WO2021168949A1 - 一种显示面板及负性光阻材料 - Google Patents

一种显示面板及负性光阻材料 Download PDF

Info

Publication number
WO2021168949A1
WO2021168949A1 PCT/CN2020/080666 CN2020080666W WO2021168949A1 WO 2021168949 A1 WO2021168949 A1 WO 2021168949A1 CN 2020080666 W CN2020080666 W CN 2020080666W WO 2021168949 A1 WO2021168949 A1 WO 2021168949A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative photoresist
photoresist material
display panel
vinyl
cage
Prior art date
Application number
PCT/CN2020/080666
Other languages
English (en)
French (fr)
Inventor
刘雪
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US16/757,404 priority Critical patent/US20210263415A1/en
Publication of WO2021168949A1 publication Critical patent/WO2021168949A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials

Definitions

  • This application relates to the field of display technology, in particular to a display panel and a negative photoresist material.
  • the color filter substrate (CF Substrate) in the Thin Film Transistor-Liquid Crystal Display (TFT-LCD) composition is composed of multiple channels such as BM/R/G/B/PS/ITO.
  • Process composition in the process of preparing the CF substrate, the traditional technology is to use the photolithography process to complete the preparation of each process.
  • the production method is as follows: first use negative photoresist for coating and film formation, and then go through the photomask for the exposure process. The exposed part is cured and does not react with the developer, and is retained after the development process; finally, the post-baking process is used to obtain the final pattern.
  • the main component of negative photoresist polymers is acrylate polymer, in which the main chain is acrylic acid skeleton, which lacks rigid structure and has slightly poor thermal performance, which causes process risks, such as outgassing of small molecules after repeated baking.
  • baking sublimates it is easy to contaminate the baking machine, increase the number of machine maintenance, and occupy a large amount of production capacity; it will also affect the film-forming characteristics of the subsequent process.
  • TFT Substrate Thin Film Transistor Substrate
  • multiple high-temperature processes such as sealant curing and heating deflection will be carried out.
  • the thermal performance of the photoresist will also affect the product characteristics.
  • the photoresist material with poor thermal performance during the box-forming stage has the risk of outgassing and overflow when undergoing a high-temperature process, which will cause bubbles in the product. Therefore, it is necessary to improve the thermal performance of negative photoresist materials.
  • the embodiments of the present application provide a display panel and a negative photoresist material, aiming to solve the problem of poor thermal performance of the negative photoresist, easy formation of baked sublimates, outgassing of small molecules, and influence on product characteristics.
  • the present application provides a display panel, wherein the photoresist layer of the display panel includes a negative photoresist material, and the negative photoresist material includes an acrylate polymer with cage polysilsesquioxane, and cage polysilsesquioxane
  • the functional groups connected to the Si atoms on the eight top corners of the cage structure of the oxane are vinyl groups, and the vinyl groups are connected to the backbone of the acrylate polymer.
  • the cage polysilsesquioxane is obtained by hydrolytic condensation of vinyl alkoxysilane under the action of an acid catalyst.
  • the vinyl alkoxy silane is vinyl trimethoxy silane or vinyl trichloro silane.
  • the vinyl group in the cage polysilsesquioxane is connected to the acrylate polymer backbone through polymerization reaction.
  • the polymerization reaction is free radical polymerization.
  • the polymerization reaction is emulsion polymerization.
  • the acrylate polymer is one or more combinations of methacrylate, ethacrylate, epoxy acrylate, and pure acrylate.
  • the present application also provides a display panel.
  • the photoresist layer of the display panel includes a negative photoresist material, and the negative photoresist material includes an acrylate polymer with cage polysilsesquioxane.
  • the functional groups connected to the Si atoms on the eight top corners of the cage structure of the cage polysilsesquioxane are vinyl groups.
  • the present application also provides a negative photoresist material, including an acrylate polymer with cage polysilsesquioxane.
  • the functional groups connected to the Si atoms on the eight top corners of the cage polysilsesquioxane structure are vinyl groups.
  • the vinyl group in the cage polysilsesquioxane is connected to the acrylate polymer backbone.
  • the cage polysilsesquioxane is obtained by hydrolytic condensation of vinyl alkoxysilane under the action of an acid catalyst.
  • the vinyl alkoxy silane is vinyl trimethoxy silane
  • the vinyl alkoxy silane is vinyl trichlorosilane.
  • the vinyl group in the cage polysilsesquioxane is connected to the acrylate polymer backbone through polymerization reaction.
  • the polymerization reaction is free radical polymerization
  • the polymerization reaction is emulsion polymerization.
  • the acrylate polymer is one or more combinations of methacrylate, ethacrylate, epoxy acrylate, and pure acrylate.
  • An embodiment of the present application provides a display panel.
  • the negative photoresist material of the photoresist layer of the display panel includes an acrylate polymer with cage polysilsesquioxane.
