TW200909989A - Projection device and heat dissipation method - Google Patents

Projection device and heat dissipation method Download PDF

Info

Publication number
TW200909989A
TW200909989A TW96130781A TW96130781A TW200909989A TW 200909989 A TW200909989 A TW 200909989A TW 96130781 A TW96130781 A TW 96130781A TW 96130781 A TW96130781 A TW 96130781A TW 200909989 A TW200909989 A TW 200909989A
Authority
TW
Taiwan
Prior art keywords
heat
component
projection device
disposed
housing
Prior art date
Application number
TW96130781A
Other languages
Chinese (zh)
Inventor
Tzu-Huan Hsu
Original Assignee
Benq Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Benq Corp filed Critical Benq Corp
Priority to TW96130781A priority Critical patent/TW200909989A/en
Publication of TW200909989A publication Critical patent/TW200909989A/en

Links

Landscapes

  • Projection Apparatus (AREA)

Abstract

A projection device and a heat dissipation method are provided. The projection device includes a first mechanism, a second mechanism and a connecting mechanism. The first mechanism includes a first casing, an optical element and at least a heat-conduction element. The optical element is disposed in the first casing. The optical element projects an image and generates a heat source. The heat-conduction element is disposed on the optical element for absorbing the heat source. The second mechanism includes a second casing and a heat-dissipation element. The heat-dissipation element is disposed in the second casing. The connecting mechanism is used for connecting the first mechanism and the second mechanism. The connecting mechanism includes at least a heat-conduction pipe. The heat-conduction pipe is connected to the heat-conduction element and the heat-dissipation element to form a close loop. The heat-conduction pipe is used for conducting the heat source to the heat- dissipation element to cool the optical element.

Description

200909989200909989

•37PA 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種投影裝置及散熱方法,且特別是 有關於一種分離散熱元件與光機元件之投影裝置及散熱 方法。 【先前技術】 投影機的使用主要是將影像放大,並投影到屏幕上。 ί 投影機主要構成元件為投影鏡頭及燈泡等,燈泡發射的光 線經由投影鏡頭將影像投射到屏幕上。使用投影機時,燈 泡必須持續的發光,且其發光強度必須足以將放大之影像 投射到屏幕上。在燈泡持續的發光狀態下,其熱度會一直 增加。因此投影機内部之溫度會不斷的上升。投影機的溫 度過高時,其内部之元件非常容易損壞,也因此投影機的 散熱設計非常重要。 傳統上投影機的散熱設計是在投影機内設置散熱裝 1 置,此散熱裝置係為散熱風扇,並在投影機的機殼上設計 入風口及出風口。藉由散熱風扇的運作,由入風口導入常 溫下的氣體進入投影機中,以冷卻投影機中的元件,再由 出風口將熱氣導出,形成有效的氣體散熱循環,使投影機 能保持在不過熱之狀態下正常運作。由於散熱風扇運轉時 會產生大量噪音,以及出風口會產生熱氣,使得使用者於 投影機運轉時會被噪音影響,以及被熱風吹拂時產生不愉 快的感覺。此外,投影機上為散熱所設計的入風口及出風BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a projection apparatus and a heat dissipation method, and more particularly to a projection apparatus and a heat dissipation method for separating a heat dissipating component and an optical component. [Prior Art] The use of the projector is mainly to enlarge the image and project it onto the screen. ί The main components of the projector are the projection lens and the bulb. The light emitted by the bulb projects the image onto the screen via the projection lens. When using the projector, the lamp must continue to illuminate and its illumination must be strong enough to project the magnified image onto the screen. The heat will continue to increase as the bulb continues to illuminate. Therefore, the temperature inside the projector will continue to rise. When the temperature of the projector is too high, the components inside it are very easy to damage, so the heat dissipation design of the projector is very important. Traditionally, the heat dissipation design of the projector is to provide a heat dissipating device in the projector. The heat dissipating device is a cooling fan, and the air inlet and the air outlet are designed on the casing of the projector. With the operation of the cooling fan, the gas introduced into the projector from the air inlet enters the projector to cool the components in the projector, and then the hot air is led out by the air outlet to form an effective gas heat dissipation cycle, so that the projector can remain hot. It works normally. A large amount of noise is generated when the cooling fan is operated, and hot air is generated at the air outlet, so that the user is affected by noise when the projector is running, and an unpleasant feeling when being blown by the hot air. In addition, the air inlet and outlet for the heat dissipation on the projector

