WO2021164616A1 - 一种膜层致密的等离子化学气相沉积法镀疏水膜方法 - Google Patents

一种膜层致密的等离子化学气相沉积法镀疏水膜方法 Download PDF

Info

Publication number
WO2021164616A1
WO2021164616A1 PCT/CN2021/076043 CN2021076043W WO2021164616A1 WO 2021164616 A1 WO2021164616 A1 WO 2021164616A1 CN 2021076043 W CN2021076043 W CN 2021076043W WO 2021164616 A1 WO2021164616 A1 WO 2021164616A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrophobic
film
workpiece
hydrophobic film
chemical vapor
Prior art date
Application number
PCT/CN2021/076043
Other languages
English (en)
French (fr)
Inventor
吕伟桃
梁宸
Original Assignee
佛山市思博睿科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010097649.5A external-priority patent/CN111188032B/zh
Priority claimed from CN202010097456.XA external-priority patent/CN111519171B/zh
Application filed by 佛山市思博睿科技有限公司 filed Critical 佛山市思博睿科技有限公司
Publication of WO2021164616A1 publication Critical patent/WO2021164616A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets

Definitions

  • the invention relates to the technical field of plasma chemical vapor deposition method film coating, in particular to a method for plating a hydrophobic film with a dense film layer by plasma chemical vapor deposition method.
  • the plasma gas carrier gas is maintained to react with the vaporized hydrophobic material for a period of time to form a hydrophobic film on the surface of the workpiece. Control according to the thickness of the hydrophobic film. The length of the reaction time.
  • This coating process can form a single-layer hydrophobic film with a certain thickness, but the comprehensive performance of this single-layer hydrophobic film is not high enough, and there are problems of easy shedding and poor durability. In order to solve this problem, there are also records of multi-layer coating, but these are difficult to fundamentally solve the problem of the firmness of the bond between the film layer and the substrate.
  • the purpose of the present invention is to provide a method for plating a hydrophobic film with a dense film layer by plasma chemical vapor deposition, which has the characteristics of high film coating efficiency.
  • the present invention adopts the following technical solutions:
  • the invention provides a method for plating a hydrophobic film with a dense plasma chemical vapor deposition method.
  • the fluorine-substituted olefin C 3 F 6 and/or C 4 F 8 is introduced into the radio frequency reaction chamber of the workpiece to be processed, so that the C and F elements in the C 3 F 6 and/or C 4 F 8 molecular structure are generated by plasma bombardment
  • the active radical groups that react with the surface of the workpiece deposit -CF 3 groups on the surface of the workpiece, the radio frequency power in the reaction chamber is 300-400W, and the vacuum degree is 0.04-0.08mbar.
  • C 3 F 6 and/or C 4 F 8 are used to pre-treat the workpiece, so that the activated C 3 F 6 and/or C 4 F 8 gas molecules collide with the processed surface.
  • the F element in the C 3 F 6 and/or C 4 F 8 molecular structure undergoes a plasma radical reaction (the F element in the fluoroolefin molecular structure generates F radicals under the bombardment of plasma) and is embedded on the surface of the workpiece. Riveting with the molecules on the surface of the workpiece has the effect of condensing nodules (distributing F atoms in a large area on the surface of the workpiece).
  • the pre-treatment process realizes the pre-deposition of -CF 3 groups on the surface of the workpiece, and the surface of the workpiece can be grafted with -CF 3 groups.
  • these low-surface CF 3 functional groups attract more F radicals, thereby generating a directional attraction with the subsequent vaporized coating materials (especially fluorine-containing hydrophobic materials), increasing the deposition speed of the hydrophobic film and increasing the hydrophobicity The firmness of film adhesion.
  • the method of the present invention further includes an activation step of using oxygen to perform plasma gas activation treatment on the surface of the workpiece in the reaction chamber after the pretreatment step; the flow rate of oxygen into the reaction chamber is 1000-1700ul/s, activation The time is 1-5min, the RF power is 200-800W, and the vacuum degree is 0.01-0.05mbar.
  • Plasma surface activation of the workpiece surface by oxygen enhances the activity of the workpiece surface, reduces the reaction potential energy, increases the number of active functional groups introduced, facilitates the deposition of materials, and improves the bonding force of the film.
  • the present invention also provides a method for plating a hydrophobic film by plasma chemical vapor deposition with a dense film layer.
  • the hydrophobic film plating step includes sequentially depositing a hydrophilic material containing a hydrophilic material and a hydrophobic material.
  • the hydrophilic film deposition process refers to the process of depositing a hydrophilic material under the radio frequency power of the first power and the vacuum degree of the first vacuum degree.
  • the step of depositing a hydrophobic film refers to a step of depositing a hydrophobic material at a second power higher than the first power and a second vacuum degree higher than the first vacuum degree, and in the deposition process Adjust the first vacuum degree and the second vacuum degree from low to high.
  • the hydrophilic material and the hydrophobic material are uniformly mixed to obtain a mixed coating material, and then the vaporized mixed coating material is fed into the reaction chamber. Then, the radio frequency power in the reaction chamber is set to the first power, the hydrophilic film is deposited under the first vacuum degree, and the vacuum degree is adjusted from low to high during the deposition process. Afterwards, the radio frequency power in the reaction chamber is adjusted to the second power, the hydrophobic film is deposited under the second vacuum degree, and the vacuum degree is adjusted from low to high during the deposition process.
  • the method of the present invention adopts a method of first plating a hydrophilic film on the surface of the workpiece and then plating a hydrophobic film on the hydrophilic film to obtain a workpiece with a hydrophobic surface.
  • the surface of the hydrophilic membrane gathers more hydrophilic groups. These groups have polarity, which makes the surface of the substrate exhibit extremely reactive activity. When using hydrophobic materials for deposition, it appears on the surface of extremely active workpieces. It is easier to deposit and adhere, and the film thickness increases rapidly and densely.
  • both the hydrophilic material and the hydrophobic material are silane materials. More preferably, the hydrophobic material contains a fluorine element, and the hydrophilic material contains a hydrophilic group.
  • the hydrophilic material and the hydrophobic material are mixed uniformly, and then passed into the reaction chamber at the same time after vaporization, and the hydrophilic material and the hydrophobic material are selectively deposited by adjusting the radio frequency power.
  • the shutdown and startup time, the time for discharging and feeding, and the time for cleaning the liquid tank during the production process can be saved, and the entire production cycle is shortened.
  • the hydrophilic material and the hydrophobic material use the same type of material.
  • This kind of mixing of the same type of material makes it easier to vaporize the mixed material than a single material, reduces the heating temperature, and is conducive to normal temperature production and equipment control and maintenance. .
  • the vacuum degree in the reaction chamber is adjusted from low to high. On the one hand, the energy consumption of coating can be reduced, and on the other hand, the density of the film can be improved.
  • the workpiece to be processed suitable for the present invention includes any form of substrate, including but not limited to circuit boards (such as PCBA), metal substrates, plastic parts, textiles, non-woven fabrics, and the like.
  • circuit boards such as PCBA
  • metal substrates such as PCBA
  • metal substrates such as PCBA
  • plastic parts such as PCBA
  • textiles such as non-woven fabrics, and the like.
  • C 3 F 6 and/or C 4 F 8 are used to pre-treat the workpiece, so that the activated C 3 F 6 and/or C 4 F 8 gas molecules collide with the processed surface.
  • the F element in the C 3 F 6 and/or C 4 F 8 molecular structure undergoes a plasma radical reaction (the F element in the fluoroolefin molecular structure generates F radicals under the bombardment of plasma) and is embedded on the surface of the workpiece. Riveting with the molecules on the surface of the workpiece has the effect of condensing nodules (distributing F atoms in a large area on the surface of the workpiece).
