WO2021166216A1 - 集積光モジュール - Google Patents

集積光モジュール Download PDF

Info

Publication number
WO2021166216A1
WO2021166216A1 PCT/JP2020/007023 JP2020007023W WO2021166216A1 WO 2021166216 A1 WO2021166216 A1 WO 2021166216A1 JP 2020007023 W JP2020007023 W JP 2020007023W WO 2021166216 A1 WO2021166216 A1 WO 2021166216A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
light
optical signal
filter
Prior art date
Application number
PCT/JP2020/007023
Other languages
English (en)
French (fr)
Inventor
金子 進一
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020531790A priority Critical patent/JP6804698B1/ja
Priority to CN202080096604.4A priority patent/CN115104053B/zh
Priority to US17/757,433 priority patent/US12019275B2/en
Priority to PCT/JP2020/007023 priority patent/WO2021166216A1/ja
Publication of WO2021166216A1 publication Critical patent/WO2021166216A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29364Cascading by a light guide path between filters or filtering operations, e.g. fibre interconnected single filter modules
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4292Coupling light guides with opto-electronic elements the light guide being disconnectable from the opto-electronic element, e.g. mutually self aligning arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30

Definitions

  • This application relates to an integrated optical module.
  • a wavelength division multiplexing optical transmission method is widely adopted in which a plurality of wavelength signals are bundled into one optical fiber to transmit and receive optical signals in order to cope with the rapid increase in communication capacity in recent years.
  • the integrated optical module is used in such a wavelength division multiplexing optical transmission method, and combines a plurality of light emitting elements having different wavelengths and a plurality of optical signals emitted from the plurality of light emitting elements into a single optical fiber. It has a function of incorporating a wave-wave optical combiner in the same package and bundling it into a single optical fiber for transmission.
  • reflection is repeated by a filter and a mirror, combined with an optical signal in another lane, and emitted from an optical combiner.
  • the optical signal combined and emitted by the optical combiner is condensed into one optical fiber by a condenser lens and emitted from the integrated optical module in a state where it can be transmitted to the optical fiber transmission network.
  • the size of the integrated optical module largely depends on the size of the largest holder of the members built into the package. Of the size of the holder, the dimension of the length (the traveling direction of the optical signal) is determined by the distance between the light emitting elements. This means that when the optical signal is combined, the optical signal travels while reflecting between the filter attached to the holder and the mirror, but when it is reflected by the mirror and reaches the filter in the adjacent lane, it is next to it. This is because it must be in the same position as the optical signal in the lane.
  • the distance between the light emitting elements becomes large, it is necessary to increase the length of the holder so that the light emitting elements return to the same position as the optical signal in the adjacent lane.
  • the light emitting elements return to the same position as the optical signal in the adjacent lane.
  • members such as a monitor and a capacitor are mounted together on the mounting board of the light emitting element. As a result, the distance between the light emitting elements has increased.
  • JP-A-2018-72674 (paragraph 0015, FIG. 4)
  • the mounting substrate becomes larger due to higher performance and lower power consumption due to the rapid increase in communication capacity in recent years, which causes an increase in the spacing between light emitting elements, and the optical module is combined with the holder.
  • the wave device became large and the integrated optical module also became large.
  • the present application discloses a technique for solving the above-mentioned problems, and an object of the present application is to provide a compact integrated optical module by miniaturizing an optical combiner.
  • the integrated optical module disclosed in the present application is arranged side by side in a first mounting portion having a first light emitting element that emits a first optical signal from a first light emitting point and the first mounting portion.
  • a second mounting unit having a second light emitting element that emits a second light signal having a wavelength different from that of the first light signal from the second light emitting point, and a first light emitting point emitted from the first light emitting point.
  • the surface mirror that reflects the first optical signal that has passed through the first filter, and the first filter. Only the wavelength of the second optical signal, which is juxtaposed and converted into parallel light by the second collimating lens, is transmitted, and the first optical signal reflected by the surface mirror is reflected and transmitted.
  • the first light emitting element includes an optical combining section having a second filter that combines with the second optical signal, and the first light emitting element is provided in the first mounting section with respect to the emission direction of the first optical signal.
  • the second light emitting element is mounted on the second light emitting element side from the center in the width direction, and the second light emitting element is the first light emitting element from the center in the width direction with respect to the emission direction of the second optical signal in the second mounting portion. It is characterized in that it is mounted on the light emitting element side.
  • the optical combiner can be miniaturized by pairing adjacent light emitting elements and mounting them close to each other on the mounting board, and the integrated optical module containing the optical combiner can also be miniaturized. Can be planned.
  • FIG. It is a schematic diagram which shows the whole structure of the integrated optical module which concerns on Embodiment 1.
  • FIG. It is a top view which shows the internal structure of the integrated optical module which concerns on Embodiment 1.
  • FIG. It is a top view which shows the structure of the mounting part of the integrated optical module which concerns on Embodiment 1.
  • FIG. It is a top view which shows the internal structure of the conventional integrated optical module.
  • It is a flowchart for demonstrating the operation of the integrated optical module which concerns on Embodiment 1.
  • FIG. It is a figure for demonstrating the manufacturing method of the mounting part of the integrated optical module which concerns on Embodiment 1.
  • FIG. It is a top view which shows the other structure of the mounting part of the integrated optical module which concerns on Embodiment 1.
  • FIG. 1 It is a top view which shows the other structure of the mounting part of the integrated optical module which concerns on Embodiment 1.
  • FIG. 2 is a top view which shows the structure of the optical combiner of the integrated optical module which concerns on Embodiment 2.
  • FIG. 2 is a top view which shows the structure of the optical combiner of the integrated optical module which concerns on Embodiment 3.
  • FIG. 1 is a schematic view showing the overall structure of the integrated optical module 101 according to the first embodiment.
  • FIG. 2 is a plan view showing the internal configuration of the integrated optical module 101.
  • FIG. 3 is a plan view showing the configuration of the mounting portion of the integrated optical module 101.
  • the integrated optical module 101 parallels a mounting unit 2i on which a light emitting element 1i that converts an electric signal into an optical signal 3i and an optical signal 3i emitted from the light emitting element 1i.