U7PA 200909989 口,雖可解決投影機内部熱源散熱的問題,但也易使外界 的灰塵進入投影機内部,對内部元件產生影響。 【發明内容】 本發明係有關於一種投影裝置及散熱方法,藉由一連 接機構連接光機元件及散熱元件,以使光機元件與散熱元 件分處於不同機構中。 根據本發明之第一方面,提出一種投影裝置,投影裝 置包括一第一機構、一第二機構及一連接機構。第一機構 包括一第一殼體、一光機元件及至少一導熱元件。光機元 件係設置於第一殼體内,且光機元件係投射一影像並產生 一熱源。導熱元件係設置於光機元件上,用以吸收此熱 源。第二機構包括一第二殼體及一散熱元件。散熱元件係 設置於第二殼體内。連接機構係用以連接第一機構及第二 機構,其中連接機構包括至少一導熱管。導熱管係與導熱 元件及散熱元件連接,並形成至少一封閉迴路,導熱管用 以傳導熱源至散熱元件,以冷卻光機元件。 根據本發明之第二方面,提出一種散熱方法。散熱方 法包括下列步驟。(a)提供一第一機構,且第一機構包括 一光機元件,光機元件係投射一影像並產生一熱源;(b) 提供一第二機構,第二機構包括一散熱元件;(c)以一導 熱元件吸收此熱源;以及(d)自導熱元件傳導熱源至散 熱元件。 為讓本發明之上述内容能更明顯易懂,下文特舉較佳 200909989Although the U7PA 200909989 port can solve the problem of heat dissipation inside the projector's internal heat source, it is also easy for external dust to enter the projector and affect internal components. SUMMARY OF THE INVENTION The present invention relates to a projection apparatus and a heat dissipation method for connecting a optomechanical component and a heat dissipating component by a connection mechanism to separate the optomechanical component and the heat dissipating component into different mechanisms. According to a first aspect of the present invention, a projection apparatus is provided, the projection apparatus comprising a first mechanism, a second mechanism and a connection mechanism. The first mechanism includes a first housing, a optomechanical component, and at least one thermally conductive component. The optomechanical component is disposed within the first housing, and the optomechanical component projects an image and generates a heat source. A thermally conductive element is disposed on the opto-mechanical component for absorbing the heat source. The second mechanism includes a second housing and a heat dissipating component. The heat dissipating component is disposed in the second housing. The connecting mechanism is for connecting the first mechanism and the second mechanism, wherein the connecting mechanism comprises at least one heat pipe. The heat pipe is connected to the heat conducting element and the heat dissipating component and forms at least one closed loop for conducting a heat source to the heat dissipating component to cool the optoelectronic component. According to a second aspect of the invention, a method of dissipating heat is provided. The heat dissipation method includes the following steps. (a) providing a first mechanism, the first mechanism comprising a optomechanical component, the optomechanical component projecting an image and generating a heat source; (b) providing a second mechanism, the second mechanism comprising a heat dissipating component; Receiving the heat source with a thermally conductive element; and (d) conducting the heat source from the thermally conductive element to the heat dissipating element. In order to make the above contents of the present invention more obvious and easy to understand, the following is particularly preferred 200909989

_ 37PA ' 實施例,並配合所附圖式,作詳細說明如下: 【實施方式】 本發明之一種投影裝置及散熱方法係藉由一連接機 構分離光機元件及散熱元件。光機元件所產生的熱源係可 經由連接機構傳導至散熱元件散熱,而解決因散熱元件所 產生的熱源及噪音。以下係以内部結構不同之投影裝置以 不同實施例做詳細之說明。 第一實施例 請參照第1A圖,其繪示依照第一實施例之投影裝置 之示意圖。投影裝置100包括一第一機構120、一第二機 構140及一連接機構160。第一機構120包括一第一殼體 121、一光機元件122及數個導熱元件125。光機元件122 係設置於第一殼體121内,此光機元件122係投射一影像 並產生一熱源。數個導熱元件125係設置於光機元件122 I 上,用以吸收熱源。第二機構140包括一第二殼體141以 及一散熱元件144。散熱元件144係設置於第二殼體141 内。連接機構160係用以連接第一機構120及第二機構 140。在本實施例中,連接機構160包括數個導熱管161。 導熱管161係與導熱元件125及散熱元件144連接,以形 成數個封閉迴路,且導熱管161用以傳導熱源至散熱元件 144,以冷卻光機元件122。 請同時參照第1A圖及第2圖,第2圖繪示依照本發 «7ΡΑ 200909989 明第一實施例之投影機構之散熱方法的流程圖。首先,在 第2圖之步驟201中,提供第一機構120,且第一機構120 包括光機元件122。於本實施例中,光機元件122係設置 於第一殼體121中,其中光機元件122包括一鏡頭(Lens) 123及一燈源(Lamp) 124。當光機元件122運轉時,燈源 124係射出一光線經過鏡頭123,投射至外界以產生影像。 因此,燈源124及光線經過之鏡頭123皆產生熱源。 接著於步驟202中’提供第二機構140,第二機構14〇 包括散熱元件144。此散熱元件144係設置於第二殼體141 中,且此散熱元件144例如為一熱交換器(Heat Exchanger)。於本實施例中’熱交換器例如為一空氣冷卻 式熱交換器或一水冷式熱交換器。此外,第二殼體141具 有一開口 142且第二機構140更包括一風扇146。風扇146 係設ί於第二殼體141内,且風扇146係經由開口 142使 該第二機構140之内部氣流與外界對流,以使散熱元件144 散熱。 然後’在第2圖之步驟203中,以導熱元件125吸收 此熱源。導熱元件125係设置於光機元件122之每一元件 (例如鏡頭123及一燈源124 )上以吸收熱源。 請參照第1Β圖,其繪示依照第1Α圖中導熱管及導熱 元件之放大示意圖。於本實施例中,導熱元件125較佳地 為一致冷晶片(Thermoelectric C〇〇nng,TEC)。因致冷 晶片具有熱電能量轉換特性的材料,在通過直流電時,其 致冷晶片兩端會產生不同的溫度。換言之,由於其材料特The _37PA' embodiment is described in detail with reference to the accompanying drawings. [Embodiment] A projection apparatus and a heat dissipation method of the present invention separate a optomechanical component and a heat dissipating component by a connecting mechanism. The heat source generated by the optomechanical component can be radiated to the heat dissipating component via the connection mechanism to solve the heat source and noise generated by the heat dissipating component. The following is a detailed description of different embodiments with projection devices having different internal structures. First Embodiment Referring to Figure 1A, there is shown a schematic view of a projection apparatus in accordance with a first embodiment. The projection device 100 includes a first mechanism 120, a second mechanism 140, and a connection mechanism 160. The first mechanism 120 includes a first housing 121, a optomechanical element 122, and a plurality of thermally conductive elements 125. The optomechanical component 122 is disposed within the first housing 121. The optomechanical component 122 projects an image and generates a heat source. A plurality of thermally conductive elements 125 are disposed on the opto-mechanical component 122 I for absorbing heat. The second mechanism 140 includes a second housing 141 and a heat dissipating component 144. The heat dissipating member 144 is disposed in the second housing 141. The connecting mechanism 160 is used to connect the first mechanism 120 and the second mechanism 140. In the present embodiment, the connecting mechanism 160 includes a plurality of heat pipes 161. The heat pipe 161 is connected to the heat conducting element 125 and the heat radiating element 144 to form a plurality of closed loops, and the heat pipe 161 is used to conduct a heat source to the heat radiating element 144 to cool the light machine element 122. Please refer to FIG. 1A and FIG. 2 at the same time. FIG. 2 is a flow chart showing a heat dissipation method of the projection mechanism according to the first embodiment of the present invention. First, in step 201 of Fig. 2, a first mechanism 120 is provided, and the first mechanism 120 includes a optomechanical element 122. In the present embodiment, the optomechanical component 122 is disposed in the first housing 121, wherein the optomechanical component 122 includes a lens (Lens) 123 and a light source (Lamp) 124. When the optomechanical element 122 is in operation, the light source 124 emits a light that passes through the lens 123 and is projected to the outside to produce an image. Therefore, the light source 124 and the lens 123 through which the light passes are all generating a heat source. Next, in step 202, a second mechanism 140 is provided, the second mechanism 14A including a heat dissipating component 144. The heat dissipating component 144 is disposed in the second housing 141, and the heat dissipating component 144 is, for example, a heat exchanger. In the present embodiment, the heat exchanger is, for example, an air-cooled heat exchanger or a water-cooled heat exchanger. In addition, the second housing 141 has an opening 142 and the second mechanism 140 further includes a fan 146. The fan 146 is disposed in the second casing 141, and the fan 146 convects the internal airflow of the second mechanism 140 to the outside through the opening 142 to dissipate heat from the heat dissipating component 144. Then, in step 203 of Fig. 2, the heat source is absorbed by the heat conducting element 125. A thermally conductive element 125 is disposed on each of the components of the opto-mechanical component 122 (e.g., lens 123 and a light source 124) to absorb the heat source. Please refer to the first drawing, which shows an enlarged schematic view of the heat pipe and the heat conducting element according to the first drawing. In the present embodiment, the thermally conductive element 125 is preferably a uniform cold wafer (TEC). Due to the thermoelectric energy conversion characteristics of the cooled wafer, different temperatures are generated across the cooled wafer when passing through direct current. In other words, due to its material

