WO2021169542A1 - 连续制热的空调系统 - Google Patents

连续制热的空调系统 Download PDF

Info

Publication number
WO2021169542A1
WO2021169542A1 PCT/CN2020/139037 CN2020139037W WO2021169542A1 WO 2021169542 A1 WO2021169542 A1 WO 2021169542A1 CN 2020139037 W CN2020139037 W CN 2020139037W WO 2021169542 A1 WO2021169542 A1 WO 2021169542A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
defrosting
conditioning system
air conditioning
outdoor heat
Prior art date
Application number
PCT/CN2020/139037
Other languages
English (en)
French (fr)
Inventor
熊建国
张仕强
李立民
邱天
朱世强
金孟孟
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021169542A1 publication Critical patent/WO2021169542A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to the field of air conditioning technology, and in particular to an air conditioning system with continuous heating.
  • the traditional defrosting method is the four-way valve of the outdoor unit, the system enters the refrigeration mode, and the outdoor side is turned into a condenser, which absorbs the heat of the refrigerant and defrosts the outdoor heat exchanger.
  • This defrosting method makes the indoor side turn into an evaporator, and the temperature of the refrigerant on the indoor side decreases, which affects indoor comfort. Or divide the outdoor unit into zones and divide the outdoor heat exchanger into two pieces. When it needs to be defrosted, the internal unit can continue to keep heating.
  • this method still has drawbacks.
  • an air conditioning system including: a compressor, an oil separator, a four-way valve, an indoor heat exchanger, an outdoor heat exchanger, and a gas-liquid separator connected in sequence
  • the hot gas bypass branch one end is connected with the outlet of the oil separator, and the other end is connected with the inlet of the outdoor heat exchanger, which is used to pass part of the refrigerant discharged from the oil separator into the outdoor heat exchanger during defrosting.
  • the four-way valve is in a power-on state during defrosting, and is used to pass part of the refrigerant discharged from the oil separator into the indoor heat exchanger during defrosting for heating.
  • one end of the defrost bypass branch connected to the outlet of the outdoor heat exchanger is also connected to the outlet of the indoor heat exchanger, and is used to pass the refrigerant flowing out of the indoor heat exchanger into the gas liquid during defrosting. In the separator, and then into the compressor.
  • the air conditioning system further includes: a first defrosting solenoid valve located on the hot gas bypass branch for controlling the on-off of the hot gas bypass branch; wherein the first defrosting solenoid valve is opened during defrosting , Turn off when heating or cooling.
  • the air conditioning system further includes: a second defrosting solenoid valve located on the defrosting bypass branch, used to control the on-off of the defrosting bypass branch; wherein, the second defrosting solenoid valve is in the defrosting bypass branch. Turn on when heating or cooling, and turn off when heating or cooling.
  • the air conditioning system further includes: a defrosting stop valve, which is located on the pipeline between the four-way valve and the outdoor heat exchanger, and is used to control the on-off of the pipeline between the four-way valve and the outdoor heat exchanger; Among them, the defrosting stop valve is opened during heating or cooling, and closed during defrosting.
  • a defrosting stop valve which is located on the pipeline between the four-way valve and the outdoor heat exchanger, and is used to control the on-off of the pipeline between the four-way valve and the outdoor heat exchanger; Among them, the defrosting stop valve is opened during heating or cooling, and closed during defrosting.
  • the air-conditioning system further includes a heating device located at the bottom of the gas-liquid separator for heating the gas-liquid separator during defrosting and evaporating the liquid refrigerant.
  • Fig. 1 is an optional structural schematic diagram of an air conditioning system according to an embodiment of the present disclosure, where the indoor heat exchanger is not shown;
  • Fig. 2 is a schematic diagram of a refrigerant flow path during heating of an air conditioning system according to an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of a refrigerant flow path during defrosting of an air conditioning system according to an embodiment of the present disclosure.
  • Fig. 4 is an optional structural schematic diagram of an air conditioning system according to an embodiment of the present disclosure, in which an indoor heat exchanger is shown.
  • the embodiments of the present disclosure provide an air-conditioning system to solve the problem of insufficient continuous and high-efficiency indoor mechanism heat during air-conditioning defrosting in the related art.
  • FIGS 1 to 4 show alternative structural schematic diagrams of the air conditioning system. As shown in Figures 1 to 4, the air conditioning system includes:
  • Compressor 1 oil separator 2, four-way valve 3, indoor heat exchanger 4, outdoor heat exchanger 5 and gas-liquid separator 6 connected in sequence;
  • the hot gas bypass branch 7 one end is connected to the outlet of the oil separator 2, and the other end is connected to the inlet of the outdoor heat exchanger 5, used to pass part of the refrigerant discharged from the oil separator 2 into the outdoor heat exchanger during defrosting In 5, defrost;
  • the defrost bypass branch 8 one end is connected with the outlet of the outdoor heat exchanger 5, and the other end is connected with the inlet of the gas-liquid separator 6, which is used to pass the refrigerant flowing out of the outdoor heat exchanger 5 into the gas-liquid during defrosting In the separator 6, and then into the compressor 1.
  • a new continuous heating and air conditioning system is proposed. Due to the use of the hot gas bypass branch 7, the high temperature and high pressure refrigerant discharged from the compressor 1 can be directly discharged to the outdoor heat exchanger during defrosting. 5 Defrosting and heating by the indoor heat exchanger 4, the defrosting bypass branch 8 passes the condensed refrigerant into the gas-liquid separator 6, and then enters the compressor 1 for circulation.
