WO2021163948A1 - 散热驱动装置、散热驱动系统、背光模组及显示装置 - Google Patents

散热驱动装置、散热驱动系统、背光模组及显示装置 Download PDF

Info

Publication number
WO2021163948A1
WO2021163948A1 PCT/CN2020/075979 CN2020075979W WO2021163948A1 WO 2021163948 A1 WO2021163948 A1 WO 2021163948A1 CN 2020075979 W CN2020075979 W CN 2020075979W WO 2021163948 A1 WO2021163948 A1 WO 2021163948A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
chamber
magnet
heat dissipation
liquid outlet
Prior art date
Application number
PCT/CN2020/075979
Other languages
English (en)
French (fr)
Inventor
郭少飞
阮益平
李中华
王世鹏
郝东佳
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2020/075979 priority Critical patent/WO2021163948A1/zh
Priority to CN202080000157.8A priority patent/CN113544453B/zh
Publication of WO2021163948A1 publication Critical patent/WO2021163948A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a heat dissipation driving device, a heat dissipation driving system, a backlight module and a display device.
  • the light source During the working process of the display device, the light source generates a large amount of heat, which affects the normal display of the display device and reduces the service life of the display device. Therefore, the heat generation problem of the light source needs to be solved urgently.
  • a heat dissipation driving device including: a heat dissipation housing, a partition member, a liquid inlet, a liquid outlet, a first magnet, a second magnet, and the third magnet, wherein the heat dissipation housing is configured In order to dissipate the liquid located in its internal space.
  • the partition member is arranged in the heat dissipation housing to partition the internal space of the heat dissipation housing into a first chamber and a second chamber, and at least a part of the partition member can move.
  • the liquid inlet and the liquid outlet are arranged on the heat dissipation housing, the liquid inlet is in communication with the first chamber and the second chamber, and the liquid outlet is connected with the Both the first chamber and the second chamber are in communication.
  • the first magnet is arranged on the partition member.
  • the second magnet is disposed in the first cavity
  • the third magnet is disposed in the second cavity
  • both the second magnet and the third magnet are opposite to the first magnet.
  • at least one of the second magnet and the third magnet is an electromagnet; the electromagnet is configured to generate magnetism when energized; the second magnet and the third magnet are configured to pass
  • the magnetic force controls the first magnet to drive at least a part of the partition to move, so as to change the volume of the first chamber and the second chamber, and control the flow of liquid into and out of the heat dissipation housing.
  • the heat dissipation driving device further includes: a liquid inlet check valve provided between the liquid inlet and the first chamber, and a liquid inlet check valve provided between the liquid inlet and the second chamber Inlet check valve between.
  • the liquid inlet check valve is configured to be opened when the liquid pressure on one side of the liquid inlet check valve close to the liquid inlet is greater than the liquid pressure on the other side of the liquid inlet check valve, so that the liquid can escape from The liquid inlet flows unidirectionally to the first chamber or the second chamber.
  • the heat dissipation driving device further includes a liquid outlet check valve arranged between the liquid outlet and the first chamber, and a liquid outlet arranged between the liquid outlet and the second chamber One-way valve.
  • the liquid outlet check valve is configured to open when the liquid pressure on the side of the liquid outlet check valve close to the liquid outlet is less than the liquid pressure on the other side of the liquid outlet check valve to allow the liquid to escape
  • the first chamber or the second chamber circulates unidirectionally to the liquid outlet.
  • one of the second magnet and the third magnet is an electromagnet, and the other is a permanent magnet.
  • the electromagnet is configured to generate magnetism when energized, and generate attractive or repulsive force between the electromagnet and the first magnet; and when the distance between the electromagnet and the first magnet is the largest, the The attractive force between the electromagnet and the first magnet is greater than the attractive force between the permanent magnet and the first magnet.
  • the second magnet and the third magnet are both electromagnets.
  • the second magnet is configured to generate magnetism when energized, and generate an attractive force or a repulsive force between the second magnet and the first magnet.
  • the third magnet is configured to generate magnetism when energized, and generate repulsive force or attractive force between the third magnet and the first magnet.
  • the partition member is a partition elastic sheet, and two ends of the partition elastic sheet are fixed to the two ends close to the inner space of the heat dissipation housing.
  • the liquid inlet and the liquid outlet are respectively arranged at two ends of the separating elastic piece.
  • the first magnet is installed in the middle part of the separating elastic piece.
  • the second magnet and the third magnet are respectively located on two sides of the separating elastic piece.
  • the heat dissipation driving device further includes: a first post provided in the inner space of the heat dissipation housing and a second post provided in the inner space of the heat dissipation housing.
  • the first upright column is close to the liquid inlet; the sidewalls of the first chamber and the second chamber close to the liquid inlet and the first upright column respectively form a liquid inlet branch channel, in the
  • the heat dissipation driving device further includes a liquid inlet check valve, the two liquid inlet check valves are respectively arranged in the two liquid inlet branch flow channels.
  • the second upright column is close to the liquid outlet; the sidewalls of the first chamber and the second chamber close to the liquid outlet and the second upright column respectively form a liquid outlet branch channel, in the
  • the heat dissipation driving device further includes a liquid outlet check valve
  • the two liquid outlet check valves are respectively arranged in the two liquid outlet branch flow passages.
  • the two ends of the separating elastic piece are respectively fixed on the first upright post and the second upright post.
  • the liquid inlet check valve includes a liquid inlet control spring sheet, and the first end of the liquid inlet control spring sheet is fixed on the side wall of the first chamber or the second chamber.
  • the two ends are free ends.
  • the second end of the liquid inlet control elastic piece abuts against the first upright post , Block the liquid inlet branch channel.
  • the second end of the liquid inlet control elastic piece is separated from the first column, Open the liquid inlet branch flow channel.
  • the liquid outflow check valve includes a liquid outflow control elastic sheet, the first end of the liquid outflow control elastic sheet is fixed on the side wall of the first chamber or the second chamber, and the second end is a free end.
  • the second end of the liquid outlet control elastic piece abuts against the second upright post, Block the liquid outlet branch; when the liquid pressure on the side of the liquid outlet control spring near the liquid outlet is less than the liquid pressure on the other side of the liquid outlet control spring, the second side of the liquid outlet control spring The end is separated from the second upright column, and the branch outlet channel is opened.
  • the side walls of the first chamber and the second chamber close to the liquid inlet are respectively provided with liquid inlet card slots, and the first ends of the two liquid inlet control springs are respectively It is clamped in the two liquid inlet card slots.
  • the sidewalls of the first chamber and the second chamber close to the liquid outlet are respectively provided with liquid outlet clamping grooves, and the first ends of the two liquid outlet control elastic pieces are respectively clamped in the two outlets. Describe the liquid card slot.
  • a first installation slot is provided on the first upright column at a position far from the liquid inlet
  • a second installation slot is provided on the second upright column at a position away from the liquid outlet. The two ends of the separating elastic piece are respectively fixed in the first installation slot and the second installation slot.
  • a first mounting hole is provided in the middle part of the separating elastic piece, and the first magnet is embedded in the first mounting hole.
  • the heat dissipation housing is box-shaped, and includes a housing main body and a cover plate that are hermetically connected.
  • the heat dissipation driving device further includes: heat dissipation fins arranged on the outer side wall of the casing body.
  • the second magnet and the third magnet are respectively located at two ends of the internal space of the heat dissipation housing.
  • the partition member is a sealing slider, the sealing slider can slide between the second magnet and the third magnet, and the sealing slider is in hermetically connected with the side wall of the internal space.
  • the first magnet is installed on the sealing slider.
  • the heat dissipation driving device further includes: a first liquid inlet pipe arranged between the liquid inlet and the first chamber, and a first liquid inlet pipe arranged between the liquid inlet and the second chamber.
  • the interface between the first liquid inlet pipe and the first chamber, and the interface between the first liquid outlet pipe and the first chamber are all located on the cavity wall of the first chamber close to The position of the second magnet; the interface between the second liquid inlet pipe and the second chamber, and the interface between the second liquid outlet pipe and the second chamber are all located at all The position on the cavity wall of the second cavity is close to the third magnet.
  • the heat dissipation driving device further includes a liquid inlet check valve and a liquid outlet check valve
  • the two liquid inlet check valves are respectively arranged in the first liquid inlet pipe and the second liquid inlet pipe
  • the two liquid outlet check valves are respectively arranged in the first liquid outlet pipe and the second liquid outlet pipe.
  • the liquid inlet check valve includes a liquid inlet funnel cover and a liquid inlet check valve ball; the liquid pressure on the side of the liquid inlet funnel cover close to the liquid inlet is less than or equal to the other
  • the liquid inlet check valve ball abuts against the liquid inlet funnel cover to block the first liquid inlet pipe or the second liquid inlet pipe.
  • the liquid inlet check valve ball is separated from the liquid inlet funnel cover to separate the liquid inlet funnel cover. The first liquid inlet pipe or the second liquid inlet pipe is opened.
  • the liquid outlet check valve includes a liquid outlet funnel cover and a liquid outlet check valve ball; the liquid pressure on the side of the liquid outlet funnel cover close to the liquid outlet is greater than or equal to the liquid pressure on the other side thereof In this case, the liquid outlet check valve ball abuts against the liquid outlet funnel cover to block the first liquid outlet pipe or the second liquid outlet pipe. In the case that the liquid pressure on the side of the outlet funnel cover close to the liquid outlet is lower than the liquid pressure on the other side of the outlet funnel cover, the third check valve ball for the liquid outlet is separated from the liquid outlet funnel cover, Open the first liquid outlet pipe or the second liquid outlet pipe.
  • the heat dissipation driving device further includes: a cooling bin and a cooling bin check valve, and the cooling bin has a heat dissipation function.
  • the cooling bin is arranged between the first chamber and the first liquid outlet pipe, and two ends of the cooling bin are respectively communicated with the first chamber and the first liquid outlet pipe.
  • a liquid outlet check valve provided in the first liquid outlet pipe is located in the first liquid outlet pipe close to the cooling chamber, and the cooling chamber check valve is provided in the cooling chamber and the cooling chamber. The position of the interface of the first chamber.
  • the cooling chamber check valve is configured to be opened when the liquid pressure on one side of the cooling chamber check valve close to the first chamber is greater than the liquid pressure on the other side of the cooling chamber check valve, so that the liquid One-way circulation from the first chamber to the cooling warehouse.
  • the cooling bin is arranged between the first liquid outlet pipe and the liquid outlet, and both ends of the cooling bin are respectively connected to the first liquid outlet pipe and the liquid outlet.
  • a liquid outlet check valve provided in the first liquid outlet pipe is located in the first liquid outlet pipe close to the cooling chamber, and the cooling chamber check valve is provided in the cooling chamber and the cooling chamber. State the position of the interface of the liquid outlet.
  • the cooling chamber check valve is configured to be opened when the liquid pressure on the side of the cooling chamber check valve close to the liquid outlet is less than the liquid pressure on the other side of the cooling chamber check valve, so that the liquid is The cooling chamber circulates unidirectionally to the liquid outlet.
  • the heat dissipation housing is cylindrical.
  • the heat dissipation driving device further includes a cooling bin
  • the cooling bin is cylindrical, and the central axes of the heat dissipation shell and the cooling bin are parallel to each other or substantially parallel to each other.
  • a second mounting hole is provided at the center of the sealing slider, and the first magnet is embedded in the second mounting hole.
  • a heat dissipation driving system which includes: a circulation pipeline and the heat dissipation driving device according to any one of the preceding aspects, and two ports of the circulation pipeline are respectively connected to the liquid inlet and the liquid inlet of the heat dissipation driving device.
  • the liquid outlet is connected.
  • a backlight module including: a backlight source and a heat dissipation driving system, wherein the backlight source includes a light-emitting surface and a non-light-emitting surface opposite to the light-emitting surface; the heat dissipation driving system is disposed on the On the non-light emitting surface side of the backlight, the heat dissipation driving system is the heat dissipation driving system described above.
  • a display device including: a passive light-emitting display panel and the above-mentioned backlight module.
  • the display device includes: an active light-emitting display panel and the heat dissipation driving system as described above, the active light-emitting display panel includes a display surface and a non-display surface opposite to the display surface, and the heat dissipation driving system is arranged at all The non-display surface side of the active light-emitting display panel.
  • Fig. 1 is an exploded structural diagram of a heat dissipation driving device according to some embodiments
  • Fig. 2 is an internal structure diagram of a heat dissipation driving device according to some embodiments
  • FIG. 3 is a state diagram of the heat dissipation driving device in the first half cycle according to some embodiments.
  • FIG. 4 is a state diagram of the heat dissipation driving device in the second half cycle according to some embodiments.
  • Fig. 5 is an internal structure diagram of a housing body of a heat dissipation driving device according to some embodiments.
  • Fig. 6 is an external structure diagram of a housing main body of a heat dissipation driving device according to some embodiments.
  • FIG. 7 is another exploded structural diagram of the heat dissipation driving device according to some embodiments.
  • FIG. 8 is a structural diagram of a heat dissipation driving device according to some embodiments.
  • FIG. 9 is a state diagram of the heat dissipation driving device in the first half cycle according to some embodiments.
  • FIG. 10 is another state diagram of the heat dissipation driving device in the first half cycle according to some embodiments.
  • FIG. 11 is a state diagram of the heat dissipation driving device according to some embodiments in the second half of the cycle.
  • FIG. 12 is another state diagram of the heat dissipation driving device according to some embodiments in the second half of the cycle
  • FIG. 13 is a partial structure diagram of a heat dissipation driving device according to some embodiments.
  • 14A is an overall structure diagram of a heat dissipation driving device according to some embodiments.
  • 14B is still another overall structure diagram of a heat dissipation driving device according to some embodiments.
  • FIG. 15 is a structural diagram of a backlight module according to some embodiments.
  • FIG. 16A is a structural diagram of a display device according to some embodiments.
  • FIG. 16B is another structural diagram of a display device according to some embodiments.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, “plurality” means two or more.
  • Display devices include active light-emitting display devices and non-active light-emitting display devices.
  • the display device includes a display panel and a backlight source.
  • the backlight source emits light during operation. A large amount of heat is released, which affects the normal operation of the display device.
  • glass-based backlights such as glass-based Mini LED (Mini Light Emitting Diode, Mini Light Emitting Diode) light panels, which are widely used in non-active light emitting display devices due to their advantages of lightness and thinness, good optical effects, and low cost.
  • a graphite sheet is attached to the back of the Mini LED light board for heat dissipation.
  • this heat dissipation method is far from being able to meet the heat dissipation requirements of the glass-based Mini LED light board.
  • the method of attaching the graphite sheet has a high cost, and is especially not suitable for a large-size display device.
  • water-cooled heat dissipation methods are often used in related technologies to solve the heat generation problem of the display device.
  • the water-cooled heat dissipation method uses the characteristics of high thermal conductivity of the liquid to make the liquid circulate under the drive of the pump to continuously take away the heat generated at the heat source. The liquid is cooled down to realize the heat dissipation of the display device.
  • water-cooled heat dissipation devices include pumps and radiators.
  • Pumps include water pumps and piezoelectric pumps.
  • the system structure of the water pump is complex, there is water leakage when driving, and there is vibration and noise during operation.
  • the cost of piezoelectric materials is expensive, so the price of piezoelectric pumps is high, and the pump and radiator in the water-cooled heat dissipation device need to occupy a certain volume, which leads to the high power consumption and noise of the water-cooled heat dissipation device in the related technology. Problems such as too large and large volume cannot be widely used in electronic products such as display devices.
  • some embodiments of the present disclosure provide a heat dissipation driving device 100, including: a heat dissipation housing 1, a partition member 2, a liquid inlet 3a, a liquid outlet 3b, The first magnet 4, the second magnet 5 and the third magnet 6.
  • the heat dissipation case 1 is configured to dissipate the liquid located in its internal space.
  • the heat-dissipating shell 1 can exchange heat in the liquid with a higher temperature in its internal space to cool the liquid.
  • the material of the heat-dissipating shell 1 has higher heat dissipation performance.
  • the material of the heat-dissipating shell 1 is copper, Metal materials such as aluminum, aluminum alloy or stainless steel.
  • the above-mentioned liquid is a liquid with a high thermal conductivity coefficient such as water or cooling liquid, which can take away the heat from the heat source more quickly and effectively, and the liquid itself dissipates heat faster.
  • the partition member 2 is provided in the heat dissipation housing 1 to partition the internal space of the heat dissipation housing 1 into a first chamber A and a second chamber B. At least a part of the partition member 2 can be generated move.
  • the liquid inlet 3a and the liquid outlet 3b are arranged on the heat dissipation housing 1, the liquid inlet 3a is in communication with the first chamber A and the second chamber B, and the liquid outlet 3b is connected with the first chamber A and the second chamber.
  • the rooms B are all connected.
  • the external liquid can circulate to the first chamber A or the second chamber B through the liquid inlet 3a, and enter the internal space of the heat dissipation housing 1; the liquid located in the internal space of the heat dissipation housing 1 can pass from the first chamber A or the second chamber B flows out to the outside through the liquid outlet 3b.
  • the first magnet 4 is arranged on the partition member 2; the second magnet 5 is arranged in the first chamber A, and the third magnet 6 is arranged in the second chamber B.
  • the second magnet 5 and the third magnet 6 are both connected to the A magnet 4 faces each other.
  • the first magnet 4 is a permanent magnet.
  • At least one of the second magnet 5 and the third magnet 6 is an electromagnet; the electromagnet is configured to generate magnetism when energized; the second magnet 5 and the third magnet 6 are configured to control the first magnet through magnetic force 4 Drive at least a part of the partition member 2 to move to change the volume of the first chamber A and the second chamber B, and control the flow of liquid into and out of the heat dissipation housing 1.
  • the first magnet 4 drives at least a part of the partition member 2 to move in the direction of the second magnet 5, so that the volume of the first chamber A becomes smaller, and the volume of the second chamber B becomes larger.
  • the liquid in the first chamber A is squeezed and flows out from the liquid outlet 3b, and the external liquid flows into the second chamber B from the liquid inlet 3a;
  • the first magnet 4 drives at least a part of the partition member 2 towards The direction of the third magnet 6 moves, so that the volume of the first chamber A becomes larger and the volume of the second chamber B becomes smaller.
  • the liquid in the second chamber B is squeezed and flows out from the liquid outlet 3b, and the external liquid It flows into the first chamber A from the liquid inlet 3a.
  • the partition member 2 is controlled to move back and forth between the second magnet 5 and the third magnet 6 through the action of magnetic force, so as to control the alternate change of the volume of the first chamber A and the second chamber B, and realize the control of the liquid Inflow and outflow.
  • the magnetic force here refers to the attractive or repulsive force between the first magnet 4 and the second magnet 5 and the attractive or repulsive force between the first magnet 4 and the third magnet 6.
  • the heat dissipation housing 1 has a heat dissipation function, and a partition member 2 is arranged inside the heat dissipation housing 1 which divides the heat dissipation housing 1 into two chambers, and the partition member 2 At least a part of it can move, so that the volume of the two chambers can be changed.
  • the movement of at least a part of the partition member 2 is controlled to make the volume of one of the first chamber A and the second chamber B
  • the external pipeline flows through the position of the heat source, takes away the heat generated by the heat source, and recirculates to the liquid inlet 3a, and the hot liquid that needs to be dissipated is input into the first chamber A and the second chamber B to increase the volume One is to dissipate the liquid input into the chamber.
  • the heat dissipation driving device 100 has the functions of heat dissipation and driving the input and output of the liquid at the same time, and realizes the integration of the driving pump and the cold exhaust (that is, the liquid dissipates heat and cools and discharges the cooling liquid), which is compared with the water-cooled heat dissipation device in the related art.
  • the heat dissipation driving device 100 provided by the embodiments of the present disclosure is small in size, low in structural complexity, and is driven by magnetic force.
  • the movement of the partition member 2 can be controlled by controlling the power on and off of the electromagnet. The operation is simple and the power consumption is low. There is no noise in the driving process, and the feasibility is high.
  • the heat dissipation driving device 100 further includes: a liquid inlet check valve (see 71 and 72 in FIG. 1 and 71 and 72 in FIG. 7) and a liquid outlet check valve (see 73 in FIG. 1). And 74, and 73 and 74 in Figure 7).
  • the liquid inlet check valves are respectively: a liquid inlet check valve (hereinafter referred to as the first liquid inlet check valve 71) arranged between the liquid inlet 3a and the first chamber A, and a liquid inlet check valve arranged at the liquid inlet The liquid inlet check valve between 3a and the second chamber B (hereinafter referred to as the second liquid inlet check valve 72).
  • the liquid inlet check valve is configured to open when the liquid pressure on the side of the liquid inlet check valve close to the liquid inlet 3a is greater than the liquid pressure on the other side of the liquid inlet check valve, so that the liquid flows from the liquid inlet 3a to the first The chamber A or the second chamber B has a one-way flow.
  • the liquid outlet check valves are respectively: the liquid outlet check valve (hereinafter referred to as the first liquid outlet check valve 73) arranged between the liquid outlet 3b and the first chamber A, and the liquid outlet check valve 73 provided at the liquid outlet 3b and The liquid outlet check valve between the second chambers B (hereinafter referred to as the second liquid outlet check valve 74).
  • the liquid outlet check valve is configured to open when the liquid pressure on the side of the liquid outlet check valve close to the liquid outlet 3b is lower than the liquid pressure on the other side of the liquid outlet check valve, so that the liquid flows from the first chamber A or the first chamber A
  • the two-chamber B flows unidirectionally to the liquid outlet 3b.
  • the liquid pressure on the side of the liquid inlet check valve close to the liquid inlet 3a remains basically unchanged, and the liquid pressure on the side of the liquid outlet check valve close to the liquid outlet 3b remains unchanged.
  • the liquid pressure remains basically unchanged. Since at least a part of the partition member 2 can move, the volumes of the first chamber A and the second chamber B will change accordingly, so that the liquid in the first chamber A is different from the liquid in the second chamber A. The pressure of the liquid in chamber B will also change accordingly.
  • the liquid pressure on the side close to the liquid inlet 3a of the second liquid inlet check valve is greater than the liquid pressure on the other side, and the liquid pressure on the side close to the liquid outlet 3b of the first liquid outlet check valve 73 is greater than The other side of the liquid pressure, so that the second liquid inlet check valve and the first liquid outlet check valve 73 are opened, so that the external liquid flows into the second chamber B through the second liquid inlet check valve, the first chamber
  • the flow direction of the liquid can always be controlled to flow from the liquid inlet 3a into the first chamber A or the second chamber B, and from the first chamber A or the second chamber.
  • the chamber B flows to the liquid outlet 3b (hereinafter referred to as the liquid flow direction as the forward direction), but cannot flow in the reverse direction, so that the liquid inlet check valve and the liquid outlet check valve have the control of the liquid flow in the forward direction, and the reverse is locked.
  • the function ensures the normal flow of liquid, so that the higher temperature liquid flows into the heat dissipation housing 1 from the outside through the liquid inlet 3a, and after the heat dissipation housing 1 cools down, it flows out through the liquid outlet 3b, that is, the heat dissipation driving device 100
  • the liquid outlet 3b always leads out the cooled liquid with a lower temperature, and then the liquid flows through the position of the heat source, which ensures the heat dissipation effect and effectively improves the heat dissipation performance.
  • one of the second magnet 5 and the third magnet 6 is an electromagnet, and the other is a permanent magnet.
  • the electromagnet is configured to generate magnetism when energized, and generate attractive or repulsive force between the electromagnet and the first magnet 4; and when the distance between the electromagnet and the first magnet 4 is the largest, the distance between the electromagnet and the first magnet 4
  • the attractive force between the permanent magnet and the first magnet 4 is greater than the attractive force between the permanent magnet and the first magnet 4.
  • the second magnet 5 is an electromagnet
  • the third magnet 6 is a permanent magnet.
  • the poles of the first magnet 4 and the third magnet 6 are set as: S of the first magnet 4
  • the poles are opposite to the N poles of the third magnet 6. Since the first magnet 4 and the third magnet 6 are both permanent magnets, the magnetic poles of the first magnet 4 and the third magnet 6 will not change. There is always an attractive force between the three magnets 6.
  • the second magnet 5 can generate magnetism when it is energized.
  • the direction of the magnetic poles of the second magnet 5 can be controlled, thereby controlling the attraction or repulsion between the second magnet 5 and the first magnet 4 .
  • An attractive force is generated between the second magnet 5 and the first magnet 4, and when the distance between the second magnet 5 and the first magnet 4 is the largest, the distance between the third magnet 6 and the first magnet 4 is the smallest.
  • the attractive force between the second magnet 5 and the first magnet 4 is set to be greater than the maximum attractive force between the third magnet 6 and the first magnet 4, so as to ensure that the second magnet 5 can overcome the first magnet.
  • the attractive force of the three magnets 6 on the first magnet 4 causes the first magnet 4 to drive at least a part of the partition member 2 to move toward the second magnet 5 to compress the first chamber A and discharge the liquid.
  • both the first chamber A and the second chamber B are filled with liquid, and the first There is an attractive force between the magnet 4 and the third magnet 6, and the partition member 2 is located in a position close to the third magnet 6 in the heat dissipation housing 1.
  • the volume of the second chamber B is slightly smaller than the volume of the first chamber A
  • the volume of the liquid in the second chamber B is slightly smaller than the volume of the first chamber A
  • the volume of the second chamber B is slightly smaller than the volume of the first chamber A.
