,公共电压输入线13被配置为向多个不同发光颜色的发光单元2的第二极传输设定电压V0。这样,公共电压输入线13便可以向与其耦接的多个发光单元2传输同样的设定电压V0。
本公开一些实施例提供的阵列基板1,由于第一电压输入线121向第一驱动电路111提供的电压信号(即第一电压V1)和第二电压输入线122向第二驱动电路112提供的电压信号(即第二电压V1)大小不同,而公共电压输入线13则向不同发光颜色的发光单元2的第二极提供了相同的电压信号(即设定电压V0),这样使得第一电压输入线121与公共电压输入线13提供给第一驱动电路111和与该第一驱动电路111对应的发光单元2的整体跨压不同于第二电压输入线122与公共电压输入线13提供给第二驱动电路112和与该第二驱动电路112对应的发光单元2的整体跨压。因此,本公开能够针对不同颜色的发光单元2的驱动需求提供不同的跨压,从而使所需驱动电流较小的发光单元2和其所对应的像素驱动电路11整体获得的跨压较小。同样在实现白平衡的情况下,驱动电流较小的发光单元2的驱动电流保持不变,而该发光单元2所对应的像素驱动电路11的跨压与其实际跨压需求一致,因此可以减少该像素驱动电路11中的非发光部分的无效功耗,从而降低阵列基板1的功耗。
在一些示例中,发光单元2为发光二极管。示例性的,发光单元2的第一极为发光二极管的阳极,而第二极则为发光二极管的阴极。或者,发光单元2的第一极为发光二极管的阴极,而第二极则为发光二极管的阳极。
在一些示例中,第一电压输入线121和第二电压输入线122分别为一条阳极电压输入线,此时,公共电压输入线13为阴极电压输入线。在另一些示例中,第一电压输入线121和第二电压输入线122分别为一条阴极电压输入线,此时,公共电压输入线13为阳极电压输入线。
示例性的,发光二级管的阳极与阳极电压输入线相对应,而发光二级管的阴极与阴极电压输入线相对应。
这样通过采用阳极电源独立驱动(即第一电压输入线121和第二电压输入线122分别为一条阳极电压输入线,公共电压输入线13为阴极电压输入线)或阴极电源独立驱动(即第一电压输入线121和第二电压输入线122分别为一条阴极电压输入线,公共电压输入线13为阳极电压输入线)的方式,能够使得第一驱动电路111和第二驱动电路112的跨压不同,从而使所需驱动电流较小的发光单元2所对应的像素驱动电路11跨压降低,进而可以在达到白平衡的情况下,实现降低阵列基板1功耗的目的。
本公开一些实施例中,如图4所示,多个发光单元2包括至少一个红色发光单元R、至少一个绿色发光单元G和至少一个蓝色发光单元B,第一驱动电路111被配置为驱动红色发光单元R,第二驱动电路112被配置为驱动绿色发光单元G或蓝色发光单元B;第一电压V1与设定电压V0的电压差大于第二电压V2与设定电压V0的电压差。
对于μLED显示装置,由于红色发光单元R的最大驱动电流较大,甚至是绿色发光单元G的最大驱动电流的2倍以上,两者的最大驱动电流存在明显差异。因此采用阳极电源独立驱动或阴极电源独立驱动的方式,可以使第一驱动电路111和第二驱动电路112跨压不同,从而可以分别满足第一驱动电路111对红色发光单元R的驱动需求以及第二驱动电路112对绿色发光单元G的驱动需求,这样可以避免第一驱动电路111和第二驱动电路112均采用与红色发光单元R的驱动需求相对应的跨压时而导致阵列基板1无效功耗较大的问题,从而实现阵列基板1功耗的降低。
此外,由于绿色发光单元G和蓝色发光单元B的最大驱动电流的差异较小,且绿色发光单元G和蓝色发光单元B的最大驱动电流之间的差异远小于绿色发光单元G与红色发光单元R的最大驱动电流之间的差异,因此,绿色发光单元G与蓝色发光单元B可以采用相同跨压的第二驱动电路112,这样也不会对阵列基板1的功耗造成明显提高。同时,分别将与绿色发光单元G和蓝色发光单元B相对应的第二驱动电路112耦接至同一条第二电压输入线122,这样可对驱动绿色发光单元G的第二驱动电路112和驱动蓝色发光单元B的第二驱动电路112分别传输第二电压V2,从而能够减少第二电压输入线122的使用数量,降低驱动芯片的负荷。
需要说明的是,每个像素驱动电路11均具有驱动晶体管。如图5所示,在一些示例中,第一驱动电路111包括第一驱动晶体管T11,第二驱动电路 112包括第二驱动晶体管T12。
本公开一些实施例所提供的阵列基板1,其不同发光颜色的发光单元2采用不同跨压的像素驱动电路11进行驱动,而阵列基板1的功率为每个像素单元的功率与像素单元个数的乘积。以每个像素单元包括一个红色发光单元R、一个绿色发光单元G和一个蓝色发光单元B,分辨率为M×N为例,该阵列基板1的功率为:
P=P0·M·N=(P R+P G+P B)·M·N=[(V ds-R+K)·I R+(V ds-G+K)·I G+(V ds-B+K)·I B]·M·N
而相关技术中阵列基板1'的不同颜色的发光单元采用相同跨压的像素驱动电路进行驱动,如图1所示,以每个像素单元包括一个红色发光单元R'、一个绿色发光单元G'和一个蓝色发光单元B',分辨率为M×N为例,则相关技术中的阵列基板1'的功率为:
P′=P0′·M·N=(P R′+P G′+P B′)·M·N=[(V ds-R+K)·I R+(V ds-R+K)·I G+(V ds-R+K)·I B]·M·N
在上述两个公式中,P为本公开一些实施例中的阵列基板1的功率,P0为本公开一些实施例中的每个像素单元的功率,P R为本公开一些实施例中红色发光单元R的功率,P G为本公开一些实施例中绿色发光单元G的功率,P B为本公开一些实施例中蓝色发光单元B的功率;
P′为相关技术中的阵列基板1'的功率,P0′为相关技术中的每个像素的功率,P R′为相关技术中红色发光单元R的功率,P G′为相关技术中绿色发光单元G的功率,P B′为相关技术中蓝色发光单元B的功率;