  • the optical combiner 5 is located on the opposite side of the filter 9i and the filter 9i, which transmits the optical signal 3i having the wavelength of lane i and reflects the optical signal of other wavelengths, and has all wavelengths.
  • mirror 19 as a back mirror positioned between the filter 9 1 and the filter 9 2 mirror 10, and the filter 9i side as a surface mirror that reflects the light signal, the fixed filter 9i and the mirror 10, 19 in the two parallel sides It is composed of a holder 11.
  • the mirrors 10 and 19 are formed by depositing a dielectric multilayer film on a glass substrate.
  • the mounting unit 2i includes a light emitting point 13i of the light emitting element 1i that generates an optical signal 3i corresponding to the electric signal 12i, a monitor PD (Photodiode) 14i for monitoring the light emitting amount of the light emitting element 1i, and the like.
  • a terminating resistor 15i for applying a voltage to the modulator of the light emitting element 1i according to the electric signal 12i, and an AC for preventing the DC (Direct Current) component of the electric signal 12i from flowing to the terminating resistor 15i and consuming power.
  • the coupling capacitor 16i, the light emitting element, and the gold wire 17 for electrically connecting the electrodes of the monitor PD and the electrodes of the mounting substrate are provided.
  • Mounting portion 2i is mounted portion 2 1 a fourth implementation of the mounting portion 2 3 and the mounting part 2 2, and a pair of third mounting portion of the second mounting portion of the first mounting portions of the pair the mounting portion 2 0 of the parts constitute 18a as a light emitting element pairs 18b and the second light-emitting element pairs as a first light-emitting element pairs, respectively.
  • Emitting element pairs 18a is a pair emitting element 1 0 and the light-emitting element 1 1 is adjacent light-emitting element 1 0 is mounted from the center of the mounting substrate 22 0 to the light-emitting element 1 1 side, the light-emitting element 1 1 is mounted on the light emitting element 1 0 side than the center of the mounting board 22 1, adjacent pair of the light emitting element is mounted so as to be close in one another mounting board.
  • the light-emitting element pairs 18b is also a pair emitting element 1 2 and the light-emitting element 1 3 adjacent light-emitting element 1 2 is the center of the mounting board 22 2 is mounted on the light emitting element 1 3 side, also, the light emitting element 1 3 than the center of the mounting board 22 3 is mounted on the light emitting element 1 2 side, adjacent pair of the light emitting element is mounted so as to be close in one another mounting board.
  • FIG. 4 shows a plan view showing the internal configuration of the conventional integrated optical module.
  • the mounting unit 2i has the same size as that of the first embodiment for comparison.
  • the position of the light emitting point 13i of the light emitting element 1i is 1/4 width from the center of the width direction of the conventional mounting substrate 22i with respect to the emission direction, and the light emitting elements of the light emitting element pairs 18a and 18b are respectively.
  • 1i is mounted on the side of the adjacent light emitting element, which is a pair of light emitting elements.
  • the light emitting element emitting points respectively next 2d1 distance between 13i of 1i, mounting portion 2 0 and the ends of the mounting portion 2 3 light-emitting device 1 0 and the light-emitting element 1 the distance between the emission point 13 0 13 3 3 becomes 6d1.
  • FIG. 5 is a flowchart for explaining the operation of the integrated optical module 101.
  • the light emitting element 1 2 optical signal 3 2 emitted from is converted into parallel light by the collimator lens 4 2, incident on the optical coupler 5, passes through the filter 9 2, and the optical signal 3 3
  • the waves are combined (step S502).
  • the length of the optical signal propagation direction of the holder 11 is designed as optical signal 3 3 and the filter 9 2 optical signal 3 2 positions transmitted through the reflection by the mirror coincide.
  • the optical signal 3 1 emitted from the light emitting element 1 1 is converted into parallel light by the collimator lens 4 1, incident on the optical coupler 5, passes through the filter 9 1, the optical signal 3 3, 3 2 and are multiplexed (step S504).
  • the multiplexed optical signal 3 3, 3 2, 3 1 is reflected by the mirror 10, reaches the filter 9 0 (step S505).
  • the optical signal 3 0 emitted from the light emitting element 1 0 is converted into parallel light by the collimator lens 4 0, enters the optical multiplexer 5, passes through the filter 9 0, the optical signal 3 3, It is combined with 3 2 , 3 1 (step S506).
  • the combined optical signals 3 3 , 3, 2 , 3, 1 , and 0 are emitted from the optical combiner 5 (step S507).
  • the optical signal emitted from the optical combiner 5 is condensed into one optical fiber 8 by the condensing lens 7, and is emitted from the integrated optical module in a state where it can be transmitted to the optical fiber transmission network.
  • the optical signals in order to combine the optical signals 3i, the optical signals must match the positions of adjacent optical signals while being repeatedly reflected by the mirrors 10 and 19 and the filter 9i, and the incident direction of the optical signals.
  • the length of the holder 11 of the optical combiner 5 in the above is proportional to the distance between the optical signals.
  • the distance between the light emitting points of the adjacent light emitting elements is d1, which is half of the 2d1 of the conventional integrated optical module, and the length of the holder 11 in the incident direction of the optical signal. Can be halved.
  • the width of the lateral direction of the holder 11 with respect to the incident direction of the light signal is 6d1, optical multiplexer The width of the can also be reduced.
  • the mounting board 22 shown in FIG. 6 can be used.
  • 6 (a) is a top view (front surface)
  • FIG. 6 (b) is a side view
  • FIG. 6 (c) is a bottom view (back surface). As shown in FIG.
  • the mounting substrate 22 has terminating resistors 15R and 15L, light emitting element mounting portions 20R and 20L, capacitor mounting portions 21R and 21L, and monitor PD mounting portions 22R and 22L on the front surface and the back surface, respectively. It is formed at a position that is symmetrical with respect to the emission direction.
  • the mounting boards 22 1 and 22 3 the surface side of the mounting board 22 is used, and the light emitting element 1 1 , 1 3 is attached to the light emitting element mounting portion 20R, and the capacitors 16 1 , 16 3 are used for the capacitor mounting portion 21R.
  • Monitors PD14 1 and 14 3 are mounted on the monitor PD mounting unit 22R.
  • one type of mounting substrate 22 can be paired so that the light emitting elements are close to each other, and the optical combiner can be miniaturized and the integrated optical module can be miniaturized. Furthermore, since the mounting boards of the light emitting elements forming the pair can be shared, the types of members can be reduced and the quantity per mounting board type can be increased, so that the manufacturing cost of the mounting board is reduced and the cost is low. Can be implemented.
  • FIG. 7 is a plan view showing another configuration of the mounting portion of the integrated optical module 101 according to the first embodiment.
  • the light emitting point 13 0 is mounted to the optical signal 3 0 emission point 13 1 side from the widthwise center with respect to the output direction of the light emitting element 1 0
  • the light emitting point 13 1 is mounted to an optical signal 3 emission point 13 0 side from the widthwise center to one of the outgoing direction in the light emitting element 1 1.