  • the four-way valve 3 is in a power-on state, that is, the system is in heating mode.
  • the four-way valve 3 passes part of the refrigerant discharged from the oil separator 2 into the indoor heat exchanger 4 for heating.
  • part of the high-temperature and high-pressure refrigerant discharged from the compressor 1 through the oil separator 2 enters the four-way valve 3, and then enters the indoor heat exchanger 4 for heating, and the other part enters the hot gas bypass branch 7, and then enters the outdoor heat exchanger.
  • defrosting is performed. Therefore, the embodiment of the present disclosure can achieve the effect of defrosting and heating at the same time through the arrangement of the above-mentioned structure.
  • the indoor heat exchangers 4 of the indoor unit are all in heating state, and the heating effect is not lost.
  • the continuous heating technology of related air-conditioning systems has a slower defrosting speed, and the heating attenuation during defrosting will still cause indoor heating. The temperature drops, which has a better heating effect than the air-conditioning system of the related technology.
  • the refrigerant after the heat exchange of the indoor heat exchanger needs to pass through the outdoor heat exchanger to exchange heat and then return to the compressor, and the outdoor heat exchanger 5 of the present application is used for defrosting, so the indoor heat exchange
  • the refrigerant after heat exchange by the heat exchanger 4 can no longer pass through the outdoor heat exchanger 5.
  • the end of the defrost bypass branch 8 connected with the outlet of the outdoor heat exchanger 5 is also connected with the outlet of the indoor heat exchanger 4 for defrosting the refrigerant flowing out of the indoor heat exchanger 4 It passes into the gas-liquid separator 6 and then into the compressor 1.
  • the indoor heat exchanger 4 is connected to one end of the defrost bypass branch 8 through a subcooler and a heating electronic expansion valve 12 (the heating valve in FIGS. 1 to 4).
  • a first defrost solenoid valve 9 is installed on the hot gas bypass branch 7 to control the hot gas.
  • the bypass branch 7 is turned on and off, wherein the first defrosting solenoid valve 9 is opened during defrosting and closed during heating or cooling.
  • a second defrosting solenoid valve 10 is provided on the defrosting bypass branch 8 to control the on and off of the defrosting bypass branch 8. The second defrosting solenoid valve 10 is opened during defrosting, Turn off when hot or cold.
  • a defrosting stop valve 11 is set on the pipeline between the four-way valve 3 and the outdoor heat exchanger 5 to control the on-off of the pipeline between the four-way valve 3 and the outdoor heat exchanger 5. Among them, the defrosting stop The valve 11 is opened during heating or cooling, and closed during defrosting.
  • Fig. 2 shows a schematic diagram of the refrigerant flow path when the system is heating. As shown in Fig. 2, when the air-conditioning system is in normal heating operation, the air-conditioning system is consistent with the traditional heat pump system at this time.
  • the four-way valve 3 is in the power-on state.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1 passes through the oil separator 2, and then passes through the four-way valve 3 to the indoor heat exchanger 4; after the refrigerant releases heat in the room, it passes through the subcooler And the heating electronic expansion valve 12 throttling and reducing pressure to become a low-temperature and low-pressure liquid, then evaporates and absorbs heat in the outdoor heat exchanger 5, becomes a medium-temperature and low-pressure gaseous refrigerant, and then enters the gas-liquid separator 6 after passing through the four-way valve 3 , And then from the gas-liquid separator 6 is sucked into the compressor 1 for compression, thus completing a heating cycle.
  • Fig. 3 shows a schematic diagram of the refrigerant flow path during system defrosting.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1 is divided into two paths, and one part enters the indoor heat exchanger 4 through the four-way valve 3.
  • the air conditioning system also includes a heating device 12 located at the bottom of the gas-liquid separator 6 for heating the gas-liquid separator 6 during defrosting and evaporating the liquid refrigerant.
  • the defrosted refrigerant is combined with the refrigerant from the indoor side, and returns to the gas-liquid separator 6 through the defrost bypass branch 8.
  • the heating device 12 is turned on.
  • the refrigerant is heated in the gas-liquid separator 6 and evaporates into a gaseous refrigerant. Thus, it returns to the compressor 1 through the suction pipe and circulates in this way.
  • the bypassed hot air enters the outdoor heat exchanger 5 first, and then passes through the capillary tube to avoid energy loss caused by capillary throttling.
  • the air conditioning system of the present disclosure adds two bypass pipelines on the basis of the conventional heat pump system.
  • a first defrosting solenoid valve 9 is provided on this branch; secondly, a defrosting bypass branch 8 is provided between the outdoor heat exchanger 5 and the heating electronic expansion valve to defrost the The refrigerant is sent back to the gas-liquid separator 6, and a second defrosting solenoid valve 10 is provided on this branch; at the same time, a defrosting stop valve 11 is added on the main line between the four-way valve 3 and the outdoor heat exchanger 5.
  • the high temperature and high pressure refrigerant exhausted can be directly sent to the outdoor heat exchanger 5 for defrosting and the indoor heat exchanger 4 for heating during defrosting, and the condensed
  • the refrigerant directly enters the gas-liquid separator 6, and then enters the heating tank from the gas-liquid separator 6 (as a specific implementation form of the heating device 12, heating is achieved by the electric heating component 2 shown in Figures 1 to 4), in the heating tank Heating and evaporation can maintain the heating capacity without decay, and at the same time achieve a good defrosting effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