V ds-R为驱动红色发光单元的驱动晶体管的跨压,V ds-G为驱动绿色发光单元的驱动晶体管的跨压,V ds-B为驱动蓝色发光单元的驱动晶体管的跨压,K为各驱动电路中的电压降(包括阳极电压输入线的电压降、阴极电压输入线的电压降等),I R为红色发光单元R的驱动电流,I G为绿色发光单元G的驱动电流,I B为蓝色发光单元B的驱动电流。
对于本公开一些实施例提供的阵列基板1而言,由于驱动红色发光单元R的第一驱动电路111的跨压大于驱动绿色发光单元G(或蓝色发光单元B)的第二驱动电路112的跨压,而驱动绿色发光单元G的第二驱动电路112的跨压和驱动蓝色发光单元B的第二驱动电路112的跨压相同。因此,第一驱动电路111中第一驱动晶体管T11的跨压大于第二驱动电路112中第二驱动晶体管T12的跨压,即V ds-R>V ds-G=V ds-B
而对于相关技术中的基板1'而言,为了满足红色发光单元R'的驱动需求,绿色发光单元G'和蓝色发光单元B'的像素驱动电路均采用与红色发光单元R'的像素驱动电路相同的跨压,这样使得各发光单元所对应的驱动晶 体管的跨压均为V ds-R
因此,本公开一些实施例所提供的阵列基板1和相关技术中的基板1'需要显示相同画面时,即各颜色发光单元的驱动电流(即I R、I G、I B)相同,但由于本公开一些实施例所提供的阵列基板1中蓝色发光单元B和绿色发光单元G所对应的驱动晶体管的跨压均降低,因此,本公开一些实施例提供的阵列基板1的功率小于相关技术中的阵列基板1'的功率,也即实现了阵列基板1功耗的降低。
在一些实施例中,第一驱动晶体管T11的宽长比等于第二驱动晶体管T12的宽长比。这样可以使得像素驱动电路11版图排布比较简单。
在另一些实施例中,第一驱动晶体管T11的宽长比大于第二驱动晶体管T12的宽长比。示例性的,第一驱动晶体管T11的宽长比为W1/L1,第二驱动晶体管T12的宽长比为W2/L2。例如,可通过使W1=W2,L1<L2,从而实现第一驱动晶体管T11的宽长比大于第二驱动晶体管T12的宽长比。又例如,还可通过使W1>W2,L1=L2,从而实现第一驱动晶体管T11的宽长比大于第二驱动晶体管T12的宽长比。
由于μLED芯片为电流型驱动器件,μLED显示装置中某个发光单元的驱动电流为:
Figure PCTCN2021077721-appb-000001
其中,I为发光单元的驱动电流,μ为电子迁移率,C为单位面积栅氧化层电容(栅极到衬底电容),W、L为沟道宽和长,V gs为栅源电压差,V th为阈值电压。
另外,
V gs=V data-VDD
其中,V data为数据电压。
由于红色发光单元R的驱动电流相较于绿色发光单元G和蓝色发光单元B的驱动电流更大。为了避免解释冗余,以下以第二驱动电路驱动绿色发光单元G为例进行说明。
对于红色发光单元R,由上述公式可知,当驱动红色发光单元R的第一驱动晶体管T11的宽长比(W/L)与驱动绿色发光单元G的第二驱动晶体管T12的宽长比(W/L)相同时,在μ、C不发生变化的情况下,由于红色发光单元R的驱动电流相较于绿色发光单元G的驱动电流更大,因此,对于第一驱动晶体管T11,其(V gs-V th) 2相对较大。而V th不发生改变,则V gs调节范围相 对较大,故而,V data的调节范围也相对较大,这样,红色发光单元R的亮度调节精细程度相较于绿色发光单元G更低。
而对于绿色发光单元G,由上述公式可知,在当μ、C以及I不发生变化时,W/L减小可使得(V gs-V th) 2增大,而V th不发生改变,则V gs调节范围增大,故而,V data的调节范围也增大。由此可知,在μ、C以及I均不改变的情形下,驱动绿色发光单元G的第二驱动晶体管T12的宽长比小于驱动红色发光单元R的第一驱动晶体管T11的宽长比时,可使得绿色发光单元G的V data的调节范围相对增大,从而降低了绿色发光单元G的亮度调节的精细程度,进而降低了驱动芯片的制作难度。
另一方面,参见图6,图6示出了相关技术不同颜色的发光单元(例如红色发光单元R'和绿色发光单元G')采用相同尺寸(即宽长比相同)的驱动晶体管驱动发光时,所采用的驱动晶体管的栅源电压差与驱动电流(即V gs-I data)之间的特性曲线。其中,横坐标为该驱动晶体管的栅源电压差,单位为伏特(V),纵坐标为该驱动晶体管的驱动电流,单位为安培(A)。由于采用相同尺寸的驱动晶体管,因此,不同颜色的发光单元对应的驱动晶体管的截止电压相同(如图6所示,截止电压大致为0V)。由于红色发光单元R'的最大驱动电流I R'(max)大于绿色发光单元G'的最大驱动电流I G'(max),使得绿色发光单元G'的驱动晶体管的栅源电压差V gs-G'的调节范围小于红色发光单元R'的驱动晶体管的栅源电压差V gs-R'的调节范围。而V gs=V data-VDD,在VDD不发生改变的情况下,绿色发光单元G'的数据信号(也即V data)调节范围小于红色发光单元R'的数据信号调节范围。又由于栅源电压差的调节范围需求越大的驱动晶体管要求所驱动的发光单元的数据信号V data的调节范围越大,故而当驱动绿色发光单元G'的驱动晶体管采用与驱动红色发光单元R'的驱动晶体管相同的尺寸时,对于绿色发光单元G'的数据信号所需调节的精度较高,这样便增加了驱动芯片的制作难度,且容易限制绿色发光单元的灰阶显示范围。
参见图7,图7示出了本公开一些实施例中驱动红色发光单元R的第一驱动晶体管T11的宽长比大于驱动绿色发光单元G的第二驱动晶体管T12的宽长比时,所采用的驱动晶体管的栅源电压差与驱动电流(即V gs-I data)之间的特性曲线。图7中第一驱动晶体管T11的V gs-I data特性曲线和第二驱动晶体管T12的V gs-I data特性曲线存在明显差异。其中,第一驱动晶体管T11和第二驱动晶体管T12具有大致相同的截止电压,但在相同的栅源电压差下,第一驱动晶体管T11的驱动电流I R(max)大于第二驱动晶体管T12的驱动电流I G(max)。 因此,在绿色发光单元G的最大驱动电流不变的情况下,通过调整第一驱动晶体管T11和第二驱动晶体管T12的宽长比,能够使第二驱动晶体管T12的栅源电压差的调节范围增大,即绿色发光单元G的数据信号V data的调节范围增大,从而降低了绿色发光单元G的亮度调节的精细程度,进而降低了驱动芯片的制作难度。