•37PA 200909989 性,致冷晶片經導電時其一面會降溫而稱之冷面125a,另 一面則會升溫而稱為熱面125b。因此將導熱元件125冷面 125a與光機元件122 (鏡頭123或一燈源124,在第1B圖 中,係以鏡頭123為例)相連,用以冷卻及吸收由光機元 件122 (鏡頭123或一燈源124)所產生的熱源。 請同時參照第1A圖及第1C圖。第1C圖其繪示依照 第1A圖中導熱管之放大示意圖。如第2圖之步驟204,提 供連接機構160,用以連接導熱元件125及散熱元件144, : 以形成一封閉迴路。如第1A圖所示,數個導熱管161係 以並聯方式與此些導熱元件125及散熱元件144連接,以 形成數個封閉迴路。如第1C圖所示,連接機構160更包 括一導熱流體162、數個幫浦163 (繪示於第1A圖中)及 一電路165。導熱流體162係設置於導熱管161内。幫浦 163用以使導熱流體162於此些導熱管161之封閉迴路中 循環流動。電路165可設置於導熱管161内或導熱管161 外,第一機構120係透過電路165電性連接於第二機構 ( 140。第二機構140更包括一電源供應器(Power) 143及 一驅動器(Driver) 145。電源供應器143係設置於第二 殼體141内,用以提供第一機構120及第二機構140之電 源。驅動器145係設置於第二殼體141内,用以驅動第一 機構120之光機元件122。電路165除可將第二機構140 之電源供應器143之電力傳導至第一機構120,以提供光 機元件122之電力外,驅動器145也可經由此電路165驅 動第一機構120之光機元件122。 200909989• 37PA 200909989. When the cooled wafer is electrically conductive, its surface will cool down and it will be called cold surface 125a, while the other side will heat up and will be called hot surface 125b. Therefore, the cold surface 125a of the heat conducting element 125 is connected to the optomechanical element 122 (the lens 123 or a light source 124, which is taken as an example of the lens 123 in FIG. 1B) for cooling and absorbing the optical component 122 (lens 123). Or a light source 124) generates a heat source. Please refer to both Figure 1A and Figure 1C. Fig. 1C is an enlarged schematic view showing the heat transfer tube according to Fig. 1A. As shown in step 204 of Figure 2, a connection mechanism 160 is provided for connecting the thermally conductive element 125 and the heat dissipating element 144 to form a closed loop. As shown in Fig. 1A, a plurality of heat transfer tubes 161 are connected in parallel with the heat transfer elements 125 and the heat dissipating elements 144 to form a plurality of closed loops. As shown in FIG. 1C, the connection mechanism 160 further includes a heat transfer fluid 162, a plurality of pumps 163 (shown in FIG. 1A), and a circuit 165. The heat transfer fluid 162 is disposed within the heat pipe 161. The pump 163 is used to circulate the heat transfer fluid 162 in the closed loop of the heat pipes 161. The circuit 165 can be disposed in the heat pipe 161 or outside the heat pipe 161. The first mechanism 120 is electrically connected to the second mechanism (140 through the circuit 165. The second mechanism 140 further includes a power supply 143 and a driver. (Driver) 145. The power supply 143 is disposed in the second housing 141 for providing power to the first mechanism 120 and the second mechanism 140. The driver 145 is disposed in the second housing 141 for driving the first The optomechanical component 122 of a mechanism 120. The circuit 165 can transmit power from the power supply 143 of the second mechanism 140 to the first mechanism 120 to provide power to the optomechanical component 122, via which the driver 145 can also pass. The optomechanical element 122 of the first mechanism 120 is driven. 200909989

