WO2020253723A1 - 一种散热组件、电子设备 - Google Patents

一种散热组件、电子设备 Download PDF

Info

Publication number
WO2020253723A1
WO2020253723A1 PCT/CN2020/096575 CN2020096575W WO2020253723A1 WO 2020253723 A1 WO2020253723 A1 WO 2020253723A1 CN 2020096575 W CN2020096575 W CN 2020096575W WO 2020253723 A1 WO2020253723 A1 WO 2020253723A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
main
auxiliary
working fluid
connecting pipe
Prior art date
Application number
PCT/CN2020/096575
Other languages
English (en)
French (fr)
Inventor
罗洋
陈奇
甄海涛
张治国
黎超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20826479.6A priority Critical patent/EP3962255A4/en
Priority to US17/596,612 priority patent/US12004320B2/en
Publication of WO2020253723A1 publication Critical patent/WO2020253723A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20172Fan mounting or fan specifications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1626Constructional details or arrangements for portable computers with a single-body enclosure integrating a flat display, e.g. Personal Digital Assistants [PDAs]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1675Miscellaneous details related to the relative movement between the different enclosures or enclosure parts
    • G06F1/1681Details related solely to hinges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/203Heat conductive hinge

Definitions

  • This application relates to the technical field of heat dissipation of electronic equipment, and in particular to a heat dissipation component and electronic equipment.
  • the embodiments of the present application provide a heat dissipation assembly and an electronic device, which are used to dissipate heat of high heating elements in the electronic device.
  • the first aspect of the embodiments of the present application provides a heat dissipation system.
  • the heat dissipation system includes a system part.
  • the system unit includes a first-level heat sink and a working fluid driver.
  • the heat dissipation system also includes a working fluid, a secondary heat sink, and a working fluid transmission component.
  • the primary heat sink includes a main heat sink used for contacting the heating element, and a main flow passage structure arranged in the main heat sink for circulating working fluid.
  • the secondary heat sink includes an auxiliary heat dissipation plate and an auxiliary circulation structure arranged in the auxiliary heat dissipation plate for circulating working fluids.
  • the working medium transmission component is rotatably connected with the auxiliary heat sink and the system part.
  • the transmission channel in the working fluid transmission assembly is used at least to connect the main flow structure and the secondary flow structure.
  • the working medium driver is used to drive the working medium to flow in the main flow structure, the secondary flow structure and the transmission channel of the
  • the working medium driver can drive the working medium to be transmitted from the working medium driver to the main flow channel structure in the main heat sink. Since the main heat sink is in contact with the heating element, when the working fluid flows through the main heat sink, the heat of the heating element can be absorbed, so that the heating element can be cooled, so as to achieve the purpose of radiating heat to the heating element. Next, driven by the working medium driver, the working medium that has absorbed the heat of the heating element will flow into the secondary circulation structure in the secondary heat sink through the transmission channel of the working medium transmission assembly.
  • the auxiliary heat dissipation plate is connected with the housing of the electronic device, so that a part of the heat in the working fluid can be absorbed through the housing, so that the temperature of the working fluid can be reduced, and the purpose of heat dissipation of the heating element is achieved.
  • the working medium transmission assembly includes at least one first working medium transmission part.
  • the first working medium transmission part is rotatably connected with the main heat dissipation plate and the auxiliary heat dissipation plate.
  • the transmission channel in the first working fluid transmission part communicates with the main flow structure and the secondary flow structure.
  • the working fluid in the main circulation structure can flow to the auxiliary circulation structure through the transmission channel in the first working fluid transmission part.
  • the working fluid in the secondary circulation structure can flow to the main circulation structure through the transmission channel in the first working fluid transmission part.
  • the first working fluid transmission part includes a main connecting pipe and an auxiliary connecting pipe.
  • the main connecting pipe is connected with the main heat dissipation plate, and its inner hole is connected with the main flow structure.
  • the auxiliary connecting pipe is rotationally connected with the main connecting pipe.
  • the auxiliary connecting pipe is connected with the auxiliary heat dissipation plate, and its inner hole is connected with the auxiliary circulation structure.
  • the first working fluid transmission part further includes a hose.
  • the hose passes through the inner holes of the main connecting pipe and the auxiliary connecting pipe.
  • One end of the hose is connected with the main flow structure, and the other end is connected with the secondary flow structure.
  • the inner hole of the hose is used as the transmission channel of the first working fluid transmission part, so that the working fluid can flow in the inner hole of the hose, so as to realize the transmission of the working fluid in the first working fluid transmission part.
  • the first working medium transmission part further includes a lyophobic coating covering the outer wall surface of the hose.
  • the infusion coating can reduce the probability of polymer leakage of the working fluid in the hose through the hose.