  • the volume ratio of chamber A is approximately 1, and the liquid circulation is not turned on. Since the heat dissipation housing 1 has a heat dissipation function, in the initial state, the temperature of the liquid in the first chamber A and the second chamber B is lower than the temperature of the external liquid.
  • the heat dissipation process using the heat dissipation driving device 100 may include two stages: a first stage and a second stage.
  • the first stage as shown in FIG. 3, the second magnet 5 is energized to generate magnetism, and the S pole of the second magnet 5 is opposite to the N pole of the first magnet 4, and there is generated between the second magnet 5 and the first magnet 4.
  • the attractive force is greater than the attractive force between the first magnet 4 and the third magnet 6.
  • the first magnet 4 drives at least a part of the partition member 2 to move toward the second magnet 5, so that the first cavity
  • the chamber A is compressed to discharge the liquid inside; at the same time, the space of the second chamber B becomes larger, the external liquid flows into the second chamber B, and the heat dissipation housing 1 dissipates the external liquid flowing into this part. That is, the temperature of the liquid discharged from the heat dissipation driving device 100 is lower than the temperature of the liquid flowing into the heat dissipation driving device 100.
  • the second magnet 5 is de-energized, and the attractive force between the first magnet 4 and the third magnet 6 is much greater than that between the iron core of the second magnet 5 and the first magnet 4.
  • the first magnet 4 drives at least a part of the partition member 2 to move toward the third magnet 6, so that the second chamber B is compressed and the liquid inside is discharged, and the discharged liquid has a lower temperature Low.
  • the space of the first chamber A becomes larger, the external liquid flows into the first chamber A, and the heat dissipation housing 1 dissipates the part of the liquid flowing in.
  • the second magnet 5 is supplied with a current that is opposite to the direction of the current in the first stage, and the second magnet 5 generates magnetism, and the direction of the magnetic poles is opposite to the direction of the magnetic poles generated in the first stage, that is, the second magnet
  • the N pole of 5 is opposite to the N pole of the first magnet 4.
  • a repulsive force is generated between the second magnet 5 and the first magnet 4, so that the repulsive force of the first magnet 4 on the second magnet 5 and the repulsive force of the third magnet 6
  • the partition member 2 Under the dual action of the attraction force, at least a part of the partition member 2 is driven to move toward the third magnet 6, so that the second chamber B is compressed, and the liquid inside it is discharged, and the temperature of the discharged liquid is lower.
  • the space of the first chamber A becomes larger, the external liquid flows into the first chamber A, and the heat dissipation housing 1 dissipates the part of the liquid flowing in.
  • the above-mentioned first stage and second stage may be alternately performed to allow the liquid to circulate continuously.
  • the second magnet 5 and the third magnet 6 are both electromagnets.
  • the second magnet 5 is configured to generate magnetism when energized, and generate attractive or repulsive force between the second magnet 5 and the first magnet 4.
  • the third magnet 6 is configured to generate magnetism when energized, and generate repulsive force or attractive force with the first magnet 4.
  • the magnetic poles of the first magnet 4 are set as: the left side of the first magnet 4 is the N pole, and the right side is the S pole.
  • the second magnet 5 and the third magnet 6 are both electromagnets, and no magnetism is generated when the electricity is not applied.
  • both the second magnet 5 and the third magnet 6 can generate magnetism when energized.
  • the magnetic pole directions of the second magnet 5 and the third magnet 6 can be controlled so that at the same time .
  • the space of the second chamber B becomes larger, the external liquid flows into the second chamber B, and the heat dissipation housing 1 dissipates heat.
  • the magnet 4 drives at least a part of the partition member 2 (in this case, drives the entire partition member 2B) to move toward the third magnet 6, so that the second chamber B is compressed and the liquid inside it is discharged.
  • the space of the first chamber A becomes larger, the external liquid flows into the first chamber A, and the heat dissipation housing 1 dissipates heat.
  • both the first chamber A and the second chamber B are filled with liquid, and the partition member 2 is in the heat dissipation housing 1.
  • the partition member 2 is in the middle position of the heat dissipation housing 1
  • the volume of the second chamber B is equal to or approximately equal to the volume of the first chamber A
  • the liquid circulation is not started. Since the heat dissipation housing 1 has a heat dissipation function, in the initial state, the temperature of the liquid in the first chamber A and the second chamber B is lower than the temperature of the external liquid.
  • the heat dissipation process using the heat dissipation driving device 100 may include two stages: a first stage and a second stage.
  • the first stage as shown in Figures 9 and 10
  • the second magnet 5 and the third magnet 6 are energized to generate magnetism.
  • the left end of the second magnet 5 is the S pole and the right end is the N pole.
  • the left end of the third magnet 6 is N pole and the right end is S pole. In this way, an attractive force is generated between the third magnet 6 and the first magnet 4.
  • the first magnet 4 drives at least a part of the partition member 2 to move toward the third magnet 6, so that the second chamber B is compressed, and the liquid after heat dissipation is discharged from the inside of the first chamber A.
  • the second magnet 5 and the third magnet 6 are supplied with a current that is opposite to the direction of the current in the first stage, the second magnet 5 generates magnetism, and at this time the second magnet
  • the left side of 5 is the N pole, and the right side is the S pole, so that attraction force is generated between the second magnet 5 and the first magnet 4.
  • the left side of the third magnet 6 is the S pole, and the right side is the N pole, so that the third magnet A repulsive force is generated between the magnet 6 and the first magnet 4, so that under the dual action of attractive force and repulsive force, the first magnet 4 drives at least a part of the partition member 2 to move toward the second magnet 5, so that the first chamber A is It is compressed to discharge the liquid after heat dissipation inside, the space of the second chamber B becomes larger, the external liquid flows into the second chamber B, and the heat dissipation housing 1 dissipates heat.
  • the direction of the current can be changed.
  • an attractive force is generated between the second magnet 5 and the first magnet 4, and between the third magnet 6 and the first magnet 4 Repulsive force, so that the first magnet 4 drives at least a part of the partition member 2 to move toward the second magnet 5, the first chamber A is compressed, the liquid after heat dissipation is discharged from the inside, and the external liquid enters the first chamber through the liquid inlet 3a.
  • a repulsive force is generated between the second magnet 5 and the first magnet 4, and an attractive force is generated between the third magnet 6 and the first magnet 4, so that the first magnet 4 drives at least a part of the partition member 2 toward the first magnet.
  • the three magnets 6 move, so that the second chamber B is compressed, and the liquid after heat dissipation is discharged, and the external liquid enters the first chamber A through the liquid inlet 3a.
  • the heat dissipation housing 1 is box-shaped, and includes a housing body 11 and a cover plate 12 that are sealed and connected.
  • the partition member 2 is a partition elastic piece 2A.
  • the partition elastic piece 2A is a sheet-like structure made of an elastic material that is difficult to be corroded by liquid materials.
  • the liquid inlet 3a and the liquid outlet 3b are respectively arranged at two ends of the separating elastic piece 2A.
  • the first magnet 4 is installed in the middle part of the separating elastic piece 2A, and the second magnet 5 and the third magnet 6 are respectively located on both sides of the separating elastic piece 2A.
  • the two ends of the partition spring 2A are fixed to the two ends close to the internal space of the heat dissipation housing 1, and the internal space of the heat dissipation housing 1 is divided into a first chamber A and a second chamber B.
  • the middle part of the separating elastic piece 2A can be deformed to realize movement.
  • the first magnet 4 is installed in the middle part of the separating elastic piece 2A, the second magnet 5 and the third magnet 6 are respectively located on both sides of the separating elastic piece 2A, so that under the action of magnetic force, the first magnet 4 drives the middle part of the separating elastic piece 2A towards the first
  • the direction of the two magnets 5 is bent, the first chamber A is compressed, so that the liquid in the first chamber A flows out through the liquid outlet 3b, and the volume of the second chamber B becomes larger, so that the external liquid passes through the liquid inlet 3a. Flow into the second chamber B.
  • the first magnet 4 drives the middle part of the separating elastic piece 2A to bend in the direction of the third magnet 6, and the second chamber B is compressed, so that the liquid in the second chamber B flows out through the liquid outlet 3b , The volume of the first chamber A becomes larger, so that the external liquid flows into the first chamber A through the liquid inlet 3a.
  • the heat dissipation driving device 100 further includes: a first post 81 and a second post 82 arranged in the inner space of the heat dissipation housing 1.
  • the first column 81 is close to the liquid inlet 3a, and the side walls of the first chamber A and the second chamber B close to the liquid inlet 3a respectively form a liquid inlet branch channel with the first column 81.
  • the heat dissipation driving device 100 also includes a liquid inlet In the case of the one-way valve, the two liquid-inlet one-way valves are respectively arranged in the two liquid-inlet branch flow passages.
  • the side wall of the first chamber A close to the liquid inlet 3a and the first column 81 form a first liquid inlet branch channel d1, and the first liquid inlet check valve 71 is disposed in the first liquid inlet branch channel d1;
  • the side wall of the second chamber B close to the liquid inlet 3a and the first column 81 form a second liquid inlet branch channel d2, and the second liquid inlet check valve 72 is arranged in the second liquid inlet branch channel d2.
  • the second column 82 is close to the liquid outlet 3b, and the side walls of the first chamber A and the second chamber B close to the liquid outlet 3b respectively form a liquid outlet branch channel with the second column 82.
  • the heat dissipation driving device 100 also includes a liquid outlet In the case of the one-way valve, two liquid-outlet one-way valves are respectively arranged in the two liquid-outlet branch flow passages.
  • the side wall of the first chamber A close to the liquid outlet 3b and the second column 82 form a first liquid outlet branch channel d3, and the first liquid outlet check valve 73 is disposed in the first liquid outlet branch channel d3;
  • the side wall of the second chamber B close to the liquid outlet 3b and the second column 82 form a second liquid outlet branch channel d4, and the second liquid outlet check valve 74 is disposed in the second liquid outlet branch channel d4.
  • the two ends of the separating elastic piece 2A are respectively fixed on the first post 81 and the second post 82.
  • first post 81 and the second post 82 are respectively close to the liquid inlet 3a and the liquid outlet 3b, it is possible to realize the separation of the two elastic pieces 2A.
  • the ends are fixed on the first column 81 and the second column 82, and at the same time, the fluid inlet 3a and the internal space of the heat dissipation housing 1 are divided into a first fluid inlet branch channel d1 and a second fluid inlet through the first column 81
  • the branch channel d2 divides the internal space of the heat dissipation housing 1 and the flow channel of the liquid outlet 3b into a first liquid outlet branch channel d3 and a second liquid outlet branch channel d4 by a second column 82, and is arranged in the liquid inlet branch channel
  • the liquid inlet check valve, the liquid outlet check valve is set in the liquid outlet branch, which realizes the connection of the liquid inlet 3a with the first chamber A and the second chamber B, and the liquid outlet 3b with the first chamber A and the second chamber B are both connected, and the flow direction of the liquid is from the liquid inlet 3a to the first chamber A/the second chamber B, and then to the liquid outlet 3b, without reverse flow, ensuring the liquid Of normal
  • the specific structures of the liquid inlet check valve and the liquid outlet check valve are:
  • the liquid inlet check valve (71 and 72 in Figure 2) includes a liquid inlet control spring (71A and 72A in Figure 2), and the liquid inlet control spring is a sheet structure made of elastic material.
  • the first end of the liquid inlet control elastic piece is fixed on the side wall of the first chamber A or the second chamber B, and the second end is a free end.
  • the first liquid inlet check valve 71 includes a first liquid inlet control elastic piece 71A, the first end of the first liquid inlet control elastic piece 71A is fixed on the side wall of the first chamber A, and the second end is a free end ;
  • the second liquid inlet check valve 72 includes a second liquid inlet control elastic piece 72A, the first end of the second liquid inlet control elastic piece 72A is fixed on the side wall of the second chamber B, and the second end is a free end.
  • the second ends of the first liquid inlet control elastic piece 71A and the second liquid inlet control elastic piece 72A can both be deformed to realize the conduction and blocking of the controlled liquid, as follows:
  • the separating elastic piece 2A is bent toward the position of the second magnet 5, the volume of the first chamber A becomes smaller, the pressure of the liquid in the first chamber A increases, and the volume of the second chamber B becomes Large, the pressure of the liquid in the second chamber B is reduced, so that the liquid pressure on the side of the first liquid inlet control spring 71A close to the liquid inlet 3a is lower than the other side (the side close to the first chamber A) Due to the liquid pressure, the second end of the first liquid inlet control spring 71A abuts against the first column 81 and blocks the first liquid inlet branch channel d1 so that the liquid in the first chamber A cannot flow out through the liquid inlet 3a.
  • the liquid pressure on the side of the second liquid inlet control spring 72A close to the liquid inlet 3a is greater than the liquid pressure on the other side (the side close to the second chamber B), and the second end of the second liquid inlet control spring 72A is connected to The first column 81 is separated, and the second liquid inlet branch channel d2 is opened, so that the external liquid can flow into the second chamber B.
  • the first liquid inlet control elastic piece 71A and the second liquid inlet control elastic piece 72A have a certain elasticity (opening pressure), so the liquid in the liquid inlet 3a also needs to overcome the elastic force of the first liquid inlet control elastic piece 71A.
  • the second end of the first liquid inlet control elastic piece 71A is deformed and separated from the first column 81, or the liquid in the liquid inlet 3a needs to overcome the elastic force of the second liquid inlet control elastic piece 71B to enable the second liquid inlet control
  • the second end of the elastic piece 71B is deformed and is separated from the first upright 81.
  • the liquid discharge check valve (73 and 74 in Fig. 2) includes a liquid discharge control elastic sheet, which is a sheet structure made of elastic material.
  • the first end of the liquid outlet control elastic piece is fixed on the side wall of the first chamber A or the second chamber B, and the second end is a free end.
  • the first liquid outflow check valve 73 includes a first liquid outflow control elastic piece 73A.
  • the first end of the first liquid outflow control elastic piece 73A is fixed on the side wall of the first chamber A, and the second end is a free end.
  • the second liquid outflow check valve 74 includes a second liquid outflow control elastic piece 74A, the first end of the second liquid outflow control elastic piece 74A is fixed on the side wall of the second chamber B, and the second end is a free end.
  • the second ends of the first liquid outlet control elastic piece 73A and the second liquid outlet control elastic piece 74A can both be deformed to realize the conduction and blocking of the controlled liquid, as follows:
  • the second end of the liquid outlet control elastic piece abuts against the second upright 82 to seal the liquid outlet branch channel. Blocking; in the case where the liquid pressure on one side of the liquid outlet control elastic piece close to the liquid outlet 3b is less than the liquid pressure on the other side, the second end of the liquid outlet control elastic piece is separated from the second column 82, and the liquid outlet branch is separated Turn on.
  • the separating elastic piece 2A is bent toward the position of the second magnet 5, the volume of the first chamber A becomes smaller, the pressure of the liquid in the first chamber A increases, and the volume of the second chamber B becomes Large, the pressure of the liquid in the second chamber B is reduced, so that the liquid pressure on the side of the second liquid outlet control spring 74A close to the liquid outlet 3b is greater than the other side (the side close to the second chamber B) Liquid pressure, the second end of the second liquid outlet control elastic piece 74A abuts against the second upright 82, blocking the second liquid outlet branch d4, so that the liquid in the second chamber B cannot flow out; the first liquid outlet control elastic piece
  • the liquid pressure on the side of 73A close to the liquid outlet 3b is lower than the liquid pressure on the other side (the side close to the first chamber A), and the second end of the first liquid outlet control spring 73A is separated from the first column 81,
  • the first liquid outlet branch channel d3 is opened, so that the liquid in the first chamber A flows out through the
  • the above-mentioned first liquid outlet control elastic piece 73A and the second liquid outlet control elastic piece 74A have a certain elastic force (opening pressure), so the liquid in the first chamber A also needs to overcome the elastic force of the first liquid outlet control elastic piece 73A.
  • the second liquid outlet control elastic piece 74A can be used. The second end of the liquid control spring 74A is deformed and is separated from the second upright 82.
  • the side walls of the first chamber A and the second chamber B close to the liquid inlet 3a are respectively provided with liquid inlet slots (k1 and k2 in FIG. 5), and two liquid inlet control springs The first ends of the are respectively clamped in the two inlet slots.
  • the sidewalls of the first chamber A and the second chamber B close to the liquid outlet 3b are respectively provided with liquid outlet slots (k3 and k4 in Figure 5), and the first ends of the two liquid outlet control elastic pieces are respectively clamped Installed in two outlet card slots.
  • the first chamber A is provided with a first liquid inlet card slot k1 on the side wall close to the liquid inlet 3a
  • the second chamber B is close to the side wall of the liquid inlet 3a.
  • the side wall of the first chamber A close to the liquid outlet 3b is provided with a first liquid outlet card slot k3
  • the second chamber B is provided with a first liquid outlet card groove k3 on the side wall close to the liquid outlet 3b.
  • the first ends of the first liquid inlet control elastic piece 71A and the second liquid inlet control elastic piece 72A are respectively clamped in the first liquid inlet card slot k1 and the second liquid inlet card slot k2.
  • the first ends of a liquid outlet control elastic piece 73A and a second liquid outlet control elastic piece 74A are respectively clamped in the first liquid outlet card slot k3 and the second liquid outlet card slot k4 to realize two liquid inlet control elastic pieces and two The fixation of the discharge control shrapnel.
  • the heat dissipation driving device 100 further includes four fixed rubber rings, which are respectively the first fixed rubber ring 11a and the sleeve
  • the fourth fixed rubber ring 11d on the first end of the control spring 74A is illustratively made of rubber. In this way, the first ends of the liquid inlet control shrapnel and the liquid outlet control shrapnel can be more firmly fixed in the slot, and it is not easy to loosen.
  • a first mounting slot k5 is provided on the first column 81 far away from the liquid inlet 3a, and a second mounting groove k5 is provided on the second column 82 far from the liquid outlet 3b.
  • the heat dissipation driving device 100 further includes a fifth fixing rubber ring 21a and a sixth fixing rubber ring 21b respectively sleeved on the two ends of the separating elastic piece 2A, exemplarily ,
  • the materials of the above two fixed rubber rings are all rubber. In this way, the two ends of the separating elastic piece 2A can be more firmly fixed in the two installation slots, and it is not easy to loosen.
  • the heat dissipation housing 1 is box-shaped, and includes a housing main body 11 and a cover plate 12 that are hermetically connected.
  • the heat dissipation housing 1 further includes a plurality of screws 13, and the housing main body 11 and the cover plate 12 are connected by the screws 13.
  • the heat dissipation driving device 100 further includes a housing fastening rubber ring 12a.
  • the shape of the housing fastening rubber ring 12a is consistent with the shape of the sealing joint of the housing body 11 and the cover plate 12, for example, both are elliptical.
  • the casing body 11 and the cover plate 12 can be hermetically connected by the casing tightening the rubber ring 12a, so as to prevent the liquid from the internal space of the heat dissipation casing 1 from leaking out.
  • the installation methods of the first magnet 4, the second magnet 5 and the third magnet 6 are as follows:
  • a first mounting hole p1 is provided in the middle part of the separating elastic piece 2A, and the first magnet 4 is embedded in the first mounting hole p1.
  • the side wall of the first chamber A has a first installation groove p2 at a position opposite to the first installation hole p1.
  • the second magnet 5 is installed in the first installation groove p2.
  • a second installation groove p3 is provided at a position opposite to the installation hole p1, and the third magnet 6 is installed in the second installation groove p3.
  • the second magnet 5 when the second magnet 5 is an electromagnet, the second magnet 5 includes a first iron core 51 and a first coil 52.
  • the first coil 52 surrounds the periphery of the first iron core 51.
  • the first iron core 51 can be magnetized to generate magnetism.
  • the heat dissipation driving device 100 further includes a first sealing and fixing rubber ring 4a sleeved on the periphery of the first magnet 4, and a second sealing and fixing rubber ring 5a sleeved on the periphery of the second magnet 5. , And a third sealing and fixing rubber ring 6a sleeved on the periphery of the third magnet 6.
  • the first magnet 4, the second magnet 5, and the third magnet 6 can be more firmly fixed, and the first sealing and fixing rubber ring 4a plays a sealing role, so as to avoid the damage in the first chamber A and the second chamber B.
  • the liquid circulates through the gap between the first mounting hole p1 and the first magnet 4.
  • the heat dissipation driving device 100 further includes: heat dissipation fins 9 arranged on the outer side wall of the casing body 11.
  • the heat of the liquid in the internal space of the radiating housing 1 can be conducted to the cavity wall of the radiating housing 1, and then to the radiating fins 9, and then dissipated into the surrounding air through the radiating fins. Therefore, the heat dissipation effect of the heat dissipation driving device 100 is further improved, and the heat dissipation is faster and more effective.
  • the material of the heat dissipation fin 9 has high heat absorption capacity and heat conduction capability, for example, it may be a metal material such as aluminum alloy, aluminum, copper, or steel. As shown in FIG. 6, the heat dissipation fin 9 includes a plurality of parallel And the plate-like or sheet-like structure arranged at intervals.
  • the heat dissipation housing 1 is cylindrical, and the second magnet 5 and the third magnet 6 are respectively located in the heat dissipation housing. 1. Both ends of the internal space.
  • the partition member is a sealing slider 2B, which can slide between the second magnet 5 and the third magnet 6, and the sealing slider 2B is in hermetically connected with the side wall of the internal space of the heat dissipation housing 1, while sealing the slider 2B can move in the radial direction of the heat dissipation housing 1.
  • the first magnet 4 is mounted on the sealing slider 2B.
  • the second magnet 5 and the third magnet 6 are respectively located at both ends of the internal space of the heat dissipation housing 1, the partition member 2 is a sealing slider 2B, and the sealing slider 2B is sealed with the side wall of the internal space.
  • the internal space of the heat dissipation housing 1 is divided into a first chamber A and a second chamber B, and the sealing slider 2B can slide between the second magnet 5 and the third magnet 6, so that under the action of the magnetic force,
  • the first magnet 4 drives the sealing slider 2B to slide in the direction of the second magnet 5, the first chamber A is compressed, so that the liquid in the first chamber A flows out through the liquid outlet 3b, and the volume of the second chamber B changes Large, so that the external liquid flows into the second chamber B through the liquid inlet 3a.
  • the first magnet 4 drives the sealing slider 2B to slide in the direction of the third magnet 6, and the second chamber B is compressed, so that the liquid in the second chamber B flows out through the liquid outlet 3b.
  • the volume of one chamber A becomes larger, so that the external liquid flows into the first chamber A through the liquid inlet 3a.
  • the heat dissipation driving device 100 further includes: a first liquid inlet pipe b1 arranged between the liquid inlet 3a and the first chamber A, and is arranged at the liquid inlet 3a The second liquid inlet pipe b2 between and the second chamber B, the first liquid outlet pipe b3 between the liquid outlet 3b and the first chamber A, and the liquid outlet 3b and the second chamber The second outlet pipe b4 between B.
  • the heat dissipation driving device 100 further includes a liquid inlet check valve and a liquid outlet check valve
  • the two liquid inlet check valves are respectively arranged in the first inlet pipe b1 and the second inlet pipe b2
  • the two outlet check valves The liquid check valves are respectively arranged in the first liquid outlet pipe and the second liquid outlet pipe b4. That is, the first liquid inlet check valve 71 is arranged in the first liquid inlet pipe b1, the second liquid inlet check valve 72 is arranged in the second liquid inlet pipe b2, and the first liquid outlet check valve 73 is arranged on the first outlet.
  • the second liquid outlet check valve 74 is arranged in the second liquid pipe b4.
  • the liquid inlet 3a is connected to the first cavity.
  • the chamber A and the second chamber B are both connected, and the liquid outlet 3b is connected with the first chamber A and the second chamber B, and the flow direction of the liquid is from the liquid inlet 3a to the first chamber A/second From the chamber B to the liquid outlet 3b, there is no reverse flow, which ensures the normal circulation of liquid.
  • the first inlet pipe b1 communicates with the first chamber A (referred to as the inlet port of the first chamber A), and the first outlet pipe b3 communicates with the first chamber A.
  • the liquid outlet port of the first chamber A for example, see the liquid outlet port c2 of the first chamber A in FIG. 8
  • the second inlet pipe b2 communicates with the second chamber B (referred to as the inlet port of the second chamber B)
  • the second outlet pipe b4 communicates with the second chamber B (referred to as the second
  • the liquid outlet port of the chamber B for example, see the liquid inlet port c1 of the second chamber B in FIG. 8, are all located on the cavity wall of the second chamber B close to the third magnet 6.
  • the sealing slider 2B needs to slide between the above-mentioned interfaces, so that the liquid in the first chamber A or the second chamber B can be squeezed out from the liquid outlet by the sealing slider 2B, or The external liquid flows into the first chamber A or the second chamber B from the liquid inlet port.
  • Set the position of the aforementioned interface as close as possible to the two ends of the cylindrical heat dissipation housing 1, so that the sealing slider 2B can slide from the position as close as possible to the second magnet 5 to the position as close as possible to the third magnet 6, or to seal
  • the slider 2B can slide from the position as close to the third magnet 6 as possible to the position as close as possible to the second magnet 5, with as large a sliding distance as possible.
  • the inlet check valve (71 and 72 in Fig. 7) includes an inlet funnel cover m and an inlet check valve ball n, in the inlet funnel cover
  • the liquid inlet check valve ball n abuts against the liquid inlet funnel cover m, and the first liquid inlet pipe b1 or the first liquid inlet pipe b1 or the second liquid inlet The second liquid inlet pipe b2 is blocked.
  • liquid inlet check valve ball n is separated from the liquid inlet funnel cover m to separate the first liquid inlet pipe b1 or the second liquid inlet pipe b2 is opened.
  • the liquid outlet check valve (73 and 74 in Fig. 7) includes a liquid outlet funnel cover v and a liquid outlet check valve ball w.
  • the outlet check valve ball w and the outlet funnel cover v abut against the first outlet The liquid pipe b3 or the second liquid outlet pipe b4 is blocked.
  • the outlet check valve ball w is separated from the outlet funnel cover v to separate the first outlet pipe b3 or the second outlet pipe b4 is opened.
  • the first liquid outlet check valve 73 includes a liquid outlet funnel cover v and a liquid outlet check valve ball w, wherein the liquid outlet funnel cover v is fixed in the first liquid outlet pipe b3, and the outlet
  • the liquid funnel cover v has a first opening and a second opening, and the second opening is closer to the liquid outlet 3b than the first opening.
  • the caliber of the first opening is smaller than the caliber of the second opening
  • the discharge check valve ball w is in the discharge funnel cover v
  • the diameter of the discharge check valve ball is larger than the caliber of the first opening.
  • the outlet check valve ball w enters the outlet funnel cover v and will exit The first opening of the liquid funnel cover v is blocked, so that the liquid cannot flow.
