WO2021169815A1 - 远程操作控制系统、方法、终端及存储介质 - Google Patents

远程操作控制系统、方法、终端及存储介质 Download PDF

Info

Publication number
WO2021169815A1
WO2021169815A1 PCT/CN2021/076380 CN2021076380W WO2021169815A1 WO 2021169815 A1 WO2021169815 A1 WO 2021169815A1 CN 2021076380 W CN2021076380 W CN 2021076380W WO 2021169815 A1 WO2021169815 A1 WO 2021169815A1
Authority
WO
WIPO (PCT)
Prior art keywords
target device
control
remote operation
state
position data
Prior art date
Application number
PCT/CN2021/076380
Other languages
English (en)
French (fr)
Inventor
汪源
陶然
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/635,856 priority Critical patent/US20220296200A1/en
Publication of WO2021169815A1 publication Critical patent/WO2021169815A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/548Remote control of the apparatus or devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/465Displaying means of special interest adapted to display user selection data, e.g. graphical user interface, icons or menus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/547Control of apparatus or devices for radiation diagnosis involving tracking of position of the device or parts of the device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4405Constructional features of apparatus for radiation diagnosis the apparatus being movable or portable, e.g. handheld or mounted on a trolley

Definitions

  • the present disclosure relates to the technical field of remote control of medical equipment, and in particular to a remote operation control system, method, terminal, and storage medium.
  • C-arms In the field of medical equipment, C-arms (U-arms, G-arms) are mainly used for fluoroscopy and spot imaging in various operations.
  • C-arm U-arms, G-arms
  • the first method is to debug on-site by the doctor. In this method, the doctor frequently enters and exits the imaging room, which not only wastes a lot of Time, it also consumes the doctor’s energy; the second way is to control the C-arm through the interface. In this way, the doctor needs to constantly learn new operating methods to proceed, and the doctor cannot intuitively understand the actual position and posture of the C-arm. It may take multiple attempts to achieve the desired results.
  • a remote operation control system includes a simulation device, a target device and a control device.
  • the control device is respectively coupled to the simulation device and the target device; the control device is configured to determine the first position data and the first posture of the simulation device when the simulation device moves to a set state And control the target device to move to the same state as the set state based on the first position data and the first posture data.
  • the simulation device includes: at least one driving member coupled to the control device and configured to drive the simulation device to move to the set state under the control of the control device; at least One first sensor is connected to the at least one of the driving parts in a one-to-one correspondence; each first sensor is configured to: when the simulation device moves from the previous state to the set state, obtain the second sensor A sensor corresponding to the amount of movement of the driving member connected; wherein the control device is coupled to the at least one first sensor; the control device is configured to: based on the position data when the simulation device is in the previous state , Posture data, and the amount of movement of the at least one driving member, determining the first position data and the first posture data.
  • control device is configured to: acquire the current state of the target device; based on the second position data and second posture data of the target device in the current state, and the first position data And the first posture data, generate a control instruction including a motion control amount, and send the control instruction to the target device; wherein the control instruction is used to control the target device to move to the setting The same state.
  • the motion control quantity includes at least one linear displacement control quantity and/or at least one rotation angle control quantity.
  • control device is further configured to control the simulation device to move to the set state in response to the operator's first operation instructing the movement of the simulation device; and/or, in response to the operation The second operation of the person instructing the simulation device to move to the setting state determines that the simulation device has moved to the setting state.
  • the remote operation control system further includes: at least one second sensor configured to detect second position data and/or second posture of the target device in the current state Data; the control device is coupled to the at least one second sensor, the control device is also configured to obtain the second position data and/or the second posture data detected by the at least one second sensor .
  • the remote operation control system further includes an interactive device.
  • the interaction device is configured to acquire and display the current state of the target device; wherein the current state includes: second position data and second posture data of the target device; and/or, an image of the target device.
  • the interaction device is coupled to the control device, and the interaction device is configured to obtain the second position data and the second posture data of the target device in the current state from the control device, Display the second position data and second posture data of the target device; and/or, the remote operation control system further includes a photographing device coupled to the interactive device, the photographing device being configured to photograph the target The image of the device, sending the image of the target device to the interactive device, so that the interactive device displays the image of the target device.
  • control device is further configured to: acquire the current state of the target device; under predetermined conditions, based on the second position data and second posture data of the target device in the current state, control The simulation device moves to the same state as the target device.
  • the predetermined condition includes at least one of the following: fine-tuning the pose of the target device; or resetting the target device to an initial state.
  • the simulation device and the target device have the same structure and the same or different sizes.
  • the target device is a C-arm
  • the simulation device is an analog C-arm
  • the analog C-shaped arm includes an L-shaped part, a C-shaped part, and an X-axis rotary motion mechanism;
  • the L-shaped part includes an X-axis linear motion mechanism, a Y-axis linear motion mechanism, and is connected to the X-axis linear motion mechanism.
  • the Y-axis linear motion mechanism includes a first motor and a first encoder.
  • the first motor is configured to drive the X-axis linear motion mechanism to move linearly based on the first motion control amount; the first encoder is configured to detect the rotation amount of the output shaft of the first motor to determine the X-axis linear motion mechanism The amount of linear motion.
  • the X-axis linear motion mechanism includes a second motor and a second encoder.
  • the second motor is configured to drive the C-shaped portion to move linearly based on a second motion control amount; the second encoder is configured to detect the amount of rotation of the output shaft of the second motor to determine the amount of linear motion of the C-shaped portion .
  • the Y-axis rotational movement mechanism includes a third motor and a third encoder.
  • the third motor is configured to drive the X-axis linear motion mechanism to rotate relative to the Y-axis linear motion mechanism based on a third motion control amount; the third encoder is configured to detect the output shaft rotation amount of the third motor to determine The amount of rotational movement of the X-axis linear movement mechanism.
  • the X-axis rotational movement mechanism includes a fourth motor and a fourth encoder.
  • the fourth motor is configured to drive the C-shaped portion to rotate relative to the X-axis linear motion mechanism based on a fourth motion control amount; the fourth encoder is configured to detect the rotation amount of the output shaft of the fourth motor to determine the The amount of rotational movement of the C-shaped part.
  • the C-shaped part includes a fixed structure, an arc structure, a fifth motor, and a fifth encoder.
  • the fixed structure is provided with a guide rail; the arc-shaped structure is slidably connected to the guide rail; the fifth motor is configured to drive the arc-shaped structure to rotate relative to the fixed structure based on a fifth motion control amount; a fifth code
  • the device is configured to detect the amount of rotation of the output shaft of the fifth motor to determine the amount of rotation of the arc-shaped structure.
  • the remote operation control method includes the following steps: when the simulation device moves to a set state, determining first position data and first posture data of the simulation device; based on the first position data and the first posture data The target device is controlled to move to the same state as the set state.
  • determining the first position data and the first posture data of the simulation device includes: when the simulation device moves to the set state, acquiring The amount of movement of at least one driving member of the simulation device; determining the first position data and the first position data based on the position data and posture data when the simulation device is in the previous state, and the amount of movement of the at least one driving member One posture data.
  • the controlling the target device to move to the same state as the set state based on the first position data and the first posture data includes: acquiring the current state of the target device; The second position data and the second posture data of the target device in the current state, as well as the first position data and the first posture data, generate a control instruction including a motion control amount, and send the control instruction to The target device; wherein the control instruction is used to control the target device to move to the same state as the set state.
  • the motion control quantity includes at least one linear displacement control quantity and/or at least one rotation angle control quantity.
  • the remote operation control method further includes: in response to the operator instructing the first operation of the simulation device to move, controlling the simulation device to move to the set state; and/or, in response to the operation The second operation of the person instructing the simulation device to move to the setting state determines that the simulation device has moved to the setting state.
  • the remote operation control method further includes: acquiring the current state of the target device; under predetermined conditions, based on the second position data and second posture data of the target device in the current state, controlling The simulation device moves to the same state as the target device.
  • the predetermined condition includes at least one of the following: fine-tuning the pose of the target device; or resetting the target device to an initial state.
  • a terminal in another aspect, includes: a communication interface configured to receive a detection signal; a processor coupled to the communication interface and configured to execute the remote operation control method as described in any of the foregoing embodiments.
  • a computer-readable storage medium stores computer program instructions, and when the computer program instructions run on a computer, the computer executes the remote operation control method as described in any of the above-mentioned embodiments.
  • a computer program product includes computer program instructions, and when the computer program instructions are executed on a computer, the computer program instructions cause the computer to execute one or more steps in the remote operation control method according to any of the foregoing embodiments.
  • a computer program is provided.
  • the computer program When the computer program is executed on a computer, the computer program causes the computer to execute one or more steps in the remote operation control method described in any of the above embodiments.
  • Fig. 1 is a structural diagram of a remote operation control system according to some embodiments
  • Figure 2 is a structural diagram of another remote operation control system according to some embodiments.
  • Fig. 3 is a structural diagram of yet another remote operation control system according to some embodiments.
  • Fig. 4 is a structural diagram of yet another remote operation control system according to some embodiments.
  • Fig. 5 is a structural diagram of yet another remote operation control system according to some embodiments.
  • Figure 6 is a structural diagram of a simulated C-arm according to some embodiments.
  • Fig. 7 is a structural diagram of another simulated C-arm according to some embodiments.
  • Fig. 8 is a flowchart of a remote operation control method according to some embodiments.
  • FIG. 9 is a flowchart of another remote operation control method according to some embodiments.
  • FIG. 10 is a flowchart of yet another remote operation control method according to some embodiments.
  • FIG. 11A is a flowchart of yet another remote operation control method according to some embodiments.
  • FIG. 11B is a flowchart of yet another remote operation control method according to some embodiments.
  • 11C is a flowchart of yet another remote operation control method according to some embodiments.
  • FIG. 12 is a flowchart of yet another remote operation control method according to some embodiments.
  • Fig. 13 is a structural diagram of a terminal according to some embodiments.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, “plurality” means two or more.
  • the expressions “coupled” and “connected” and their extensions may be used.
  • the term “connected” may be used when describing some embodiments to indicate that two or more components are in direct physical or electrical contact with each other.
  • the term “coupled” may be used when describing some embodiments to indicate that two or more components have direct physical or electrical contact.
  • the term “coupled” or “communicatively coupled” may also mean that two or more components are not in direct contact with each other, but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited to the content of this document.
  • a and/or B includes the following three combinations: A only, B only, and the combination of A and B.
  • the exemplary embodiments are described herein with reference to cross-sectional views and/or plan views as idealized exemplary drawings.
  • the thickness of layers and regions are exaggerated for clarity. Therefore, variations in the shape with respect to the drawings due to, for example, manufacturing technology and/or tolerances can be envisaged. Therefore, the exemplary embodiments should not be construed as being limited to the shape of the area shown herein, but include shape deviations due to, for example, manufacturing.
