WO2021166797A1 - 電磁ステンレス棒状鋼材 - Google Patents

電磁ステンレス棒状鋼材 Download PDF

Info

Publication number
WO2021166797A1
WO2021166797A1 PCT/JP2021/005231 JP2021005231W WO2021166797A1 WO 2021166797 A1 WO2021166797 A1 WO 2021166797A1 JP 2021005231 W JP2021005231 W JP 2021005231W WO 2021166797 A1 WO2021166797 A1 WO 2021166797A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
content
steel material
fraction
rod
Prior art date
Application number
PCT/JP2021/005231
Other languages
English (en)
French (fr)
Inventor
祥太 山先
光司 高野
Original Assignee
日鉄ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ステンレス株式会社 filed Critical 日鉄ステンレス株式会社
Priority to MX2022010037A priority Critical patent/MX2022010037A/es
Priority to US17/800,846 priority patent/US20230085558A1/en
Priority to KR1020227031723A priority patent/KR102688942B1/ko
Priority to JP2022501852A priority patent/JP7337248B2/ja
Publication of WO2021166797A1 publication Critical patent/WO2021166797A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/007Heat treatment of ferrous alloys containing Co
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Definitions

  • the present invention relates to an electromagnetic stainless rod-shaped steel material, particularly a stainless steel rod-shaped steel material having excellent soft magnetic properties, and an electromagnetic component using the same.
  • solenoid stainless steel products such as solenoid valves have been manufactured by processing, molding, and heat-treating ferritic stainless steel wires and steel wires such as SUS430 and SUS410L.
  • the soft magnetic properties of stainless steel products processed and manufactured from the above-mentioned ferritic stainless steel wire rods cannot sufficiently correspond to high-precision and high-output parts, and have a drawback that their applications are limited.
  • techniques for optimizing alloying elements such as Cr, Si, and Al have been studied to improve soft magnetic properties (for example, Patent Documents 1 to 3), but they are assembled by combining components and processes. There is no invention that focuses on improving the soft magnetic properties of ferritic stainless steel rods by utilizing structure control.
  • Japanese Unexamined Patent Publication No. 6-49606 Japanese Unexamined Patent Publication No. 6-49605 Japanese Unexamined Patent Publication No. 2004-307979 Japanese Unexamined Patent Publication No. 05-329510
  • an object of the present invention is to solve the above problems and to provide a stainless steel rod-shaped steel material having excellent soft magnetic properties and an electromagnetic component using the same.
  • the present invention has been made to solve the above problems, and the gist of the present invention is the following stainless steel rod-shaped steel materials and electromagnetic parts.
  • the chemical composition is mass%. C: 0.001 to 0.030%, Si: 0.01-4.00%, Mn: 0.01-2.00%, Ni: 0.01-4.00%, Cr: 6.0 to 35.0%, Mo: 0.01-5.00%, Cu: 0.01-2.00%, N: 0.001 to 0.050%, Ti: 0-2.00%, Nb: 0 to 2.00%, V: 0-2.0%, B: 0-0.1%, Al: 0 to 7,000%, W: 0-3.0%, Ga: 0-0.05%, Co: 0-2.5%, Sn: 0-2.5%, Sb: 0-2.5%, Ta: 0-2.5%, Ca: 0-0.05%, Mg: 0 to 0.012%, Zr: 0 to 0.012%, REM: 0-0.05%, Pb: 0 to 0.30%, Se: 0 to 0.80%, Te: 0
  • the crystal orientation RD // ⁇ 100> fraction in the rolling direction means the area ratio of the crystal in which the angle difference between the ⁇ 100> orientation and the rolling direction is 25 ° or less.
  • F value 700C + 800N + 20Ni + 10Cu + 10Mn-6.2Cr-9.2Si-9.3Mo-74.4Ti-37.2Al-3.1Nb + 63.2 ...
  • each element symbol in the formula means the content (mass%) of each element in steel.
  • the chemical composition is further increased by mass%.
  • Ta: 0.01-2.5% Contains one or more selected from, The stainless steel rod-shaped steel material according to [1] or [2].
  • the chemical composition is further increased by mass%.
  • the chemical composition is further increased by mass%.
  • Pb 0.0001 to 0.30%
  • Se 0.0001 to 0.80%
  • Te 0.0001 to 0.30%
  • Bi 0.0001 to 0.50%
  • S 0.0001 to 0.50%
  • P 0.0001 to 0.30%
  • a stainless rod-shaped steel material and an electromagnetic component having excellent soft magnetic properties can be obtained.
  • the present inventors conducted various studies in order to obtain stainless steel rod-shaped steel materials and electromagnetic parts having excellent soft magnetic properties. As a result, the following findings (a) to (c) were obtained.
  • the crystal orientation RD // ⁇ 100> fraction in the steel wire rolling direction can be increased.
  • the crystal orientation RD // ⁇ 334> fraction in the steel wire rolling direction between the surface and the depth of 1/4 of the diameter can be reduced.
  • the crystal orientation in the rolling direction (RD) is controlled.
  • the crystal orientation RD // ⁇ 100> fraction (area ratio) in the rolling direction (hereinafter, simply referred to as "RD // ⁇ 100>fraction”) is set to 0.05 or more. This is because when the RD // ⁇ 100> fraction is less than 0.05, the soft magnetic characteristics deteriorate.
  • the RD // ⁇ 100> fraction is more preferably 0.10 or more, further preferably 0.20 or more, and even more preferably 0.40 or more.
  • the RD // ⁇ 100> fraction is calculated using the following procedure. Specifically, the RD // ⁇ 100> fraction exists in the surface layer portion, the central portion, and between the surface layer portion and the central portion in the L cross section (cross section parallel to the longitudinal direction of the steel material) of the rod-shaped steel material. At the 1/4 depth position, one or more visual fields are measured with a 200-fold visual field. Then, the crystal orientation of each crystal grain in the observation field of view is analyzed using FE-SEM / EBSD. The rolling direction is RD, the crystal plane in the RD direction is analyzed, the directional component of ⁇ 100> is displayed only in the portion within the clearance of 25 °, and the RD // ⁇ 100> fraction is measured.
  • the surface layer portion refers to a position having a depth of 1 mm from the surface in the central axis direction. That is, the crystal orientation RD // ⁇ 100> fraction in the rolling direction is the area ratio of crystals in which the angle difference between the ⁇ 100> orientation and the rolling direction is 25 ° or less (surface layer portion, center portion, 1/4 depth). It means the average of the rolling position).
  • the bar-shaped steel material according to the present invention preferably controls the crystal orientation that deteriorates the soft magnetic properties in the rolling direction (RD).
  • the crystal orientation RD // ⁇ 334> fraction in the bar rolling direction at a depth of 1/8 of the diameter from the surface is preferably 0.20 or less.
  • the crystal orientation RD // ⁇ 334> fraction (area ratio) in the rolling direction (hereinafter simply referred to as "RD // ⁇ 334>fraction”) is set to 0.20 or less. This is because when the RD // ⁇ 334> fraction exceeds 0.2, the soft magnetic characteristics deteriorate.
  • the RD // ⁇ 334> fraction is more preferably 0.10 or less, and even more preferably 0.05 or less.
  • the RD // ⁇ 334> fraction is calculated using the following procedure. Specifically, the RD // ⁇ 334> fraction is a 1/8 depth between the surface and the 1/4 depth position of the diameter in the L cross section of the rod-shaped steel material (cross section parallel to the longitudinal direction of the steel material). In the position part, one or more visual fields are measured with a 200-fold visual field. Then, the crystal orientation of each crystal grain in the observation field of view is analyzed using FE-SEM / EBSD. The rolling direction is RD, the crystal plane in the RD direction is analyzed, the directional component of ⁇ 334> is displayed only in the portion within the clearance of 10 °, and the RD // ⁇ 334> fraction is measured.
  • the crystal orientation RD // ⁇ 334> fraction in the rolling direction is the area ratio of the crystal in which the angle difference between the ⁇ 334> orientation and the rolling direction is 10 ° or less (1/8 depth position from the surface to the diameter). Part) means.
  • C 0.001 to 0.030% C increases the strength of the steel material. Therefore, the C content is set to 0.001% or more. However, if C is excessively contained, the soft magnetic properties deteriorate. Therefore, the C content is set to 0.030% or less.
  • the C content is preferably 0.020% or less, more preferably 0.015% or less, and even more preferably 0.010% or less.
  • Si 0.01-4.00% Si is contained as a deoxidizing element to improve high-temperature oxidation characteristics and AC magnetic characteristics. Therefore, the Si content is preferably 0.01% or more, preferably 0.10% or more. However, if Si is contained in an excessive amount, the soft magnetic properties deteriorate. Therefore, the Si content is set to 4.00% or less. The Si content is preferably 3.00% or less, more preferably 1.50% or less.
  • Mn 0.01-2.00% Mn improves the strength and AC magnetic properties of the steel material. Therefore, the Mn content is preferably 0.01% or more, preferably 0.05% or more. However, if Mn is excessively contained, the soft magnetic properties are deteriorated. In addition, corrosion resistance may decrease. Therefore, the Mn content is set to 2.00% or less. The Mn content is preferably 1.00% or less, and more preferably 0.50% or less.
  • Ni 0.01-4.00% Ni improves the toughness of steel materials. Therefore, the Ni content is preferably 0.01% or more, preferably 0.05% or more. However, if Ni is excessively contained, the soft magnetic properties are deteriorated. Therefore, the Ni content is set to 4.00% or less. The Ni content is preferably 3.00% or less, more preferably 1.00% or less, and even more preferably 0.50% or less.
  • the Cr content is set to 6.0% or more.
  • the Cr content is preferably 7.0% or more, and more preferably 10.0% or more. However, if Cr is excessively contained, the soft magnetic properties are deteriorated.
  • the Cr content should be 35.0% or less.
  • the Cr content is preferably 21.0% or less, and more preferably 20.0% or less.
