WO2021166567A1 - ケイ素含有組成物及び半導体基板の製造方法 - Google Patents

ケイ素含有組成物及び半導体基板の製造方法 Download PDF

Info

Publication number
WO2021166567A1
WO2021166567A1 PCT/JP2021/002615 JP2021002615W WO2021166567A1 WO 2021166567 A1 WO2021166567 A1 WO 2021166567A1 JP 2021002615 W JP2021002615 W JP 2021002615W WO 2021166567 A1 WO2021166567 A1 WO 2021166567A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
group
film
containing composition
structural unit
Prior art date
Application number
PCT/JP2021/002615
Other languages
English (en)
French (fr)
Inventor
龍一 芹澤
賢悟 平澤
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2022501729A priority Critical patent/JPWO2021166567A1/ja
Priority to KR1020227028164A priority patent/KR20220143836A/ko
Publication of WO2021166567A1 publication Critical patent/WO2021166567A1/ja
Priority to US17/887,670 priority patent/US20230250238A9/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0752Silicon-containing compounds in non photosensitive layers or as additives, e.g. for dry lithography
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2004Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image characterised by the use of a particular light source, e.g. fluorescent lamps or deep UV light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/325Non-aqueous compositions
    • G03F7/327Non-aqueous alkaline compositions, e.g. anhydrous quaternary ammonium salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups

Definitions

  • the present invention relates to a method for producing a silicon-containing composition and a semiconductor substrate.
  • etching is performed using a resist pattern obtained by exposing and developing a resist film laminated on the substrate via an organic underlayer film, a silicon-containing film, or the like as a mask.
  • a multilayer resist process or the like for forming a patterned substrate is used (see International Publication No. 2012/039337).
  • the multilayer resist process it is required to be able to form a resist pattern having excellent rectangularity in cross-sectional shape without defects such as residues on the silicon-containing film.
  • the silicon-containing film is removed using a removing liquid. At this time, it is required to easily remove the silicon-containing film while suppressing damage to the substrate.
  • the present invention has been made based on the above circumstances, and an object of the present invention is to be able to form a resist pattern having an excellent rectangular cross-sectional shape and to form a silicon-containing film that can be easily removed. It is an object of the present invention to provide a method for producing a silicon-containing composition and a semiconductor substrate.
  • the invention made to solve the above problems is a silicon-containing composition used for forming an underlayer film of a resist film to be developed with an organic solvent, and is a polysiloxane compound containing a group containing an ester bond and a fluorine atom (hereinafter referred to as a polysiloxane compound). It is a silicon-containing composition containing a "[A] compound”) and a solvent (hereinafter, also referred to as "[B] solvent”).
  • Another invention made to solve the above problems is to directly or indirectly coat the substrate with the above-mentioned silicon-containing composition and the silicon-containing film formed by the above-mentioned silicon-containing composition coating step.
  • a resist pattern having an excellent rectangular cross-sectional shape can be formed on a silicon-containing film.
  • a silicon-containing film having excellent removability of a silicon-containing film hereinafter, also referred to as “film removability”
  • film removability a silicon-containing film having excellent removability of a silicon-containing film
  • the silicon-containing composition contains a compound [A] and a solvent [B].
  • the composition may contain other optional components (hereinafter, also simply referred to as “arbitrary components”) as long as the effects of the present invention are not impaired.
  • the silicon-containing composition forms a resist pattern having an excellent rectangular cross-sectional shape when a resist pattern is formed on the silicon-containing film by organic solvent development. can. Further, the silicon-containing film formed by the silicon-containing composition is excellent in the removability (film removability) of the silicon-containing film by the base-containing removing liquid. The reason why the composition exerts the above effect by having the above composition is not always clear, but it can be inferred as follows, for example.
  • the compound [A] has a fluorine atom
  • a resist film is formed on the silicon-containing film, the resist film is exposed, and then organic solvent development is performed, the exposed portion of the resist film is subjected to an organic solvent developing solution. Therefore, it is considered that a resist pattern having excellent rectangularity in cross-sectional shape can be formed. Further, it is considered that the film removability can be improved because the compound [A] has a group containing an ester bond and thus the solubility in the removal solution containing a base is improved.
  • the silicon-containing composition exerts the above-mentioned effects, the silicon-containing composition can be suitably used as a composition for forming a silicon-containing film (that is, a composition for forming a silicon-containing film).
  • the method for developing a resist film is roughly classified into organic solvent development using an organic solvent as a developing solution and alkaline development using an alkaline solution as a developing solution.
  • the silicon-containing composition is a resist developed with an organic solvent. It is preferably used for the formation of an underlayer film of a film.
  • the silicon-containing composition is used for forming an underlayer film of a resist film for organic solvent development, only the exposed portion of the resist film is dissolved when the resist film is formed and exposed and then developed with an organic solvent.
  • the silicon-containing film which is the lower layer film of the resist film, does not dissolve, and a resist pattern having excellent rectangular cross-sectional shape can be formed.
  • a negative type resist film is particularly preferable, and a negative type resist film for exposure with ArF excimer laser light (for ArF exposure), which will be described later, is more preferable.
  • the silicon-containing composition is suitably used for forming an underlayer film of a resist film developed with an organic solvent for ArF exposure.
  • the compound [A] is a polysiloxane compound containing a group containing an ester bond and a fluorine atom.
  • group containing an ester bond includes, for example, an ester group (ester group).
  • -C ( O) -OR)
  • a "lactone structure” means a structure having at least one ring (lactone ring) containing an ester bond.
  • the “polysiloxane compound” means a compound containing a siloxane bond (—Si—O—Si—).
  • the compound [A] has a group containing an ester bond, a silicon-containing film having excellent film removability can be formed. Further, since the compound [A] has a fluorine atom, a resist pattern having an excellent rectangular cross-sectional shape can be formed when a resist pattern is formed on a silicon-containing film by organic solvent development.
  • the silicon-containing composition can contain one kind or two or more kinds of [A] compounds.
  • the group containing an ester bond and the fluorine atom may be contained in one kind of functional group or may be contained in different functional groups.
  • the group containing an ester bond may be directly bonded to the silicon atom, or may be bonded to the silicon atom via another group.
  • the group containing an ester bond is not particularly limited as long as it is a group containing an ester bond, and examples thereof include an ester group, an acyloxy group, a group containing a lactone structure, and a group containing a cyclic carbonate structure. Among these, an ester group is preferable from the viewpoint of further improving the film removability.
  • the compound [A] can have a group containing one or more ester bonds.
  • the fluorine atom may be directly bonded to the silicon atom, or may be bonded to the silicon atom via another group. From the viewpoint of exerting the effect of the present invention more effectively, it is preferable that the fluorine atom is bonded to the silicon atom via another group. In other words, in the compound [A], the fluorine atom is preferably bonded to the silicon atom as a group containing the fluorine atom.
  • Examples of the group containing a fluorine atom include a group in which at least one hydrogen atom of an organic group is replaced with a fluorine atom.
  • aromatic hydrocarbon groups having a substituent containing a fluorine atom are selected from the viewpoint that a resist pattern having a rectangular cross-sectional shape can be formed when a resist pattern is formed on a silicon-containing film by organic solvent development. preferable.
  • the compound [A] includes a first structural unit (hereinafter, also referred to as “structural unit (I)”) represented by the following formula (1) described later and a second structure represented by the following formula (2) described later. It is preferably a compound having a unit (hereinafter, also referred to as “structural unit (II)”).
  • the compound [A] has other structural units (hereinafter, also simply referred to as “other structural units”) other than the structural unit (I) and the structural unit (II) as long as the effects of the present invention are not impaired. You may be.
  • the structural unit (I) is a structural unit represented by the following formula (1).
  • the compound [A] can have one or more structural units (I).
  • the structural unit (I) has a monovalent organic group having 1 to 20 carbon atoms containing a fluorine atom represented by X in the following formula (1) (hereinafter, also referred to as “fluorine atom-containing group (X)”).
  • fluorine atom-containing group (X) fluorine atom-containing group
  • X is a monovalent organic group having 1 to 20 carbon atoms containing a fluorine atom.
  • a is an integer of 1 to 3.
  • R 1 is a monovalent organic group, a hydroxy group or a halogen atom having 1 to 20 carbon atoms.
  • b is an integer of 0 to 2. If b is 2, the two R 1 may be the same or different from each other. However, a + b is 3 or less.
  • the "organic group” means a group containing at least one carbon atom
  • the "carbon number” means the number of carbon atoms constituting the group.
  • Examples of the monovalent organic group having 1 to 20 carbon atoms in the fluorine atom-containing group (X) include a monovalent hydrocarbon group having 1 to 20 carbon atoms and a divalent group between carbon-carbon bonds of the hydrocarbon group.
  • a group containing a hetero-atom-containing group hereinafter, also referred to as “group ( ⁇ )”
  • group ( ⁇ ) the above-mentioned hydrocarbon group, or a part or all of the hydrogen atoms contained in the above-mentioned group ( ⁇ ) was replaced with a monovalent hetero-atom-containing group.
  • group ( ⁇ ) A group (hereinafter, also referred to as "group ( ⁇ )"), the above-mentioned hydrocarbon group, the above-mentioned group ( ⁇ ), or a group in which the above-mentioned group ( ⁇ ) and a divalent heteroatom-containing group are combined (hereinafter, “group ( ⁇ )”). ) ”), Etc. can be mentioned.
  • the "hydrocarbon group” includes a chain hydrocarbon group, an alicyclic hydrocarbon group and an aromatic hydrocarbon group. This “hydrocarbon group” may be a saturated hydrocarbon group or an unsaturated hydrocarbon group.
  • the "chain hydrocarbon group” refers to a hydrocarbon group that does not contain a cyclic structure and is composed only of a chain structure, and includes both a linear hydrocarbon group and a branched hydrocarbon group.
  • the "alicyclic hydrocarbon group” refers to a hydrocarbon group containing only an alicyclic structure as a ring structure and not containing an aromatic ring structure, and refers to a monocyclic alicyclic hydrocarbon group and a polycyclic alicyclic group. Contains both hydrocarbon groups.
  • aromatic hydrocarbon group refers to a hydrocarbon group containing an aromatic ring structure as a ring structure. However, it does not have to be composed only of an aromatic ring structure, and a chain structure or an alicyclic structure may be included as a part thereof.
  • Examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms include a monovalent chain hydrocarbon group having 1 to 20 carbon atoms, a monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms, and 6 carbon atoms. Examples thereof include to 20 monovalent aromatic hydrocarbon groups.
  • Examples of the monovalent chain hydrocarbon group having 1 to 20 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a sec-butyl group, an iso-butyl group and a tert.
  • -Alkyl groups such as butyl groups, alkenyl groups such as ethenyl groups, propenyl groups and butenyl groups, alkynyl groups such as ethynyl groups, propynyl groups and butynyl groups and the like can be mentioned.
  • Examples of the monovalent alicyclic hydrocarbon group having 3 to 20 carbon atoms include a monocyclic alicyclic saturated hydrocarbon group such as a cyclopentyl group and a cyclohexyl group, a norbornyl group, an adamantyl group, a tricyclodecyl group and a tetracyclo.
  • Polycyclic alicyclic saturated hydrocarbon group such as dodecyl group, monocyclic alicyclic unsaturated hydrocarbon group such as cyclopentenyl group and cyclohexenyl group, norbornenyl group, tricyclodecenyl group, tetracyclodode
  • Examples thereof include a polycyclic alicyclic unsaturated hydrocarbon group such as a senyl group.
  • Examples of the monovalent aromatic hydrocarbon group having 6 to 20 carbon atoms include an aryl group such as a phenyl group, a tolyl group, a xsilyl group, a naphthyl group and an anthryl group, a benzyl group, a phenethyl group, a naphthylmethyl group and an anthrylmethyl group.
  • Examples include an aralkyl group such as a group.
  • hetero atom constituting the divalent and monovalent hetero atom-containing group
  • examples of the hetero atom constituting the divalent and monovalent hetero atom-containing group include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a halogen atom and the like.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • R' is a hydrogen atom or a monovalent hydrocarbon group.
  • Examples of the monovalent heteroatom-containing group include a halogen atom, a hydroxy group, a carboxy group, a cyano group, an amino group, a sulfanyl group and the like.
  • Examples of the fluorine-containing group (X) include an organic group having a substituent containing a fluorine atom.
  • a hydrocarbon group having a substituent containing a fluorine atom is preferable, an aromatic hydrocarbon group having a substituent containing a fluorine atom is more preferable, and an aromatic hydrocarbon group having a fluorine atom as a substituent is further preferable.
  • the substituent containing a fluorine atom include a fluorine atom, a group in which at least one hydrogen atom of a hydrocarbon group having 1 to 10 carbon atoms is substituted with a fluorine atom, and the like.
  • the aromatic hydrocarbon group having a substituent containing a fluorine atom a fluorophenyl group or a pentafluorophenyl group is preferable.
  • 1 or 2 is preferable, and 1 is more preferable.
  • the monovalent organic group for example, monovalent exemplified same groups as organic groups of the above-mentioned fluorine atom-containing group (X) ⁇ 1 carbon atoms in 20 of 1 to 20 carbon atoms represented by R 1 And so on.
  • Examples of the halogen atom represented by R 1 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • R 1 a monovalent chain hydrocarbon group, a monovalent aromatic hydrocarbon group, or a part or all of the hydrogen atoms of the monovalent hydrocarbon group is substituted with a monovalent heteroatom-containing group.
  • a valent group is preferred, an alkyl or aryl group is more preferred, and a methyl, ethyl or phenyl group is even more preferred.
  • 0 or 1 is preferable, and 0 is more preferable.
  • the structural unit (I) is, for example, a structural unit derived from a compound represented by the following formulas (1-1) to (1-3) (hereinafter, "structural unit (I-1) to (I-3)". Also called) and the like.
  • the structural unit (I) is the structural unit (I-1) or (I) from the viewpoint that a resist pattern having a rectangular cross-sectional shape can be formed when a resist pattern is formed on a silicon-containing film by organic solvent development. -2) is preferable.
  • the lower limit of the content ratio of the structural unit (I) in the compound [A] is preferably 1 mol%, more preferably 5 mol%, and further 10 mol% with respect to all the structural units constituting the [A] compound. Preferably, 15 mol% is particularly preferred.
  • the upper limit of the content ratio of the structural unit (I) is preferably 50 mol%, more preferably 40 mol%, further preferably 35 mol%, and particularly preferably 30 mol%.
  • the structural unit (II) is a structural unit represented by the following formula (2).
  • the compound [A] can have one or more structural units (II).
  • the structural unit (II) has a monovalent organic group having 1 to 20 carbon atoms (hereinafter, also referred to as “ester bond-containing group (Y)”) containing an ester bond represented by Y in the following formula (2). Therefore, a silicon-containing film having better film removability can be formed.
  • Y is a monovalent organic group having 1 to 20 carbon atoms containing an ester bond.
  • c is an integer of 1 to 3. When c is 2 or more, a plurality of Ys are the same or different from each other.
  • R 2 is a monovalent organic group, a hydroxy group or a halogen atom having 1 to 20 carbon atoms.
  • d is an integer of 0 to 2. If d is 2, two R 2 are the same or different from each other. However, c + d is 3 or less.
  • the monovalent organic group having 1 to 20 carbon atoms in the ester bond-containing group (Y) is exemplified as, for example, the monovalent organic group having 1 to 20 carbon atoms in the fluorine atom-containing group (X) of the above formula (1). Examples thereof include the same groups as those of the group.
  • ester bond-containing group (Y) examples include a group containing an ester group, a group containing an acyloxy group, a group containing a lactone structure, a group containing a cyclic carbonate structure, and the like.