  • an etched area shown as a rectangle will generally have curved features. Therefore, the areas shown in the drawings are schematic in nature, and their shapes are not intended to show the actual shape of the area of the device, and are not intended to limit the scope of the exemplary embodiments.
  • FIG. 1 is a structural diagram of a remote operation control system 100 provided by some embodiments of the present disclosure.
  • the remote operation control system 100 includes a control device 10, a simulation device 20 and a target device 30.
  • the control device 10 is respectively coupled to the simulation device 20 and the target device 30.
  • the control device 10 is configured to determine the first position data and the first posture data of the simulation device 20 when the simulation device 20 moves to the set state, and control the target device 30 to move to and from the first position data and the first posture data based on the first position data and the first posture data. Set the same state.
  • the structure of the simulation device 20 and the target device 30 may be the same, that is, the simulation device 20 may be a virtual model constructed based on the production drawings of the target device 30.
  • the size ratio of the simulation device 20, the color rendered by each component, the angle between the components, and the like, may all be the same as that of the target device 30.
  • the simulation device 20 when the target device 30 is a C-shaped arm, the simulation device 20 is a simulated C-shaped arm; when the target device 30 is a U-shaped arm, the simulation device 20 is a simulated U-shaped arm, and so on.
  • the size of the simulation device 20 may be the same as the size of the target device 30.
  • the size of the simulation device 20 may be different from the size of the target device 30.
  • the size of the simulation device 20 is smaller than the size of the target device 30.
  • the control device 10 analyzes and calculates the first position data and the first posture when the simulation device 20 is in the setting state Data (that is, determine the first position data and the first posture data of the simulation device 20), and based on the first position data and the first posture data, control the target device 30 to move to the same state as the set state, thereby completing the target device 30 remote operation control.
  • the user does not need to enter the site to debug the target device 30 multiple times, thereby saving the time for the user to adjust the target device 30 and improving work efficiency.
  • the movement of the simulation device 20 to the set state may be that the control device 10 controls the simulation device 20 to move to the set state.
  • the control device 10 may be configured to control the simulation device 20 to move to the set state in response to the operator's first operation instructing the simulation device 20 to move.
  • the first operation for the operator to instruct the simulation device 20 to move may be that the user inputs the movement parameters to the control device 10 and/or the user presets the movement parameters in the control device 10.
  • the user may preset exercise parameters based on the working mode or rules of the remote operation control system 100, so that the control device 10 can control the simulation device 20 to exercise based on the preset exercise parameters.
  • the simulation device 20 is controlled to perform exercises and the like.
  • the set state is a state that the user expects the target device 30 to reach, before the control device 10 controls the target device 30 to move to the same state as the set state based on the first position data and the first pose data of the simulation device 20, The user can first check whether the simulation device 20 has reached the desired state (that is, the set state).
  • the control device 10 may control the target device 30 based on the first position data and the first posture data of the simulation device 20 after a preset period of time or after receiving the user's confirmation instruction Move to the same state as the set state; if the user determines that the simulation device 20 has not reached the desired state, an intervention instruction can be sent to the control device 10 so that the control device 10 does not control the target device 30 to move until the user determines the simulation device 20 moves to the set state, the control device 10 then controls the target device 30 to control the target device 30 to move to the same state as the set state based on the first position data and the first posture data corresponding to the set state.
  • the intervention instruction may not be sent to the control device 10. That is, after each movement of the simulation device 20, the control device 10 correspondingly controls the target device 30 to move once based on the intermediate position data and intermediate posture data obtained from each movement until the simulation device 20 moves to the set state, so that The target device 30 moves to the same state as the set state.
  • control device 10 can also be configured to determine that the simulation device 20 has moved to the set state in response to the operator's second operation instructing the simulation device 20 to move to the set state. In this way, before the target device 30 is controlled to move to the same state as the set state based on the first position data and the first posture data, it is determined whether the simulation device 20 has reached the set state, which can further ensure the state of the target device 30.
  • the accuracy improves the control accuracy of the remote operation control system 100 to the target device 30, which helps to avoid multiple adjustments to the target device 30, which may cause excessive loss of the target device 30, and to a certain extent avoid waste of resources .
  • the movement of the simulation device 20 to the set state can also be achieved by the user manually controlling the movement of the simulation device 20 to the set state.
  • the user since the simulation device 20 is manually adjusted to the set state by the user, the user does not need to understand multiple operation interfaces, learn new operation methods, or understand the relationship between interface input data and the actual state of the target device 30.
  • the user can intuitively control the target device 30 to reach the same state as the set state by controlling the simulation device 20, thereby reducing the operation difficulty of the user when using the remote operation control system 100 and improving the practicability of the remote operation control system 100.
  • control device 10 is configured to determine that the simulation device 20 has moved to the set state in response to the operator's second operation instructing the simulation device 20 to move to the set state, and the control device 10 can also be used to manually control the simulation device by the user. In the case of 20, it is determined whether the simulation device 20 moves to the set state, so that the control device 10 can control the target device 30 to move to the same state as the set state.
  • the simulation device 20 includes at least one driving member 201 and at least one first sensor 202.
  • the at least one driving member 201 is coupled to the control device 10, and the at least one driving member 201 is configured to drive the simulation device 20 to move to a set state under the control of the control device 10.
  • the at least one first sensor 202 and the at least one driving member 201 are connected in a one-to-one correspondence.
  • Each first sensor 202 is configured to acquire the amount of movement of the driving member 201 corresponding to the first sensor 202 when the simulation device 20 moves from the previous state to the set state.
  • control device 10 is coupled to at least one first sensor 202.
  • the control device 10 is further configured to determine the first position data and the first posture data based on the position data and the posture data when the simulation device 20 is in the previous state, and the amount of movement of the at least one driving member 201.
  • the driving member 201 may be a motor
  • the first sensor 202 may be an encoder (for example, a photoelectric encoder).
  • control device 10 can drive the simulation device 20 to move to the set state by controlling the drive element 201, and can also receive the movement amount of the drive element 201 through the first sensor 202 connected to the drive element 201 in a one-to-one correspondence, thereby determining the first One position data and first posture data.
  • the simulation device 20 when the simulation device 20 is controlled by the control device 10 to move to the set state, providing at least one first sensor 202 in the simulation device 20 can also help improve the control accuracy of the simulation device 20 by the control device 10. That is, after the control device 10 transmits the control instruction to the simulation device 20, the actual movement amount of the at least one driving member 201 in the simulation device 20 can be detected through the at least one first sensor 202. By comparing the actual amount of motion of the at least one driving element 201 with the motion control amount in the control instruction, the control device 10 can perform the simulation device 20 again when the actual amount of motion of the driver 201 is different from the motion control amount in the control instruction. Adjust until the actual movement amount of the driving member 201 is the same as the movement control amount in the control instruction, so as to ensure that the simulation device 20 can move to the set state.
  • the control device 10 can obtain the movement amount of the driving member 201 connected to the first sensor 202 when the simulation device 20 moves from the previous state to the setting state through the first sensor 202 Therefore, the first position data and the first posture data are determined based on the position data and the posture data when the simulation device 20 is in the previous state, and the amount of movement of the driving member 201.
  • the control device 10 can drive the target device 30 to move to the same state as the set state when the simulation device 20 is manually adjusted to the set state by the user.
  • the current state (including position and posture) of the simulation device 20 is consistent with the current state (including position and posture) of the target device 30.
  • the control device 10 can control the target device 30 to move to the same state as the set state based on the first position data and the first posture data of the simulation device 20.
  • the current state of the simulation device 20 and the current state of the target device 30 do not match due to an abnormal operation or an operation error.
  • control device 10 may also be configured to obtain the current state of the target device 30, based on the second position data and the second posture data of the target device 30 in the current state, and the first position data and The first posture data generates a control command including the motion control amount, and sends the control command to the target device 30.
  • the control instruction is used to control the target device 30 to move to the same state as the set state.
  • control device 10 can also control the target device 30 to move to the same state as the simulation device 30, which improves the stability of the remote operation control system .
  • the control device 10 is configured to detect the current state of the target device 30, and may also include detecting the distance between the target device 30 and other devices. In this way, when the control device 10 controls the target device 30, it can also effectively avoid the collision of the target device 30 with other devices in the actual application scenario, which effectively improves the security of the remote operation control system 100.
  • the motion control amount may include at least one linear displacement control amount and/or at least one rotation angle control amount.
  • the motion control amount may include the linear displacement control amount and/or the rotation angle control amount of the entire target device 30 and the linear displacement control amount and/or the rotation angle control amount of each component in the target device 30.
  • the remote operation control system 100 includes at least one second sensor 40, and the second sensor 40 is configured to detect the second position data and/or the second posture of the target device 30 in the current state. data.
  • the control device 10 is coupled to at least one second sensor 40, and the control device 10 is further configured to obtain second position data and/or second posture data detected by the at least one second sensor 40.
  • the second sensor 40 may be, for example, a gyroscope, a pressure sensor, or the like.
  • the second sensor 40 may be provided on the target device 30 or not on the target device 30.
  • the remote operation control system 100 realizes remote and real-time control of the target device 30 by using the control device 10 and the simulation device 20, which improves work efficiency and reduces Resource waste and loss of target device 30.
  • the remote operation control system 100 further includes an interactive device 50 configured to acquire and display the current state of the target device 30.
  • the current state includes the second position data and the second posture data of the target device 30.
  • the current state includes the image of the target device 30.
  • the current state may include the second position data, the second posture data, and the image of the target device 30 at the same time.
  • the interactive device 50 displays the current state of the target device 30, which may be displayed in a two-dimensional six-view mode, or may be displayed in a draggable three-dimensional view. Such a setting can facilitate the user to clearly and intuitively understand the current state of the target device 30 through the interactive device 50.
  • the interaction device 50 may display the second position data and the second posture data of the target device 30. Further, the interaction device 50 may also calculate and display the second position data and the second posture of the device 30 based on the second position data and the second posture data of the target device 30, and the initial position data and initial posture data of the target device 30 The change value of the data relative to the initial position data and initial posture data, etc.
  • the interactive device 50 can also display the second position data, the second posture data, and the image of the target device 30 at the same time.
  • the user can more intuitively understand the current location of the target device 30.
  • the state avoids the user's misjudgment of the state of the target device 30 due to the insensitivity of the connection between the value and the actual state.
  • the interactive device 50 is coupled to the control device 10, and the interactive device 50 is configured to obtain the second position data and the second posture data of the target device 30 in the current state from the control device 10. , The second position data and the second posture data of the target device 30 are displayed.