  • the light-emitting element pairs 18b also emitting point 13 2 is mounted on the light emitting element 1 2 optical signal 3 2 emission point 13 3 side from the widthwise center with respect to the output direction of the, the light emitting point 13 third light emitting element 1 is mounted on the light emitting point 13 2 side from the widthwise center with respect to the emission direction of the optical signal 3 3 in 3.
  • the distance between the light emitting element 1 0 of the light emitting point 13 0 and the light-emitting element 1 1 of the light emitting point 13 1 constituting the light-emitting element pairs 18a are also, the light emission of the light emitting element 1 2 forming the light-emitting element pairs 18b point 13 2 and the light-emitting element 1 3 distance greater d2 next between the light emitting point 13 3, since it is d2 ⁇ d1, the optical multiplexer can be further miniaturized.
  • FIG. 8 is also a plan view showing another configuration of the mounting portion of the integrated optical module 101 according to the first embodiment.
  • the light-emitting element pairs 18a of integrated optical module 101 two different emission points 13 0 for emitting the optical signal of the wavelength, 13 1 one light-emitting element 1a which is integrated, monitor PD 14 0, 14 1 mounting board 22a for mounting the capacitor 16 0, 16 1 are formed.
  • the light-emitting element pairs 18b 1 one light emitting device 1b of the light emitting point 13 2, 13 3 are integrated for emitting light signals of two different wavelengths, the monitor PD 14 2, 14 3, the capacitor 16 2, 16 3 A mounting board 22b for mounting is formed.
  • the distance between the light-emitting element 1a emitting point 13 0 and the light emitting point 13 1 constituting the light-emitting element pairs 18a are also a light emitting element 1b emitting point 13 2 constituting the light emitting element pairs 18b emitting point 13 Since the distance between 3 is also d3 and d3 ⁇ d2 ⁇ d1, the optical combiner can be further miniaturized.
  • the mounting portion 2 3 having a light-emitting element 1 3 for emitting an optical signal 3 3 from the light emitting point 13 3, parallel to the mounting section 2 3 It is set, and the mounting portion 2 2 having a light-emitting element 1 2 for emitting light signals 3 3 and different optical signal 3 2 wavelengths from the light emitting point 13 2, parallel light optical signal 3 3 emitted from the light emitting point 13 3 a collimator lens 4 3 to be converted to, a collimator lens 4 2 for converting the light emission point 13 2 optical signal 3 2 emitted from the parallel light, the wavelength of the collimator lens 4 3 optical signal converted into parallel light by a 3 3 filter 9 transmits only 3, mirror 10 for reflecting the optical signal 3 3 passing through the filter 9 3, and arranged in parallel in the filter 9 3, collimator lens 4 optical signal converted into parallel light by 2 3 2 wavelengths transmits only an optical multiplexer 5 having a filter 9 2 to an optical signal 3 2 multiplexed with transmitted
  • a collimator lens 4 1 for converting the mounting portion 2 optical signal 3 1 emitted from the light emitting point 13 1 of 1 into a parallel light the light emitting point 13 0 of the mounting portion 2 0 a collimator lens 4 0 be converted into parallel light optical signal 3 0 emitted from, respectively corresponding to the wavelength of the optical signal 3 1 and the optical signal 3 0 of the light-emitting element pairs 18a, the filter 9 3 by the optical multiplexer 5 and and the filter 9 2 0 filter 9 1 and the filter 9 which is arranged to correspond to a back surface mirror 19 which reflects the combined optical signal 3 3 and the optical signal 3 2 between the filter 9 2 and the filter 9 1 the provided, the distance between
  • the light emitting point 13 3 implement than the width direction center to the light emitting point 13 2 side with respect to the emission direction of the optical signal 3 3 in the light-emitting element 1 3, and the light emitting point 13 2, the optical signal in the light emitting element 1 2 3 since so as to implement the emission point 13 3 side from the widthwise center relative to the second emission direction, the distance between the light emitting points can be made smaller, more compact optical coupler, an integrated optical The size of the module can be reduced.
  • the distance between the light emitting points can be further reduced, further It is possible to reduce the size of the optical combiner and the integrated optical module.
  • mounting portions 2 3 and the mounting part 2 2 since so as to form a mounting portion of the mounting portion and the light emitting element 1 2 on both surfaces the light-emitting element 1 3 from the mounting substrate provided, constituting the light-emitting element pairs Since the mounting substrate of the light emitting element can be shared, the types of members can be reduced and the quantity per mounting substrate can be increased, so that the manufacturing cost of the mounting substrate can be reduced and the cost can be reduced. can.
  • Embodiment 2 In the first embodiment, the glass substrate on which the dielectric multilayer film is vapor-deposited is used as the mirrors 10 and 19, but in the second embodiment, the case where the dielectric multilayer film is vapor-deposited on the holder will be described.
  • FIG. 9 is a plan view showing the configuration of the optical combiner of the integrated optical module according to the second embodiment.
  • the mirror 10 and the mirror 19 are made of glass instead of the glass substrate on which the dielectric multilayer film used in the first embodiment is vapor-deposited.
  • a dielectric multilayer film is directly vapor-deposited on the mirror to form a mirror.
  • Other configurations of the integrated optical module according to the second embodiment are the same as those of the integrated optical module 101 of the first embodiment, and the corresponding portions are designated by the same reference numerals as those in FIG. 2 and the description thereof will be omitted.
  • the one in which the dielectric multilayer film is vapor-deposited directly at the position where the mirror of the glass holder 11 is fixed is used. Not only the effect described in the first form can be obtained, but also by forming the mirror directly on the holder, the step of mounting the mirror can be omitted, the number of parts of the optical combiner can be reduced, and the cost can be reduced. Can be planned.
  • Embodiment 3 In the first embodiment, a glass substrate on which a dielectric multilayer film is vapor-deposited is used as the mirror 19, but in the third embodiment, a case where a large-sized filter is used will be described.
  • FIG. 10 is a plan view showing the configuration of the optical combiner of the integrated optical module according to the third embodiment.
  • the size is increased so as to cover the position where the mirror 19 of the holder 11 is fixed in the first embodiment, and the function as the mirror 19 is provided. to form a filter 9 1 combines.
  • the filter 9 1 it may be used filter 9 2.
  • Other configurations of the integrated optical module according to the third embodiment are the same as those of the integrated optical module 101 of the first embodiment, and the corresponding portions are designated by the same reference numerals as those in FIG. 2 and the description thereof will be omitted.
  • the mirror 19 since to reflect over the filter 9 1 or the filter 9 2 to a position for fixing the mirror 19 of the holder 11, Not only the effect described in the first embodiment can be obtained, but also the step of mounting the mirror can be omitted, the number of parts of the optical combiner can be reduced, and the cost can be reduced.
  • 1i (1 1 , 1 2 , 1 3 , 1 4 )
  • Light emitting element 2i (2 1 , 2 2 , 2, 3 , 2 4 )
  • Mounting unit 3i (3 1 , 3 2 , 3, 3 , 3 4 )
  • Optical signal 4i (4 1, 4 2 , 4 3, 4 4)
  • a collimating lens 9i (9 1, 9 2 , 9 3, 9 4) filter
  • 10 a mirror
  • 11 a holder 13i (13 1, 13 2 , 13 3 , 13 4)
  • light emitting points 22i (22 1, 22 2 , 22 3, 22 4) mounting substrate 101 integrated optical module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