  • the liquid outlet check valve ball w is separated from the outlet funnel cover v, so that the liquid can pass through the liquid outlet
  • the first opening of the funnel cover v circulates.
  • the specific structure of other one-way valves is similar to the structure of the first liquid-out one-way valve 73, which can be referred to as shown in Figs. 7 to 13, and will not be repeated here.
  • the heat dissipation driving device 100 further includes: a cooling chamber 1'and a cooling chamber check valve 75, and the cooling chamber 1'has a heat dissipation function.
  • the material of the cooling bin 1' has high heat dissipation performance.
  • the material of the cooling bin 1' is the same as the material of the heat dissipation shell 1, and is a metal material such as copper, aluminum, aluminum alloy, or stainless steel.
  • the outer side wall of the cooling chamber 1' is provided with radiating fins, which can cool down the liquid in the cooling chamber 1'.
  • the cooling bin 1' is arranged between the first chamber A and the first liquid outlet pipe b3, and the two ends of the cooling bin 1'are connected to the first chamber A and the first chamber A and The first liquid outlet pipe b3 is connected.
  • the first liquid outlet check valve 73 is located in the first liquid outlet pipe b3 near the cooling chamber 1', and the cooling chamber check valve 75 is provided at the interface between the cooling chamber 1'and the first chamber A.
  • the cooling chamber check valve 75 is configured to be opened when the liquid pressure on the side of the cooling chamber check valve 75 close to the first chamber A is greater than the liquid pressure on the other side of the cooling chamber check valve 75, so that the liquid flows from the first chamber. A unidirectional circulation to the cooling chamber 1'.
  • the cooling bin 1' is arranged between the first liquid outlet pipe b3 and the liquid outlet 3b, and both ends of the cooling bin 1'are respectively communicated with the first liquid outlet pipe b3 and the liquid outlet 3b.
  • the first liquid outlet check valve 73 is located in the first liquid outlet pipe b3 close to the cooling chamber 1', and the cooling chamber check valve 75 is provided at the interface between the cooling chamber 1'and the liquid outlet 3b.
  • the cooling chamber check valve 75 is configured to be opened when the liquid pressure on the side of the cooling chamber check valve 75 close to the liquid outlet 3b is less than the liquid pressure on the other side, so that the liquid flows from the cooling chamber 1'to the The liquid outlet 3b circulates in one direction.
  • the liquid flow in the heat dissipation driving device 100 is as follows: in the initial state, the cooling chamber 1'and the heat dissipation housing 1 are both filled with liquid.
  • the first magnet 4 drives the sealing slider 2B to slide in the direction of the second magnet 5, the first chamber A is compressed, and the first chamber A
  • the one-way valve 75 of the cooling chamber is opened, the liquid in the first chamber A flows into the cooling chamber 1', and the pressure of the liquid in the cooling chamber 1'increases, which will push the original in the cooling chamber 1'
  • the first liquid outlet check valve 73 is opened, the first liquid outlet pipe b3 is opened, and the original liquid in the cooling chamber 1'flows out from the liquid outlet 3b.
  • the liquid flowing out of the liquid outlet 3b in the second half of the cycle is the cooled liquid in the cooling chamber 1', and the liquid in the cooling chamber 1'comes from the first chamber A.
  • the driving process of the Saner driving device 100 includes multiple driving cycles.
  • the liquid in the first chamber A has passed through the heat dissipation shell
  • the temperature of the body 1 is reduced by the heat dissipation treatment, and the liquid is not directly discharged from the liquid outlet 3b through the first liquid outlet pipe b3, but enters the cooling chamber 1', and further cooling is performed in the cooling chamber 1'until Discharged in the second half of this cycle.
  • the liquid flowing out of the liquid outlet 3b has undergone two cooling treatments, so the temperature is lower, the heat dissipation effect is better, and the heat source can be more effectively absorbed and dissipated. .
  • the above-mentioned cooling chamber 1' can also be arranged between the second chamber B and the second liquid outlet pipe b4, and the two ends of the cooling chamber 1'are respectively connected to the second chamber B and the second liquid outlet.
  • the pipe b4 is connected.
  • the cooling chamber 1' is arranged between the second liquid outlet pipe b4 and the liquid outlet 3b, and the two ends of the cooling chamber 1'are respectively communicated with the second liquid outlet pipe b4 and the liquid outlet 3b.
  • the sealing slider 2B moves toward the third magnet 6 and compresses the second chamber B, the liquid in the second chamber B enters the cooling chamber 1'instead of being directly discharged from the liquid outlet 3b. Further cooling is carried out within 1', so that the liquid undergoes two cooling treatments, the temperature is lower, the heat dissipation effect is better, and the heat source can be more effectively absorbed and dissipated.
  • the heat dissipation shell 1 and the cooling bin 1' are both cylindrical, and the central axes of the heat dissipation shell 1 and the cooling bin 1'are parallel or substantially parallel to each other. In this way, the volume of the heat dissipation driving device 100 can be reduced, and space can be saved.
  • the center position of the sealing slider 2B is provided with a second mounting hole p4, and the first magnet 4 is embedded in the second mounting hole p4.
  • the second magnet 5 when the second magnet 5 and the third magnet 6 are both electromagnets, the second magnet 5 includes a first iron core 51 and a first coil 52, and the first coil 52 surrounds At the periphery of the first iron core 51, when there is current on the first coil, the first iron core 51 can be magnetized to generate magnetism.
  • the third magnet 6 includes a second iron core 61 and a second coil 62. The second coil 62 surrounds the periphery of the second iron core 61. When there is current on the second coil 62, the second iron core 61 can be magnetized to generate magnetism. .
  • the heat dissipation driving device 100 further includes a second sealing and fixing rubber ring 5a sleeved on the periphery of the second magnet 5, and a third sealing and fixing rubber ring sleeved on the periphery of the third magnet 6 6a.
  • the second magnet 5 and the third magnet 6 can be more firmly fixed to the two ends of the internal space of the heat dissipation housing 1.
  • some embodiments of the present disclosure also provide a heat dissipation driving system 01
  • the heat dissipation driving system 01 includes: a heat dissipation driving device 100 and a circulation pipe 101, two ports of the circulation pipe 101 They are respectively connected to the liquid inlet 3a and the liquid outlet 3b of the heat dissipation driving device 100.
  • the heat dissipation housing 1, the liquid inlet 3a, the liquid outlet 3b and the circulation pipe 101 of the heat dissipation driving device 100 can form a loop, so that the liquid circulates in the loop, and the circulation pipe 101 is provided At a location close to the heat source, such as the non-light emitting side of the backlight module.
  • the heat generated by the heat source can be transferred to the liquid in the circulation pipeline 101, so that the temperature at the heat source is reduced; at the same time, the liquid with a higher temperature can flow into the heat dissipation shell 1 through the circulation pipeline, and is processed by the heat dissipation shell 1 again after heat dissipation. Entering the circulation pipeline 101 to reduce the temperature at the heat source, such circulation can achieve efficient heat dissipation.
  • the circulating pipeline 101 is a silicone hose.
  • the silicone hose can be laid at the heat source position in any shape, for example, it can be laid on the surface of the heat source in a serpentine or spiral shape to increase the liquid and heat source in the silicone hose.
  • the contact area achieves the effect of faster heat conduction and greater heat absorption, and because the silicone tube has a certain flexibility, it can play a role in buffering pressure, eliminating other pressure buffer components.
  • the heat dissipation driving device included in the heat dissipation driving system 01 is the heat dissipation driving device 100 shown in FIGS. 1 to 5, and in the heat dissipation driving device 100, the second magnet 5 It is an electromagnet, and the third magnet 6 is a permanent magnet.
  • the magnetic pole of the end of the first magnet 4 close to the first chamber A (hereinafter referred to as the first end of the first magnet 4) is N-pole, and the first magnet 4 is close to
  • the end of the second chamber B (hereinafter referred to as the second end of the first magnet 4) has an S pole
  • the end of the third magnet 6 close to the first magnet 4 (hereinafter referred to as the first end of the third magnet 6) )
  • the other end hereinafter referred to as the second end of the third magnet 6) has an S pole.
  • a specific driving process of the heat dissipation driving system 01 is as follows:
  • the heat dissipation housing 1 of the heat dissipation driving device 100 has a heat dissipation effect, the temperature of the liquid in the heat dissipation housing 1 is lower than the temperature of the liquid outside the heat dissipation housing (such as the liquid in the circulation pipe 101). Therefore, in the following driving process, each time the liquid flowing out of the first chamber A or the second chamber B is a colder liquid, it flows from the circulation line 101 into the first chamber A or from the second chamber The liquids in B are all hot liquids.
  • the second magnet 5 In the initial state, the second magnet 5 is not energized, and the magnetic pole directions of the first magnet 4 and the third magnet 6 are as shown in Figure 2.
  • the separating elastic piece 2A Under the action of the attractive force between the three magnets 6, the separating elastic piece 2A is in a state of being bent toward the third magnet 6 as shown in FIG. B is filled with liquid, and the liquid has not started to circulate.
  • the second ends of the first liquid inlet control elastic piece 71A and the second liquid inlet control elastic piece 72A in the two liquid inlet branch channels all abut the first column 81 and are in a closed state.
  • the second ends of the first liquid-outlet control elastic piece 73A and the second liquid-outlet control elastic piece 74A on the two liquid outlet branch flow channels abut against the second upright 82 and are also in a closed state.
  • the relationship between the magnetic size of the second magnet 5 after being energized and the magnetic size of the first magnet 4 and the third magnet 6 is set as:
  • the magnetic pole of the second magnet 5 close to the first magnet 4 (hereinafter referred to as the first end of the second magnet 5) has an S pole, and the other end (hereinafter referred to as the first end)
  • the magnetic pole of the second end of the second magnet 5) is N-pole
  • the attraction force is generated between the second magnet 5 and the first magnet 4.
  • the heat dissipation driving device 100 drives the liquid to flow uninterruptedly in the circulation pipeline 101 and the heat dissipation housing 1 to continuously dissipate heat from the heat source.
  • the heat dissipation driving The entire driving process of the device 100 includes multiple driving cycles, and each driving cycle includes the first half cycle and the second half cycle (that is, the first and second phases mentioned above), see Figures 3 and 4, the black in the figure
  • the arrow indicates the flow direction of the liquid in the corresponding chamber.
  • the second magnet 5 is energized to make the second magnet 5 generate magnetism, and its first end has an S pole and its second end has an N pole, so that the second magnet 5 and the first magnet 4 are According to the order of the magnetic force set above, it can be seen that under the action of the magnetic force, the first magnet 4 will overcome the magnetic force between it and the third magnet 6, the elastic force of the first liquid inlet control spring 71A, and the first output
  • the elastic force of the liquid control elastic piece 73A and the water pressure in the first chamber A drive the middle part of the separating elastic piece 2A to move in the direction of the second magnet 5.
  • the magnetic size of the second magnet 5 can be changed by adjusting the size of the drive current, so that the attractive force between the second magnet 5 and the first magnet 4 is consistent with the heat dissipation housing. 1
  • the various resistances existing in the interior are balanced, and the smooth operation of the separating shrapnel 2A can be realized.
  • the volume of the first chamber A gradually decreases, and the volume of the second chamber B gradually increases.
  • the liquid in the first chamber A is continuously compressed, and the liquid pressure in the chamber gradually increases.
  • the liquid pressure in the first chamber A is greater than the liquid pressure at the liquid outlet 3b.
  • the first liquid outlet control elastic piece 73A and the second liquid outlet control elastic piece 74A only allow the liquid to circulate in one direction from the first chamber A or the second chamber B to the liquid outlet 3b, and have a reverse locking function, so the first The liquid in one outlet branch channel d3 cannot enter the second chamber B through the second outlet branch channel d4, and the cooler liquid flowing out of the first chamber A after heat dissipation can only pass through the first outlet branch channel.
  • d3 flows out through the liquid outlet 3b, and flows through to the position of the liquid inlet 3a by the circulation effect of the circulation pipe 101.
  • the liquid inlet 3a communicates with the first chamber A and the second chamber B through the first liquid inlet branch channel d1 and the second liquid inlet branch channel d2, respectively. While the first chamber A is compressed to discharge the liquid, As the volume of the second chamber B becomes larger, the pressure of the liquid in the second chamber B becomes smaller, so that the pressure of the second liquid inlet control spring 72A on the side close to the liquid inlet is lower than the pressure on the other side. In addition, the liquid pressure of the liquid inlet 3a can also overcome the elastic force of the second liquid inlet control elastic piece 72A, so that the second liquid inlet control elastic piece 72A is deformed under the liquid pressure, and the second liquid inlet branch channel d2 is opened.
  • the pressure of the liquid in the first chamber A increases, so that the first liquid inlet branch channel d1 is blocked by the first liquid inlet control spring 71A, so that the hotter liquid that has completed heat exchange with the heat source passes through the liquid inlet 3a through the liquid inlet 3a.
  • the second liquid inlet branch channel d2 enters the second chamber B, and the second chamber B and the heat dissipation fins 9 outside it dissipate the liquid to reduce its temperature.
  • the volume of the second chamber B gradually decreases, the volume of the first chamber A gradually increases, and the volume of the second chamber A gradually increases.
  • the liquid in chamber B is constantly being squeezed, and the pressure of the liquid in the chamber gradually increases, making the pressure of the liquid in the second chamber B greater than the liquid pressure of the liquid outlet 3b.
  • the liquid in the second liquid outlet branch channel d4 cannot enter the first chamber A through the first liquid outlet branch channel d3, and the cooler liquid flowing out of the second chamber B after heat dissipation can only pass through the second liquid outlet branch.
  • the channel d4 flows out through the liquid outlet 3b, and flows through to the position of the liquid inlet 3a by the circulation effect of the circulation pipe 101.
  • the liquid inlet 3a communicates with the first chamber A and the second chamber B through the first liquid inlet branch channel d1 and the second liquid inlet branch channel d2, respectively.
  • the liquid inlet 3a can also overcome the elastic force of the first liquid inlet control elastic piece 71A, so that the first liquid inlet control elastic piece 71A is deformed under the liquid pressure, and the first liquid inlet branch channel d1 is opened.
  • the pressure of the liquid in the second chamber B increases, so that the second liquid inlet branch channel d2 is blocked by the second liquid inlet control spring 72A, so that the hotter liquid that has completed heat exchange with the heat source passes through the liquid inlet 3a, It enters into the first chamber BA through the first liquid inlet branch channel d1, and the first chamber A and the heat dissipation fins 9 outside it dissipate the liquid to reduce its temperature.
  • the first magnet 4 drives the middle part of the separating elastic piece 2A to move to the position closest to the third magnet 6, the second half of the cycle ends, and the first liquid inlet control elastic piece 71A and the second liquid outlet control elastic piece 74A both recover under the action of elastic force. Deformation, the first liquid inlet branch channel d1 and the second liquid outlet branch channel d4 are blocked.
  • the first magnet 4 drives the middle part of the separating elastic piece 2A between the second magnet 5 and the second magnet 5
  • the three magnets 6 move back and forth to compress the first chamber A or the second chamber B respectively.
  • the continuous input and continuous pumping of liquid can be realized by reciprocating, and each pump is cooled and cooled by heat dissipation.
  • Liquid, the colder liquid continuously pumped out flows through the heat source position through the circulation pipe 101, and can continuously absorb the heat generated by the heat source, thereby continuously dissipating heat from the heat source.
  • the driving mode of the heat dissipation driving system 01 is simple, and only the first half of each driving cycle needs to be energized, which reduces the driving power consumption.
  • the heat dissipation driving device 100 included in the heat dissipation driving system 01 takes the heat dissipation driving device 100 shown in FIGS. 7 and 9 to 13 as examples.
  • the second magnet 5 and the third magnet 6 are both electromagnets.
  • the end of the first magnet 4 close to the first chamber A (hereinafter referred to as the left end of the first magnet 4) has an N pole, and the first magnet 4 has an N pole.
  • the heat dissipation driving device 100 further includes a cooling chamber 1'and a cooling chamber check valve 75, the heat dissipation driving system A specific driving process of 01 is as follows:
  • the heat dissipation housing 1 and the cooling compartment 1'of the heat dissipation driving device 100 have a heat dissipation effect, the temperature of the liquid in the heat dissipation housing 1 and the cooling compartment 1'is lower than that of the liquid outside the heat dissipation housing (such as circulating The temperature of the liquid in the pipeline 101), so in the following driving process, each time the liquid flowing from the first chamber A, the second chamber B or the cooling chamber 1'is a cooler liquid, from the circulation The liquid flowing from the pipeline 101 into the first chamber A or from the second chamber B is a relatively hot liquid.
  • the second magnet 5 and the third magnet 6 are not energized, and the first magnet 4 is at a certain position in the heat dissipation housing 1.
  • the internal space of the heat dissipation housing 1 and the cooling chamber 1' are filled with liquid.
  • the heat dissipation driving device 100 drives the liquid to continuously circulate in the circulation pipe 101 and the heat dissipation housing 1 to continuously dissipate heat from the heat source.
  • the heat dissipation drive The entire driving process of the device 100 includes multiple driving cycles, and each driving cycle includes the first half cycle and the second half cycle. Refer to FIGS. 9-12.
  • the black arrows in the figures indicate the flow direction of the liquid.
  • the second magnet 5 and the third magnet 6 are energized to cause the second magnet 5 and the third magnet 6 to generate magnetism, and the magnetic pole at the left end of the second magnet 5 is S
  • the magnetic pole at the right end is N-pole, so that the magnetic pole at the left end of the third magnet 6 is N-pole and the magnetic pole at the right end is S-pole, so that a repulsive force is generated between the second magnet 5 and the first magnet 4, and the third magnet 6 and An attractive force is generated between the first magnets 4, and under the action of the magnetic force, the first magnet 4 will drive the sealing slider 2B to move in the direction of the third magnet 6.
  • the volume of the second chamber B gradually decreases, the volume of the first chamber A gradually increases, and the volume of the second chamber B
  • the liquid inside is continuously compressed, and the liquid pressure in the chamber gradually increases.
  • the liquid pressure in the second chamber B is greater than the liquid pressure at the liquid outlet 3b.
  • the check valve ball of the second liquid check valve 74 is separated from its funnel cover , The second liquid outlet branch channel d4 is opened, and the cooler liquid in the second chamber B after heat dissipation passes through the second liquid outlet branch channel d4, and flows out into the circulation pipeline 101 from the liquid outlet 3b.
  • the volume of the first chamber A gradually increases, and the liquid pressure in the first chamber A becomes smaller, which is less than the liquid pressure of the liquid inlet 3a, so that the check valve ball of the first liquid inlet check valve 71 and its funnel
  • the cover is separated to open the first liquid inlet branch channel d1, so that the hotter liquid in the circulation pipeline 101 that has completed heat exchange with the heat source enters the first chamber through the liquid inlet 3a through the first liquid inlet branch channel d1
  • the heat dissipation shell 1 dissipates the liquid to reduce its temperature.
  • the sealing slider 2B When the sealing slider 2B is moved to a position relatively close to the third magnet 6 under the drive of the first magnet 4, the second magnet 5 and the third magnet 6 are de-energized, and the power of the first magnet 4 and the third magnet 6 is used. With the attraction between the iron cores, the sealing slider 2B continues to move to the third magnet 6, which can save power consumption.
  • the second magnet 5 and the third magnet 6 are respectively supplied with currents that are opposite to the direction of the current in the first half of the cycle, so that the second magnet 5 and the third magnet
  • the magnets 6 all generate magnetism, and the left end of the second magnet 5 has an N pole and the right end has an S pole, so that the third magnet 6 has an S pole at the left end and an N pole at the right end, so that the second magnet
  • There is an attractive force between 5 and the first magnet 4 and a repulsive force is generated between the third magnet 6 and the first magnet 4. Under the action of the magnetic force, the first magnet 4 will drive the sealing slider 2B to move in the direction of the third magnet 6. .
  • the one-way valve of the first liquid-out one-way valve 73 Under the action of the liquid pressure, the one-way valve of the first liquid-out one-way valve 73 The ball is pushed away from its funnel cover, the first liquid outflow check valve 73 is opened, and the cooled cooler liquid in the cooling chamber 1'flows from the first liquid outlet pipe b3 to the liquid outlet 3b, and then enters the circulation pipe 101 .
  • the volume of the second chamber B gradually increases, and the liquid pressure in the second chamber B becomes smaller, which is less than the liquid pressure of the liquid inlet 3a, so that the check valve ball of the second liquid inlet check valve 72 and its funnel
  • the cover is separated to open the second liquid inlet branch channel d2, so that the hotter liquid in the circulation pipe 10 that has completed heat exchange with the heat source enters the second chamber through the liquid inlet 3a through the second liquid inlet branch channel d2
  • the heat dissipation housing 1 dissipates the liquid to reduce its temperature.
  • the sealing slider 2B When the sealing slider 2B is moved to a position relatively close to the second magnet 5 under the drive of the first magnet 4, the second magnet 5 and the third magnet 6 are de-energized, and the power of the first magnet 4 and the second magnet 5 is used. With the attraction between the iron cores, the sealing slider 2B continues to move to the second magnet 5, which can save power consumption.
  • the sealing slider 2B is driven to reciprocate between the second magnet 5 and the third magnet 6, compressing the first chamber A or the second chamber B, respectively, so that continuous liquid input and continuous pumping can be realized by reciprocating.
  • the pumped liquid is the cooler liquid that has passed heat dissipation, and in the second half of each cycle, the pumped liquid has passed the heat dissipation process of the first chamber A and the cooling chamber 1'twice, so the output The temperature of the liquid is lower and the heat dissipation effect is better.
  • the colder liquid continuously pumped out flows through the heat source location through the circulation pipe 101, and can continuously absorb the heat generated by the heat source, thereby continuously dissipating heat from the heat source.
  • some embodiments of the present disclosure also provide a backlight module 200 including a backlight source 201 and a heat dissipation driving system 01.
  • the backlight source 201 includes a light-emitting surface C and a non-light-emitting surface C', and the heat dissipation driving device system 01 is arranged on the non-light-emitting surface C'side of the backlight source 201.
  • the circulation pipe 101 in the heat dissipation driving system 01 is in a serpentine shape, or a back shape or a spiral shape, and is laid on the non-light emitting surface C'side of the backlight source 201, and the heat dissipation driving device 100 can be arranged on the backlight as required Any position on the non-light emitting surface C′ side of the source 201 is not limited in the present disclosure.
  • the backlight source 201 is a glass-based Mini LED lamp panel
  • the backlight module 200 further includes a back plate 202 disposed on the non-light emitting surface C'side of the backlight source 201 and a back cover 203, on which the back plate 202 is disposed There is a loop-shaped or serpentine-shaped or spiral-shaped groove in which the circulation pipe 101 is clamped.
  • the heat dissipation driving device 100 is arranged on the side of the back plate 202 facing away from the backlight source 201, and the rear cover 203 is arranged on the heat dissipation driving device.
  • the rear cover 203 is configured to encapsulate the heat dissipation driving device 100.
  • the inventors of the present disclosure have obtained through experiments: For the above-mentioned glass-based mini LED light board, the heat dissipation method of attaching a graphite sheet to the back of the glass-based Mini LED light board in the related technology is adopted.
  • the room temperature is 21.5°C
  • the light-emitting time is In the case of 10 minutes
  • the highest temperature of the front surface of the light panel is 41.5°C
  • the temperature of the front surface of the light panel rises to 20°C.
  • the heat dissipation driving system 01 is provided on the back of the glass-based Mini LED light board
  • the highest temperature of the front side of the light board is 36.5°C
  • the rising temperature of the front surface of the light board is 10°C.
  • the backlight module 200 provided by some embodiments of the present disclosure has an excellent heat dissipation effect.
  • the backlight module 200 further includes an optical film disposed on the side of the light emitting surface C of the backlight source 201, such as a homogenizing film 204 and a prism sheet 205.
  • the light emitted by the backlight source 201 is evenly distributed through the optical film After converging and so on, the light is emitted through the optical film, thereby improving the uniformity and brightness of the light provided by the backlight module 200.
  • the type of the backlight module provided in the present disclosure can be either a side-type or a direct-type.
  • the backlight is a glass-based, PCB-based or FPC-based backlight, and the present disclosure is not limited to this.
  • the backlight module 200 provided by some embodiments of the present disclosure includes a heat dissipation driving system 01, and heat dissipation is performed by the heat dissipation driving system 01, so that the backlight module 200 can not be affected by its heating problem and can work normally.
  • the provided heat dissipation driving device 100 has the characteristics of small size, low noise, and low power consumption.
  • the backlight module 200 also has the characteristics of small size, low power consumption, and low noise, and because the heat dissipation driving system 01 is used for heat dissipation, compared with Other heat dissipation methods in the related art have better heat dissipation effects, so that the backlight module 200 can work normally without being affected by heating problems, so that it has better performance in terms of luminous brightness, service life and the like.
  • Some embodiments of the present disclosure also provide a display device 1000, which is an active light-emitting display device or a non-active light-emitting display device.
  • the non-active light-emitting display device includes a passive light-emitting display panel and a backlight module 200.
  • the non-active light-emitting display device is a liquid crystal display device.
  • the liquid crystal display device includes a display panel 300 and a backlight module 200.
  • the display panel includes an array substrate 301, an opposite substrate 302, and an array substrate 302.
  • the backlight module 200 is located on the side of the array substrate 301 away from the liquid crystal layer 303.
  • the active light emitting display device includes: an active light emitting display panel 300' and a heat dissipation driving system 01, and the heat dissipation driving system 01 is disposed on the non-display surface side of the active light emitting display panel 300'.
  • the circulation pipeline of the heat dissipation driving system 01 is laid in a serpentine shape or in a zigzag shape on the non-display surface side of the active light emitting display panel 300'.
  • the heat dissipation driving device 100 starts to work.
  • the active light-emitting display panel 300' dissipates heat.
  • the display device provided by some embodiments of the present disclosure may be any product or component with display function such as electronic paper, mobile phone, tablet computer, television, monitor, notebook computer, digital photo frame, navigator, etc. This disclosure does not Set limits.
  • heat is dissipated by the heat dissipation driving system 01, so the display device will not be affected by the heat emitted by the heating element on its normal operation, ensuring normal display, and because the present disclosure provides
  • the heat dissipation driving device has small size, low power consumption, and low noise, so the display device also has the same technical effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