  • the remote operation control system 100 further includes a photographing device 60 coupled to the interactive device 50, and the photographing device 60 is configured to photograph an image of the target device 30, and the target device 30 The image of is sent to the interactive device 50, so that the interactive device 50 displays the image of the target device 30.
  • the target device 30 After every time the remote operation control system 100 is used to adjust the target device 30 or before the next time the remote operation control system 100 is used to adjust the target device 30, the target device 30 needs to be fine-tuned and even adjusted to the target device 30. Reset to the initial state, etc.
  • the user When fine-tuning the pose of the target device 30 or resetting the target device to the initial state, the user needs to observe the current state of the target device 30 to determine whether the fine-tuned state of the target device 30 is the state desired by the user, or judge Whether the target device 30 is reset to the initial state.
  • control device 10 is further configured to obtain the current state of the target device 30. Under predetermined conditions, based on the second position data and second posture data of the target device 30 in the current state, the simulation device 20 is controlled to move to the same state as the target device 30.
  • the current state of the simulation device 20 is consistent with the current state of the target device 30, and the user can directly understand the current state of the target device 30 by observing the current state of the simulation device 20 without entering the target device 30
  • the time for the user to enter the actual application scenario where the target device 30 is located is reduced, and work efficiency is improved.
  • the aforementioned preset conditions may include fine-tuning the target device 30 in pose.
  • the preset condition may also include resetting the target device 30 to the initial state.
  • the preset condition may include fine adjustment of the pose of the target device 30 and resetting of the target device 30 to the initial state.
  • the target device 30 may be a C-arm, and the simulation device 20 may be a simulated C-arm. Wherein, for example, the target device 30 may be a C-arm used in a hospital.
  • the simulated C-shaped arm may include an L-shaped part 21, a C-shaped part 22 and an X-axis rotational movement mechanism 23.
  • the L-shaped portion 21 includes a Y-axis linear motion mechanism 211, an X-axis linear motion mechanism 212, and a Y-axis rotational motion mechanism 213 connecting the Y-axis linear motion mechanism 211 and the X-axis linear motion mechanism 212.
  • the X-axis rotary motion mechanism 23 connects the X-axis linear motion mechanism 212 and the C-shaped portion 22.
  • the Y-axis rotary motion mechanism 213 is configured to make the X-axis linear motion mechanism 212 rotate relative to the Y-axis linear motion mechanism 211 around the Y axis; the X-axis rotary motion mechanism 23 is configured to make the C-shaped portion 22 linearly move relative to the X axis
  • the mechanism 212 rotates around the X axis.
  • the X axis and the Y axis are perpendicular to each other.
  • the Y-axis linear motion mechanism 211 includes a first motor 2111 and a first encoder 2112.
  • the first motor 2111 is configured to drive the X-axis linear motion mechanism 212 based on the first motion control amount.
  • the first encoder 2112 is configured to detect the amount of rotation of the output shaft of the first motor 2111 to determine the amount of linear movement of the X-axis linear motion mechanism 212.
  • the X-axis linear motion mechanism 212 may include a second motor 2121 and a second encoder 2122.
  • the second motor 2121 is configured to drive the C-shaped portion 22 to move linearly based on the second motion control amount.
  • the second encoder 2122 is configured to detect the amount of rotation of the output shaft of the second motor 2121 to determine the amount of linear movement of the C-shaped portion 22.
  • the Y-axis rotational movement mechanism 213 may include a third motor 2131 and a third encoder 2132.
  • the third motor 2131 is configured to drive the X-axis linear motion mechanism 212 to rotate relative to the Y-axis linear motion mechanism 211 based on the third motion control amount.
  • the third encoder 2132 is configured to detect the amount of rotation of the output shaft of the third motor 2131 to determine the amount of rotation of the X-axis linear motion mechanism 212.
  • the X-axis rotational movement mechanism 23 includes a fourth motor 231 and a fourth encoder 232.
  • the fourth motor 231 is configured to drive the C-shaped portion 22 to rotate relative to the X-axis linear motion mechanism 212 based on the fourth motion control amount.
  • the fourth encoder 232 is configured to detect the amount of rotation of the output shaft of the fourth motor 231 to determine the amount of rotation of the C-shaped portion 22.
  • the C-shaped portion 22 includes a fixed structure 221, an arc-shaped structure 222, a fifth motor 223 and a fifth encoder 224.
  • the fixing structure 221 is provided with a guide rail.
  • the arc structure 222 is slidably connected with the guide rail.
  • the fifth motor 223 is configured to drive the arc-shaped structure 222 to rotate relative to the fixed structure 221 based on the fifth motion control amount.
  • the fifth encoder 224 is configured to detect the amount of rotation of the output shaft of the fifth motor 223 to determine the amount of rotation of the arc-shaped structure 222.
  • the arc structure 222 is provided with a tooth structure on one side close to the guide rail.
  • the C-shaped portion 22 may further include a gear, and the gear and the tooth structure on the arc-shaped structure 222 mesh with each other.
  • the fifth motor 223 is connected to the gear.
  • the fifth motor 223 is also configured to drive the gear to rotate, so as to drive the arc-shaped structure 222 to rotate relative to the guide rail.
  • the C-shaped portion 22 may further include detection devices arranged on both ends of the arc-shaped structure 222.
  • the detection device may include, for example, a charge coupled device camera (CCD camera for short) and an image intensifier.
  • the first encoder 2112, the second encoder 2122, the third encoder 2132, the fourth encoder 232, and the fifth encoder 224 may be photoelectric encoders.
  • the remote operation control system 100 provided by some embodiments of the present disclosure can not only control the target device 30 remotely and in real time, but also can display the position and posture of the target device 30 through the simulation device 20 in real time, so that the user does not need to repeatedly Enter the actual scene of the target device 30, thereby saving time and improving work efficiency and accuracy.
  • Some embodiments of the present disclosure also provide a remote operation control method corresponding to the remote operation control system 100.
  • the method can be stored in a computer readable medium for implementation. Because the remote operation control method in the present disclosure solves the problem The principle is similar to the above-mentioned remote operation control device of the present disclosure. Therefore, the implementation of the remote operation control method can refer to the implementation of the system, and the repetition will not be repeated.
  • the remote operation control method includes the following specific steps:
  • the user does not need to enter the field to debug the target device 30 multiple times, and the simulation device 20 and the control device 10 can be used to remotely control the target device 30 to move to the same state as the set state. Status, thereby saving the time for the user to adjust the target device 30 and improving work efficiency.
  • the simulation device 20 may further include at least one driving member 201 (see FIG. 2).
  • step S1 may further include:
  • S12 Determine the first position data and the first posture data based on the position data and the posture data when the simulation device 20 is in the previous state, and the movement amount of the at least one driving member 201.
  • the control device 10 can directly control the target device 30 based on the first position data and the first posture data after the simulation device 20 moves to the set state. Move to the same state as the set state.
  • the current state of the simulation device 20 is not consistent with the current state of the target device 30 due to abnormal operation or operation error.
  • S2 may further include:
  • control instruction is used to control the target device 30 to move to the same state as the set state.
  • the motion control quantity may include, for example, at least one linear displacement control quantity and/or at least one rotation angle control quantity.
  • control device 10 can also control the target device 30 to move to the same state as the target device.
  • the remote operation control method before step S1, the remote operation control method further includes:
  • control device 10 directly controls the movement of the simulation device 20, which realizes a high-precision control of the simulation device 20, and facilitates the direct movement of the simulation device 20 to the set state.
  • the remote operation control method may further include:
  • the control device 10 controls After the target device 30 moves, the target device 30 can reach the same state as the set state.
  • the remote operation control method may also include only S02 but not S01 before S1.
  • control device 10 can determine whether the simulation device 20 has reached the set state when the operator manually controls the movement of the simulation device 20, thereby facilitating the control device 10 to control the target device 30 to move to the same state as the set state.
  • the remote operation control system 100 can also use the control device 10 to control the simulation device 20 to move to the same state as the target device 30. Based on this, as shown in FIG. 12, the remote operation control method further includes:
  • the predetermined condition may include fine-tuning the position and posture of the target device 30.
  • the predetermined condition may include resetting the target device 30 to the initial state.
  • the predetermined condition may include fine-tuning the position and posture of the target device 30 and resetting the target device 30 to the initial state.
  • the present disclosure uses the remote operation control method to perform the above-mentioned operations on the simulation device 20 and the target device 30, which can realize the remote and real-time control of the target device 30, and can also display the position and posture of the target device 30 through the simulation device 20 in real time. In this way, the user does not need to enter the actual scene of the target device 30 more, which improves the work efficiency, and also reduces the waste of resources and the loss of the target device 30 to a certain extent.
  • some embodiments of the present disclosure provide a terminal 200, and the terminal 200 includes a communication interface 200a and a processor 200b.
  • the communication interface 200a is configured to receive detection signals.
  • the processor 200b is coupled to the communication interface 200a, and is configured to execute the remote operation control method as described in any of the foregoing embodiments.
  • the detection signal may be various signals received by the terminal 200.
  • the present disclosure does not limit the specific content of the detection signal.
  • the detection signal may be a signal transmitted by the first sensor 202 that includes the detected movement amount of the driving member 201 corresponding to the first sensor 202.
  • the detection signal may be a signal transmitted by the second sensor 40 that includes the second position data and/or second posture data of the target device 30 detected by the second sensor 40.
  • the detection signal may be a first operation signal for the operator (user) to instruct the control device 10 to control the motion of the analog device 20.
  • the detection signal may be a second operation signal for the operator to instruct the simulation device 20 to move to the set state.
  • Some embodiments of the present disclosure also provide a computer-readable storage medium (for example, a non-transitory computer-readable storage medium), which stores computer program instructions.
  • a computer-readable storage medium for example, a non-transitory computer-readable storage medium
  • the computer can execute any of the above The remote operation control method described in an embodiment.
  • the foregoing computer-readable storage medium may include, but is not limited to: magnetic storage devices (for example, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (for example, CD (Compact Disk), DVD (Digital Versatile Disk, Digital universal disk), etc.), smart cards and flash memory devices (for example, EPROM (Erasable Programmable Read-Only Memory), cards, sticks or key drives, etc.).
  • Various computer-readable storage media described in this disclosure may represent one or more devices and/or other machine-readable storage media for storing information.
  • the term "machine-readable storage medium" may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the computer program product includes computer program instructions, and when the computer program instructions are executed on a computer, the computer program instructions cause the computer to execute one or more steps in the remote operation control method described in the above-mentioned embodiments.
  • Some embodiments of the present disclosure also provide a computer program.
  • the computer program When the computer program is executed on a computer, the computer program causes the computer to execute one or more steps in the remote operation control method described in the above-mentioned embodiments.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of code, and the module, program segment, or part of code contains one or more for realizing the specified logical function Executable instructions.
  • the functions marked in the block may also occur in a different order from the order marked in the drawings. For example, two blocks shown in succession can actually be executed substantially in parallel, and they can sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or operations Or it can be realized by a combination of dedicated hardware and computer instructions.
  • the units described in the present disclosure can be implemented in software or hardware. Among them, the name of the unit does not constitute a limitation on the unit itself under certain circumstances.
  • exemplary types of hardware logic components include: Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), Application Specific Standard Product (ASSP), System on Chip (SOC), Complex Programmable Logical device (CPLD) and so on.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • ASSP Application Specific Standard Product
  • SOC System on Chip
  • CPLD Complex Programmable Logical device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)
  • Selective Calling Equipment (AREA)