  • the pre-treatment process realizes the pre-deposition of -CF 3 groups on the surface of the workpiece, and the surface of the workpiece can be grafted with -CF 3 groups.
  • these low-surface CF 3 functional groups attract more F radicals, thereby generating a directional attraction with the subsequent vaporized coating materials (especially fluorine-containing hydrophobic materials), increasing the deposition speed of the hydrophobic film and increasing the hydrophobicity The firmness of film adhesion.
  • Figure 1 is a test diagram of the hydrophobic angle of Example 3-4 of the present invention.
  • Example 3 is a thickness curve diagram of Example 3 of the present invention.
  • Example 4 is a thickness curve diagram of Example 4 of the present invention.
  • Example 5 is a thickness curve diagram of Example 5 of the present invention.
  • Figure 3 is Table 1, which is a schematic diagram of the process parameters of Examples 1-6;
  • Figure 4 is Table 2, which shows the test results of film thickness, sandpaper abrasion resistance, and sand eraser abrasion resistance of Examples 1-6;
  • Figure 5 is Table 3, showing the test results of film thickness, hydrophobic angle, sandpaper abrasion resistance, and sand eraser abrasion resistance of Comparative Examples 1-5.
  • the method for plating a hydrophobic film with a dense plasma chemical vapor deposition method provided by the present invention includes a pre-treatment process before film coating.
  • the inert gas can be introduced at the same time as C 3 F 6 and/or C 4 F 8 is introduced into the reaction chamber.
  • the flow rate of the inert gas may be 0.7-1.7 ⁇ 10 3 ⁇ L/s, and the flow rate of the fluorine-substituted olefin (C 3 F 6 and/or C 4 F 8 ) may be 1.7-5 ⁇ 10 3 ⁇ L/s.
  • the flow ratio of fluorine-substituted olefin and inert gas is (1-7):1. In a preferred example, the flow ratio of the fluorine-substituted olefin and the inert gas is 1.5:1.
  • the pre-treatment time can be 2-5 minutes.
  • fluorine-substituted olefin C 3 F 6 and/or C 4 F 8
  • Fluorine-substituted olefin is 1.7-5 ⁇ 10 3 ⁇ L/s
  • the flow ratio of fluorine-substituted olefin and inert gas is 1.5:1.
  • the inert gas introduced can prevent (protect) C 3 F 6 and/or C 4 F 8 from being oxidized.
  • the inert gas is ionized into a plasma gas that can etch the surface of the workpiece, making -CF 3
  • the grafting of groups is easier.
  • the inert gas is helium, neon or argon. Some embodiments, can pass into the C 3 F 6 C 4 F 8 and a mixed gas to the reaction chamber, C 3 F 6 and the molar ratio of C 4 F 8 gas mixture is not limited. In specific embodiments such as embodiment 3 or embodiment 6, a mixed gas composed of C 3 F 6 and C 4 F 8 in a molar ratio of 1:1 can be used.
  • the RF power in the reaction chamber is 300-400W, and the vacuum degree is 0.04-0.08mbar.
  • the C 3 F 6 and/or C 4 F 8 molecules have a better ionization effect, so that the -CF 3 groups are better pre-deposited on the surface of the workpiece.
  • C 3 F 6 and/or C 4 F 8 to pre-treat the workpiece so that the activated C 3 F 6 and/or C 4 F 8 gas molecules collide with the surface to be treated, and C 3 F 6 and/or C 4
  • the F element in the F 8 molecular structure undergoes a plasma free radical reaction and is embedded on the surface of the workpiece, and it is riveted with the surface molecules of the workpiece to achieve the effect of condensing nodules.
  • the pre-treatment process realizes the pre-deposition of -CF 3 groups on the surface of the workpiece, and the surface of the workpiece can be grafted with -CF 3 groups.
  • these low surface energy elements of condensation nuclei can absorb and aggregate fluorine elements, and perform a directional attraction with the low surface energy elements in the vaporized coating material to facilitate the subsequent coating operation of the hydrophobic material. Deposition to improve the deposition rate of hydrophobic film.
  • the method for plating a hydrophobic film by plasma chemical vapor deposition method with dense film layer provided by the present invention further includes an activation process before film coating and after pretreatment.
  • the activation process refers to the use of plasma gas in the reaction chamber to activate the surface of the workpiece.
  • O 2 is used for plasma gas surface activation.
  • Plasma surface activation of the workpiece surface by oxygen enhances the activity of the workpiece surface, reduces the reaction potential energy, increases the number of active functional groups introduced, and makes the reaction easier to proceed in the positive direction.
  • Oxygen activation is used to facilitate the deposition of hydrophilic materials and improve the bonding force of the film.
  • the flow rate of oxygen into the reaction chamber is 1000-1700ul/s, the activation time is 1-5min, the radio frequency power is 200-800W, and the vacuum degree is 0.01-0.05mbar.
  • the -CF 3 groups grafted on the surface of the workpiece can still remain. This is because -CF 3 fluorine-containing groups have relatively low surface energy, are chemically inert, have good stability, and are not prone to reaction.
  • the present invention provides a dense film plasma chemical vapor deposition method for plating a hydrophobic film.
  • the filming process may include the process of depositing a hydrophilic film using a filming material containing a hydrophilic material and a hydrophobic material and the process of depositing a hydrophobic film. Film process.
  • the radio frequency power in the reaction chamber is set to the first power
  • the hydrophilic film is deposited under the first vacuum degree
  • the vacuum degree is adjusted from low to high during the deposition process.
  • the process of depositing the hydrophobic film is performed: adjusting the radio frequency power in the reaction chamber to the second power, depositing the hydrophobic film under the second vacuum degree, and adjusting the vacuum degree from low to high during the deposition process.
  • the method of first plating a hydrophilic film on the surface of the workpiece and then plating a hydrophobic film on the hydrophilic film is used to obtain a workpiece with a hydrophobic surface.
  • the surface of the hydrophilic film gathers more hydrophilic groups.
  • the surface of the substrate exhibits extremely strong reactivity. When using hydrophobic materials for deposition, it is easier to deposit and adhere to the surface of the workpiece with extremely high activity, and the film thickness increases rapidly and densely.
  • the hydrophilic material and the hydrophobic material are mixed uniformly, and then passed into the reaction chamber at the same time after vaporization, and the hydrophilic material and the hydrophobic material are selectively deposited by adjusting the radio frequency power.
  • the hydrophilic material and the hydrophobic material use the same type of material. This kind of mixing of the same type of material makes it easier to vaporize the mixed material than a single material, reduces the heating temperature, and is conducive to normal temperature production and equipment control and maintenance. .
  • the vacuum degree in the reaction chamber is adjusted from low to high.
  • the energy consumption of coating can be reduced, and on the other hand, the density of the film can be improved. This is because, if you want to obtain a higher density film, it is necessary to have a higher vacuum in the reaction chamber during the coating process, which requires a longer time and more energy consumption before coating. Increase the vacuum in the reaction chamber.
  • the vacuum degree in the reaction chamber changes from low to high, the coating action can be started when the vacuum degree is lower, and the preparation time and energy consumption before coating are saved.
  • the vacuum degree is gradually increased during the coating process, which can make The increase in the density of the previously deposited material can also enable the newly deposited material to have a higher density.
  • both the hydrophilic material and the hydrophobic material may be silane-based materials.
  • the hydrophobic material contains a fluorine element, and the hydrophilic material contains a hydrophilic group.
  • the use of this hydrophilic material and hydrophobic material enables the mixed coating material to be better vaporized, and the two coating materials can be better deposited on the surface of the workpiece.
  • the mass ratio of hydrophobic materials to mixed coating materials is generally 70-80%. In this way, a good coating effect can be achieved.
  • the hydrophobic material uses one of trifluoropropyltrimethoxysilane, heptafluorodecyltriethoxysilane, tridecafluorooctyltrichlorosilane, hexafluoropropylene, and octafluorobutene.