  • Mo 0.01-5.00% Mo improves corrosion resistance and AC magnetic properties. Therefore, the Mo content is set to 0.01% or more. However, if Mo is contained in an excessive amount, the soft magnetic properties are deteriorated. Therefore, the Mo content is set to 5.00% or less.
  • the Mo content is preferably 3.00% or less, more preferably 2.00% or less, and even more preferably 1.50% or less.
  • Cu 0.01-2.00% Cu improves corrosion resistance and AC magnetic properties. Therefore, the Cu content is preferably 0.01% or more, preferably 0.05% or more. However, if Cu is contained in excess, the soft magnetic properties are deteriorated. Therefore, the Cu content is set to 2.00% or less. The Cu content is preferably 1.00% or less, more preferably 0.80% or less, and even more preferably 0.40% or less.
  • N 0.001 to 0.050% N improves the strength of the steel material. Therefore, the N content is preferably 0.001% or more, and preferably 0.002% or more. However, if N is excessively contained, the soft magnetic properties are deteriorated. Therefore, the N content is set to 0.050% or less. The N content is preferably 0.040% or less, more preferably 0.020% or less, and even more preferably 0.010% or less.
  • the rod-shaped steel material according to the present invention contains, if necessary, one or more elements selected from Ti, Nb, V, B, Al, W, Ga, Co, Sn, Sb and Ta in addition to the above elements. You may.
  • Ti 0 to 2.00% Ti has the effect of increasing the strength of the steel material. Further, since Ti forms a carbonitride, it suppresses the formation of Cr carbides and suppresses the formation of a Cr-deficient layer. As a result, it has the effect of preventing intergranular corrosion. That is, since Ti has an effect of improving corrosion resistance, it may be contained if necessary. Further, it is an element that enhances soft magnetic properties by fixing C and N by forming Ti carbonitride. However, if Ti is excessively contained, the soft magnetic properties are deteriorated. In addition, the toughness is reduced by the coarse carbonitride. Therefore, the Ti content is set to 2.00% or less.
  • the Ti content is preferably 1.00% or less, more preferably 0.50% or less, further preferably 0.50% or less, and even more preferably 0.25% or less. On the other hand, in order to obtain the above effect, the Ti content is preferably 0.001% or more.
  • Nb 0 to 2.00%
  • Nb has the effect of increasing the strength of the steel material. Further, since Nb forms a carbonitride, it suppresses the formation of Cr carbides and suppresses the formation of a Cr-deficient layer. As a result, Nb has an effect of preventing intergranular corrosion. That is, since Nb is an element effective for improving corrosion resistance, it may be contained as necessary. Further, it is an element that enhances soft magnetic properties by fixing C and N by forming Nb carbonitride. However, if Nb is excessively contained, the soft magnetic properties are deteriorated. In addition, the toughness is reduced by the coarse carbonitride. Therefore, the Nb content is set to 2.00% or less. The Nb content is preferably 1.00% or less, more preferably 0.80% or less, and even more preferably 0.60% or less. On the other hand, in order to obtain the above effect, the Nb content is preferably 0.001% or more.
  • V 0-2.0% Since V has an effect of improving corrosion resistance, it may be contained if necessary. However, if V is excessively contained, the soft magnetic properties are deteriorated. In addition, the toughness is reduced by the coarse carbonitride. Therefore, the V content is set to 2.0% or less. The V content is preferably 1.0% or less, more preferably 0.5% or less, and even more preferably 0.1% or less. On the other hand, in order to obtain the above effect, the V content is preferably 0.001% or more.
  • B 0-0.1% B has the effect of improving hot workability and corrosion resistance. Therefore, it may be contained as needed. However, if B is contained in an excessive amount, the soft magnetic properties are deteriorated. Therefore, the B content is set to 0.1% or less.
  • the B content is preferably 0.02% or less, more preferably 0.01% or less.
  • the B content is preferably 0.0001% or more.
  • Al 0 to 7,000% Al may be contained if necessary because it has the effect of promoting deoxidation and improving the cleanliness level of inclusions.
  • the addition of Al enhances the AC magnetic properties.
  • the Al content is set to 7,000% or less.
  • the Al content is preferably 3.000% or less, more preferably 0.100% or less, and even more preferably 0.020% or less.
  • the Al content is preferably 0.001% or more.
  • W 0-3.0% Since W has an effect of improving corrosion resistance, it may be contained if necessary. However, if W is excessively contained, the soft magnetic property is deteriorated. In addition, the toughness is reduced by the coarse carbonitride. Therefore, the W content is set to 3.0% or less. The W content is preferably 2.0% or less, more preferably 1.5% or less. On the other hand, in order to obtain the above effect, the W content is preferably 0.05% or more, and more preferably 0.10% or more.
  • Ga 0-0.05% Since Ga has an effect of improving corrosion resistance, it may be contained if necessary. However, if Ga is excessively contained, the hot workability is lowered. Therefore, the Ga content is set to 0.05% or less. On the other hand, in order to obtain the above effect, the Ga content is preferably 0.0004% or more.
  • Co 0-2.50% Since Co has an effect of improving the strength of the steel material, it may be contained if necessary. In addition, the addition of an appropriate amount of Co increases the saturation magnetic flux density, thus enhancing the soft magnetic characteristics. However, if Co is excessively contained, the soft magnetic properties are deteriorated. Therefore, the Co content is set to 2.50% or less.
  • the Co content is preferably 1.00% or less, and more preferably 0.80% or less.
  • the Co content is preferably 0.05% or more, and more preferably 0.10% or more.
  • Sn 0 to 2.50% Sn has an effect of improving soft magnetic properties, corrosion resistance, and machinability, and may be contained as necessary. However, if Sn is contained in an excessive amount, the soft magnetic properties are deteriorated. In addition, the toughness decreases due to the grain boundary segregation of Sn. Therefore, the Sn content is set to 2.50% or less.
  • the Sn content is more preferably 1.00% or less, and further preferably 0.20% or less.
  • the Sn content is preferably 0.01% or more, and more preferably 0.05% or more.
  • Sb 0-2.5% Since Sb has an effect of improving corrosion resistance, it may be contained if necessary. However, if Sb is excessively contained, the soft magnetic properties are deteriorated. Therefore, the Sb content is set to 2.5% or less. The Sb content is more preferably 1.0% or less, and further preferably 0.2% or less. On the other hand, in order to obtain the above effect, the Sb content is preferably 0.01% or more, and more preferably 0.05% or more.
  • Ta 0-2.5% Since Ta has an effect of improving corrosion resistance, it may be contained if necessary. However, if Ta is excessively contained, the soft magnetic properties are deteriorated. Therefore, the Ta content is set to 2.5% or less. The Ta content is preferably 1.5% or less, more preferably 0.9% or less. On the other hand, in order to obtain the above effect, the Ta content is preferably 0.01% or more, more preferably 0.04% or more, and further preferably 0.08% or more.
  • the rod-shaped steel material according to the present invention may contain one or more elements selected from Ca, Mg, Zr, and REM, if necessary.
  • Ca, Mg, Zr, and REM may be contained, if necessary, for deoxidation. However, if each of these elements is contained in excess, the soft magnetic properties deteriorate. Also, the toughness is reduced by the coarse inclusions. Therefore, Ca: 0.05% or less, Mg: 0.012% or less, Zr: 0.012% or less, REM: 0.05% or less.
  • the Ca content is preferably 0.010% or less, more preferably 0.005% or less.
  • the Mg content is preferably 0.010% or less, more preferably 0.005% or less.
  • Zr is preferably 0.010% or less, and more preferably 0.005% or less.
  • the REM is preferably 0.010% or less.
  • the Ca content is more preferably 0.0004% or more, and further preferably 0.001% or more.
  • the Mg content is preferably 0.0004% or more, and more preferably 0.001% or more.
  • the Zr content is more preferably 0.0004% or more, and even more preferably 0.001% or more.
  • the REM content is more preferably 0.0004% or more, and even more preferably 0.001% or more.
  • REM is a general term for 17 elements including 15 elements of lanthanoids and Y and Sc. One or more of these 17 elements can be contained in steel, and the REM content means the total content of these elements.
  • the rod-shaped steel material according to the present invention may contain one or more elements selected from Pb, Se, Te, Bi, S and P, if necessary.
  • Pb 0 to 0.30%
  • Se 0 to 0.80%
  • Te 0 to 0.30%
  • Bi 0 to 0.50%
  • S 0 to 0.50%
  • P 0 to 0.30%
  • Pb, Se, Te, Bi, S and P may be contained if necessary because of machinability.
  • the soft magnetic properties deteriorate. It also reduces toughness.
  • Pb 0.30% or less
  • Se 0.80% or less
  • Te 0.30% or less
  • Bi 0.50% or less
  • S 0.50 or less
  • the Pb content is preferably 0.1% or less, more preferably 0.05% or less.
  • the Se content is preferably 0.1% or less, and more preferably 0.05% or less.
  • the Te content is preferably 0.1% or less, more preferably 0.05% or less.
  • the Bi content is preferably 0.1% or less, and more preferably 0.05% or less.
  • the S content is preferably 0.1% or less, and more preferably 0.05% or less.
  • the P content is preferably 0.1% or less, and more preferably 0.05% or less.
  • Pb 0.0001% or more
  • Se 0.0001% or more
  • Te 0.0001% or more
  • Bi 0.0001% or more
  • S 0.0001% or more
  • the Pb content is more preferably 0.0004% or more, and even more preferably 0.001% or more.
  • the Se content is more preferably 0.0004% or more, and further preferably 0.001% or more.