  • the first working medium transmission part further includes a rotating connection pipe and at least one sealing element.
  • One end of the main connecting pipe is butted with one end of the auxiliary connecting pipe, and both are nested in the rotating connecting pipe.
  • the sealing element is located between the hole wall of the inner hole of the rotating connecting pipe and the outer wall of the main connecting pipe, or the sealing element is located between the hole wall of the inner hole of the rotating connecting pipe and the outer wall of the auxiliary connecting pipe.
  • the first working medium transmission part further includes at least one sealing element.
  • a part of the main connecting pipe extends into the inner hole of the auxiliary connecting pipe.
  • the seal is located between the outer wall of the main connecting pipe and the hole wall of the inner hole of the auxiliary connecting pipe.
  • a part of the auxiliary connecting pipe extends into the inner hole of the main connecting pipe.
  • the seal is located between the outer wall of the auxiliary connecting pipe and the hole wall of the inner hole of the main connecting pipe.
  • the working medium transmission assembly further includes a second working medium transmission part.
  • the second working medium transmission part is rotatably connected with the auxiliary heat sink and the working medium driver.
  • the liquid outlet of the working medium driver is connected with the main flow structure, and the transmission channel in the second working medium transmission part is connected with the secondary flow structure and the liquid inlet of the working medium driver.
  • the working medium can flow into the main flow through structure from the liquid outlet of the working medium driver and dissipate heat from the heating element, and then be transmitted from the first working medium transmission part to the secondary flow structure. Dissipate heat on the main heat sink.
  • it is transferred to the second working medium transmission part through the auxiliary flow structure, and then flows back to the liquid inlet of the working medium driver through the second working medium transmission part, so that the working medium can perform the next cycle heat dissipation of the heating element .
  • the working medium transmission assembly further includes two first working medium transmission parts arranged side by side, which are the right first working medium transmission part and the left first working medium transmission part respectively.
  • the main circulation structure includes a first main channel and a second main channel.
  • the liquid outlet of the working fluid driver is connected with the first main channel, and the liquid inlet is connected with the second main channel.
  • the transmission channel of the first working fluid transmission part on the right is in communication with the first main channel and the auxiliary circulation structure.
  • the transmission channel of the first working medium transmission part on the left communicates with the secondary circulation structure and the second main channel. In this way, the working medium driver can drive the working medium to be transmitted from the liquid outlet of the working medium driver to the first main channel in the main heat sink.
  • the main heat sink Since the main heat sink is in contact with the heating element on the main board, when the working fluid flows through the main heat sink, the heat of the heating element can be absorbed, so that the heating element can cool down, thereby achieving the purpose of dissipating heat to the heating element.
  • the working medium driver driven by the working medium driver, the working medium that has absorbed the heat of the heating element will flow into the secondary circulation structure in the secondary heat sink through the transmission channel of the first right working medium transmission part.
  • the auxiliary heat sink is connected with the first shell, so that part of the heat in the working fluid can be absorbed through the first shell, so that the temperature of the working fluid can be reduced.
  • the cooled working medium can flow from the secondary circulation structure in the secondary heat sink to the transmission channel of the left first working medium transmission part, and then pass through the left first working medium transmission part It flows into the second main channel in the main heat sink, and enters the liquid inlet of the working fluid driver through the second main channel, and then enters the main heat sink again from the liquid outlet of the working fluid driver after being driven by the working fluid driver In the first main channel inside, the next round of heat dissipation process.
  • the working fluid transmission assembly includes a first connecting pipe and a second connecting pipe.
  • the second connecting pipe is nested in the inner hole of the first connecting pipe.
  • the first connecting pipe is rotatably connected with the main heat dissipation plate and the auxiliary heat dissipation plate.
  • the inner hole of the first connecting pipe is in communication with the liquid inlet and the auxiliary circulation structure of the working fluid driver, and the liquid outlet of the working fluid driver is in communication with the main circulation structure.
  • the inner hole of the second connecting pipe communicates with the main flow structure and the auxiliary flow structure.
  • the working fluid flowing from the fluid outlet of the working fluid driver to the main flow structure can flow to the secondary flow structure through the second connecting pipe , And then return from the auxiliary circulation structure to the liquid inlet of the working fluid driver through the first connecting pipe.
  • At least the part of the first connecting pipe and the second connecting pipe between the main heat sink and the auxiliary heat sink is made of flexible material, so that the first connecting pipe can be connected to the main heat sink and the auxiliary heat sink. Bottom, the main heat dissipation plate and the auxiliary heat dissipation plate can be rotated through the first connecting pipe.
  • the main flow channel structure includes a first main channel and a second main channel.
  • the liquid outlet of the working fluid driver is connected with the first main channel, and the liquid inlet is connected with the second main channel.