  • the thermal performance of the negative photoresist material of the photoresist layer will affect the product characteristics of the display panel; and the parameters that affect the thermal performance of the negative photoresist material mainly include heat resistance and thermal stability.
  • the idea of this application is: adding a cage polysilsesquioxane structure to the acrylate polymer in the negative photoresist material.
  • the cage skeleton has strong rigidity and a large molecular weight.
  • the rigid structure of this polymer chain It is beneficial to increase the heat resistance of the negative photoresist material; and this larger polymer molecular weight can improve the thermal stability of the negative photoresist material. As a result, the risk caused by poor thermal performance in the manufacturing process of the display panel can be reduced, and the product characteristics of the display panel can be prevented from being affected due to bubbles in the product.
  • the eight top corners of the cage structure of the cage silsesquioxane are vinyl groups, and the vinyl groups can react with the acrylate backbone so that the cage polysilsesquioxane is cross-linked to the acrylate On the polymer, a modified hybrid polymer is obtained. Since the crosslinked vinyl groups restrict the movement of the molecular chain, the heat resistance and thermal stability of the negative photoresist material are further improved, thereby improving the thermal performance of the negative photoresist material.
  • the embodiment of the application provides a negative photoresist polymer.
  • the negative photoresist polymer is an acrylate polymer with cage polysilsesquioxane. Because of the addition of the cage polysilsesquioxane structure , Its cage-shaped skeleton has strong rigidity and large molecular weight.
  • the rigid structure of the polymer chain is beneficial to increase the heat resistance of the negative photoresist material, and the large polymer molecular weight can increase the negative light resistance.
  • the resistance material is thermally stable.
  • FIG. 1 is a schematic flowchart of a method for preparing a photoresist layer of a display panel according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a method for preparing a negative photoresist material provided by an embodiment of the present application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of the features. In the description of the present application, “multiple” means two or more than two, unless otherwise specifically defined.
  • the embodiments of the present application provide a display panel and a negative photoresist material, which will be described in detail below.
  • the main parameters that affect the thermal performance of photoresist polymers are heat resistance and thermal stability.
  • the heat resistance can be improved by increasing the rigid structure of the polymer chain, such as reducing the single bond structure in the polymer chain, introducing conjugated double bonds, triple bonds and cyclic structures; improving the crystalline properties of the polymer can also improve the resistance of the polymer.
  • Thermal properties such as the melting temperature of isotactic polystyrene (240°C) is much higher than the glass transition temperature (80°C) of atactic polystyrene; in addition, the chemical bonds between polymer bonds after crosslinking reaction It can hinder chain movement and improve heat resistance.
  • the thermal stability of the material it is mainly related to the bond energy of the chemical bond that constitutes the polymer.
  • increasing the molecular weight of the polymer and increasing the bond energy of the chemical bond make the material more stable.
  • introducing a larger proportion of cyclic structures, synthesizing trapezoidal and spiral structure polymers can all improve the thermal stability of the polymer.
  • Cage polysilsesquioxane is a cage structure. It is an inorganic inner core composed of Si-O alternately connected silicon-oxygen skeletons and different functional groups R groups connected by Si atoms on its eight top corners. constitute.
  • the group R can be a reactive or inert group.
  • POSS is often used for polymer modification to form organic-inorganic hybrid polymers, which can effectively improve the thermal properties of polymers. Therefore, in the examples of this application, octavinyl-POSS modified acrylate polymer is selected to improve the thermal performance of the negative photoresist material.
  • an embodiment of the present application provides a display panel.
  • the photoresist layer of the display panel includes a negative photoresist material, and the negative photoresist material includes an acrylate polymer with cage polysilsesquioxane.
  • the functional groups connected to the Si atoms on the eight top corners of the cage structure of the cage polysilsesquioxane are vinyl groups.
  • the display panel of the embodiment of the present application may also include any other necessary structures as required, such as a substrate. , Liquid crystal materials, TFT substrates, etc., which are not specifically limited here.
  • An embodiment of the present application provides a display panel.
  • the negative photoresist material of the photoresist layer of the display panel includes an acrylate polymer with cage polysilsesquioxane.
  • the thermal performance of the negative photoresist material of the photoresist layer will affect the product characteristics of the display panel; and the parameters that affect the thermal performance of the negative photoresist material mainly include heat resistance and thermal stability.
  • the idea of this application is: adding a cage polysilsesquioxane structure to the acrylate polymer in the negative photoresist material.