  • ester group containing an ester group examples include a group represented by the following formula (3-1) (hereinafter, also referred to as “ester bond-containing group (Y-1)”).
  • L 1 is a single bond or a divalent linking group.
  • R 3 is a monovalent hydrocarbon group having 1 to 10 carbon atoms. * Indicates the binding site with the silicon atom in the above formula (2).
  • Examples of the divalent linking group represented by L 1 include a divalent organic group having 1 to 10 carbon atoms.
  • the divalent organic group having 1 to 10 carbon atoms for example, among the groups exemplified as the monovalent organic group having 1 to 20 carbon atoms in the fluorine atom-containing group (X) of the above formula (1), the carbon number 1 Examples thereof include a group obtained by removing one hydrogen atom from a monovalent organic group of ⁇ 10.
  • L 1 is a group containing a divalent heteroatom-containing group between carbon-carbon bonds of a single bond, a divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent hydrocarbon group having 1 to 10 carbon atoms. Is preferable, and a group containing —S— between carbon-carbon bonds of a single bond, an alkylene group, an alkenylene group or an alkylene group is more preferable.
  • the monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 3 is exemplified as, for example, a monovalent hydrocarbon group having 1 to 20 carbon atoms in the fluorine atom-containing group (X) of the above formula (1). Examples thereof include monovalent hydrocarbon groups having 1 to 10 carbon atoms.
  • R 3 a monovalent chain-like hydrocarbon group or a monovalent alicyclic hydrocarbon group is preferred. Further, as R 3 , a group that is bonded to the etheric oxygen atom of the carbonyloxy group with a tertiary carbon atom is preferable. Examples of such a group include a tert-butyl group, a 1-methylcyclopentane-1-yl group and the like.
  • Examples of the group containing an acyloxy group include a group represented by the following formula (3-2) (hereinafter, also referred to as “ester bond-containing group (Y-2)”).
  • L 2 is a single bond or a divalent linking group.
  • R 4 is a monovalent hydrocarbon group having 1 to 10 carbon atoms. * Indicates the binding site with the silicon atom in the above formula (2).
  • Examples of the divalent linking group represented by L 2 include a group similar to the group exemplified as L 1 in the above formula (3-1). As L 2 , a single bond, a methylene group or a divalent alkylene group having 2 to 10 carbon atoms is preferable, and a methylene group is more preferable.
  • Examples of the monovalent hydrocarbon group having 1 to 10 carbon atoms represented by R 4 include a group similar to the group exemplified as R 3 in the above formula (3-1). As R 4 , a monovalent chain hydrocarbon group is preferable.
  • Examples of the group containing a lactone structure include a group represented by the following formula (3-3) (hereinafter, also referred to as “ester bond-containing group (Y-3)”).
  • L 3 is a single bond or a divalent linking group.
  • R 5 is a monovalent group having a lactone structure. * Indicates the binding site with the silicon atom in the above formula (2).
  • Examples of the divalent linking group represented by L 3 include a group similar to the group exemplified as L 1 in the above formula (3-1).
  • Examples of the group containing a cyclic carbonate structure include a group represented by the following formula (3-4) (hereinafter, also referred to as “ester bond-containing group (Y-4)”).
  • L 4 is a single bond or a divalent linking group.
  • R 6 is a monovalent group having a cyclic carbonate structure. * Indicates the binding site with the silicon atom in the above formula (2).
  • Examples of the divalent linking group represented by L 4 include a group similar to the group exemplified as L 1 in the above formula (3-1). As L 4 , a divalent alkylene group having 2 to 10 carbon atoms is preferable.
  • the cyclic carbonate structure in R 6 includes a monocyclic cyclic carbonate structure such as an ethylene carbonate structure, a trimethylene carbonate structure, and a tetramethylene carbonate structure, a cyclopentylene carbonate structure, a cyclohexylene carbonate structure, a norbornylene carbonate structure, and a phenylene.
  • a monocyclic cyclic carbonate structure such as an ethylene carbonate structure, a trimethylene carbonate structure, and a tetramethylene carbonate structure, a cyclopentylene carbonate structure, a cyclohexylene carbonate structure, a norbornylene carbonate structure, and a phenylene.
  • Examples thereof include a polycyclic carbonate structure such as a carbonate structure and a naphthylene carbonate structure.
  • a monocyclic cyclic carbonate structure is preferable, and an ethylene carbonate structure is more preferable.
  • the ester bond-containing group (Y) is preferable from the viewpoint of further improving the film removability.
  • the monovalent organic group having 1 to 20 carbon atoms represented by R 2 for example the groups exemplified as the monovalent organic groups of formula (1) of the fluorine atom-containing group (X) having 1 to 20 carbon atoms in the The same group as above can be mentioned.
  • Examples of the halogen atom represented by R 2 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • a valent group is preferred, an alkyl or aryl group is more preferred, and a methyl, ethyl or phenyl group is even more preferred.
  • 0 or 1 is preferable, and 0 is more preferable.
  • the structural unit (II) is, for example, a structural unit derived from a compound represented by the following formulas (2-1) to (2-8) (hereinafter, "structural unit (II-1) to (II-8)". Also called) and the like.
  • structural units (II) to (II-4) or (II-6) are preferable, and structural units (II-1) to (II-1) to (II) are preferable from the viewpoint of further improving the film removability. -4) is more preferable.
  • the lower limit of the content ratio of the structural unit (II) in the compound [A] is preferably 0.5 mol%, more preferably 1 mol%, and 2 mol% with respect to all the structural units constituting the [A] compound. Is even more preferable.
  • the upper limit of the content ratio of the structural unit (II) is preferably 30 mol%, more preferably 25 mol%, still more preferably 20 mol%. When the content ratio of the structural unit (II) is in the above range, a silicon-containing film having better film removability can be formed.
  • R 7 is a monovalent organic group, a hydroxy group or a halogen atom having 1 to 20 carbon atoms.
  • e is an integer of 1 to 3. If e is 2 or more, plural R 7 may be the same or different from each other.
  • R 7 As the monovalent organic group having 1 to 20 carbon atoms represented by R 7 , for example, the group exemplified as the monovalent organic group having 1 to 20 carbon atoms in the fluorine atom-containing group (X) of the above formula (1). The same group as above can be mentioned.
  • Examples of the halogen atom represented by R 7 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • R 7 a monovalent aromatic hydrocarbon group is preferable, an aryl group is more preferable, and a phenyl group is further preferable.
  • the lower limit of the content ratio of the structural unit (III) is 1 mol% with respect to all the structural units constituting the [A] compound.
  • 5 mol% is more preferred, and 10 mol% is even more preferred.
  • the upper limit of the content ratio is preferably 40 mol%, more preferably 30 mol%, still more preferably 25 mol%.
  • the lower limit of the content ratio of the structural unit (IV) is 30 mol% with respect to all the structural units constituting the compound [A].
  • 40 mol% is more preferred, and 50 mol% is even more preferred.
  • the upper limit of the content ratio is preferably 95 mol%, more preferably 90 mol%, still more preferably 85 mol%.
  • the lower limit of the content ratio of the compound [A] in the silicon-containing composition is preferably 0.1% by mass, more preferably 0.5% by mass, based on all the components contained in the silicon-containing composition. Mass% is more preferred.
  • the upper limit of the content ratio is preferably 10% by mass, more preferably 7.5% by mass, and even more preferably 5% by mass.
  • the compound [A] is preferably in the form of a polymer.
  • polymer refers to a compound having two or more structural units, and when the same structural unit is continuous in two or more in a polymer, this structural unit is also referred to as a "repeating unit".
  • the lower limit of the polystyrene-equivalent weight average molecular weight (Mw) of the compound [A] by gel permeation chromatography (GPC) is preferably 1,000, preferably 1,200. More preferably, 1,500 is even more preferable, and 1,600 is particularly preferable.
  • Mw polystyrene-equivalent weight average molecular weight
  • GPC gel permeation chromatography
  • the upper limit of the Mw 10,000 is preferable, 5,000 is more preferable, 3,000 is further preferable, and 2,500 is particularly preferable.
  • the Mw of the compound [A] uses a GPC column (2 "G2000HXL”, 1 "G3000HXL” and 1 "G4000HXL”) of Toso Co., Ltd., and gel permeation under the following conditions. It is a value measured by ion chromatography (GPC).
  • GPC ion chromatography
  • Eluent tetrahydrofuran Flow rate: 1.0 mL / min
  • Sample concentration 1.0% by mass
  • Sample injection volume 100 ⁇ L
  • Detector Differential refractometer Standard material: Monodisperse polystyrene
  • the [A] compound can be synthesized by a conventional method using a monomer that gives each structural unit.
  • a monomer that gives a structural unit (I) a monomer that gives a structural unit (II), and a monomer that gives another structural unit, if necessary, are used as a solvent in the presence of a catalyst such as oxalic acid and water.
  • It can be synthesized by hydrolyzing and condensing in the solution, preferably by purifying the solution containing the produced hydrolyzed condensate by subjecting it to solvent substitution or the like in the presence of a dehydrating agent such as orthogiate trimethyl ester.
  • each monomer is incorporated into the [A] compound regardless of the type by a hydrolysis condensation reaction or the like. Therefore, the content ratios of the structural unit (I), the structural unit (II), and other structural units in the synthesized [A] compound are usually the same as the ratio of the charged amount of each monomer used in the synthesis reaction. Become.
  • the solvent is not particularly limited, and examples thereof include an alcohol solvent, a ketone solvent, an ether solvent, an ester solvent, a nitrogen-containing solvent, and water.
  • the silicon-containing composition may contain one or more [B] solvents.
  • Examples of the alcohol solvent include monoalcohol solvents such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, and iso-butanol, ethylene glycol, 1,2-propylene glycol, diethylene glycol, and dipropylene glycol.
  • Examples include polyhydric alcohol solvents.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl-iso-butyl ketone, cyclohexanone and the like.
  • ether solvent examples include ethyl ether, iso-propyl ether, ethylene glycol dibutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, and propylene glycol monopropyl ether.
  • ether solvent examples include tetrahydrofuran.
  • ester solvent examples include ethyl acetate, ⁇ -butyrolactone, n-butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate and acetic acid.
  • ester solvent examples include propylene glycol monoethyl ether, dipropylene glycol monomethyl ether acetate, dipropylene glycol monoethyl ether acetate, ethyl propionate, n-butyl propionate, methyl lactate and ethyl lactate.
  • nitrogen-containing solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like.
  • an ether solvent or an ester solvent is preferable, and an ether solvent or an ester solvent having a glycol structure is more preferable because the film forming property is excellent.
  • Examples of the ether solvent and ester solvent having a glycol structure include propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, and propylene glycol monopropyl acetate.
  • Examples include ether. Among these, propylene glycol monomethyl ether acetate or propylene glycol monoethyl ether is preferable, and propylene glycol monomethyl ether is more preferable.
  • the lower limit of the content ratio of the solvent [B] in the silicon-containing composition is preferably 90% by mass, more preferably 92.5% by mass, and 95% by mass with respect to all the components contained in the silicon-containing composition. Is even more preferable.
  • the upper limit of the content ratio is preferably 99.9% by mass, more preferably 99.5% by mass, and even more preferably 99% by mass.
  • the optional component examples include acid generators, basic compounds (including base generators), radical generators, surfactants, colloidal silica, colloidal alumina, organic polymers and the like.
  • the silicon-containing composition may contain one or more arbitrary components.
  • the content ratio of the optional component in the silicon-containing composition shall be appropriately determined according to the type of the optional component used and within a range that does not impair the effects of the present invention. Can be done.
  • the method for preparing the silicon-containing composition is not particularly limited, and the silicon-containing composition can be prepared according to a conventional method.
  • a solution of the compound [A], a solvent of [B], and an optional component are mixed at a predetermined ratio, and preferably the obtained mixed solution is filtered through a filter or the like having a pore size of 0.2 ⁇ m or less.
  • a filter or the like having a pore size of 0.2 ⁇ m or less.
  • the method for manufacturing the semiconductor substrate is formed by a step of directly or indirectly applying a silicon-containing composition to the substrate (hereinafter, also referred to as a “silicon-containing composition coating step”) and the above-mentioned silicon-containing composition coating step.
  • a step of directly or indirectly applying the resist film-forming composition to the silicon-containing film hereinafter, also referred to as “resist film-forming composition coating step” and the resist film-forming composition coating step.
  • a step of exposing the resist film formed by the above method with radiation hereinafter, also referred to as “exposure step” and a step of developing the exposed resist film with an organic solvent (hereinafter, also referred to as “organic solvent development step”).
  • the above-mentioned silicon-containing composition is used as the silicon-containing composition.
  • the method for manufacturing the semiconductor substrate is also referred to as a step of directly or indirectly forming an organic underlayer film on the substrate (hereinafter, also referred to as an "organic underlayer film forming step") before the silicon-containing composition coating step, if necessary. ) May be further provided.
  • the method for manufacturing the semiconductor substrate is a step of removing the silicon-containing film with a base-containing removing liquid after the silicon-containing composition coating step (hereinafter, also referred to as “removal step”), if necessary. May be further provided.
  • the silicon-containing composition as the silicon-containing composition in the silicon-containing composition coating step, a resist pattern having an excellent rectangular cross-sectional shape is used on the silicon-containing film. Can be formed. Further, since the silicon-containing film formed in the silicon-containing composition coating step is excellent in film removability, it can be removed with a base-containing removing liquid.
  • Silicon-containing composition coating process In this step, the silicon-containing composition is applied directly or indirectly to the substrate.
  • a coating film of a silicon-containing composition is formed directly or indirectly on a substrate, and the silicon-containing film is usually formed by heating and curing the coating film.
  • the above-mentioned silicon-containing composition is used as the silicon-containing composition.
  • the substrate examples include an insulating film such as silicon oxide, silicon nitride, silicon oxynitride, and polysiloxane, and a resin substrate. Further, the substrate may be a substrate in which a wiring groove (trench), a plug groove (via), or the like is patterned.
  • the coating method of the composition for forming a silicon-containing film is not particularly limited, and examples thereof include a rotary coating method.
  • Examples of the case where the silicon-containing film-forming composition is indirectly applied to the substrate include the case where the silicon-containing composition is applied onto another film formed on the substrate.
  • Examples of other films formed on the substrate include an organic underlayer film, an antireflection film, and a low-dielectric insulating film formed by an organic underlayer film forming step described later.
  • the atmosphere is not particularly limited, and examples thereof include an atmosphere and a nitrogen atmosphere. Normally, the coating film is heated in the atmosphere.
  • Various conditions such as the heating temperature and the heating time when heating the coating film can be appropriately determined.