37PA 請再參照第1A圖。如第2圖之步驟205中,推動一 導熱流體162循環流動於導熱元件125及散熱元件144之 間。由於導熱管161連接導熱元件125及散熱元件144以 形成一封閉迴路,且導熱流體162設置於導熱管161中。 導熱流體162即可經由數個幫浦163推動循環流動於導熱 管中161。 請參照第1Α圖及第1C圖。在步驟204中,自導熱元 件125傳導熱源至散熱元件144。於本實施例中,導熱流 體162為比熱大於等於一之流體,例如為冷媒或純水,可 有效使導熱元件125之熱源傳導至導熱流體162。連接機 構160較佳地包括一交換槽164,此交換槽164係設置於 導熱元件125及導熱管161之間且交換槽164之材質係為 一導熱材料,可有效增加導熱流體162與導熱元件125的 導熱面積,以提昇導熱效率。 當導熱流體162於交換槽164吸收熱源時,會經導熱 管161之封閉迴路迴流至散熱元件144散熱。此風扇146 係使氣流對流於此散熱元件144間,使導熱流體162加速 排出熱能,且經由第二殼體141之開口 142,加快第二機 構140内的熱對流速度以使熱能排出第二機構140。當散 熱流體162經散熱元件144散熱後,又具備吸熱的傳導能 力,即可迴流至導熱元件125處吸收導熱元件125傳導之 熱源。如此循環流動,有效地將第一機構120所產生之熱 源傳導至第二機構140散熱。 此外,由於本實施例中,導熱元件125係以一致冷晶 1137PA Please refer to Figure 1A again. In step 205 of Figure 2, a thermally conductive fluid 162 is caused to circulate between the thermally conductive element 125 and the heat dissipating element 144. The heat conducting tube 161 is connected to the heat conducting member 125 and the heat dissipating member 144 to form a closed loop, and the heat transfer fluid 162 is disposed in the heat conducting tube 161. The heat transfer fluid 162 can be circulated in the heat pipe 161 via a plurality of pumps 163. Please refer to Figure 1 and Figure 1C. In step 204, a heat source is conducted from the thermally conductive element 125 to the heat dissipating component 144. In the present embodiment, the heat transfer fluid 162 is a fluid having a specific heat equal to or greater than one, such as a refrigerant or pure water, and is effective for conducting a heat source of the heat conductive member 125 to the heat transfer fluid 162. The connecting mechanism 160 preferably includes an exchange groove 164 disposed between the heat conducting element 125 and the heat pipe 161 and the material of the exchange groove 164 is a heat conductive material, which can effectively increase the heat transfer fluid 162 and the heat conductive element 125. The thermal conductivity area to improve thermal conductivity. When the heat transfer fluid 162 absorbs the heat source in the exchange tank 164, it is returned to the heat dissipating member 144 through the closed loop of the heat pipe 161 to dissipate heat. The fan 146 convects a flow of air between the heat dissipating members 144 to accelerate the heat transfer of the heat transfer fluid 162, and accelerates the heat convection speed in the second mechanism 140 through the opening 142 of the second casing 141 to discharge the heat to the second mechanism. 140. When the heat dissipating fluid 162 is dissipated through the heat dissipating component 144, it has an endothermic conduction capability, that is, it can be reflowed to the heat conducting component 125 to absorb the heat source conducted by the heat conducting component 125. The circulation flow thus effectively transmits the heat source generated by the first mechanism 120 to the second mechanism 140 for heat dissipation. In addition, since the heat conducting element 125 is in the same embodiment, the cold crystal 11 is uniform.