如图8所示,其中,图8左侧示出相关技术中,阵列基板1'中每个像素单元pixel'(例如包括一个红色发光单元R',一个绿色发光单元G'和蓝色发光单元B')所对应的驱动晶体管尺寸相同时的像素版图设计。而图8右侧示出本公开一些实施例提供的阵列基板1中每个像素单元pixel(例如包括一个红色发光单元R,一个绿色发光单元G和蓝色发光单元B)所对应的驱动晶体管尺寸不同时的像素版图设计。本公开一些实施例所提供的阵列基板1,第一驱动晶体管T11的宽长比大于第二驱动晶体管T12的宽长比,驱动电流较大的红色发光单元R的驱动晶体管的宽长比较大,其所需的排布空间也较大;而驱动电流较小的绿色发光单元G(或者蓝色发光单元B)所对应的驱动晶体管的宽长比较小,一个像素单元pixel所需的排布空间也较小。因此,相较于相关技术中每个像素单元pixel'采用尺寸相同的驱动晶体管而言,这能够减小每个像素单元pixel所需的像素版图设计空间,从而提升产品的分辨率;同时,根据上文可知,在采用不同宽长比的驱动晶体管时,例如驱动绿色发光单元G或蓝色发光单元B的驱动晶体管的宽长比小于驱动红色发光单元R的驱动晶体管的宽长比,能够提高驱动电流较小的发光单元(例如绿色发光单元G和蓝色发光单元B)的数据信号调节范围,在降低驱动芯片制作难度的同时,有利于显示装置实现更多灰阶数的显示。
在一些示例中,如图8所示,相关技术中采用相同宽长比的驱动晶体管时,例如一个像素单元pixel′(包括驱动红色发光单元的驱动电路、驱动绿色发光单元的驱动电路和驱动蓝色发光单元的驱动电路)所需要的空间为250μm×500μm,而本公开一些实施例中采用不同宽长比的驱动晶体管时,一个像素单元pixel(包括一个第一驱动电路111和两个第二驱动电路112)所需要的空间为250μm×440μm。由此可见,每个像素单元所需的像素版图设计空间可以大幅减小,因而能够显著提升显示装置的分辨率。
需要说明的是,即使第一驱动电路111和第二驱动电路112的跨压相同,仅第一驱动晶体管T11的宽长比大于第二驱动晶体管T12的宽长比,也能够减小每个像素单元所需的像素版图设计空间,并提升驱动电流较小的发光单元(例如绿色发光单元G和蓝色发光单元B)的数据信号调节范围,降低驱 动芯片的制作难度,有利于显示装置实现更多灰阶数的显示。
对于本公开一些实施例提供的阵列基板1,示例性的,参照图5,第一驱动电路111还包括第一开关晶体管T21,第二驱动电路112还包括第二开关晶体管T22;第一开关晶体管T21的宽长比大于第二开关晶体管T22的宽长比。
在一些示例中,第一开关晶体管T21的宽长比与第一驱动晶体管T11的宽长比相同,第二开关晶体管T22的宽长比与第二驱动晶体管T12的宽长比相同。这样设置能够降低阵列基板1的制作难度。
在一些示例中,如图5所示,第一驱动电路111还包括第一存储电容C1和第一数据写入晶体管T31,第二驱动电路112还包括第二存储电容C2和第二数据写入晶体管T32。第一存储电容C1和第二存储电容C2可以采用相同尺寸,也可以根据整个像素驱动电路11的设计对第一存储电容C1和第二存储电容C2的尺寸分别进行调整。第一数据写入晶体管T31和第二数据写入晶体管T32可以采用相同的宽长比,以便于驱动芯片对数据信号的调整。
示例性的,第一驱动电路111和第二驱动电路112均还可以包括重置晶体管等器件,而开关晶体管的个数也可以设置多个。也即,第一驱动电路111和第二驱动电路112的具体电路可根据实施条件进行调整。
在一些实施例中,如图9所示,多个像素驱动电路11还包括至少一个第三驱动电路113,阵列基板1还包括第三电压输入线123,与至少一个第三驱动电路113耦接,且第三电压输入线123被配置为向至少一个第三驱动电路113传输第三电压V3,第三电压V3与第一电压V1和第二电压V2均不同。
在一些示例中,如图9所示,发光单元包括红色发光单元R、绿色发光单元G和蓝色发光单元B;一个第一驱动电路111与一个红色发光单元R的第一极耦接,第一驱动电路111被配置为驱动红色发光单元R;一个第二驱动电路112与一个绿色发光单元G的第一极耦接,第二驱动电路112被配置为驱动绿色发光单元G;一个第三驱动电路113与一个蓝色发光单元B的第一极耦接,第三驱动电路113被配置为驱动蓝色发光单元B。第一电压V1与设定电压V0的电压差大于第二电压V2与设定电压V0的电压差,第二电压V2与设定电压V0的电压差大于第三电压V3与设定电压V0的电压差。
在一些示例中,如图10所示,第一驱动电路111包括第一驱动晶体管T11,第二驱动电路112包括第二驱动晶体管T12,第三驱动电路113包括第三驱动晶体管T13;第一驱动晶体管T11的宽长比大于第二驱动晶体管T12的宽长比,第二驱动晶体管T12的宽长比大于第三驱动晶体管T13的宽长比。
由于红色发光单元R的驱动电流较大,甚至是绿色发光单元G的2倍以 上,而绿色发光单元G的驱动电流大于蓝色发光单元B的驱动电流。因此,本公开一些实施例提供的阵列基板1采用跨压不同的驱动电路对红色发光单元R、绿色发光单元G和蓝色发光单元B进行分别驱动,能够更大程度地降低阵列基板1的功耗。同时,由于驱动绿色发光单元G的第二驱动晶体管T12宽长比大于驱动蓝色发光单元B的第三驱动晶体管T13的宽长比,这样可以进一步提升蓝色发光单元B的数据信号调节范围,降低驱动芯片的制作难度,从而更加有利于显示装置实现更多灰阶数的显示。