Abstract

一种远程操作控制系统(100),包括模拟装置(20)、目标装置(30)和控制装置(10);控制装置(10),分别与模拟装置(20)、目标装置(30)耦接;控制装置(10)被配置为:在模拟装置(20)运动至设定状态时,确定模拟装置(20)的第一位置数据和第一姿态数据,并基于第一位置数据和第一姿态数据控制目标装置(30)运动至与设定状态相同的状态,有效提高了工作效率和精确度。

Description

远程操作控制系统、方法、终端及存储介质
本申请要求于2020年02月25日提交的、申请号为202010116258.3的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及医疗设备的远程控制的技术领域,尤其涉及一种远程操作控制系统、方法、终端及存储介质。
背景技术
在医疗设备领域,C型臂(U型臂、G形臂)主要用于各种手术中的透视造影、点片等。通常,在实际使用中有两种调试C型臂(U型臂、G形臂)的方式,第一种方式是通过医生现场调试,该方式中医生要频繁出入影像室,不仅浪费了大量的时间,还消耗了医生的精力;第二种方式是通过界面控制C型臂,该方式中需要医生不断学习新的操作方法才能进行,而且医生不能直观的了解C型臂的实际位置和姿态,可能需要多次尝试才能达到理想效果。
上述两种使用方式中均无法实时且直观的获得设备或者其中部件的当前位置和姿态,同时难以将设备调试到期望的位置和姿态,导致工作效率和精确度均较低。
发明内容
一方面,提供一种远程操作控制系统。所述远程操作控制系统包括模拟装置、目标装置和控制装置。控制装置分别与所述模拟装置、所述目标装置耦接;所述控制装置被配置为:在所述模拟装置运动至设定状态时,确定所述模拟装置的第一位置数据和第一姿态数据,并基于所述第一位置数据和第一姿态数据控制所述目标装置运动至与所述设定状态相同的状态。
在一些实施例中,所述模拟装置包括:至少一个驱动件,与所述控制装置耦接,被配置为在所述控制装置的控制下驱动所述模拟装置运动至所述设定状态;至少一个第一传感器,与所述至少一个所述驱动件一一对应连接;每个第一传感器被配置为:在所述模拟装置由上一个状态运动至所述设定状态时,获取与该第一传感器对应连接的驱动件的运动量;其中,所述控制装置与所述至少一个第一传感器耦接;所述控制装置被配置为:基于所述模拟装置处于所述上一个状态时的位置数据、姿态数据,以及所述至少一个驱动件的运动量,确定所述第一位置数据和所述第一姿态数据。
在一些实施例中,所述控制装置被配置为:获取所述目标装置的当前状态;基于所述目标装置在当前状态下的第二位置数据和第二姿态数据、以及所述 第一位置数据和所述第一姿态数据,生成包含运动控制量的控制指令,并将所述控制指令发送至所述目标装置;其中,所述控制指令用于控制所述目标装置运动至与所述设定状态相同的状态。
在一些实施例中,所述运动控制量包括至少一个直线位移控制量和/或至少一个旋转角度控制量。
在一些实施例中,所述控制装置还被配置为:响应于操作者指示所述模拟装置运动的第一操作,控制所述模拟装置运动至所述设定状态;和/或,响应于操作者指示模拟装置运动到设定状态的第二操作,确定所述模拟装置已运动至所述设定状态。
在一些实施例中,所述远程操作控制系统还包括:至少一个第二传感器,所述至少一个第二传感器被配置为检测所述目标装置当前状态下的第二位置数据和/或第二姿态数据;所述控制装置与所述至少一个第二传感器耦接,所述控制装置还被配置为获取所述至少一个第二传感器检测的所述第二位置数据和/或所述第二姿态数据。
在一些实施例中,所述远程操作控制系统还包括交互装置。交互装置被配置为获取并显示所述目标装置的当前状态;其中,所述当前状态包括:所述目标装置的第二位置数据和第二姿态数据;和/或,所述目标装置的图像。
在一些实施例中,所述交互装置与所述控制装置耦接,所述交互装置被配置为从所述控制装置获取所述目标装置在当前状态下的第二位置数据和第二姿态数据,显示所述目标装置的第二位置数据和第二姿态数据;和/或,所述远程操作控制系统还包括与所述交互装置耦接的拍摄设备,所述拍摄设备被配置为拍摄所述目标装置的图像,将所述目标装置的图像发送至所述交互装置,以使所述交互装置显示目标装置的图像。
在一些实施例中,所述控制装置还被配置为:获取所述目标装置的当前状态;在预定条件下,基于所述目标装置在当前状态下的第二位置数据和第二姿态数据,控制所述模拟装置运动至与所述目标装置相同的状态。
在一些实施例中,所述预定条件至少包括以下之一:对所述目标装置进行位姿微调;或,所述目标装置复位至初始状态。
在一些实施例中,所述模拟装置与所述目标装置的结构相同,大小相同或不同。
在一些实施例中,所述目标装置为C型臂,所述模拟装置为模拟C型臂。
在一些实施例中,所述模拟C型臂包括L形部、C形部和X轴旋转运动机构;所述L形部包括X轴直线运动机构、Y轴直线运动机构,以及连接所 述X轴直线运动机构和Y轴直线运动机构的Y轴旋转运动机构;所述X轴旋转运动机构连接所述X轴直线运动机构和所述C形部;所述Y轴旋转运动机构被配置为使所述X轴直线运动机构相对所述Y轴直线运动机构绕Y轴旋转运动;所述X轴旋转运动机构被配置为使所述C形部相对所述X轴直线运动机构绕X轴旋转运动。
在一些实施例中,所述Y轴直线运动机构包括第一电机和第一编码器。第一电机被配置为驱动所述X轴直线运动机构基于第一运动控制量直线运动;第一编码器,被配置为检测第一电机的输出轴转动量,以确定所述X轴直线运动机构的直线运动量。所述X轴直线运动机构包括第二电机和第二编码器。第二电机被配置为驱动所述C形部基于第二运动控制量直线运动;第二编码器被配置为检测所述第二电机的输出轴转动量,以确定所述C形部的直线运动量。所述Y轴旋转运动机构包括第三电机和第三编码器。第三电机被配置为驱动所述X轴直线运动机构相对Y轴直线运动机构基于第三运动控制量旋转运动;第三编码器被配置为检测所述第三电机的输出轴转动量,以确定所述X轴直线运动机构的旋转运动量。所述X轴旋转运动机构包括第四电机和第四编码器。第四电机被配置为驱动所述C形部相对所述X轴直线运动机构基于第四运动控制量旋转运动;第四编码器被配置为检测第四电机的输出轴转动量,以确定所述C形部的旋转运动量。所述C形部包括固定结构、弧状结构、第五电机和第五编码器。所述固定结构上设置有导轨;所述弧状结构与所述导轨滑动连接;所述第五电机被配置为驱动所述弧状结构相对所述固定结构基于第五运动控制量旋转运动;第五编码器,被配置为检测所述第五电机的输出轴转动量,以确定所述弧状结构的旋转运动量。
另一方面,提供一种远程操作控制方法。所述远程操作控制方法包括以下步骤:在模拟装置运动至设定状态时,确定所述模拟装置的第一位置数据和第一姿态数据;基于所述第一位置数据和所述第一姿态数据控制目标装置运动至与所述设定状态相同的状态。
在一些实施例中,所述在模拟装置运动至设定状态时,确定所述模拟装置的第一位置数据和第一姿态数据包括:在所述模拟装置运动至所述设定状态时,获取所述模拟装置的至少一个驱动件的运动量;基于所述模拟装置处于上一个状态时的位置数据、姿态数据,以及所述至少一个驱动件的运动量,确定所述第一位置数据和所述第一姿态数据。
在一些实施例中,所述基于所述第一位置数据和所述第一姿态数据控制所述目标装置运动至与所述设定状态相同的状态包括:获取所述目标装置的 当前状态;基于所述目标装置在当前状态下的第二位置数据和第二姿态数据、以及所述第一位置数据和所述第一姿态数据生成包含运动控制量的控制指令,并将所述控制指令发送至所述目标装置;其中,所述控制指令用于控制所述目标装置运动至与所述设定状态相同的状态。
在一些实施例中,所述运动控制量包括至少一个直线位移控制量和/或至少一个旋转角度控制量。
在一些实施例中,所述远程操作控制方法还包括:响应于操作者指示所述模拟装置运动的第一操作,控制所述模拟装置运动至所述设定状态;和/或,响应于操作者指示模拟装置运动到设定状态的第二操作,确定所述模拟装置已运动至所述设定状态。
在一些实施例中,所述远程操作控制方法还包括:获取所述目标装置的当前状态;在预定条件下,基于所述目标装置在当前状态下的第二位置数据和第二姿态数据,控制所述模拟装置运动至与所述目标装置相同的状态。
在一些实施例中,所述预定条件至少包括以下之一:对所述目标装置进行位姿微调;或,所述目标装置复位至初始状态。
再一方面,提供一种终端。所述终端包括:通信接口,被配置为接收检测信号;处理器,与所述通信接口耦接,且被配置为执行如上述任一实施例所述的远程操作控制方法。
又一方面,提供一种计算机可读存储介质。所述计算机可读存储介质存储有计算机程序指令,所述计算机程序指令在计算机上运行时,使所述计算机执行如上述任一实施例所述的远程操作控制方法。
又一方面,提供一种计算机程序产品。所述计算机程序产品包括计算机程序指令,在计算机上执行所述计算机程序指令时,所述计算机程序指令使计算机执行如上述任一实施例所述的远程操作控制方法中的一个或多个步骤。
又一方面,提供一种计算机程序。当所述计算机程序在计算机上执行时,所述计算机程序使计算机执行如上述任一实施例所述的远程操作控制方法中的一个或多个步骤。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流 程、信号的实际时序等的限制。
图1为根据一些实施例的一种远程操作控制系统的结构图;
图2为根据一些实施例的另一种远程操作控制系统的结构图;
图3为根据一些实施例的再一种远程操作控制系统的结构图;
图4为根据一些实施例的又一种远程操作控制系统的结构图;
图5为根据一些实施例的又一种远程操作控制系统的结构图;
图6为根据一些实施例的一种模拟C型臂的结构图;
图7为根据一些实施例的另一种模拟C型臂的结构图;
图8为根据一些实施例的一种远程操作控制方法的流程图;
图9为根据一些实施例的另一种远程操作控制方法的流程图;
图10为根据一些实施例的再一种远程操作控制方法的流程图;
图11A为根据一些实施例的又一种远程操作控制方法的流程图;
图11B为根据一些实施例的又一种远程操作控制方法的流程图;
图11C为根据一些实施例的又一种远程操作控制方法的流程图;
图12为根据一些实施例的又一种远程操作控制方法的流程图;
图13为根据一些实施例的一种终端的结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、 “第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
为了保持本公开的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
为便于对本公开进行理解,首先对本公开一些实施例所提供的一种远程操作控制系统进行详细介绍。
图1为本公开一些实施例所提供的一种远程操作控制系统100的结构图。如图1所示,该远程操作控制系统100包括控制装置10、模拟装置20和目标装置30。其中,控制装置10分别与模拟装置20、目标装置30耦接。
控制装置10被配置为在模拟装置20运动至设定状态时,确定模拟装置20的第一位置数据和第一姿态数据,并基于第一位置数据和第一姿态数据控制目标装置30运动至与设定状态相同的状态。