  • the Te content is more preferably 0.0004% or more, and further preferably 0.001% or more.
  • the Bi content is more preferably 0.0004% or more, and further preferably 0.001% or more.
  • the S content is more preferably 0.0001% or more, and further preferably 0.0002% or more.
  • the P content is more preferably 0.0004% or more, and further preferably 0.001% or more.
  • the F value is calculated by the following formula (a).
  • the F value is an index of whether or not the ferrite single phase is approached during solidification or solid solution heat treatment. If the F value is close to the ferrite single phase, the columnar crystals of the slab increase and RD // ⁇ during the inclined hot rolling described later. 100> Increases fraction and enhances soft magnetic properties. When the F value exceeds 20.0, the RD // ⁇ 100> fraction decreases because it contains austenite and martensite in addition to ferrite. As a result, the soft magnetic properties deteriorate. Therefore, the F value is set to 20.0 or less.
  • the F value is preferably 10.0 or less, preferably 0.0 or less, and more preferably -10.0 or less.
  • the balance is Fe and impurities.
  • impurity is a component mixed by various factors of raw materials such as ore and scrap, and various factors in the manufacturing process when the steel material is industrially manufactured, and is allowed as long as it does not adversely affect the present invention. Means something.
  • impurities examples include O, Zn, H and the like. It is preferable that impurities are reduced, but when they are contained, O, Zn and H are preferably 0.01% or less.
  • stainless steel rod-shaped steel material steel having the above chemical composition is melted, a slab having a predetermined diameter is cast, and then hot or warm inclined rolling and wire rod rolling are performed. Then, if necessary, solution treatment, pickling, secondary processing, and heat treatment are performed as appropriate.
  • the heated slab is preferably hot-worked using inclined rolling.
  • hot working is not limited to inclined rolling, and any method that traces the same hot working history may be used. For example, even in bulk rolling (breakdown), if the same hot working history can be obtained, it can be used. can.
  • inclined rolling for example, as disclosed in Patent Document 4, three work rolls are arranged on a roll shaft that is twisted and inclined in the same direction around the material to be rolled, and each work roll is made of the material to be rolled. By revolving while rotating around, the material to be rolled is rolled in a spiral shape while advancing.
  • the columnar crystals of ferritic stainless steel are oriented in the ⁇ 100> direction with respect to the radial direction of the steel material, but the columnar crystals ⁇ 100> can be oriented in the rolling direction from the radial direction of the steel material by performing inclined rolling.
  • the rolling time of inclined rolling the time when the steel material contacts the three work rolls
  • ⁇ 100> oriented in the rolling direction by high-speed machining forms recrystallized grains in random directions other than ⁇ 100>. It ends up. Therefore, the rolling time of inclined rolling changes the RD // ⁇ 100> fraction.
  • the RD // ⁇ 334> fraction between the surface and the 1/4 depth position of the diameter is changed. Therefore, the rolling time of inclined rolling affects the soft magnetic properties.
  • the rolling time of the inclined rolling is 0.10 s or more, preferably 1 s or more, more preferably 10 s or more, and further preferably 50 s or more.
  • the productivity is lowered, so that it is preferably 200 s or less.
  • Bar wire heat treatment temperature It is preferable that the hot-rolled bar is heat-treated.
  • the heat treatment temperature of the bar changes the RD // ⁇ 100> fraction. Therefore, the bar heat treatment temperature affects the soft magnetic properties.
  • the bar heat treatment temperature is higher than 1400 ° C.
  • the nuclei of RD // ⁇ 100> do not grow and the RD // ⁇ 100> fraction decreases.
  • the bar wire heat treatment temperature is preferably 1400 ° C. or lower, preferably 1300 ° C. or lower.
  • the bar wire heat treatment temperature is less than 500 ° C., the nuclei of RD // ⁇ 100> do not grow, so the temperature is set to 500 ° C.
  • the bar heat treatment temperature is preferably 600 ° C. or higher, more preferably 700 ° C. or higher, and even more preferably 800 ° C. or higher.
  • the RD // ⁇ 334> fraction is also affected by the bar heat treatment temperature, and by adjusting the conditions together with other manufacturing conditions within the bar heat treatment temperature range of 500 to 1400 ° C., a suitable RD // ⁇ 334> It can be a fractional range.
  • Wire drawing rate It is preferable that the bar wire that has been heat-treated after hot rolling is wire drawn into a steel wire.
  • the wire drawing rate changes the RD // ⁇ 100> fraction. Therefore, the wire drawing rate affects the soft magnetic properties.
  • the wire drawing processing rate is more than 50%, recrystallization is promoted by the heat treatment in the subsequent process, and the RD // ⁇ 100> fraction is reduced. As a result, the soft magnetic properties deteriorate. Therefore, the wire drawing processing rate is 50% or less, preferably 30% or less, further preferably 15% or less, and even more preferably 5% or less.
  • the wire drawing processing rate (%) is a percentage display of the value obtained by dividing the amount of change in the cross-sectional area of the steel material before and after the wire drawing by the cross-sectional area before the wire drawing.
  • the RD // ⁇ 334> fraction is also affected by the wire drawing rate, and by adjusting the conditions within the range of the wire drawing rate of 0.01 to 50% together with other manufacturing conditions, suitable RD // ⁇ It can be in the 334> fraction range.
  • the drawn steel wire is heat-treated.
  • the heat treatment temperature of the steel wire changes the RD // ⁇ 100> fraction. Therefore, the heat treatment temperature of the steel wire affects the soft magnetic properties.
  • the heat treatment temperature of the steel wire is preferably 1400 ° C. or lower, preferably 1300 ° C. or lower.
  • the temperature of the steel wire is set to 500 ° C. or higher.
  • the steel wire heat treatment temperature is preferably 600 ° C. or higher, more preferably 700 ° C. or higher, and even more preferably 800 ° C. or higher.
  • the RD // ⁇ 334> fraction is also affected by the steel wire heat treatment temperature, and by adjusting the conditions together with other manufacturing conditions within the steel wire heat treatment temperature range of 500 to 1400 ° C., a suitable RD // ⁇ 334> It can be a fractional range.
  • Electromagnetic parts The electromagnetic parts using the stainless steel rod-shaped steel material of the present invention are, for example, cores and connectors such as injectors and solenoid valves, and since the rod-shaped steel material used as the material has excellent soft magnetic properties, "magnetic attraction” It can produce effects such as “improvement”, “reducing the diameter of parts”, and “improvement of responsiveness”.
  • the cast slab is heated, inclined-rolled for a rolling time of 3 s, and subsequently annealed and rolled to produce a bar wire (bar-shaped steel material) having a diameter of 20.0 mm at 900 ° C. Bar wire heat treatment was performed.
  • the RD // ⁇ 100> fraction is 200 times the field of view in the surface layer portion, the central portion, and the 1/4 depth position portion existing between the surface layer portion and the central portion in the L cross section of the wire rod.
  • One or more visual fields were measured.
  • the crystal orientation of each crystal grain in the observation field of view was analyzed using FE-SEM / EBSD.
  • the rolling direction is RD
  • the crystal plane in the RD direction is analyzed
  • the orientation component of ⁇ 001> is only the portion within the clearance of 25 ° (the crystal in which the angle difference between the ⁇ 100> orientation and the rolling direction is 25 ° or less). It was displayed, and the RD // ⁇ 100> fraction (area ratio ( ⁇ )) (average of the surface layer portion, the central portion, and the 1/4 depth position portion) was measured.
  • the RD // ⁇ 334> fraction is 200 times the field of view in the L cross section of the wire rod between the surface at a depth of 1/4 of the diameter, specifically at the depth of 1/8 of the diameter from the surface. Then, one or more visual fields were measured. Then, the crystal orientation of each crystal grain in the observation field of view was analyzed using FE-SEM / EBSD.
  • the rolling direction is RD
  • the crystal plane in the RD direction is analyzed
  • the orientation component of ⁇ 334> is displayed only in the portion within the clearance of 10 °
  • the RD // ⁇ 334> fraction area ratio (-)) (surface). 1/8 depth position of the diameter) was measured.
  • the magnetic flux density (T) at 5Oe was measured.
  • a ring-shaped test piece having a thickness of 3 mm ⁇ an outer diameter of 10 mm ⁇ an inner diameter of 8 mm was prepared, and after heat treatment at 900 ° C. ⁇ 2 hr, the magnetic flux density at 5 Oe was measured.
  • the relationship between RD // ⁇ 100> and the magnetic characteristics was evaluated, and sampling was performed in the same manner below. Magnetic flux density: 0.1 T or more was considered good.
  • the ring-shaped test piece was heat-treated at 900 ° C. ⁇ 2 hr, and the maximum magnetic flux density (T) at 10 Oe was measured at 2 kHz. Maximum magnetic flux density: 0.05 T or more was considered good.
  • No. 1 to 39 satisfied the provisions of the present invention and had good soft magnetic properties. On the other hand, No. which does not satisfy the provisions of the present invention. 40 to 55 had poor soft magnetic properties.
  • a rod-shaped steel material having excellent soft magnetic properties can be obtained, which is extremely useful in industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Heat Treatment Of Steel (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