  • Hydrophilic materials use 3-(2,3-glycidoxy)propyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -formaldehyde One or more of acryloxypropyl trimethoxysilane.
  • the first power is 300-400 W; the vacuum degree in the reaction chamber is increased from 0.01 mbar to 0.05 mbar.
  • the action time under the first power is 5-10 minutes.
  • the second power is 600-800W; the vacuum degree in the reaction chamber is increased from 0.08mbar to 0.15mbar.
  • the action time under the second power is 3-9 minutes.
  • the ratio of the first reaction time to the second reaction time is 1:2.
  • the vacuum degree of the reaction chamber is increased from 0.01mbar to 0.05mbar, and then from 0.08mbar to 0.15mbar.
  • the final vacuum degree in the reaction chamber is 0.15mbar, and the obtained film has a higher density.
  • the high-density film is embodied in a better wear-resistant effect.
  • the deposition of hydrophilic materials and hydrophobic materials can be achieved respectively.
  • the switching of the vacuum degree can also make the film deposition more dense and improve the compactness of the film.
  • Hydrophilic materials can be deposited under the first power, and hydrophobic materials can be deposited under the second power. This is because the hydrophobic material contains fluorine and the CF bond has a larger bond energy, which requires more energy to break the chemical bond. Therefore, the required power is relatively higher. The hydrophilic material does not contain fluorine, so the required power and corresponding energy are relatively low. Setting two power levels can ensure that different materials are deposited separately.
  • gas enters from the gas inlet end of the reaction chamber, and is evacuated from the other end opposite to the gas inlet end; during the deposition of the hydrophilic film and the hydrophobic film, the vaporized mixed coating material is continuously passed in At the same time, the reaction chamber continues to discharge gas in the reaction chamber.
  • the two opposite ends of the reaction cavity are provided with inlets and outlets, so that the gas flow in the reaction cavity is oriented in an orderly manner, so that the gas penetrates the cavity in a straight direction. It is beneficial to form a dense film with uniform thickness on the surface of the workpiece.
  • the workpiece is placed on the platform, and the gas circulates in the chamber.
  • the gas is kept exhausted and the exhaust gas is exhausted, which is conducive to the rapid formation of the film.
  • the hydrophobic materials that pass into the reaction chamber at the same time need to be discharged in time.
  • the hydrophilic materials that pass into the reaction chamber at the same time need to be discharged in time.
  • a vaporization step of vaporizing the mixed coating material in the heating cup is further included before the coating step.
  • the adding amount of the mixed coating material in the heating cup is 4-10 ⁇ L/s, and the heating temperature of the heating cup is 75-100°C. Under this vaporization condition, the hydrophilic material and the hydrophobic material in the mixed coating material can be vaporized at the same time, and the lower heating temperature can reduce the production energy consumption.
  • the auxiliary gas oxygen is simultaneously introduced into the reaction chamber.
  • oxygen plasma bombards the surface of the substrate to cause the escape of atoms to generate active free radicals, and hydrophilic functional groups are generated on the surface of the substrate.
  • oxygen can also play a role in assisting ionization.
  • the flow rate of the auxiliary gas oxygen can be 0.7-1.7 ⁇ 10 3 ⁇ L/s.
  • the auxiliary gas which is an inert gas, is simultaneously introduced into the reaction chamber.
  • oxygen can participate in the reaction to achieve the deposition of hydrophilic materials under a relatively low vacuum.
  • an inert gas is used to prevent the interference of oxygen, and the hydrophobic film can be deposited under a higher vacuum condition.
  • the inert gas may be nitrogen or argon, preferably argon.
  • the flow rate of the inert gas is 0.7-1.7 ⁇ 10 3 ⁇ L/s.
  • the deposition rate of hydrophilic film and hydrophobic film is 10-20nm/min.
  • pulse waves are used to deposit hydrophobic materials.
  • the thickness growth rate of the hydrophobic film is 10-20nm/min.
  • the pulse wave is used to relax the energy conditions, so that the film is deposited at a certain rate.
  • the post-processing steps of the present invention are: sealing and packaging the workpiece after step (5), and placing it in a constant temperature and humidity environment for 20-45 minutes, with a temperature of 40-60° C. and a humidity of 2-6%.
  • the post-processing step can ensure that the sample is isolated from oxygen and moisture in the air, and the film layer is well prevented from being contaminated.
  • the hydrophobic membrane can be further stabilized.
  • the temperature of the reaction chamber is maintained at 40-60°C.
  • the method for plating a hydrophobic film with a dense film layer by plasma chemical vapor deposition method in Examples 1 to 6 includes the following steps:
  • Pretreatment Put the workpiece to be processed into the reaction chamber, pass C 3 F 6 and/or C 4 F 8 into the reaction chamber and pass inert gas at the same time, and use ionized C 3 F 6 under vacuum conditions And/or C 4 F 8 to treat the surface of the workpiece;
  • the RF power in the reaction chamber is 300-400W, and the vacuum degree is 0.04-0.08mbar;
  • the time for depositing the hydrophilic material and the time for depositing the hydrophobic material can be set according to actual requirements. Under the same coating conditions, the longer the deposition time, the greater the thickness of the film.
  • the radio frequency adopts continuous wave or pulse wave to achieve the same coating effect, that is, the type of radio frequency has little effect on the deposition of the hydrophilic material.
  • Hydrophobic angle tests were performed on the hydrophobic films obtained in Examples 1-6, and the static contact hydrophobic angles of the hydrophobic films were all between 147° and 155°. Among them, the hydrophobic angle tests of Examples 3 and 6 are shown in FIG. 1.
  • the thickness test of the film layer obtained in Examples 1-6 was carried out.
  • the thickness curves of Examples 3-5 are shown in FIG. 2A, FIG. 2B, and FIG. 2C, respectively.
  • the hydrophobic film obtained in Examples 1-6 was subjected to abrasion resistance test (including sandpaper abrasion resistance test and sand eraser abrasion resistance test) to detect the bonding strength between the film layer and the workpiece.
  • test procedure for the abrasion resistance of sandpaper is basically the same as that for the abrasion resistance of a sandy eraser, only the sandy eraser can be replaced with a sandy eraser.
  • the test results of film thickness, sandpaper abrasion resistance, and rubber abrasion resistance of Examples 1-6 are shown in Figure 4 (Table 2).
  • the abrasion resistance test method of sand eraser is as follows:
  • Test tool special sand test eraser.
  • Test method Apply a load of 500g to the eraser, rub the surface of the sample with a loaded eraser at a speed of 40-60 times/min and a stroke of about 20mm on the surface of the sample for 300 cycles.
  • the method for plating a hydrophobic film by plasma chemical vapor deposition in this comparative example is basically the same as that in Example 3, except that step (1) is omitted.
  • the method for plating a hydrophobic film by the plasma chemical vapor deposition method of this comparative example is basically the same as that of Embodiment 3, except that in step (3), only the hydrophobic material is passed into the reaction chamber.
  • the method for plating a hydrophobic film by the plasma chemical vapor deposition method of this comparative example is basically the same as that of Embodiment 3, except that in step (4), the first power and the second power are the same, both being 600W.
  • the method for plating a hydrophobic film by plasma chemical vapor deposition in this comparative example is basically the same as that in Example 3, except that the vacuum degree in step (4) is 0.02 mbar, and the vacuum degree in step (5) is 0.12 mbar.
  • the method for plating a hydrophobic film by plasma chemical vapor deposition in this comparative example is basically the same as that of Example 3, except that in step (4), a continuous wave is used when depositing the hydrophobic material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开一种膜层致密的等离子化学气相沉积法镀疏水膜方法。所述方法包括:在进行镀疏水膜工序之前对待处理工件进行前处理的前处理工序;所述前处理工序为在真空条件下向放置有待处理工件的射频反应腔内通入氟取代烯烃C 3F 6和/或C 4F 8,使C 3F 6和/或C 4F 8分子结构中的C、F元素经过等离子体轰击产生与工件表面发生反应的活性自由基团,使工件表面沉积-CF 3基团,所述反应腔内的射频功率为300-400W,真空度为0.04-0.08mbar。后续进行镀膜沉积时,工件表面沉积的-CF 3基团吸引更多的F自由基,与镀膜材料产生定向吸引作用,提高疏水膜沉积速度和提高疏水膜附着的牢固性。