  • the lower limit of the heating temperature 90 ° C. is preferable, 150 ° C. is more preferable, and 200 ° C. is further preferable.
  • the upper limit of the heating temperature is preferably 550 ° C, more preferably 450 ° C, and even more preferably 300 ° C.
  • the lower limit of the heating time is preferably 15 seconds, more preferably 30 seconds.
  • the upper limit of the heating time is preferably 1,200 seconds, more preferably 600 seconds.
  • the composition for forming a silicon-containing film contains an acid generator and the acid generator is a radiation-sensitive acid generator
  • the formation of the silicon-containing film is promoted by combining heating and exposure. Can be done.
  • the radiation used for exposure include radiation similar to the radiation exemplified in the exposure step described later.
  • the lower limit of the average thickness of the silicon-containing film formed by this step 1 nm is preferable, 3 nm is more preferable, and 5 nm is further preferable.
  • the upper limit of the average thickness is preferably 500 nm, more preferably 300 nm, and even more preferably 200 nm.
  • the average thickness of the silicon-containing film is a value measured using a spectroscopic ellipsometer (“M2000D” manufactured by JA WOOLLAM).
  • composition coating process for resist film formation In this step, the composition for forming a resist film is directly or indirectly coated on the silicon-containing film formed by the above-mentioned silicon-containing composition coating step. By this step, a resist film is directly or indirectly formed on the silicon-containing film.
  • the coating method of the resist film forming composition is not particularly limited, and examples thereof include a rotary coating method.
  • the resist composition is coated so that the formed resist film has a predetermined thickness, and then prebaked (hereinafter, also referred to as “PB”) in the coated film.
  • PB prebaked
  • a resist film is formed by volatilizing the solvent.
  • the PB temperature and PB time can be appropriately determined according to the type of resist film forming composition used and the like.
  • the lower limit of the PB temperature is preferably 30 ° C, more preferably 50 ° C.
  • the upper limit of the PB temperature is preferably 200 ° C, more preferably 150 ° C.
  • As the lower limit of the PB time 10 seconds is preferable, and 30 seconds is more preferable.
  • the upper limit of the PB time is preferably 600 seconds, more preferably 300 seconds.
  • the method for developing a resist film is roughly classified into organic solvent development using an organic solvent as a developing solution and alkaline development using an alkaline solution as a developing solution.
  • the composition for forming a resist film used in this step is generally classified.
  • the composition is limited to a resist film-forming composition capable of forming a resist film to be developed with an organic solvent. This is because when a resist film forming composition capable of forming a resist film to be subjected to alkaline development is used, in the step of alkaline development, not only the exposed portion of the resist film but also the above-mentioned silicon-containing composition coating under the resist film is applied. This is because even the silicon-containing film formed by the construction process dissolves in the alkaline developing solution.
  • the resist film-forming composition used in this step is not particularly limited as long as it is a resist film-forming composition capable of forming a resist film developed by an organic solvent, and a known resist film-forming composition can be used.
  • a negative type resist film forming composition containing a radiation-sensitive acid generator and the like can be mentioned.
  • the resist film formed by the above-mentioned resist film forming composition coating step is exposed to radiation.
  • This step causes a difference in solubility in an organic solvent as a developing solution between the exposed portion and the non-exposed portion of the resist film. More specifically, the solubility of the exposed portion of the resist film in the organic solvent is reduced.
  • the radiation used for the exposure can be appropriately selected depending on the type of the resist film forming composition to be used and the like.
  • Examples thereof include electromagnetic waves such as visible light, ultraviolet rays, far ultraviolet rays, X-rays and ⁇ -rays, and particle beams such as electron beams, molecular beams and ion beams.
  • KrF excimer laser light (wavelength 248 nm), ArF excimer laser light (wavelength 193 nm), F 2 excimer laser light (wavelength 157 nm), Kr 2 excimer laser light (wavelength 147 nm), ArKr excimer laser Light (wavelength 134 nm) or extreme ultraviolet light (wavelength 13.5 nm, also referred to as “EUV”) is more preferred, and ArF excimer laser light is even more preferred.
  • the exposure conditions can be appropriately determined according to the type of the resist film forming composition to be used and the like.
  • PEB post-exposure baking
  • the PEB temperature and PEB time can be appropriately determined depending on the type of resist film forming composition used and the like.
  • the lower limit of the PEB temperature is preferably 50 ° C., more preferably 70 ° C.
  • the upper limit of the PEB temperature is preferably 200 ° C., more preferably 150 ° C.
  • As the lower limit of the PEB time 10 seconds is preferable, and 30 seconds is more preferable.
  • the upper limit of the PEB time is preferably 600 seconds, more preferably 300 seconds.
  • Organic solvent development process In this step, the exposed resist film is developed with an organic solvent. Since the above exposure step causes a difference in the solubility of the resist film in the organic solvent as the developing solution between the exposed part and the non-exposed part, the solubility in the organic solvent is obtained by performing the organic solvent development. A resist pattern is formed by removing the portion where is relatively high. More specifically, since the solubility of the exposed portion of the resist film in the organic solvent is lowered by the above-mentioned exposure step, non-exposure having a relatively high solubility in the organic solvent by performing the organic solvent development. A resist pattern is formed by removing the portion.
  • the developer used in organic solvent development is not particularly limited as long as it is a developer used in organic solvent development, and a known developer can be used.
  • a known developer can be used.
  • the same as those exemplified as the [B] solvent in the above-mentioned silicon-containing composition can be mentioned.
  • washing and / or drying may be performed.
  • an organic underlayer film is directly or indirectly formed on the substrate before the silicon-containing composition coating step.
  • This step is an arbitrary step.
  • an organic underlayer film is formed directly or indirectly on the substrate.
  • the term "before the silicon-containing composition coating process" does not mean only immediately before the silicon-containing composition coating process, but also means a time upstream from the silicon-containing composition coating process. Therefore, any other step may be provided between this step and the silicon-containing composition coating step.
  • the organic underlayer film can be formed by coating an organic underlayer film forming composition or the like.
  • a method of forming the organic underlayer film by coating the composition for forming the organic underlayer film for example, the coating film formed by directly or indirectly coating the composition for forming the organic underlayer film on the substrate is heated or exposed. A method of curing or the like by performing the above can be mentioned.
  • the composition for forming an organic underlayer film for example, "HM8006" of JSR Corporation can be used. The conditions for heating and exposure can be appropriately determined according to the type of the composition for forming an organic underlayer film to be used.
  • Examples of the case where the organic underlayer film is indirectly formed on the substrate include the case where the organic underlayer film is formed on the low-dielectric insulating film formed on the substrate.
  • the silicon-containing film is removed with a base-containing removing liquid (hereinafter, also referred to as “base-containing removing liquid”).
  • base-containing removing liquid a base-containing removing liquid
  • This step is an arbitrary step.
  • the silicon-containing film is removed from the substrate.
  • the term "after the silicon-containing composition coating step” does not mean only immediately after the silicon-containing composition coating step, but also means a time downstream from the silicon-containing composition coating step. Therefore, "after the silicon-containing composition coating step” includes not only after the silicon-containing composition coating step and before the resist film-forming composition coating step, but also after, for example, an organic solvent developing step. ..
  • this step is performed after the silicon-containing composition coating step and before the resist film-forming composition coating step, for example, a defect or the like is detected in the silicon-containing film before the resist film-forming composition coating step. At that time, the silicon-containing film can be easily removed as a reworking step.
  • the silicon-containing film residue after etching can be removed.
  • the base-containing removing solution is not particularly limited as long as it is a basic solution containing a base.
  • the base include sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, ammonia, ethylamine, n-propylamine, diethylamine, di-n-propylamine, triethylamine, methyldiethylamine, dimethylethanolamine, and the like.
  • Triethanolamine tetramethylammonium hydroxide (hereinafter, also referred to as "TMAH")
  • TMAH tetramethylammonium hydroxide
  • pyrrole tetraethylammonium hydroxide
  • piperidine choline
  • 1,8-diazabicyclo [5.4.0] -7-undecene 1,5 -Diazabicyclo [4.3.0] -5-Nonen and the like
  • ammonia is preferable from the viewpoint of avoiding damage to the substrate.
  • the base-containing removing liquid a liquid containing a base and water or a liquid containing a base, hydrogen peroxide and water is preferable from the viewpoint of further improving the removability of the silicon-containing film.
  • the method for removing the silicon-containing film is not particularly limited as long as it can bring the silicon-containing film into contact with the base-containing removing liquid.
  • a method of immersing the substrate in the base-containing removing liquid or a base-containing removing liquid For example, a method of immersing the substrate in the base-containing removing liquid or a base-containing removing liquid.
  • a method of spraying, a method of applying a base-containing removing liquid, and the like can be mentioned.
  • the conditions such as temperature and time for removing the silicon-containing film are not particularly limited, and can be appropriately determined according to the film thickness of the silicon-containing film, the type of base-containing removing liquid to be used, and the like.
  • As the lower limit of the temperature 20 ° C. is preferable, 40 ° C. is more preferable, and 50 ° C. is further preferable.
  • the upper limit of the temperature is preferably 300 ° C, more preferably 100 ° C.
  • As the lower limit of the time 5 seconds is preferable, and 30 seconds is more preferable.
  • the upper limit of the time is preferably 10 minutes, more preferably 180 seconds.
  • washing and / or drying may be performed.
  • the weight average molecular weight (Mw) of the [A] compound, the concentration of the [A] compound in the solution, and the average thickness of the film in this example were measured by the following methods.
  • Average thickness of film The average thickness of the membrane was measured using a spectroscopic ellipsometer (“M2000D” from JA WOOLLAM).
  • Example 1-1 Synthesis of compound (A-1)
  • the molar ratio of the above compound (M-1), compound (M-3) and compound (M-6) is 84/15/1 (M). It was dissolved in 62 parts by mass of propylene glycol monoethyl ether so as to be (molar%) to prepare a monomer solution.
  • the temperature inside the reaction vessel was set to 60 ° C., and 40 parts by mass of a 9.1 mass% oxalic acid aqueous solution was added dropwise over 20 minutes while stirring. The start of dropping was set as the start time of the reaction, and the reaction was carried out for 4 hours. After completion of the reaction, the inside of the reaction vessel was cooled to 30 ° C. or lower.
  • Examples 1-2 to 1-21 and Comparative Examples 1-1 and 1-2 Synthesis of compounds (A-2) to (A-21), (AJ-1) and (AJ-2) Table 1 below Compounds (A-2) to (A-21), (AJ-1) and (AJ-2) are the same as in Example 1-1 except that each monomer of the type and amount used in is used. Propylene glycol monoethyl ether solution was obtained. “-” In the monomers in Table 1 below indicates that the corresponding monomer was not used. The concentration (mass%) of the obtained [A] compound in the solution and the Mw of the [A] compound are shown in Table 1 below.
  • Example 2-1 Preparation of silicon-containing composition (J-1) [A] 1 part by mass of (A-1) as a compound (excluding a solvent) and [B] (B-1) as a solvent ) 99 parts by mass (including the solvent contained in the solution of the compound [A]) is mixed, and the obtained solution is filtered through a filter of polytetrafluoroethylene having a pore size of 0.2 ⁇ m to form a silicon-containing composition (J-). 1) was prepared.
  • Example 2-2 to 2-21 and Comparative Examples 2-1 and 2-2 Preparation of silicon-containing compositions (J-2) to (J-21), (j-1) and (j-2)
  • the silicon-containing compositions (J-2) to (J-) of Examples 2-2 to 2-21 are the same as in Example 2-1 except that the components of the types and blending amounts shown in Table 2 below are used. 17) and the silicon-containing compositions (j-1) and (j-2) of Comparative Examples 2-1 and 2-2 were prepared.
  • a material for forming an organic underlayer film (“HM8006” of JSR Corporation) is coated on a 12-inch silicon wafer by a rotary coating method using a spin coater ("CLEAN TRACK ACT12" of Tokyo Electron Limited), and then 250.
  • An organic underlayer film having an average thickness of 100 nm was formed by heating at ° C. for 60 seconds.
  • the silicon-containing composition prepared above was applied onto the organic underlayer film, heated at 220 ° C. for 60 seconds, and then cooled at 23 ° C. for 30 seconds to form a silicon-containing film having an average thickness of 20 nm.
  • a radiation-sensitive resin composition (“ARF AR2772JN” from JSR Corporation) is applied onto the formed silicon-containing film, heated at 90 ° C.
  • a resist film having a thickness of 100 nm was formed.
  • an ArF immersion exposure apparatus (“S610C” of NIKON Corporation)
  • exposure was performed through a mask of a mask size for forming a 40 nm line / 80 nm pitch under optical conditions of NA: 1.30 and Dipole.
  • the substrate was heated at 100 ° C. for 60 seconds and then cooled at 23 ° C. for 60 seconds.
  • n-butyl acetate (20 ° C. to 25 ° C.) was used, and the substrate was developed by a paddle method and then dried to obtain an evaluation substrate on which a resist pattern was formed.
  • a scanning electron microscope (“CG-4000” of Hitachi High-Tech Co., Ltd.) was used for measuring the length of the resist pattern of the evaluation substrate and observing the cross-sectional shape.
  • the exposure amount at which a one-to-one line and space having a line width of 40 nm was formed was defined as the optimum exposure amount.
  • the resist pattern shape is "A" (good) when the cross-sectional shape of the pattern is rectangular, "B” (slightly good) when the cross-section of the pattern has a tail, and there is a residue (defect) in the pattern.
  • the case was evaluated as "C" (defective).
  • the silicon-containing composition prepared above was applied onto a 12-inch silicon wafer, heated at 220 ° C. for 60 seconds, and then cooled at 23 ° C. for 30 seconds to form a silicon-containing film having an average thickness of 20 nm.
  • the silicon-containing film formed from the silicon-containing composition of the example is on the film as compared with the silicon-containing film formed from the silicon-containing composition of the comparative example.
  • a resist pattern having excellent rectangular cross-sectional shape could be formed.
  • the silicon-containing film formed from the silicon-containing composition of the example had better film removability as compared with the silicon-containing film formed from the silicon-containing composition of the comparative example.
  • a resist pattern having an excellent rectangular cross-sectional shape can be formed, and a silicon-containing film that can be easily removed can be formed. Therefore, these can be suitably used for manufacturing a semiconductor substrate or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Materials For Photolithography (AREA)