質量%で、C:0.001~0.030%、Si:0.01~4.00%、Mn:0.01~2.00%、Ni:0.01~4.00%、Cr:6.0~35.0%、Mo:0.01~5.00%、Cu:0.01~2.00%、N:0.001~0.050%を含有し、F値が20以下であり、圧延方向の結晶方位RD//<100>分率が0.05以上であり、好ましくは圧延方向の結晶方位RD//<334>分率が0.2以下であるステンレス棒状鋼材。ただし、圧延方向の結晶方位RD//<100>分率とは、<100>方位と圧延方向との角度差が25°以下であり、結晶方位RD//<334>分率とは、<334>方位と圧延方向との角度差が10°以下である結晶の面積比率を意味する。 F値=700C+800N+20Ni+10Cu+10Mn-6.2Cr-9.2Si-9.3Mo-74.4Ti-37.2Al-3.1Nb+63.2

Description

電磁ステンレス棒状鋼材
 本発明は、電磁ステンレス棒状鋼材、特に軟磁気特性に優れるステンレス棒状鋼材及びそれを用いた電磁部品に関する。
 従来、電磁弁などに代表されるような、電磁ステンレス製品は、SUS430、SUS410Lなどを代表とするフェライト系ステンレス鋼線材、鋼線を素材として加工・成型・熱処理され製造されてきた。しかしながら、上記のようなフェライト系ステンレス鋼線材から加工、製造されたステンレス製品の軟磁気特性は高精度・高出力な部品に十分対応できず、用途の制限を受ける欠点があった。上記課題に対して、軟磁気特性の向上として、CrやSi、Alなどの合金元素の最適化による技術が検討されている(例えば、特許文献1~3)が、成分とプロセスの組合せによる集合組織制御を活用したフェライト系ステンレス棒線の軟磁気特性向上に着目した発明はない。
特開平6-49606号公報 特開平6-49605号公報 特開2004-307979号公報 特開平05-329510号公報
 以上を踏まえ、本発明は、上記課題を解決し、軟磁気特性に優れるステンレス棒状鋼材及びそれを用いた電磁部品を提供することを目的とする。
 本発明は、上記の課題を解決するためになされたものであり、下記のステンレス棒状鋼材及び電磁部品を要旨とする。
[1]化学組成が、質量%で、
 C:0.001~0.030%、
 Si:0.01~4.00%、
 Mn:0.01~2.00%、
 Ni:0.01~4.00%、
 Cr:6.0~35.0%、
 Mo:0.01~5.00%、
 Cu:0.01~2.00%、
 N:0.001~0.050%、
 Ti:0~2.00%、
 Nb:0~2.00%、
 V:0~2.0%、
 B:0~0.1%、
 Al:0~7.000%、
 W:0~3.0%、
 Ga:0~0.05%、
 Co:0~2.5%、
 Sn:0~2.5%、
 Sb:0~2.5%、
 Ta:0~2.5%、
 Ca:0~0.05%、
 Mg:0~0.012%、
 Zr:0~0.012%、
 REM:0~0.05%、
 Pb:0~0.30%、
 Se:0~0.80%、
 Te:0~0.30%、
 Bi:0~0.50%、
 S:0~0.50%、
 P:0~0.30%、
 残部:Feおよび不純物であり、(a)式に示すF値が20.0以下であり、
 圧延方向の結晶方位RD//<100>分率が0.05以上であるステンレス棒状鋼材。
 ただし、圧延方向の結晶方位RD//<100>分率とは、<100>方位と圧延方向との角度差が25°以下である結晶の面積比率を意味する。
F値=700C+800N+20Ni+10Cu+10Mn-6.2Cr-9.2Si-9.3Mo-74.4Ti-37.2Al-3.1Nb+63.2 ・・・(a)
 但し、式中の各元素記号は、それぞれの元素の鋼中における含有量(質量%)を意味する。
[2]表面から直径の1/8深さ位置部の圧延方向の結晶方位RD//<334>分率が0.2以下である[1]に記載のステンレス棒状鋼材。
 ただし、結晶方位RD//<334>分率とは、<334>方位と圧延方向との角度差が10°以下である結晶の面積比率を意味する。
[3]前記化学組成が、質量%でさらに、
 Ti:0.001~2.00%、
 Nb:0.001~2.00%、
 V:0.001~2.0%
 B:0.0001~0.1%
 Al:0.001~7.000%、
 W:0.05~3.0%、
 Ga:0.0004~0.05%、
 Co:0.05~2.5%、
 Sn:0.01~2.5%、
 Sb:0.01~2.5%、および
 Ta:0.01~2.5%、
 から選択される一種以上を含有する、
 [1]又は[2]に記載のステンレス棒状鋼材。
[4]前記化学組成が、質量%でさらに、
 Ca:0.0002~0.05%、
 Mg:0.0002~0.012%、
 Zr:0.0002~0.012%、および
 REM:0.0002~0.05%、
 から選択される一種以上を含有する、
 [1]~[3]のいずれか1項に記載のステンレス棒状鋼材。
[5]前記化学組成が、質量%でさらに、
 Pb:0.0001~0.30%、
 Se:0.0001~0.80%、
 Te:0.0001~0.30%、
 Bi:0.0001~0.50%、
 S:0.0001~0.50%、
 P:0.0001~0.30%、
 から選択される一種以上を含有する、
 [1]~[4]のいずれか1項に記載のステンレス棒状鋼材。
[6]5Oeにおける磁束密度がそれぞれ0.10T以上である、[1]~[5]のいずれか1項に記載のステンレス棒状鋼材。
[7]2kHzの交流周波数で10Oeにおける最大磁束密度が0.05T以上である、[1]~[6]のいずれか1項に記載のステンレス棒状鋼材。
[8][1]~[7]のいずれか一項に記載のステンレス棒状鋼材を用いた電磁部品。
 本発明によれば、軟磁気特性に優れるステンレス棒状鋼材及び電磁部品を得ることができる。
 本発明者らは軟磁気特性に優れるステンレス棒状鋼材及び電磁部品を得るために、種々の検討を行なった。その結果、以下の(a)~(c)の知見を得た。
 (a)フェライト系ステンレス鋼と熱延プロセス(傾斜圧延時間)の組み合わせで、線材圧延方向の結晶方位RD//<100>分率を高めることができる。併せて、表面から直径の1/4深さ位置の間の線材圧延方向の結晶方位RD//<334>分率を低減することができる。
 (b)前記線材と二次加工プロセス(線材熱処理温度、伸線加工率、鋼線熱処理温度)の組合せで、鋼線圧延方向の結晶方位RD//<100>分率を高めることができる。併せて、表面から直径の1/4位置深さの間の鋼線圧延方向の結晶方位RD//<334>分率を低減することができる。
 (c)その結果、5Oeにおける磁束密度が0.10T以上であり、2kHzで10Oeにおける最大磁束密度が0.05T以上となり、軟磁気特性の向上を見出した。
 本発明は上記の知見に基づいてなされたものである。また、本発明の好ましい一実施形態を詳細に説明する。以降の説明では、本発明の好ましい一実施形態を本発明として記載する。以下、本発明の各要件について詳しく説明する。本発明の棒状の鋼材において、熱間加工ままの材料を「棒線」、伸線加工などの冷間加工を行った材料を「鋼線」、それらを総称して「棒状鋼材」と呼ぶ。
 1.圧延方向の結晶方位RD//<100>分率
 本発明に係る棒状鋼材では、圧延方向(RD)の結晶方位を制御する。具体的には、圧延方向の結晶方位RD//<100>分率(面積比率)(以下単に「RD//<100>分率」という。)を0.05以上とする。RD//<100>分率が0.05未満となると、軟磁気特性が低下するためである。RD//<100>分率は0.10以上とするのがより好ましく、0.20以上とするのがさらに好ましく、0.40以上とするのが一層好ましい。
 なお、RD//<100>分率は、以下の手順を用い、算出する。具体的には、RD//<100>分率は、棒状鋼材のL断面(鋼材の長手方向に平行な断面)において、表層部、中心部、および表層部と中心部との間に存在する1/4深さ位置部において、200倍の視野で、各1視野以上測定を行う。そして、観察視野における各結晶粒の結晶方位を、FE-SEM/EBSDを用いて解析する。圧延方向をRDとし、RD方向における結晶面の解析を行い、<100>の方位成分をクリアランス25°以内の部分のみ表示させ、RD//<100>分率を測定する。なお、上記表層部とは表面から中心軸方向に1mm深さ位置を指す。即ち、圧延方向の結晶方位RD//<100>分率とは、<100>方位と圧延方向との角度差が25°以下である結晶の面積比率(表層部、中心部、1/4深さ位置部の平均)を意味する。
 2.圧延方向の結晶方位RD//<334>分率
 本発明に係る棒状鋼材で好ましくは、圧延方向(RD)の軟磁気特性を劣化させる結晶方位を制御する。表面から直径の1/8深さ位置部の棒線圧延方向の結晶方位RD//<334>分率を好ましくは0.20以下とする。
 圧延方向の結晶方位RD//<334>分率(面積比率)(以下単に「RD//<334>分率」という。)を0.20以下とする。RD//<334>分率が0.2超となると、軟磁気特性が低下するためである。RD//<334>分率は0.10以下とするのがより好ましく、0.05以下とするのがさらに好ましい。
 なお、RD//<334>分率は、以下の手順を用い、算出する。具体的には、RD//<334>分率は、棒状鋼材のL断面(鋼材の長手方向に平行な断面)において、表面から直径の1/4深さ位置の間の1/8深さ位置部において、200倍の視野で、1視野以上測定を行う。そして、観察視野における各結晶粒の結晶方位を、FE-SEM/EBSDを用いて解析する。圧延方向をRDとし、RD方向における結晶面の解析を行い、<334>の方位成分をクリアランス10°以内の部分のみ表示させ、RD//<334>分率を測定する。即ち、圧延方向の結晶方位RD//<334>分率とは、<334>方位と圧延方向との角度差が10°以下である結晶の面積比率(表面から直径の1/8深さ位置部)を意味する。
 3.化学組成
 各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
 C:0.001~0.030%
 Cは、鋼材の強度を高める。このため、C含有量は、0.001%以上とする。しかしながら、Cを過剰に含有させると、軟磁気特性が劣化する。このため、C含有量は0.030%以下とする。C含有量は0.020%以下とするのが好ましく、0.015%以下とするのがより好ましく、0.010%以下とするのがさらに好ましい。
 Si:0.01~4.00%
 Siは、脱酸元素として含有させ、高温酸化特性や交流磁気特性を向上させる。このため、Si含有量は0.01%以上とし、0.10%以上とするのが好ましい。しかしながら、Siを過剰に含有させると、軟磁気特性が劣化する。このため、Si含有量は4.00%以下とする。Si含有量は3.00%以下とするのが好ましく、1.50%以下とするのがより好ましい。
 Mn:0.01~2.00%
 Mnは、鋼材の強度と交流磁気特性を向上させる。このため、Mn含有量は、0.01%以上とし、0.05%以上とするのが好ましい。しかしながら、Mnを過剰に含有させると、軟磁気特性が低下する。また、耐食性が低下する場合もある。このため、Mn含有量は2.00%以下とする。Mn含有量は1.00%以下とするのが好ましく、0.50%以下とするのがより好ましい。
 Ni:0.01~4.00%
 Niは、鋼材の靭性を向上させる。このため、Ni含有量は0.01%以上とし、0.05%以上とするのが好ましい。しかしながら、Niを過剰に含有させると、軟磁気特性が低下する。このため、Ni含有量は4.00%以下とする。Ni含有量は3.00%以下とするのが好ましく、1.00%以下とするのがより好ましく、0.50%以下とするのがさらに好ましい。
 Cr:6.0~35.0%