Description

一种膜层致密的等离子化学气相沉积法镀疏水膜方法 技术领域
本发明涉及等离子化学气相沉积法镀膜技术领域,尤其涉及一种膜层致密的等离子化学气相沉积法镀疏水膜方法。
背景技术
等离子化学增强气相沉积镀膜工艺中,尤其是镀疏水膜工艺中,维持等离子气体载气与汽化的疏水材料碰撞反应一段时间,在工件的表面形成一层疏水膜,根据疏水膜的厚度需求,控制反应时间的长短。这种镀膜工序能形成一定厚度的单层疏水膜,但是这种单层的疏水膜综合性能不够高,存在易脱落和耐用性差的问题。为了解决这个问题目前也有镀多层膜的记载,但是这些都难以从根本上解决膜层与基材之间结合牢固程度的问题。
技术问题
现有技术中,为了获得较高致密度的膜层,在镀膜过程中需要反应腔内有较高的真空度,这就要求在镀膜前花费较长的时间和能耗来对反应腔抽真空,镀膜效率低。
技术解决方案
本发明的目的在于提出一种膜层致密的等离子化学气相沉积法镀疏水膜方法,具有镀膜效率高的特点。
为达此目的,本发明采用以下技术方案:
本发明提供一种膜层致密的等离子化学气相沉积法镀疏水膜方法,包括在进行镀疏水膜工序之前对待处理工件进行前处理的前处理工序;所述前处理工序为在真空条件下向放置有待处理工件的射频反应腔内通入氟取代烯烃C 3F 6和/或C 4F 8,使C 3F 6和/或C 4F 8分子结构中的C、F元素经过等离子体轰击产生与工件表面发生反应的活性自由基团,使工件表面沉积-CF 3基团,所述反应腔内的射频功率为300-400W,真空度为0.04-0.08mbar。
本发明中,采用C 3F 6和/或C 4F 8对工件进行前处理,使激活的C 3F 6和/或C 4F 8气体分子与被处理表面发生碰撞。C 3F 6和/或C 4F 8分子结构中的F元素经过等离子自由基反应(氟烯烃分子结构中的F元素在等离子体的轰击作用下产生F自由基),镶嵌在工件的表面,跟工件表面分子进行铆合作用,起到凝结核的效果(在工件表面大面积分布F原子)。该前处理过程实现-CF 3基团在工件表面的预沉积,工件表面局部能接枝上-CF 3基团。当后续进行镀膜沉积时,这些低表面CF 3官能团吸引更多的F自由基,从而与后续汽化后的镀膜材料(尤其是含氟疏水材料)产生定向吸引作用,提高疏水膜沉积速度和提高疏水膜附着的牢固性。
作为一个优选方案,本发明的方法还包括在所述前处理工序后在反应腔内利用氧气对工件表面进行等离子气体活化处理的活化工序;氧气通入反应腔的流量1000-1700ul/s,活化时间是1-5min,射频功率为200-800W,真空度为0.01-0.05mbar。
通过氧气对工件表面进行等离子表面活化,增强了工件表面的活性,降低反应势能,增加活泼官能基团的引入数量,便于材料沉积,提高膜层结合力。
另一方面,本发明还提供一种膜层致密的等离子化学气相沉积法镀疏水膜方法,所述镀疏水膜工序包括将包含亲水材料和疏水材料的镀膜材料依次进行沉积亲水材料的沉积亲水膜工序和沉积疏水材料的沉积疏水膜工序,所述沉积亲水膜工序是指在射频功率为第一功率、真空度为第一真空度下的沉积亲水材料的沉积亲水膜工序,所述沉积疏水膜工序是指在比所述第一功率更高的第二功率、比第一真空度更高的第二真空度下的沉积疏水材料的沉积疏水膜工序,且在沉积过程中对所述第一真空度和第二真空度由低到高进行调整。
优选地,将亲水材料和疏水材料混合均匀得到混合镀膜材料,然后再将汽化后的混合镀膜材料进入反应腔。然后设定反应腔内的射频功率为第一功率,在第一真空度下沉积亲水膜,在沉积过程中对真空度由低到高进行调整。之后调整反应腔内的射频功率为第二功率,在第二真空度下沉积疏水膜,在沉积过程中对真空度由低到高进行调整。
本发明的方法采用先在工件表面镀亲水膜然后在亲水膜之上镀疏水膜的方式得到具有疏水表面的工件。亲水膜表面聚集较多的亲水性基团,这类基团具有极性,使得基材表面呈现极强的反应活性,当使用疏水材料进行沉积的时候,在活性极高的工件表面显得更容易沉积附着,膜厚度增加迅速且致密。
在一优选方案中,亲水材料和疏水材料均为硅烷类材料。更优选地,疏水材料包含氟元素,亲水材料包含亲水性基团。
本发明中,将亲水材料和疏水材料混合均匀,汽化后同时通入反应腔,通过调整射频功率来选择性沉积亲水材料和疏水材料。相对于先向反应腔通入亲水材料再通入疏水材料,可节省生产过程中的停机开机时间、放料加料时间和清洗料液罐的时间,缩短了整个生产周期。而且,亲水材料和疏水材料采用同类型的材料,这种同类型材料之间互相混合作用,可使混合材料比单独材料更容易实现汽化,降低加热温度,有利于常温生产及设备控制和维护。本发明中,在沉积亲水膜和疏水膜的过程中,均使反应腔内的真空度由低到高进行调整,一方面可以降低镀膜能耗,另一方面可以提高膜层的致密度。
适用于本发明的待处理工件包括任何形式的基材,包括但不限于电路板(例如PCBA)、金属基材、塑胶件、纺织品、无纺布等。
有益效果
本发明中,采用C 3F 6和/或C 4F 8对工件进行前处理,使激活的C 3F 6和/或C 4F 8气体分子与被处理表面发生碰撞。C 3F 6和/或C 4F 8分子结构中的F元素经过等离子自由基反应(氟烯烃分子结构中的F元素在等离子体的轰击作用下产生F自由基),镶嵌在工件的表面,跟工件表面分子进行铆合作用,起到凝结核的效果(在工件表面大面积分布F原子)。该前处理过程实现-CF 3基团在工件表面的预沉积,工件表面局部能接枝上-CF 3基团。当后续进行镀膜沉积时,这些低表面CF 3官能团吸引更多的F自由基,从而与后续汽化后的镀膜材料(尤其是含氟疏水材料)产生定向吸引作用,提高疏水膜沉积速度和提高疏水膜附着的牢固性。
附图说明
图1是本发明实施例3-4的疏水角测试图;
图2A是本发明实施例3的厚度曲线图;
图2B是本发明实施例4的厚度曲线图;
图2C是本发明实施例5的厚度曲线图;
图3即表1,为实施例1-6的工艺参数示意图;
图4即表2,为实施例1-6的膜厚、砂纸耐磨性、砂质橡皮擦耐磨性的测试结果图;
图5即表3,为对比例1-5的膜厚、疏水角、砂纸耐磨性、砂质橡皮擦耐磨性的测试结果图。
本发明的最佳实施方式
下面结合附图及具体实施方式进一步说明本发明的技术方案。
本发明提供的膜层致密的等离子化学气相沉积法镀疏水膜方法,作为一个具体实施方式,包括镀膜前的前处理工序。