在一些示例中,如图10所示,第一驱动电路111还包括第一开关晶体管T21,第二驱动电路112还包括第二开关晶体管T22,第三驱动电路113还包括第三开关晶体管T23;第一开关晶体管T21的宽长比大于第二开关晶体管T22的宽长比,第二开关晶体管T22的宽长比大于第三开关晶体管T23的宽长比。
在一些示例中,第一开关晶体管T21的宽长比可以与第一驱动晶体管T11的宽长比相同,第二开关晶体管T22的宽长比可以与第二驱动晶体管T12的宽长比相同,第三开关晶体管T23的宽长比可以与第三驱动晶体管T13的宽长比相同。这样设置能够降低阵列基板1的制作难度。
在一些示例中,如图10所示,第一驱动电路111还包括第一存储电容C1和第一数据写入晶体管T31,第二驱动电路112还包括第二存储电容C2和第二数据写入晶体管T32,第三驱动电路113还包括第三存储电容C3和第三数据写入晶体管T33。第一存储电容C1、第二存储电容C2和第三存储电容C3可以采用相同尺寸,也可以根据整个驱动电路的设计对第一存储电容C1、第二存储电容C2和第三存储电容C3的尺寸分别进行调整。第一数据写入晶体管T31、第二数据写入晶体管T32和第三数据写入晶体管T33可以采用相同的宽长比,以便于驱动芯片对数据信号进行调整。
示例性的,第一驱动电路111、第二驱动电路112和第三驱动电路113的具体电路可根据实施条件进行调整。
此外,本公开一些实施例提供另一种阵列基板1A,如图11所示,阵列基板1A被配置为可承载多个不同发光颜色的发光单元2,阵列基板1A包括多个像素驱动电路11,多个像素驱动电路11包括至少一个第一驱动电路111和至少一个第二驱动电路112;第一驱动电路111和第二驱动电路112被配置为驱动不同发光颜色的发光单元2。第一驱动电路111包括第一驱动晶体管,第二驱动电路包括第二驱动晶体管;第一驱动晶体管的宽长比大于第二驱动晶体管的宽长比。
在一些示例中,如图12所示,发光单元2包括红色发光单元R、绿色发光单元G和蓝色发光单元B,第一驱动电路111被配置为驱动红色发光单元R,第二驱动电路112被配置为驱动绿色发光单元G或蓝色发光单元B。
由于μLED芯片为电流型驱动器件,对于绿色发光单元G(或蓝色发光单元B),其驱动电流相较于红色发光单元R的驱动电流更小。由上文可知,绿色发光单元G(或蓝色发光单元B)对应驱动晶体管的数据信号V data的调节范围也相对较小,这样,绿色发光单元G(或蓝色发光单元B)的亮度调节精细程度相对较大,调节难度较高。而在驱动绿色发光单元G(或蓝色发光单元B)的第二驱动晶体管的宽长比小于驱动红色发光单元R的第一驱动晶体管的宽长比时,绿色发光单元G(或蓝色发光单元B)的V data的调节范围相对增大,这样便降低了绿色发光单元G(或蓝色发光单元B)的亮度调节的精细程度,进而降低了驱动芯片的制作难度,还有利于显示装置实现更多灰阶数的显示。
另一方面,如图8所示,图8右侧还示出本公开一些实施例提供的阵列基板1A中每个像素单元pixel-A(例如包括一个红色发光单元R,一个绿色发光单元G和蓝色发光单元B)所对应的驱动晶体管尺寸不同时的版图设计。由上文可知,由于驱动电流较小的绿色发光单元G(或者蓝色发光单元B)所对应的驱动晶体管的宽长比相对较小,因此,本公开一些实施例所提供的阵列基板1A中第二驱动晶体管宽长比小于第一驱动晶体管的宽长比,能够减小每个像素pixel-A所需的像素版图设计空间,从而有利于提升产品的分辨率。
需要说明的是,阵列基板1A中第一驱动晶体管以及第二驱动晶体管可以参照上文所述阵列基板1中第一驱动晶体管T11以及第二驱动晶体管T12进行具体设计,其有益效果也与阵列基板1中设置第一驱动晶体管T11以及第二驱动晶体管T12的有益效果一致,在此不再赘述。
在一些实施例中,如图13所示,多个像素驱动电路11包括至少一个第三驱动电路113,第二驱动电路112被配置为驱动绿色发光单元G,第三驱动电路113被配置为驱动蓝色发光单元B。第三驱动电路113还包括第三驱动晶体管T13;第二驱动晶体管T12的宽长比大于第三驱动晶体管T13的宽长比。此时,由于蓝色发光单元B的最大驱动电流小于绿色发光单元G的最大驱动电流,因此,这样设置可以进一步提高蓝色发光单元B的数据信号调节范围,降低驱动芯片的制作难度,有利于显示装置实现更多灰阶数的显示。同时还能够减小每个像素单元所需的像素版图设计空间,有利于提升产品的分辨率。
需要说明的是,第一驱动电路111还可以包括开关晶体管、存储电容、数据写入晶体管等,而第二驱动电路112与第一驱动电路111的结构保持一致。对于开关晶体管和数据写入晶体管的宽长比设置以及存储电容的尺寸设置均可以参照上文进行,其具有的有益效果也与上文保持一致,此处便不再赘述。
本公开一些实施例提供一种显示面板100,如图11所示,该显示面板100包括上述一些实施例中的阵列基板1和发光单元2,具有上述一些实施例中的阵列基板1的有益效果,在此不再赘述。
在一些实施例中,显示面板100还包括封装结构3,封装结构3被配置为将发光单元2封装在阵列基板1上,以对发光单元2以及阵列基板1上的电路进行保护。
本公开一些实施例提供另一种显示面板100A,如图11所示,该显示面板100包括上述一些实施例中的阵列基板1A和发光单元2,具有上述一些实施例中的阵列基板1A的有益效果,在此不再赘述。
在一些实施例中,显示面板100A还包括封装结构3,封装结构3被配置为将发光单元2封装在阵列基板1A上,以对发光单元2以及阵列基板1A上的电路进行保护。
本公开一些实施例提供一种显示装置200,如图15所示,该显示装置200包括上述一些实施例中的显示面板100,具有上述一些实施例中的显示面板100的有益效果,在此不再赘述。
在一些示例中,显示装置200还包括驱动芯片和供电电源。驱动芯片被配置为驱动显示面板100进行显示,供电电源被配置为向显示面板100提供电能。
本公开一些实施例提供另一种显示装置200A,如图15所示,该显示装置200A包括上述一些实施例中的显示面板100A,具有上述一些实施例中的显示面板100A的有益效果,在此不再赘述。