  • the cage skeleton has strong rigidity and a large molecular weight.
  • the rigid structure of this polymer chain It is beneficial to increase the heat resistance of the negative photoresist material; and this larger polymer molecular weight can improve the thermal stability of the negative photoresist material. As a result, it is possible to reduce the outgassing of small molecules caused by poor thermal performance during the manufacturing process of the display panel, or form baking sublimates, which will contaminate the baking machine; increase machine maintenance times and increase production capacity consumption; avoid impact The risk of film-forming characteristics in subsequent processes. And to prevent the product characteristics of the display panel from being affected due to bubbles in the product.
  • the eight corners of the cage structure of the cage silsesquioxane are vinyl groups, and the vinyl groups can react with the acrylate backbone to cross-link the cage polysilsesquioxane to the acrylate polymer. Hybrid polymer after sex. Since the crosslinked vinyl groups restrict the movement of the molecular chain, the heat resistance and thermal stability of the negative photoresist material are further improved, thereby improving the thermal performance of the negative photoresist material.
  • the present application also provides a method for manufacturing a display panel.
  • Methods include:
  • the functional groups connected to the Si atoms on the eight top corners of the cage structure of the cage polysilsesquioxane are vinyl groups
  • the present application also provides a method for preparing a photoresist layer of a display panel.
  • FIG. 1 is a flowchart of a method for preparing a photoresist layer of a display panel in this application.
  • the method includes:
  • the functional groups connected to the Si atoms on the eight top corners of the cage structure of the cage polysilsesquioxane are vinyl groups.
  • An embodiment of the present application provides a method for preparing a display panel, which uses an acrylate polymer with cage polysilsesquioxane as a photoresist layer.
  • the display panel produced by this method has a simple manufacturing process, and can avoid the phenomenon of small molecules degassing after repeated baking, or the formation of baking sublimation, which will contaminate the baking machine; reduce the frequency of machine maintenance and reduce consumption Production capacity; avoid affecting the film-forming characteristics in the subsequent process. It provides a new idea for the preparation method of the display panel.
  • a negative photoresist material in another specific embodiment of the present application, includes an acrylate polymer with cage polysilsesquioxane.
  • the functional groups connected to the Si atoms on the eight top corners of the cage polysilsesquioxane structure are vinyl groups.
  • the vinyl group in the cage polysilsesquioxane is connected to the acrylate polymer backbone.
  • the negative photoresist material in the embodiment of the present application can also include any other materials as required.
  • Essential components, such as solvents, photosensitizers, etc., are not specifically limited here.
  • the embodiment of the application provides a negative photoresist polymer.
  • the negative photoresist polymer is an acrylate polymer with cage polysilsesquioxane. Because of the addition of the cage polysilsesquioxane structure , Its cage-shaped skeleton has strong rigidity and large molecular weight.
  • the rigid structure of the polymer chain is beneficial to increase the heat resistance of the negative photoresist material, and the large polymer molecular weight can increase the negative light resistance.
  • the resistance material is thermally stable. It provides a new idea for the preparation of negative photoresist polymers with improved thermal stability.
  • the embodiments of the present application also provide a method for preparing a negative photoresist material.
  • Fig. 2 is a flow chart of the preparation of a negative photoresist material in this application.
  • the method includes:
  • the modified negative photoresist material is proved its structure by Fourier Transform Infrared Absorption Spectrometer (FTIR), Proton Nuclear Magnetic Resonance Spectroscopy, Flight Mass Spectrometry, and Gel Permeation Chromatography (GPC) analysis. Reanalysis and differential scanning calorimetry (DSC) analysis and evaluation of thermal performance.
  • FTIR Fourier Transform Infrared Absorption Spectrometer
  • GPS Gel Permeation Chromatography
  • the cage polysilsesquioxane is prepared by hydrolysis and condensation of vinyl alkoxysilane under the action of an acid catalyst.
  • the vinyl alkoxy silane may be vinyl trimethoxy silane or vinyl trichloro silane.
  • the polymerization reaction is free radical polymerization or emulsion polymerization.
  • the acrylate polymer is one or more combinations of methacrylate, ethacrylate, epoxy acrylate, and pure acrylate, and can also be polymers commonly used in other photoresist materials.
  • the method for preparing a negative photoresist polymer provided in the embodiments of the present application through this method, the cage polysilsesquioxane is modified to the acrylate polymer, and a new type of negative photoresist polymer can be prepared. Therefore, it solves the problem of poor thermal performance of negative photoresistance, easy formation of baking sublimation, and outgassing of small molecules, which affects the product characteristics of the display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Silicon Polymers (AREA)