关于前处理,将待处理工件放入反应腔,向反应腔内通入C 3F 6和/或C 4F 8,在真空条件下以电离的C 3F 6和/或C 4F 8对工件表面进行处理。可以在向反应腔通入C 3F 6和/或C 4F 8的同时通入惰性气体。惰性气体流量可以为0.7-1.7×10 3μL/s,氟取代烯烃(C 3F 6和/或C 4F 8)的流量可以为 1.7-5×10 3μL/s。氟取代烯烃和惰性气体的流量比例为(1~7):1。在一个优选示例中氟取代烯烃和惰性气体的流量比例1.5:1。前处理的时间可以为2-5分钟。 在一具体实施方式中,氟取代烯烃(C 3F 6和/或C 4F 8),小腔体,连续波,条件:通入惰性气体,惰性气体流量0.7-1.7×10 3μL/s,氟取代烯烃 1.7-5×10 3μL/s,氟取代烯烃和惰性气体的流量比例1.5:1。
前处理过程中,通入的惰性气体能防止(保护)C 3F 6和/或C 4F 8被氧化,同时,惰性气体被电离成为等离子气体能对工件表面进行刻蚀,使得-CF 3基团的接枝更容易。惰性气体是氦气、氖气或氩气。一些实施方式中,可向反应腔内通入C 3F 6和C 4F 8的混合气体,该混合气体中C 3F 6和C 4F 8的摩尔比例不受限制。在具体实施例例如实施例3或实施例6中可以使用由C 3F 6和C 4F 8以摩尔比1:1组成的混合气体。
前处理过程中,在一个示例中,反应腔内的射频功率为300-400W,真空度为0.04-0.08mbar。在该射频功率和真空度条件下,C 3F 6和/或C 4F 8分子具有较好的电离效果,使得-CF 3基团在工件表面更好的进行预沉积。
采用C 3F 6和/或C 4F 8对工件进行前处理,使激活的C 3F 6和/或C 4F 8气体分子与被处理表面发生碰撞,C 3F 6和/或C 4F 8分子结构中的F元素经过等离子自由基反应,镶嵌在工件的表面,跟工件表面分子进行铆合作用,起到凝结核的效果。该前处理过程实现-CF 3基团在工件表面的预沉积,工件表面局部能接枝上-CF 3基团。当后续进行镀膜沉积时,这些凝结核低表面能元素就起到吸收聚集氟元素的作用,与汽化后的镀膜材料中的低表面能元素进行定向吸引作用,方便后续的镀膜操作中疏水材料的沉积,提高疏水膜沉积速度。
本发明提供的膜层致密的等离子化学气相沉积法镀疏水膜方法,作为一个具体实施方式,还包括镀膜前、前处理之后的活化工序。
关于活化工序,是指在反应腔内利用等离子气体对工件表面进行活化处理。在一个示例中,利用O 2进行等离子气体表面活化。通过氧气对工件表面进行等离子表面活化,增强了工件表面的活性,降低反应势能,增加活泼官能基团的引入数量,使得反应更容易朝正方向进行。采用氧气活化,便于亲水材料沉积,提高膜层结合力。氧气通入反应腔的流量1000-1700ul/s,活化时间是1-5min,射频功率为200-800W,真空度为0.01-0.05mbar。采用O 2进行活化时,工件表面接枝的-CF 3基团仍能够保持存在。这是由于-CF 3含氟基团表面能比较低,化学惰性,稳定性较好,不易发生反应。
本发明提供的膜层致密的等离子化学气相沉积法镀疏水膜方法,作为一个具体实施方式,关于镀膜工序,可以包括利用包含亲水材料和疏水材料的镀膜材料沉积亲水膜的工序和沉积疏水膜的工序。沉积亲水膜的工序,在一个示例中,设定反应腔内的射频功率为第一功率,在第一真空度下沉积亲水膜,在沉积过程中对真空度由低到高进行调整。之后进行沉积疏水膜的工序:调整反应腔内的射频功率为第二功率,在第二真空度下沉积疏水膜,在沉积过程中对真空度由低到高进行调整。
同时,采用先在工件表面镀亲水膜然后在亲水膜之上镀疏水膜的方式得到具有疏水表面的工件,亲水膜表面聚集较多的亲水性基团,这类基团具有极性,使得基材表面呈现极强的反应活性,当使用疏水材料进行沉积的时候,在活性极高的工件表面显得更容易沉积附着,膜厚度增加迅速而致密。
本发明中,将亲水材料和疏水材料混合均匀,汽化后同时通入反应腔,通过调整射频功率来选择性沉积亲水材料和疏水材料。相对于先向反应腔通入亲水材料再通入疏水材料,可节省生产过程中的停机开机时间、放料加料时间和清洗料液罐的时间,缩短了整个生产周期。而且,亲水材料和疏水材料采用同类型的材料,这种同类型材料之间互相混合作用,可使混合材料比单独材料更容易实现汽化,降低加热温度,有利于常温生产及设备控制和维护。
本发明中,在沉积亲水膜和疏水膜的过程中,均使反应腔内的真空度由低到高进行调整,一方面可以降低镀膜能耗,另一方面可以提高膜层的致密度。这是由于,若想要获得较高致密度的膜层,就要在镀膜过程中反应腔内有较高的真空度,这就要在镀膜前花费较长的时间和较多的能耗来提高反应腔内的真空度。采用本发明的方法,反应腔内真空度由低到高变化,能在较低真空度时开始镀膜动作,节省了镀膜前的准备时间和能耗,在镀膜过程中逐步提高真空度,能使在先沉积材料的致密度增加也可使新沉积的材料有较高的致密度。
本发明中,亲水材料和疏水材料可以均为硅烷类材料。疏水材料包含氟元素,亲水材料包含亲水性基团。采用这种亲水材料和疏水材料使得混合镀膜材料能更好的被汽化,两种镀膜材料能更好沉积在工件表面。疏水材料占混合镀膜材料的质量比一般在70-80%。如此可以达到很好的镀膜效果。
在一具体实施方式中,疏水材料采用三氟丙基三甲氧基硅烷、十七氟癸基三乙氧基硅烷、十三氟辛基三氯硅烷、六氟丙烯和八氟丁烯中的一种或多种。亲水材料采用3-(2,3-环氧丙氧)丙基三甲氧基硅烷、γ―氨丙基三乙氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷和γ―甲基丙烯酰氧基丙基三甲氧基硅烷中的一种或多种。
进一步的,步骤(2)中, 在一个具体实施方式中,第一功率为300-400W;所述反应腔内的真空度由0.01mbar提高至0.05mbar。第一功率下的作用时间为5-10分钟。
在另一具体实施方式中,第二功率为600-800W;所述反应腔内的真空度由0.08mbar提高至0.15mbar。第二功率下的作用时间为3-9分钟。在一实施方式中,第一反应时间与第二反应时间的比值为1:2。
在镀膜期间,反应腔真空度由0.01mbar提高至0.05mbar,然后再由0.08mbar提高至0.15mbar,反应腔内最终的真空度为0.15mbar,获得的膜层有较高的致密度。高致密度的膜层体现在有更好的耐磨效果。
在不同功率和真空度条件下分别实现亲水材料和疏水材料的沉积,真空度的切换还能使膜层沉积更密实,提高膜层的致密程度。
在第一功率下能使亲水材料沉积,在第二功率下能使疏水材料沉积,这是因为,疏水材料含氟,C-F键键能较大,需要更大的能量才能打断该化学键,所以需要的功率相对于高一些。而亲水材料不含氟,所以需要的功率以及相应能量相对较低。设定两种功率能保证不同材料分别进行沉积。