一种散热驱动装置,包括:散热壳体、分隔部件、进液口、出液口、第一磁铁、第二磁铁和所述第三磁铁,其中,散热壳体被配置为对位于其内部空间的液体进行散热。分隔部件设置于散热壳体内,将散热壳体的内部空间分隔成第一腔室和第二腔室,分隔部件的至少一部分能够发生移动。进液口和所出液口设置于散热壳体上。第一磁铁设置于分隔部件上。第二磁铁设置于第一腔室内,第三磁铁设置于第二腔室内。其中,第二磁铁和第三磁铁中的至少一者为电磁铁;电磁铁被配置为在通电时产生磁性;第二磁铁和第三磁铁被配置为通过磁力作用控制第一磁铁带动分隔部件的至少一部分移动,以改变第一腔室和第二腔室的体积,控制液体流入和流出散热壳体。

Description

散热驱动装置、散热驱动系统、背光模组及显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种散热驱动装置、散热驱动系统、背光模组及显示装置。
背景技术
在显示装置的工作过程中,光源会产生大量的热量,导致显示装置的正常显示受到影响,显示装置的使用寿命降低,因此光源的发热问题亟需解决。
发明内容
一方面,提供一种散热驱动装置,包括:散热壳体、分隔部件、进液口、出液口、第一磁铁、第二磁铁和所述第三磁铁,其中,所述散热壳体被配置为对位于其内部空间的液体进行散热。所述分隔部件设置于所述散热壳体内,将所述散热壳体的内部空间分隔成第一腔室和第二腔室,所述分隔部件的至少一部分能够发生移动。所述进液口和所述出液口设置于所述散热壳体上,所述进液口与所述第一腔室和所述第二腔室均连通,所述出液口与所述第一腔室和所述第二腔室均连通。
所述第一磁铁设置于所述分隔部件上。所述第二磁铁设置于所述第一腔室内,所述第三磁铁设置于所述第二腔室内,所述第二磁铁和所述第三磁铁均与所述第一磁铁相对。其中,所述第二磁铁和所述第三磁铁中的至少一者为电磁铁;所述电磁铁被配置为在通电时产生磁性;所述第二磁铁和所述第三磁铁被配置为通过磁力作用控制第一磁铁带动所述分隔部件的至少一部分移动,以改变所述第一腔室和所述第二腔室的体积,控制液体流入和流出所述散热壳体。
在一些实施例中,散热驱动装置还包括:设置于所述进液口与所述第一腔室之间的进液单向阀,及设置于所述进液口和所述第二腔室之间的进液单向阀。所述进液单向阀被配置为,在所述进液单向阀的靠近所述进液口一侧的液体压力,大于其另一侧的液体压力的情况下开启,以使液体由所述进液口向所述第一腔室或所述第二腔室单向流通。所述散热驱动装置还包括设置于所述出液口与所述第一腔室之间的出液单向阀,及设置于所述出液口和所述第二腔室之间的出液单向阀。所述出液单向阀被配置为,在所述出液单向阀的靠近所述出液口一侧的液体压力,小于其另一侧的液体压力的情况下开启,以使液体由所述第一腔室或所述第二腔室向所述出液口单向流通。
在一些实施例中,所述第二磁铁和所述第三磁铁中的一者为电磁铁,另 一者为永磁铁。其中,所述永磁铁与所述第一磁铁之间具有吸引力。所述电磁铁被配置为,在通电时产生磁性,与所述第一磁铁之间产生吸引力或排斥力;且在所述电磁铁和所述第一磁铁的间距最大的情况下,所述电磁铁与所述第一磁铁之间的吸引力大于所述永磁铁与所述第一磁铁之间的吸引力。
在一些实施例中,所述第二磁铁和所述第三磁铁均为电磁铁。其中,所述第二磁铁被配置为,在通电时产生磁性,与所述第一磁铁之间产生吸引力或排斥力。所述第三磁铁被配置为,在通电时产生磁性,与所述第一磁铁之间产生排斥力或吸引力。
在一些实施例中,所述分隔部件为分隔弹片,所述分隔弹片的两端固定于靠近所述散热壳体的内部空间的两端。所述进液口和所述出液口分别设置于所述分隔弹片的两端。所述第一磁铁安装于所述分隔弹片的中间部分。所述第二磁铁和所述第三磁铁分别位于所述分隔弹片的两侧。
在一些实施例中,散热驱动装置还包括:设置于所述散热壳体的内部空间的第一立柱和设置于所述散热壳体的内部空间的第二立柱。所述第一立柱靠近所述进液口;所述第一腔室和所述第二腔室靠近所述进液口的侧壁分别与所述第一立柱形成进液支流道,在所述散热驱动装置还包括进液单向阀的情况下,两个所述进液单向阀分别设置于两个所述进液支流道中。所述第二立柱靠近所述出液口;所述第一腔室和所述第二腔室靠近所述出液口的侧壁分别与所述第二立柱形成出液支流道,在所述散热驱动装置还包括出液单向阀的情况下,两个所述出液单向阀分别设置于两个所述出液支流道中。其中,所述分隔弹片的两端分别被固定于所述第一立柱和所述第二立柱上。
在一些实施例中,所述进液单向阀包括进液控制弹片,所述进液控制弹片的第一端固定于所述第一腔室或所述第二腔室的侧壁上,第二端为自由端。在所述进液控制弹片靠近所述进液口的一侧的液体压力,小于或等于其另一侧液体压力的情况下,所述进液控制弹片的第二端与所述第一立柱相抵,将所述进液支流道封堵。在所述进液控制弹片靠近所述进液口的一侧的液体压力,大于其另一侧的液体压力的情况下,所述进液控制弹片的第二端与所述第一立柱分离,将所述进液支流道打开。
所述出液单向阀包括出液控制弹片,所述出液控制弹片的第一端固定于所述第一腔室或所述第二腔室的侧壁上,第二端为自由端。在所述出液控制弹片靠近所述出液口的一侧的液体压力大于或等于其另一侧液体压力的情况下,所述出液控制弹片的第二端与所述第二立柱相抵,将所述出液支流道封堵;在所述出液控制弹片靠近所述出液口的一侧的液体压力小于其另一侧的 液体压力的情况下,所述出液控制弹片的第二端与所述第二立柱分离,将所述出液支流道打开。
在一些实施例中,所述第一腔室和所述第二腔室靠近所述进液口的侧壁上分别设置有进液卡槽,两个所述进液控制弹片的第一端分别卡装于两个所述进液卡槽内。所述第一腔室和所述第二腔室靠近所述出液口的侧壁分别上设置有出液卡槽,两个所述出液控制弹片的第一端分别卡装于两个所述出液卡槽内。
在一些实施例中,所述第一立柱上远离所述进液口的位置设置有第一安装卡槽,所述第二立柱上远离所述出液口的位置设置有第二安装卡槽,所述分隔弹片的两个端部分别固定于所述第一安装卡槽和所述第二安装卡槽内。
在一些实施例中,所述分隔弹片的中间部分设置有第一安装孔,所述第一磁铁嵌装于所述第一安装孔内。
在一些实施例中,所述散热壳体为盒状,包括密封连接的壳体主体和盖板。
在一些实施例中,散热驱动装置还包括:设置于所述壳体主体的外侧壁的散热翅片。
在一些实施例中,所述第二磁铁和所述第三磁铁分别位于所述散热壳体的内部空间的两端。所述分隔部件为密封滑块,所述密封滑块能够在所述第二磁铁和所述第三磁铁之间滑动,且所述密封滑块与所述内部空间的侧壁密封连接。所述第一磁铁安装于所述密封滑块上。
在一些实施例中,散热驱动装置还包括:设置于所述进液口与所述第一腔室之间的第一进液管道、设置于所述进液口与所述第二腔室之间的第二进液管道、设置于所述出液口与所述第一腔室之间的第一出液管道和设置于所述出液口与所述第二腔室之间的第二出液管道。其中,所述第一进液管道和所述第一腔室连通的接口,及所述第一出液管道和所述第一腔室连通的接口,均位于第一腔室的腔壁上靠近所述第二磁铁的位置;所述第二进液管道和所述所述第二腔室连通的接口,及所述第二出液管道与所述第二腔室连通的接口,均位于所述第二腔室的腔壁上靠近所述第三磁铁的位置。
在所述散热驱动装置还包括进液单向阀和出液单向阀的情况下,两个所述进液单向阀分别设置于所述第一进液管道和所述第二进液管道中,两个所述出液单向阀分别设置于所述第一出液管道和所述第二出液管道中。
在一些实施例中,所述进液单向阀包括进液漏斗罩和进液单向阀球;在所述进液漏斗罩靠近所述进液口的一侧的液体压力小于或等于其另一侧的液 体压力的情况下,所述进液单向阀球与所述进液漏斗罩相抵,将所述第一进液管道或所述第二进液管道封堵。在所述进液漏斗罩靠近所述进液口的一侧的液体压力大于其另一侧的液体压力的情况下,所述进液单向阀球与所述进液漏斗罩分离,将所述第一进液管道或所述第二进液管道打开。
所述出液单向阀包括出液漏斗罩和出液单向阀球;在所述出液漏斗罩靠近所述出液口的一侧的液体压力大于或等于其另一侧的液体压力的情况下,所述出液单向阀球与所述出液漏斗罩相抵,将所述第一出液管道或所述第二出液管道封堵。在所述出液漏斗罩靠近所述出液口的一侧的液体压力小于其另一侧的液体压力的情况下,所述出液第三单向阀球与所述出液漏斗罩分离,将所述第一出液管道或所述第二出液管道打开。
在一些实施例中,散热驱动装置还包括:冷却仓和冷却仓单向阀,所述冷却仓具有散热功能。所述冷却仓设置于所述第一腔室和所述第一出液管道之间,且所述冷却仓的两端分别与所述第一腔室和所述第一出液管道连通。其中,设置于所述第一出液管道中的出液单向阀位于所述第一出液管道中靠近所述冷却仓的位置,所述冷却仓单向阀设置于所述冷却仓和所述第一腔室的接口位置处。所述冷却仓单向阀被配置为,在所述冷却仓单向阀的靠近所述第一腔室一侧的液体压力大于其另一侧的液体压力的情况下开启,以使所述液体由所述第一腔室向所述冷却仓单向流通。
或者,所述冷却仓设置于所述第一出液管道和所述出液口之间,且所述冷却仓的两端分别与所述第一出液管道和所述出液口连通。其中,设置于所述第一出液管道中的出液单向阀位于所述第一出液管道中靠近所述冷却仓的位置,所述冷却仓单向阀设置于所述冷却仓和所述出液口的接口位置处。所述冷却仓单向阀被配置为,在所述冷却仓单向阀的靠近所述出液口一侧的液体压力小于其另一侧的液体压力的情况下开启,以使所述液体由所述冷却仓向所述出液口单向流通。
在一些实施例中,所述散热壳体为筒状。
在一些实施例中,在所述散热驱动装置还包括冷却仓的情况下,所述冷却仓为筒状,且所述散热壳体与所述冷却仓的中心轴线相互平行或者大致相互平行。
在一些实施例中,所述密封滑块的中心位置设置有第二安装孔,所述第一磁铁嵌装于所述第二安装孔内。
另一方面,提供散热驱动系统,包括:循环管路和如上一方面中任一项所述的散热驱动装置,所述循环管路的两个端口分别与所述散热驱动装置的 进液口和出液口连接。
又一方面,提供一种背光模组,包括:背光源和散热驱动系统,其中,所述背光源包括出光面和与所述出光面相对的非出光面;所述散热驱动系统设置于所述背光源的非出光面侧,所述散热驱动系统为上所述的散热驱动系统。
又一方面,提供一种显示装置,包括:被动发光显示面板和如上所述的背光模组。或者,所述显示装置包括:主动发光显示面板和如上所述的散热驱动系统,所述主动发光显示面板包括显示面和与所述显示面相对的非显示面,所述散热驱动系统设置于所述主动发光显示面板的非显示面侧。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的散热驱动装置的一种爆炸结构图;
图2为根据一些实施例的散热驱动装置的内部结构图;
图3为根据一些实施例的散热驱动装置在前半周期的状态图;
图4为根据一些实施例的散热驱动装置在后半周期的状态图;
图5为根据一些实施例的散热驱动装置的壳体主体的内部结构图;
图6为根据一些实施例的散热驱动装置的壳体主体的外部结构图;
图7为根据一些实施例的散热驱动装置的另一种爆炸结构图;
图8为根据一些实施例的散热驱动装置的一种结构图;
图9为根据一些实施例的散热驱动装置在前半周期的一种状态图;
图10为根据一些实施例的散热驱动装置在前半周期的另一种状态图;
图11为根据一些实施例的散热驱动装置在后半周期的一种状态图;
图12为根据一些实施例的散热驱动装置在后半周期的另一种状态图;
图13为根据一些实施例的散热驱动装置的局部结构图;
图14A为根据一些实施例的散热驱动装置的一种整体结构图;
图14B为根据一些实施例的散热驱动装置的又一种整体结构图;
图15为根据一些实施例的背光模组的一种结构图;
图16A为根据一些实施例的显示装置的一种结构图;
图16B为根据一些实施例的显示装置的另一种结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
显示装置包括主动发光型显示装置和非主动发光型显示装置,对于非主动发光型显示装置(例如液晶显示装置),该显示装置包括显示面板和背光源,其中,背光源在工作过程中会散发出大量的热量,影响显示装置的正常工作。尤其对于玻璃基的背光源,例如玻璃基Mini LED(Mini Light Emitting Diode,迷你发光二极管)灯板,由于其具有轻薄、光学效果好、成本低等优势,被广泛应用于非主动发光型显示装置中,但由于玻璃的导热系数较低,因此玻璃基的背光源相比FPC(Flexible Printed Circuit,柔性印刷线路板)基的背光源,以及PCB(Printed Circuit Board,印刷线路板)基的背光源,其发热问题更加严重,严重影响了其使用效果。
相关技术中,采用在Mini LED灯板的背面贴附石墨片的方式进行散热,但是由于电子产品封闭性的原因,此种散热方式已远远不能满足玻璃基Mini  LED灯板的散热需求,由于贴附石墨片的方式成本较高,尤其不适用大尺寸的显示装置。
另外,相关技术中多采用水冷散热方式解决显示装置的发热问题,水冷散热方式为,利用液体导热系数高的特点,使液体在泵的驱动下循环流动,不断带走热源处产生的热量,同时将液体进行降温,实现对显示装置的散热。
通常,水冷散热装置包括泵和散热器,泵包括水泵和压电泵等类型,其中,水泵的系统结构复杂,在驱动时存在漏水现象,且在运行过程存在震动和噪声,压电泵由于其中的压电材料成本昂贵,因此压电泵的价格较高,并且,水冷散热装置中的泵和散热器均需占用一定的体积,导致相关技术中的水冷散热装置多存在功耗较高、噪声过大、体积过大等问题,无法广泛应用于显示装置等电子产品中。
基于此,如图1、图2和图7所示,本公开的一些实施例提供一种散热驱动装置100,包括:散热壳体1、分隔部件2、进液口3a、出液口3b、第一磁铁4、第二磁铁5和第三磁铁6。
散热壳体1被配置为对位于其内部空间的液体进行散热。散热壳体1能够将位于其内部空间的温度较高的液体进行热交换,使液体冷却,散热壳体1的材料具有较高的散热性能,示例性地,散热壳体1的材料为铜、铝、铝合金或不锈钢等金属材料。
在一些示例中,上述液体为水或冷却液等热传导系数较高的液体,这样能够更快速有效地带走热源处的热量,且液体本身的散热也较快。
如图2和图7所示,分隔部件2设置于散热壳体1内,将散热壳体1的内部空间分隔成第一腔室A和第二腔室B,分隔部件2的至少一部分能够发生移动。
示例性地,对于图1~图6所示的散热驱动装置100,“分隔部件2的至少一部分能够发生移动”指的是,分隔部件2A的除其两端之外的中间部分能够发生移动。对于图7~图13所示的散热驱动装置100,“分隔部件2的至少一部分能够发生移动”指的是分隔部件2B的全部能够发生移动,即整个分隔部件2B能发生移动。
进液口3a和出液口3b设置于散热壳体1上,进液口3a与第一腔室A和第二腔室B均连通,出液口3b与第一腔室A和第二腔室B均连通。这样,外部液体可以通过进液口3a流通至第一腔室A或者第二腔室B,进入散热壳体1的内部空间;位于散热壳体1的内部空间的液体,可以由第一腔室A或者第二腔室B经出液口3b流出至外部。
第一磁铁4设置于分隔部件2上;第二磁铁5设置于第一腔室A内,第三磁铁6设置于第二腔室B内的,第二磁铁5和第三磁铁6均与第一磁铁4相对。第一磁铁4为永磁铁。
其中,第二磁铁5和第三磁铁6中的至少一者为电磁铁;电磁铁被配置为在通电时产生磁性;第二磁铁5和第三磁铁6被配置为通过磁力作用控制第一磁铁4带动分隔部件2的至少一部分移动,以改变第一腔室A和第二腔室B的体积,控制液体流入和流出散热壳体1。
示例性地,在磁力作用下,第一磁铁4带动分隔部件2的至少一部分朝向第二磁铁5的方向移动,这样第一腔室A的体积变小,第二腔室B的体积变大,第一腔室A中的液体受到挤压,由出液口3b流出,外部液体由进液口3a流入第二腔室B;在磁力作用下,第一磁铁4带动分隔部件2的至少一部分朝向第三磁铁6的方向移动,这样第一腔室A的体积变大,第二腔室B的体积变小,第二腔室B中的液体受到挤压,由出液口3b流出,外部液体由进液口3a流入第一腔室A。这样,通过磁力作用控制分隔部件2的至少一部分在第二磁铁5和第三磁铁6之间来回移动,以控制第一腔室A和第二腔室B的体积的交替变化,实现控制液体的流入和流出。此处的磁力作用指的是第一磁铁4与第二磁铁5之间的吸引力或排斥力,以及第一磁铁4与第三磁铁6之间的吸引力或排斥力。
本公开的一些实施例提供的散热驱动装置100中,散热壳体1具有散热作用,其内部设置有分隔部件2,该分隔部件2将散热壳体1分为两个腔室,且分隔部件2的至少一部分能发生移动,从而两个腔室的体积能够发生改变。通过设置第一磁铁4、第二磁铁5和第三磁铁6,在磁力作用下,控制分隔部件2的至少一部分移动,从而使得第一腔室A和第二腔室B中的一者的体积变大,另一者的体积变小,实现将处于第一腔室A和第二腔室B中体积变小的一者中的,经过散热的较冷的液体由出液口3b输出,经外部管路流经热源位置处,带走热源产生的热量,再循环流动至进液口3a,将需要进行散热的较热的液体输入第一腔室A和第二腔室B中体积变大的一者,对输入该腔室内的液体进行散热。
这样,上述散热驱动装置100同时具有散热以及驱动液体的输入输出的功能,实现了将驱动泵和冷排(即将液体散热冷却并排出冷却液体)合为一体,相比相关技术中的水冷散热装置,本公开实施例提供的散热驱动装置100体积较小,结构复杂度低,且采用磁力驱动,通过控制对电磁铁通断电即可实现控制分隔部件2的移动,操作简单,功耗较低,在驱动过程中无噪声, 可行性较高。
在一些实施例中,散热驱动装置100还包括:进液单向阀(参见图1中的71和72,及图7中的71和72)和出液单向阀(参见图1中的73和74,及图7中的73和74)。
其中,进液单向阀分别为:设置于进液口3a与第一腔室A之间的进液单向阀(以下称为第一进液单向阀71),及设置于进液口3a和第二腔室B之间的进液单向阀(以下称为第二进液单向阀72)。进液单向阀被配置为,在进液单向阀的靠近进液口3a一侧的液体压力大于其另一侧的液体压力的情况下开启,以使液体由进液口3a向第一腔室A或第二腔室B单向流通。
出液单向阀分别为:设置于出液口3b与第一腔室A之间的出液单向阀(以下称为第一出液单向阀73),及设置于出液口3b和第二腔室B之间的出液单向阀(以下称为第二出液单向阀74)。出液单向阀被配置为,在出液单向阀的靠近出液口3b一侧的液体压力小于其另一侧的液体压力的情况下开启,以使液体由第一腔室A或第二腔室B向出液口3b单向流通。
在上述实施例中,在无外部因素影响的情况下,进液单向阀的靠近进液口3a一侧的液体压力基本保持不变,出液单向阀的靠近出液口3b一侧的液体压力基本保持不变,由于分隔部件2的至少一部分能够发生移动,进而第一腔室A和第二腔室B的体积随之改变,从而处于第一腔室A内的液体和处于第二腔室B内的液体压力也会随之发生改变。例如在第一腔室A的体积变小、第二腔室B的体积变大的情况下,第一腔室A内的液体的压力变大,第二腔室B中的液体的压力变小,这样,第二进液单向阀的靠近进液口3a一侧的液体压力大于其另一侧的液体压力,第一出液单向阀73的靠近出液口3b一侧的液体压力大于其另一侧的液体压力,从而第二进液单向阀和第一出液单向阀73开启,实现外部液体经第二进液单向阀流入第二腔室B中,第一腔室A中的液体经第一出液单向阀73流出,而由于第一进液单向阀71和第二出液单向阀74均关闭,因此液体不会反向流通。
通过设置进液单向阀和出液单向阀,能够控制液体的流向始终为由进液口3a流入第一腔室A或第二腔室B,以及由第一腔室A或第二腔室B流至出液口3b(以下称该液体流向为正向),而不能反向流通,这样就使得进液单向阀和出液单向阀具有控制液体正向流通,反向紧锁的功能,保证了液体的正常流通,使得温度较高的液体经进液口3a由外部流入散热壳体1,经散热壳体1降温后,经出液口3b流出,即散热驱动装置100的出液口3b始终都是导出经过冷却后的温度较低的液体,进而该液体流经热源位置处,保证 了散热效果,有效提升了散热性能。
在一些实施例中,第二磁铁5和第三磁铁6中的一者为电磁铁,另一者为永磁铁。其中,永磁铁与第一磁铁4之间具有吸引力。电磁铁被配置为,在通电时产生磁性,与第一磁铁4之间产生吸引力或排斥力;且在电磁铁和第一磁铁4的间距最大的情况下,电磁铁与第一磁铁4之间的吸引力大于永磁铁与第一磁铁4之间的吸引力。