  • the working fluid transmission assembly includes a third connecting pipe and a fourth connecting pipe.
  • the fourth connecting pipe is nested in the inner hole of the third connecting pipe.
  • the third connecting pipe is rotatably connected with the main heat dissipation plate and the auxiliary heat dissipation plate, and the inner hole of the third connecting pipe is communicated with the second main channel and the auxiliary circulation structure.
  • the inner hole of the fourth connecting pipe communicates with the first main channel and with the auxiliary circulation structure.
  • the working fluid flowing from the liquid outlet of the working fluid driver to the first main channel can flow to the secondary circulation through the third connecting pipe
  • the structure then flows from the secondary circulation structure to the second main channel through the fourth connecting pipe, and then flows back to the liquid inlet of the working fluid driver through the second main channel.
  • the circulation process of the working fluid is the same as described above, and will not be repeated here.
  • At least a part of the third connecting pipe and the fourth connecting pipe between the main heat dissipation plate and the auxiliary heat dissipation plate is made of flexible material.
  • the arrangement of the third connecting pipe and the fourth connecting pipe is the same as that of the first connecting pipe and the second connecting pipe, and will not be repeated here.
  • the working fluid driver includes a first upper cover, a first lower bottom, a partition stator, and a rotor.
  • the first lower bottom is connected with the first upper cover to form a containing cavity.
  • the partition is located in the containing cavity and is connected with the first lower bottom.
  • a sealed sub-cavity is formed between the partition and the first lower bottom, and a liquid sub-cavity is formed between the partition and the first upper cover.
  • the liquid outlet and the liquid inlet of the working fluid driver are arranged on the liquid subcavity.
  • the stator is located in the sealed sub-cavity.
  • the rotor is located in the liquid sub-cavity.
  • the rotor is used to rotate under the action of the magnetic field generated by the stator to drive the working fluid in the liquid subcavity to flow. In this way, the stator can be separated from the working fluid in the liquid sub-cavity through the partition.
  • an electrical signal is provided to the stator, a magnetic field is generated around the stator.
  • the rotor generates an induced electromotive force in the magnetic field, thereby generating current in the closed-loop rotor circuit. This current can cause another magnetic field around the rotor.
  • repulsion will occur, causing the rotor to rotate.
  • the working medium in the liquid subcavity can be driven to flow in the liquid subcavity, so that the liquid inlet and outlet of the working medium driver can flow out of the liquid outlet to realize the working medium in the working medium driver and the main flow structure.
  • the circulation flow in the closed loop formed by the secondary circulation structure can be driven to flow in the liquid subcavity, so that the liquid inlet and outlet of the working medium driver can flow out of the liquid outlet to realize the working medium in the working medium driver and the main flow structure.
  • the working fluid driver further includes a temperature sensor and a flow rate controller.
  • the temperature sensor is located in the liquid subcavity and is used to detect the temperature of the working fluid in the liquid subcavity.
  • the flow rate controller is electrically connected with the temperature sensor and the stator.
  • the flow rate controller is used to control the voltage applied to the stator according to the detection result of the temperature sensor.
  • the temperature detected by the temperature sensor is proportional to the voltage applied to the stator. In this way, when the temperature of the working medium in the liquid subcavity is high, the voltage applied to the stator can be increased by the flow rate controller, so that the rotor speed increases, the flow rate of the working medium is accelerated, and the cooling of the heating element is improved. effectiveness. Conversely, when the temperature of the working fluid in the liquid subcavity is low, the flow rate of the working fluid can be reduced.
  • the working fluid driver further includes a leak detector.
  • the leakage detector is electrically connected with the stator and the rotor, and the leakage detector is used to detect the voltage applied to the stator and the rotation speed of the rotor, and determine the volume of the working fluid in the liquid subcavity according to the rotation speed of the rotor.
  • the actual rotation speed of the rotor is detected by the leakage detector, and the actual rotation speed is compared with the above preset rotation speed.
  • the actual rotation speed is greater than the preset rotation speed, it can indicate that the load of the rotor has been reduced. Therefore, there is liquid leakage in the liquid sub-cavity.
  • the working fluid driver further includes a plurality of blades arranged at intervals and connected to the rotor.
  • a plurality of blades are arranged on the outer surface of the rotor. In this way, when the rotor rotates, the blades can be driven to rotate together, so that the blades can push the working fluid in the liquid subcavity to flow during the rotation.
  • the angle between the liquid inlet and the liquid outlet of the working fluid driver is 0°, 90° or 180°.
  • the working medium can enter the edge of the blade in the working medium drive through the liquid inlet, and then driven by the blade by the edge of the blade to accelerate out of the liquid outlet to complete the drive of the working medium.
  • the main flow structure and the secondary flow structure include at least one heat pipe.