进一步地,气体从所述反应腔的气体进口端进入,自与气体进口端相对的另一端以抽真空方式抽出;在沉积亲水膜和沉积疏水膜过程中,汽化的混合镀膜材料持续通入反应腔内同时反应腔持续气体排出。在反应腔相对的两端设置进出口,使得反应腔内的气体流动定向有序,使气体以直线方向贯穿腔体。有利于在工件表面形成厚度均匀结构致密的膜层。在一具体实施方式中,在平台上放置工件,气体在腔室中流通。在镀膜过程中保持气体持续排出,将废气排出,有利于膜层快速形成。例如,在沉积亲水材料时,同时通入反应腔的疏水材料需要被及时排出,在沉积疏水材料时,同时通入反应腔的亲水材料需要被及时排出。
在一具体实施方式中,在镀膜工序之前还包括使混合镀膜材料在加热杯中汽化的汽化工序。混合镀膜材料在加热杯的加入量是4-10μL/s,加热杯的加热温度是75-100℃。在此汽化条件下,混合镀膜材料中的亲水材料和疏水材料能够被同时汽化,较低的加热温度能降低生产能耗。
进一步地,沉积亲水材料时,向反应腔同步通入辅助气体氧气。在沉积亲水材料的过程中,氧等离子体轰击基材表面使得原子溢出产生活性自由基,在基材表面产生亲水官能团。此外,氧气还可以起到辅助电离的作用。沉积亲水膜时,辅助气体氧气的流量可以0.7-1.7×10 3μL/s。沉积疏水材料时,向反应腔同步通入辅助气体为惰性气体。当沉积亲水材料时,氧气能参与反应,实现较低真空度下亲水材料的沉积。沉积疏水材料时采用惰性气体的辅助,防止氧气的干扰,在较高真空度条件下实现疏水膜层的沉积。沉积疏水膜时,所述惰性气体可为氮气或者氩气,优选为氩气。惰性气体的流量为流量0.7-1.7×10 3μL/s。亲水膜和疏水膜的沉积速度为10-20nm/min。
在一具体实施方式中,采用脉冲波,沉积疏水材料。疏水膜的厚度增长速度为10~20nm/min。采用脉冲波缓和能量条件,使得膜层按照一定速率进行沉积。
本发明的后处理步骤为:将经步骤(5)之后的工件密封包装,放置于恒温恒湿环境20-45min,该环境的温度40~60℃和湿度2~6%。后处理步骤能保证样品隔绝空气中氧气和水分,很好的避免了膜层被污染。在后处理步骤还能使疏水膜进一步稳固。
本发明中,无论是前处理、活化、汽化、沉积亲水膜、沉积疏水膜还是后处理工序,反应腔的温度维持在40-60℃。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
本发明的实施方式
实施例1~6中的膜层致密的等离子化学气相沉积法镀疏水膜方法,包括以下步骤:
(1)、前处理:将待处理工件放入反应腔,向反应腔内通入C 3F 6和/或C 4F 8同时通入惰性气体,在真空条件下以电离的C 3F 6和/或C 4F 8对工件表面进行处理;反应腔内的射频功率为300-400W,真空度为0.04-0.08mbar;
(2)、活化:在反应腔内利用O 2对工件表面进行等离子气体活化处理;
(3)、汽化:将亲水材料和疏水材料混合均匀得到混合镀膜材料,亲水材料和疏水材料均为硅烷类材料;疏水材料包含氟元素,亲水材料包含亲水性基团;混合镀膜材料在加热杯中汽化,混合镀膜材料在加热杯的加入量是4-10μLs,加热杯的加热温度是75-100℃,汽化后的混合镀膜材料进入反应腔;
(4)、沉积亲水膜:设定反应腔内的射频功率位第一功率300-400W,反应腔内真空度由0.01mbar提高至0.05mbar,向反应腔同步通入辅助气体氧气;
(5)、沉积疏水膜:之后调整反应腔内的射频功率为脉冲波600-800W,反应腔内真空度由0.08mbar提高至0.15mbar,向反应腔同步通入辅助气体为惰性气体,疏水膜的厚度增长速度为10~20nm/min;反应腔的一端具有气体进口,相对的另一端具有抽真空出口;沉积亲水膜和沉积疏水膜过程中,汽化的混合镀膜材料持续通入反应腔内同时反应腔持续气体排出;
(6)、后处理。
实施例1~6各步骤参数如图3(表1)所示。
需要说明的是,沉积亲水材料和沉积疏水材料的时间可以根据实际需求设定,在同一镀膜条件下,沉积时间越长,膜层厚度越大。在实施例1~6中,步骤(4)沉积亲水材料时,射频采用连续波或脉冲波均达到相同的镀膜效果,即射频类型对亲水材料沉积影响不大。
对实施例1-6所得疏水膜进行疏水角测试,疏水膜的静态接触疏水角均在147°-155°之间,其中,实施例3和6的疏水角测试如图1所示。对实施例1-6得到的膜层进行厚度测试,实施例3-5的厚度曲线分别如图2A、图2B和图2C所示。对实施例1-6的获得的疏水膜进行耐磨性测试(包括砂纸耐磨性测试和砂质橡皮擦耐磨性测试),以检测膜层与工件的结合强度。砂纸耐磨性测试步骤基本同砂质橡皮擦耐磨性测试,仅将砂质橡皮擦替换成砂质即可。实施例1-6的膜厚、砂纸耐磨性、橡皮耐磨性的测试结果如图4(表2)所示。
砂质橡皮擦的耐磨性测试方法如下:
1、往复运动磨耗试验法
在规定的试验条件下,用负载500g的专用砂质测试橡皮擦在涂层表面施力,并以一定的速度和行程,作来回磨擦循环,试验结束后,观察涂层的透底情况进行判定评估其耐磨性。
2、测试工具:专用砂质测试橡皮擦。
测试方法:给橡皮擦施加500g的载荷,用带载荷的橡皮擦在涂层表面以40-60次/min的速度,以20mm左右的行程,在试样表面来回磨擦300个循环。
3、结果评定:试验完成,试样涂层表面无划伤、不透底,判定合格,否则为不合格。
对比例1
本对比例的等离子化学气相沉积法镀疏水膜方法与实施例3基本相同,不同之处在于,略去步骤(1)。
对比例2
本对比例的等离子化学气相沉积法镀疏水膜方法与实施例3基本相同,不同之处在于,在步骤(3)中,仅仅将疏水材料通入反应腔。
对比例3
本对比例的等离子化学气相沉积法镀疏水膜方法与实施例3基本相同,不同之处在于,在步骤(4)中,第一功率与第二功率相同,均为600W。
对比例4
本对比例的等离子化学气相沉积法镀疏水膜方法与实施例3基本相同,不同之处在于,在步骤(4)中真空度为0.02mbar,在步骤(5)中真空度为0.12mbar。
对比例5
本对比例的等离子化学气相沉积法镀疏水膜方法与实施例3基本相同,不同之处在于,在步骤(4)中,沉积疏水材料时采用连续波。
将对比例1-5所得膜层参照实施例1-6进行疏水角、厚度、砂纸耐磨性测试和砂质橡皮擦耐磨性测试。测试结果如图5(表3)所示。
在对比例3-4中,镀膜过程中由于亲水材料和疏水材料的射频功率和镀膜真空度未同时调整,导致膜层质量很差,尤其是耐磨性较差,说明此时获得的膜层致密度较低。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (10)