 Crは、耐食性と交流磁気特性を向上させる。このため、Cr含有量は、6.0%以上とする。Cr含有量は7.0%以上とするのが好ましく、10.0%以上とするのがより好ましい。しかしながら、Crを過剰に含有させると、軟磁気特性が低下する。Cr含有量は35.0%以下にする。Cr含有量は21.0%以下とするのが好ましく、20.0%以下とするのがより好ましい。
 Mo:0.01~5.00%
 Moは、耐食性と交流磁気特性を向上させる。このため、Mo含有量は0.01%以上とする。しかしながら、Moを過剰に含有させると、軟磁気特性が低下する。このため、Mo含有量は5.00%以下とする。Mo含有量は3.00%以下とするのが好ましく、2.00%以下とするのがより好ましく、1.50%以下とするのがさらに好ましい。
 Cu:0.01~2.00%
 Cuは、耐食性と交流磁気特性を向上させる。このため、Cu含有量は0.01%以上とし、0.05%以上とするのが好ましい。しかしながら、Cuを過剰に含有させると、軟磁気特性が低下する。このため、Cu含有量は2.00%以下とする。Cu含有量は1.00%以下とするのが好ましく、0.80%以下とするのがより好ましく、0.40%以下とするのがさらに好ましい。
 N:0.001~0.050%
 Nは、鋼材の強度を向上させる。このため、N含有量は0.001%以上とし、0.002%以上とするのが好ましい。しかしながら、Nを過剰に含有させると、軟磁気特性が低下する。このため、N含有量は0.050%以下とする。N含有量は0.040%以下とするのが好ましく、0.020%以下とするのがより好ましく、0.010%以下とするのがさらに好ましい。
 本発明に係る棒状鋼材は、上記元素に加え、必要に応じて、Ti、Nb、V、B、Al、W、Ga、Co、Sn、SbおよびTaから選択される一種以上の元素を含有させてもよい。
 Ti:0~2.00%
 Tiは、鋼材の強度を高める効果を有する。また、Tiは炭窒化物を形成するので、Cr炭化物の生成を抑制し、Cr欠乏層の生成を抑制する。この結果、粒界腐食を防止する効果を有する。すなわち、Tiは、耐食性を向上させる効果を有するため、必要に応じて含有させてもよい。また、Ti炭窒化物の形成によりC、Nを固定することで軟磁気特性を高める元素である。
 しかしながら、Tiを過剰に含有させると、軟磁気特性が低下する。また、粗大炭窒化物によって靭性が低下する。このため、Ti含有量は2.00%以下とする。Ti含有量は1.00%以下とするのが好ましく、0.50%以下とするのがより好ましく、0.50%以下とすることがさらに好ましく、0.25%以下とすると一層好ましい。一方、上記効果を得るためには、Ti含有量は0.001%以上とするのが好ましい。
 Nb:0~2.00%
 Nbは、鋼材の強度を高める効果を有する。また、Nbは炭窒化物を形成するため、Cr炭化物の生成を抑制し、Cr欠乏層の生成を抑制する。この結果、Nbは粒界腐食を防止する効果を有する。すなわち、Nbは、耐食性の向上に有効な元素であるため、必要に応じて含有させてもよい。また、Nb炭窒化物の形成によりC、Nを固定することで軟磁気特性を高める元素である。しかしながら、Nbを過剰に含有させると、軟磁気特性が低下する。また、粗大炭窒化物によって靭性が低下する。このため、Nb含有量は2.00%以下とする。Nb含有量は1.00%以下とするのが好ましく、0.80%以下とするのがより好ましく、0.60%以下が一層好ましい。一方、上記効果を得るためには、Nb含有量は0.001%以上とするのが好ましい。
 V:0~2.0%
 Vは、耐食性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Vを過剰に含有させると、軟磁気特性が低下する。また、粗大炭窒化物によって靭性が低下する。このため、V含有量は2.0%以下とする。V含有量は1.0%以下とするのが好ましく、0.5%以下とするのがより好ましく、0.1%以下とするのがさらに好ましい。一方、上記効果を得るためには、V含有量は0.001%以上とするのが好ましい。
 B:0~0.1%
 Bは、熱間加工性および耐食性を向上させる効果を有する。このため、必要に応じて含有させてもよい。しかしながら、Bを過剰に含有させると、軟磁気特性が低下する。このため、B含有量は0.1%以下とする。B含有量は0.02%以下とするのが好ましく、0.01%以下とするのがより好ましい。一方、上記効果を得るためには、B含有量は0.0001%以上とするのが好ましい。
 Al:0~7.000%
 Alは、脱酸を促進させ、介在物清浄度レベルを向上させる効果を有するため、必要に応じて含有させてもよい。また、Alの添加は交流磁気特性を高める。しかしながら、Alを過剰に含有させると、その効果は飽和し、軟磁気特性が低下する。また、粗大介在物によって靭性が低下する。このため、Al含有量は7.000%以下とする。Al含有量は3.000%以下とするのが好ましく、0.100%以下とするのがより好ましく、0.020%以下とするのがさらに好ましい。一方、前記効果を得るためには、Al含有量は0.001%以上とするのが好ましい。
 W:0~3.0%
 Wは、耐食性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Wを過剰に含有させると、軟磁気特性が低下する。また、粗大炭窒化物によって靭性が低下する。このため、W含有量は3.0%以下とする。W含有量は2.0%以下とするのが好ましく、1.5%以下とするのがより好ましい。一方、上記効果を得るためには、W含有量は0.05%以上とするのが好ましく、0.10%以上とするのがより好ましい。
 Ga:0~0.05%
 Gaは、耐食性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Gaを過剰に含有させると、熱間加工性が低下する。このため、Ga含有量は0.05%以下とする。一方、上記効果を得るためには、Ga含有量は0.0004%以上とするのが好ましい。
 Co:0~2.50%
 Coは、鋼材の強度を向上させる効果を有するため、必要に応じて含有させてもよい。また、適量のCo添加は飽和磁束密度を高めるため、軟磁気特性を高める。しかしながら、Coを過剰に含有させると、軟磁気特性が低下する。このため、Co含有量は2.50%以下とする。Co含有量は1.00%以下とするのが好ましく、0.80%以下とするのがより好ましい。一方、上記効果を得るためには、Co含有量は0.05%以上とするのが好ましく、0.10%以上とするのがより好ましい。
 Sn:0~2.50%
 Snは、軟磁気特性や耐食性、切削性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Snを過剰に含有させると、軟磁気特性が低下する。また、Snの粒界偏析によって靭性が低下する。このため、Sn含有量は2.50%以下とする。Sn含有量は1.00%以下とするのがより好ましく、0.20%以下とするのがさらに好ましい。一方、上記効果を得るためには、Sn含有量は0.01%以上とするのが好ましく、0.05%以上とするのがより好ましい。
 Sb:0~2.5%
 Sbは、耐食性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Sbを過剰に含有させると、軟磁気特性が低下する。このため、Sb含有量は2.5%以下とする。Sb含有量は1.0%以下とするのがより好ましく、0.2%以下とするのがさらに好ましい。一方、上記効果を得るためには、Sb含有量は0.01%以上とするのが好ましく、0.05%以上とするのがより好ましい。
 Ta:0~2.5%
 Taは、耐食性を向上させる効果を有するため、必要に応じて含有させてもよい。しかしながら、Taを過剰に含有させると、軟磁気特性が低下する。このため、Ta含有量は2.5%以下とする。Ta含有量は1.5%以下とするのが好ましく、0.9%以下とするのがより好ましい。一方、上記効果を得るためには、Ta含有量は0.01%以上とするのが好ましく、0.04%以上とするのがより好ましく、0.08%以上とするのがさらに好ましい。
 本発明に係る棒状鋼材は、上記元素に加え、必要に応じて、Ca、Mg、Zr、およびREMから選択される一種以上の元素を含有させてもよい。
 Ca:0~0.05%
 Mg:0~0.012%
 Zr:0~0.012%
 REM:0~0.05%
 Ca、Mg、Zr、およびREMは、脱酸のため、必要に応じて、含有させてもよい。しかしながら、これら各元素を過剰に含有させると、軟磁気特性が低下する。また、粗大介在物によって靭性が低下する。このため、Ca:0.05%以下、Mg:0.012%以下、Zr:0.012%以下、REM:0.05%以下とする。Ca含有量は、0.010%以下とするのが好ましく、0.005%以下とするのがより好ましい。Mgは、0.010%以下とするのが好ましく、0.005%以下とするのがより好ましい。Zrは、0.010%以下とするのが好ましく、0.005%以下とするのがより好ましい。REMは、0.010%以下とするのが好ましい。
 一方、上記効果を得るためには、Ca:0.0002%以上、Mg:0.0002%以上、Zr:0.0002%以上、REM:0.0002%以上とするのが好ましい。Ca含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。Mg含有量は、0.0004%以上とするのが好ましく、0.001%以上とするのがさらに好ましい。Zr含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。REM含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。
 なお、REMとは、ランタノイドの15元素にYおよびScを合わせた17元素の総称である。これらの17元素のうちの1種以上を鋼に含有させることができ、REM含有量は、これらの元素の合計含有量を意味する。
 本発明に係る棒状鋼材は、上記元素に加え、必要に応じて、Pb、Se、Te、Bi、SおよびPから選択される一種以上の元素を含有させてもよい。
 Pb:0~0.30%、
 Se:0~0.80%、
 Te:0~0.30%、
 Bi:0~0.50%、
 S:0~0.50%、
 P:0~0.30%、
 Pb、Se、Te、Bi、SおよびPは、切削性のため、必要に応じて、含有させてもよい。しかしながら、これら各元素を過剰に含有させると、軟磁気特性が低下する。また、靭性が低下する。このため、Pb:0.30%以下、Se:0.80%以下、Te:0.30%以下、Bi:0.50%以下、S:0.50以下、P:0.30以下とする。Pb含有量は、0.1%以下とするのが好ましく、0.05%以下とするのがより好ましい。Se含有量は、0.1%以下とするのが好ましく、0.05%以下とするのがより好ましい。Te含有量は、0.1%以下とするのが好ましく、0.05%以下とするのがより好ましい。Bi含有量は、0.1%以下とするのが好ましく、0.05%以下とするのがより好ましい。S含有量は、0.1%以下とするのが好ましく、0.05%以下とするのがより好ましい。P含有量は、0.1%以下とするのが好ましく、0.05%以下とするのがより好ましい。
 一方、上記効果を得るためには、Pb:0.0001%以上、Se:0.0001%以上、Te:0.0001%以上、Bi:0.0001%以上、S:0.0001%以上、P:0.0001%以上とするのが好ましい。Pb含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。Se含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。Te含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。Bi含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。S含有量は、0.0001%以上とするのがより好ましく、0.0002%以上とするのがさらに好ましい。P含有量は、0.0004%以上とするのがより好ましく、0.001%以上とするのがさらに好ましい。