437PA 200909989 片。然導熱元件125並不侷限於致冷晶另,也可使用導熱 金屬塊直接將光機元件】22所產生之熱源傳導至導熱流體 162,經由導熱流體i62傳導散熱。 另外,導熱管161之管壁材質較佳地更設置一隔熱材 料,以隔絕外部的熱源傳導至導熱流體162,而降低導熱 流體162的吸熱能力。 再者,於本實施例中僅光機元件122設置於第一機構 12〇,其餘元件(如電源供應器143)係設置於第二機構 14(^使得第一機構12〇之體積及重量玎以縮至最小,以 減少至内設置空間。然除光機元件1Μ需設置於第一機構 120以及散熱元件144與風扇需設置於第二機構140 外,其餘元件係可依實際情況改變其配置位置,並不加以 限制。 此外,由於第一機構12〇及第二機構140係藉由連接 機構丨60連接,使得第一機構120與第二機構140分開設 置於不同位置。如第1A圖所示,第一機構12〇係設置於 第一空間R1,第二機構u〇係設置於第二空間R2。第一 空間例如為一室内,第二空間R2例如為一室外。或者 第Γ空間R1例如為一桌面上,第二空間R2例如為一桌面 下等。藉由分離第一機構12〇中的光機元件122及第二機 構140的散熱讀144,可有致解決使用者於使用投影機 時被噪音干擾及熱氣吹拂的問題。 另外’於本實施例中’導熱管161係以並聯方式連接 ”有產生熱源的光機兀件122 (鏡頭⑶及燈源⑶),並 12 ϋ7ΡΑ 200909989 各自單獨以一封閉迴路將熱源傳導至散熱元件144散熱。 並聯此種連接方式係可確保各光機元件122均具有良好的 散熱效果。 第二實施例 請參照第3圖,其繪示本發明之第二實施例之投影裝 置不意圖°第二實施例之投影裝置200和第一實施例之投 影裝置100同樣經由導熱管166連接導熱元件125及散熱 兀件144 ’以使光機元件122藉由導熱管166傳導熱源至 散熱το件144散熱。第二實施例之投影裝置2〇〇和第一實 施例之投影裝置1〇〇不同之處在於導熱管166之配置方 式。上述第—實施例之導熱管161與導熱元件125及散熱 兀件_144的連接方法係應用並聯的配置方法,如第1Α圖 所繪不。而本實施例中,導熱管166與導熱元件125及散 熱元件144係應用串聯的配置方法,其餘相同之處係不再 重複贅述。 於本實施例中’第一機構120包括數個導熱元件 125 ’且連接機構260包括數個導熱管166。導熱管166係 以串聯方式與此些導熱元件125及散熱元件144連接,以 形成一封閉迴路。而導熱流體162 (繪示於第1Β圖中)係 於此封閉封路内流動,以使第-機構120散熱。 此外’於本實施例中,導熱管166係以串聯方式連接 具有產生熱源的光機元件122,並以同一個封閉迴路將熱 源傳導至散熱元件丨44散熱,可減少導熱管166的使用量 13 200909989437PA 200909989 film. However, the heat conducting element 125 is not limited to the cooling crystal, and the heat source generated by the optomechanical element 22 can be directly conducted to the heat conducting fluid 162 using the heat conducting metal block, and the heat is radiated via the heat conducting fluid i62. In addition, the wall material of the heat pipe 161 is preferably further provided with a heat insulating material to shield the external heat source from the heat transfer fluid 162 and reduce the heat absorbing ability of the heat transfer fluid 162. Furthermore, in the present embodiment, only the optical component 122 is disposed in the first mechanism 12A, and the remaining components (such as the power supply 143) are disposed in the second mechanism 14 (^ such that the volume and weight of the first mechanism 12〇) In order to reduce the space to the minimum, the optical components 1 need to be disposed in the first mechanism 120 and the heat dissipating component 144 and the fan to be disposed outside the second mechanism 140, and the remaining components can be changed according to actual conditions. The position is not limited. Further, since the first mechanism 12 and the second mechanism 140 are connected by the connecting mechanism 丨 60, the first mechanism 120 and the second mechanism 140 are separately disposed at different positions. As shown in FIG. 1A The first mechanism 12 is disposed in the first space R1, and the second mechanism u is disposed in the second space R2. The first space is, for example, a room, and the second space R2 is, for example, an outdoor space, or the second space R1. For example, on a desktop, the second space R2 is, for example, a desktop, etc. By separating the optical component 122 of the first mechanism 12 and the thermal reading 144 of the second mechanism 140, the user can be used to solve the problem. Interference by noise The problem of hot air blowing. In addition, in the present embodiment, the 'heat-conducting tubes 161 are connected in parallel” with the optical element 122 (lens (3) and the light source (3)) generating the heat source, and each of the 12 ϋ7ΡΑ 200909989 is a closed loop. The heat source is transmitted to the heat dissipating component 144 to dissipate heat. The parallel connection method ensures that each of the optoelectronic components 122 has a good heat dissipation effect. For the second embodiment, please refer to FIG. 3, which illustrates a second embodiment of the present invention. The projection device 200 of the second embodiment is not intended to be connected to the heat-conducting element 125 and the heat-dissipating element 144 ′ via the heat pipe 166 to transmit the heat source of the optomechanical element 122 through the heat pipe 166 . The heat sink 166 is different from the projection apparatus 1 of the first embodiment in the arrangement of the heat transfer tubes 166. The heat transfer tubes 161 and heat conduction of the above-described first embodiment The connecting method of the component 125 and the heat dissipating component _144 is a parallel configuration method, as shown in the first drawing. In this embodiment, the heat pipe 166 and the heat conducting component 125 and the heat dissipating component are The 144 series application configuration method in series, the rest of which are not repeated. In the present embodiment, the 'first mechanism 120 includes a plurality of heat conduction elements 125' and the connection mechanism 260 includes a plurality of heat pipes 166. The heat conducting elements 125 and the heat dissipating elements 144 are connected in series to form a closed loop, and the heat conducting fluid 162 (shown in FIG. 1 ) flows in the closed circuit to dissipate the first mechanism 120 In addition, in the present embodiment, the heat pipe 166 is connected in series to the optomechanical element 122 having the heat source, and the heat source is conducted to the heat dissipating component 丨44 in the same closed loop to dissipate heat, thereby reducing the amount of the heat pipe 166. 13 200909989