光信号(3)を出射する発光素子(1)を有する実装部(2)と、実装部(2)に並設され、光信号(3)と波長の異なる光信号(3)を出射する発光素子(1)を有する実装部(2)と、光信号(3)の波長のみを透過するフィルタ(9)、フィルタ(9)を透過した光信号(3)を反射させるミラー(10)、およびフィルタ(9)に並設され、光信号(3)の波長のみを透過し、ミラーで反射された光信号(3)を反射し、透過した光信号(3)と合波するフィルタ(9)を有する光合波器(5)とを備え、発光素子(1)を実装部(2)において光信号(3)の出射方向に対して幅方向中央より発光素子(1)側に実装し、発光素子(1)を実装部(2)において光信号(3)の出射方向に対して幅方向中央より発光素子(1)側に実装する。

Description

集積光モジュール
 本願は、集積光モジュールに関するものである。
 光伝送システムにおいては、近年の急激な通信容量の増大に対応するため、複数の波長信号を一本の光ファイバに束ねて、光信号を送受信する波長多重光伝送方式が広く採用されている。集積光モジュールは、このような波長多重光伝送方式に使用され、波長の異なる複数の発光素子と、複数の発光素子から出射される複数の光信号を合波して一本の光ファイバに合波する光合波器とを同一パッケージに内蔵し、一本の光ファイバに束ねて送信する機能を有している。例えば、特許文献1の光モジュールのように、フィルタとミラーで反射を繰り返し、他のレーンの光信号と合波され、光合波器から出射される。光合波器により合波され、出射された光信号は、集光レンズによって1本の光ファイバに集光され、光ファイバ伝送網に送信可能な状態で集積光モジュールから出射される。
 大容量光伝送システムを実現するために、伝送装置内に多数の集積光モジュールを実装する必要があり、実装密度を上げるために小型の集積光モジュールが強く求められている。集積光モジュールのサイズは、パッケージに内蔵される部材で最も大きなホルダのサイズに大きく依存している。ホルダのサイズのうち、長さ(光信号の進行方向)の寸法は、発光素子の間隔で決まっている。これは、光信号を合波する際に、ホルダに貼り付けられたフィルタとミラーの間を反射しながら光信号が進むが、ミラーで反射し、隣のレーンのフィルタに達した時に、その隣のレーンの光信号と同じ位置にならなければならないためである。このため、発光素子の間隔が大きくなると、隣接レーンの光信号と同じ位置に戻ってくるようにホルダの長さを長くする必要がある。また、集積光モジュールの高性能化、低消費電力化によって、発光素子の実装基板には、発光素子のみならず、モニタおよびコンデンサなどの部材も一緒に実装されるようになり、実装基板の大型化、それによる発光素子の間隔の増大が発生している。
特開2018-72674号公報(段落0015、図4)
 したがって、従来の集積光モジュールは、近年の急激な通信容量の増大に伴う高性能化、低消費電力化によって実装基板が大型化することで、発光素子の間隔の増大が発生し、ホルダとともに光合波器が大きくなって、集積光モジュールも大型化してしまうという問題があった。
 本願は、上記のような課題を解決するための技術を開示するものであり、光合波器の小型化による小型の集積光モジュールを提供することを目的とする。
 本願に開示される集積光モジュールは、第一の発光点から第一の光信号を出射する第一の発光素子を有する第一の実装部と、前記第一の実装部に並設され、前記第一の光信号と波長の異なる第二の光信号を第二の発光点から出射する第二の発光素子を有する第二の実装部と、前記第一の発光点から出射された第一の光信号を平行光に変換する第一のコリメートレンズと、前記第二の発光点から出射された第二の光信号を平行光に変換する第二のコリメートレンズと、前記第一のコリメートレンズで平行光に変換された前記第一の光信号の波長のみを透過する第一のフィルタ、前記第一のフィルタを透過した前記第一の光信号を反射させる表面ミラー、および前記第一のフィルタに並設され、前記第二のコリメートレンズで平行光に変換された前記第二の光信号の波長のみを透過し、前記表面ミラーで反射された前記第一の光信号を反射するとともに前記透過した前記第二の光信号と合波する第二のフィルタを有する光合波部と、を備え、前記第一の発光素子は、前記第一の実装部において第一の光信号の出射方向に対して幅方向中央より前記第二の発光素子側に実装され、かつ前記第二の発光素子は、前記第二の実装部において第二の光信号の出射方向に対して幅方向中央より前記第一の発光素子側に実装されたことを特徴とする。
 本願によれば、隣り合う発光素子をペアにして、互いの実装基板上で近接させて実装することによって光合波器の小型化が可能となり、光合波器を内蔵する集積光モジュールも小型化を図ることができる。
実施の形態1に係る集積光モジュールの全体構造を示す模式図である。 実施の形態1に係る集積光モジュールの内部の構成を示す平面図である。 実施の形態1に係る集積光モジュールの実装部の構成を示す平面図である。 従来の集積光モジュールの内部の構成を示す平面図である。 実施の形態1に係る集積光モジュールの動作を説明するためのフローチャート図である。 実施の形態1に係る集積光モジュールの実装部の製造方法を説明するための図である。 実施の形態1に係る集積光モジュールの実装部の他の構成を示す平面図である。 実施の形態1に係る集積光モジュールの実装部の他の構成を示す平面図である。 実施の形態2に係る集積光モジュールの光合波器の構成を示す平面図である。 実施の形態3に係る集積光モジュールの光合波器の構成を示す平面図である。
 実施の形態1.
 図1は、実施の形態1に係る集積光モジュール101の全体構造を示す模式図である。図2は、集積光モジュール101の内部の構成を示す平面図である。図3は、集積光モジュール101の実装部の構成を示す平面図である。
 図1に示すように、実施の形態1に係る集積光モジュール101は、電気信号を光信号3iに変換する発光素子1iを搭載する実装部2i、発光素子1iから出射される光信号3iを平行光に変換するコリメートレンズ4i、光信号3iを合波する光合波器5、これらを収容するパッケージ6、光ファイバ8、および光合波器出射光を光ファイバ8に集光する集光レンズ7で構成されている。なお、サフィックスiは集積光モジュールのレーン番号(チャネル番号)を示す数字で、本例では0、1、2または3となる(i=0、1、2、3)。
 光合波器5は、図2に示すように、レーンiの波長の光信号3iを透過し、それ以外の波長の光信号を反射するフィルタ9i、フィルタ9iと反対側に位置し全ての波長の光信号を反射する表面ミラーとしてのミラー10、およびフィルタ9i側でフィルタ9とフィルタ9の間に位置する裏面ミラーとしてのミラー19、平行な2面にフィルタ9iとミラー10、19を固定するホルダ11で構成されている。ミラー10、19は、ガラス基板に誘電体多層膜を蒸着して形成される。
 実装部2iは、図3に示すように、電気信号12iに応じた光信号3iを発生する発光素子1iの発光点13i、発光素子1iの発光量をモニタするためのモニタPD(Photodiode)14i、電気信号12iに応じて発光素子1iの変調器に電圧を印加するための終端抵抗15i、電気信号12iのDC(Direct Current)成分が終端抵抗15iに流れて電力を消費するのを防ぐためのAC(Alternating Current)結合用コンデンサ16i、発光素子およびモニタPDの電極と実装基板の電極とを電気的に接続するための金ワイヤ17を有する。