一种连续制热的空调系统。该空调系统包括:依次相连的压缩机(1)、油分离器(2)、四通阀(3)、室内换热器(4)、室外换热器(5)和气液分离器(6);热气旁通支路(7),一端与油分离器(2)的出口连接,另一端与室外换热器(5)的入口连接,用于在化霜时将油分离器(2)排出的部分冷媒通入室外换热器(5)中,进行化霜;化霜旁通支路(8),一端与室外换热器(5)的出口连接,另一端与气液分离器(6)的入口连接,用于在化霜时将室外换热器(5)流出的冷媒通入气液分离器(6)中,进而进入压缩机(1)中;该空调系统解决了现有技术中空调化霜时室内机制热不够连续高效的问题,提高了化霜的效果和效率。

Description

连续制热的空调系统
相关申请的交叉引用
本公开是以申请号为202010120876.5,申请日为2020年2月26日,发明名称为“连续制热的空调系统”的中国专利申请为基础,并主张其优先权,该中国专利申请的公开内容在此作为整体引入本公开中。
技术领域
本公开涉及空调技术领域,具体而言,涉及一种连续制热的空调系统。
背景技术
随着国家的煤改电政策的逐步推进,空调正在成为重要的供暖设备。当空调制热运行时,室外换热器中冷媒蒸发吸热,会导致室外换热器上结霜,结霜严重后将影响到室外换热器的换热效果,进而影响到室内机的制热效果。
目前传统的化霜方式为室外机四通阀换相,系统进入制冷模式,室外侧转为冷凝器,吸收冷媒热量,给室外换热器进行化霜。这种化霜方式使得室内侧转为蒸发器,室内侧冷媒温度降低,影响室内舒适性。或者将室外机分区化霜,将室外换热器分为两块,需要化霜时轮流化霜,内机则可以持续保持制热状态。但这种方式仍然存在弊端,化霜时,空调系统中蒸发侧换热面积变小了,冷凝侧换热面积变大了,会使得内机制热效果变差。分区轮流化霜也会使得化霜时间变长。
发明内容
为解决上述技术问题,根据本公开实施例的一个方面,提供了一种空调系统,包括:依次相连的压缩机、油分离器、四通阀、室内换热器、室外换热器和气液分离器;热气旁通支路,一端与油分离器的出口连接,另一端与室外换热器的入口连接,用于在化霜时将油分离器排出的部分冷媒通入室外换热器中,进行化霜;化霜旁通支路,一端与室外换热器的出口连接,另一端与气液分离器的入口连接,用于在化霜时将室外换热器流出的冷媒通入气液分离器中,进而进入压缩机中。
在一些实施例中,四通阀在化霜时处于上电状态,用于在化霜时将油分离器排出的部分冷媒通入室内换热器中,进行制热。
在一些实施例中,化霜旁通支路与室外换热器的出口连接的一端还与室内换热器的出口连接,用于在化霜时将室内换热器流出的冷媒通入气液分离器中,进而进入压缩机中。
在一些实施例中,空调系统还包括:第一化霜电磁阀,位于热气旁通支路上,用于控制热气旁通支路的通断;其中,第一化霜电磁阀在化霜时开启,在制热或制冷时关闭。
在一些实施例中,空调系统还包括:第二化霜电磁阀,位于化霜旁通支路上,用于控制化霜旁通支路的通断;其中,第二化霜电磁阀在化霜时开启,在制热或制冷时关闭。
在一些实施例中,空调系统还包括:化霜截止阀,位于四通阀和室外换热器之间的管路上,用于控制四通阀和室外换热器之间管路的通断;其中,化霜截止阀在制热或制冷时开启,在化霜时关闭。
在一些实施例中,空调系统还包括:加热设备,位于气液分离器的底部,用于在化霜时加热气液分离器,蒸发液态冷媒。
附图说明
图1是根据本公开实施例的空调系统的一种可选的结构示意图,其中未示出室内换热器;
图2是根据本公开实施例的空调系统制热时的冷媒流路示意图;
图3是根据本公开实施例的空调系统化霜时的冷媒流路示意图;以及
图4是根据本公开实施例的空调系统的一种可选的结构示意图,其中示出室内换热器。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
本公开实施例提供了一种空调系统,以解决相关技术中空调化霜时室内机制热不够连续高效的问题。
图1至图4示出该空调系统的可选的结构示意图。如图1至图4所示,该空调系统包括:
依次相连的压缩机1、油分离器2、四通阀3、室内换热器4、室外换热器5和气液分离器6;
热气旁通支路7,一端与油分离器2的出口连接,另一端与室外换热器5的入口连接,用于在化霜时将油分离器2排出的部分冷媒通入室外换热器5中,进行化霜;和
化霜旁通支路8,一端与室外换热器5的出口连接,另一端与气液分离器6的入口连接,用于在化霜时将室外换热器5流出的冷媒通入气液分离器6中,进而进入压缩机1中。
在上述实施方式中,提出一种新的连续制热空调系统,由于采用了热气旁通支路7,化霜时可直接将压缩机1排气出来的高温高压冷媒同时通往室外换热器5化霜和室内换热器4制热,化霜旁通支路8将冷凝后的冷媒通入气液分离器6,之后进入压缩机1中循环。通过上述方式,有效解决了空调化霜时室内机制热不够连续高效的问题,可以实现化霜时四通阀3不切换,且制热能力不衰减,化霜快,提高了化霜的效果和效率。