(F値)
 F値:20.0以下
 F値は下記式(a)により求められる。F値は、凝固や固溶加熱処理時にフェライト単相に近づくか否かの指標であり、フェライト単相に近ければ鋳片の柱状晶が増加し後述する傾斜熱間圧延中にRD//<100>分率を高め、軟磁気特性を高める。F値が20.0を超えると、フェライトに加えオーステナイトやマルテンサイトを含有するため、RD//<100>分率が減少する。この結果、軟磁気特性が低下する。そのため、F値は20.0以下とする。F値は、10.0以下であることが好ましく、0.0以下であることが好ましく、-10.0以下であることがより好ましい。
F値=700C+800N+20Ni+10Cu+10Mn-6.2Cr-9.2Si-9.3Mo-74.4Ti-37.2Al-3.1Nb+63.2 ・・・(a)
 但し、式中の各元素記号は、それぞれの元素の鋼中における含有量(質量%)を意味する。
 本発明の鋼材の化学組成において、残部はFeおよび不純物である。ここで「不純物」とは、鋼材を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。
 なお、不純物としては、例えば、O、Zn、H等が例示される。不純物は低減されることが好ましいが、含有される場合は、O,ZnおよびHは0.01%以下とするのが望ましい。
 4.製造方法
 本発明に係るステンレス棒状鋼材の好ましい製造方法を説明する。本発明に係るステンレス棒状鋼材は、例えば、以下のような製造方法により、本発明に係るステンレス棒状鋼材を安定して得ることができる。
 本発明に係るステンレス棒状鋼材では、上記化学組成を有する鋼を溶製し、所定の径を有する鋳片を鋳造した後、熱間または温間の傾斜圧延と線材圧延を行う。その後、必要に応じて、適宜、溶体化処理、酸洗、二次加工、熱処理を行う。
 4-1.傾斜圧延工程
 加熱された鋳片は、傾斜圧延を用い、熱間加工されるのが好ましい。なお、熱間加工は傾斜圧延に限定されず、同様の熱加工履歴を辿る方法であればよく、例えば分塊圧延(ブレークダウン)であっても、同様の熱加工履歴を取れれば用いることができる。
 傾斜圧延は、例えば特許文献4に開示されているとおり、3個のワークロールを被圧延材を中心にして同方向に捩って傾斜したロール軸に配置し、各ワークロールが被圧延材の周囲を自転しながら公転することにより、被圧延材は前進しながらスパイラル状に圧延される。フェライト系ステンレス鋼の柱状晶は鋼材半径方向に対し<100>へ配向しているが、傾斜圧延を施すことで柱状晶の<100>を鋼材半径方向から圧延方向へ配向できる。しかし、傾斜圧延の圧延時間(鋼材が3個のワークロールに接触する時間)が短くなると高速加工によって圧延方向へ配向した<100>が<100>以外のランダムな方位の再結晶粒を形成してしまう。
 したがって、傾斜圧延の圧延時間は、RD//<100>分率を変化させる。併せて、表面から直径の1/4深さ位置の間のRD//<334>分率を変化させる。このため、傾斜圧延の圧延時間は軟磁気特性に影響を与える。傾斜圧延の圧延時間を0.10s未満とすると、RD//<100>分率が減少する。併せて、表面から直径の1/4深さ位置の間のRD//<334>分率が増加する。この結果、軟磁気特性が低下する。このため、傾斜圧延の圧延時間は0.10s以上とし、1s以上が好ましく、10s以上とするのがより好ましく、50s以上とするのがさらに好ましい。一方で傾斜圧延の圧延時間が長すぎると生産性を落とすため、200s以下とするのが好ましい。
 4-2.棒線熱処理温度
 熱間圧延された棒線は熱処理されるのが好ましい。棒線の熱処理温度は、RD//<100>分率を変化させる。このため、棒線熱処理温度は軟磁気特性に影響を与える。棒線熱処理温度を1400℃超とすると、RD//<100>の核が成長せず、RD//<100>分率が減少する。この結果、軟磁気特性が低下する。このため、棒線熱処理温度は1400℃以下とし、1300℃以下が好ましい。一方で棒線熱処理温度が500℃未満となると、RD//<100>の核が成長しないため、500℃以上とする。棒線熱処理温度は600℃以上で好ましく、700℃で更に好ましく、800℃以上が一層好ましい。RD//<334>分率も棒線熱処理温度の影響を受け、他の製造条件とともに棒線熱処理温度500~1400℃の範囲内で条件を調整することにより、好適なRD//<334>分率範囲とすることができる。
 4-3.伸線加工率
 熱間圧延後に熱処理された棒線は伸線加工して鋼線とすることが好ましい。伸線加工率は、RD//<100>分率を変化させる。このため、伸線加工率は軟磁気特性に影響を与える。伸線加工率を50%超とすると、後工程の熱処理で再結晶が促進され、RD//<100>分率が減少する。この結果、軟磁気特性が低下する。このため、伸線加工率は50%以下とし、30%以下が好ましく、15%以下が更に好ましく、5%以下が一層好ましい。一方で伸線加工率が0.01%未満となると、後工程の熱処理でRD//<100>の核が成長できないため、0.01%以上とする。なお、伸線加工率(%)は、伸線前後の鋼材の断面積変化量を伸線前断面積で除した値の百分率表示である。RD//<334>分率も伸線加工率の影響を受け、他の製造条件とともに伸線加工率0.01~50%の範囲内で条件を調整することにより、好適なRD//<334>分率範囲とすることができる。
 4-4.鋼線熱処理温度
 伸線加工された鋼線は熱処理されるのが好ましい。鋼線の熱処理温度は、RD//<100>分率を変化させる。このため、鋼線熱処理温度は軟磁気特性に影響を与える。鋼線熱処理温度を1400℃超とすると、RD//<100>の核が成長せず、RD//<100>分率が減少する。この結果、軟磁気特性が低下する。このため、鋼線熱処理温度は1400℃以下とし、1300℃以下が好ましい。一方で鋼線熱処理温度が500℃未満となると、RD//<100>の核が成長しないため、500℃以上とする。鋼線熱処理温度は600℃以上で好ましく、700℃で更に好ましく、800℃以上が一層好ましい。RD//<334>分率も鋼線熱処理温度の影響を受け、他の製造条件とともに鋼線熱処理温度500~1400℃の範囲内で条件を調整することにより、好適なRD//<334>分率範囲とすることができる。
 5.電磁部品
 本発明のステンレス棒状鋼材を用いた電磁部品は、例えばインジェクタや電磁弁などのコアやコネクタなどであり、素材とする棒状鋼材が優れた軟磁気特性を有することから、“磁気吸引力の向上”や“部品の細径化”、“応答性の向上”などという効果を奏することができる。
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1、2に記載の化学組成を有する鋼を溶製した。鋼の溶製の際には、ステンレス鋼の安価な溶製プロセスであるAOD溶製を想定し、100kgの真空溶解炉にて溶解し、直径180mmの鋳片に鋳造した。その後、下記の製造条件により直径20.0mmのステンレス棒線とした。
 表2、表4~6において、成分組成又はRD//<100>分率が本発明範囲から外れる数値に下線を付している。表4~6において、磁気特性が本発明の好適範囲から外れる数値、及び表5、6において、製造条件が本発明の好適範囲から外れる数値に、それぞれ下線を付している。
 以下に条件を記載する。具体的には、鋳造した鋳片を加熱し、傾斜圧延を3sの圧延時間で施し、引き続き連続で焼鈍、圧延を施し、直径20.0mmの棒線(棒状鋼材)を作製し、900℃で棒線熱処理を行った。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた棒線(棒状鋼材)について、RD//<100>分率、RD//<334>分率、および軟磁気特性を測定した。以下、表3、表4にまとめて結果を示す。なお、これらの測定は以下の手順に従い、測定を行った。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 RD//<100>分率は、線材のL断面において、表層部、中心部、および表層部と中心部との間に存在する1/4深さ位置部において、200倍の視野で、各1視野以上測定を行った。そして、観察視野における各結晶粒の結晶方位を、FE-SEM/EBSDを用いて解析した。圧延方向をRDとし、RD方向における結晶面の解析を行い、<001>の方位成分をクリアランス25°以内の部分(<100>方位と圧延方向との角度差が25°以下である結晶)のみ表示させ、RD//<100>分率(面積率(-))(表層部、中心部、1/4深さ位置部の平均)を測定した。
 RD//<334>分率は、線材のL断面において、表面から直径の1/4深さ位置の間、具体的には表面から直径の1/8深さ位置部において、200倍の視野で、1視野以上測定を行った。そして、観察視野における各結晶粒の結晶方位を、FE-SEM/EBSDを用いて解析した。圧延方向をRDとし、RD方向における結晶面の解析を行い、<334>の方位成分をクリアランス10°以内の部分のみ表示させ、RD//<334>分率(面積比率(-))(表面から直径の1/8深さ位置部)を測定した。
 直流磁気特性は、5Oeにおける磁束密度(T)を測定した。厚さ3mm×外径10mm×内径8mmのリング状試験片を作製し、900℃×2hrの熱処理を施した後に5Oeにおける磁束密度を測定した。なお、圧延方向とリング状試験片の直径方向が平行となるように試験片加工を行うことで、RD//<100>と磁気特性の関係を評価し、以下も同様にサンプリングを行った。磁束密度:0.1T以上を良好とした。
 交流磁気特性は、前記リング状試験片に900℃×2hrの熱処理を施し、2kHzで10Oeにおける最大磁束密度(T)を測定した。最大磁束密度:0.05T以上を良好とした。
 No.1~39は、本発明の規定を満足し、軟磁気特性が良好であった。一方、本発明の規定を満足しないNo.40~55は軟磁気特性が不良であった。
 続いて表1に示す鋼種Qを用いて、表5に記載の条件により、直径15mmの棒状鋼材を作製した。なお、傾斜圧延の圧延時間以外の履歴は前記実施例1と同様とした。作製した棒線(棒状鋼材)について、RD//<100>分率、RD//<334>分率および軟磁気特性を、上述の方法で測定した。以下、結果をまとめて、表5に示す。
Figure JPOXMLDOC01-appb-T000005
 No.109~120については、本発明の好適な条件を満足するため、軟磁気特性が良好であった。一方、本発明の好適な条件を満足しないNo.121~123は軟磁気特性が不良であった。
 続いて表1に示す鋼種Pを用いて、鋳造した鋳片を加熱し、傾斜圧延の時間は50sとし、引き続き連続で焼鈍、圧延を施し、種々の直径の棒線を作製した。続いて、表6記載の条件により、棒線熱処理および伸線加工、鋼線熱処理を行い、直径20mmの鋼線(棒状鋼材)を作製した。作製した鋼線(棒状鋼材)について、RD//<100>分率、RD//<334>分率および軟磁気特性を、上述の方法で測定した。以下、結果をまとめて、表6に示す。
Figure JPOXMLDOC01-appb-T000006
 No.124~138については、本発明の好適な条件を満足するため、軟磁気特性が良好であった。一方、本発明の好適な条件を満足しないNo.139~144は軟磁気特性が不良であった。
 本発明によれば、軟磁気特性に優れる棒状鋼材を得ることができ、産業上極めて有用である。