37PA 且有效減少管路的配置空間’達到縮小投影裝置200整體 的體積。 另外,上述兩實施例係分別以並聯及串聯兩種連接方 式做為不同實施例分別詳細說明,然此兩種連接方式各自 具有其適用情況。因此投影裝置的實施方式可依實際情況 選擇性地使用串聯、並聯或串聯/並聯混合使用。 本發明上述實施例所揭露之投影裝置及散熱方法,係 利用連接機構將光機元件與散熱元件分離,即可使光機元 件與散熱元件分處於不同空間,有效解決使用者於使用投 影裝置時被噪音干擾及熱氣吹拂的問題。此外,因第一機 構藉由連接機構導熱,不需裝設置何風扇與開口,而成為 一封閉空間,可有效隔絕外界灰塵,維持光學品質,更延 長光機元件的使用壽命。 綜上所述,雖然本發明已以較佳實施例揭露如上,然 其並非用以限定本發明。本發明所屬技術領域中具有通常 知識者,在不脫離本發明之精神和範圍内,當可作各種之 更動與潤飾。因此,本發明之保護範圍當視後附之申請專 利範圍所界定者為準。 14 200909989The 37PA is effective in reducing the space in which the piping is disposed, and the volume of the entire projection device 200 is reduced. In addition, the above two embodiments are respectively described in parallel and in series as different embodiments, respectively, and the two connection modes each have their applicable conditions. Thus, embodiments of the projection device can be selectively used in series, parallel or series/parallel mixing depending on the actual situation. The projection device and the heat dissipation method disclosed in the above embodiments of the present invention separate the optical component and the heat dissipation component by using the connection mechanism, so that the optical component and the heat dissipation component are separated into different spaces, thereby effectively solving the problem when the user uses the projection device. The problem of being disturbed by noise and hot air. In addition, since the first mechanism conducts heat through the connecting mechanism, it does not need to be provided with a fan and an opening, and becomes a closed space, which can effectively isolate external dust, maintain optical quality, and prolong the service life of the optical component. In the above, the present invention has been disclosed in the above preferred embodiments, but it is not intended to limit the present invention. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. 14 200909989

二违綱肌·丄7PA 【圖式簡單說明】 第1A圖繪示依照第一實施例之投影裝置之示意圖; 第1B圖繪示依照第1A圖中導熱管及導熱元件之放 大示意圖; 第1C圖繪示依照第1A圖中導熱管之放大示意圖; 第2圖繪示依照本發明第一實施例之投影機構之散 熱方法流程圖;以及 第3圖繪示本發明之第二實施例之投影裝置示意 圖。 15 200909989 " 【主要元件符號說明】 57ΡΑThe second embodiment of the present invention is a schematic diagram of a projection device according to the first embodiment; 1 is a schematic enlarged view of a heat transfer tube according to FIG. 1A; FIG. 2 is a flow chart showing a heat dissipation method of a projection mechanism according to a first embodiment of the present invention; and FIG. 3 is a view showing a projection of a second embodiment of the present invention; Schematic diagram of the device. 15 200909989 " [Main component symbol description] 57ΡΑ

·-»- 1 /Hl·.-.»· ·. — J > X 1 X 100、 200 :投影裝置 120 第一機構 121 第一殼體 122 光機元件 123 鏡頭 124 燈源 125 導熱元件 125a :冷面 125b :熱面 140 :第二機構 141 :第二殼體 142 :開口 143 :電源供應器 144 :散熱元件 145 :驅動器 146 :風扇 160 、260 :連接機構 161 、166 :導熱管 162 :導熱流體 163 :幫浦 164 :交換槽 165 :電路 R1 : 第一空間 R2 : 第二空間 16·-»- 1 /Hl·.-.»··. — J > X 1 X 100, 200: Projection device 120 First mechanism 121 First housing 122 Optomechanical component 123 Lens 124 Light source 125 Thermally conductive element 125a : cold surface 125b : hot surface 140 : second mechanism 141 : second housing 142 : opening 143 : power supply 144 : heat dissipation element 145 : driver 146 : fan 160 , 260 : connection mechanism 161 , 166 : heat pipe 162 : Heat transfer fluid 163: pump 164: exchange tank 165: circuit R1: first space R2: second space 16

Claims (1)