  1. 一种膜层致密的等离子化学气相沉积法镀疏水膜方法,其特征在于,包括:在进行镀疏水膜工序之前对待处理工件进行前处理的前处理工序;所述前处理工序为在真空条件下向放置有待处理工件的射频反应腔内通入氟取代烯烃C 3F 6和/或C 4F 8,使C 3F 6和/或C 4F 8分子结构中的C、F元素经过等离子体轰击产生与工件表面发生反应的活性自由基团,使工件表面沉积-CF 3基团,所述反应腔内的射频功率为300-400W,真空度为0.04-0.08mbar。
  2. 根据权利要求1所述的膜层致密的等离子化学气相沉积法镀疏水膜方法,其特征在于,在向反应腔通入氟取代烯烃的同时通入惰性气体;优选地,所述惰性气体的流量为0.7-1.7×10 3μL/s。
  3. 根据权利要求2所述的膜层致密的等离子化学气相沉积法镀疏水膜方法,其特征在于,氟取代烯烃和惰性气体的流量比例1:1~7:1。
  4. 根据权利要求1至3中任一项所述的膜层致密的等离子化学气相沉积法镀疏水膜方法,其特征在于,所述方法还包括在所述前处理工序后在反应腔内利用氧气对工件表面进行等离子气体活化处理的活化工序;氧气通入反应腔的流量1000-1700ul/s,活化时间是1-5min,射频功率为200-800W,真空度为0.01-0.05mbar。
  5. 一种膜层致密的等离子化学气相沉积法镀疏水膜方法,其特征在于,所述镀疏水膜工序包括将包含亲水材料和疏水材料的镀膜材料依次进行沉积亲水材料的沉积亲水膜工序和沉积疏水材料的沉积疏水膜工序,所述沉积亲水膜工序是指在射频功率为第一功率、真空度为第一真空度下的沉积亲水材料的沉积亲水膜工序,所述沉积疏水膜工序是指在比所述第一功率更高的第二功率、比第一真空度更高的第二真空度下的沉积疏水材料的沉积疏水膜工序,且在沉积过程中对所述第一真空度和第二真空度由低到高进行调整。
  6. 根据权利要求5所述的膜层致密的等离子化学气相沉积法镀疏水膜方法,其特征在于,所述第一功率为300-400W;所述第一真空度由0.01mbar提高至0.05mbar。
  7. 根据权利要求5或6所述的膜层致密的等离子化学气相沉积法镀疏水膜方法,其特征在于,所述第二功率为600-800W;所述第二真空度由0.08mbar提高至0.15mbar。
  8. 根据权利要求5~7中任一项所述的膜层致密的等离子化学气相沉积法镀疏水膜方法,其特征在于,所述亲水材料和疏水材料均为硅烷类材料,所述疏水材料包含氟元素,所述亲水材料包含亲水性基团。
  9. 根据权利要求5~8中任一项所述的膜层致密的等离子化学气相沉积法镀疏水膜方法,其特征在于,沉积亲水材料时,向反应腔同步通入辅助气体氧气;沉积疏水材料时,向反应腔同步通入辅助气体惰性气体;优选地,所述辅助气体氧气和惰性气体的流量为0.7-1.7×10 3μL/s。
  10. 根据权利要求5~9中任一项所述的膜层致密的等离子化学气相沉积法镀疏水膜方法,其特征在于,所述亲水膜和疏水膜的沉积速度为10~20nm/min。
PCT/CN2021/076043 2020-02-17 2021-02-08 一种膜层致密的等离子化学气相沉积法镀疏水膜方法 WO2021164616A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010097649.5A CN111188032B (zh) 2020-02-17 2020-02-17 一种膜间结合方式的等离子化学气相沉积法镀疏水膜方法
CN202010097456.X 2020-02-17
CN202010097456.XA CN111519171B (zh) 2020-02-17 2020-02-17 一种膜层致密的等离子化学气相沉积法镀疏水膜方法
CN202010097649.5 2020-02-17