Claims (8)

  1.  化学組成が、質量%で、
     C:0.001~0.030%、
     Si:0.01~4.00%、
     Mn:0.01~2.00%、
     Ni:0.01~4.00%、
     Cr:6.0~35.0%、
     Mo:0.01~5.00%、
     Cu:0.01~2.00%、
     N:0.001~0.050%、
     Ti:0~2.00%、
     Nb:0~2.00%、
     V:0~2.0%、
     B:0~0.1%、
     Al:0~7.000%、
     W:0~3.0%、
     Ga:0~0.05%、
     Co:0~2.5%、
     Sn:0~2.5%、
     Sb:0~2.5%、
     Ta:0~2.5%、
     Ca:0~0.05%、
     Mg:0~0.012%、
     Zr:0~0.012%、
     REM:0~0.05%、
     Pb:0~0.30%、
     Se:0~0.80%、
     Te:0~0.30%、
     Bi:0~0.50%、
     S:0~0.50%、
     P:0~0.30%、
     残部:Feおよび不純物であり、(a)式に示すF値が20以下であり、
     圧延方向の結晶方位RD//<100>分率が0.05以上であるステンレス棒状鋼材。
     ただし、圧延方向の結晶方位RD//<100>分率とは、<100>方位と圧延方向との角度差が25°以下である結晶の面積比率を意味する。
    F値=700C+800N+20Ni+10Cu+10Mn-6.2Cr-9.2Si-9.3Mo-74.4Ti-37.2Al-3.1Nb+63.2 ・・・(a)
     但し、式中の各元素記号は、それぞれの元素の鋼中における含有量(質量%)を意味する。
  2.  表面から直径の1/8深さ位置部の圧延方向の結晶方位RD//<334>分率が0.2以下である請求項1に記載のステンレス棒状鋼材。
     ただし、結晶方位RD//<334>分率とは、<334>方位と圧延方向との角度差が10°以下である結晶の面積比率を意味する。
  3.  前記化学組成が、質量%でさらに、
     Ti:0.001~2.00%、
     Nb:0.001~2.00%、
     V:0.001~2.0%
     B:0.0001~0.1%
     Al:0.001~7.000%、
     W:0.05~3.0%、
     Ga:0.0004~0.05%、
     Co:0.05~2.5%、
     Sn:0.01~2.5%、
     Sb:0.01~2.5%、および
     Ta:0.01~2.5%、
     から選択される一種以上を含有する、
     請求項1又は請求項2に記載のステンレス棒状鋼材。
  4.  前記化学組成が、質量%でさらに、
     Ca:0.0002~0.05%、
     Mg:0.0002~0.012%、
     Zr:0.0002~0.012%、および
     REM:0.0002~0.05%、
     から選択される一種以上を含有する、
     請求項1~請求項3のいずれか1項に記載のステンレス棒状鋼材。
  5.  前記化学組成が、質量%でさらに、
     Pb:0.0001~0.30%、
     Se:0.0001~0.80%、
     Te:0.0001~0.30%、
     Bi:0.0001~0.50%、
     S:0.0001~0.50%、
     P:0.0001~0.30%、
     から選択される一種以上を含有する、
     請求項1~請求項4のいずれか1項に記載のステンレス棒状鋼材。
  6.  5Oeにおける磁束密度が0.10T以上である、請求項1~請求項5のいずれか1項に記載のステンレス棒状鋼材。
  7.  2kHzの交流周波数で10Oeにおける最大磁束密度が0.05T以上である、請求項1~請求項6のいずれか1項に記載のステンレス棒状鋼材。
  8.  請求項1~請求項7のいずれか一項に記載のステンレス棒状鋼材を用いた電磁部品。
PCT/JP2021/005231 2020-02-19 2021-02-12 電磁ステンレス棒状鋼材 WO2021166797A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2022010037A MX2022010037A (es) 2020-02-19 2021-02-12 Material de acero inoxidable electromagnetico en forma de varilla.
US17/800,846 US20230085558A1 (en) 2020-02-19 2021-02-12 Rod-shaped electromagnetic stainless steel material
KR1020227031723A KR102688942B1 (ko) 2020-02-19 2021-02-12 전자 스테인리스 봉상 강재
JP2022501852A JP7337248B2 (ja) 2020-02-19 2021-02-12 電磁ステンレス棒状鋼材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-026141 2020-02-19
JP2020026141 2020-02-19