示例性地,如图1~图4所示,第二磁铁5为电磁铁,第三磁铁6为永磁铁,将第一磁铁4和第三磁铁6的磁极设置为:第一磁铁4的S极与第三磁铁6的N极相对,由于第一磁铁4和第三磁铁6均为永磁铁,因此第一磁铁4和第三磁铁6的磁极不会发生改变,这样第一磁铁4和第三磁铁6之间始终存在吸引力。
如图3所示,第二磁铁5在通电可以产生磁性,通过控制电流方向,可以控制第二磁铁5的磁极方向,从而控制第二磁铁5与第一磁铁4之间产生吸引力或排斥力。在第二磁铁5与第一磁铁4之间产生吸引力,且在第二磁铁5和第一磁铁4的间距最大的情况下,第三磁铁6与第一磁铁4的间距最小,二者之间的吸引力最大,将第二磁铁5与第一磁铁4之间的吸引力设置为大于第三磁铁6与第一磁铁4之间的最大吸引力,这样可以确保第二磁铁5能够克服第三磁铁6对第一磁铁4的吸引力,使第一磁铁4带动分隔部件2的至少一部分朝向第二磁铁5移动,实现将第一腔室A压缩,将液体排出。
例如,如图2~图4所示,在散热驱动装置100的驱动过程中,如图2所示,在初始状态,在第一腔室A和第二腔室B中均充满液体,第一磁铁4和第三磁铁6之间存在吸引力,分隔部件2处于散热壳体1中靠近第三磁铁6的位置。此时,第二腔室B的体积略小于第一腔室A的体积,第二腔室B中的液体容量略小于第一腔室A的体积,第二腔室B的体积与第一腔室A的体积之比近似为1,液体循环未开启。由于散热壳体1具有散热功能,因此在初始状态下,第一腔室A和第二腔室B中的液体的温度低于外部液体的温度。
在散热驱动装置100开始工作后,示例性地,利用该散热驱动装置100的散热过程可以包括两个阶段:第一阶段和第二阶段。在第一阶段,如图3所示,第二磁铁5被通电产生磁性,且第二磁铁5的S极与第一磁铁4的N极相对,第二磁铁5与第一磁铁4之间产生吸引力,且该吸引力大于第一磁铁4与第三磁铁6之间的吸引力,在磁力作用下,第一磁铁4带动分隔部件2的至少一部分朝向第二磁铁5移动,从而第一腔室A被压缩,将其内部的液体排出;同时第二腔室B的空间变大,外部液体流入第二腔室B中,散热壳 体1对流入该部分的外部液体进行散热。即从散热驱动装置100排出的液体温度较低于流入散热驱动装置100的液体温度。
在第二阶段,如图4所示,将第二磁铁5断电,第一磁铁4与第三磁铁6之间的吸引力远大于第二磁铁5的铁芯与第一磁铁4之间的吸引力,在磁力作用下,第一磁铁4带动分隔部件2的至少一部分朝向第三磁铁6移动,从而第二腔室B被压缩,将其内部的液体排出,且所排出的液体的温度较低。同时第一腔室A的空间变大,外部液体流入第一腔室A中,散热壳体1对流入的该部分液体进行散热。
或者,在第二阶段,将第二磁铁5通入与第一阶段的电流方向相反的电流,第二磁铁5产生磁性,且磁极方向与第一阶段所产生的磁极方向相反,即第二磁铁5的N极与第一磁铁4的N极相对,第二磁铁5与第一磁铁4之间产生排斥力,从而第一磁铁4在第二磁铁5的排斥力,以及在第三磁铁6的吸引力的双重作用下,带动分隔部件2的至少一部分朝向第三磁铁6移动,从而第二腔室B被压缩,将其内部的液体排出,且所排出的液体的温度较低。同时第一腔室A的空间变大,外部液体流入第一腔室A中,散热壳体1对流入的该部分液体进行散热。
在一些示例中,为了对热源进行持续散热,提高散热效果,可以将上述第一阶段和第二阶段交替进行,使液体不间断循环流通。
在另一些实施例中,第二磁铁5和第三磁铁6均为电磁铁。其中,第二磁铁5被配置为,在通电时产生磁性,与第一磁铁4之间产生吸引力或排斥力。第三磁铁6被配置为,在通电时产生磁性,与第一磁铁4之间产生排斥力或吸引力。
示例性地,如图9~图12所示,将第一磁铁4的磁极设置为:第一磁铁4的左侧为N极,右侧为S极。第二磁铁5和第三磁铁6均为电磁铁,在不通电的情况下均不产生磁性。
如图9和图11所示,第二磁铁5和第三磁铁6均在通电可以产生磁性,通过控制电流方向,可以控制第二磁铁5的和第三磁铁6的磁极方向,使得在同一时刻,第二磁铁5与第一磁铁4之间产生吸引力,第三磁铁6与第一磁铁4之间产生排斥力,从而在吸引力和排斥力的双重作用下,第一磁铁4带动分隔部件2的至少一部分(此时为带动整个分隔部件2B)朝向第二磁铁5移动,从而第一腔室A被压缩,将其内部的液体排出。第二腔室B的空间变大,外部液体流入第二腔室B中,散热壳体1对其进行散热。
或者,在同一时刻,第二磁铁5与第一磁铁4之间产生排斥力,第三磁 铁6与第一磁铁4之间产生吸引力,从而在吸引力和排斥力的双重作用下,第一磁铁4带动分隔部件2的至少一部分(此时为带动整个分隔部件2B)朝向第三磁铁6移动,从而第二腔室B被压缩,将其内部的液体排出。第一腔室A的空间变大,外部液体流入第一腔室A中,散热壳体1对其进行散热。
例如,如图9~图12所示,在散热驱动装置100的驱动过程中,在初始状态,在第一腔室A和第二腔室B中均充满液体,分隔部件2处于散热壳体1中的任一位置,示例性地,分隔部件2处于散热壳体1的中间位置,第二腔室B的体积等于或者近似等于第一腔室A的体积,液体循环未开启。由于散热壳体1具有散热功能,因此在初始状态下,第一腔室A和第二腔室B中的液体的温度低于外部液体的温度。
在散热驱动装置100开始工作后,示例性地,利用该散热驱动装置100的散热过程可以包括两个阶段:第一阶段和第二阶段。在第一阶段,如图9和图10所示,将第二磁铁5和第三磁铁6通电,使其产生磁性,此时第二磁铁5的左端为S极,右端为N极,这样第二磁铁5与第一磁铁4之间产生排斥力,第三磁铁6的左端为N极,右端为S极,这样第三磁铁6与第一磁铁4之间产生吸引力,从而在吸引力和排斥力的双重作用下,第一磁铁4带动分隔部件2的至少一部分朝向第三磁铁6移动,从而第二腔室B被压缩,将其内部进行散热后的液体排出,第一腔室A的空间变大,外部液体流入第一腔室A中,散热壳体1对其进行散热。
在第二阶段,如图11和图12所示,将第二磁铁5和第三磁铁6通入与第一阶段的电流方向相反的电流,第二磁铁5产生磁性,且此时第二磁铁5的左侧为N极,右侧为S极,这样第二磁铁5与第一磁铁4之间产生吸引力,第三磁铁6的左侧为S极,右侧为N极,这样第三磁铁6与第一磁铁4之间产生排斥力,从而在吸引力和排斥力的双重作用下,第一磁铁4带动分隔部件2的至少一部分朝向第二磁铁5移动,从而第一腔室A被压缩,将其内部进行散热后的液体排出,第二腔室B的空间变大,外部液体流入第二腔室B中,散热壳体1对其进行散热。
或者,在另一些示例中,可以改变通入的电流的方向,在第一阶段,使第二磁铁5与第一磁铁4之间产生吸引力,第三磁铁6与第一磁铁4之间产生排斥力,从而第一磁铁4带动分隔部件2的至少一部分朝向第二磁铁5移动,第一腔室A被压缩,将其内部进行散热后的液体排出,将外部液体由入液口3a进入第二腔室B中。在第二阶段,使第二磁铁5与第一磁铁4之间产生排斥力,第三磁铁6与第一磁铁4之间产生吸引力,使第一磁铁4带动分 隔部件2的至少一部分朝向第三磁铁6移动,从而第二腔室B被压缩,将其内部进行散热后的液体排出,将外部液体由入液口3a进入第一腔室A中。
以下结合图1~图14,对散热驱动装置100的两种具体结构及其对应的驱动过程进行示例性介绍。
如图1~图6所示,在本公开的一些实施例所提供的散热驱动装置100中,散热壳体1为盒状,包括密封连接的壳体主体11和盖板12。分隔部件2为分隔弹片2A,分隔弹片2A为难以被液体材料腐蚀的弹性材料制作的片状结构,分隔弹片2A的两端固定于靠近散热壳体1的内部空间的两端。进液口3a和出液口3b分别设置于分隔弹片2A的两端。第一磁铁4安装于分隔弹片2A的中间部分,第二磁铁5和第三磁铁6分别位于分隔弹片2A的两侧。
在上述散热驱动装置100中,分隔弹片2A的两端固定于靠近散热壳体1的内部空间的两端,将散热壳体1的内部空间分为第一腔室A和第二腔室B。分隔弹片2A的中间部分可以发生形变,以实现移动。第一磁铁4安装于分隔弹片2A的中间部分,第二磁铁5和第三磁铁6分别位于分隔弹片2A的两侧,这样在磁力作用下,第一磁铁4带动分隔弹片2A的中间部分朝向第二磁铁5的方向弯曲,第一腔室A被压缩,从而第一腔室A内的液体经出液口3b流出,第二腔室B的体积变大,从而外部的液体经进液口3a流入第二腔室B中。或者,在磁力作用下,第一磁铁4带动分隔弹片2A的中间部分朝向第三磁铁6的方向弯曲,第二腔室B被压缩,从而第二腔室B内的液体经出液口3b流出,第一腔室A的体积变大,从而外部的液体经进液口3a流入第一腔室A中。
在一些实施例中,如图2~图5散热驱动装置100,还包括:设置于散热壳体1的内部空间的第一立柱81和第二立柱82。
第一立柱81靠近进液口3a,第一腔室A和第二腔室B靠近进液口3a的侧壁分别与第一立柱81形成进液支流道,在散热驱动装置100还包括进液单向阀的情况下,两个进液单向阀分别设置于两个进液支流道中。
示例性地,第一腔室A靠近进液口3a的侧壁与第一立柱81形成第一进液支流道d1,第一进液单向阀71设置于第一进液支流道d1中;第二腔室B靠近进液口3a的侧壁与第一立柱81形成第二进液支流道d2,第二进液单向阀72设置于第二进液支流道d2中。
第二立柱82靠近出液口3b,第一腔室A和第二腔室B靠近出液口3b的侧壁分别与第二立柱82形成出液支流道,在散热驱动装置100还包括出液单向阀的情况下,两个出液单向阀分别设置于两个出液支流道中。
示例性地,第一腔室A靠近出液口3b的侧壁与第二立柱82形成第一出 液支流道d3,第一出液单向阀73设置于第一出液支流道d3中;第二腔室B靠近出液口3b的侧壁与第二立柱82形成第二出液支流道d4,第二出液单向阀74设置于第二出液支流道d4中。
分隔弹片2A的两端分别被固定于第一立柱81和第二立柱82上。
通过在散热壳体1的内部空间设置第一立柱81和第二立柱82,且第一立柱81和第二立柱82分别靠近进液口3a和出液口3b,可以实现将分隔弹片2A的两端固定在第一立柱81和第二立柱82上,同时通过第一立柱81将进液口3a与散热壳体1的内部空间的流通通道分为第一进液支流道d1和第二进液支流道d2,通过第二立柱82将散热壳体1的内部空间与出液口3b的流通通道分为第一出液支流道d3和第二出液支流道d4,且在进液支流道中设置进液单向阀,在出液支流道中设置出液单向阀,实现了将进液口3a与第一腔室A和第二腔室B均连通,将出液口3b与第一腔室A和第二腔室B均连通,且液体的流向为从进液口3a至第一腔室A/第二腔室B,再到出液口3b,而不会反向流通,保证了液体的正常循环流通。
在一些实施例中,如图1~图4所示,进液单向阀和出液单向阀的具体结构为:
进液单向阀(如图2中的71和72)包括进液控制弹片(如图2中的71A和72A),进液控制弹片为弹性材料制作的片状结构。进液控制弹片的第一端固定于第一腔室A或第二腔室B的侧壁上,第二端为自由端。示例性地,第一进液单向阀71包括第一进液控制弹片71A,第一进液控制弹片71A的第一端固定于第一腔室A的侧壁上,第二端为自由端;第二进液单向阀72包括第二进液控制弹片72A,第二进液控制弹片72A的第一端固定于第二腔室B的侧壁上,第二端为自由端。第一进液控制弹片71A和第二进液控制弹片72A的第二端均能发生形变,以实现控制液体的导通与阻断,具体如下:
在进液控制弹片靠近进液口3a的一侧的液体压力小于或等于其另一侧液体压力的情况下,进液控制弹片的第二端与第一立柱81相抵,将进液支流道封堵;在进液控制弹片靠近进液口3a的一侧的液体压力大于其另一侧的液体压力的情况下,进液控制弹片的第二端与第一立柱81分离,将进液支流道开启。
例如,在图3中,分隔弹片2A朝向第二磁铁5所在位置弯曲,第一腔室A的体积变小,第一腔室A中的液体的压力增大,第二腔室B的体积变大,第二腔室B中的液体的压力减小,从而第一进液控制弹片71A靠近进液口3a的一侧的液体压力小于其另一侧(靠近第一腔室A的一侧)液体压力,第一 进液控制弹片71A的第二端与第一立柱81相抵,将第一进液支流道d1封堵,使第一腔室A中的液体无法由进液口3a流出。第二进液控制弹片72A靠近进液口3a的一侧的液体压力大于其另一侧(靠近第二腔室B的一侧)的液体压力,第二进液控制弹片72A的第二端与第一立柱81分离,将第二进液支流道d2开启,从而外部的液体能够流入第二腔室B中。
在一些示例中,上述第一进液控制弹片71A和第二进液控制弹片72A具有一定弹力(开启压力),因此进液口3a的液体还需要克服第一进液控制弹片71A的弹力,才能使第一进液控制弹片71A的第二端发生形变,与第一立柱81分离,或者,进液口3a的液体还需要克服第二进液控制弹片71B的弹力,才能使第二进液控制弹片71B的第二端发生形变,与第一立柱81分离。也就是说,在这种情况下,在进液控制弹片靠近进液口3a的一侧的液体压力大于其另一侧的液体压力与其弹力之和时,进液控制弹片的第二端与第一立柱81分离,将进液支流道开启。
出液单向阀(如图2中的73和74)包括出液控制弹片,出液控制弹片为弹性材料制作的片状结构。出液控制弹片的第一端固定于第一腔室A或第二腔室B的侧壁上,第二端为自由端。示例性地,第一出液单向阀73包括第一出液控制弹片73A,第一出液控制弹片73A的第一端固定于第一腔室A的侧壁上,第二端为自由端;第二出液单向阀74包括第二出液控制弹片74A,第二出液控制弹片74A的第一端固定于第二腔室B的侧壁上,第二端为自由端。第一出液控制弹片73A和第二出液控制弹片74A的第二端均能发生形变,以实现控制液体的导通与阻断,具体如下:
在出液控制弹片靠近出液口3b的一侧的液体压力大于或等于其另一侧液体压力的情况下,出液控制弹片的第二端与第二立柱82相抵,将出液支流道封堵;在出液控制弹片靠近出液口3b的一侧的液体压力小于其另一侧的液体压力的情况下,出液控制弹片的第二端与第二立柱82分离,将出液支流道开启。
例如,在图3中,分隔弹片2A朝向第二磁铁5所在位置弯曲,第一腔室A的体积变小,第一腔室A中的液体的压力增大,第二腔室B的体积变大,第二腔室B中的液体的压力减小,从而第二出液控制弹片74A靠近出液口3b的一侧的液体压力大于其另一侧(靠近第二腔室B的一侧)液体压力,第二出液控制弹片74A的第二端与第二立柱82相抵,将第二出液支流d4道封堵,使第二腔室B中的液体无法流出;第一出液控制弹片73A靠近出液口3b的一侧的液体压力小于其另一侧(靠近第一腔室A的一侧)的液体压力,第一出 液控制弹片73A的第二端与第一立柱81分离,将第一出液支流道d3开启,从而使第一腔室A中的液体经出液口3b流出。
在一些示例中,上述第一出液控制弹片73A和第二出液控制弹片74A具有一定弹力(开启压力),因此第一腔室A的液体还需要克服第一出液控制弹片73A的弹力,才能使第一出液控制弹片73A的第二端发生形变,与第二立柱82分离,或者第二腔室B内的液体还需要克服第二出液控制弹片74A的弹力,才能使出第二液控制弹片74A的第二端发生形变,与第二立柱82分离。也就是说,在这种情况下,在出液控制弹片远离进液口3a的一侧的液体压力大于其另一侧的液体压力与其弹力之和时,出液控制弹片的第二端与第二立柱82分离,将出液支流道开启。
在一些实施例中,第一腔室A和第二腔室B靠近进液口3a的侧壁上分别设置有进液卡槽(如图5中的k1和k2),两个进液控制弹片的第一端分别卡装于两个进液卡槽内。第一腔室A和第二腔室B靠近出液口3b的侧壁分别上设置有出液卡槽(如图5中的k3和k4),两个出液控制弹片的第一端分别卡装于两个出液卡槽内。
示例性地,如图1和图5所示,第一腔室A靠近进液口3a的侧壁上设置有第一进液卡槽k1,第二腔室B靠近进液口3a的侧壁上设置有第二进液卡槽k2,第一腔室A靠近出液口3b的侧壁设置有第一出液卡槽k3,第二腔室B靠近出液口3b的侧壁设置有第二出液卡槽k4。如图1~图4所示,第一进液控制弹片71A和第二进液控制弹片72A的第一端分别卡装于第一进液卡槽k1和第二进液卡槽k2内,第一出液控制弹片73A和第二出液控制弹片74A的第一端分别卡装于第一出液卡槽k3和第二出液卡槽内k4,以实现两个进液控制弹片和两个出液控制弹片的固定。
作为一种可能的设计,如图1所示,散热驱动装置100还包括四个固定胶圈,分别为套装在第一进液控制弹片71A的第一端上的第一固定胶圈11a、套装在第二进液控制弹片72A的第一端上的第二固定胶圈11b、套装在第一出液控制弹片73A的第一端上的第三固定胶圈11c,及套装在第二出液控制弹片74A的第一端上的第四固定胶圈11d,示例性地,上述四个固定胶圈的材料均为橡胶。这样可以使进液控制弹片和出液控制弹片的第一端被更加牢固地固定在卡槽内,不易松动。
在一些实施例中,如图5所示,第一立柱81上远离进液口3a的位置设置有第一安装卡槽k5,第二立柱82上远离出液口3b的位置设置有第二安装卡槽k6,如图2~图4所示,分隔弹片2A的两个端部分别固定于第一安装卡 槽k5和第二安装卡槽k6内。
作为一种可能的设计,如图1所示,散热驱动装置100还包括分别为套装在分隔弹片2A的两个端部上的第五固定胶圈21a和第六固定胶圈21b,示例性地,上述两个固定胶圈的材料均为橡胶。这样可以使分隔弹片2A的两个端部被更加牢固地固定在两个安装卡槽内,不易松动。
在一些实施例中,如图1所示,散热壳体1为盒状,包括密封连接的壳体主体11和盖板12。示例性地,散热壳体1还包括多个螺丝钉13,壳体主体11与盖板12通过螺丝钉13连接。
在一些示例中,散热驱动装置100还包括壳体紧固橡胶圈12a,该壳体紧固橡胶圈12a的形状与壳体主体11和盖板12的密封结合处的形状一致,例如均为椭圆形,且大小一致,通过壳体紧固橡胶圈12a,可以实现将壳体主体11和盖板12密封连接,防止散热壳体1的内部空间的液体漏出。
在一些实施例中,如图1~图6所示,第一磁铁4、第二磁铁5和第三磁铁6的安装方式分别为:
分隔弹片2A的中间部分设置有第一安装孔p1,第一磁铁4嵌装于第一安装孔p1内。第一腔室A的侧壁上与第一安装孔p1相对的位置处具有第一安装槽p2,第二磁铁5安装于第一安装槽p2内,第二腔室B的侧壁上与第一安装孔p1相对的位置处具有第二安装槽p3,第三磁铁6安装于第二安装槽p3内。
示例性地,在第二磁铁5为电磁铁的情况下,第二磁铁5包括第一铁芯51和第一线圈52,第一线圈52围绕于第一铁芯51外围,在第一线圈52上有电流时,第一铁芯51能够被磁化,产生磁性。
作为一种可能的设计,如图1所示,散热驱动装置100还包括套装于第一磁铁4外围的第一密封固定胶圈4a、套装于第二磁铁5外围的第二密封固定胶圈5a、及套装于第三磁铁6外围的第三密封固定胶圈6a。这样可以使第一磁铁4、第二磁铁5和第三磁铁6更加牢固地被固定,并且第一密封固定胶圈4a起到密封作用,避免第一腔室A和第二腔室B中的液体通过第一安装孔p1与第一磁铁4之间的间隙相互流通。
在一些实施例中,如图1、图5和图6所示,散热驱动装置100还包括:设置于壳体主体11的外侧壁的散热翅片9。
通过设置散热翅片9,能够使散热壳体1的内部空间的液体的热量传导至散热壳体1的腔壁上,再传导至散热翅片9,再经散热片散发到周围空气中去,从而散热驱动装置100的散热效果得到进一步提升,散热更快更有效。
示例性地,散热翅片9的材料具有较高的吸热能力和热传导能力,例如可为铝合金、铝、铜或钢等金属材料,如图6所示,散热翅片9包括多个平行且间隔排布的板状或片状结构。
如图7~图13所示,在本公开的一些实施例所提供的另一种散热驱动装置100中,散热壳体1为筒状,第二磁铁5和第三磁铁6分别位于散热壳体1的内部空间的两端。分隔部件为密封滑块2B,密封滑块2B能够在第二磁铁5和第三磁铁6之间滑动,且密封滑块2B与散热壳体1的内部空间的侧壁密封连接,同时密封滑块2B可以沿散热壳体1的径向移动。第一磁铁4安装于密封滑块2B上。
在上述散热驱动装置100中,第二磁铁5和第三磁铁6分别位于散热壳体1的内部空间的两端,分隔部件2为密封滑块2B,密封滑块2B与内部空间的侧壁密封连接,将散热壳体1的内部空间分为第一腔室A和第二腔室B,且密封滑块2B能够在第二磁铁5和第三磁铁6之间滑动,这样在磁力作用下,第一磁铁4带动密封滑块2B朝向第二磁铁5的方向滑动,第一腔室A被压缩,从而第一腔室A内的液体经出液口3b流出,第二腔室B的体积变大,从而外部的液体经进液口3a流入第二腔室B中。或者,在磁力作用下,第一磁铁4带动密封滑块2B朝向第三磁铁6的方向滑动,第二腔室B被压缩,从而第二腔室B内的液体经出液口3b流出,第一腔室A的体积变大,从而外部的液体经进液口3a流入第一腔室A中。