200909989 二;* 乂 7PA ' 十、申請專利範圍: 1. 一種投影裝置,包括: 一第一機構,包括: 一第一殼體; 一光機元件,係設置於該第一殼體内,該光機 元件係投射一影像並產生一熱源;及 至少一導熱元件,設置於該光機元件上,用以 吸收該熱源; 一第二機構,包括: 一第二殼體;及 一散熱元件,係設置於該第二殼體内;以及 一連接機構,用以連接該第一機構及該第二機構,包 括: 至少一導熱管,係與該導熱元件及該散熱元件 連接,並形成至少一封閉迴路,該導熱管用以傳導該熱源 至該散熱元件,以冷卻該光機元件。 2. 如申請專利範圍第1項所述之投影裝置,其中該 連接機構更包括: 至少一導熱流體,係設置於該導熱管内;以及 至少一幫浦,以使該導熱流體於該導熱管之該封閉迴 路中循環流動。 3. 如申請專利範圍第2項所述之投影裝置,其中該 連接機構更包括: 一交換槽,係設置於該導熱元件及該導熱管之間,以 17 200909989 7ΡΛ —w u — - - - ' *· ' 使該導熱流體進行熱交換。 4. 如申請專利範圍第3項所述之投影裝置,其中該 交換槽之材質係為一導熱材料。 5. 如申請專利範圍第2項所述之投影裝置,其中該 導熱流體係為比熱大於等於一之流體。 6. 如申請專利範圍第5項所述之投影裝置,其中該 導熱流體係為冷媒或純水。 7. 如申請專利範圍第1項所述之投影裝置,其中該 導熱管之管壁的材質為隔熱材料。 8. 如申請專利範圍第1項所述之投影裝置,其中該 第一機構包括複數個導熱元件,該連接機構包括複數個導 熱管,該些導熱管係並聯該些導熱元件及該散熱元件件以 形成複數個封閉迴路。 9. 如申請專利範圍第8項所述之投影裝置,其中該 連接機構更包括: 複數個導熱流體,係分別設置於該些導熱管内;以及 、 複數個幫浦,以使該些導熱流體於該些導熱管之該些 封閉迴路中循環流動。 10. 如申請專利範圍第1項所述之投影裝置,其中該 第一機構包括複數個導熱元件,該導熱管係串聯該些導熱 元件及該散熱元件以形成該封閉迴路。 11. 如申請專利範圍第1項所述之投影裝置,其中該 第二殼體具有一開口,該第二機構更包括: 一風扇’設置於該第二殼體内’該風扇係經由該開口 18 200909989 ___.......… ί7ΡΑ 使該第二機構之内部氣流與外界對流,以使該散熱元件散 熱。 12. 如申請專利範圍第1項所述之投影裝置,其中該 連接機構更包括: 一電路,係電性連接該第一機構及該第二機構。 13. 如申請專利範圍第12項所述之投影裝置,其中 該第二機構更包括: 一電源供應器,設置於該第二殼體内,用以提供該第 :一機構及該第二機構之電源。 14. 如申請專利範圍第12項所述之投影裝置,其中 該第二機構更包括: 一驅動器,設置於該第二殼體内,用以驅動該第一機 構之該光機元件。 15. 如申請專利範圍第1項所述之投影裝置,其中該 導熱元件係為一致冷晶片(Thermoelectric Cooling, TEC)。 - 16.如申請專利範圍第15項所述之投影裝置,其中 該致冷晶片之兩端各為一熱面及一冷面,其中該冷面係與 該光機元件相連,該熱面係與該導熱管相連。 17.如申請專利範圍第1項所述之投影裝置,其中該 光機元件包括: 一鏡頭(Lens);以及 一燈源(Lamp),係射出一光線至該鏡頭。 19 200909989 37PA 18.如申請專利範圍第1項所述之投影裝置,其中該 政熱元件為一熱交換器。 _ 19.如申請專利範圍第18項所述之投影農置,其中 ^…、父換器係為一空氣冷卻式熱交換器或一水冷式熱交 換器。 …、乂 2〇.如申請專利範圍第1項所述之投影裝置,其中該 第一機構為一封閉空間。 Λ 21· 一種散熱方法,包括: (a·)提供一第一機構,該第一機構包括一光機元件, 該光機元件係投射一影像並產生一熱源; (b) k供一弟一機構,該第二機構包括一散熱元件; (c) 以一導熱元件吸收該熱源;以及 (d) 自該導熱元件傳導該熱源至該散熱元件。 22.如申請專利範圍第21項所述之散熱方法,其中 該步驟(d)更包括: (dl )推動一導熱流體循環流動於該導熱元件及該散 熱元件之間。 人 20200909989 2;* 乂7PA' X. Patent application scope: 1. A projection device comprising: a first mechanism comprising: a first housing; a optomechanical component disposed in the first housing, the The optomechanical component projects an image and generates a heat source; and at least one heat conducting component is disposed on the optomechanical component for absorbing the heat source; a second mechanism comprising: a second housing; and a heat dissipating component, The second mechanism is disposed in the second housing; and a connecting mechanism is configured to connect the first mechanism and the second mechanism, and the method includes: at least one heat pipe connected to the heat conducting component and the heat dissipating component, and forming at least one A closed circuit is configured to conduct the heat source to the heat dissipating component to cool the optoelectronic component. 2. The projection device of claim 1, wherein the connecting mechanism further comprises: at least one heat transfer fluid disposed in the heat pipe; and at least one pump to allow the heat transfer fluid to be in the heat pipe The closed loop circulates. 3. The projection device of claim 2, wherein the connecting mechanism further comprises: an exchange slot disposed between the heat conducting component and the heat pipe to 17 200909989 7ΡΛ—wu — - - - ' *· 'The heat transfer fluid is exchanged. 4. The projection device of claim 3, wherein the material of the exchange groove is a heat conductive material. 5. The projection device of claim 2, wherein the thermally conductive flow system is a fluid having a specific heat greater than or equal to one. 6. The projection device of claim 5, wherein the heat transfer flow system is a refrigerant or pure water. 7. The projection device of claim 1, wherein the wall of the heat pipe is made of a heat insulating material. 8. The projection device of claim 1, wherein the first mechanism comprises a plurality of heat conducting elements, the connecting mechanism comprising a plurality of heat conducting tubes, wherein the heat conducting tubes are connected in parallel with the heat conducting elements and the heat dissipating component To form a plurality of closed loops. 9. The projection device of claim 8, wherein the connecting mechanism further comprises: a plurality of heat transfer fluids disposed in the heat pipes; and a plurality of pumps to allow the heat transfer fluids to The closed loops of the heat pipes are circulated. 10. The projection device of claim 1, wherein the first mechanism comprises a plurality of thermally conductive elements connected in series with the thermally conductive elements and the heat dissipating elements to form the closed loop. 11. The projection device of claim 1, wherein the second housing has an opening, the second mechanism further comprising: a fan disposed in the second housing, wherein the fan is through the opening 18 200909989 ___........ ί7ΡΑ Convect the internal airflow of the second mechanism to the outside to dissipate the heat dissipating component. 12. The projection device of claim 1, wherein the connection mechanism further comprises: a circuit electrically connecting the first mechanism and the second mechanism. 13. The projection device of claim 12, wherein the second mechanism further comprises: a power supply disposed in the second housing for providing the first mechanism and the second mechanism The power supply. 14. The projection device of claim 12, wherein the second mechanism further comprises: a driver disposed in the second housing for driving the opto-mechanical component of the first mechanism. 15. The projection device of claim 1, wherein the thermally conductive element is a Thermoelectric Cooling (TEC). The projection device of claim 15, wherein both ends of the refrigerating wafer are a hot surface and a cold surface, wherein the cold surface is connected to the optical component, the thermal surface system Connected to the heat pipe. 17. The projection apparatus of claim 1, wherein the optomechanical component comprises: a lens (Lens); and a light source (Lamp) that emits a light to the lens. The projection device of claim 1, wherein the thermal element is a heat exchanger. 19. The projection farm according to claim 18, wherein the parent exchanger is an air-cooled heat exchanger or a water-cooled heat exchanger. The projection device of claim 1, wherein the first mechanism is a closed space. Λ 21· A heat dissipation method comprising: (a·) providing a first mechanism, the first mechanism comprising a optomechanical component, the optomechanical component projecting an image and generating a heat source; (b) k for a younger brother a mechanism, the second mechanism including a heat dissipating component; (c) absorbing the heat source with a heat conducting component; and (d) conducting the heat source from the heat conducting component to the heat dissipating component. 22. The heat dissipation method of claim 21, wherein the step (d) further comprises: (dl) pushing a heat transfer fluid to circulate between the heat conducting element and the heat sink element. People 20
TW96130781A 2007-08-20 2007-08-20 Projection device and heat dissipation method TW200909989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96130781A TW200909989A (en) 2007-08-20 2007-08-20 Projection device and heat dissipation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96130781A TW200909989A (en) 2007-08-20 2007-08-20 Projection device and heat dissipation method