在一些示例中,显示装置200A还包括驱动芯片和供电电源。驱动芯片被配置为驱动显示面板100A进行显示,供电电源被配置为向显示面板100A提供电能。
本公开一些实施例提供一种阵列基板1的制备方法,如图3和图16所示,该制备方法包括:
S1:形成多个像素驱动电路11,多个像素驱动电路11包括至少一个第一驱动电路111和至少一个第二驱动电路112;第一驱动电路111和第二驱动电 路112被配置为驱动不同发光颜色的发光单元2。
其中,每个发光单元2具有第一极和第二极,第一驱动电路111和第二驱动电路112分别与不同发光颜色的发光单元2的第一极耦接。
S2:形成第一电压输入线121;第一电压输入线121与至少一个第一驱动电路111耦接,且第一电压输入线121被配置为向至少一个第一驱动电路111传输第一电压V1。
S3:形成第二电压输入线122,第二电压输入线122与至少一个第二驱动电路112耦接,且第二电压输入线122被配置为向至少一个第二驱动电路112传输第二电压V2;其中,第一电压V1与第二电压V2不同。
在此基础上,阵列基板1还可以形成公共电压输入线13,公共电压输入线13同时与多个不同发光颜色的发光单元2的第二极耦接,公共电压输入线13被配置为向多个不同发光颜色的发光单元2的第二极传输设定电压V0。
本公开一些实施例提供的一种阵列基板1的制备方法,可以制作出如上所述的任一项实施例中的阵列基板1,在阵列基板1中,第一电压输入线121与公共电压输入线13提供给第一驱动电路111和与第一驱动电路111对应的发光单元2的跨压不同于第二电压输入线122与公共电压输入线13提供给第二驱动电路112和与第二驱动电路112对应的发光单元2的跨压。因此,本公开能够针对不同颜色的发光单元2的驱动需求提供不同的跨压,从而使所需驱动电流较小的发光单元2和其所对应的像素驱动电路11整体获得的跨压较小。同样在实现白平衡的情况下,驱动电流较小的发光单元2的驱动电流保持不变,而该发光单元2所对应的像素驱动电路11的跨压与其实际跨压需求一致,因此可以减少该像素驱动电路11中的非发光部分的无效功耗,从而降低阵列基板1的功耗。
本公开一些实施例还提供一种阵列基板1A的制备方法,如图17所示,该制备方法包括:
S11:如图11所示,形成多个像素驱动电路11,多个像素驱动电路11包括至少一个第一驱动电路111和至少一个第二驱动电路112;第一驱动电路111和第二驱动电路112被配置为可驱动不同发光颜色的发光单元2。其中,第一驱动电路111包括第一驱动晶体管,所述第二驱动电路112包括第二驱动晶体管;第一驱动晶体管的宽长比大于第二驱动晶体管的宽长比。
其中,示例性的,发光单元2还包括红色发光单元R、绿色发光单元G和蓝色发光单元B,第一驱动电路111被配置为驱动红色发光单元R,第二驱动电路112被配置为驱动绿色发光单元G或蓝色发光单元B。
本公开一些实施例提供的一种阵列基板1A的制备方法,可以制作出如上所述的任一项实施例中的阵列基板1A,在阵列基板1A中,由于驱动绿色发光单元G(或蓝色发光单元B)的第二驱动晶体管的宽长比小于驱动红色发光单元R的第一驱动晶体管的宽长比,绿色发光单元G(或蓝色发光单元B)的数据信号的调节范围也相对增大,这样便可降低绿色发光单元G(或蓝色发光单元B)的亮度调节的精细程度,进而降低驱动芯片的制作难度,同时还有利于显示装置实现更多灰阶数的显示。另一方面,由于第二驱动晶体管的宽长比小于第一驱动晶体管的宽长比,这样还能够减小每个像素单元所需的像素版图设计空间,从而有利于提升产品的分辨率。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种阵列基板,所述阵列基板被配置为可承载多个不同发光颜色的发光单元,所述阵列基板包括:
    多个像素驱动电路,包括至少一个第一驱动电路和至少一个第二驱动电路;所述第一驱动电路和所述第二驱动电路被配置为驱动不同发光颜色的发光单元;
    第一电压输入线,与所述至少一个第一驱动电路耦接,且所述第一电压输入线被配置为向所述至少一个第一驱动电路传输第一电压;和
    第二电压输入线,与所述至少一个第二驱动电路耦接,且所述第二电压输入线被配置为向所述至少一个第二驱动电路传输第二电压;
    其中,所述第一电压与所述第二电压不同。
  2. 根据权利要求1所述的阵列基板,其中,每个所述发光单元具有第一极和第二极,所述第一驱动电路和所述第二驱动电路分别与不同发光颜色的所述发光单元的第一极耦接;所述阵列基板还包括:
    公共电压输入线,同时与所述多个不同发光颜色的发光单元的第二极耦接,且所述公共电压输入线被配置为向所述多个不同发光颜色的发光单元的第二极传输设定电压。
  3. 根据权利要求2所述的阵列基板,其中,所述多个发光单元包括至少一个红色发光单元、至少一个绿色发光单元和至少一个蓝色发光单元;
    所述第一驱动电路被配置为驱动红色发光单元,所述第二驱动电路被配置为驱动绿色发光单元或蓝色发光单元;
    所述第一电压与所述设定电压的电压差大于所述第二电压与所述设定电压的电压差。
  4. 根据权利要求1~3中任一项所述的阵列基板,其中,
    所述第一驱动电路包括第一驱动晶体管,所述第二驱动电路包括第二驱动晶体管;
    所述第一驱动晶体管的宽长比大于所述第二驱动晶体管的宽长比。
  5. 根据权利要求1~4中任一项所述的阵列基板,其中,
    所述第一驱动电路还包括第一开关晶体管,所述第二驱动电路还包括第二开关晶体管;
    所述第一开关晶体管的宽长比大于所述第二开关晶体管的宽长比。
  6. 根据权利要求1~5中任一项所述的阵列基板,其中,所述多个像素驱动电路包括至少一个第三驱动电路;所述阵列基板还包括:
    第三电压输入线,与所述至少一个第三驱动电路耦接,且所述第三电压输入线被配置为向所述至少一个第三驱动电路传输第三电压,所述第三电压与所述第一电压和所述第二电压均不同。
  7. 根据权利要求6所述的阵列基板,其中,
    所述多个发光单元包括至少一个红色发光单元、至少一个绿色发光单元和至少一个蓝色发光单元;
    所述第一驱动电路与红色发光单元的第一极耦接,且所述第一驱动电路被配置为驱动所述红色发光单元;所述第二驱动电路与绿色发光单元的第一极耦接,且所述第二驱动电路被配置为驱动所述绿色发光单元;所述第三驱动电路与蓝色发光单元的第一极耦接,且所述第三驱动电路被配置为驱动所述蓝色发光单元;
    所述第一电压与所述设定电压的电压差大于所述第二电压与所述设定电压的电压差,所述第二电压与所述设定电压的电压差大于所述第三电压与所述设定电压的电压差。
  8. 根据权利要求6或7所述的阵列基板,其中,
    所述第一驱动电路包括第一驱动晶体管,所述第二驱动电路包括第二驱动晶体管,所述第三驱动电路包括第三驱动晶体管;
    所述第一驱动晶体管的宽长比大于所述第二驱动晶体管的宽长比,所述第二驱动晶体管的宽长比大于所述第三驱动晶体管的宽长比。
  9. 根据权利要求6~8中任一项所述的阵列基板,其中,
    所述第一驱动电路还包括第一开关晶体管,所述第二驱动电路还包括第二开关晶体管,所述第三驱动电路还包括第三开关晶体管;
    所述第一开关晶体管的宽长比大于所述第二开关晶体管的宽长比,所述第二开关晶体管的宽长比大于所述第三开关晶体管的宽长比。
  10. 根据权利要求1~9中任一项所述的阵列基板,其中,
    所述发光单元为微型发光二极管或次毫米发光二极管。
  11. 一种阵列基板,所述阵列基板被配置为可承载多个不同发光颜色的发光单元,所述阵列基板包括:
    多个像素驱动电路,所述多个像素驱动电路包括至少一个第一驱动电路和至少一个第二驱动电路;所述第一驱动电路和所述第二驱动电路被配置为驱动不同发光颜色的发光单元;
    所述第一驱动电路包括第一驱动晶体管,所述第二驱动电路包括第二驱动晶体管;所述第一驱动晶体管的宽长比大于所述第二驱动晶体管的宽长比。
  12. 根据权利要求11所述的阵列基板,其中,多个所述发光单元包括至少一个红色发光单元、至少一个绿色发光单元和至少一个蓝色发光单元,所述第一驱动电路被配置为驱动所述红色发光单元,所述第二驱动电路被配置为驱动所述绿色发光单元或所述蓝色发光单元。
  13. 根据权利要求12所述的阵列基板,其中,所述多个像素驱动电路包括至少一个第三驱动电路,所述第三驱动电路被配置为驱动所述蓝色发光单元,所述第二驱动电路被配置为驱动所述绿色发光单元;
    所述第三驱动电路包括第三驱动晶体管,所述第三驱动晶体管的宽长比小于所述第二驱动晶体管的宽长比。
  14. 一种显示面板,包括:
    如权利要求1~10中任一项所述的阵列基板和设置于所述阵列基板上的多个不同发光颜色的发光单元;或者,
    如权利要求11~13中任一项所述的阵列基板和设置于所述阵列基板上的多个不同发光颜色的发光单元。
  15. 一种显示装置,包括:如权利要求14所述的显示面板。
  16. 一种阵列基板的制备方法,包括:
    形成多个像素驱动电路,所述多个像素驱动电路包括至少一个第一驱动电路和至少一个第二驱动电路;所述第一驱动电路和所述第二驱动电路被配置为驱动不同发光颜色的发光单元;
    形成第一电压输入线;所述第一电压输入线与所述至少一个第一驱动电路耦接,且所述第一电压输入线被配置为向所述至少一个第一驱动电路传输第一电压;
    形成第二电压输入线,所述第二电压输入线与所述至少一个第二驱动电路耦接,且所述第二电压输入线被配置为向所述至少一个第二驱动电路传输第二电压;其中,所述第一电压与所述第二电压不同。
  17. 一种阵列基板的制备方法,包括:
    形成多个像素驱动电路,所述多个像素驱动电路包括至少一个第一驱动电路和至少一个第二驱动电路;
    其中,所述第一驱动电路和所述第二驱动电路被配置为可驱动不同发光颜色的发光单元;所述第一驱动电路包括第一驱动晶体管,所述第二驱动电路包括第二驱动晶体管;所述第一驱动晶体管的宽长比大于所述第二驱动晶体管的宽长比。
PCT/CN2021/077721 2020-02-28 2021-02-24 阵列基板及其制备方法、显示面板及显示装置 WO2021170005A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/615,058 US20220231105A1 (en) 2020-02-28 2021-02-24 Array substrate and manufacturing method therefor, display panel, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010131149.9A CN113327541A (zh) 2020-02-28 2020-02-28 阵列基板、显示面板及显示装置
CN202010131149.9 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021170005A1 true WO2021170005A1 (zh) 2021-09-02

Family

ID=77412865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077721 WO2021170005A1 (zh) 2020-02-28 2021-02-24 阵列基板及其制备方法、显示面板及显示装置

Country Status (3)

Country Link
US (1) US20220231105A1 (zh)
CN (1) CN113327541A (zh)