其中,模拟装置20与目标装置30的结构可以相同,也即模拟装置20可 以为基于目标装置30的生产图纸构建的虚拟模型。模拟装置20的尺寸比例、每个部件渲染的颜色、部件与部件之间的角度等,均可以与目标装置30的相同。例如,当目标装置30是C型臂时,模拟装置20是模拟C型臂;当目标装置30是U型臂时,模拟装置20是模拟U型臂等。在一些示例中,模拟装置20的大小可以与目标装置30的大小相同。在另一些示例中,模拟装置20的大小可以和目标装置30的大小不同。例如,模拟装置20的尺寸小于目标装置30的尺寸。
在本公开一些实施例所提供的远程操作控制系统100中,控制装置10在模拟装置20运动至设定状态之后,分析并计算模拟装置20处于设定状态时的第一位置数据和第一姿态数据(也即确定模拟装置20的第一位置数据和第一姿态数据),并基于第一位置数据和第一姿态数据控制目标装置30运动至与设定状态相同的状态,从而完成对目标装置30的远程操作控制。这样,用户无需多次进入现场调试目标装置30,从而节约了用户对目标装置30进行调节的时间,提高了工作效率。
在一些实施例中,模拟装置20运动至设定状态可以是控制装置10控制模拟装置20运动至设定状态。此时,控制装置10可以被配置为响应于操作者指示模拟装置20运动的第一操作,控制模拟装置20运动至设定状态。
其中,“操作者指示模拟装置20运动的第一操作”可以是用户向控制装置10输入运动参数和/或用户在控制装置10中预先设置运动参数。示例性的,用户可以基于远程操作控制系统100的工作模式或规则等,预先设置运动参数,以使得控制装置10可以基于该预先设置的运动参数控制模拟装置20进行运动。
在实际工作中,可能存在一些突发的状况,导致当前模拟装置20的设定状态异常。此时,用户可以还通过远程操作控制系统100的终端(例如触摸屏,实体按键等)或与远程操作控制系统100连接的其他终端(例如手机、遥控器等)输入运动参数,从而在控制装置10接收到用户确定的运动参数之后,控制模拟装置20进行运动等。
通过这样设置,一方面能够实现对模拟装置20进行较高精度的控制,方便模拟装置20直接运动至设定状态。另一方面,相比于控制装置10直接控制目标装置30运动,先利用控制装置10控制模拟装置20运动至设定状态,再基于模拟装置20的状态控制目标装置30还可以避免直接对目标装置30进行多次调节,从而减少了对目标装置30的损耗和资源的浪费。
由于设定状态为用户期望目标装置30达到的状态,因此,在控制装置10 基于模拟装置20的第一位置数据和第一位姿数据控制目标装置30运动至与设定状态相同的状态之前,用户可以先查看模拟装置20是否达到期望达到的状态(也即设定状态)。若用户确定模拟装置20达到了期望达到的状态,控制装置10可以在预设时间段后或接收到用户的确认指令之后,基于模拟装置20的第一位置数据和第一姿态数据控制目标装置30运动至与设定状态相同的状态;若用户确定模拟装置20未达到期望达到的状态,则可以对控制装置10发送干预指令,使得控制装置10不控制目标装置30进行运动,直至用户确定模拟装置20运动至设定状态,控制装置10再控制目标装置30基于设定状态对应的第一位置数据和第一姿态数据控制目标装置30运动至与设定状态相同的状态。
当然,在用户确定模拟装置20未达到期望达到的状态后,也可以不发送干预指令给控制装置10。也即,在每一次模拟装置20运动后,控制装置10便相应的基于每次运动得到的中间位置数据和中间姿态数据控制目标装置30运动一次,直至模拟装置20运动至设定状态,从而使目标装置30运动至与设定状态相同的状态。
基于此,控制装置10还能够被配置为响应于操作者指示模拟装置20运动到设定状态的第二操作,确定模拟装置20已运动至设定状态。这样,在基于第一位置数据和第一姿态数据控制目标装置30运动至与设定状态相同的状态之前,判断模拟装置20是否达到了设定状态,能够进一步保证目标装置30所达到的状态的准确度,提高了远程操作控制系统100对目标装置30的控制精度,有利于避免多次对目标装置30进行调节,造成的目标装置30损耗过大的情况发生,在一定程度上能够避免资源浪费。
在另一些实施例中,模拟装置20运动至设定状态还可以是用户手动控制模拟装置20运动至设定状态。此时,由于模拟装置20由用户手动调节至设定状态,因此,用户无需了解多个操作界面,学习新的操作方法,也无需了解界面输入数据与目标装置30实际状态之间的关系。用户可以直观的通过控制模拟装置20控制目标装置30达到与设定状态相同的状态,从而降低了用户使用远程操作控制系统100时的操作难度,提高了远程操作控制系统100的实用性。
基于此,控制装置10被配置为响应于操作者指示模拟装置20运动到设定状态的第二操作,确定模拟装置20已运动至设定状态,还可以使控制装置10在用户手动控制模拟装置20的情况下,确定模拟装置20是否运动至设定状态,便于控制装置10控制目标装置30运动至与设定状态相同的状态。
在一些实施例中,如图2所示,模拟装置20包括至少一个驱动件201和至少一个第一传感器202。所述至少一个驱动件201与控制装置10耦接,所述至少一个驱动件201被配置为在控制装置10的控制下驱动模拟装置20运动至设定状态。所述至少一个第一传感器202与所述至少一个驱动件201一一对应连接。每个第一传感器202被配置为在模拟装置20由上一个状态运动至设定状态时,获取与该第一传感器202对应连接的驱动件201的运动量。
其中,控制装置10与至少一个第一传感器202耦接。控制装置10还被配置为基于模拟装置20处于上一个状态时的位置数据、姿态数据,以及所述至少一个驱动件201的运动量,确定第一位置数据和第一姿态数据。
示例性的,驱动件201可以是电机,第一传感器202可以是编码器(例如,光电编码器)。
通过这样设置,控制装置10能够通过控制驱动件201驱动模拟装置20运动至设定状态,还能够通过与驱动件201一一对应连接的第一传感器202接收该驱动件201的运动量,从而确定第一位置数据和第一姿态数据。
值得指出的是,在模拟装置20由控制装置10控制运动至设定状态时,在模拟装置20中设置至少一个第一传感器202,还能够有利于提高控制装置10对模拟装置20的控制精度。即,控制装置10在向模拟装置20传输控制指令后,可以通过至少一个第一传感器202对模拟装置20中的至少一个驱动件201的实际运动量进行检测。通过比较所述至少一个驱动件201的实际运动量与控制指令中的运动控制量,控制装置10可以在驱动件201的实际运动量与控制指令中的运动控制量不相同时,对模拟装置20进行再次调节,直至驱动件201的实际运动量与控制指令中的运动控制量相同,从而确保模拟装置20能够运动至设定状态。
在模拟装置20由用户手动调节至设定状态时,控制装置10可以通过第一传感器202获取模拟装置20由上一个状态运动至设定状态时,与第一传感器202相连的驱动件201的运动量,从而基于模拟装置20位于上一个状态时的位置数据和姿态数据,以及驱动件201的运动量确定第一位置数据和第一姿态数据。从而使得控制装置10能够在模拟装置20由用户手动调节至设定状态的情况下,驱动目标装置30运动至与设定状态相同的状态。
通常,模拟装置20的当前状态(包括位置和姿态)与目标装置30的当前状态(包括位置和姿态)保持一致。此时,控制装置10在模拟装置20运动至设定状态后,基于模拟装置20的第一位置数据和第一姿态数据即可控制目标装置30运动至与设定状态相同的状态。但也存在由于工作异常或操作错误 等导致模拟装置20的当前状态与目标装置30的当前状态不一致的情况。
因此,在一些实施例中,控制装置10还可以被配置为获取目标装置30的当前状态,并基于目标装置30在当前状态下的第二位置数据和第二姿态数据、以及第一位置数据和第一姿态数据,生成包含运动控制量的控制指令,并将控制指令发送至目标装置30。其中,控制指令用于控制目标装置30运动至与设定状态相同的状态。
通过这样设置,使得在目标装置30的当前状态与模拟装置20的当前状态不同时,控制装置10也能够控制目标装置30运动至与模拟装置30相同的状态,提高了远程操作控制系统的稳定性。
另外,值得指出的是,目标装置30与模拟装置20所处的环境并不相同,目标装置30位于其实际应用场景(例如影像室)之中,而目标装置30的实际应用场景中一般并不仅仅只存在目标装置30,即目标装置30的周围可能设置有多个其他装置。因此,本公开一些实施例中,控制装置10被配置为检测目标装置30的当前状态,还可以包括检测目标装置30与其他装置之间的距离。这样,在控制装置10对目标装置30进行控制时,还能够有效的避免目标装置30与实际应用场景中的其他器件发生碰撞的情况发生,有效的提高了远程操作控制系统100的安全性。
在一些实施例中,运动控制量可以包括至少一个直线位移控制量和/或至少一个旋转角度控制量。示例性的,运动控制量可以包括目标装置30整体的直线位移控制量和/或旋转角度控制量以及目标装置30中每个部件的直线位移控制量和/或旋转角度控制量。
在一些实施例中,如图3所示,远程操作控制系统100包括至少一个第二传感器40,第二传感器40被配置为检测目标装置30当前状态下的第二位置数据和/或第二姿态数据。控制装置10与至少一个第二传感器40耦接,控制装置10还被配置为获取所述至少一个第二传感器40检测的第二位置数据和/或第二姿态数据。
其中,示例性的,第二传感器40例如可以是陀螺仪、压力传感器等。第二传感器40可以设置在目标装置30上,也可以不设置在目标装置30上。
在本公开上述一些实施例中,远程操作控制系统100通过利用控制装置10和模拟装置20,实现了对目标装置30的远程、实时的控制,提高了工作效率,同时也在一定程度上减少了资源浪费及目标装置30的损耗。
如图4或图5所示,在一些实施例中,远程操作控制系统100还包括交互装置50,交互装置50被配置为获取并显示目标装置30的当前状态。其中, 当前状态包括目标装置30的第二位置数据和第二姿态数据。或者,当前状态包括目标装置30的图像。再或者,当前状态可以同时包括目标装置30的第二位置数据、第二姿态数据和目标装置30的图像。
其中,在当前状态包括目标装置30的图像时,交互装置50显示目标装置30的当前状态,可以是以二维六视图的方式进行显示,也可以以可拖拽的三维立体图的方式进行显示。这样设置可以便于用户通过交互装置50清楚直观的了解目标装置30的当前状态。
在当前状态包括目标装置30的第二位置数据和第二姿态数据时,交互装置50可以显示目标装置30的第二位置数据和第二姿态数据。进一步的,交互装置50还可以基于目标装置30的第二位置数据和第二姿态数据,以及目标装置30的初始位置数据和初始姿态数据,计算并显示装置30的第二位置数据和第二姿态数据相对于初始位置数据和初始姿态数据的变化值等。
交互装置50还可以同时显示目标装置30的第二位置数据、第二姿态数据,以及目标装置30的图像,通过图示和数据结合的方式,使用户更加直观的了解目标装置30所处的当前状态,避免了用户由于数值与实际状态之间的联系不敏感导致的对目标装置30所处的状态的误判等。
在一些实施例中,如图4所示,交互装置50与控制装置10耦接,交互装置50被配置为从控制装置10获取目标装置30在当前状态下的第二位置数据和第二姿态数据,显示目标装置30的第二位置数据和第二姿态数据。