在化霜时,四通阀3处于上电状态,即系统处于制热模式,四通阀3将油分离器2排出的部分冷媒通入室内换热器4中,进行制热。也就是说,压缩机1通过油分离器2排出的高温高压冷媒一部分进入四通阀3,进而进入室内换热器4进行制热,另一部分进入了热气旁通支路7,进而进入室外换热器5中,进行化霜。因此,本公开实施例通过上述结构的设置,可以实现化霜的同时且制热的效果。并且室内机的室内换热器4全部处于制热状态,制热效果不受损失,而相关技术的空调系统连续制热技术化霜速度较慢,且化霜时制热量衰减,仍然会令室内温度下降,相对于相关技术的空调系统具有更好的制热效果。
相关技术的空调系统制热时,室内换热器换热后的冷媒需要经过室外换热器换热再回到压缩机中,而本申请的室外换热器5用于化霜,因此室内换热器4换热后的冷媒不能再经过室外换热器5。为此,本公开中化霜旁通支路8与室外换热器5的出口连接的一端还与室内换热器4的出口连接,用于在化霜时将室内换热器4流出的冷媒通入气液分离器6中,进而进入压缩机1中。可选地,室内换热器4通过过冷器和制热电子膨胀阀12(图1至图4中的制热阀)与化霜旁通支路8的一端连接。
由于化霜时和制热时,本空调系统采用了不同的冷媒流路,为了实现不同的冷媒流路,在热气旁通支路7上设置了第一化霜电磁阀9,用于控制热气旁通支路7的通断,其中,第一化霜电磁阀9在化霜时开启,在制热或制冷时关闭。在化霜旁通支路8上设置了第二化霜电磁阀10,用于控制化霜旁通支路8的通断,其中,第二化霜电磁阀10在化霜时开启,在制热或制冷时关闭。在四通阀3和室外换热器5之间的管路上设置了化霜截止阀11,用于控制四通阀3和室外换热器5之间管路的通断,其中,化霜截止阀11在制热或制冷时开启,在化霜时关闭。
正常制热时,第一化霜电磁阀9和第二化霜电磁阀10均处于关闭状态,化霜截止阀11处于开启状态,其余均按传统系统方式控制。附图2示出系统制热时的冷媒流路示意图,如图2所示,空调系统在正常制热运行时,此时空调系统与传统热泵系统一致。四通阀3处于上电状态,压缩机1排出的高温高压气态冷媒,经过油分离器2,再经过四通阀3通往室内换热器4;冷媒在室内释放热量后,经过过冷器及制热电子膨胀阀12节流降压成为低温低压的液体,然后在室外换热器5中蒸发吸热,成为中温低压的气态冷媒,再通过四通阀3后进入气液分离器6中,再从气液分离器6中被吸入压缩机1中压缩,如此完成一个制热循环。
制热化霜时,第一化霜电磁阀9和第二化霜电磁阀10开启,化霜截止阀11关闭,而系统中四通阀3无需换相。附图3示出系统化霜时的冷媒流路示意图,如图3所示,从压缩机1排出的高温高压的气态冷媒分为两路,一部分通过四通阀3进入室内换热器4,给室内提供热源,保持室内温度不下降;另一部分通过热气旁通支路7直接进入室外换热器5,使机组快速化霜。
本空调系统还包括加热设备12,位于气液分离器6的底部,用于在化霜时加热气液分离器6,蒸发液态冷媒。化霜后的冷媒与室内侧出来的冷媒汇总,通过化霜旁通支路8回到气液分离器6,加热设备12开启,在气液分离器6中冷媒被加热,蒸发为气态冷媒,从而通过吸气管回到压缩机1如此循环流动。
可选地,旁通的热气先进入室外换热器5,再通过毛细管,避免了毛细管节流造成的能量损失。
本公开的空调系统在常规热泵系统的基础上,增加两条旁通管路。首先,在油分离器2出管处增加一条热气旁通支路7,连接到四通阀3与室外换热器5之间,用于将压机排出的热气旁通到室外换热器5进行化霜,在此支路上设置有第一化霜电磁阀9;其次,在室外换热器5与制热电子膨胀阀之间设置一条化霜旁通支路8,用于将化 霜后冷媒送回至气液分离器6,在此支路上设置有第二化霜电磁阀10;同时,在四通阀3与室外换热器5之间的主管路上增加化霜截止阀11。
由于采用了热气旁通和气液分离器6加热技术,化霜时可直接将排气出来的高温高压冷媒同时通往室外换热器5化霜和室内换热器4制热,而冷凝后的冷媒直接进入气液分离器6,再从气液分离器6进入加热罐(作为加热设备12的具体实现形式,通过图1至图4所示的电加热部件2实现加热),在加热罐内加热蒸发,可维持制热能力不衰减,同时实现了良好的化霜效果。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未发明的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围由权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (7)