WO (1) WO2021170005A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114067737B (zh) * 2021-12-08 2023-07-25 深圳市华星光电半导体显示技术有限公司 显示面板及显示装置
CN114446223A (zh) * 2022-02-15 2022-05-06 上海天马微电子有限公司 显示面板及其驱动方法和显示装置
CN114999369B (zh) 2022-06-08 2023-08-04 滁州惠科光电科技有限公司 像素驱动电路及显示面板
WO2023240457A1 (zh) * 2022-06-14 2023-12-21 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板和显示装置
CN117198212B (zh) * 2023-11-07 2024-04-12 惠科股份有限公司 显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797555B2 (ja) * 2005-10-11 2011-10-19 ソニー株式会社 表示装置及びその駆動方法
CN103208253A (zh) * 2012-01-13 2013-07-17 三星显示有限公司 有机发光显示装置、其驱动方法及相应系统
CN203552656U (zh) * 2013-10-23 2014-04-16 深圳市锐拓显示技术有限公司 一种led全彩屏驱动电路、led模块以及led显示屏
CN105513534A (zh) * 2016-02-04 2016-04-20 京东方科技集团股份有限公司 一种像素结构、显示装置及驱动方法
CN107452783A (zh) * 2017-08-16 2017-12-08 深圳市华星光电半导体显示技术有限公司 一种有机发光二极管显示器
CN108109579A (zh) * 2017-12-13 2018-06-01 杭州视芯科技有限公司 Led显示装置及其驱动方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW558693B (en) * 2002-04-17 2003-10-21 Au Optronics Corp Driving circuit design for display device
JP2003308042A (ja) * 2002-04-17 2003-10-31 Hitachi Ltd 画像表示装置
KR100752365B1 (ko) * 2003-11-14 2007-08-28 삼성에스디아이 주식회사 표시장치의 픽셀구동회로 및 그 방법
JP4934964B2 (ja) * 2005-02-03 2012-05-23 ソニー株式会社 表示装置、画素駆動方法
KR101324756B1 (ko) * 2005-10-18 2013-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치 및 그의 구동방법
TWI467544B (zh) * 2012-03-06 2015-01-01 Chunghwa Picture Tubes Ltd 有機發光二極體面板的驅動方法及其驅動裝置
KR102034769B1 (ko) * 2013-05-30 2019-10-22 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 구동 방법
CN103489401B (zh) * 2013-09-03 2016-11-23 京东方科技集团股份有限公司 像素电路及其驱动方法、阵列基板和显示装置
JP2015090813A (ja) * 2013-11-06 2015-05-11 株式会社ジャパンディスプレイ 表示装置
KR102136584B1 (ko) * 2013-12-27 2020-08-14 삼성디스플레이 주식회사 표시장치
CN103971634A (zh) * 2014-04-18 2014-08-06 京东方科技集团股份有限公司 像素单元驱动电路、显示基板、显示面板及显示装置
CN104078007A (zh) * 2014-07-01 2014-10-01 何东阳 一种主动发光显示器件像素电路
CN104318903B (zh) * 2014-11-19 2018-05-18 京东方科技集团股份有限公司 驱动电源、像素单元驱动电路和有机发光显示器
TWI581238B (zh) * 2015-07-07 2017-05-01 Light emitting diode display system
US10290255B2 (en) * 2016-10-28 2019-05-14 Prilit Optronics, Inc. Data driver of a microLED display
CN106504705B (zh) * 2016-11-24 2019-06-14 京东方科技集团股份有限公司 像素电路及其驱动方法、以及显示面板
CN107393945A (zh) * 2017-07-31 2017-11-24 京东方科技集团股份有限公司 一种有机发光二极管显示基板及其制作方法、显示装置
CN107610640A (zh) * 2017-09-28 2018-01-19 京东方科技集团股份有限公司 一种阵列基板及驱动方法、显示面板和显示设备
CN108231031B (zh) * 2018-01-30 2020-06-05 厦门天马微电子有限公司 显示面板及其驱动方法、显示装置
CN108520718B (zh) * 2018-04-18 2019-12-27 京东方科技集团股份有限公司 一种显示装置的像素数据补偿方法及装置、显示装置