或者,在另一些实施例中,如图5所示,远程操作控制系统100还包括与交互装置50耦接的拍摄设备60,拍摄设备60被配置为拍摄目标装置30的图像,将目标装置30的图像发送至交互装置50,以使交互装置50显示目标装置30的图像。
在每一次利用该远程操作控制系统100对目标装置30进行调整之后或者在下一次利用该远程操作控制系统100对目标装置30进行调整之前,需要对目标装置30进行位姿微调甚至需要将目标装置30复位至初始状态等。在对目标装置30进行位姿微调或将目标装置复位至初始状态时,用户需要对目标装置30的当前状态进行观测,从而判断目标装置30微调后的状态是否为用户所期望的状态,或者判断目标装置30是否复位至初始状态。
基于此,在一些实施例中,控制装置10还被配置为获取目标装置30的当前状态。在预定条件下,基于目标装置30在当前状态下的第二位置数据和第二姿态数据,控制模拟装置20运动至与目标装置30相同的状态。
通过这样设置,在预定条件下,模拟装置20的当前状态与目标装置30的 当前状态保持一致,用户可以直接通过观察模拟装置20的当前状态来了解目标装置30的当前状态,无需进入目标装置30所处的实际应用场景之中,减少了用户进入目标装置30所处的实际应用场景中的时间,提高了工作效率。
在一些示例中,上述预设条件可以包括对目标装置30进行位姿微调。或者,预设条件也可以包括目标装置30复位至初始状态。再或者,预设条件可以包括目标装置30进行位姿微调以及目标装置30复位至初始状态。
在一些实施例中,目标装置30可以是C型臂,模拟装置20可以为模拟C型臂。其中,示例性的,目标装置30可以为医院中使用的C型臂。
在一些实施例中,如图6和图7所示,模拟C型臂(也即模拟装置20)可以包括L形部21、C形部22和X轴旋转运动机构23。L形部21包括Y轴直线运动机构211、X轴直线运动机构212,以及连接Y轴直线运动机构211和X轴直线运动机构212的Y轴旋转运动机构213。X轴旋转运动机构23连接X轴直线运动机构212和C形部22。其中,Y轴旋转运动机构213被配置为使X轴直线运动机构212相对Y轴直线运动机构211绕Y轴旋转运动;X轴旋转运动机构23被配置为使C形部22相对X轴直线运动机构212绕X轴旋转运动。其中,X轴和Y轴相互垂直。
在一些实施例中,如图7所示,Y轴直线运动机构211包括第一电机2111和第一编码器2112,第一电机2111被配置为驱动X轴直线运动机构212基于第一运动控制量直线运动。第一编码器2112被配置为检测第一电机2111的输出轴转动量,以确定X轴直线运动机构212的直线运动量。
在一些实施例中,如图7所示,X轴直线运动机构212可以包括第二电机2121和第二编码器2122。第二电机2121被配置为驱动C形部22基于第二运动控制量直线运动。第二编码器2122被配置为检测第二电机2121的输出轴转动量,以确定和C形部22的直线运动量。
在一些实施例中,如图7所示,Y轴旋转运动机构213可以包括第三电机2131和第三编码器2132。第三电机2131被配置为驱动X轴直线运动机构212相对Y轴直线运动机构211基于第三运动控制量旋转运动。第三编码器2132被配置为检测第三电机2131的输出轴转动量,以确定X轴直线运动机构212的旋转运动量。
在一些实施例中,如图7所示,X轴旋转运动机构23包括第四电机231和第四编码器232。第四电机231被配置为驱动C形部22相对X轴直线运动机构212基于第四运动控制量旋转运动。第四编码器232被配置为检测第四电机231的输出轴转动量,以确定C形部22的旋转运动量。
在一些实施例中,如图7所示,C形部22包括固定结构221、弧状结构222、第五电机223和第五编码器224。其中,固定结构221上设置有导轨。弧状结构222与导轨滑动连接。第五电机223被配置为驱动弧状结构222相对固定结构221基于第五运动控制量旋转运动。第五编码器224被配置为检测第五电机223输出轴转动量,以确定弧状结构222的旋转运动量。
其中,示例性的,弧状结构222靠近导轨的一侧设置有齿形结构。C形部22还可以包括齿轮,齿轮与弧状结构222上的齿形结构相互啮合。第五电机223与齿轮连接。第五电机223还被配置为驱动齿轮转动,以带动弧状结构222相对导轨旋转运动。
在一些示例中,C形部22还可以包括设置在弧状结构222两端上的检测器件。其中,检测器件例如可以包括电荷耦合器件相机(charge coupled device camera,简称CCD相机)和影像增强器。
在一些示例中,第一编码器2112、第二编码器2122、第三编码器2132、第四编码器232、第五编码器224可以是光电编码器。
这样,本公开一些实施例所提供的远程操作控制系统100不仅能够远程地、实时地控制目标装置30,还能够实时将目标装置30的位置、姿态通过模拟装置20展示出来,使得用户无需多次进入到目标装置30的实际场景之中,从而节约了时间,提高了工作效率和精确度。
本公开一些实施例还提供了一种与远程操作控制系统100对应的远程操作控制方法,该方法可以存储在计算机可读介质中以用于实施,由于本公开中的远程操作控制方法解决问题的原理与本公开上述远程操作控制装置相似,因此远程操作控制方法的实施可以参见系统的实施,重复之处不再赘述。
如图8所示,远程操作控制方法包括如下具体步骤:
S1、在模拟装置20运动至设定状态时,确定模拟装置20的第一位置数据和第一姿态数据。
S2、基于第一位置数据和第一姿态数据控制目标装置30运动至与设定状态相同的状态。
利用本公开一些实施例所提供的远程操作控制方法,使得用户无需多次进入现场调试目标装置30,利用模拟装置20和控制装置10,即可远程控制目标装置30运动至与设定状态相同的状态,从而节约了用户调节目标装置30的时间,提高了工作效率。
在一些实施例中,模拟装置20还可以包括至少一个驱动件201(参见图2),此时,如图9所示,步骤S1还可以包括:
S11、在模拟装置20运动至设定状态时,获取模拟装置20的至少一个驱动件201的运动量。
S12、基于模拟装置20处于上一个状态时的位置数据、姿态数据、以及所述至少一个驱动件201的运动量,确定第一位置数据和第一姿态数据。
一般情况下,模拟装置20当前状态与目标装置30的当前状态相同,因此,控制装置10直接基于模拟装置20运动至设定状态后的第一位置数据和第一姿态数据即可控制目标装置30运动至与设定状态相同的状态。但也存在由于工作异常或操作错误等导致模拟装置20的当前状态与目标装置30的当前状态不一致的情况。
基于此,在一些实施例中,如图10所示,S2还可以包括:
S21、获取目标装置30的当前状态;
S22、基于目标装置30在当前状态下的第二位置数据和第二姿态数据、以及第一位置数据和第一姿态数据生成包含运动控制量的控制指令,并将所述控制指令发送至目标装置30。其中,控制指令用于控制目标装置30运动至与设定状态相同的状态。
其中,运动控制量例如可以包括至少一个直线位移控制量和/或至少一个旋转角度控制量。
通过这样设置,使得在目标装置30的当前状态与模拟装置20的当前状态不同时,控制装置10也能够控制目标装置30运动至与目标装置相同的状态。
在一些实施例中,如图11A所示,在步骤S1前,远程操作控制方法还包括:
S01、响应于操作者指示模拟装置20运动的第一操作,控制模拟装置20运动至设定状态。
这样,控制装置10直接控制模拟装置20运动,实现了对模拟装置20的较高精度的控制,方便模拟装置20直接运动至设定状态。
或者,在另一些实施例中,如图11B所示,在步骤S1前,远程操作控制方法还可以包括:
S01、响应于操作者指示模拟装置20运动的第一操作,控制模拟装置20运动至设定状态。
S02、响应于操作者指示模拟装置20运动到设定状态的第二操作,确定模拟装置20已运动至设定状态。
这样,在确定第一位置数据和第一姿态数据之前,通过判断模拟装置20 是否达到了设定状态,还能进一步保证第一位置数据和第一姿态数据的可靠性,从而在控制装置10控制目标装置30运动后,使目标装置30能够达到与设定状态相同的状态。
由于模拟装置20可以由操作者手动控制从而运动至设定状态,因此,在又一些实施例中,如图11C所示,远程操作控制方法在S1之前,还可以只包括S02而不包括S01。
这样,使得控制装置10能够在操作者手动控制模拟装置20运动时,判断模拟装置20是否达到了设定状态,从而便于控制装置10控制目标装置30运动至与设定状态相同的状态。
在一些实施例中,远程操作控制系统100还能够利用控制装置10控制模拟装置20运动至与目标装置30相同的状态。基于此,如图12所示,该远程操作控制方法还包括:
S3、获取目标装置30的当前状态。
S4、在预定条件下,基于目标装置30在当前状态下的第二位置数据和第二姿态数据,控制模拟装置20运动至与目标装置30相同的状态。
其中,示例性的,预定条件可以包括对目标装置30进行位姿微调。或者,预定条件可以包括目标装置30复位至初始状态。再或者,预定条件可以包括对目标装置30进行位姿微调和目标装置30复位至初始状态。
本公开通过远程操作控制方法对模拟装置20和目标装置30进行上述步骤的操作,能够实现对目标装置30的远程、实时控制,还能够实时将目标装置30的位置、姿态通过模拟装置20展示出来,从而使用户无需多进入到目标装置30的实际场景之中,提高了工作效率,也在一定程度上减少了资源浪费及目标装置30的损耗。
如图13所示,本公开一些实施例中提供了一种终端200,终端200包括通信接口200a和处理器200b。其中,通信接口200a被配置为接受检测信号。处理器200b与通信接口200a耦接,且被配置为执行如上述任一实施例所述的远程操作控制方法。
其中,检测信号可以是终端200接收到的各种信号。本公开并不对该检测信号的具体内容进行限制。例如,检测信号可以是第一传感器202传输的包含其检测到的与第一传感器202对应的驱动件201的运动量的信号。再例如,检测信号可以是第二传感器40传输的包含其检测到的目标装置30的第二位置数据和/或第二姿态数据的信号。又例如,检测信号可以是操作者(用户)指示控制装置10控制模拟装置20运动的第一操作信号。又例如,检测 信号可以是操作者指示模拟装置20运动到设定状态的第二操作信号。
本公开的一些实施例还提供了一种计算机可读存储介质(例如,非暂态计算机可读存储介质),存储有计算机程序指令,计算机程序指令在计算机上运行时,使计算机执行如上述任一实施例所述的远程操作控制方法。
示例性的,上述计算机可读存储介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,CD(Compact Disk,压缩盘)、DVD(Digital Versatile Disk,数字通用盘)等),智能卡和闪存器件(例如,EPROM(Erasable Programmable Read-Only Memory,可擦写可编程只读存储器)、卡、棒或钥匙驱动器等)。本公开描述的各种计算机可读存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读存储介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