Abstract

本申请实施例公开了一种显示面板及负性光阻材料,本发明实施例中的显示面板包括光阻层,所述光阻层包括负性光阻材料,所述负性光阻材料包括具备笼型聚倍半硅氧烷的丙烯酸酯聚合物,利用具备笼型聚倍半硅氧烷的丙烯酸酯聚合物来提高负性光阻材料热性能。

Description

一种显示面板及负性光阻材料
本申请要求于2020年02月24日提交中国专利局、申请号为202010113025.8、发明名称为“一种显示面板及负性光阻材料”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,具体涉及一种显示面板及负性光阻材料。
背景技术
薄膜晶体管液晶显示器(Thin Film Transistor-Liquid Crystal Display,TFT-LCD)组成中的含彩色滤光片基板(Color Filter Substrate,CF Substrate)是由BM/R/G/B/PS/ITO等多道制程构成,在制备CF基板的过程中,传统技术是使用光刻工艺来完成每一道制程的制备。制作方法如下:首先使用负性光阻进行涂布成膜,再经过光罩进行曝光制程,曝光的部分发生固化不与显影液反应,经过显影制程后被保留;最后经过后烘烤制程得到最终图案。
在完成整个CF基板的制作过程中,通常需要进行多次烘烤的动作。目前负性光阻聚合物的主要成分为丙烯酸酯聚合物,其中主链为丙烯酸骨架,欠缺刚性结构,热性能稍差,造成制程风险,比如在多次烘烤后出现小分子脱气(outgas)以及烘烤升华物,易污染烘烤机台,增加机台保养次数,占据大量产能;也会影响后制程的成膜特性。另外,在薄膜晶体管阵列基板(Thin Film Transistor Substrate,TFT Substrate)及CF基板组立后会进行框胶固化以及加热偏贴等多道高温制程,光阻的热性能同样会影响产品特性,如在成盒阶段热性能差的光阻材料在经历高温制程时存在脱气溢出风险,将导致产品出现气泡。因此,提高负性光阻材料的热性能十分必要。
技术问题
本申请实施例提供一种显示面板及负性光阻材料,旨在解决负性光阻热性能差,易形成烘烤升华物,产生小分子脱气,影响产品特性的问题。
技术解决方案
本申请提供一种显示面板,其中,显示面板的光阻层包括负性光阻材料,负性光阻材料包括具备笼型聚倍半硅氧烷的丙烯酸酯聚合物,笼型聚倍半硅氧烷的笼型结构八个顶角上的Si原子连接的官能团为乙烯基团,乙烯基团与丙烯酸酯聚合物骨架相连。
在一些实施例中,笼型聚倍半硅氧烷为乙烯基烷氧基硅烷在酸催化剂的作用下通过水解缩合法得到。
在一些实施例中,乙烯基烷氧基硅烷为乙烯基三甲氧基硅烷或乙烯基三氯硅烷。
在一些实施例中,通过聚合反应,使得笼型聚倍半硅氧烷里的乙烯基团与丙烯酸酯聚合物骨架相连。
在一些实施例中,聚合反应为自由基聚合。
在一些实施例中,聚合反应为乳液聚合。
在一些实施例中,丙烯酸酯聚合物为甲基丙烯酸酯、乙基丙烯酸酯、环氧丙烯酸酯、纯丙烯酸酯的一种或多种组合。
本申请还提供一种显示面板,显示面板的光阻层包括负性光阻材料,负性光阻材料包括具备笼型聚倍半硅氧烷的丙烯酸酯聚合物。
在一些实施例中,笼型聚倍半硅氧烷的笼型结构八个顶角上的Si原子连接的官能团为乙烯基团。
本申请还提供一种负性光阻材料,包括具备笼型聚倍半硅氧烷的丙烯酸酯聚合物。
在一些实施例中,笼型聚倍半硅氧烷结构的八个顶角上的Si原子连接的官能团为乙烯基团。
在一些实施例中,笼型聚倍半硅氧烷里的乙烯基团与丙烯酸酯聚合物骨架相连。
在一些实施例中,笼型聚倍半硅氧烷为乙烯基烷氧基硅烷在酸催化剂的作用下通过水解缩合法得到。
在一些实施例中,乙烯基烷氧基硅烷为乙烯基三甲氧基硅烷
在一些实施例中,乙烯基烷氧基硅烷为乙烯基三氯硅烷。
在一些实施例中,通过聚合反应,使得笼型聚倍半硅氧烷里的乙烯基团与丙烯酸酯聚合物骨架相连。
在一些实施例中,聚合反应为自由基聚合
在一些实施例中,聚合反应为乳液聚合。
在一些实施例中,丙烯酸酯聚合物为甲基丙烯酸酯、乙基丙烯酸酯、环氧丙烯酸酯、纯丙烯酸酯的一种或多种组合。