在一些实施例中,如图7~图13所示,散热驱动装置100还包括:设置于进液口3a与第一腔室A之间的第一进液管道b1,设置于进液口3a与第二腔室B之间的第二进液管道b2,设置于出液口3b与第一腔室A之间的第一出液管道b3,以及设置于出液口3b与第二腔室B之间的第二出液管道b4。在散热驱动装置100还包括进液单向阀和出液单向阀的情况下,两个进液单向阀分别设置于第一进液管道b1和第二进液管道b2中,两个出液单向阀分别设置于第一出液管道和第二出液管道b4中。即第一进液单向阀71设置于第一进液管道b1中,第二进液单向阀72设置于第二进液管道b2中,第一出液单向阀73设置于第一出液管道b3中,第二出液单向阀74设置于第二出液管道b4中。
通过设置两个进液管道和两个出液管道,且在进液管道中设置进液单向阀,在出液管道中设置出液单向阀,实现了将进液口3a与第一腔室A和第二腔室B均连通,将出液口3b与第一腔室A和第二腔室B均连通,且液体的流向为从进液口3a至第一腔室A/第二腔室B,再到出液口3b,而不会反向流 通,保证了液体的正常循环流通。
在一些示例中,第一进液管道b1和第一腔室A连通的接口(称为第一腔室A的进液接口),及第一出液管道b3和第一腔室A连通的接口(称为第一腔室A的出液接口,例如参见图8中的第一腔室A的出液接口c2),均位于第一腔室A的腔壁上靠近第二磁铁5的位置。第二进液管道b2和第二腔室B连通的接口(称为第二腔室B的进液接口),及第二出液管道b4与第二腔室B连通的接口(称为第二腔室B的出液接口,例如参见图8中的第二腔室B的进液接口c1),均位于第二腔室B的腔壁上靠近第三磁铁6的位置。
若要使液体正常循环流通,密封滑块2B需在上述接口之间滑动,以使第一腔室A或第二腔室B中的液体能够被密封滑块2B从出液接口挤出,或者使外部液体从进液接口流入第一腔室A或第二腔室B中。将上述接口的位置设置为尽量靠近筒状的散热壳体1的两端,这样密封滑块2B能从尽可能靠近第二磁铁5的位置滑动至尽可能靠近第三磁铁6的位置,或者密封滑块2B能从尽可能靠近第三磁铁6的位置滑动至尽可能靠近第二磁铁5的位置,具有尽可能大的滑动距离,在密封滑块2B在第二磁铁5和第三磁铁6之间进行滑动的过程中,能够尽可能地将第一腔室A或第二腔室B中的全部的液体从出液接口流入出液管道,再经出液口3b排出,也能够将尽可能多的外部液体由进液口3a经进液管道,从进液接口处进入第一腔室A或第二腔室B中,尽可能地将第一腔室A或第二腔室B填满。以保证散热驱动装置100在每个驱动周期具有较大的输出量和输入量,提高散热效果。
在一些实施例中,如图7~图13所示,进液单向阀(如图7中的71和72)包括进液漏斗罩m和进液单向阀球n,在进液漏斗罩m靠近进液口3a的一侧的液体压力小于或等于其另一侧的液体压力的情况下,进液单向阀球n与进液漏斗罩m相抵,将第一进液管道b1或第二进液管道b2封堵。在进液漏斗罩m靠近进液口3a的一侧的液体压力大于其另一侧的液体压力的情况下,进液单向阀球n与进液漏斗罩m分离,将第一进液管道b1或第二进液管道b2开启。
出液单向阀(如图7中的73和74)包括出液漏斗罩v和出液单向阀球w。在出液漏斗罩v靠近出液口3b的一侧的液体压力大于或等于其另一侧的液体压力的情况下,出液单向阀球w与出液漏斗罩v相抵,将第一出液管道b3或第二出液管道b4封堵。在出液漏斗罩v靠近出液口3b的一侧的液体压力小于其另一侧的液体压力的情况下,出液单向阀球w与出液漏斗罩v分离,将第一出液管道b3或第二出液管道b4开启。
示例性地,如图13所示,第一出液单向阀73包括出液漏斗罩v和出液单向阀球w,其中出液漏斗罩v固定于第一出液管道b3内,出液漏斗罩v具有第一开口和第二开口,第二开口相比第一开口靠近出液口3b。第一开口的口径小于第二开口的口径,出液单向阀球w处于出液漏斗罩v内,且出液单向阀球的直径大于第一开口的口径。这样,在出液漏斗罩v靠近出液口3b的一侧的液体压力大于或等于其另一侧的液体压力的情况下,出液单向阀球w进入出液漏斗罩v内,将出液漏斗罩v的第一开口封堵,使液体无法流通。在出液漏斗罩v靠近出液口3b的一侧的液体压力小于其另一侧的液体压力的情况下,出液单向阀球w与出液漏斗罩v分离,使液体能通过出液漏斗罩v的第一开口流通。其他单向阀的具体结构与第一出液单向阀73的结构类似,可参见图7~图13所示,此处不再赘述。
在一些实施例中,如图7、图9~图12所示,散热驱动装置100还包括:冷却仓1’和冷却仓单向阀75,冷却仓1’具有散热功能。
冷却仓1’的材料具有较高的散热性能,示例性地,冷却仓1’与散热壳体1的材料一致,为铜、铝、铝合金或不锈钢等金属材料。或者,冷却仓1’的外侧壁设置有散热翅片,能够对冷却仓内1’的液体进行降温处理。
示例性地,如图11和图12所示,冷却仓1’设置于第一腔室A和第一出液管道b3之间,且冷却仓1’的两端分别与第一腔室A和第一出液管道b3连通。其中,即第一出液单向阀73位于第一出液管道b3中靠近冷却仓1’的位置,冷却仓单向阀75设置于冷却仓1’和第一腔室A的接口位置处。冷却仓单向阀75被配置为,在冷却仓单向阀75的靠近第一腔室A一侧的液体压力大于其另一侧的液体压力的情况下开启,以使液体由第一腔室A向冷却仓1’单向流通。
示例性地,冷却仓1’设置于第一出液管道b3和出液口3b之间,且冷却仓1’的两端分别与第一出液管道b3和出液口3b连通。其中,第一出液单向阀73位于第一出液管道b3中靠近冷却仓1’的位置,冷却仓单向阀75设置于冷却仓1’和出液口3b的接口位置处。冷却仓单向阀75被配置为,在冷却仓单向阀75的靠近出液口3b一侧的液体压力小于其另一侧的液体压力的情况下开启,以使液体由冷却仓1’向出液口3b单向流通。
在上述实施例中,以图9~图12所示的,冷却仓1’设置于第一腔室A和第一出液管道b3之间的散热驱动装置100为例,结合图中的黑色箭头,在一个驱动周期中,散热驱动装置100中的液体流向为:在初始状态下,冷却仓1’和散热壳体1内均充满液体。如图9和图10所示,在前半周期,在磁力作用 下,第一磁铁4带动密封滑块2B朝向第三磁铁6的方向滑动,第二腔室B被压缩,第二腔室B内的液体压力增大,第二出液单向阀74开启,第二出液管道b4打开,第二腔室B内的液体由出液口3b流出,同时第一腔室A的体积增大,第一腔室A内的液体压强变小,第一进液单向阀71开启,外部液体由进液口3a流入第一腔室A中,在密封滑块2B移动至最接近第三磁铁6的位置时,前半周期结束。
如图11和图12所示,在后半周期,在磁力作用下,第一磁铁4带动密封滑块2B朝向第二磁铁5的方向滑动,第一腔室A被压缩,第一腔室A内的液体压力增大,冷却仓单向阀75开启,第一腔室A中的液体流入冷却仓1’中,冷却仓1’中的液体的压力变大,将推动冷却仓1’中原有的液体流动,第一出液单向阀73开启,将第一出液管道b3打开,冷却仓1’中原有的液体从出液口3b流出。在密封滑块2B移动至最接近第二磁铁5的位置时,后半周期结束。
从上述一个周期的驱动过程中可以看出,在后半周期从出液口3b流出的液体是冷却仓1’中经过降温冷却的液体,而冷却仓1’中的液体来自第一腔室A,在散热驱动装置100对驱动液体对热源进行持续散热的情况下,三儿驱动装置100的驱动过程包括多个驱动周期,在前一个周期中,第一腔室A中的液体已经经过散热壳体1的散热处理,温度降低,而这些液体并没有被直接经过第一出液管道b3从出液口3b排出,而是进入冷却仓1’,在冷却仓1’内进行进一步降温冷却,直到在本周期的后半周期排出。也就是说,在每个周期的后半周期,从出液口3b流出的液体均进行了两次降温处理,因此温度更低,散热效果更好,能够对热源进行更有效的吸热和散热。
作为一种可能的设计,上述冷却仓1’还可以设置第二腔室B和第二出液管道b4之间,且冷却仓1’的两端分别与第二腔室B和第二出液管道b4连通。或者,冷却仓1’设置于第二出液管道b4和出液口3b之间,且冷却仓1’的两端分别与第二出液管道b4和出液口3b连通。这样,在密封滑块2B朝向第三磁铁6移动,压缩第二腔室B时,第二腔室B中的液体进入冷却仓1’中,而不是直接从出液口3b排出,在冷却仓1’内进行进一步降温冷却,从而使液体经过两次降温处理,温度更低,散热效果更好,能够对热源进行更有效的吸热和散热。
在一些实施例中,散热壳体1和冷却仓1’均为筒状,且散热壳体1与冷却仓1’的中心轴线相互平行或者大致相互平行。这样可以减小散热驱动装置100的体积,节省空间。
在一些实施例中,如图7所示,密封滑块2B的中心位置设置有第二安装孔p4,第一磁铁4嵌装于第二安装孔p4内。
示例性地,如图7所示,在第二磁铁5和第三磁铁6均为电磁铁的情况下,第二磁铁5包括第一铁芯51和第一线圈52,第一线圈52围绕于第一铁芯51外围,在第一线圈上有电流时,第一铁芯51能够被磁化,产生磁性。第三磁铁6包括第二铁芯61和第二线圈62,第二线圈62围绕于第二铁芯61外围,在第二线圈62上有电流时,第二铁芯61能够被磁化,产生磁性。
作为一种可能的设计,如图7所示,散热驱动装置100还包括套装于第二磁铁5外围的第二密封固定胶圈5a、及套装于第三磁铁6外围的第三密封固定胶圈6a。这样可以使第二磁铁5和第三磁铁6更加牢固地固定于散热壳体1的内部空间的两端。
如图14A和图14B所示,本公开的一些实施例还提供了一种散热驱动系统01,该散热驱动系统01包括:散热驱动装置100和循环管路101,循环管路101的两个端口分别与散热驱动装置100的进液口3a和出液口3b连接。
在上述散热驱动系统01中,散热驱动装置100的散热壳体1、进液口3a、出液口3b和循环管路101能够形成回路,使得液体在该回路内循环流通,循环管路101设置于靠近热源的位置,例如背光模组的非出光侧。热源产生的热量能够传导给循环管路101内液体,从而热源处的温度降低;同时,温度较高的液体经过循环管路能够流入散热壳体1中,经散热壳体1的散热处理后再次进入循环管路101中降低热源处的温度,如此循环,可实现高效散热。
示例性地,循环管路101为硅胶软管,硅胶软管可以呈任意形状铺设于热源位置处,例如可以呈蛇形、螺旋形铺设于热源表面,以增大硅胶软管中的液体与热源的接触面积,实现导热更快、吸热量更大的效果,并且由于硅胶管具有一定的柔性,可以起到缓冲压力的作用,省去其他的压力缓冲部件。
下面对图14A和图14B所示出的散热驱动系统01的整体驱动过程分别进行介绍。
对于图14A所示的散热驱动系统01,该散热驱动系统01所包括的散热驱动装置为如图1~图5所示出的散热驱动装置100,在该散热驱动装置100中,第二磁铁5为电磁铁,第三磁铁6为永磁铁,第一磁铁4的靠近第一腔室A的一端(以下称为第一磁铁4的第一端)的磁极为N极,第一磁铁4的靠近第二腔室B的端(以下称为第一磁铁4的第二端)的磁极为S极,第三磁铁6的靠近第一磁铁4的一端(以下称为第三磁铁6的第一端)的磁极为N极,另一端(以下称为第三磁铁6的第二端)的磁极为S极,在上述情况下, 散热驱动系统01的一种具体驱动过程如下:
可以理解的是,由于散热驱动装置100的散热壳体1具有散热作用,因此散热壳体1中的液体的温度低于散热壳体外部的液体(如循环管路101中的液体)的温度,因此在以下驱动过程中,每次从第一腔室A或者从第二腔室B中流出的液体均为较冷的液体,从循环管路101流入第一腔室A或者从第二腔室B中的液体均为较热的液体。
在初始状态下,第二磁铁5没有通电,第一磁铁4和第三磁铁6的磁极方向如图2所示,基于磁铁的异性相吸,同性相斥的特性,在第一磁铁4和第三磁铁6之间的吸引力的作用下,分隔弹片2A处于如图2所示的朝向第三磁铁6一侧弯曲的状态,此时散热驱动装置100的第一腔室A和第二腔室B中充满液体,液体并未开始循环,两个进液支流道中的第一进液控制弹片71A和第二进液控制弹片72A的第二端均与第一立柱81相抵,均处于关闭状态,两个出液支流道上的第一出液控制弹片73A和第二出液控制弹片74A的第二端均与第二立柱82相抵,同样均处于关闭状态。
在一些示例中,设定第二磁铁5在通电后所产生的磁性大小与第一磁铁4、第三磁铁6的磁性大小的关系为:
第二磁铁5通电所产生的磁性>第一磁铁4的磁性>第三磁铁6的磁性。
并且,在对第二磁铁5通电后,在第二磁铁5的靠近第一磁铁4的一端(以下称为第二磁铁5的第一端)的磁极为S极,另一端(以下称为第二磁铁5的第二端)的磁极为N极的情况下,第二磁铁5与第一磁铁4之间产生吸引力,此时在第二磁铁5和第一磁铁4的间距最大的情况下(即图4所示的位置)满足:
第二磁铁5和第一磁铁4之间的吸引力>
第三磁铁6与第一磁铁4之间的吸引力+第一进液控制弹片71A的弹力+第一出液控制弹片73A的弹力+分隔弹片2A的弹力+出液口3b的设定出口压力。
第二磁铁5在断电后,第二磁铁5所包括的铁芯与第一磁铁4之间还存在较小的吸引力,此时满足:
第一磁铁4与第三磁铁6之间的吸引力>
第二磁铁5的铁芯与第一磁铁4之间的吸引力+第二进液控制弹片72A的弹力+第二出液控制弹片74A的弹力+分隔弹片2A的弹力+出液口3b的设定出口压力。
在散热驱动装置100开始工作后,示例性地,散热驱动装置100驱动液体在循环管路101和散热壳体1中进行不间断的循环流动,对热源持续散热, 在这种情况下,散热驱动装置100的整个驱动过程包括多个驱动周期,每个驱动周期包括前半周期和后半周期(即前边提到的第一阶段和第二阶段),可参见图3和图4,图中的黑色箭头表示对应腔室中液体的流向。
在前半周期,对第二磁铁5通电,使第二磁铁5产生磁性,且使其第一端的磁极为S极,第二端的磁极为N极,这样第二磁铁5和第一磁铁4之间产生吸引力,根据上面设定的磁力大小排序可知,在磁力作用下,第一磁铁4将克服其与第三磁铁6之间的磁力、第一进液控制弹片71A的弹力、第一出液控制弹片73A的弹力和第一腔室A内的水压,带动分隔弹片2A的中间部分朝向第二磁铁5的方向移动。在分隔弹片2A的移动过程中,在一些示例中,可以通过调节驱动电流的大小,改变第二磁铁5的磁性大小,使第二磁铁5与第一磁铁4之间的吸引力与散热壳体1内部存在的各种阻力相平衡,可实现分隔弹片2A的平稳运行。
如2和图3所示,在分隔弹片2A的中间部分朝向第二磁铁5的方向逐渐移动的过程中,第一腔室A的体积逐渐变小,第二腔室B的体积逐渐增大,第一腔室A内的液体不断被压缩,腔室内液体压力逐渐增大,第一腔室A内的液体压力大于出液口3b的液体压力,当液体压力增大到可以克服处于第一出液支流道d3中的第一出液控制弹片73A的弹力时,第一出液控制弹片73A的第二端与第二立柱82分离,使第一出液支流道d3开启,第一腔室A中的液体进入第一出液支流道d3中。同时由于第一出液控制弹片73A和第二出液控制弹片74A仅允许液体由第一腔室A或第二腔室B向出液口3b单向流通,具有反向锁紧功能,因此第一出液支流道d3中的液体无法通过第二出液支流道d4进入第二腔室B,从第一腔室A中流出的经过散热后的较冷液体只能经第一出液支流道d3通过出液口3b流出,并通过循环管路101的循环作用流经至进液口3a的位置。
进液口3a通过第一进液支流道d1和第二进液支流道d2分别与第一腔室A和第二腔室B流通,在第一腔室A被压缩,将液体排出的同时,由于第二腔室B的体积变大,第二腔室B内的液体压力变小,从而第二进液控制弹片72A的靠近进液口一侧的与液体压力小于其另一侧的压力,且进液口3a的液体压力还能够克服第二进液控制弹片72A的弹力,使第二进液控制弹片72A在液体压力下发生形变,使第二进液支流道d2开启。第一腔室A内的液体压力变大,从而第一进液支流道d1被第一进液控制弹片71A封堵,从而与热源进行完热交换的较热的液体由进液口3a,经第二进液支流道d2进入第二腔室B中,第二腔室B及其外部的散热翅片9对该液体进行散热,使其温度降低。
当分隔弹片2A的中间部分在第一磁铁4的带动下,移动至离第二磁铁5最近的位置时,前半周期的运动结束,第一腔室中的液体不再受到挤压,第一出液控制弹片73A的两侧的液体压力趋于相等,因次第一出液控制弹片73A的第二端将在弹力作用下恢复形变,与第二立柱82相抵,使第一出液支流道d3关闭,同样,第二进液控制弹片72A的第二端也将在弹力作用下恢复形变,与第一立柱81相抵,将第二进液支流道d2关闭。
接下来进入驱动周期的后半周期,将第二磁铁5断电,这样第二磁铁5的铁芯与第一磁铁4之间存在微小的吸引力,由前述定义的磁力大小关系可知,第三磁铁6与第一磁铁4之间的作用力较大,因此在磁力作用下,第一磁铁4将带动分隔弹片2A的中间部分朝向第三磁铁6的方向移动。
如图4所示,在分隔弹片2A的中间部分朝向第三磁铁6的方向逐渐移动的过程中,第二腔室B的体积逐渐变小,第一腔室A的体积逐渐增大,第二腔室B内的液体不断被挤压,腔室内液体压力逐渐增大,使得第二腔室B内的液体压力大于出液口3b的液体压力,当液体压力增大到可以克服处于第二出液支流道d4中的第二出液控制弹片74A的弹力时,第二出液控制弹片74A的第二端与第二立柱82分离,使第二出液支流道d4开启,第二腔室B中的液体进入第二出液支流道d4中。同时由于第一出液控制弹片73A和第二出液控制弹片74A仅允许液体由第一腔室A或第二腔室B向出液口3b单向流通,具有反向锁紧功能,因此进入第二出液支流道d4的液体无法通过第一出液支流道d3进入第一腔室A中,从第二腔室B中流出的经过散热后的较冷液体只能经第二出液支流道d4通过出液口3b流出,并通过循环管路101的循环作用流经至进液口3a的位置。
进液口3a通过第一进液支流道d1和第二进液支流道d2分别与第一腔室A和第二腔室B流通,在第二腔室B被压缩,将液体排出的同时,由于第一腔室A的体积变大,第一腔室A内的液体压力变小,从而第一进液控制弹片71A的靠近进液口3a一侧的液体压力大于其另一侧的压力,且进液口3a的液体压力还能够克服第一进液控制弹片71A的弹力,使第一进液控制弹片71A在液体压力下发生形变,使第一进液支流道d1开启。而第二腔室B内的液体压力变大,从而第二进液支流道d2被第二进液控制弹片72A封堵,从而与热源进行完热交换的较热的液体由进液口3a,经第一进液支流道d1进入第一腔室BA中,第一腔室A及其外部的散热翅片9对该液体进行散热,使其温度降低。
在第一磁铁4带动分隔弹片2A的中间部分移动至离第三磁铁6最近的位 置时,后半周期结束,第一进液控制弹片71A和第二出液控制弹片74A在弹力作用下均恢复形变,将第一进液支流道d1和第二出液支流道d4封堵。
通过在每个周期的前半周期,将第二磁铁5通电,在后半周期,将第二磁铁5断电,可以实现使得第一磁铁4带动分隔弹片2A的中间部分在第二磁铁5和第三磁铁6之间往复移动,分别压缩第一腔室A或第二腔室B,如此往复便可实现液体的连续输入与连续泵出,且每次泵出的都是经过散热的较冷的液体,这些持续泵出的较冷的液体通过循环管路101流经热源位置处,能够持续吸走热源产生的热量,从而持续对热源进行散热。该散热驱动系统01的驱动方式简单,且每个驱动周期中只有前半周期需要通电,降低了驱动功耗。
对于图14B所示的散热驱动系统01,该散热驱动系统01所包括的散热驱动装置100以图7、图9~图13所示出的散热驱动装置100为例。在第二磁铁5和第三磁铁6均为电磁铁,第一磁铁4的靠近第一腔室A的一端(以下称为第一磁铁4的左端)的磁极为N极,第一磁铁4的靠近第二腔室B的一端(以下称为第一磁铁4的右端)的磁极为S极,且散热驱动装置100还包括冷却仓1’和冷却仓单向阀75的情况下,散热驱动系统01的一种具体驱动过程如下:
可以理解的是,由于散热驱动装置100的散热壳体1和冷却仓1’具有散热作用,因此散热壳体1和冷却仓1’中的液体的温度低于散热壳体外部的液体(如循环管路101中的液体)的温度,因此在以下驱动过程中,每次从第一腔室A、第二腔室B或者从冷却仓1’中流出的液体均为较冷的液体,从循环管路101流入第一腔室A或者从第二腔室B中的液体均为较热的液体。
在初始状态下,第二磁铁5和第三磁铁6均没有通电,第一磁铁4处于散热壳体1内的某一位置,散热壳体1的内部空间和冷却仓1’内充满液体,此时散热驱动装置100中的液体并未开始循环,第一进液单向阀71、第二进液单向阀72、第一出液单向阀73、第二出液单向阀74和冷却仓单向阀75均处于关闭状态。