本公开的一些实施例提供了一种计算机程序产品。该计算机程序产品包括计算机程序指令,在计算机上执行该计算机程序指令时,该计算机程序指令使计算机执行如上述实施例所述的远程操作控制方法中的一个或多个步骤。
本公开的一些实施例还提供一种计算机程序。当该计算机程序在计算机上执行时,该计算机程序使计算机执行如上述实施例所述的远程操作控制方法中的一个或多个步骤。
本公开一些实施例所提供的终端、计算机可读存储介质、计算机程序产品、计算机程序所能达到的技术效果与本公开上述实施例所述的远程操作控制方法的有益效果相同,在此不再赘述。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的 限定。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。
以上描述仅为本公开的一些实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
此外,虽然采用特定次序描绘了各操作,但是这不应当理解为要求这些操作以所示出的特定次序或以顺序次序执行来执行。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实施例中。相反地,在单个实施例的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实施例中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种远程操作控制系统,包括:
    模拟装置和目标装置;
    控制装置,分别与所述模拟装置、所述目标装置耦接;所述控制装置被配置为:在所述模拟装置运动至设定状态时,确定所述模拟装置的第一位置数据和第一姿态数据,并基于所述第一位置数据和第一姿态数据控制所述目标装置运动至与所述设定状态相同的状态。
  2. 根据权利要求1所述的远程操作控制系统,其中,所述模拟装置包括:
    至少一个驱动件,与所述控制装置耦接,被配置为在所述控制装置的控制下驱动所述模拟装置运动至所述设定状态;
    至少一个第一传感器,与所述至少一个所述驱动件一一对应连接;每个第一传感器被配置为:在所述模拟装置由上一个状态运动至所述设定状态时,获取与该第一传感器对应连接的驱动件的运动量;
    其中,所述控制装置与所述至少一个第一传感器耦接;所述控制装置被配置为:基于所述模拟装置处于所述上一个状态时的位置数据、姿态数据,以及所述至少一个驱动件的运动量,确定所述第一位置数据和所述第一姿态数据。
  3. 根据权利要求1或2所述的远程操作控制系统,其中,所述控制装置被配置为:
    获取所述目标装置的当前状态;
    基于所述目标装置在当前状态下的第二位置数据和第二姿态数据、以及所述第一位置数据和所述第一姿态数据,生成包含运动控制量的控制指令,并将所述控制指令发送至所述目标装置;其中,所述控制指令用于控制所述目标装置运动至与所述设定状态相同的状态。
  4. 根据权利要求3所述的远程操作控制系统,其中,所述运动控制量包括至少一个直线位移控制量和/或至少一个旋转角度控制量。
  5. 根据权利要求1~4中任一项所述的远程操作控制系统,其中,所述控制装置还被配置为:
    响应于操作者指示所述模拟装置运动的第一操作,控制所述模拟装置运动至所述设定状态;和/或,
    响应于操作者指示模拟装置运动到设定状态的第二操作,确定所述模拟装置已运动至所述设定状态。
  6. 根据权利要求1~5中任一项所述的远程操作控制系统,还包括:
    至少一个第二传感器,所述至少一个第二传感器被配置为检测所述目标装置当前状态下的第二位置数据和/或第二姿态数据;
    所述控制装置与所述至少一个第二传感器耦接,所述控制装置还被配置为获取所述至少一个第二传感器检测的所述第二位置数据和/或所述第二姿态数据。
  7. 根据权利要求1~6中任一项所述的远程操作控制系统,还包括:
    交互装置,被配置为获取并显示所述目标装置的当前状态;
    其中,所述当前状态包括:所述目标装置的第二位置数据和第二姿态数据;和/或,所述目标装置的图像。
  8. 根据权利要求7所述的远程操作控制系统,其中,所述交互装置与所述控制装置耦接,所述交互装置被配置为从所述控制装置获取所述目标装置在当前状态下的第二位置数据和第二姿态数据,显示所述目标装置的第二位置数据和第二姿态数据;和/或,
    所述远程操作控制系统还包括与所述交互装置耦接的拍摄设备,所述拍摄设备被配置为拍摄所述目标装置的图像,将所述目标装置的图像发送至所述交互装置,以使所述交互装置显示目标装置的图像。
  9. 根据权利要求1~8中任一项所述的远程操作控制系统,其中,所述控制装置还被配置为:
    获取所述目标装置的当前状态;
    在预定条件下,基于所述目标装置在当前状态下的第二位置数据和第二姿态数据,控制所述模拟装置运动至与所述目标装置相同的状态。
  10. 根据权利要求9所述的远程操作控制系统,其中,所述预定条件至少包括以下之一:
    对所述目标装置进行位姿微调;或,
    所述目标装置复位至初始状态。
  11. 根据权利要求1~10中任一项所述的远程操作控制系统,其中,所述模拟装置与所述目标装置的结构相同,大小相同或不同。
  12. 根据权利要求1~11中任一项所述的远程操作控制系统,其中,所述目标装置为C型臂,所述模拟装置为模拟C型臂。
  13. 根据权利要求12所述的远程操作控制系统,其中,所述模拟C型臂包括L形部、C形部和X轴旋转运动机构;所述L形部包括X轴直线运动机构、Y轴直线运动机构,以及连接所述X轴直线运动机构和Y轴直线运动机构的Y轴旋转运动机构;所述X轴旋转运动机构连接所述X轴直线运动机构和所述C形部;
    所述Y轴旋转运动机构被配置为使所述X轴直线运动机构相对所述Y轴 直线运动机构绕Y轴旋转运动;所述X轴旋转运动机构被配置为使所述C形部相对所述X轴直线运动机构绕X轴旋转运动。
  14. 根据权利要求13所述的远程操作控制系统,其中,
    所述Y轴直线运动机构包括:
    第一电机,被配置为驱动所述X轴直线运动机构基于第一运动控制量直线运动;
    第一编码器,被配置为检测所述第一电机的输出轴转动量,以确定所述X轴直线运动机构的直线运动量;
    所述X轴直线运动机构包括:
    第二电机,被配置为驱动所述C形部基于第二运动控制量直线运动;
    第二编码器,被配置为检测所述第二电机的输出轴转动量,以确定所述C形部的直线运动量;
    所述Y轴旋转运动机构包括:
    第三电机,被配置为驱动所述X轴直线运动机构相对所述Y轴直线运动机构基于第三运动控制量旋转运动;
    第三编码器,被配置为检测所述第三电机的输出轴转动量,以确定所述X轴直线运动机构的旋转运动量;
    所述X轴旋转运动机构包括:
    第四电机,被配置为驱动所述C形部相对所述X轴直线运动机构基于第四运动控制量旋转运动;
    第四编码器,被配置为检测第四电机的输出轴转动量,以确定所述C形部的旋转运动量;
    所述C形部包括:
    固定结构,所述固定结构上设置有导轨;
    弧状结构,所述弧状结构与所述导轨滑动连接;
    第五电机,所述第五电机被配置为驱动所述弧状结构相对所述固定结构基于第五运动控制量旋转运动;
    第五编码器,被配置为检测所述第五电机的输出轴转动量,以确定所述弧状结构的旋转运动量。
  15. 一种远程操作控制方法,其包括以下步骤:
    在模拟装置运动至设定状态时,确定所述模拟装置的第一位置数据和第一姿态数据;
    基于所述第一位置数据和所述第一姿态数据控制目标装置运动至与所述 设定状态相同的状态。
  16. 根据权利要求15所述的远程操作控制方法,其中,所述在模拟装置运动至设定状态时,确定所述模拟装置的第一位置数据和第一姿态数据包括:
    在所述模拟装置运动至所述设定状态时,获取所述模拟装置的至少一个驱动件的运动量;
    基于所述模拟装置处于上一个状态时的位置数据、姿态数据,以及所述至少一个驱动件的运动量,确定所述第一位置数据和所述第一姿态数据。
  17. 根据权利要求15或16所述的远程操作控制方法,其中,所述基于所述第一位置数据和所述第一姿态数据控制所述目标装置运动至与所述设定状态相同的状态包括:
    获取所述目标装置的当前状态;
    基于所述目标装置在当前状态下的第二位置数据和第二姿态数据、以及所述第一位置数据和所述第一姿态数据生成包含运动控制量的控制指令,并将所述控制指令发送至所述目标装置;其中,所述控制指令用于控制所述目标装置运动至与所述设定状态相同的状态。
  18. 根据权利要求17所述的远程操作控制方法,其中,所述运动控制量包括至少一个直线位移控制量和/或至少一个旋转角度控制量。
  19. 根据权利要求15~18中任一项所述的远程操作控制方法,还包括:
    响应于操作者指示所述模拟装置运动的第一操作,控制所述模拟装置运动至所述设定状态;和/或,
    响应于操作者指示模拟装置运动到设定状态的第二操作,确定所述模拟装置已运动至所述设定状态。
  20. 根据权利要求15~19中任一项所述的远程操作控制方法,还包括:
    获取所述目标装置的当前状态;
    在预定条件下,基于所述目标装置在当前状态下的第二位置数据和第二姿态数据,控制所述模拟装置运动至与所述目标装置相同的状态。
  21. 根据权利要求20所述的远程操作控制方法,其中,所述预定条件至少包括以下之一:
    对所述目标装置进行位姿微调;或,
    所述目标装置复位至初始状态。
  22. 一种终端,包括:
    通信接口,被配置为接收检测信号;
    处理器,与所述通信接口耦接,且被配置为执行如权利要求15~21中任 一项所述的远程操作控制方法。
  23. 一种计算机可读存储介质,存储有计算机程序指令,所述计算机程序指令在计算机上运行时,使所述计算机执行如权利要求15~21中任一项所述的远程操作控制方法。
PCT/CN2021/076380 2020-02-25 2021-02-09 远程操作控制系统、方法、终端及存储介质 WO2021169815A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/635,856 US20220296200A1 (en) 2020-02-25 2021-02-09 Remote operation control system, remote operation control method, and non-transitory storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010116258.3A CN111317490A (zh) 2020-02-25 2020-02-25 一种远程操作控制系统及远程操作控制方法
CN202010116258.3 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021169815A1 true WO2021169815A1 (zh) 2021-09-02