Publications (1)

Publication Number Publication Date
WO2021166797A1 true WO2021166797A1 (ja) 2021-08-26

Family

ID=77392259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005231 WO2021166797A1 (ja) 2020-02-19 2021-02-12 電磁ステンレス棒状鋼材

Country Status (6)

Country Link
US (1) US20230085558A1 (ja)
JP (1) JP7337248B2 (ja)
KR (1) KR102688942B1 (ja)
MX (1) MX2022010037A (ja)
TW (1) TWI747739B (ja)
WO (1) WO2021166797A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014419A1 (ja) * 2022-07-12 2024-01-18 東北特殊鋼株式会社 被削性に優れた析出硬化型軟磁性フェライト系ステンレス鋼

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213382A (ja) * 2001-11-26 2003-07-30 Usinor 強磁性部品に使用可能なイオウ含有フェライト系ステンレス鋼
JP2012201929A (ja) * 2011-03-25 2012-10-22 Nippon Steel & Sumikin Stainless Steel Corp 耐食性、強度、及び延性に優れるステンレス鋼線材と鋼線、並びに、それらの製造方法。
JP2013185183A (ja) * 2012-03-07 2013-09-19 Nippon Steel & Sumikin Stainless Steel Corp 軟磁性ステンレス鋼細線およびその製造方法
WO2015190422A1 (ja) * 2014-06-11 2015-12-17 新日鐵住金ステンレス株式会社 高強度複相ステンレス鋼線材、高強度複相ステンレス鋼線とその製造方法、ならびにばね部品
WO2020196595A1 (ja) * 2019-03-27 2020-10-01 日鉄ステンレス株式会社 棒状鋼材

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545670B2 (ja) 1992-06-02 1996-10-23 新日本製鐵株式会社 鋼材の加熱圧延方法
JPH0649606A (ja) 1992-08-04 1994-02-22 Daido Steel Co Ltd 電磁ステンレス鋼
JP3309374B2 (ja) 1992-08-04 2002-07-29 大同特殊鋼株式会社 電磁ステンレス鋼
JP2004307979A (ja) 2003-04-10 2004-11-04 Sanyo Special Steel Co Ltd 優れた工具寿命特性を有する電磁ステンレス鋼
JP6262599B2 (ja) * 2013-11-29 2018-01-17 株式会社神戸製鋼所 軟磁性鋼材及びその製造方法、並びに軟磁性鋼材から得られる軟磁性部品
BR112019015377B1 (pt) * 2017-01-27 2023-10-03 Nippon Steel Corporation Produto de aço revestido

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003213382A (ja) * 2001-11-26 2003-07-30 Usinor 強磁性部品に使用可能なイオウ含有フェライト系ステンレス鋼
JP2012201929A (ja) * 2011-03-25 2012-10-22 Nippon Steel & Sumikin Stainless Steel Corp 耐食性、強度、及び延性に優れるステンレス鋼線材と鋼線、並びに、それらの製造方法。
JP2013185183A (ja) * 2012-03-07 2013-09-19 Nippon Steel & Sumikin Stainless Steel Corp 軟磁性ステンレス鋼細線およびその製造方法
WO2015190422A1 (ja) * 2014-06-11 2015-12-17 新日鐵住金ステンレス株式会社 高強度複相ステンレス鋼線材、高強度複相ステンレス鋼線とその製造方法、ならびにばね部品
WO2020196595A1 (ja) * 2019-03-27 2020-10-01 日鉄ステンレス株式会社 棒状鋼材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024014419A1 (ja) * 2022-07-12 2024-01-18 東北特殊鋼株式会社 被削性に優れた析出硬化型軟磁性フェライト系ステンレス鋼
JP7427722B2 (ja) 2022-07-12 2024-02-05 東北特殊鋼株式会社 被削性に優れた析出硬化型軟磁性フェライト系ステンレス鋼

Also Published As

Publication number Publication date
KR102688942B1 (ko) 2024-07-29
US20230085558A1 (en) 2023-03-16
KR20220139981A (ko) 2022-10-17
TW202136536A (zh) 2021-10-01
JP7337248B2 (ja) 2023-09-01
TWI747739B (zh) 2021-11-21
JPWO2021166797A1 (ja) 2021-08-26
MX2022010037A (es) 2022-09-05

Similar Documents

Publication Publication Date Title
JP6286540B2 (ja) 高強度複相ステンレス鋼線材、高強度複相ステンレス鋼線とその製造方法、ならびにばね部品
JP6004653B2 (ja) フェライト系ステンレス鋼線材、及び鋼線、並びに、それらの製造方法
JP6441909B2 (ja) 二相フェライト・オーステナイト系ステンレス鋼
JP6782601B2 (ja) 耐温間リラクセーション特性に優れる高強度ステンレス鋼線およびその製造方法、ならびにばね部品
JP6842257B2 (ja) Fe−Ni−Cr−Mo合金とその製造方法
AU2013308922B2 (en) Ferritic stainless steel with excellent oxidation resistance, good high temperature strength, and good formability
JP2024129165A (ja) 冷間鍛造性及び、耐食性と非磁性に優れるステンレス鋼
JP7077477B2 (ja) フェライト系ステンレス棒状鋼材
JP7337248B2 (ja) 電磁ステンレス棒状鋼材
JP2012107325A (ja) 高耐力非磁性鋼
WO2022153790A1 (ja) マルテンサイト系ステンレス鋼材及びその製造方法
JP7568473B2 (ja) オーステナイト系ステンレス鋼帯または熱延オーステナイト系ステンレス鋼板およびオーステナイト系ステンレス鋼の製造方法
JPH08269564A (ja) 非磁性ステンレス厚鋼板の製造方法
JP6776469B1 (ja) 二相ステンレス鋼とその製造方法
JPS6137953A (ja) 非磁性鋼線材の製造方法
JP5884781B2 (ja) 焼入れ性および加工性に優れる高炭素熱延鋼板およびその製造方法
JP5653269B2 (ja) 耐食性、強度、及び延性に優れるステンレス鋼線材と鋼線、並びに、それらの製造方法。
JP7009666B1 (ja) 加工性、耐食性に優れる溶接管用Ni-Cr-Mo系合金
TWI773591B (zh) 不鏽鋼棒狀鋼材及電磁零件
JP7320936B2 (ja) 棒状鋼材
WO2024161785A1 (ja) 熱延鋼材及びその製造方法
JP2023144727A (ja) マルテンサイト系ステンレス熱間圧延線材及びその製造方法、並びにマルテンサイト系ステンレス焼鈍線材
JP2022081452A (ja) 温熱間鍛造用電磁ステンレス棒状鋼材及び電磁部品
KR20150074694A (ko) 열간가공성이 우수한 페라이트계 스테인리스강 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756531

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022501852

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202217048257

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20227031723

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756531

Country of ref document: EP

Kind code of ref document: A1