  • the heat pipe is provided with a capillary structure for heat dissipation, which is beneficial to improve the heat dissipation effect of the main heat dissipation plate and the auxiliary heat dissipation plate.
  • the primary heat sink and the secondary heat sink are equalizing plates.
  • a capillary structure for heat dissipation is arranged in the heat equalizing plate, which is beneficial to improve the heat dissipation effect of the primary heat sink and the secondary heat sink.
  • the primary heat sink and the secondary heat sink may be pipe sinks. There is no need to provide a capillary structure in the cold plate, so that the manufacturing process of the primary heat sink and the secondary heat sink is simpler.
  • the heat dissipation system further includes auxiliary heat dissipation elements.
  • the auxiliary heat sink is located between the heating element and the main heat sink, and is in contact with the heating element and the main heat sink.
  • the auxiliary heat sink is a heat sink or a thermoelectric cooling film.
  • the heat sink is made of metal material and has good thermal conductivity.
  • the auxiliary heat sink is a thermoelectric refrigeration film, when the thermoelectric refrigeration film is energized, the low-temperature side surface can be in contact with the heating element, which is more conducive to heat dissipation of the heating element.
  • the primary heat sink further includes a main fan, and the main fan is connected to the main heat sink.
  • the secondary heat sink also includes an auxiliary fan; the auxiliary fan is connected to the auxiliary heat sink.
  • the main fan can dissipate heat from the main heat sink that has absorbed the heat of the heating element, so as to improve the heat dissipation effect of the main heat sink on the working fluid.
  • the auxiliary heat dissipation plate can dissipate heat, so as to improve the heat dissipation effect of the auxiliary heat dissipation plate on the working fluid.
  • the secondary circulation structure includes at least one secondary channel penetrating the plate structure of the secondary heat dissipation plate.
  • One end of each auxiliary channel is connected with the liquid inlet of the auxiliary heat sink, and the other end is connected with the liquid outlet of the auxiliary heat sink.
  • Two adjacent secondary channels are separated by a plate structure. In this way, the secondary channel can divert the working fluid flowing into the secondary circulation structure to flow along the shape of the secondary channel.
  • the auxiliary heat dissipation plate includes a second upper cover, a second lower bottom, and a plurality of supporting bars arranged at intervals.
  • the second lower bottom and the second upper cover are connected to form a cavity.
  • a plurality of support bars arranged at intervals are located in the cavity and connected with the second upper cover and the second lower bottom.
  • a secondary channel is formed between two adjacent support bars; a plurality of secondary channels form a secondary circulation structure.
  • the auxiliary channel formed by a plurality of support bars arranged at intervals can divert the working fluid flowing into the auxiliary circulation structure and make it flow along the shape of the auxiliary channel.
  • the secondary channel is in a spiral shape and does not intersect everywhere. Since the side wall of the secondary channel is curved, the resistance of the side wall of the secondary channel to the working fluid can be effectively reduced when the working fluid flows in the secondary channel. As a result, the working fluid can flow more smoothly in the secondary channel, and the power consumption of the working fluid driver is reduced.
  • the auxiliary heat dissipation plate further includes a plurality of supporting columns located in the cavity.
  • the supporting column is connected with the second upper cover and the second lower bottom. It is possible to reduce the probability that the supporting bar, the second upper cover and the second lower bottom will crack due to the thermal expansion of the auxiliary heat dissipation plate.
  • the second aspect of the embodiments of the present application provides an electronic device.
  • the electronic device includes a first housing and a second housing that are rotatably connected, a display module mounted on the first housing, and a main board mounted on the second housing; the motherboard is provided with a heating element.
  • the electronic device also includes any of the heat dissipation systems described above.
  • the primary heat sink is arranged on the second housing, and the main heat sink of the primary heat sink is in contact with the heating element.
  • the secondary heat sink is arranged on the first housing, and the secondary heat sink of the secondary heat sink is connected to the back of the display module and the first housing.
  • the electronic device has the same technical effect as the heat dissipation system provided in the foregoing embodiment, and will not be repeated here.
  • the working fluid driver in the heat dissipation system is located on the second housing, and is placed side by side with the secondary heat sink. Thereby, the space occupied by the heat dissipation system in the electronic device can be saved.
  • the third aspect of the embodiments of the present application provides a heat dissipation system.
  • the heat dissipation system includes a first heat dissipation member, a first working medium, a working medium driver, a second heat dissipation member, and a second working medium.
  • the first heat sink includes a main heat sink for contact with the heating element, and a main flow passage structure arranged in the main heat sink.
  • the fluid outlet and the fluid inlet of the working fluid driver are connected with the main flow passage structure, and are used to drive the first working fluid to circulate in a closed loop formed by the working fluid driver and the main flow passage structure.