有益效果
本申请实施例中提供一种显示面板,该显示面板光阻层的负性光阻材料包括具备笼型聚倍半硅氧烷的丙烯酸酯聚合物。对于显示面板而言,光阻层的的负性光阻材料热性能会影响显示面板的产品特性;而影响负性光阻材料热性能的参数主要有耐热性和受热稳定性。本申请构思是:向负性光阻材料中的丙烯酸酯聚合物加入笼型聚倍半硅氧烷结构,笼形骨架具有较强的刚性,且分子量较大,这种高分子链的刚性结构有利于增加负性光阻材料耐热性;而且这种较大的聚合物分子量可以提高负性光阻材料受热稳定性。由此,可以减少显示面板制作过程中的制程中的热性能差造成的风险,以及避免因产品出现气泡,而使显示面板产品特性受到影响。
在一个实施例中,笼型倍半硅氧烷的笼型结构八个顶角为乙烯基团,乙烯基团可以与丙烯酸酯骨架发生反应使得笼型聚倍半硅氧烷交联到丙烯酸酯聚合物上,得到改性后的杂化聚合物。由于交联后的乙烯基团限制分子链运动,因此使负性光阻材料耐热性以及受热稳定性进一步得到提高,从而提高负性光阻材料的热性能。
本申请实施例提供的一种负性光阻聚合物,该负性光阻聚合物为具备笼型聚倍半硅氧烷的丙烯酸酯聚合物,由于加入了笼型聚倍半硅氧烷结构,其笼形骨架具有较强的刚性,且分子量较大,这种高分子链的刚性结构有利于增加负性光阻材料耐热性,而且这种较大的聚合物分子量可以提高负性光阻材料受热稳定性。
附图说明
图1是本申请实施例提供一种显示面板光阻层的制备方法的流程示意图;
图2是本申请实施例提供一种负性光阻材料的制备方法的流程示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本申请实施例提供一种显示面板及负性光阻材料,以下分别进行详细说明。
影响光阻聚合物热性能的参数主要有耐热性和受热稳定性。其中耐热性能可以通过增加高分子链的刚性结构,如减少聚合物链中单键结构,引入共轭双键,三键以及环状结构来提高;提高聚合物结晶性能也能改善聚合物耐热性,如等规立构聚苯乙烯的融熔温度(240℃)远高于无规立构聚苯乙烯的玻璃化转变温度(80℃);另外进行交联反应后聚合物键间化学键可以阻碍链运动,也可以提高耐热性。关于材料的受热稳定性主要和组成高分子化学键的键能有关,通常提高聚合物分子量,增加化学键键能,材料越稳定。例如在高分子链中避免弱键,引入较大比例的环状结构,合成梯形,螺形结构聚合物均可提高聚合物的受热稳定性。
笼型聚倍半硅氧烷(POSS)是一种笼型结构,是由Si-O交替连接的硅氧 骨架组成的无机内核以及在其八个顶角上由Si原子连接不同的官能团R基构成。其中基团R可以为反应性或者惰性基团。POSS常用于聚合物改性,形成有机无机杂化聚合物,能够有效地提高聚合物的热性能。因此本申请实施例选用八乙烯基-POSS改性丙烯酸酯聚合物来提高负性光阻材料热性能。
首先,本申请实施例中提供一种显示面板,该显示面板的光阻层包括负性光阻材料,负性光阻材料包括具备笼型聚倍半硅氧烷的丙烯酸酯聚合物。
具体的,笼型聚倍半硅氧烷的笼型结构八个顶角上的Si原子连接的官能团为乙烯基团。
需要说明的是,上述显示面板实施例中仅描述了上述结构,可以理解的是,除了上述结构之外,本申请实施例显示面板中,还可以根据需要包括任何其他的必要结构,例如衬底、液晶材料,TFT基板等,具体此处不作限定。
本申请实施例中提供一种显示面板,该显示面板光阻层的负性光阻材料包括具备笼型聚倍半硅氧烷的丙烯酸酯聚合物。对于显示面板而言,光阻层的的负性光阻材料热性能会影响显示面板的产品特性;而影响负性光阻材料热性能的参数主要有耐热性和受热稳定性。本申请构思是:向负性光阻材料中的丙烯酸酯聚合物加入笼型聚倍半硅氧烷结构,笼形骨架具有较强的刚性,且分子量较大,这种高分子链的刚性结构有利于增加负性光阻材料耐热性;而且这种较大的聚合物分子量可以提高负性光阻材料受热稳定性。由此,可以减少显示面板制作过程中的制程中的热性能差造成的小分子脱气,或形成烘烤升华物,而污染烘烤机台;增加机台保养次数,增加产能消耗;避免影响后续制程中的成膜特性的风险。以及避免因产品出现气泡,而使显示面板产品特性受到影响。