 実装部2iは、一対の第一の実装部としての実装部2と第二の実装部としての実装部2、および一対の第三の実装部としての実装部2と第四の実装部としての実装部2により、それぞれ第一の発光素子ペアとしての発光素子ペア18bおよび第二の発光素子ペアとしての18aを構成する。発光素子ペア18aは、発光素子1と発光素子1が隣り合うペアであり、発光素子1は実装基板22の中心よりも発光素子1側に実装され、また、発光素子1は実装基板22の中心よりも発光素子1側に実装され、発光素子の隣り合うペアは互いの実装基板上で近接するように実装されている。同様に、発光素子ペア18bも、発光素子1と発光素子1が隣り合うペアであり、発光素子1は実装基板22の中心よりも発光素子1側に実装され、また、発光素子1は実装基板22の中心よりも発光素子1側に実装され、発光素子の隣り合うペアは互いの実装基板上で近接するように実装されている。
 図4に、従来の集積光モジュールの内部の構成を示す平面図を示す。図4では、実装部2iは、比較のため実施の形態1の場合と同じサイズである。実施の形態1においては発光素子1iの発光点13iの位置が、出射方向に対して従来の実装基板22iの幅方向中心から1/4幅分だけ、発光素子ペア18aおよび18bのそれぞれの発光素子1iを発光素子ペアである隣の発光素子側に実装している。この場合の発光素子ペア18bのそれぞれの発光素子1同士の発光点1313間の距離をd1とすると、発光素子ペア18aと発光素子ペア18bの隣り合う発光素子1と発光素子1の発光点1313間の距離は、図2に示すように、3d1となる。よって、発光素子ペア18aと発光素子ペア18bの両端の発光素子1と発光素子1の発光点1313間の距離は、5d1となる。一方、従来例においては、図4に示すように、発光素子1iの発光点13iの間の距離はそれぞれ2d1となり、実装部2と実装部2の両端の発光素子1と発光素子1の発光点1313間の距離は、6d1となる。
 次に、実施の形態1に係る集積光モジュール101の動作について説明する。図5は、集積光モジュール101の動作を説明するためのフローチャート図である。
 まず最初に、発光素子1から出射した光信号3は、コリメートレンズ4によって平行光に変換された後、光合波器5に入射し、フィルタ9を透過した後、ミラー10で反射され、フィルタ9に達する(ステップS501)。
 続いて、発光素子1から出射した光信号3は、コリメートレンズ4によって平行光に変換された後、光合波器5に入射し、フィルタ9を透過した後、光信号3と合波される(ステップS502)。ここで、ホルダ11の光信号伝搬方向の長さは、ミラーで反射された光信号3とフィルタ9を透過した光信号3の位置が一致するように設計されている。
 次いで、合波された光信号3、3は、ミラー10およびミラー19で反射を繰り返し、フィルタ9に達する(ステップS503)。
 続いて、発光素子1から出射した光信号3は、コリメートレンズ4によって平行光に変換された後、光合波器5に入射し、フィルタ9を透過した後、光信号3、3と合波される(ステップS504)。ここで、発光素子ペア18bの発光素子1同士の発光点1313間の距離をd1とすると、発光素子ペア18aと発光素子ペア18bの隣り合う発光素子1と発光素子1の発光点1313間の距離は3d1となるため、発光素子ペア18bの発光素子1、1からの光信号3、3のフィルタ9での到達位置(反射位置)と、もう一方の発光素子ペア18aを構成する発光素子1から光信号3がフィルタ9を透過する位置は一致する。
 次いで、合波された光信号3、3、3は、ミラー10で反射され、フィルタ9に達する(ステップS505)。
 続いて、発光素子10から出射した光信号30は、コリメートレンズ4によって平行光に変換された後、光合波器5に入射し、フィルタ9を透過した後、光信号3、3、3と合波される(ステップS506)。ここで、発光素子ペア18aを構成する発光素子1と発光素子11の間の距離もd1となるため、発光素子ペア18bの発光素子1、1からの光信号3、3および発光素子ペア18aの発光素子11からの光信号3のフィルタ9での到達位置(反射位置)と、もう一方の発光素子ペア18aを構成する発光素子1の発光点13から光信号3が透過する位置は一致する。
 最後に、合波された光信号3、3、3、3は、光合波器5から出射される(ステップS507)。光合波器5から出射された光信号は、集光レンズ7によって1本の光ファイバ8に集光され、光ファイバ伝送網に送信可能な状態で集積光モジュールから出射される。
 上記のように、光信号3iを合波するためには、光信号がミラー10、19とフィルタ9iで反射を繰り返しながら隣の光信号の位置と一致しなければならず、光信号の入射方向における光合波器5のホルダ11の長さは、光信号間の距離に比例している。
 したがって、本実施の形態1では、隣り合う発光素子同士の発光点間の距離はd1で、従来の集積光モジュールの2d1に対して半分になっており、光信号の入射方向におけるホルダ11の長さを半分にすることができる。また、光信号の入射方向に対する横方向のホルダ11の横幅についても、実施の形態1では発光点13から発光点13までの横幅5d1に対して、従来例では6d1であり、光合波器の横幅についても小型にすることができる。
 なお、本実施の形態1では、発光素子ペア18aと発光素子ペア18bにおいて、発光素子が光信号の出射方向左側に形成される実装基板22、22と、光信号の出射方向右側に形成される実装基板22、22の2種類の実装基板が必要となる。そこで、実施の形態1では、図6に示す実装基板22を用いることができる。図6(a)は上面図(表面)、図6(b)は側面、図6(c)は下面図(裏面)である。図6に示すように、実装基板22は、表面および裏面それぞれに、終端抵抗15Rと15L、発光素子搭載部20Rと20L、コンデンサ搭載部21Rと21L、モニタPD搭載部22Rと22Lが光信号の出射方向に対して左右対照的な位置に形成されている。
 実装基板22、22として用いる場合は、実装基板22の裏面側を用いて、発光素子搭載部20Lに発光素子1、1、コンデンサ搭載部21Lにコンデンサ16、162、モニタPD搭載部22LにモニタPD14、14を搭載する。また、実装基板22、22として用いる場合は、実装基板22の表面側を用いて、発光素子搭載部20Rに発光素子1、1、コンデンサ搭載部21Rにコンデンサ16、163、モニタPD搭載部22RにモニタPD14、14を搭載する。
 これにより、1種類の実装基板22で発光素子が近接するようにペアを構成することができ、光合波器の小型化、集積光モジュールの小型化が図れる。さらに、ペアを構成する発光素子の実装基板を共通にすることができるため、部材の種類を減らし、実装基板1種類当たりの数量を増やすことができるため、実装基板の製造コストが下がり、低コス化を図ることがきできる。
 図7は、実施の形態1に係る集積光モジュール101の実装部の他の構成を示す平面図である。図7に示すように、集積光モジュール101の発光素子ペア18aにおいて、発光点13は発光素子1において光信号3の出射方向に対して幅方向中央より発光点13側に実装され、発光点13は発光素子1において光信号3の出射方向に対して幅方向中央より発光点13側に実装されている。同様に、発光素子ペア18bも、発光点13は発光素子1において光信号3の出射方向に対して幅方向中央より発光点13側に実装され、発光点13は発光素子1において光信号3の出射方向に対して幅方向中央より発光点13側に実装されている。