  • the second heat dissipating component includes an auxiliary heat dissipation pipe, a fan, and an auxiliary heat dissipation plate.
  • One end of the auxiliary heat dissipation pipe is in contact with the heating element, and the other end is located between the air outlet of the fan and the auxiliary heat dissipation plate, and is connected to the fan and the auxiliary heat dissipation plate.
  • the second working fluid is located in the auxiliary heat pipe.
  • the working medium driver can drive the first working medium to flow from the liquid outlet of the working medium driver to the main flow passage structure in the main heat sink. Since the main heat sink is in contact with the heating element, the first working medium absorbs the heat of the heating element. The first working fluid after absorbing the heat flows back to the liquid inlet of the working fluid driver, so that the first working fluid circulates heat to the heating element. In addition, because one end of the auxiliary heat dissipation pipe is in contact with the heating element, the heat of the heating element can vaporize the second working fluid in the auxiliary heat dissipation pipe and flow to the other end of the auxiliary heat dissipation pipe with a lower temperature.
  • the heat of the second working fluid in the auxiliary heat sink can be removed through the air outlet of the fan and the auxiliary heat sink. take away. In this way, the temperature of the second working fluid decreases and then condenses into a liquid state, and flows back to the end of the auxiliary heat pipe in contact with the heating element in the direction indicated by the arrow, so that the second working fluid realizes circulating heat dissipation of the heating element.
  • the working fluid driver includes a first upper cover, a first lower bottom, a partition, a stator, and a rotor.
  • the first lower bottom is connected with the first upper cover to form a containing cavity.
  • the partition is located in the containing cavity and is connected with the first lower bottom.
  • a sealed sub-cavity is formed between the partition board and the first lower bottom, and a liquid sub-cavity is formed between the partition board and the first upper cover; the liquid outlet and the liquid inlet of the working fluid driver are arranged on the liquid sub-cavity.
  • the stator is located in the sealed sub-cavity.
  • the rotor is located in the liquid sub-cavity. The rotor is used to rotate under the action of the magnetic field generated by the stator to drive the working fluid in the liquid subcavity to flow.
  • the technical effect of the working fluid driver is the same as described above, so I will not repeat it here.
  • the working fluid driver further includes a plurality of blades arranged at intervals and connected to the rotor.
  • a plurality of blades are arranged on the outer surface of the rotor. The technical effect of the blade is the same as that described above, and will not be repeated here.
  • the first heat dissipating element is a soaking plate or a cold plate.
  • the auxiliary heat sink is a heat sink. The technical effects of the soaking plate, heat sink and cold plate are the same as those described above, and will not be repeated here.
  • the auxiliary heat pipe is a heat pipe.
  • the technical effect of the heat pipe is the same as that described above, and will not be repeated here.
  • the heat dissipation system further includes auxiliary heat dissipation elements.
  • the auxiliary heat sink is located between the heating element and the main heat sink, and is in contact with the heating element and the main heat sink.
  • the auxiliary heat sink is a heat sink or a thermoelectric cooling film. The technical effect of the auxiliary heat sink is the same as that described above, and will not be repeated here.
  • the fourth aspect of the embodiments of the present application provides an electronic device.
  • the electronic device includes a rear shell, a display module installed on the rear shell, and a main board located between the display module and the rear shell.
  • a heating element is arranged on the main board.
  • the electronic device also includes any of the heat dissipation systems described above.
  • the heat dissipation system is located between the display module and the casing. In the heat dissipation system, the main heat sink of the first heat sink and the auxiliary heat pipe of the second heat sink are in contact with the heating element.
  • the electronic device has the same technical effect as the heat dissipation system provided in the foregoing embodiment, and will not be repeated here.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by some embodiments of the application.
  • FIG. 2 is a schematic diagram of the structure of the display module in FIG. 1;
  • FIG. 3a is a schematic structural diagram of a heat dissipation system provided by an embodiment of the application.
  • FIG. 3b is a schematic structural diagram of an electronic device with a heat dissipation system according to an embodiment of the application.
  • FIG. 4a is a schematic structural diagram of another heat dissipation system provided by an embodiment of the application.
  • FIG. 4b is a schematic diagram of circulating heat dissipation of the working fluid in the heat dissipation system shown in FIG. 4a;
  • 4c is a schematic diagram of the circulation structure of another heat dissipation system according to an embodiment of the application.
  • Fig. 5a is a schematic structural diagram of another heat dissipation system provided by an embodiment of the application.
  • FIG. 5b is a schematic diagram of a structure of the working fluid transmission structure in FIG. 5a;
  • FIG. 5c is another schematic structural diagram of the working fluid transmission structure in FIG. 5a;
  • FIG. 5d is another schematic diagram of the working medium transmission structure in FIG. 5a;
  • Fig. 5e is a schematic diagram of a structure of the main connecting pipe and the auxiliary connecting pipe in Fig. 5b;
  • Fig. 6a is a schematic structural diagram of another heat dissipation system provided by an embodiment of the application.