  1. 一种空调系统,包括:依次相连的压缩机(1)、油分离器(2)、四通阀(3)、室内换热器(4)、室外换热器(5)和气液分离器(6);
    热气旁通支路(7),一端与所述油分离器(2)的出口连接,另一端与所述室外换热器(5)的入口连接,用于在化霜时将所述油分离器(2)排出的部分冷媒通入所述室外换热器(5)中,进行化霜;和
    化霜旁通支路(8),一端与所述室外换热器(5)的出口连接,另一端与所述气液分离器(6)的入口连接,用于在化霜时将所述室外换热器(5)流出的冷媒通入所述气液分离器(6)中,进而进入所述压缩机(1)中。
  2. 根据权利要求1所述的空调系统,其中,所述四通阀(3)在化霜时处于上电状态,用于在化霜时将所述油分离器(2)排出的部分冷媒通入所述室内换热器(4)中,进行制热。
  3. 根据权利要求2所述的空调系统,其中,所述化霜旁通支路(8)与所述室外换热器(5)的出口连接的一端还与所述室内换热器(4)的出口连接,用于在化霜时将所述室内换热器(4)流出的冷媒通入所述气液分离器(6)中,进而进入所述压缩机(1)中。
  4. 根据权利要求1所述的空调系统,其中,所述空调系统还包括:
    第一化霜电磁阀(9),位于所述热气旁通支路(7)上,用于控制所述热气旁通支路(7)的通断;其中,所述第一化霜电磁阀(9)在化霜时开启,在制热或制冷时关闭。
  5. 根据权利要求1所述的空调系统,其中,所述空调系统还包括:
    第二化霜电磁阀(10),位于所述化霜旁通支路(8)上,用于控制所述化霜旁通支路(8)的通断;其中,所述第二化霜电磁阀(10)在化霜时开启,在制热或制冷时关闭。
  6. 根据权利要求1所述的空调系统,其中,所述空调系统还包括:
    化霜截止阀(11),位于所述四通阀(3)和所述室外换热器(5)之间的管路上,用于控制所述四通阀(3)和所述室外换热器(5)之间管路的通断;其中,所述化霜截止阀(11)在制热或制冷时开启,在化霜时关闭。
  7. 根据权利要求1所述的空调系统,其中,所述空调系统还包括:
    加热设备(12),位于所述气液分离器(6)的底部,用于在化霜时加热所述气液分离器(6),蒸发液态冷媒。
PCT/CN2020/139037 2019-10-23 2020-12-24 连续制热的空调系统 WO2021169542A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201911013492.7A CN110645745A (zh) 2019-10-23 2019-10-23 可连续制热的空调及其控制方法
CN202010120876.5A CN111102770A (zh) 2019-10-23 2020-02-26 连续制热的空调系统
CN202010120876.5 2020-02-26