Abstract

断面形状の矩形性に優れたレジストパターンを形成でき、かつ容易に除去できるケイ素含有膜を形成することができるケイ素含有組成物及び半導体基板の製造方法を提供する。有機溶媒現像するレジスト膜の下層膜の形成に用いられるケイ素含有組成物であって、エステル結合を含む基及びフッ素原子を含むポリシロキサン化合物と、溶媒とを含有する、ケイ素含有組成物。

Description

ケイ素含有組成物及び半導体基板の製造方法
 本発明は、ケイ素含有組成物及び半導体基板の製造方法に関する。
 半導体基板の製造におけるパターン形成には、例えば、基板上に有機下層膜、ケイ素含有膜等を介して積層されたレジスト膜を露光及び現像して得られたレジストパターンをマスクとしてエッチングを行うことでパターニングされた基板を形成する多層レジストプロセス等が用いられる(国際公開第2012/039337号参照)。
国際公開第2012/039337号
 多層レジストプロセスにおいては、ケイ素含有膜上に残渣等の欠陥のない、断面形状の矩形性に優れたレジストパターンを形成できることが求められる。
 半導体基板等の製造工程では、除去液を用いてケイ素含有膜を除去することが行われる。この際、基板へのダメージを抑えつつ、上記ケイ素含有膜を容易に除去することが求められる。
 本発明は、以上のような事情に基づいてなされたものであり、その目的は、断面形状の矩形性に優れたレジストパターンを形成でき、かつ容易に除去できるケイ素含有膜を形成することができるケイ素含有組成物及び半導体基板の製造方法を提供することにある。
 上記課題を解決するためになされた発明は、有機溶媒現像するレジスト膜の下層膜の形成に用いられるケイ素含有組成物であって、エステル結合を含む基及びフッ素原子を含むポリシロキサン化合物(以下、「[A]化合物」ともいう)と、溶媒(以下、「[B]溶媒」ともいう)とを含有する、ケイ素含有組成物である。
 上記課題を解決するためになされた別の発明は、基板に直接又は間接に上述の当該ケイ素含有組成物を塗工する工程と、上記ケイ素含有組成物塗工工程により形成されたケイ素含有膜に直接又は間接にレジスト膜形成用組成物を塗工する工程と、上記レジスト膜形成用組成物塗工工程により形成されたレジスト膜を放射線により露光する工程と、上記露光されたレジスト膜を有機溶媒現像する工程とを備える、半導体基板の製造方法である。
 本発明のケイ素含有組成物及び半導体基板の製造方法によれば、ケイ素含有膜上に断面形状の矩形性に優れたレジストパターンを形成することができる。また、本発明のケイ素含有組成物及び半導体基板の製造方法によれば、塩基を含有する除去液によるケイ素含有膜の除去性(以下、「膜除去性」ともいう)に優れるケイ素含有膜を形成することができる。したがって、これらは半導体基板の製造等に好適に用いることができる。
 以下、本発明のケイ素含有組成物及び半導体基板の製造方法について詳説する。
<ケイ素含有組成物>
 当該ケイ素含有組成物は、[A]化合物と、[B]溶媒とを含有する。当該組成物は、本発明の効果を損なわない範囲において、その他の任意成分(以下、単に「任意成分」ともいう)を含有していてもよい。
 当該ケイ素含有組成物は[A]化合物と[B]溶媒とを含有することにより、ケイ素含有膜上に有機溶媒現像によりレジストパターンを形成する際に断面形状の矩形性に優れたレジストパターンを形成できる。さらに、当該ケイ素含有組成物により形成されるケイ素含有膜は塩基を含有する除去液によるケイ素含有膜の除去性(膜除去性)に優れる。当該組成物が、上記構成を備えることで上記効果を奏する理由は必ずしも明確ではないが、例えば以下のように推察することができる。すなわち、[A]化合物がフッ素原子を有することにより、ケイ素含有膜上にレジスト膜を形成し、レジスト膜を露光した後、有機溶媒現像を行う際に、レジスト膜の露光部を有機溶媒現像液で除去しやすくなることから、断面形状の矩形性に優れたレジストパターンを形成することができると考えられる。また、[A]化合物がエステル結合を含む基を有することにより、塩基を含有する除去液への溶解性が向上することから、膜除去性を向上することができると考えられる。
 当該ケイ素含有組成物は上述のような効果を奏するため、当該ケイ素含有組成物はケイ素含有膜を形成するための組成物(すなわち、ケイ素含有膜形成用組成物)として好適に用いることができる。
 一般に、レジスト膜の現像方法は、有機溶媒を現像液として用いる有機溶媒現像と、アルカリ性溶液を現像液として用いるアルカリ現像とに大別されるが、当該ケイ素含有組成物は、有機溶媒現像するレジスト膜の下層膜の形成のために好適に用いられる。当該ケイ素含有組成物を有機溶媒現像するレジスト膜の下層膜の形成のために用いた場合には、レジスト膜を形成し露光した後、有機溶媒現像する際に、レジスト膜の露光部のみが溶解し、レジスト膜の下層膜であるケイ素含有膜は溶解せず、断面形状の矩形性に優れたレジストパターンを形成することができる。
 有機溶媒現像するレジスト膜としては、特にネガ型のレジスト膜が好ましく、後述するArFエキシマレーザー光による露光用(ArF露光用)のネガ型のレジスト膜がさらに好ましい。換言すると、当該ケイ素含有組成物は、ArF露光用の有機溶媒現像するレジスト膜の下層膜の形成のために好適に用いられる。
 以下、当該ケイ素含有組成物が含有する各成分について説明する。
[[A]化合物]
 [A]化合物は、エステル結合を含む基及びフッ素原子を含むポリシロキサン化合物である。本明細書において、「エステル結合」とは-C(=O)-O-結合又は-O-C(=O)-結合を意味し、「エステル結合を含む基」には、例えばエステル基(-C(=O)-O-R)、アシルオキシ基(-O-C(=O)-R)だけでなく、ラクトン構造を含む基、カーボネート結合(-O-C(=O)-O-)を含む基等も包含される。なお、本明細書において、「ラクトン構造」とはエステル結合を含む環(ラクトン環)を少なくとも1つ有する構造を意味する。また、本明細書において「ポリシロキサン化合物」とは、シロキサン結合(-Si-O-Si-)を含む化合物を意味する。
 [A]化合物がエステル結合を含む基を有することにより、膜除去性に優れるケイ素含有膜を形成することができる。また、[A]化合物がフッ素原子を有することにより、ケイ素含有膜上に有機溶媒現像によりレジストパターンを形成する際に断面形状の矩形性に優れたレジストパターンを形成できる。
 当該ケイ素含有組成物は、1種又は2種以上の[A]化合物を含有することができる。
 [A]化合物においてエステル結合を含む基及びフッ素原子は、1種の官能基に含まれていてもよいし、異なる官能基にそれぞれ含まれていてもよい。
 [A]化合物においてエステル結合を含む基は、ケイ素原子に直接結合していてもよいし、他の基を介してケイ素原子に結合していてもよい。
 エステル結合を含む基としてはエステル結合を含む基であれば特に制限されず、例えばエステル基、アシルオキシ基、ラクトン構造を含む基、環状カーボネート構造を含む基等が挙げられる。これらの中でも、膜除去性をより向上させる観点から、エステル基が好ましい。[A]化合物は、1種又は2種以上のエステル結合を含む基を有することができる。本明細書において、「環状カーボネート構造」とはカーボネート結合(-O-C(=O)-O-)を含む環(環状カーボネート環)を含む構造を意味する。
 [A]化合物においてフッ素原子は、ケイ素原子に直接結合していてもよいし、他の基を介してケイ素原子に結合していてもよい。本発明の効果をより効果的に発揮させる観点からは、フッ素原子は他の基を介してケイ素原子に結合していることが好ましい。換言すると、[A]化合物においてフッ素原子は、フッ素原子を含む基としてケイ素原子に結合していることが好ましい。
 フッ素原子を含む基としては、例えば有機基が有する少なくとも1個の水素原子をフッ素原子で置換した基等が挙げられる。これらの中でも、ケイ素含有膜上に有機溶媒現像によりレジストパターンを形成する際に断面形状の矩形性により優れたレジストパターンを形成できる観点から、フッ素原子を含む置換基を有する芳香族炭化水素基が好ましい。
 [A]化合物としては、後述する下記式(1)で表される第1構造単位(以下、「構造単位(I)」ともいう)及び後述する下記式(2)で表される第2構造単位(以下、「構造単位(II)」ともいう)を有する化合物であることが好ましい。[A]化合物は、本発明の効果を損なわない範囲において、上記構造単位(I)及び構造単位(II)以外のその他の構造単位(以下、単に「他の構造単位」ともいう)を有していてもよい。
 以下、[A]化合物が有する各構造単位について説明する。
(構造単位(I))
 構造単位(I)は、下記式(1)で表される構造単位である。[A]化合物は、1種又は2種以上の構造単位(I)を有することができる。構造単位(I)は、下記式(1)におけるXで表されるフッ素原子を含む炭素数1~20の1価の有機基(以下、「フッ素原子含有基(X)」ともいう)を有することにより、ケイ素含有膜上に有機溶媒現像によりレジストパターンを形成する際に断面形状の矩形性により優れたレジストパターンを形成できる。
Figure JPOXMLDOC01-appb-C000006
 上記式(1)中、Xは、フッ素原子を含む炭素数1~20の1価の有機基である。aは、1~3の整数である。aが2以上の場合、複数のXは互いに同一又は異なる。Rは、炭素数1~20の1価の有機基、ヒドロキシ基又はハロゲン原子である。bは、0~2の整数である。bが2の場合、2つのRは互いに同一又は異なる。但し、a+bは3以下である。
 本明細書において、「有機基」とは、少なくとも1個の炭素原子を含む基を意味し、「炭素数」とは、基を構成する炭素原子数を意味する。
 フッ素原子含有基(X)における炭素数1~20の1価の有機基としては、例えば炭素数1~20の1価の炭化水素基、この炭化水素基の炭素-炭素結合間に2価のヘテロ原子含有基を含む基(以下、「基(α)」ともいう)、上記炭化水素基又は上記基(α)が有する水素原子の一部又は全部を1価のヘテロ原子含有基で置換した基(以下、「基(β)」ともいう)、上記炭化水素基、上記基(α)又は上記基(β)と2価のヘテロ原子含有基とを組み合わせた基(以下、「基(γ)」ともいう)等が挙げられる。
 本明細書において「炭化水素基」には、鎖状炭化水素基、脂環式炭化水素基及び芳香族炭化水素基が含まれる。この「炭化水素基」は、飽和炭化水素基でも不飽和炭化水素基でもよい。「鎖状炭化水素基」とは、環状構造を含まず、鎖状構造のみで構成された炭化水素基をいい、直鎖状炭化水素基及び分岐状炭化水素基の両方を含む。「脂環式炭化水素基」とは、環構造としては脂環構造のみを含み、芳香環構造を含まない炭化水素基をいい、単環の脂環式炭化水素基及び多環の脂環式炭化水素基の両方を含む。但し、脂環構造のみで構成されている必要はなく、その一部に鎖状構造を含んでいてもよい。「芳香族炭化水素基」とは、環構造として芳香環構造を含む炭化水素基をいう。但し、芳香環構造のみで構成されている必要はなく、その一部に鎖状構造や脂環構造を含んでいてもよい。
 炭素数1~20の1価の炭化水素基としては、例えば炭素数1~20の1価の鎖状炭化水素基、炭素数3~20の1価の脂環式炭化水素基、炭素数6~20の1価の芳香族炭化水素基が挙げられる。
 炭素数1~20の1価の鎖状炭化水素基としては、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、iso-ブチル基、tert-ブチル基等のアルキル基、エテニル基、プロペニル基、ブテニル基等のアルケニル基、エチニル基、プロピニル基、ブチニル基等のアルキニル基などが挙げられる。
 炭素数3~20の1価の脂環式炭化水素基としては、例えばシクロペンチル基、シクロヘキシル基等の単環の脂環式飽和炭化水素基、ノルボルニル基、アダマンチル基、トリシクロデシル基、テトラシクロドデシル基等の多環の脂環式飽和炭化水素基、シクロペンテニル基、シクロヘキセニル基等の単環の脂環式不飽和炭化水素基、ノルボルネニル基、トリシクロデセニル基、テトラシクロドデセニル基等の多環の脂環式不飽和炭化水素基などが挙げられる。
 炭素数6~20の1価の芳香族炭化水素基としては、例えばフェニル基、トリル基、キシリル基、ナフチル基、アントリル基等のアリール基、ベンジル基、フェネチル基、ナフチルメチル基、アントリルメチル基等のアラルキル基などが挙げられる。
 2価及び1価のヘテロ原子含有基を構成するヘテロ原子としては、例えば酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、ハロゲン原子等が挙げられる。ハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 2価のヘテロ原子含有基としては、例えば-O-、-C(=O)-、-S-、-C(=S)-、-NR’-、これらのうちの2つ以上を組み合わせた基等が挙げられる。R’は、水素原子又は1価の炭化水素基である。
 1価のヘテロ原子含有基としては、例えばハロゲン原子、ヒドロキシ基、カルボキシ基、シアノ基、アミノ基、スルファニル基等が挙げられる。
 フッ素含有基(X)としては、フッ素原子を含む置換基を有する有機基が挙げられる。これらの中でも、フッ素原子を含む置換基を有する炭化水素基が好ましく、フッ素原子を含む置換基を有する芳香族炭化水素基がより好ましく、フッ素原子を置換基として有する芳香族炭化水素基がさらに好ましい。フッ素原子を含む置換基としては、フッ素原子、炭素数1~10の炭化水素基が有する少なくとも1個の水素原子をフッ素原子で置換した基等が挙げられる。フッ素原子を含む置換基を有する芳香族炭化水素基としては、フルオロフェニル基又はペンタフルオロフェニル基が好ましい。
 aとしては、1又は2が好ましく、1がより好ましい。
 Rで表される炭素数1~20の1価の有機基としては、例えば上述のフッ素原子含有基(X)における炭素数1~20の1価の有機基として例示した基と同様の基等が挙げられる。
 Rで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 Rとしては、1価の鎖状炭化水素基、1価の芳香族炭化水素基又は1価の炭化水素基の有する水素原子の一部若しくは全部を1価のヘテロ原子含有基で置換した1価の基が好ましく、アルキル基又はアリール基がより好ましく、メチル基、エチル基又はフェニル基がさらに好ましい。
 bとしては、0又は1が好ましく、0がより好ましい。
 構造単位(I)としては、例えば下記式(1-1)~(1-3)で表される化合物に由来する構造単位(以下、「構造単位(I-1)~(I-3)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 構造単位(I)としては、ケイ素含有膜上に有機溶媒現像によりレジストパターンを形成する際に断面形状の矩形性により優れたレジストパターンを形成できる観点から、構造単位(I-1)又は(I-2)が好ましい。
 [A]化合物における構造単位(I)の含有割合の下限としては、[A]化合物を構成する全構造単位に対して、1モル%が好ましく、5モル%がより好ましく、10モル%がさらに好ましく、15モル%が特に好ましい。また、構造単位(I)の含有割合の上限としては、50モル%が好ましく、40モル%がより好ましく、35モル%がさらに好ましく、30モル%が特に好ましい。構造単位(I)の含有割合が上記範囲であることにより、ケイ素含有膜上に有機溶媒現像によりレジストパターンを形成する際に、断面形状の矩形性により優れたレジストパターンを形成することができる。
(構造単位(II))
 構造単位(II)は、下記式(2)で表される構造単位である。[A]化合物は、1種又は2種以上の構造単位(II)を有することができる。構造単位(II)は下記式(2)におけるYで表されるエステル結合を含む炭素数1~20の1価の有機基(以下、「エステル結合含有基(Y)」ともいう)を有することにより、膜除去性により優れるケイ素含有膜を形成することができる。
Figure JPOXMLDOC01-appb-C000008
 上記式(2)中、Yは、エステル結合を含む炭素数1~20の1価の有機基である。cは、1~3の整数である。cが2以上の場合、複数のYは互いに同一又は異なる。Rは、炭素数1~20の1価の有機基、ヒドロキシ基又はハロゲン原子である。dは、0~2の整数である。dが2の場合、2つのRは互いに同一又は異なる。但し、c+dは3以下である。
 エステル結合含有基(Y)における炭素数1~20の1価の有機基としては、例えば上記式(1)のフッ素原子含有基(X)における炭素数1~20の1価の有機基として例示した基と同様の基等が挙げられる。
 エステル結合含有基(Y)としては、エステル基を含む基、アシルオキシ基を含む基、ラクトン構造を含む基、環状カーボネート構造を含む基等が挙げられる。
 エステル基を含む基としては、例えば下記式(3-1)で表される基(以下、「エステル結合含有基(Y-1)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 上記式(3-1)中、Lは、単結合又は2価の連結基である。Rは、炭素数1~10の1価の炭化水素基である。*は、上記式(2)におけるケイ素原子との結合部位を示す。
 Lで表される2価の連結基としては、例えば炭素数1~10の2価の有機基等が挙げられる。炭素数1~10の2価の有機基としては、例えば上記式(1)のフッ素原子含有基(X)における炭素数1~20の1価の有機基として例示した基のうち、炭素数1~10の1価の有機基から1個の水素原子を除いた基等が挙げられる。