  • FIG. 6b is a schematic structural diagram of the working medium transmission structure in FIG. 6a;
  • FIG. 6c is another structural schematic diagram of the working fluid transmission structure in FIG. 6a;
  • FIG. 6d is another structural schematic diagram of the working fluid transmission structure in FIG. 6a;
  • Fig. 7a is a schematic structural diagram of another heat dissipation system provided by an embodiment of the application.
  • Fig. 7b is a schematic structural view of the first connecting pipe and the second connecting pipe in Fig. 7a;
  • FIG. 8 is a schematic structural diagram of another heat dissipation system provided by an embodiment of the application.
  • FIG. 9 is a partial structural cross-sectional view of a heat dissipation system provided by an embodiment of the application.
  • 10a is a schematic structural diagram of a secondary heat sink provided by an embodiment of the application.
  • 10b is a schematic structural diagram of another secondary heat sink provided by an embodiment of the application.
  • 10c is a schematic structural diagram of another secondary heat sink provided by an embodiment of the application.
  • Fig. 11a is a schematic structural diagram of the auxiliary channel in Fig. 10a;
  • Fig. 11b is a schematic diagram of a structure of the auxiliary channel in Fig. 10a;
  • 12a is a schematic cross-sectional structure diagram of a secondary heat sink provided by an embodiment of the application.
  • FIG. 12b is a schematic structural diagram of another secondary heat sink provided by an embodiment of the application.
  • 13a is a schematic cross-sectional structure diagram of a working fluid driver provided by an embodiment of the application.
  • FIG. 13b is a schematic structural diagram of a working fluid driver provided by an embodiment of the application.
  • Figure 14a is a schematic diagram of a rotor structure provided by an embodiment of the application.
  • Figure 14b is a schematic diagram of another rotor structure provided by an embodiment of the application.
  • 14c is a schematic diagram of another rotor structure provided by an embodiment of the application.
  • FIG. 15 is a schematic structural diagram of another heat dissipation system provided by an embodiment of the application.
  • FIG. 16a is a schematic structural diagram of another electronic device provided by some embodiments of the application.
  • FIG. 16b is a schematic structural diagram of some components in the electronic device shown in FIG. 16a;
  • FIG. 17a is a schematic structural diagram of a heat dissipation system provided by an embodiment of the application.
  • Fig. 17b is a schematic structural diagram of an electronic device having the heat dissipation system shown in Fig. 17a;
  • Fig. 17c is a schematic diagram of circulating heat dissipation of the heat dissipation system shown in Fig. 17a.
  • connection should be understood in a broad sense.
  • “connected” can be a fixed connection, a detachable connection, or a whole; it can be directly connected or Can be indirectly connected through an intermediary.
  • An embodiment of the present application provides an electronic device, which includes, for example, a mobile phone, a tablet computer, a notebook computer, a vehicle-mounted computer, and a smart wearable product.
  • the embodiments of the present application do not impose special restrictions on the specific form of the above electronic equipment.
  • the electronic device 01 is a notebook computer as shown in FIG. 1 as an example.
  • the electronic device 01 includes a first housing 11 and a second housing 12 that are rotatably connected.
  • the aforementioned electronic device 01 further includes a display module 110 mounted on the first housing 11.
  • the display module 110 is used to display images.
  • the display module 110 has a display surface for displaying images and a back surface away from the display panel. The back of the display module 110 faces the first housing 11 as shown in FIG. 1.
  • the display module 110 is a liquid crystal display module.
  • the display module 110 includes a liquid crystal display (LCD) 101 as shown in FIG. 2 and a backlight module located on the back of the liquid crystal display 101 (away from the side surface of the LCD 101 for displaying images).
  • Group (backlight unit, BLU) 102 is a backlight unit located on the back of the liquid crystal display 101 (away from the side surface of the LCD 101 for displaying images).
  • BLU backlight unit
  • the BLU 102 may provide a light source to the liquid crystal display 101, so that each sub-pixel in the liquid crystal display 101 can emit light to realize image display.
  • the display module 110 may be an organic light emitting diode (OLED) display screen. Since each sub-pixel in the OLED display screen is provided with an electroluminescence layer, the OLED display screen can realize self-luminescence after receiving the working voltage. In this case, there is no need to provide the above-mentioned BLU in the display module 110 with the OLED display screen.
  • OLED organic light emitting diode
  • the above-mentioned electronic device 01 further includes a main board 120 installed on the second housing 12 and a heating element 10 installed on the main board 120.
  • the heating element 10 may be an SOC, a central processing unit (CPU) or a graphics processing unit (GPU).