笼型倍半硅氧烷的笼型结构八个顶角为乙烯基团,乙烯基团可以与丙烯酸酯骨架发生反应使得笼型聚倍半硅氧烷交联到丙烯酸酯聚合物上,得到改性后的杂化聚合物。由于交联后的乙烯基团限制分子链运动,因此使负性光阻材料耐热性以及受热稳定性进一步得到提高,从而提高负性光阻材料的热性能。
在上述实施例的基础上,本申请还提供了一种显示面板的制备方法。
方法包括:
(1)在基板上涂布黑色矩阵;
(2)将具有笼型聚倍半硅氧烷的丙烯酸酯聚合物的负性光阻材料涂布于 黑色矩阵上,形成光阻层,
该实施例中,笼型聚倍半硅氧烷的笼型结构八个顶角上的Si原子连接的官能团为乙烯基团;
(3)将所述光阻层进行曝光、显影、烘烤,制得CF基板;
(4)在CF基板上涂框胶使其与TFT基板贴合,在CF基板与TFT基板基板之间注入液晶,制得显示面板。
在上述实施例的基础上,本申请还提供了一种显示面板光阻层的的制备方法。
参阅图1,为本申请中的一种显示面板光阻层的制备方法的流程图,方法包括:
101、将具有笼型聚倍半硅氧烷的丙烯酸酯聚合物的负性光阻材料涂布于衬底表面,形成光阻层;
102、将所述光阻层进行曝光;
103、将所述光阻层进行烘烤。
具体的,笼型聚倍半硅氧烷的笼型结构八个顶角上的Si原子连接的官能团为乙烯基团。
本申请实施例提供的一种显示面板的制备方法,将具备笼型聚倍半硅氧烷的丙烯酸酯聚合物作为光阻层。通过该方法来制作的显示面板,制程简单,而且可以避免多次烘烤后出现小分子脱气现象,或形成烘烤升华物,而污染烘烤机台;减少机台保养次数,减少消耗的产能;避免影响后续制程中的成膜特性。为显示面板的制备方法提供一种新的思路。
在本申请的另一个具体实施例中,提供一种负性光阻材料,该负性光阻材料包括具备笼型聚倍半硅氧烷的丙烯酸酯聚合物。
具体的,笼型聚倍半硅氧烷结构的八个顶角上的Si原子连接的官能团为乙烯基团。
具体的,笼型聚倍半硅氧烷里的乙烯基团与丙烯酸酯聚合物骨架相连。
需要说明的是,上述负性光阻材料实施例中仅描述了上述结构,可以理解的是,除了上述结构之外,本申请实施例负性光阻材料中,还可以根据需要包括任何其他的必要成分,例如溶剂、感光剂等,具体此处不作限定。
本申请实施例提供的一种负性光阻聚合物,该负性光阻聚合物为具备笼型聚倍半硅氧烷的丙烯酸酯聚合物,由于加入了笼型聚倍半硅氧烷结构,其笼形骨架具有较强的刚性,且分子量较大,这种高分子链的刚性结构有利于增加负性光阻材料耐热性,而且这种较大的聚合物分子量可以提高负性光阻材料受热稳定性。为提高热稳定性的负性光阻聚合物的制备提供一种新的思路。
在上述实施例的基础上,本申请实施例中还提供一种负性光阻材料的制备方法。
参阅图2,为本申请中的一种负性光阻材料的制备流程图,方法包括:
201、水解缩合法制备八个顶角为乙烯基团的笼型聚倍半硅氧烷,具体的反应式为:
Figure PCTCN2020080666-appb-000001
202、聚合反应或交联反应制备笼型聚倍半硅氧烷改性的丙烯酸酯类聚合物,从而得到一种含有笼型聚倍半硅氧烷改性的丙烯酸酯聚合物的负性光阻材料。
203、改性负性光阻材料通过傅立叶变换红外吸收光谱仪(Fourier Transform Infrared Spectrometer,FTIR),核磁共振氢谱,飞行质谱,凝胶渗透色谱(Gel Permeation Chromatography,GPC)分析证明其结构,通过热重分析及差示扫描量热法(differential scanning calorimetry,DSC)分析评估热性能。
具体的,笼型聚倍半硅氧烷通过采用乙烯基烷氧基硅烷在酸催化剂的作用下水解缩合法制备而成。
具体的,乙烯基烷氧基硅烷可以为乙烯基三甲氧基硅烷或乙烯基三氯硅烷。
具体的,聚合反应为自由基聚合或乳液聚合。
具体的,丙烯酸酯聚合物为甲基丙烯酸酯、乙基丙烯酸酯、环氧丙烯酸酯、 纯丙烯酸酯的一种或多种组合,也可以为其他光阻材料常用的聚合物。