 Lとしては、単結合、炭素数1~10の2価の炭化水素基又は炭素数1~10の2価の炭化水素基の炭素-炭素結合間に2価のヘテロ原子含有基を含む基が好ましく、単結合、アルキレン基、アルケニレン基又はアルキレン基の炭素-炭素結合間に-S-を含む基がより好ましい。
 Rで表される炭素数1~10の1価の炭化水素基としては、例えば上記式(1)のフッ素原子含有基(X)における炭素数1~20の1価の炭化水素基として例示した基のうち、炭素数1~10の1価の炭化水素基等が挙げられる。
 Rとしては、1価の鎖状炭化水素基又は1価の脂環式炭化水素基が好ましい。また、Rとしては、カルボニルオキシ基のエーテル性酸素原子と3級炭素原子で結合する基が好ましい。このような基としては、例えばtert-ブチル基、1-メチルシクロペンタン-1-イル基等が挙げられる。
 アシルオキシ基を含む基としては、例えば下記式(3-2)で表される基(以下、「エステル結合含有基(Y-2)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 上記式(3-2)中、Lは、単結合又は2価の連結基である。Rは、炭素数1~10の1価の炭化水素基である。*は、上記式(2)におけるケイ素原子との結合部位を示す。
 Lで表される2価の連結基としては、上記式(3-1)におけるLとして例示した基と同様の基等が挙げられる。Lとしては、単結合、メチレン基又は炭素数2~10の2価のアルキレン基が好ましく、メチレン基がより好ましい。
 Rで表される炭素数1~10の1価の炭化水素基としては、上記式(3-1)におけるRとして例示した基と同様の基等が挙げられる。Rとしては、1価の鎖状炭化水素基が好ましい。
 ラクトン構造を含む基としては、例えば下記式(3-3)で表される基(以下、「エステル結合含有基(Y-3)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 上記式(3-3)中、Lは、単結合又は2価の連結基である。Rは、ラクトン構造を有する1価の基である。*は、上記式(2)におけるケイ素原子との結合部位を示す。
 Lで表される2価の連結基としては、上記式(3-1)におけるLとして例示した基と同様の基等が挙げられる。Lとしては、単結合が好ましい。
 Rにおけるラクトン構造としては、例えばプロピオラクトン構造、ブチロラクトン構造、バレロラクトン構造、カプロラクトン構造等の単環のラクトン構造、シクロペンタンラクトン構造、シクロヘキサンラクトン構造、ノルボルナンラクトン構造、ベンゾブチロラクトン構造、ベンゾバレロラクトン構造等の多環のラクトン構造などが挙げられる。これらの中でも、単環のラクトン構造が好ましく、ブチロラクトン構造がより好ましい。
 環状カーボネート構造を含む基としては、例えば下記式(3-4)で表される基(以下、「エステル結合含有基(Y-4)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 上記式(3-4)中、Lは、単結合又は2価の連結基である。Rは、環状カーボネート構造を有する1価の基である。*は、上記式(2)におけるケイ素原子との結合部位を示す。
 Lで表される2価の連結基としては、上記式(3-1)におけるLとして例示した基と同様の基等が挙げられる。Lとしては、炭素数2~10の2価のアルキレン基が好ましい。
 Rにおける環状カーボネート構造としては、エチレンカーボネート構造、トリメチレンカーボネート構造、テトラメチレンカーボネート構造等の単環の環状カーボネート構造、シクロペンチレンカーボネート構造、シクロへキシレンカーボネート構造、ノルボルニレンカーボネート構造、フェニレンカーボネート構造、ナフチレンカーボネート構造等の多環のカーボネート構造などが挙げられる。これらの中で、単環の環状カーボネート構造が好ましく、エチレンカーボネート構造がより好ましい。
 エステル結合含有基(Y)としては、膜除去性をより向上させる観点から、エステル結合含有基(Y-1)が好ましい。
 cとしては、1又は2が好ましく、1がより好ましい。
 Rで表される炭素数1~20の1価の有機基としては、例えば上記式(1)のフッ素原子含有基(X)における炭素数1~20の1価の有機基として例示した基と同様の基等が挙げられる。
 Rで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 Rとしては、1価の鎖状炭化水素基、1価の芳香族炭化水素基又は1価の炭化水素基の有する水素原子の一部若しくは全部を1価のヘテロ原子含有基で置換した1価の基が好ましく、アルキル基又はアリール基がより好ましく、メチル基、エチル基又はフェニル基がさらに好ましい。
 dとしては、0又は1が好ましく、0がより好ましい。
 構造単位(II)としては、例えば下記式(2-1)~(2-8)で表される化合物に由来する構造単位(以下、「構造単位(II-1)~(II-8)」ともいう)等が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 構造単位(II)としては、膜除去性をより向上させる観点から、構造単位(II-1)~(II-4)又は(II-6)が好ましく、構造単位(II-1)~(II-4)がより好ましい。
 [A]化合物における構造単位(II)の含有割合の下限としては、[A]化合物を構成する全構造単位に対して、0.5モル%が好ましく、1モル%がより好ましく、2モル%がさらに好ましい。また、構造単位(II)の含有割合の上限としては、30モル%が好ましく、25モル%がより好ましく、20モル%がさらに好ましい。構造単位(II)の含有割合が上記範囲であることにより、膜除去性により優れるケイ素含有膜を形成することができる。
(他の構造単位)
 その他の構造単位としては、例えば下記式(4)で表される構造単位(以下、「構造単位(III)」ともいう)、後述する下記式(5)で表される構造単位(以下、「構造単位(IV)」ともいう)等が挙げられる。[A]化合物が構造単位(III)を有する場合、当該ケイ素含有組成物の保存安定性及び塗工性を向上させることができる。また、[A]化合物が構造単位(IV)を有する場合、当該ケイ素含有組成物により形成されるケイ素含有膜の酸素ガスエッチング耐性を向上させることができる。
Figure JPOXMLDOC01-appb-C000014
 上記式(4)中、Rは、炭素数1~20の1価の有機基、ヒドロキシ基又はハロゲン原子である。eは、1~3の整数である。eが2以上の場合、複数のRは互いに同一又は異なる。
 Rで表される炭素数1~20の1価の有機基としては、例えば上記式(1)のフッ素原子含有基(X)における炭素数1~20の1価の有機基として例示した基と同様の基等が挙げられる。
 Rで表されるハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 Rとしては、1価の芳香族炭化水素基が好ましく、アリール基がより好ましく、フェニル基がさらに好ましい。
 eとしては、1が好ましい。
 [A]化合物が他の構造単位として構造単位(III)を有する場合、構造単位(III)の含有割合の下限としては、[A]化合物を構成する全構造単位に対して、1モル%が好ましく、5モル%がより好ましく、10モル%がさらに好ましい。上記含有割合の上限としては、40モル%が好ましく、30モル%がより好ましく、25モル%がさらに好ましい。
Figure JPOXMLDOC01-appb-C000015
 [A]化合物が他の構造単位として構造単位(IV)を有する場合、構造単位(IV)の含有割合の下限としては、[A]化合物を構成する全構造単位に対して、30モル%が好ましく、40モル%がより好ましく、50モル%がさらに好ましい。上記含有割合の上限としては、95モル%が好ましく、90モル%がより好ましく、85モル%がさらに好ましい。
 当該ケイ素含有組成物における[A]化合物の含有割合の下限としては、当該ケイ素含有組成物に含まれる全成分に対して、0.1質量%が好ましく、0.5質量%がより好ましく、1質量%がさらに好ましい。上記含有割合の上限としては、10質量%が好ましく、7.5質量%がより好ましく、5質量%がさらに好ましい。
 [A]化合物は、重合体の形態であることが好ましい。本明細書において「重合体」とは、2以上の構造単位を有する化合物をいい、重合体において同一の構造単位が2以上連続する場合、この構造単位を「繰り返し単位」ともいう。[A]化合物が重合体の形態である場合、[A]化合物のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)の下限としては、1,000が好ましく、1,200がより好ましく、1,500がさらに好ましく、1,600が特に好ましい。上記Mwの上限としては、10,000が好ましく、5,000がより好ましく、3,000がさらに好ましく、2,500が特に好ましい。
 なお、本明細書において[A]化合物のMwは、東ソー(株)のGPCカラム(「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本)を使用し、以下の条件によるゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。
 溶離液:テトラヒドロフラン
 流量:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 カラム温度:40℃
 検出器:示差屈折計
 標準物質:単分散ポリスチレン
 [A]化合物は、各構造単位を与える単量体を用い、常法により合成することができる。例えば構造単位(I)を与える単量体及び構造単位(II)を与える単量体、並びに必要に応じて他の構造単位を与える単量体をシュウ酸等の触媒及び水の存在下、溶媒中で加水分解縮合させることにより、好ましくは生成した加水分解縮合物を含む溶液をオルトギ酸トリメチルエステル等の脱水剤の存在下で溶媒置換等を行うことにより精製することによって合成することができる。加水分解縮合反応等により、各単量体は種類に関係なく[A]化合物中に取り込まれると考えられる。したがって、合成された[A]化合物における構造単位(I)及び構造単位(II)並びに他の構造単位の含有割合は、通常、合成反応に用いた各単量体の仕込み量の割合と同等になる。
[[B]溶媒]
 [B]溶媒としては特に制限されず、例えばアルコール系溶媒、ケトン系溶媒、エーテル系溶媒、エステル系溶媒、含窒素系溶媒、水等が挙げられる。当該ケイ素含有組成物は、1種又は2種以上の[B]溶媒を含有することができる。
 アルコール系溶媒としては、例えばメタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、iso-ブタノール等のモノアルコール系溶媒、エチレングリコール、1,2-プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等の多価アルコール系溶媒などが挙げられる。
 ケトン系溶媒としては、例えばアセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチル-iso-ブチルケトン、シクロヘキサノン等が挙げられる。
 エーテル系溶媒としては、例えばエチルエーテル、iso-プロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、テトラヒドロフラン等が挙げられる。
 エステル系溶媒としては、例えば酢酸エチル、γ-ブチロラクトン、酢酸n-ブチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテル、プロピオン酸エチル、プロピオン酸n-ブチル、乳酸メチル、乳酸エチル等が挙げられる。
 含窒素系溶媒としては、例えばN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。
 これらの中でも、エーテル系溶媒又はエステル系溶媒が好ましく、成膜性に優れるため、グリコール構造を有するエーテル系溶媒又はエステル系溶媒がより好ましい。
 グリコール構造を有するエーテル系溶媒及びエステル系溶媒としては、例えばプロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノエチルエーテル、酢酸プロピレングリコールモノプロピルエーテル等が挙げられる。これらの中でも、酢酸プロピレングリコールモノメチルエーテル又はプロピレングリコールモノエチルエーテルが好ましく、プロピレングリコールモノメチルエーテルがより好ましい。
 当該ケイ素含有組成物における[B]溶媒の含有割合の下限としては、当該ケイ素含有組成物に含まれる全成分に対して、90質量%が好ましく、92.5質量%がより好ましく、95質量%がさらに好ましい。上記含有割合の上限としては、99.9質量%が好ましく、99.5質量%がより好ましく、99質量%がさらに好ましい。
(任意成分)
 任意成分としては、例えば酸発生剤、塩基性化合物(塩基発生剤を含む)、ラジカル発生剤、界面活性剤、コロイド状シリカ、コロイド状アルミナ、有機ポリマー等が挙げられる。当該ケイ素含有組成物は、1種又は2種以上の任意成分を含有することができる。
 当該ケイ素含有組成物が任意成分を含有する場合、当該ケイ素含有組成物における任意成分の含有割合としては、用いる任意成分の種類に応じて、また本発明の効果を損なわない範囲において適宜決定することができる。
<ケイ素含有組成物の調製方法>
 当該ケイ素含有組成物の調製方法としては特に限定されず、常法に従って調製することができる。例えば[A]化合物の溶液と、[B]溶媒と、必要に応じて任意成分とを所定の割合で混合し、好ましくは得られた混合溶液を孔径0.2μm以下のフィルター等でろ過することにより調製することができる。
<半導体基板の製造方法>
 当該半導体基板の製造方法は、基板に直接又は間接にケイ素含有組成物を塗工する工程(以下、「ケイ素含有組成物塗工工程」ともいう)と、上記ケイ素含有組成物塗工工程により形成されたケイ素含有膜に直接又は間接にレジスト膜形成用組成物を塗工する工程(以下、「レジスト膜形成用組成物塗工工程」ともいう)と、上記レジスト膜形成用組成物塗工工程により形成されたレジスト膜を放射線により露光する工程(以下、「露光工程」ともいう)と、上記露光されたレジスト膜を有機溶媒現像する工程(以下、「有機溶媒現像工程」ともいう)とを備える。当該半導体基板の製造方法における上記ケイ素含有組成物塗工工程では、ケイ素含有組成物として上述の当該ケイ素含有組成物を用いる。
 当該半導体基板の製造方法は、必要に応じて、上記ケイ素含有組成物塗工工程前に、上記基板に直接又は間接に有機下層膜を形成する工程(以下、「有機下層膜形成工程」ともいう)をさらに備えていてもよい。
 また、当該半導体基板の製造方法は、必要に応じて、上記ケイ素含有組成物塗工工程後に、上記ケイ素含有膜を塩基を含有する除去液で除去する工程(以下、「除去工程」ともいう)をさらに備えていてもよい。
 当該半導体基板の製造方法によれば、ケイ素含有組成物塗工工程においてケイ素含有組成物として上述の当該ケイ素含有組成物を用いることにより、ケイ素含有膜上に断面形状の矩形性に優れたレジストパターンを形成することができる。また、ケイ素含有組成物塗工工程において形成されるケイ素含有膜は、膜除去性に優れているため、塩基を含有する除去液で除去することができる。
 以下、当該半導体基板の製造方法が備える各工程について説明する。
[ケイ素含有組成物塗工工程]
 本工程では、基板に直接又は間接にケイ素含有組成物を塗工する。本工程により、基板上に直接又は間接にケイ素含有組成物の塗工膜が形成され、この塗工膜を、通常、加熱を行い硬化等させることによりケイ素含有膜が形成される。
 本工程では、ケイ素含有組成物として上述の当該ケイ素含有組成物を用いる。
 基板としては、例えば酸化シリコン、窒化シリコン、酸窒化シリコン、ポリシロキサン等の絶縁膜、樹脂基板などが挙げられる。また、基板としては、配線溝(トレンチ)、プラグ溝(ビア)等のパターニングが施された基板であってもよい。
 ケイ素含有膜形成用組成物の塗工方法としては特に制限されず、例えば回転塗工法等が挙げられる。
 基板に間接にケイ素含有膜形成用組成物を塗工する場合としては、例えば基板上に形成された他の膜上にケイ素含有組成物を塗工する場合等が挙げられる。基板上に形成された他の膜としては、例えば後述する有機下層膜形成工程により形成される有機下層膜、反射防止膜、低誘電体絶縁膜等が挙げられる。
 塗工膜の加熱を行う場合、その雰囲気としては特に制限されず、例えば大気下、窒素雰囲気下等が挙げられる。通常、塗工膜の加熱は大気下で行われる。塗工膜の加熱を行う場合の加熱温度、加熱時間等の諸条件については適宜決定することができる。加熱温度の下限としては、90℃が好ましく、150℃がより好ましく、200℃がさらに好ましい。加熱温度の上限としては、550℃が好ましく、450℃がより好ましく、300℃がさらに好ましい。加熱時間の下限としては、15秒が好ましく、30秒がより好ましい。加熱時間の上限としては、1,200秒が好ましく、600秒がより好ましい。
 ケイ素含有膜形成用組成物が酸発生剤を含有し、この酸発生剤が感放射線性酸発生剤である場合には、加熱と露光とを組み合わせることにより、ケイ素含有膜の形成を促進することができる。露光に用いられる放射線としては、例えば後述する露光工程において例示する放射線と同様のものが挙げられる。