  • the main board 120 may be a printed circuit board (PCB).
  • the above-mentioned motherboard 120 is electrically connected to the driving circuit on the display module 110, so that the display module 110 can be controlled by the processor on the PCB to perform image display.
  • the electronic device 01 further includes a heat dissipation system 02 as shown in FIG. 3a.
  • the heat dissipation system 02 includes a system part 100 arranged on the second housing 12, a secondary heat sink 30 arranged on the first housing 11, and located between the system part 100 and the secondary heat sink 30 The working fluid transmission assembly 40.
  • the system unit 100 includes a primary heat sink 20 and a working fluid driver 50 as shown in FIG. 3b.
  • the primary heat sink 20 includes a main heat dissipation plate 201 in contact with the heating element 10 (as shown in FIG. 1) and a main flow passage structure 202 arranged in the main heat dissipation plate 201 for circulating working fluid.
  • the secondary heat sink 30 includes an auxiliary heat dissipation plate 301 and an auxiliary circulation structure 302 arranged in the auxiliary heat dissipation plate 301 for circulating working fluid.
  • the auxiliary heat sink 301 is located between the back of the display module 110 (as shown in FIG. 1) and the first housing 11, and is connected to the display module 110 and the first housing 11.
  • the working fluid transmission assembly 40 is rotatably connected with the system part 100 and the auxiliary heat sink 301. Therefore, when the first housing 11 and the second housing 12 of the electronic device 01 rotate relatively, the system part 100 and the auxiliary heat dissipation plate 301 may relatively rotate through the working fluid transmission assembly 40.
  • the working medium transmission assembly 40 has a transmission channel 401 inside.
  • the transmission channel 401 of the working fluid transmission assembly 40 is used at least to connect the main flow structure 202 and the secondary flow structure 302.
  • the above-mentioned working fluid driver 50 has a liquid outlet and a liquid inlet.
  • the aforementioned heat dissipation system 02 also includes working fluids located in the main flow structure 202, the secondary flow structure 302, and the working fluid driver 50.
  • the working medium driver 50 is used to drive working medium to flow in the main flow structure 202, the secondary flow structure 302 and the transmission channel 401 of the working medium transmission assembly 40.
  • the working medium transmission assembly 40 includes a first working medium transmission part 41 and a second working medium transmission part 42.
  • the first working medium transmission part 41 is rotatably connected with the main heat dissipation plate 201 and the auxiliary heat dissipation plate 301.
  • the transmission channel in the first working medium transmission portion 41 is in communication with the main flow structure 202 in the main heat dissipation plate 201 and the secondary flow structure 302 in the auxiliary heat dissipation plate 301.
  • the second working medium transmission portion 42 is rotatably connected with the auxiliary heat dissipation plate 301 and the working medium driver 50.
  • the transmission channel in the second working medium transmission part 42 is in communication with the secondary circulation structure 302 of the secondary heat dissipation plate 301 and the liquid inlet B of the working medium driver 50.
  • the liquid outlet A of the working fluid driver 50 is in communication with the main flow passage structure 202 in the main heat dissipation plate 201.
  • the working fluid driver 50 in the heat dissipation system 02 can be placed side by side with the secondary heat sink 30.
  • the secondary heat sink 30 the left and right sides of the main heat sink 201.
  • the working medium driver 50 can drive the working medium, in the direction of the arrow as shown in FIG. 3b, from the liquid outlet A of the working medium driver 50 to the main flow passage structure 202 in the main heat sink 201. Since the main heat sink 201 is in contact with the heating element 10 (shown in FIG. 1) on the main board 120 shown in FIG. 3b, when the working fluid flows through the main heat sink 201, the heat of the heating element 10 can be absorbed, so that the heating element 10 can cool down, so as to achieve the purpose of dissipating heat to the heating element 10.
  • the working medium that has absorbed the heat of the heating element 10 passes through the first working medium transmission portion 41 and flows into the secondary circulation structure 302 in the secondary heat sink 301.
  • the auxiliary heat sink 301 is connected to the first housing 11, so that a part of the heat in the working fluid can be absorbed through the first housing 11, so that the temperature of the working fluid can be reduced.
  • the cooled working medium can be transmitted to the liquid inlet B (shown in FIG. 3a) of the working medium driver 50 through the second working medium transmission portion 42, and thus pass through the working medium driver 50.
  • the liquid outlet A of the working fluid driver 50 enters the main flow passage structure 202 in the main heat dissipation plate 201 again to perform the next round of heat dissipation process.
  • the working medium driver 50 drives the working medium to circulate in the closed loop formed by the working medium driver 50, the main flow structure 202, and the secondary flow structure 302, the working medium can continuously absorb the heat of the heating element 10 , And transfer the heat to the first housing 11 for heat dissipation, so as to achieve the purpose of heat dissipation for the heating element 10.