Publications (1)

Publication Number Publication Date
WO2021164616A1 true WO2021164616A1 (zh) 2021-08-26

Family

ID=77392076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076043 WO2021164616A1 (zh) 2020-02-17 2021-02-08 一种膜层致密的等离子化学气相沉积法镀疏水膜方法

Country Status (1)

Country Link
WO (1) WO2021164616A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070172666A1 (en) * 2006-01-24 2007-07-26 Denes Ferencz S RF plasma-enhanced deposition of fluorinated films
KR20110115869A (ko) * 2010-04-16 2011-10-24 경희대학교 산학협력단 촉매 화학 증착법을 이용한 초소수성 물질의 박막 제조 방법 및 장치
US20130171546A1 (en) * 2011-12-30 2013-07-04 Gvd Corporation Coatings for Electrowetting and Electrofluidic Devices
CN103668066A (zh) * 2012-09-11 2014-03-26 太阳化学工业株式会社 能够收容工件的网结构体
CN110029327A (zh) * 2019-04-24 2019-07-19 佛山市思博睿科技有限公司 一种等离子化学气相沉积循环镀疏水膜方法
CN111188032A (zh) * 2020-02-17 2020-05-22 佛山市思博睿科技有限公司 一种膜间结合方式的等离子化学气相沉积法镀疏水膜方法
CN111519171A (zh) * 2020-02-17 2020-08-11 佛山市思博睿科技有限公司 一种膜层致密的等离子化学气相沉积法镀疏水膜方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070172666A1 (en) * 2006-01-24 2007-07-26 Denes Ferencz S RF plasma-enhanced deposition of fluorinated films
KR20110115869A (ko) * 2010-04-16 2011-10-24 경희대학교 산학협력단 촉매 화학 증착법을 이용한 초소수성 물질의 박막 제조 방법 및 장치
US20130171546A1 (en) * 2011-12-30 2013-07-04 Gvd Corporation Coatings for Electrowetting and Electrofluidic Devices
CN103668066A (zh) * 2012-09-11 2014-03-26 太阳化学工业株式会社 能够收容工件的网结构体
CN110029327A (zh) * 2019-04-24 2019-07-19 佛山市思博睿科技有限公司 一种等离子化学气相沉积循环镀疏水膜方法
CN111188032A (zh) * 2020-02-17 2020-05-22 佛山市思博睿科技有限公司 一种膜间结合方式的等离子化学气相沉积法镀疏水膜方法
CN111519171A (zh) * 2020-02-17 2020-08-11 佛山市思博睿科技有限公司 一种膜层致密的等离子化学气相沉积法镀疏水膜方法

Similar Documents

Publication Publication Date Title
JP7336019B2 (ja) 撥水ナノ膜及びその製造方法、応用、並びに製品
CN111519171B (zh) 一种膜层致密的等离子化学气相沉积法镀疏水膜方法
CN110139719B (zh) 具有优异的稳定性和耐久性的亲水性多功能超薄涂层
JP2009263529A (ja) フッ素樹脂系成形物の表面改質方法
KR20080030621A (ko) 퍼플루오로사이클로알칸의 플라스마 중합에 의한 기능성탄화불소 고분자 층의 제조방법
JP2017509137A (ja) 表面コーティング
KR100343717B1 (ko) 플라즈마를 이용한 냉동 공조용 금속 재료 표면상의고분자 중합막 합성방법
CN111188032B (zh) 一种膜间结合方式的等离子化学气相沉积法镀疏水膜方法
JP7270974B2 (ja) 樹脂表面親水化方法、プラズマ処理装置、および積層体の製造方法
Milde et al. Adhesion behavior of PVD coatings on ECR plasma and ion beam treated polymer films
Tay et al. Study of surface energy of tetrahedral amorphous carbon films modified in various gas plasma
WO2021164616A1 (zh) 一种膜层致密的等离子化学气相沉积法镀疏水膜方法
CN100395371C (zh) 微波等离子体增强弧辉渗镀涂层的装置及工艺
AU750205B2 (en) Plasma polymerization on surface of material
CN111020535B (zh) 一种细胞计数板等离子化学气相沉积纳米膜的制备方法
CN113275217B (zh) 等离子体接枝共聚膜层的制备方法
JP2023174602A (ja) 樹脂表面親水化処理方法、樹脂表面親水化処理装置、電子基板処理装置
JPH0352937A (ja) 連続式プラズマ処理装置
WO2010131372A1 (ja) フッ素樹脂系成形物の表面改質方法
JP3243319B2 (ja) 有機質基材表面のメタライズ方法
JP7317421B2 (ja) 積層体
KR100302870B1 (ko) 이온빔에 의한 고분자 필름 표면의 금속 증착방법
AU771750B2 (en) Plasma polymerization on surface of material
JP2003510389A (ja) イオン補助反応により表面改質されたシリコーンゴム及びその表面改質方法
Wu et al. Modification of poly (tetrafluoroethylene) and copper surfaces by graft polymerization for adhesion improvement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21757995

Country of ref document: EP

Kind code of ref document: A1