 本工程により形成されるケイ素含有膜の平均厚みの下限としては、1nmが好ましく、3nmがより好ましく、5nmがさらに好ましい。上記平均厚みの上限としては、500nmが好ましく、300nmがより好ましく、200nmがさらに好ましい。なお、ケイ素含有膜の平均厚みは、分光エリプソメータ(J.A.WOOLLAM社の「M2000D」)を用いて測定した値である。
[レジスト膜形成用組成物塗工工程]
 本工程では、上記ケイ素含有組成物塗工工程により形成されたケイ素含有膜に直接又は間接にレジスト膜形成用組成物を塗工する。本工程により、ケイ素含有膜上に直接又は間接にレジスト膜が形成される。
 レジスト膜形成用組成物の塗工方法としては特に制限されず、例えば回転塗工法等が挙げられる。
 本工程をより詳細に説明すると、例えば形成されるレジスト膜が所定の厚みとなるようにレジスト組成物を塗工した後、プレベーク(以下、「PB」ともいう)することによって塗工膜中の溶媒を揮発させることにより、レジスト膜を形成する。
 PB温度及びPB時間は、使用されるレジスト膜形成用組成物の種類等に応じて適宜決定することができる。PB温度の下限としては、30℃が好ましく、50℃がより好ましい。PB温度の上限としては、200℃が好ましく、150℃がより好ましい。PB時間の下限としては、10秒が好ましく、30秒がより好ましい。PB時間の上限としては、600秒が好ましく、300秒がより好ましい。
 一般に、レジスト膜の現像方法は、有機溶媒を現像液として用いる有機溶媒現像と、アルカリ性溶液を現像液として用いるアルカリ現像とに大別されるが、本工程において用いるレジスト膜形成用組成物としては、有機溶媒現像するレジスト膜を形成できるレジスト膜形成用組成物に限られる。これは、アルカリ現像するレジスト膜を形成できるレジスト膜形成用組成物を用いた場合、アルカリ現像する工程において、レジスト膜の露光部だけでなく、レジスト膜の下層にある上述のケイ素含有組成物塗工工程により形成されたケイ素含有膜までもがアルカリ現像液に溶解してしまうためである。
 本工程において用いるレジスト膜形成用組成物としては、有機溶媒現像するレジスト膜を形成できるレジスト膜形成用組成物であれば特に制限されず、公知のレジスト膜形成用組成物を用いることができる。例えば、感放射線性酸発生剤を含有するネガ型のレジスト膜形成用組成物等が挙げられる。中でも、後述するArFエキシマレーザー光による露光用(ArF露光用)のネガ型のレジスト膜形成用組成物が好ましい。
[露光工程]
 本工程では、上記レジスト膜形成用組成物塗工工程により形成されたレジスト膜を放射線により露光する。本工程により、レジスト膜における露光部と非露光部との間で現像液である有機溶媒への溶解性に差異が生じる。より詳細には、レジスト膜における露光部の有機溶媒への溶解性が低下する。
 露光に用いられる放射線としては、用いるレジスト膜形成用組成物の種類等に応じて適宜選択することができる。例えば、可視光線、紫外線、遠紫外線、X線、γ線等の電磁波、電子線、分子線、イオンビーム等の粒子線などが挙げられる。これらの中でも、遠紫外線が好ましく、KrFエキシマレーザー光(波長248nm)、ArFエキシマレーザー光(波長193nm)、Fエキシマレーザー光(波長157nm)、Krエキシマレーザー光(波長147nm)、ArKrエキシマレーザー光(波長134nm)又は極端紫外線(波長13.5nm等、「EUV」ともいう)がより好ましく、ArFエキシマレーザー光がさらに好ましい。また、露光条件は用いるレジスト膜形成用組成物の種類等に応じて適宜決定することができる。
 また、本工程では、上記露光後、解像度、パターンプロファイル、現像性等のレジスト膜の性能を向上させるために、ポストエクスポージャーベーク(以下、「PEB」ともいう)を行うことができる。PEB温度及びPEB時間としては、使用されるレジスト膜形成用組成物の種類等に応じて適宜決定することができる。PEB温度の下限としては、50℃が好ましく、70℃がより好ましい。PEB温度の上限としては、200℃が好ましく、150℃がより好ましい。PEB時間の下限としては、10秒が好ましく、30秒がより好ましい。PEB時間の上限としては、600秒が好ましく、300秒がより好ましい。
[有機溶媒現像工程]
 本工程では、上記露光されたレジスト膜を有機溶媒現像する。上記露光工程により、レジスト膜における露光部と非露光部との間で現像液である有機溶媒への溶解性に差異が生じていることから、有機溶媒現像を行うことで有機溶媒への溶解性が相対的に高い部分が除去されることにより、レジストパターンが形成される。より詳細には、上記露光工程により、レジスト膜における露光部の有機溶媒への溶解性が低下していることから、有機溶媒現像を行うことで有機溶媒への溶解性が相対的に高い非露光部が除去されることにより、レジストパターンが形成される。
 有機溶媒現像において用いる現像液としては、有機溶媒現像に用いられる現像液であれば特に制限されず、公知の現像液を用いることができる。例えば、上述の当該ケイ素含有組成物における[B]溶媒として例示したものと同様のもの等が挙げられる。
 本工程では、上記有機溶媒現像後、洗浄及び/又は乾燥を行ってもよい。
[有機下層膜形成工程]
 本工程では、上記ケイ素含有組成物塗工工程前に、上記基板に直接又は間接に有機下層膜を形成する。本工程は、任意の工程である。本工程により、基板に直接又は間接に有機下層膜が形成される。なお、「上記ケイ素含有組成物塗工工程前」とは、ケイ素含有組成物塗工工程の直前のみを意味するのではなく、ケイ素含有組成物塗工工程よりも川上の時点を意味する。したがって、本工程とケイ素含有組成物塗工工程との間にその他の任意の工程を備えていてもよい。
 有機下層膜は、有機下層膜形成用組成物の塗工等により形成することができる。有機下層膜を有機下層膜形成用組成物の塗工により形成する方法としては、例えば有機下層膜形成用組成物を基板に直接又は間接に塗工して形成された塗工膜を加熱や露光を行うことにより硬化等させる方法等が挙げられる。上記有機下層膜形成用組成物としては、例えばJSR(株)の「HM8006」等を用いることができる。加熱や露光の諸条件については、用いる有機下層膜形成用組成物の種類等に応じて適宜決定することができる。
 基板に間接に有機下層膜を形成する場合としては、例えば基板上に形成された低誘電絶縁膜上に有機下層膜を形成する場合等が挙げられる。
[除去工程]
 本工程では、上記ケイ素含有組成物塗工工程後に、上記ケイ素含有膜を塩基を含有する除去液(以下、「塩基含有除去液」ともいう)で除去する。本工程は、任意の工程である。本工程により、基板からケイ素含有膜が除去される。なお、「上記ケイ素含有組成物塗工工程後」とは、ケイ素含有組成物塗工工程の直後のみを意味するのではなく、ケイ素含有組成物塗工工程よりも川下の時点を意味する。したがって、「上記ケイ素含有組成物塗工工程後」には、ケイ素含有組成物塗工工程後であってレジスト膜形成用組成物塗工工程前だけでなく、例えば有機溶媒現像工程後も含まれる。
 本工程がケイ素含有組成物塗工工程後であってレジスト膜形成用組成物塗工工程前に行われる場合、例えばレジスト膜形成用組成物塗工工程前にケイ素含有膜に欠陥等が検出された際に、リワーク工程としてケイ素含有膜を容易に除去することができる。
 また、エッチング後のケイ素含有膜残差を除去することができる。
 塩基含有除去液としては、塩基を含有する塩基性の溶液であれば特に制限されない。塩基としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、珪酸ナトリウム、メタ珪酸ナトリウム、アンモニア、エチルアミン、n-プロピルアミン、ジエチルアミン、ジ-n-プロピルアミン、トリエチルアミン、メチルジエチルアミン、ジメチルエタノールアミン、トリエタノールアミン、テトラメチルアンモニウムヒドロキシド(以下、「TMAH」ともいう)、テトラエチルアンモニウムヒドロキシド、ピロール、ピペリジン、コリン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン等が挙げられる。これらの中でも、基板へのダメージを回避する観点から、アンモニアが好ましい。
 塩基含有除去液としては、ケイ素含有膜の除去性をより向上させる観点から、塩基及び水を含む液、又は塩基、過酸化水素及び水を含む液が好ましい。
 ケイ素含有膜の除去方法としては、ケイ素含有膜と塩基含有除去液とを接触させることができる方法であれば特に制限されず、例えば、基板を塩基含有除去液に浸漬する方法、塩基含有除去液を吹き付ける方法、塩基含有除去液を塗布する方法等が挙げられる。
 ケイ素含有膜の除去する際の温度、時間等の諸条件については特に制限されず、ケイ素含有膜の膜厚、用いる塩基含有除去液の種類等に応じて適宜決定することができる。温度の下限としては、20℃が好ましく、40℃がより好ましく、50℃がさらに好ましい。上記温度の上限としては、300℃が好ましく、100℃がより好ましい。時間の下限としては、5秒が好ましく、30秒がより好ましい。上記時間の上限としては、10分が好ましく、180秒がより好ましい。
 本工程では、ケイ素含有膜を除去した後、洗浄及び/又は乾燥を行ってもよい。
 以下、実施例を説明する。なお、以下に示す実施例は、本発明の代表的な実施例の一例
を示したものであり、これにより本発明の範囲が狭く解釈されることはない。
 本実施例における[A]化合物の重量平均分子量(Mw)の測定、[A]化合物の溶液中の濃度の測定、及び膜の平均厚みの測定はそれぞれ以下の方法により行った。
[重量平均分子量(Mw)の測定]
 [A]化合物の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)により、東ソー(株)のGPCカラム(「G2000HXL」2本、「G3000HXL」1本及び「G4000HXL」1本)を使用し、以下の条件により測定した。
 溶離液:テトラヒドロフラン
 流量:1.0mL/分
 試料濃度:1.0質量%
 試料注入量:100μL
 カラム温度:40℃
 検出器:示差屈折計
 標準物質:単分散ポリスチレン
[[A]化合物の溶液中の濃度]
 [A]化合物の溶液0.5gを250℃で30分間焼成して得られた残渣の質量を測定し、この残渣の質量を[A]化合物の溶液の質量で除することにより、[A]化合物の溶液の濃度(単位:質量%)を算出した。
[膜の平均厚み]
 膜の平均厚みは、分光エリプソメータ(J.A.WOOLLAM社の「M2000D」)を用いて測定した。
<[A]化合物の合成>
 実施例1-1~1-21並びに比較例1-1及び1-2において、合成に使用した単量体(以下、「単量体(M-1)~(M-13)」ともいう)を以下に示す。また、以下の実施例1-1~1-21並びに比較例1-1及び1-2において、モル%は、使用した単量体(M-1)~(M-13)の合計モル数を100モル%とした場合の値を意味する。
Figure JPOXMLDOC01-appb-C000016
[実施例1-1]化合物(A-1)の合成
 反応容器において、上記化合物(M-1)、化合物(M-3)及び化合物(M-6)をモル比率が84/15/1(モル%)となるようプロピレングリコールモノエチルエーテル62質量部に溶解し、単量体溶液を調製した。上記反応容器内を60℃とし、撹拌しながら、9.1質量%シュウ酸水溶液40質量部を20分間かけて滴下した。滴下開始を反応の開始時間とし、反応を4時間実施した。反応終了後、反応容器内を30℃以下に冷却した。冷却した反応溶液にプロピレングリコールモノエチルエーテルを550質量部加えた後、エバポレーターを用いて、水、反応により生成したアルコール類及び余剰のプロピレングリコールモノエチルエーテルを除去して、化合物(A-1)のプロピレングリコールモノエチルエーテル溶液を得た。化合物(A-1)のMwは1,700であった。化合物(A-1)の上記プロピレングリコールモノエチルエーテル溶液中の濃度は、7.2質量%であった。
[実施例1-2~1-21並びに比較例1-1及び1-2]化合物(A-2)~(A-21)、(AJ-1)及び(AJ-2)の合成
 下記表1に示す種類及び使用量の各単量体を使用した以外は実施例1-1と同様にして、化合物(A-2)~(A-21)、(AJ-1)及び(AJ-2)のプロピレングリコールモノエチルエーテル溶液を得た。下記表1中の単量体における「-」は、該当する単量体を使用しなかったことを示す。得られた[A]化合物の溶液中の濃度(質量%)及び[A]化合物のMwを下記表1に合わせて示す。
Figure JPOXMLDOC01-appb-T000017
<ケイ素含有組成物の調製>
 ケイ素含有組成物の調製に用いた[B]溶媒を以下に示す。なお、以下の実施例2-1~2-21並びに比較例2-1及び2-2ては、特に断りのない限り、質量部は使用した成分の合計質量を100質量部とした場合の値を示す。
[[B]溶媒]
 B-1:プロピレングリコールモノエチルエーテル
[実施例2-1]ケイ素含有組成物(J-1)の調製
 [A]化合物としての(A-1)1質量部(但し、溶媒を除く)及び[B]溶媒としての(B-1)99質量部([A]化合物の溶液に含まれる溶媒も含む)を混合し、得られた溶液を孔径0.2μmのポリテトラフルオロエチレンのフィルターでろ過して、ケイ素含有組成物(J-1)を調製した。
[実施例2-2~2-21並びに比較例2-1及び2-2]ケイ素含有組成物(J-2)~(J-21)、(j-1)及び(j-2)の調製
 下記表2に示す種類及び配合量の各成分を使用した以外は実施例2-1と同様にして、実施例2-2~2-21のケイ素含有組成物(J-2)~(J-17)、並びに比較例2-1及び2-2のケイ素含有組成物(j-1)及び(j-2)を調製した。
<評価>
 上記調製した組成物を用いて、以下の方法により、レジストパターン形状及びアルカリ液剥離性を評価した。評価結果を下記表2に示す。
[レジストパターン形状]
 12インチシリコンウェハ上に、有機下層膜形成用材料(JSR(株)の「HM8006」)をスピンコーター(東京エレクトロン(株)の「CLEAN TRACK ACT12」)による回転塗工法により塗工した後、250℃で60秒間加熱を行うことにより平均厚み100nmの有機下層膜を形成した。この有機下層膜上に、上記調製したケイ素含有組成物を塗工し、220℃で60秒間加熱した後、23℃で30秒間冷却することにより平均厚み20nmのケイ素含有膜を形成した。上記形成したケイ素含有膜上に、感放射線性樹脂組成物(JSR(株)の「ARF AR2772JN」)を塗工し、90℃で60秒間加熱した後、23℃で30秒間冷却することにより平均厚み100nmのレジスト膜を形成した。次いで、ArF液浸露光装置(NIKON(株)の「S610C」)を使用し、NA:1.30、Dipoleの光学条件にて、40nmライン/80nmピッチ形成用のマスクサイズのマスクを介して露光後、基板を100℃で60秒間加熱を行い、次いで23℃で60秒間冷却した。その後、酢酸n-ブチル(20℃~25℃)を用い、パドル法により現像した後、乾燥することにより、レジストパターンが形成された評価用基板を得た。上記評価用基板のレジストパターンの測長及び断面形状の観察には走査型電子顕微鏡((株)日立ハイテクの「CG-4000」)を用いた。上記評価用基板において、線幅40nmの1対1ラインアンドスペースが形成される露光量を最適露光量とした。レジストパターン形状は、パターンの断面形状が矩形である場合を「A」(良好)と、パターンの断面に裾引きがある場合を「B」(やや良好)と、パターンに残渣(欠陥)がある場合を「C」(不良)と評価した。
[膜除去性]
 12インチシリコンウェハ上に、上記調製したケイ素含有組成物を塗工し、220℃で60秒間加熱した後、23℃で30秒間冷却することにより平均厚み20nmのケイ素含有膜を形成した。上記得られた各ケイ素含有膜付き基板を、65℃に加温した除去液(25質量%アンモニア水溶液/30質量%過酸化水素水/水=1/1/5(体積比)混合水溶液)に5分間浸漬した後、水で洗浄し、乾燥することにより、評価用基板を得た。また、上記得られた各ケイ素含有膜付き基板を、65℃に加温した除去液(25質量%アンモニア水溶液/30質量%過酸化水素水/水=1/1/5(体積比)混合水溶液)に10分間浸漬した後、水で洗浄し、乾燥することにより、評価用基板を得た。上記得られた各評価用基板の断面について、電界放出形走査電子顕微鏡((株)日立ハイテクの「SU8220」)を用いて観察し、除去液に5分間浸漬した場合にケイ素含有膜が残存していない場合は「A」(良好)と、除去液に5分間浸漬した場合にケイ素含有膜が残存しているが除去液に10分間浸漬した場合にケイ素含有膜が残存していない場合は「B」(やや良好)と、除去液に5分間及び10分間浸漬した場合にケイ素含有膜が残存している場合は「C」(不良)と評価した。
Figure JPOXMLDOC01-appb-T000018
 上記表2の結果から明らかなように、実施例のケイ素含有組成物から形成されたケイ素含有膜は、比較例のケイ素含有組成物から形成されたケイ素含有膜と比較して、その膜上に断面形状の矩形性に優れたレジストパターンを形成できた。さらに、実施例のケイ素含有組成物から形成されたケイ素含有膜は、比較例のケイ素含有組成物から形成されたケイ素含有膜と比較して、膜除去性が良好であった。
 本発明のケイ素含有組成物及び半導体基板の製造方法によれば、断面形状の矩形性に優れたレジストパターンを形成でき、かつ容易に除去することができるケイ素含有膜を形成することができる。したがって、これらは半導体基板の製造等に好適に用いることができる。