 これにより、発光素子ペア18aを構成する発光素子1の発光点13と発光素子1の発光点13の間の距離も、また、発光素子ペア18bを構成する発光素子1の発光点13と発光素子1の発光点13の間の距離もd2となり、d2<d1であることから、光合波器をさらに小型化できる。
 図8も、実施の形態1に係る集積光モジュール101の実装部の他の構成を示す平面図である。図8に示すように、集積光モジュール101の発光素子ペア18aにおいて、2つの異なる波長の光信号を発光する発光点13、13を集積した1つの発光素子1a、モニタPD14、14、コンデンサ16、16を搭載する実装基板22aが形成されている。同様に、発光素子ペア18bにおいては、2つの異なる波長の光信号を発光する発光点13、13を集積した1つの発光素子1b、モニタPD14、14、コンデンサ16、16を搭載する実装基板22bが形成されている。
 これにより、発光素子ペア18aを構成する発光素子1aの発光点13と発光点13の間の距離も、また、発光素子ペア18bを構成する発光素子1bの発光点13と発光点13の間の距離もd3となり、d3<d2<d1であることから、光合波器をさらに小型化できる。
 以上のように、本実施の形態1に係る集積光モジュール101によれば、発光点13から光信号3を出射する発光素子1を有する実装部2と、実装部2に並設され、光信号3と波長の異なる光信号3を発光点13から出射する発光素子1を有する実装部2と、発光点13から出射された光信号3を平行光に変換するコリメートレンズ4と、発光点13から出射された光信号3を平行光に変換するコリメートレンズ4と、コリメートレンズ4で平行光に変換された光信号3の波長のみを透過するフィルタ9、フィルタ9を透過した光信号3を反射させるミラー10、およびフィルタ9に並設され、コリメートレンズ4で平行光に変換された光信号3の波長のみを透過し、ミラー10で反射された光信号3を反射するとともに透過した光信号3と合波するフィルタ9を有する光合波器5と、を備え、発光素子1を、実装部2において光信号3の出射方向に対して幅方向中央より発光素子1側に実装し、かつ発光素子1を、実装部2において光信号3の出射方向に対して幅方向中央より発光素子1側に実装するようにしたので、隣り合う発光素子をペアにして、互いの実装基板上で近接させて実装されているため、ペアを構成する発光素子同士の間隔を小さくすることができる。
 また、実装部2および実装部2で形成された発光素子ペア18bに対応して、発光素子ペア18aとして形成された、実装部2の実装部2と反対側に順に並設された実装部2および実装部2と、実装部2の発光点13から出射された光信号3を平行光に変換するコリメートレンズ4と、実装部2の発光点13から出射された光信号3を平行光に変換するコリメートレンズ4と、発光素子ペア18aの光信号3および光信号3のそれぞれの波長に対応し、光合波器5でフィルタ9およびフィルタ9に対応して並設されたフィルタ9およびフィルタ9と、フィルタ9およびフィルタ9の間で光信号3および光信号3の合波を反射する裏面ミラー19と、を備え、実装部2の発光点13と実装部2の発光点13の間の距離をd1としたときに、実装部2の発光点13と実装部2の発光点13の間の距離がnd1(nは2以上の整数)となるようにしたので、光合波器のホルダの長さは、光信号の間隔に比例しているため、隣り合う発光素子をペアにして、互いの実装基板上で近接させて実装することによって光合波器の小型化が可能となり、光合波器を内蔵する集積光モジュールも小型化を図ることができる。
 また、発光点13を、発光素子1において光信号3の出射方向に対して幅方向中央より発光点13側に実装し、かつ発光点13を、発光素子1において光信号3の出射方向に対して幅方向中央より発光点13側に実装するようにしたので、発光点間の距離を、より小さくすることができ、一層の光合波器の小型化、集積光モジュールの小型化を図ることができる。
 また、実装部2と実装部2を一体化させ、発光点13と発光点13を並べて実装するようにしたので、発光点間の距離を、さらに小さくすることができ、一層の光合波器の小型化、集積光モジュールの小型化を図ることができる。
 また、実装部2および実装部2は、両表面にそれぞれ発光素子1の搭載部と発光素子1の搭載部を設けた実装基板から形成するようにしたので、発光素子ペアを構成する発光素子の実装基板を共通にすることができるため、部材の種類を減らし、実装基板1種類当たりの数量を増やすことができるため、実装基板の製造コストが下がり、低コス化を図ることがきできる。
 実施の形態2.
 実施の形態1では、ミラー10、19として誘電体多層膜を蒸着したガラス基板を用いたが、実施の形態2では、ホルダに誘電体多層膜を蒸着した場合について説明する。
 図9は、実施の形態2に係る集積光モジュールの光合波器の構成を示す平面図である。図9に示すように、実施の形態2に係る集積光モジュールでは、ミラー10とミラー19は、実施の形態1で用いた誘電体多層膜を蒸着したガラス基板の代わりに、ガラス製のホルダ11に誘電体多層膜を、直接、蒸着してミラーを形成している。実施の形態2による集積光モジュールのその他の構成については、実施の形態1の集積光モジュール101と同様であり、対応する部分には図2と同符号を付してその説明を省略する。
 以上のように、本実施の形態2に係る集積光モジュールによれば、ガラス製のホルダ11のミラーを固定する位置に直接、誘電体多層膜を蒸着したものを用いるようにしたので、実施の形態1に記載の効果が得られるだけでなく、ミラーを、直接、ホルダに形成することによって、ミラーを実装する工程を省くとともに、光合波器の部品点数を減らすことができ、低コスト化を図ることができる。
 実施の形態3.
 実施の形態1では、ミラー19として誘電体多層膜を蒸着したガラス基板を用いたが、実施の形態3では、サイズの大きいフィルタを用いた場合について説明する。
 図10は、実施の形態3に係る集積光モジュールの光合波器の構成を示す平面図である。図10に示すように、実施の形態3に係る集積光モジュールでは、実施の形態1でホルダ11のミラー19を固定していた位置を覆うように、サイズを大きくしてミラー19としての機能を兼ね備えたフィルタ9を形成している。なお、フィルタ9の代わりに、フィルタ9を用いてもよい。実施の形態3による集積光モジュールのその他の構成については、実施の形態1の集積光モジュール101と同様であり、対応する部分には図2と同符号を付してその説明を省略する。
 以上のように、本実施の形態3に係る集積光モジュールによれば、ミラー19は、ホルダ11のミラー19を固定する位置までフィルタ9またはフィルタ9で覆って反射するようにしたので、実施の形態1に記載の効果が得られるだけでなく、ミラーを実装する工程を省き、光合波器の部品点数を減らすことができ、低コスト化を図ることができる。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 1i(1、1、1、1) 発光素子、2i(2、2、2、2) 実装部、3i(3、3、3、3) 光信号、4i(4、4、4、4) コリメートレンズ、9i(9、9、9、9) フィルタ、10 ミラー、11 ホルダ、13i(13、13、13、13) 発光点、22i(22、22、22、22) 実装基板、101 集積光モジュール。