Publications (1)

Publication Number Publication Date
TW200909989A true TW200909989A (en) 2009-03-01

Family

ID=44724223

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96130781A TW200909989A (en) 2007-08-20 2007-08-20 Projection device and heat dissipation method

Country Status (1)

Country Link
TW (1) TW200909989A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI405026B (en) * 2009-07-29 2013-08-11 Qisda Corp Projector and lens thereof
TWI411390B (en) * 2010-07-26 2013-10-01 I-Ming Lin Devices in series for continuous cooling/ heating
TWI476360B (en) * 2011-04-29 2015-03-11 Asia Vital Components Co Ltd Loop heat pipe structure
US9504185B2 (en) 2011-03-29 2016-11-22 Asia Vital Components (Shen Zhen) Co., Ltd. Dual chamber loop heat pipe structure with multiple wick layers
TWI595305B (en) * 2015-11-30 2017-08-11 深圳市光峰光電技術有限公司 Heat sink and projector

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI405026B (en) * 2009-07-29 2013-08-11 Qisda Corp Projector and lens thereof
TWI411390B (en) * 2010-07-26 2013-10-01 I-Ming Lin Devices in series for continuous cooling/ heating
US9504185B2 (en) 2011-03-29 2016-11-22 Asia Vital Components (Shen Zhen) Co., Ltd. Dual chamber loop heat pipe structure with multiple wick layers
TWI476360B (en) * 2011-04-29 2015-03-11 Asia Vital Components Co Ltd Loop heat pipe structure
TWI595305B (en) * 2015-11-30 2017-08-11 深圳市光峰光電技術有限公司 Heat sink and projector

Similar Documents

Publication Publication Date Title
US8256901B2 (en) Image projection apparatus and method of cooling an image projection apparatus
US7866852B2 (en) Heat sinks for cooling LEDs in projectors
US7841721B2 (en) Projector with a sealed structure having an air-circulation path
WO2015107899A1 (en) Cooling apparatus and electronic apparatus
WO2018166301A1 (en) Heat dissipation system and electronic device
US20080030688A1 (en) Projection apparatus
CN101377613A (en) Projection device and heat radiation method
JP2007334042A (en) Cooling device and projector
US11036118B2 (en) Heat dissipation module and projection apparatus
JP2006259282A (en) Projection-type display device and method for cooling liquid crystal unit
JP2010170148A (en) Projector
TW200909989A (en) Projection device and heat dissipation method
JP4811190B2 (en) LCD display
TW201734626A (en) Heat sink and projector
US20220171263A1 (en) Heat dissipation module and projection device
CN115128889A (en) High-brightness full-sealed optical machine and projector
JP2017138525A (en) Projection type image display device
CN216351743U (en) Optical machine heat radiation structure and projector
CN215833751U (en) Heat dissipation box and multimedia projector comprising same
CN215184050U (en) Fully-passive heat dissipation system, multi-loop fully-passive heat dissipation system and light emitting equipment
CN221225299U (en) Projection device
CN210534519U (en) 4K home theater cooling system
CN221765918U (en) Projector with a light source
CN118605070A (en) Radiating assembly and projection ray apparatus
CN220305614U (en) Closed ray apparatus convenient to heat dissipation