本申请实施例中提供的一种负性光阻聚合物的制备方法,通过该方法,将笼型聚倍半硅氧烷对丙烯酸酯聚合物进行改性,可以制得一种新型负性光阻,从而解决负性光阻热性能差,易形成烘烤升华物,产生小分子脱气,影响显示面板产品特性的问题。
以上对本申请实施例所提供的一种显示面板及其制备方法、负性光阻材料及其制备方法进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种显示面板,其中,所述显示面板的光阻层包括负性光阻材料,所述负性光阻材料包括具备笼型聚倍半硅氧烷的丙烯酸酯聚合物,所述笼型聚倍半硅氧烷的笼型结构八个顶角上的Si原子连接的官能团为乙烯基团,所述乙烯基团与丙烯酸酯聚合物骨架相连。
  2. 根据权利要求1所述的显示面板,其中,所述笼型聚倍半硅氧烷为乙烯基烷氧基硅烷在酸催化剂的作用下通过水解缩合法得到。
  3. 根据权利要求2所述的显示面板,其中,乙烯基烷氧基硅烷为乙烯基三甲氧基硅烷。
  4. 根据权利要求2所述的显示面板,其中,乙烯基烷氧基硅烷为乙烯基三氯硅烷。
  5. 根据权利要求1所述的显示面板,其中,通过聚合反应,使得所述笼型聚倍半硅氧烷里的乙烯基团与所述丙烯酸酯聚合物骨架相连。
  6. 根据权利要求5所述的显示面板,其中,所述聚合反应为自由基聚合。
  7. 根据权利要求5所述的显示面板,其中,所述聚合反应为乳液聚合。
  8. 根据权利要求5所述的显示面板,其中,所述丙烯酸酯聚合物为甲基丙烯酸酯、乙基丙烯酸酯、环氧丙烯酸酯、纯丙烯酸酯的一种或多种组合。
  9. 一种显示面板,其中,所述显示面板的光阻层包括负性光阻材料,所述负性光阻材料包括具备笼型聚倍半硅氧烷的丙烯酸酯聚合物。
  10. 根据权利要求9所述的显示面板,其中,所述笼型聚倍半硅氧烷的笼型结构八个顶角上的Si原子连接的官能团为乙烯基团。
  11. 一种负性光阻材料,其中,所述负性光阻材料包括具备笼型聚倍半硅氧烷的丙烯酸酯聚合物。
  12. 根据权利要求11所述的负性光阻材料,其中,所述笼型聚倍半硅氧烷结构的八个顶角上的Si原子连接的官能团为乙烯基团。
  13. 根据权利要求12所述的负性光阻材料,其中,所述笼型聚倍半硅氧烷里的乙烯基团与丙烯酸酯聚合物骨架相连。
  14. 根据权利要求13所述的负性光阻材料,其中,所述笼型聚倍半硅氧烷为乙烯基烷氧基硅烷在酸催化剂的作用下通过水解缩合法得到。
  15. 根据权利要求14所述的负性光阻材料,其中,乙烯基烷氧基硅烷为乙烯基三甲氧基硅烷
  16. 根据权利要求14所述的负性光阻材料,其中,乙烯基烷氧基硅烷为乙烯基三氯硅烷。
  17. 根据权利要求13所述的负性光阻材料,其中,通过聚合反应,使得所述笼型聚倍半硅氧烷里的乙烯基团与所述丙烯酸酯聚合物骨架相连。
  18. 根据权利要求17所述的负性光阻材料,其中,所述聚合反应为自由基聚合
  19. 根据权利要求17所述的负性光阻材料,其中,所述聚合反应为乳液聚合。
  20. 根据权利要求17所述的负性光阻材料,其中,所述丙烯酸酯聚合物为甲基丙烯酸酯、乙基丙烯酸酯、环氧丙烯酸酯、纯丙烯酸酯的一种或多种组合。
PCT/CN2020/080666 2020-02-24 2020-03-23 一种显示面板及负性光阻材料 WO2021168949A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/757,404 US20210263415A1 (en) 2020-02-24 2020-03-23 Display panel and negative photoresist material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010113025.8A CN111208709A (zh) 2020-02-24 2020-02-24 一种显示面板及其制备方法、负性光阻材料及其制备方法
CN202010113025.8 2020-02-24