Publications (1)

Publication Number Publication Date
WO2021169542A1 true WO2021169542A1 (zh) 2021-09-02

Family

ID=69013336

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2020/139031 WO2021169541A1 (zh) 2019-10-23 2020-12-24 空调系统及其控制方法
PCT/CN2020/138810 WO2021169539A1 (zh) 2019-10-23 2020-12-24 循环系统及其控制方法和控制装置、空调
PCT/CN2020/139037 WO2021169542A1 (zh) 2019-10-23 2020-12-24 连续制热的空调系统

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/139031 WO2021169541A1 (zh) 2019-10-23 2020-12-24 空调系统及其控制方法
PCT/CN2020/138810 WO2021169539A1 (zh) 2019-10-23 2020-12-24 循环系统及其控制方法和控制装置、空调

Country Status (2)

Country Link
CN (14) CN110645745A (zh)
WO (3) WO2021169541A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110645746B (zh) * 2019-10-23 2024-03-19 珠海格力电器股份有限公司 一种连续制热控制系统、方法及空调设备
CN110645745A (zh) * 2019-10-23 2020-01-03 珠海格力电器股份有限公司 可连续制热的空调及其控制方法
CN110836417A (zh) * 2019-11-18 2020-02-25 珠海格力电器股份有限公司 空调及空调控制方法
CN111306855B (zh) * 2020-02-26 2021-01-08 珠海格力电器股份有限公司 提升稳定性的冷媒加热控制方法、装置及空调设备
CN111306852A (zh) * 2020-02-26 2020-06-19 珠海格力电器股份有限公司 一种防止换热器结霜的空调系统及其控制方法
CN111412709A (zh) * 2020-03-02 2020-07-14 珠海格力电器股份有限公司 空调器
CN111692705B (zh) * 2020-06-08 2021-06-18 广东美的制冷设备有限公司 控制方法、控制装置、空调系统和计算机可读存储介质
CN111981653A (zh) * 2020-08-18 2020-11-24 海信(山东)空调有限公司 空调机除霜控制方法
CN113124512A (zh) * 2021-05-06 2021-07-16 珠海格力电器股份有限公司 空调机组及其控制方法
CN113175707A (zh) * 2021-05-26 2021-07-27 珠海格力电器股份有限公司 热回收空调系统及其控制方法
CN114353369A (zh) * 2021-12-20 2022-04-15 青岛海尔空调电子有限公司 热泵系统
CN114719400A (zh) * 2022-04-18 2022-07-08 青岛海尔空调电子有限公司 空调器控制方法、系统、装置、介质及空调器
CN114719401A (zh) * 2022-04-18 2022-07-08 青岛海尔空调电子有限公司 空调器控制方法、系统、装置、介质及空调器
CN114992780A (zh) * 2022-05-18 2022-09-02 珠海格力电器股份有限公司 空调系统及其控制方法
CN115289604B (zh) * 2022-08-12 2024-07-23 珠海格力电器股份有限公司 制热过负荷保护方法和装置、空调器
CN115962529B (zh) * 2023-02-20 2024-07-23 广东美的制冷设备有限公司 空调系统、空调系统的喷焓控制方法和可读存储介质
CN116202246A (zh) * 2023-03-01 2023-06-02 深圳市英维克科技股份有限公司 一种管路系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032412A1 (ja) * 2008-09-17 2010-03-25 ダイキン工業株式会社 空気調和装置
EP2341299A2 (en) * 2003-01-13 2011-07-06 LG Electronics Inc. Multi-type air conditioner with defrosting device
WO2015059792A1 (ja) * 2013-10-24 2015-04-30 三菱電機株式会社 空気調和装置
WO2015129080A1 (ja) * 2014-02-27 2015-09-03 三菱電機株式会社 熱源側ユニット及び冷凍サイクル装置
CN109269017A (zh) * 2018-09-03 2019-01-25 南京天加环境科技有限公司 一种不停机除霜的多联机单模块系统
KR20190055961A (ko) * 2017-11-16 2019-05-24 엘지전자 주식회사 공기조화기 및 그 제어방법
CN209042832U (zh) * 2018-09-10 2019-06-28 邯郸市飞翔新能源科技股份有限公司 一种利用热回收的空气能热泵化霜系统
CN111102771A (zh) * 2019-10-23 2020-05-05 珠海格力电器股份有限公司 空调系统及其控制方法
CN210951663U (zh) * 2019-10-23 2020-07-07 青岛海尔空调电子有限公司 空调系统