Family

ID=71163596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076380 WO2021169815A1 (zh) 2020-02-25 2021-02-09 远程操作控制系统、方法、终端及存储介质

Country Status (3)

Country Link
US (1) US20220296200A1 (zh)
CN (1) CN111317490A (zh)
WO (1) WO2021169815A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111317490A (zh) * 2020-02-25 2020-06-23 京东方科技集团股份有限公司 一种远程操作控制系统及远程操作控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249761A (zh) * 2016-08-11 2016-12-21 零度智控(北京)智能科技有限公司 地面云台控制方法、装置及地面云台
CN106354043A (zh) * 2016-11-05 2017-01-25 杭州畅动智能科技有限公司 一种设备的控制系统
CN108268056A (zh) * 2016-12-30 2018-07-10 昊翔电能运动科技(昆山)有限公司 手持云台校准方法、装置和系统
CN110464470A (zh) * 2019-09-10 2019-11-19 深圳市精锋医疗科技有限公司 手术机器人及其臂体的控制方法、控制装置
US20200054403A1 (en) * 2018-08-20 2020-02-20 Verb Surgical Inc. Engagement and/or homing of a surgical tool in a surgical robotic system
CN111317490A (zh) * 2020-02-25 2020-06-23 京东方科技集团股份有限公司 一种远程操作控制系统及远程操作控制方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1035303C2 (nl) * 2008-04-16 2009-10-19 Virtual Proteins B V Interactieve virtuele reality eenheid.
EP2779901B1 (en) * 2011-11-14 2019-07-31 Koninklijke Philips N.V. Positioning distance control for x-ray imaging systems
JP2013233413A (ja) * 2012-04-09 2013-11-21 Toshiba Corp X線診断装置
US9649080B2 (en) * 2012-12-05 2017-05-16 Samsung Electronics Co., Ltd. X-ray imaging apparatus and method for controlling the same
JP2014168571A (ja) * 2013-03-04 2014-09-18 Toshiba Corp X線診断装置
CN103085072B (zh) * 2013-03-11 2014-10-29 南京埃斯顿机器人工程有限公司 基于三维建模软件实现工业机器人离线编程的方法
DE102015202911A1 (de) * 2015-02-18 2016-09-01 Siemens Healthcare Gmbh Dynamische Speicherung von Medizingerätepositionen
DE102015206158B4 (de) * 2015-04-07 2021-12-16 Siemens Healthcare Gmbh Mobiles C-Bogensystem
CN110325093B (zh) * 2017-02-28 2022-04-08 索尼公司 医疗用臂系统、控制装置与控制方法
CN108161904B (zh) * 2018-01-09 2019-12-03 青岛理工大学 基于增强现实的机器人在线示教装置、系统、方法、设备
US10922897B2 (en) * 2018-01-15 2021-02-16 Canon Medical Systems Corporation Medical information processing apparatus, X-ray diagnostic system, and medical information processing method
US10573023B2 (en) * 2018-04-09 2020-02-25 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
CN108803673A (zh) * 2018-05-07 2018-11-13 约肯机器人(上海)有限公司 定向控制方法和装置
EP3662834A1 (en) * 2018-12-07 2020-06-10 Koninklijke Philips N.V. Positioning a medical x-ray imaging apparatus
CN110238879B (zh) * 2019-05-22 2022-09-23 菜鸟智能物流控股有限公司 一种定位方法、装置和机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249761A (zh) * 2016-08-11 2016-12-21 零度智控(北京)智能科技有限公司 地面云台控制方法、装置及地面云台
CN106354043A (zh) * 2016-11-05 2017-01-25 杭州畅动智能科技有限公司 一种设备的控制系统
CN108268056A (zh) * 2016-12-30 2018-07-10 昊翔电能运动科技(昆山)有限公司 手持云台校准方法、装置和系统
US20200054403A1 (en) * 2018-08-20 2020-02-20 Verb Surgical Inc. Engagement and/or homing of a surgical tool in a surgical robotic system
CN110464470A (zh) * 2019-09-10 2019-11-19 深圳市精锋医疗科技有限公司 手术机器人及其臂体的控制方法、控制装置
CN111317490A (zh) * 2020-02-25 2020-06-23 京东方科技集团股份有限公司 一种远程操作控制系统及远程操作控制方法

Also Published As

Publication number Publication date
US20220296200A1 (en) 2022-09-22
CN111317490A (zh) 2020-06-23

Similar Documents

Publication Publication Date Title
EP3057308B1 (en) Imaging control system, control apparatus, control method, and program
WO2021169815A1 (zh) 远程操作控制系统、方法、终端及存储介质
US20150109437A1 (en) Method for controlling surveillance camera and system thereof
JP2015043488A (ja) 遠隔操作装置及びそれを用いた遠隔施工方法
WO2018191969A1 (zh) 云台的控制方法及装置
JP5871779B2 (ja) カメラシステム
CN102360222B (zh) 控制工程机械的机械臂的方法、装置和遥控器
CN115220375A (zh) 机器人控制方法、装置、存储介质及电子设备
US20220273368A1 (en) Auto-configurable simulation system and method
US8648916B2 (en) Control of an image capturing device
JPWO2021199230A5 (ja) 遠隔監視制御装置、システム、方法、及びプログラム
JP6452386B2 (ja) 撮像装置、撮像システム、撮像装置の制御方法
CN114136682B (zh) 器械的运动控制精度检测方法、装置、设备及存储介质
JP2019009685A (ja) 機器制御システム及び遠隔調整システム
CN113873157B (zh) 拍摄方法、装置、电子设备和可读存储介质
JP2017112438A (ja) 撮像システムおよびその制御方法、通信装置、移動撮像装置、プログラム
JPH11242523A (ja) 監視カメラ装置
US11926065B2 (en) Vision-based operation for robot
KR100899651B1 (ko) 원격지의 현장제어반 관리를 위한 영상 감시 및 터치스크린제어 시스템 및 그 방법
WO2021146908A1 (zh) 云台及其控制方法
KR20120072156A (ko) 병렬형 로봇 제어 장치 및 방법
WO2024089890A1 (ja) 遠隔操作システムおよび遠隔操作方法
JP4730555B2 (ja) 放射線断層撮像装置
CN113612928B (zh) 遥操作系统、遥操作方法及芯片
JPH02185379A (ja) マニピュレータ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760191

Country of ref document: EP

Kind code of ref document: A1