在散热驱动装置100开始工作后,示例性地,散热驱动装置100驱动液体在循环管路101和散热壳体1中进行不间断的循环流动,对热源持续散热,在这种情况下,散热驱动装置100的整个驱动过程包括多个驱动周期,每个驱动周期包括前半周期和后半周期,可参见图9~图12,图中的黑色箭头表示液体的流向。
在前半周期,如图9和图10所示,对第二磁铁5和第三磁铁6通电,使 第二磁铁5和第三磁铁6产生磁性,且使第二磁铁5的左端的磁极为S极,右端的磁极为N极,使第三磁铁6的左端的磁极为N极,右端的磁极为S极,这样第二磁铁5和第一磁铁4之间产生排斥力,第三磁铁6和第一磁铁4之间产生吸引力,在磁力作用下,第一磁铁4将带动密封滑块2B朝向第三磁铁6的方向移动。
如9所示,在密封滑块2B朝向第三磁铁6的方向逐渐滑动的过程中,第二腔室B的体积逐渐变小,第一腔室A的体积逐渐增大,第二腔室B内的液体不断被压缩,腔室内液体压力逐渐增大,第二腔室B内的液体压力大于出液口3b的液体压力,第二出液单向阀74的单向阀球与其漏斗罩分离,使第二出液支流道d4开启,第二腔室B中的经过散热的较冷的液体通过第二出液支流道d4,由出液口3b流出至循环管路101中。
同时,第一腔室A的体积逐渐变大,第一腔室A内的液体压力变小,小于进液口3a的液体压力,从而第一进液单向阀71的单向阀球与其漏斗罩分离,使第一进液支流道d1开启,从而循环管路101中的与热源进行完热交换的较热的液体由进液口3a,经第一进液支流道d1进入第一腔室A中,在此过程中,散热壳体1对该液体进行散热,使其温度降低。
在密封滑块2B在第一磁铁4的带动下移动至距离第三磁铁6比较近的位置时,将第二磁铁5和第三磁铁6断电,利用第一磁铁4与第三磁铁6的铁芯之间的吸引力,密封滑块2B继续向第三磁铁6移动,这样可以节省功耗。
当密封滑块2B在第一磁铁4的带动下,移动至离第三磁铁6最近的位置时,前半周期的运动结束,第二腔室B中的液体不再受到挤压,第二出液单向阀74的两侧的液体压力趋于相等,因次第二出液单向阀74关闭。同样,第一进液单向阀71的两侧的液体压力也趋于相等,因次第一进液单向阀71关闭。
接下来进入驱动周期的后半周期,如图11和图12所示,将第二磁铁5和第三磁铁6分别通入与前半周期的电流方向相反的电流,这样第二磁铁5和第三磁铁6均产生磁性,且第二磁铁5的左端的磁极为N极,右端的磁极为S极,使第三磁铁6的左端的磁极为S极,右端的磁极为N极,这样第二磁铁5和第一磁铁4之间产生吸引力,第三磁铁6和第一磁铁4之间产生排斥力,在磁力作用下,第一磁铁4将带动密封滑块2B朝向第三磁铁6的方向移动。
如图11所示,在密封滑块2B朝向第二磁铁5的方向逐渐移动的过程中,第一腔室A的体积逐渐变小,第二腔室B的体积逐渐增大,第一腔室A内的 液体不断被挤压,腔室内液体压力逐渐增大,使得冷却仓单向阀75的靠近第一腔室A一侧的液体压力大于其另一侧的液体压力,冷却仓单向阀75开启,第一腔室A内的经过散热的液体流入冷却仓1’内,使得冷却仓1’的液体压力增大,在液体压力作用下,第一出液单向阀73的单向阀球被推离其漏斗罩,第一出液单向阀73打开,冷却仓1’内经过冷却的较冷的液体由第一出液管道b3流至出液口3b,再进入循环管路101。
同时,第二腔室B的体积逐渐变大,第二腔室B内的液体压力变小,小于进液口3a的液体压力,从而第二进液单向阀72的单向阀球与其漏斗罩分离,使第二进液支流道d2开启,从而循环管路10中的与热源进行完热交换的较热的液体由进液口3a,经第二进液支流道d2进入第二腔室B中,在此过程中,散热壳体1对该液体进行散热,使其温度降低。
在密封滑块2B在第一磁铁4的带动下移动至距离第二磁铁5比较近的位置时,将第二磁铁5和第三磁铁6断电,利用第一磁铁4与第二磁铁5的铁芯之间的吸引力,密封滑块2B继续向第二磁铁5移动,这样可以节省功耗。
当密封滑块2B在第一磁铁4的带动下,移动至离第二磁铁5最近的位置时,后半周期的运动结束。
通过在每个周期的前半周期,将第二磁铁5和第三磁铁6通电,在后半周期,将第二磁铁5和第三磁铁6通入相反方向的电流,可以实现使得第一磁铁4带动密封滑块2B在第二磁铁5和第三磁铁6之间往复移动,分别压缩第一腔室A或第二腔室B,如此往复便可实现液体的连续输入与连续泵出,且每次泵出的都是经过散热的较冷的液体,并且在每个周期的后半周期,泵出的液体经过了第一腔室A和冷却仓1’的两次散热过程,因此所输出的液体的温度更低,散热效果更好。这些持续泵出的较冷的液体通过循环管路101流经热源位置处,能够持续吸走热源产生的热量,从而持续对热源进行散热。
如图15所示,本公开的一些实施例还提供了一种背光模组200,包括背光源201和散热驱动系统01。
背光源201包括出光面C和非出光面C’,散热驱动装置系统01设置于背光源201的非出光面C’侧。示例性地,散热驱动系统01中的循环管路101呈蛇形、或呈回字形或者呈螺旋形,铺设于背光源201的非出光面C’侧,散热驱动装置100可根据需要设置在背光源201的非出光面C’侧的任意位置,本公开对此并不设限。
在一些实施例中,背光源201为玻璃基Mini LED灯板,背光模组200还包括设置于背光源201的非出光面C’侧的背板202以及后罩壳203,背板202 上设置有回形或者蛇形或者螺旋形的凹槽,循环管路101卡装于该凹槽中,散热驱动装置100设置于背板202背向背光源201的一侧,后罩壳203设置于散热驱动装置100的背向背板202的一侧,后罩壳203被配置为对散热驱动装置100进行封装。在后罩壳203的两侧具有多个通风孔,能够通过空气流通,加强散热效果。
本公开的发明人经试验得出:对于上述玻璃基mini LED灯板,采用相关技术中的在玻璃基Mini LED灯板的背面贴附石墨片的散热方式,在室温为21.5℃,发光时间为10分钟的情况下,该灯板的正面的最高温度为41.5℃,在该段发光时间内,该灯板的正面升高的温度为20℃。采用本公开中的在玻璃基Mini LED灯板的背面设置散热驱动系统01的散热方式,在室温为26.5℃,发光时间为40分钟的情况下,该灯板的正面的最高温度为36.5℃,在该段发光时间内,该灯板的正面升高的温度为10℃。可见,在室温更高,发光时间更长的情况下,采用本公开所提供的的散热方式,灯板的正面的最高温度更低,所升高的温度幅值也更小,具有更明显有效的散热效果,因此本公开的一些实施例所提供的背光模组200具有优异的散热效果。
在一些示例中,背光模组200还包括设置于背光源201的出光面C侧的光学膜材,例如为匀光膜204和棱镜片205,背光源201发出的光线经光学膜材的均匀、汇聚等作用后,透过光学膜材出射,从而提高背光模组200所提供的光线的均匀性和辉度。
本公开提供的背光模组的类型可以为侧入式、也可以为直下式,背光源为玻璃基、PCB基或者FPC基的背光源,本公开对此并不设限。
本公开的一些实施例所提供的背光模组200包括散热驱动系统01,通过散热驱动系统01对其进行散热,使得背光模组200能够不受其发热问题的影响,能够正常工作,由于本公开所提供的散热驱动装置100具有体积小、噪声小、功耗低等特点,因此背光模组200也具有体积小、功耗低、噪声低等特点,并且由于采用散热驱动系统01散热,相比相关技术中的其他散热方式,散热效果更好,从而使得背光模组200能够不受发热问题的影响,能够正常工作,从而在发光亮度、使用寿命等方面性能更好。
本公开的一些实施例还提供了一种显示装置1000,该显示装置为主动发光型显示装置或者为非主动发光型显示装置。
其中,非主动发光型显示装置包括被动发光显示面板和背光模组200。
如图16A所示,示例性地,非主动发光型显示装置为液晶显示装置,液晶显示装置包括显示面板300和背光模组200,其中显示面板包括阵列基板 301、对向基板302、及设置于阵列基板301和对向基板302之间的液晶层303,背光模组200位于阵列基板301的远离液晶层303的一侧。
如图16B所示,主动发光型显示装置包括:主动发光显示面板300’和散热驱动系统01,散热驱动系统01设置于主动发光显示面板300’的非显示面侧。
示例性地,散热驱动系统01的循环管路呈蛇形或者回字形铺设于主动发光显示面板300’的非显示面侧,在主动发光显示面板300’显示时,散热驱动装置100开始工作,对主动发光显示面板300’进行散热。
本公开的一些实施例所提供的显示装置可以为电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件,本公开对此并不设限。
本公开所提供的显示装置1000中,通过散热驱动系统01对其进行散热,因此该显示装置不会受到发热元件所散发的热量对其正常工作的影响,保证了正常显示,且由于本公开提供的散热驱动装置的体积小,功耗低,噪声低,因此该显示装置也具有相同的技术效果。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种散热驱动装置,包括:
    散热壳体,所述散热壳体被配置为对位于其内部空间的液体进行散热;
    设置于所述散热壳体内的分隔部件,所述分隔部件将所述散热壳体的内部空间分隔成第一腔室和第二腔室,所述分隔部件的至少一部分能够发生移动;
    设置于所述散热壳体上的进液口和出液口,所述进液口与所述第一腔室和所述第二腔室均连通,所述出液口与所述第一腔室和所述第二腔室均连通;
    设置于所述分隔部件上的第一磁铁;
    设置于所述第一腔室内的第二磁铁和设置于所述第二腔室内的第三磁铁,所述第二磁铁和所述第三磁铁均与所述第一磁铁相对;
    其中,所述第二磁铁和所述第三磁铁中的至少一者为电磁铁;所述电磁铁被配置为在通电时产生磁性;所述第二磁铁和所述第三磁铁被配置为通过磁力作用控制第一磁铁带动所述分隔部件的至少一部分移动,以改变所述第一腔室和所述第二腔室的体积,控制液体流入和流出所述散热壳体。
  2. 根据权利要求1所述的散热驱动装置,还包括:
    设置于所述进液口与所述第一腔室之间的进液单向阀,及设置于所述进液口和所述第二腔室之间的进液单向阀;所述进液单向阀被配置为,在所述进液单向阀的靠近所述进液口一侧的液体压力,大于其另一侧的液体压力的情况下开启,以使液体由所述进液口向所述第一腔室或所述第二腔室单向流通;
    设置于所述出液口与所述第一腔室之间的出液单向阀,及设置于所述出液口和所述第二腔室之间的出液单向阀;所述出液单向阀被配置为,在所述出液单向阀的靠近所述出液口一侧的液体压力,小于其另一侧的液体压力的情况下开启,以使液体由所述第一腔室或所述第二腔室向所述出液口单向流通。
  3. 根据权利要求1或2所述的散热驱动装置,其中,
    所述第二磁铁和所述第三磁铁中的一者为电磁铁,另一者为永磁铁;其中,
    所述永磁铁与所述第一磁铁之间具有吸引力;
    所述电磁铁被配置为,在通电时产生磁性,与所述第一磁铁之间产生吸引力或排斥力;且在所述电磁铁和所述第一磁铁的间距最大的情况下,所述电磁铁与所述第一磁铁之间的吸引力大于所述永磁铁与所述第一磁铁之间的吸引力。
  4. 根据权利要求1或2所述的散热驱动装置,其中,
    所述第二磁铁和所述第三磁铁均为电磁铁;
    其中,所述第二磁铁被配置为,在通电时产生磁性,与所述第一磁铁之间产生吸引力或排斥力;所述第三磁铁被配置为,在通电时产生磁性,与所述第一磁铁之间产生排斥力或吸引力。
  5. 根据权利要求1~4中任一项所述的散热驱动装置,其中,所述分隔部件为分隔弹片,所述分隔弹片的两端固定于靠近所述散热壳体的内部空间的两端;
    所述进液口和所述出液口分别设置于所述分隔弹片的两端;
    所述第一磁铁安装于所述分隔弹片的中间部分;
    所述第二磁铁和所述第三磁铁分别位于所述分隔弹片的两侧。
  6. 根据权利要求5所述的散热驱动装置,还包括:
    设置于所述散热壳体的内部空间的第一立柱,所述第一立柱靠近所述进液口;所述第一腔室和所述第二腔室靠近所述进液口的侧壁分别与所述第一立柱形成进液支流道,在所述散热驱动装置还包括进液单向阀的情况下,两个所述进液单向阀分别设置于两个所述进液支流道中;
    设置于所述散热壳体的内部空间的第二立柱,所述第二立柱靠近所述出液口;所述第一腔室和所述第二腔室靠近所述出液口的侧壁分别与所述第二立柱形成出液支流道,在所述散热驱动装置还包括出液单向阀的情况下,两个所述出液单向阀分别设置于两个所述出液支流道中;
    其中,所述分隔弹片的两端分别被固定于所述第一立柱和所述第二立柱上。
  7. 根据权利要求6所述的散热驱动装置,其中,
    所述进液单向阀包括进液控制弹片,所述进液控制弹片的第一端固定于所述第一腔室或所述第二腔室的侧壁上,第二端为自由端;
    在所述进液控制弹片靠近所述进液口的一侧的液体压力,小于或等于其另一侧液体压力的情况下,所述进液控制弹片的第二端与所述第一立柱相抵,将所述进液支流道封堵;在所述进液控制弹片靠近所述进液口的一侧的液体压力,大于其另一侧的液体压力的情况下,所述进液控制弹片的第二端与所述第一立柱分离,将所述进液支流道打开;
    所述出液单向阀包括出液控制弹片,所述出液控制弹片的第一端固定于所述第一腔室或所述第二腔室的侧壁上,第二端为自由端;
    在所述出液控制弹片靠近所述出液口的一侧的液体压力大于或等于其另 一侧液体压力的情况下,所述出液控制弹片的第二端与所述第二立柱相抵,将所述出液支流道封堵;在所述出液控制弹片靠近所述出液口的一侧的液体压力小于其另一侧的液体压力的情况下,所述出液控制弹片的第二端与所述第二立柱分离,将所述出液支流道打开。
  8. 根据权利要求7所述的散热驱动装置,其中,
    所述第一腔室和所述第二腔室靠近所述进液口的侧壁上分别设置有进液卡槽,两个所述进液控制弹片的第一端分别卡装于两个所述进液卡槽内;
    所述第一腔室和所述第二腔室靠近所述出液口的侧壁分别上设置有出液卡槽,两个所述出液控制弹片的第一端分别卡装于两个所述出液卡槽内。
  9. 根据权利要求6~8中任一项所述的散热驱动装置,其中,所述第一立柱上远离所述进液口的位置设置有第一安装卡槽,所述第二立柱上远离所述出液口的位置设置有第二安装卡槽,所述分隔弹片的两个端部分别固定于所述第一安装卡槽和所述第二安装卡槽内。
  10. 根据权利要求5~9中任一项所述的散热驱动装置,其中,所述分隔弹片的中间部分设置有第一安装孔,所述第一磁铁嵌装于所述第一安装孔内。
  11. 根据权利要求5~10中任一项所述的散热驱动装置,其中,所述散热壳体为盒状,包括密封连接的壳体主体和盖板。
  12. 根据权利要求11中任一项所述的散热驱动装置,还包括:设置于所述壳体主体的外侧壁的散热翅片。
  13. 根据权利要求1~4中任一项所述的散热驱动装置,其中,
    所述第二磁铁和所述第三磁铁分别位于所述散热壳体的内部空间的两端;
    所述分隔部件为密封滑块,所述密封滑块能够在所述第二磁铁和所述第三磁铁之间滑动,且所述密封滑块与所述内部空间的侧壁密封连接;
    所述第一磁铁安装于所述密封滑块上。
  14. 根据权利要求13所述的散热驱动装置,还包括:
    设置于所述进液口与所述第一腔室之间的第一进液管道;
    设置于所述进液口与所述第二腔室之间的第二进液管道;
    设置于所述出液口与所述第一腔室之间的第一出液管道;
    设置于所述出液口与所述第二腔室之间的第二出液管道;
    其中,所述第一进液管道和所述第一腔室连通的接口,及所述第一出液管道和所述第一腔室连通的接口,均位于第一腔室的腔壁上靠近所述第二磁铁的位置;所述第二进液管道和所述所述第二腔室连通的接口,及所述第二 出液管道与所述第二腔室连通的接口,均位于所述第二腔室的腔壁上靠近所述第三磁铁的位置;
    在所述散热驱动装置还包括进液单向阀和出液单向阀的情况下,
    两个所述进液单向阀分别设置于所述第一进液管道和所述第二进液管道中,两个所述出液单向阀分别设置于所述第一出液管道和所述第二出液管道中。
  15. 根据权利要求14所述的散热驱动装置,其中,
    所述进液单向阀包括进液漏斗罩和进液单向阀球,在所述进液漏斗罩靠近所述进液口的一侧的液体压力小于或等于其另一侧的液体压力的情况下,所述进液单向阀球与所述进液漏斗罩相抵,将所述第一进液管道或所述第二进液管道封堵;在所述进液漏斗罩靠近所述进液口的一侧的液体压力大于其另一侧的液体压力的情况下,所述进液单向阀球与所述进液漏斗罩分离,将所述第一进液管道或所述第二进液管道打开;
    所述出液单向阀包括出液漏斗罩和出液单向阀球;在所述出液漏斗罩靠近所述出液口的一侧的液体压力大于或等于其另一侧的液体压力的情况下,所述出液单向阀球与所述出液漏斗罩相抵,将所述第一出液管道或所述第二出液管道封堵;在所述出液漏斗罩靠近所述出液口的一侧的液体压力小于其另一侧的液体压力的情况下,所述出液第三单向阀球与所述出液漏斗罩分离,将所述第一出液管道或所述第二出液管道打开。
  16. 根据权利要求14或15所述的散热驱动装置,还包括:冷却仓和冷却仓单向阀,所述冷却仓具有散热功能;
    所述冷却仓设置于所述第一腔室和所述第一出液管道之间,且所述冷却仓的两端分别与所述第一腔室和所述第一出液管道连通;其中,设置于所述第一出液管道中的出液单向阀位于所述第一出液管道中靠近所述冷却仓的位置,所述冷却仓单向阀设置于所述冷却仓和所述第一腔室的接口位置处;所述冷却仓单向阀被配置为,在所述冷却仓单向阀的靠近所述第一腔室一侧的液体压力大于其另一侧的液体压力的情况下开启,以使所述液体由所述第一腔室向所述冷却仓单向流通;或者,
    所述冷却仓设置于所述第一出液管道和所述出液口之间,且所述冷却仓的两端分别与所述第一出液管道和所述出液口连通;其中,设置于所述第一出液管道中的出液单向阀位于所述第一出液管道中靠近所述冷却仓的位置,所述冷却仓单向阀设置于所述冷却仓和所述出液口的接口位置处;所述冷却仓单向阀被配置为,在所述冷却仓单向阀的靠近所述出液口一侧的液体压力 小于其另一侧的液体压力的情况下开启,以使所述液体由所述冷却仓向所述出液口单向流通。
  17. 根据权利要求13~16中任一项所述的散热驱动装置,其中,所述散热壳体为筒状。
  18. 根据权利要求17所述的散热驱动装置,其中,在所述散热驱动装置还包括冷却仓的情况下,所述冷却仓为筒状,且所述散热壳体与所述冷却仓的中心轴线相互平行或者大致相互平行。
  19. 根据权利要求13~18中任一项所述的散热驱动装置,其中,所述密封滑块的中心位置设置有第二安装孔,所述第一磁铁嵌装于所述第二安装孔内。
  20. 一种散热驱动系统,包括:
    如权利要求1~19中任一项所述的散热驱动装置;
    循环管路,所述循环管路的两个端口分别与所述散热驱动装置的进液口和出液口连接。
  21. 一种背光模组,包括:
    背光源,所述背光源包括出光面和与所述出光面相对的非出光面;
    设置于所述背光源的非出光面侧的散热驱动系统,所述散热驱动系统为如权利要求20所述的散热驱动系统。
  22. 一种显示装置,包括:
    被动发光显示面板;
    如权利要求21所述的背光模组;或者,
    所述显示装置包括:
    主动发光显示面板,所述主动发光显示面板包括显示面和与所述显示面相对的非显示面;
    如权利要求20所述的散热驱动系统,所述散热驱动系统设置于所述主动发光显示面板的非显示面侧。
PCT/CN2020/075979 2020-02-20 2020-02-20 散热驱动装置、散热驱动系统、背光模组及显示装置 WO2021163948A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/075979 WO2021163948A1 (zh) 2020-02-20 2020-02-20 散热驱动装置、散热驱动系统、背光模组及显示装置
CN202080000157.8A CN113544453B (zh) 2020-02-20 2020-02-20 散热驱动装置、散热驱动系统、背光模组及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075979 WO2021163948A1 (zh) 2020-02-20 2020-02-20 散热驱动装置、散热驱动系统、背光模组及显示装置