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54137759A (en) * 1978-04-18 1979-10-25 Mitsubishi Electric Corp Multi-stage compression refrigerating machine
JPS5885043A (ja) * 1981-11-16 1983-05-21 Matsushita Electric Ind Co Ltd 蓄冷熱式空気調和機の運転制御装置
NL9001429A (nl) * 1990-06-21 1992-01-16 S S P Lichtenvoorde B V Werkwijzen en inrichting voor het bereiden van ijs.
JPH0534027A (ja) * 1991-07-25 1993-02-09 Nippondenso Co Ltd 冷凍機
CA2070707C (en) * 1992-06-08 2005-11-29 Brian George Dick Heating and cooling system for a building
JP4441965B2 (ja) * 1999-06-11 2010-03-31 ダイキン工業株式会社 空気調和装置
JP4569041B2 (ja) * 2000-07-06 2010-10-27 株式会社デンソー 車両用冷凍サイクル装置
JP2002106998A (ja) * 2000-09-28 2002-04-10 Hitachi Ltd 蓄熱式ヒートポンプ空気調和機
JP4179602B2 (ja) * 2003-03-19 2008-11-12 日立アプライアンス株式会社 蓄熱式空気調和機
CN100494832C (zh) * 2006-09-13 2009-06-03 东南大学 燃气机驱动热泵除霜装置
JP5259944B2 (ja) * 2006-10-11 2013-08-07 三菱重工業株式会社 空気調和装置
JP2008196798A (ja) * 2007-02-14 2008-08-28 Matsushita Electric Ind Co Ltd 空気調和機
JP4996974B2 (ja) * 2007-05-22 2012-08-08 三洋電機株式会社 冷凍装置、空気調和装置及びこれらの制御方法
CA2597372A1 (en) * 2007-08-15 2009-02-15 Purdue Research Foundation Heat pump system with multi-stage compression
CN201126288Y (zh) * 2007-09-13 2008-10-01 海尔集团公司 一种除霜时不间断制热的空调系统
CN202041020U (zh) * 2010-12-01 2011-11-16 重庆大学 户式空气源热泵-地板辐射多功能系统
JP2012237499A (ja) * 2011-05-11 2012-12-06 Denso Corp 蓄熱除霜装置
CN202101473U (zh) * 2011-05-30 2012-01-04 太原市永有制冷设备有限公司 氟利昂满液式制冷系统自动回油系统
CN102538273B (zh) * 2012-02-10 2013-11-06 海信(山东)空调有限公司 补气增焓空调系统及控制方法和空调器
JP2015048988A (ja) * 2013-09-02 2015-03-16 パナソニック株式会社 アキュムレータ及び冷凍装置
CN104515210B (zh) * 2013-09-30 2017-08-29 珠海格力电器股份有限公司 空调系统
JP6017058B2 (ja) * 2013-10-24 2016-10-26 三菱電機株式会社 空気調和装置
CN203907772U (zh) * 2014-04-22 2014-10-29 珠海格力电器股份有限公司 带除霜功能的空调系统
JP6187514B2 (ja) * 2015-03-20 2017-08-30 ダイキン工業株式会社 冷凍装置
KR101794413B1 (ko) * 2015-09-30 2017-11-06 엘지전자 주식회사 공기 조화기 및 그 제어방법
CN105485771B (zh) * 2016-01-04 2018-12-07 广东美的暖通设备有限公司 空调系统及其冷媒回收控制方法和装置
CN105509364B (zh) * 2016-02-02 2018-09-07 珠海格力电器股份有限公司 空调系统及喷气过热度调节方法
CN105605841A (zh) * 2016-02-02 2016-05-25 广东美的制冷设备有限公司 空调系统及空调系统的化霜控制方法
CN106382777A (zh) * 2016-08-29 2017-02-08 珠海格力电器股份有限公司 一种空调系统及过冷器回流冷媒的回流控制方法
JP6888280B2 (ja) * 2016-11-18 2021-06-16 ダイキン工業株式会社 冷凍装置
CN106766293B (zh) * 2016-12-02 2019-11-19 珠海格力电器股份有限公司 一种防止冷媒回流的补气增焓空调系统及其控制方法
CN106885405B (zh) * 2017-04-24 2019-09-10 深圳创维空调科技有限公司 一种空调器系统及其除霜方法
CN107144036B (zh) * 2017-05-19 2020-06-12 青岛海信日立空调系统有限公司 补气增焓的制冷剂循环系统、空调器及空调器控制方法
CN107560217A (zh) * 2017-09-07 2018-01-09 珠海格力电器股份有限公司 热泵系统及其控制方法
CN107631513A (zh) * 2017-09-20 2018-01-26 珠海格力电器股份有限公司 热泵系统及其控制方法
CN108240715B (zh) * 2018-03-19 2023-12-29 吉林大学 一种高效补气式热泵空调系统
CN109442788B (zh) * 2018-10-08 2021-02-23 珠海格力电器股份有限公司 空调的化霜方法和空调
CN109386909B (zh) * 2018-10-22 2020-10-16 广东美的暖通设备有限公司 室外机、回油控制方法及空调器
CN109798701B (zh) * 2019-03-21 2023-09-12 珠海格力电器股份有限公司 用于连续制热的空调控制系统、空调控制方法及空调
CN110173941A (zh) * 2019-06-21 2019-08-27 珠海格力电器股份有限公司 空调系统
CN210801718U (zh) * 2019-10-23 2020-06-19 珠海格力电器股份有限公司 可连续制热的空调
CN110645746B (zh) * 2019-10-23 2024-03-19 珠海格力电器股份有限公司 一种连续制热控制系统、方法及空调设备
CN110836417A (zh) * 2019-11-18 2020-02-25 珠海格力电器股份有限公司 空调及空调控制方法
CN111306853B (zh) * 2020-02-26 2021-03-23 珠海格力电器股份有限公司 一种实现连续制热的空调化霜方法及空调化霜系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2341299A2 (en) * 2003-01-13 2011-07-06 LG Electronics Inc. Multi-type air conditioner with defrosting device
WO2010032412A1 (ja) * 2008-09-17 2010-03-25 ダイキン工業株式会社 空気調和装置
WO2015059792A1 (ja) * 2013-10-24 2015-04-30 三菱電機株式会社 空気調和装置
WO2015129080A1 (ja) * 2014-02-27 2015-09-03 三菱電機株式会社 熱源側ユニット及び冷凍サイクル装置
KR20190055961A (ko) * 2017-11-16 2019-05-24 엘지전자 주식회사 공기조화기 및 그 제어방법
CN109269017A (zh) * 2018-09-03 2019-01-25 南京天加环境科技有限公司 一种不停机除霜的多联机单模块系统
CN209042832U (zh) * 2018-09-10 2019-06-28 邯郸市飞翔新能源科技股份有限公司 一种利用热回收的空气能热泵化霜系统
CN111102771A (zh) * 2019-10-23 2020-05-05 珠海格力电器股份有限公司 空调系统及其控制方法
CN111102770A (zh) * 2019-10-23 2020-05-05 珠海格力电器股份有限公司 连续制热的空调系统
CN210951663U (zh) * 2019-10-23 2020-07-07 青岛海尔空调电子有限公司 空调系统