Publications (1)

Publication Number Publication Date
WO2021168949A1 true WO2021168949A1 (zh) 2021-09-02

Family

ID=70789019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080666 WO2021168949A1 (zh) 2020-02-24 2020-03-23 一种显示面板及负性光阻材料

Country Status (2)

Country Link
CN (1) CN111208709A (zh)
WO (1) WO2021168949A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883570A (zh) * 2022-07-07 2022-08-09 中国长江三峡集团有限公司 改性电极体及其制备方法、用途以及锂离子电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113189844A (zh) * 2021-05-27 2021-07-30 广州一新科技有限公司 一种基于笼状聚倍半硅氧烷的负性光刻胶及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103755847A (zh) * 2013-12-31 2014-04-30 京东方科技集团股份有限公司 聚丙烯酸酯分散剂、颜料分散液、彩色光刻胶、彩膜基板和显示装置
JP2015232115A (ja) * 2014-05-14 2015-12-24 学校法人神奈川大学 硬化性組成物、並びにそれを用いた硬化物の製造方法及びその再溶解方法
CN106459415A (zh) * 2014-04-18 2017-02-22 胡网加成股份有限公司 聚硅倍半氧烷共聚物及包括该聚硅倍半氧烷共聚物的感光树脂组合物
CN106981478A (zh) * 2017-04-07 2017-07-25 京东方科技集团股份有限公司 顶栅型薄膜晶体管及其制作方法、阵列基板、显示面板
CN109735144A (zh) * 2018-12-25 2019-05-10 陕西科技大学 一种光固化poss/氟烃基硅氧烷改性聚丙烯酸酯涂料组合物及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101099691B1 (ko) * 2008-04-07 2011-12-28 주식회사 삼양이엠에스 음성 레지스트 조성물
TWI603983B (zh) * 2012-08-10 2017-11-01 Nippon Shokubai Co Ltd Hardening resin composition and its use
CN104076557B (zh) * 2014-06-24 2017-02-15 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103755847A (zh) * 2013-12-31 2014-04-30 京东方科技集团股份有限公司 聚丙烯酸酯分散剂、颜料分散液、彩色光刻胶、彩膜基板和显示装置
CN106459415A (zh) * 2014-04-18 2017-02-22 胡网加成股份有限公司 聚硅倍半氧烷共聚物及包括该聚硅倍半氧烷共聚物的感光树脂组合物
JP2015232115A (ja) * 2014-05-14 2015-12-24 学校法人神奈川大学 硬化性組成物、並びにそれを用いた硬化物の製造方法及びその再溶解方法
CN106981478A (zh) * 2017-04-07 2017-07-25 京东方科技集团股份有限公司 顶栅型薄膜晶体管及其制作方法、阵列基板、显示面板
CN109735144A (zh) * 2018-12-25 2019-05-10 陕西科技大学 一种光固化poss/氟烃基硅氧烷改性聚丙烯酸酯涂料组合物及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883570A (zh) * 2022-07-07 2022-08-09 中国长江三峡集团有限公司 改性电极体及其制备方法、用途以及锂离子电池

Also Published As

Publication number Publication date
CN111208709A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
US20110008730A1 (en) Positive-type radiation-sensitive composition, cured film, interlayer insulating film, method of forming interlayer insulating film, display device, and siloxane polymer for forming interlayer insulating film
WO2021168949A1 (zh) 一种显示面板及负性光阻材料
WO2011142391A1 (ja) 感光性樹脂組成物およびディスプレイ装置
US9670321B2 (en) Curable resin, blue photoresist, color filter, and methods of preparing the same, and color display device
CN105629663B (zh) 感光性树脂组合物
US20110281040A1 (en) Liquid crystal display element, positive type radiation sensitive composition, interlayer insulating film for liquid crystal display element, and formation method thereof
KR101986763B1 (ko) 고내열성, 고해상도의 네거티브형 감광성 수지 조성물 및 이로부터 제조된 경화막
JP5765538B2 (ja) 熱硬化性樹脂組成物及びディスプレイ装置
KR101099691B1 (ko) 음성 레지스트 조성물
JP2017072760A (ja) スペーサー機能を有する遮光膜用の感光性樹脂組成物、遮光膜、液晶表示装置、スペーサー機能を有する遮光膜用の感光性樹脂組成物の製造方法、遮光膜の製造方法、および液晶表示装置の製造方法
CN108139672A (zh) 感光性树脂组合物及由其制备的固化膜
US20160208049A1 (en) Curable resin, spacer composition, filter, methods of preparing the same, and display device
US8414733B2 (en) Photosensitive resin composition for optical waveguide formation, optical waveguide and method for producing optical waveguide
EP2913352B1 (en) Non-photosensitive resin composition
JP2020166254A (ja) 感光性樹脂組成物、感光性樹脂組成物を硬化してなる硬化膜、硬化膜付き基板および硬化膜付き基板の製造方法
TWI778963B (zh) 樹脂組成物及硬化膜
CN108017730B (zh) 一种光刻胶组合物、彩色滤光片及其制备方法
US20210263415A1 (en) Display panel and negative photoresist material
Yao et al. Photo-patternable F-containing acrylic copolymers as passivation materials
TWI595319B (zh) 液晶顯示元件、正型感放射線性組成物、液晶顯示元件用層間絕緣膜及其形成方法
JP2692313B2 (ja) 熱硬化性組成物
JP6318581B2 (ja) カラーフィルター保護膜用の熱硬化性樹脂組成物、及びそれを硬化してなる保護膜を備えるカラーフィルター
JP3579985B2 (ja) 保護膜形成用組成物および保護膜
KR101919481B1 (ko) 어레이 기판, 액정 표시 소자 및 어레이 기판의 제조 방법
TWI830897B (zh) 感光性樹脂組成物、使所述感光性樹脂組成物硬化而成的硬化膜、及具有所述硬化膜的顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921382

Country of ref document: EP

Kind code of ref document: A1