Claims (7)

  1.  第一の発光点から第一の光信号を出射する第一の発光素子を有する第一の実装部と、
     前記第一の実装部に並設され、前記第一の光信号と波長の異なる第二の光信号を第二の発光点から出射する第二の発光素子を有する第二の実装部と、
     前記第一の発光点から出射された第一の光信号を平行光に変換する第一のコリメートレンズと、
     前記第二の発光点から出射された第二の光信号を平行光に変換する第二のコリメートレンズと、
     前記第一のコリメートレンズで平行光に変換された前記第一の光信号の波長のみを透過する第一のフィルタ、前記第一のフィルタを透過した前記第一の光信号を反射させる表面ミラー、および前記第一のフィルタに並設され、前記第二のコリメートレンズで平行光に変換された前記第二の光信号の波長のみを透過し、前記表面ミラーで反射された前記第一の光信号を反射するとともに前記透過した前記第二の光信号と合波する第二のフィルタを有する光合波部と、
     を備え、
     前記第一の発光素子は、前記第一の実装部において第一の光信号の出射方向に対して幅方向中央より前記第二の発光素子側に実装され、かつ前記第二の発光素子は、前記第二の実装部において第二の光信号の出射方向に対して幅方向中央より前記第一の発光素子側に実装されたことを特徴とする集積光モジュール。
  2.  前記第一の発光点は、前記第一の発光素子において第一の光信号の出射方向に対して幅方向中央より前記第二の発光点側に実装され、かつ前記第二の発光点は、前記第二の発光素子において第二の光信号の出射方向に対して幅方向中央より前記第一の発光点側に実装されたことを特徴とする請求項1に記載の集積光モジュール。
  3.  前記一の実装部および前記第二の実装部は、両表面にそれぞれ前記第一の発光素子の搭載部と前記第二の発光素子の搭載部を設けた実装基板から形成されたことを特徴とする請求項1または請求項2に記載の集積光モジュール。
  4.  前記第一の実装部と前記第二の実装部を一体化させ、前記第一の発光点と前記第二の発光点が並べて実装されたことを特徴とする請求項1に記載の集積光モジュール。
  5.  前記第一の実装部および前記第二の実装部で形成された第一の発光素子ペアに対応して、第二の発光素子ペアとして形成された、前記第二の実装部の前記第一の実装部と反対側に順に並設された第三の実装部および第四の実装部と、
     前記第三の実装部の第三の発光点から出射された第三の光信号を平行光に変換する第三のコリメートレンズと、
     前記第四の実装部の第四の発光点から出射された第四の光信号を平行光に変換する第四のコリメートレンズと、
     前記第二の発光素子ペアの前記第三の光信号および前記第四の光信号のそれぞれの波長に対応し、前記光合波部で前記第一のフィルタおよび前記第二のフィルタに対応して並設された第三のフィルタおよび第四のフィルタと、
     前記第二のフィルタと前記第三のフィルタの間で前記第一の光信号と前記第二の光信号の合波を反射する裏面ミラーと、
     を備え、
     前記第一の実装部の第一の発光点と前記第二の実装部の第二の発光点の間の距離をdとしたときに、前記第二の実装部の前記第二の発光点と前記第三の実装部の前記第三の発光点の間の距離がnd(nは2以上の整数)であることを特徴とする請求項1から請求項4のいずれか1項に記載の集積光モジュール。
  6.  前記表面ミラーおよび前記裏面ミラーは、前記表面ミラーおよび前記裏面ミラーを設けるガラス製のホルダの位置に直接、誘電体多層膜を蒸着してなることを特徴とする請求項5に記載の集積光モジュール。
  7.  前記裏面ミラーは、前記裏面ミラーを設ける位置まで前記第二のフィルタまたは前記第三のフィルタで覆って反射することを特徴とする請求項5または請求項6に記載の集積光モジュール。
PCT/JP2020/007023 2020-02-21 2020-02-21 集積光モジュール WO2021166216A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020531790A JP6804698B1 (ja) 2020-02-21 2020-02-21 集積光モジュール
CN202080096604.4A CN115104053B (zh) 2020-02-21 2020-02-21 集成光模块
US17/757,433 US12019275B2 (en) 2020-02-21 2020-02-21 Integrated optical module
PCT/JP2020/007023 WO2021166216A1 (ja) 2020-02-21 2020-02-21 集積光モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/007023 WO2021166216A1 (ja) 2020-02-21 2020-02-21 集積光モジュール

Publications (1)