CN112470204B (zh) * 2018-07-30 2023-01-10 夏普株式会社 显示设备
CN109215600A (zh) * 2018-10-23 2019-01-15 深圳市华星光电技术有限公司 显示面板及液晶显示装置
CN110148376B (zh) * 2019-06-04 2020-11-06 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示面板、显示装置
US11636809B2 (en) * 2019-11-29 2023-04-25 Chengdu Boe Optoelectronics Technology Co., Ltd. Display substrate and display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4797555B2 (ja) * 2005-10-11 2011-10-19 ソニー株式会社 表示装置及びその駆動方法
CN103208253A (zh) * 2012-01-13 2013-07-17 三星显示有限公司 有机发光显示装置、其驱动方法及相应系统
CN203552656U (zh) * 2013-10-23 2014-04-16 深圳市锐拓显示技术有限公司 一种led全彩屏驱动电路、led模块以及led显示屏
CN105513534A (zh) * 2016-02-04 2016-04-20 京东方科技集团股份有限公司 一种像素结构、显示装置及驱动方法
CN107452783A (zh) * 2017-08-16 2017-12-08 深圳市华星光电半导体显示技术有限公司 一种有机发光二极管显示器
CN108109579A (zh) * 2017-12-13 2018-06-01 杭州视芯科技有限公司 Led显示装置及其驱动方法

Also Published As

Publication number Publication date
CN113327541A (zh) 2021-08-31
US20220231105A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
WO2021170005A1 (zh) 阵列基板及其制备方法、显示面板及显示装置
WO2021159664A1 (zh) 像素电路、像素电路的驱动方法和显示面板
CN210378422U (zh) 像素电路和显示装置
KR102575551B1 (ko) 표시 장치
CN110021261B (zh) 一种阵列基板及其驱动方法、显示面板
WO2016123854A1 (zh) Amoled像素驱动电路及像素驱动方法
WO2021082869A1 (zh) 像素驱动电路及其驱动方法、显示面板、显示装置
TW200811816A (en) Display device and pixel circuit layout method
US11749194B2 (en) Display substrate, driving method therefor, and display device
KR20210027672A (ko) 화소 회로
TWI709124B (zh) 畫素電路
CN112542126B (zh) 显示面板和显示装置
WO2022193667A1 (zh) 像素结构及其驱动方法、显示基板
KR20190051824A (ko) 발광 소자, 디스플레이 집적 회로 및 마이크로 디스플레이 장치
WO2021057653A1 (zh) 像素驱动电路及其驱动方法、显示面板和显示装置
CN114038413A (zh) 像素驱动方法及显示面板
US11011103B2 (en) Pixel circuit and display device including light emission control circuit
CN113870785A (zh) 一种oled像素补偿电路及oled像素补偿方法
TWI389083B (zh) Pixel driver and display device
CN114203092B (zh) 显示面板及显示面板的驱动方法
TWI445436B (zh) A driving circuit and a pixel circuit having the driving circuit
CN111063298B (zh) 像素驱动电路和显示装置
CN108766331B (zh) 一种显示器的数字驱动式像素电路
CN114333688B (zh) 具有像素驱动电路的电致发光显示面板
US20230146875A1 (en) Electroluminescent display device having pixel driving circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21759711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21759711

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21759711

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31.03.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21759711

Country of ref document: EP

Kind code of ref document: A1