Also Published As

Publication number Publication date
CN211739590U (zh) 2020-10-23
CN111102771A (zh) 2020-05-05
WO2021169541A1 (zh) 2021-09-02
CN111102773A (zh) 2020-05-05
CN111288694A (zh) 2020-06-16
CN211739591U (zh) 2020-10-23
CN111121353A (zh) 2020-05-08
CN211739592U (zh) 2020-10-23
CN111102772B (zh) 2024-03-08
CN111102774A (zh) 2020-05-05
CN111102772A (zh) 2020-05-05
CN111102774B (zh) 2024-03-08
CN111102770A (zh) 2020-05-05
CN211739588U (zh) 2020-10-23
CN110645745A (zh) 2020-01-03
WO2021169539A1 (zh) 2021-09-02
CN211739589U (zh) 2020-10-23
CN211876449U (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2021169542A1 (zh) 连续制热的空调系统
JP7175985B2 (ja) 空調機システム
CN104061705B (zh) 双级压缩空调系统及其控制方法
WO2015161743A1 (zh) 带除霜功能的空调系统
WO2019091241A1 (zh) 空调制冷循环系统及空调器
CN109945330B (zh) 能连续制热的制冷系统及化霜控制方法
CN107110546B (zh) 空气调节装置
KR101720495B1 (ko) 공기조화기
CN106225326B (zh) 热泵系统、控制方法及空调器
WO2019029233A1 (zh) 空调器系统及具有其的空调器
WO2019091240A1 (zh) 空调制热循环系统及空调器
WO2021077915A1 (zh) 连续制热控制系统、方法及空调设备
CN203964436U (zh) 双级压缩空调系统
CN105485766A (zh) 空调系统
CN104515319A (zh) 空调系统
WO2021208584A1 (zh) 高效制热的风冷热泵空调系统
US20230101537A1 (en) Heat pump
JP6982692B2 (ja) 空調機システム
CN109974327B (zh) 一种热气旁通联合相变蓄热不停机融霜的空气源热泵系统
CN108731295B (zh) 一种热回收燃气空调系统
CN203550269U (zh) 空调系统
JP2021508809A (ja) 空調機システム
CN205425229U (zh) 空调系统
CN206846873U (zh) 一种制热机组
CN111578450A (zh) 一种空调系统及其除霜方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921033

Country of ref document: EP

Kind code of ref document: A1