Publications (1)

Publication Number Publication Date
WO2021163948A1 true WO2021163948A1 (zh) 2021-08-26

Family

ID=77390372

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075979 WO2021163948A1 (zh) 2020-02-20 2020-02-20 散热驱动装置、散热驱动系统、背光模组及显示装置

Country Status (2)

Country Link
CN (1) CN113544453B (zh)
WO (1) WO2021163948A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117222209B (zh) * 2023-11-09 2024-02-20 东莞市富其扬电子科技有限公司 一种液冷散热器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109180412A (zh) * 2018-09-29 2019-01-11 狄风君 一种化工品生产工艺优化方法
CN109357548A (zh) * 2018-09-29 2019-02-19 狄风君 一种石油化工用热交换器
CN209356836U (zh) * 2019-03-22 2019-09-06 北京镭创高科光电科技有限公司 一种激光显示设备的散热系统
US20190317578A1 (en) * 2018-04-13 2019-10-17 Dell Products L.P. Information handling system thermal fluid hinge

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2602832B1 (fr) * 1986-08-18 1988-10-28 Spirec Appareil remonte-liquide immerge
JP2007231763A (ja) * 2006-02-28 2007-09-13 Sony Corp ポンプ装置及び冷却装置
JP5828372B2 (ja) * 2010-09-21 2015-12-02 セイコーエプソン株式会社 冷却装置及びプロジェクター
TWI412716B (zh) * 2010-10-13 2013-10-21 Microjet Technology Co Ltd 可吸熱式流體輸送裝置
CN104684363B (zh) * 2015-02-13 2017-07-21 华为技术有限公司 一种室外显示屏及通信设备
CN113202776B (zh) * 2017-08-23 2023-09-15 浙江三花智能控制股份有限公司 电动泵

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190317578A1 (en) * 2018-04-13 2019-10-17 Dell Products L.P. Information handling system thermal fluid hinge
CN109180412A (zh) * 2018-09-29 2019-01-11 狄风君 一种化工品生产工艺优化方法
CN109357548A (zh) * 2018-09-29 2019-02-19 狄风君 一种石油化工用热交换器
CN209356836U (zh) * 2019-03-22 2019-09-06 北京镭创高科光电科技有限公司 一种激光显示设备的散热系统

Also Published As

Publication number Publication date
CN113544453B (zh) 2023-11-24
CN113544453A (zh) 2021-10-22

Similar Documents

Publication Publication Date Title
JP4274178B2 (ja) プロジェクタ
RU2493575C2 (ru) Система и способ терморегулирования электронного дисплея
EP1742263A2 (en) Once-through forced air-cooled heat sink for a projection display apparatus
US20090059594A1 (en) Heat dissipating apparatus for automotive LED lamp
JP3284585B2 (ja) 電子機器の冷却装置
WO2020253723A1 (zh) 一种散热组件、电子设备
WO2021163948A1 (zh) 散热驱动装置、散热驱动系统、背光模组及显示装置
US11520219B2 (en) Heat dissipating module and projection device
CN107706165B (zh) 一种液态金属恒温散热装置
JP4534897B2 (ja) 照明光源装置
CN113676631B (zh) 摄像头模组及电子设备
CN212966841U (zh) 一种显示装置
CN102411253A (zh) 冷却装置和投影仪
CN107065258B (zh) 散热模组及液晶显示器
CN110780483A (zh) 背光源散热装置及显示装置
TW202142090A (zh) 液冷式散熱模組及具有該液冷式散熱模組的電子裝置
TW200909989A (en) Projection device and heat dissipation method
TWI447340B (zh) 水冷式散熱裝置
JP2005229038A (ja) 液冷システム及びそれを備えた電子機器
US20220171263A1 (en) Heat dissipation module and projection device
CN214102133U (zh) 一种液冷机柜及散热系统
TW202219446A (zh) 液冷式散熱模組及具有該液冷式散熱模組的電子裝置
CN220321243U (zh) 一款散热好的光源
CN221122133U (zh) 一种散热结构
CN109862757B (zh) 驱动泵、散热组件和平板探测器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920732

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20920732

Country of ref document: EP

Kind code of ref document: A1