 

Claims (12)

  1.  有機溶媒現像するレジスト膜の下層膜の形成に用いられるケイ素含有組成物であって、
     エステル結合を含む基及びフッ素原子を含むポリシロキサン化合物と、
     溶媒と
     を含有する、ケイ素含有組成物。
  2.  上記ポリシロキサン化合物が、下記式(1)で表される第1構造単位及び下記式(2)で表される第2構造単位を有する、請求項1に記載のケイ素含有組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Xは、フッ素原子を含む炭素数1~20の1価の有機基である。aは、1~3の整数である。aが2以上の場合、複数のXは互いに同一又は異なる。Rは、炭素数1~20の1価の有機基、ヒドロキシ基又はハロゲン原子である。bは、0~2の整数である。bが2の場合、2つのRは互いに同一又は異なる。但し、a+bは3以下である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Yは、エステル結合を含む炭素数1~20の1価の有機基である。cは、1~3の整数である。cが2以上の場合、複数のYは互いに同一又は異なる。Rは、炭素数1~20の1価の有機基、ヒドロキシ基又はハロゲン原子である。dは、0~2の整数である。dが2の場合、2つのRは互いに同一又は異なる。但し、c+dは3以下である。)
  3.  上記式(1)におけるXが、フッ素原子を含む置換基を有する芳香族炭化水素基を含む請求項2に記載のケイ素含有組成物。
  4.  上記式(2)におけるYが、下記式(3-1)で表される基である請求項2又は請求項3に記載のケイ素含有組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(3-1)中、Lは、単結合又は2価の連結基である。Rは、炭素数1~10の1価の炭化水素基である。*は、上記式(2)におけるケイ素原子との結合部位を示す。)
  5.  上記ポリシロキサン化合物が下記式(4)で表される第3構造単位をさらに有する請求項2、請求項3又は請求項4に記載のケイ素含有組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、Rは、炭素数1~20の1価の有機基、ヒドロキシ基又はハロゲン原子である。eは、1~3の整数である。eが2以上の場合、複数のRは互いに同一又は異なる。)
  6.  上記ポリシロキサン化合物が下記式(5)で表される第4構造単位をさらに有する請求項2から請求項5のいずれか1項に記載のケイ素含有組成物。
    Figure JPOXMLDOC01-appb-C000005
  7.  上記ポリシロキサン化合物を構成する全構造単位に対する上記第1構造単位の含有割合が1モル%以上40モル%以下である請求項2から請求項6のいずれか1項に記載のケイ素含有組成物。
  8.  上記ポリシロキサンを構成する全構造単位に対する上記第2構造単位の含有割合が1モル%以上20モル%以下である請求項2から請求項7のいずれか1項に記載のケイ素含有組成物。
  9.  基板に直接又は間接にケイ素含有組成物を塗工する工程と、
     上記ケイ素含有組成物塗工工程により形成されたケイ素含有膜に直接又は間接にレジスト膜形成用組成物を塗工する工程と、
     上記レジスト膜形成用組成物塗工工程により形成されたレジスト膜を放射線により露光する工程と、
     上記露光されたレジスト膜を有機溶媒現像する工程と
     を備え、
     上記ケイ素含有組成物が、
     エステル結合を含む基及びフッ素原子を含むポリシロキサン化合物と、
     溶媒と
     を含有する、半導体基板の製造方法。
  10.  上記ケイ素含有組成物塗工工程前に、
     上記基板に直接又は間接に有機下層膜を形成する工程
    をさらに備える、請求項9に記載の半導体基板の製造方法。
  11.  上記ケイ素含有組成物塗工工程後に、
     上記ケイ素含有膜を塩基を含有する除去液で除去する工程
     をさらに備える、請求項9又は請求項10に記載の半導体基板の製造方法。
  12.  上記塩基を含有する除去液が、塩基及び水を含む液、又は塩基、過酸化水素及び水を含む液である、請求項11に記載の半導体基板の製造方法。

     
PCT/JP2021/002615 2020-02-19 2021-01-26 ケイ素含有組成物及び半導体基板の製造方法 WO2021166567A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022501729A JPWO2021166567A1 (ja) 2020-02-19 2021-01-26
KR1020227028164A KR20220143836A (ko) 2020-02-19 2021-01-26 규소 함유 조성물 및 반도체 기판의 제조 방법
US17/887,670 US20230250238A9 (en) 2020-02-19 2022-08-15 Silicon-containing composition and method of producing semiconductor substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020026649 2020-02-19
JP2020-026649 2020-02-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/887,670 Continuation US20230250238A9 (en) 2020-02-19 2022-08-15 Silicon-containing composition and method of producing semiconductor substrate

Publications (1)

Publication Number Publication Date
WO2021166567A1 true WO2021166567A1 (ja) 2021-08-26

Family

ID=77390927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002615 WO2021166567A1 (ja) 2020-02-19 2021-01-26 ケイ素含有組成物及び半導体基板の製造方法

Country Status (5)

Country Link
US (1) US20230250238A9 (ja)
JP (1) JPWO2021166567A1 (ja)
KR (1) KR20220143836A (ja)
TW (1) TW202132415A (ja)
WO (1) WO2021166567A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102261A1 (ja) * 2011-01-24 2012-08-02 日産化学工業株式会社 ジケトン構造含有有機基を含むシリコン含有レジスト下層膜形成組成物
JP2015028145A (ja) * 2013-06-27 2015-02-12 信越化学工業株式会社 塗布型bpsg膜形成用組成物、該組成物で膜を形成した基板、及び前記組成物を用いたパターン形成方法
WO2016009939A1 (ja) * 2014-07-15 2016-01-21 日産化学工業株式会社 ハロゲン化スルホニルアルキル基を有するシリコン含有レジスト下層膜形成組成物
JP2016074772A (ja) * 2014-10-03 2016-05-12 信越化学工業株式会社 塗布型ケイ素含有膜形成用組成物、基板、及びパターン形成方法
JP2016074774A (ja) * 2014-10-03 2016-05-12 信越化学工業株式会社 塗布型bpsg膜形成用組成物、基板、及びパターン形成方法
WO2016093172A1 (ja) * 2014-12-08 2016-06-16 日産化学工業株式会社 ハロゲン含有カルボン酸アミド基を有する加水分解性シランを含むリソグラフィー用レジスト下層膜形成組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5862894B2 (ja) 2010-09-21 2016-02-16 日産化学工業株式会社 保護された脂肪族アルコールを含有する有機基を有するシリコン含有レジスト下層膜形成組成物
KR20170053442A (ko) * 2015-11-06 2017-05-16 롬엔드하스전자재료코리아유한회사 감광성 수지 조성물 및 이로부터 제조된 경화막

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102261A1 (ja) * 2011-01-24 2012-08-02 日産化学工業株式会社 ジケトン構造含有有機基を含むシリコン含有レジスト下層膜形成組成物
JP2015028145A (ja) * 2013-06-27 2015-02-12 信越化学工業株式会社 塗布型bpsg膜形成用組成物、該組成物で膜を形成した基板、及び前記組成物を用いたパターン形成方法
WO2016009939A1 (ja) * 2014-07-15 2016-01-21 日産化学工業株式会社 ハロゲン化スルホニルアルキル基を有するシリコン含有レジスト下層膜形成組成物
JP2016074772A (ja) * 2014-10-03 2016-05-12 信越化学工業株式会社 塗布型ケイ素含有膜形成用組成物、基板、及びパターン形成方法
JP2016074774A (ja) * 2014-10-03 2016-05-12 信越化学工業株式会社 塗布型bpsg膜形成用組成物、基板、及びパターン形成方法
WO2016093172A1 (ja) * 2014-12-08 2016-06-16 日産化学工業株式会社 ハロゲン含有カルボン酸アミド基を有する加水分解性シランを含むリソグラフィー用レジスト下層膜形成組成物

Also Published As

Publication number Publication date
US20230250238A9 (en) 2023-08-10
JPWO2021166567A1 (ja) 2021-08-26
US20220403116A1 (en) 2022-12-22
KR20220143836A (ko) 2022-10-25
TW202132415A (zh) 2021-09-01

Similar Documents

Publication Publication Date Title
TWI424033B (zh) 包含稠合芳香環之抗反射塗料組合物
US7932018B2 (en) Antireflective coating composition
US7989144B2 (en) Antireflective coating composition
WO2018123388A1 (ja) 感放射線性組成物、パターン形成方法並びに金属含有樹脂及びその製造方法
JP2010055049A (ja) 開環した無水フタル酸を含む有機反射防止膜組成物およびその製造方法
KR20080014055A (ko) 폴리실란화합물을 포함하는 리소그래피용 하층막 형성조성물
WO2010143054A1 (en) Spin on organic antireflective coating composition comprising polymer with fused aromatic rings
WO2021215240A1 (ja) レジスト下層膜形成用組成物及び半導体基板の製造方法
KR101400182B1 (ko) 포토레지스트 하층막용 조성물 및 이를 이용하는 반도체 소자의 제조 방법
EP2857467B1 (en) Composition for forming a silicon-containing resist under layer film and patterning process
TWI822687B (zh) 用以製備光阻下層膜的聚合物、包括該聚合物的光阻下層膜組成物以及使用該組成物製造半導體元件的方法
CN104914672A (zh) 基于含多羟基结构分子玻璃的底部抗反射涂料组合物及其在光刻中的应用
WO2021193030A1 (ja) 電子線又は極端紫外線リソグラフィー用レジスト下層膜形成組成物、電子線又は極端紫外線リソグラフィー用レジスト下層膜、及び半導体基板の製造方法
WO2021166567A1 (ja) ケイ素含有組成物及び半導体基板の製造方法
JP5534205B2 (ja) 感光性レジスト下層膜形成組成物及びレジストパターンの形成方法
WO2019151153A1 (ja) 半導体リソグラフィープロセス用膜形成組成物、ケイ素含有膜及びレジストパターン形成方法
JP7342953B2 (ja) 組成物、ケイ素含有膜、ケイ素含有膜の形成方法及び半導体基板の処理方法
WO2021235273A1 (ja) ケイ素含有組成物及び半導体基板の製造方法
WO2022113781A1 (ja) ケイ素含有組成物及び半導体基板の製造方法
KR20190078309A (ko) 레지스트 하층막용 조성물 및 이를 이용한 패턴형성방법
WO2020250639A1 (ja) 感放射線性樹脂組成物及びレジストパターン形成方法
TW202231626A (zh) 感放射線性樹脂組成物及使用其的抗蝕劑圖案的形成方法、以及鋶鹽化合物及包含鋶鹽化合物的感放射線性酸產生劑
WO2023153059A1 (ja) 感放射線性樹脂組成物、レジストパターン形成方法及び重合体
JP2024090877A (ja) 感光性樹脂組成物の製造方法
TW202349116A (zh) 樹脂組成物、光阻膜、光阻圖案形成方法、電子器件之製造方法、電子器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757837

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501729

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757837

Country of ref document: EP

Kind code of ref document: A1