Publication Number Publication Date
WO2021166216A1 true WO2021166216A1 (ja) 2021-08-26

Family

ID=73836139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007023 WO2021166216A1 (ja) 2020-02-21 2020-02-21 集積光モジュール

Country Status (4)

Country Link
US (1) US12019275B2 (ja)
JP (1) JP6804698B1 (ja)
CN (1) CN115104053B (ja)
WO (1) WO2021166216A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008920A (en) * 1998-03-11 1999-12-28 Optical Coating Laboratory, Inc. Multiple channel multiplexer/demultiplexer devices
JP2003232944A (ja) * 2002-02-08 2003-08-22 Sumitomo Electric Ind Ltd パラレル送受信モジュール
JP2003294964A (ja) * 2002-04-03 2003-10-15 Sumitomo Electric Ind Ltd 光通信モジュール
JP2017135194A (ja) * 2016-01-26 2017-08-03 住友電気工業株式会社 光受信モジュール
WO2018008154A1 (ja) * 2016-07-08 2018-01-11 三菱電機株式会社 光部品および光モジュール

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3736462B2 (ja) 2002-01-17 2006-01-18 ソニー株式会社 半導体レーザ装置
CN101587216B (zh) * 2008-05-20 2013-03-20 光环科技股份有限公司 用于光纤通信的双波长激光组件
JP2010191231A (ja) * 2009-02-19 2010-09-02 Hitachi Ltd 光モジュール
US9350454B2 (en) * 2011-01-21 2016-05-24 Finisar Corporation Multi-laser transmitter optical subassembly
US8830587B2 (en) * 2011-05-31 2014-09-09 Corning Incorporated Method and apparatus for combining light sources in a pump laser array
JP2013008887A (ja) 2011-06-27 2013-01-10 Hitachi Ltd 光モジュール
JP5910057B2 (ja) * 2011-12-13 2016-04-27 住友電気工業株式会社 光受信モジュール
JP2014095843A (ja) * 2012-11-12 2014-05-22 Sumitomo Electric Ind Ltd 光合分波器およびその製造方法ならびに光通信モジュール
CN105659127B (zh) * 2013-10-31 2021-08-20 慧与发展有限责任合伙企业 复用的光电引擎
KR20160145956A (ko) * 2015-06-11 2016-12-21 주식회사 지피 파장 다중화 광수신 모듈
US10090934B2 (en) * 2015-11-10 2018-10-02 Sumitomo Electric Industries, Ltd. Optical receiver module that receives wavelength-multiplexed signal
WO2018119580A1 (en) * 2016-12-26 2018-07-05 Source Photonics (Chengdu) Company Limited Multi-channel optical multiplexers and demultiplexers, optical transmitter, receiver and transceiver comprising the same, and methods of making and using the same
CN108008501B (zh) 2016-11-01 2021-10-29 住友电工光电子器件创新株式会社 光发送器设备
JP6879476B2 (ja) 2016-11-01 2021-06-02 住友電工デバイス・イノベーション株式会社 光モジュール
CN108107515B (zh) * 2017-12-18 2019-10-18 武汉电信器件有限公司 多通道并行发射器件
JP7241461B2 (ja) * 2017-12-19 2023-03-17 日本ルメンタム株式会社 光合分波器、光サブアセンブリ及び光モジュール
CN111684337B (zh) * 2018-02-09 2022-04-26 三菱电机株式会社 光合分波器的制造方法
WO2020016932A1 (ja) * 2018-07-17 2020-01-23 三菱電機株式会社 集積光モジュール及び集積光モジュールの製造方法
US10924185B2 (en) * 2018-08-06 2021-02-16 Hewlett Packard Enterprise Development Lp Systems and methods of dual-side array bi-directional CWDM micro-optics
CN109375315A (zh) 2018-11-12 2019-02-22 武汉电信器件有限公司 一种四光路波分复用器件
CN114578483A (zh) * 2020-11-30 2022-06-03 北极光电(深圳)有限公司 一种大间距多通道波分复用组件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008920A (en) * 1998-03-11 1999-12-28 Optical Coating Laboratory, Inc. Multiple channel multiplexer/demultiplexer devices
JP2003232944A (ja) * 2002-02-08 2003-08-22 Sumitomo Electric Ind Ltd パラレル送受信モジュール
JP2003294964A (ja) * 2002-04-03 2003-10-15 Sumitomo Electric Ind Ltd 光通信モジュール
JP2017135194A (ja) * 2016-01-26 2017-08-03 住友電気工業株式会社 光受信モジュール
WO2018008154A1 (ja) * 2016-07-08 2018-01-11 三菱電機株式会社 光部品および光モジュール

Also Published As

Publication number Publication date
CN115104053B (zh) 2023-10-20
JP6804698B1 (ja) 2020-12-23
CN115104053A (zh) 2022-09-23
US12019275B2 (en) 2024-06-25
JPWO2021166216A1 (ja) 2021-08-26
US20230022318A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
US8340522B2 (en) Filter assembly and optical module using same
JP2020021013A (ja) 波長多重光モジュール、波長分離光モジュール、及び光モジュール
CN101501541B (zh) 用于监视dwdm发射器阵列的光栅抽头方法和系统
CA2225135A1 (en) Optoelectronic circuit
US10578804B2 (en) Optical slab
US8456741B2 (en) Optical module having three or more optically transparent layers
JP2009020360A (ja) 光モジュール
US7623788B2 (en) Optical wavelength division multiplexing transmitter
JP2002267998A (ja) 波長分散補償モジュール、光受信回路、及び光通信システム
JP2016130813A (ja) 光受信モジュール、光送信モジュール、合波器、及び分波器
JP3680738B2 (ja) 波長多重光通信モジュール
CN109932780B (zh) 光波分复用器、光组件以及光模块
WO2021166216A1 (ja) 集積光モジュール
JP5218243B2 (ja) 光モジュール
CN115407434A (zh) 光次组件模组中使用的抛物面透镜装置
JP2009210696A (ja) 光送受信器
CN113448022B (zh) 光发射机、光模块、光收发设备以及光通信系统
US20050175345A1 (en) Wavelength multiplexing device and optical transmission module provided with the same
US20240210635A1 (en) Optical emission assembly and optical module
JP2005037722A (ja) 多ポート用光送受信モジュール
CN210222376U (zh) 一种用于彩光模块的光路结构
JP6848161B2 (ja) 光モジュール
JP2005258268A (ja) 多波長光送信モジュール、多波長光受信モジュール及び光路差補正モジュール
CN118210114A (zh) 一种同轴的单纤双向光收发器件
WO2018074010A1 (ja) 光送信モジュール

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020531790

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919660

Country of ref document: EP

Kind code of ref document: A1