  • the working fluid transmission assembly 40 in the heat dissipation system 02 of the electronic device 01 includes two first working fluid transmission components for rotationally connecting the main heat dissipation plate 201 and the auxiliary heat dissipation plate 301
  • the parts are the right first working medium transmission part 41a and the left first working medium transmission part 41b as shown in FIG. 4a.
  • the main flow passage structure 202 in the main heat dissipation plate 201 includes a first main channel 212 and a second main channel 222.
  • the liquid outlet A of the working fluid driver 50 communicates with the first main channel 212 in the main heat dissipation plate 201, and the liquid inlet B communicates with the second main channel 222.
  • the transmission channel of the right first working medium transmission part 41a is in communication with the first main channel 212 and the auxiliary circulation structure 302.
  • the transmission channel of the left first working medium transmission part 41b is in communication with the secondary circulation structure 302 and the second main channel 222.
  • the working medium driver 50 can drive the working medium to be transmitted from the liquid outlet A of the working medium driver 50 to the first main channel 212 in the main heat dissipation plate 201 in the arrow direction shown in FIG. 4b. Since the main heat sink 201 is in contact with the heating element 10 on the main board 120, when the working fluid flows through the main heat sink 201, the heat of the heating element 10 can be absorbed, so that the heating element 10 can cool down, so as to achieve heat dissipation of the heating element 10 the goal of.
  • the working medium absorbing the heat of the heating element 10 will flow into the secondary circulation structure 302 in the secondary heat sink 301 through the transmission channel 401a of the right first working medium transmission portion 41a.
  • the auxiliary heat dissipation plate 301 is connected to the first housing 11, so that part of the heat in the working fluid can be absorbed through the first housing 11, so that the temperature of the working fluid can be reduced.
  • the cooled working medium can flow from the secondary circulation structure 302 in the secondary heat sink 301 through the left first working medium transmission portion 41b to the second main heat sink 201.
  • the channel 222 it enters the liquid inlet B of the working fluid driver 50 through the second main channel 222, so that the next heat dissipation process is performed again after being driven by the working fluid driver 50.
  • the liquid outlet A of the working fluid driver 50 is connected to the first main channel 212 in the main heat sink 201, and the liquid inlet B is connected to the second main channel 222 as an example.
  • the liquid inlet B of the working fluid driver 50 can also be connected to the first main channel 212 in the main heat dissipation plate 201, and the liquid outlet A is connected to the second main channel 222.
  • the flow process of working fluid can be obtained in the same way, so I won't repeat it here.
  • the working medium driver 50 drives the working medium as shown in FIG. 4c, which is composed of the working medium driver 50, the main flow structure 202 of the primary heat sink 20, the working medium transmission assembly 40, and the secondary heat sink 30.
  • the working fluid can continuously absorb the heat of the heating element 10, and transfer the heat to the first housing 11 for heat dissipation, so as to achieve the heat dissipation of the heating element 10 purpose.
  • the structure of the working medium transmission assembly 40 will be described as an example according to the connection mode of the liquid inlet B and the liquid outlet A of the working medium driver 50 in the heat dissipation system 02.
  • the heat dissipation system 02 uses the structure shown in FIG. 3b as an example to describe the structure of the first working medium transmission part 41.
  • the first working fluid transmission part 41 in the heat dissipation system 02 can not only connect the main flow passage structure 202 on the main heat dissipation plate 201 and the auxiliary flow structure 302 on the auxiliary heat dissipation plate 301, the first working fluid The transmission part 41 can also rotatably connect the main heat dissipation plate 201 and the auxiliary heat dissipation plate 301.
  • the first working medium transmission part 41 includes a main connecting pipe 411, an auxiliary connecting pipe 412, and a rotating connecting pipe 413 as shown in FIG. 5a.
  • the main connecting pipe 411 is connected to the main heat sink 201.
  • the auxiliary connecting pipe 412 is connected to the auxiliary heat sink 301.
  • Fig. 5b (a cross-sectional view taken along O1-O1 shown in Fig. 5a)
  • one end of the main connecting pipe 411 is butted with one end of the auxiliary connecting pipe 412, so that the inner hole of the main connecting pipe 411 and the auxiliary The inner hole of the connecting pipe 412 communicates with each other.
  • the inner hole of the main connecting pipe 411 and the inner hole of the auxiliary connecting pipe 412 can be used as the transmission channel of the first working fluid transmission part 41, so that the working fluid can follow the arrow shown in FIG. 5b.
  • the inner hole of the main connecting pipe 411 flows into the inner hole of the auxiliary connecting pipe 412, thereby realizing the transmission of the working fluid in the first working fluid transmission part 41.
  • the above-mentioned first working fluid transmission part 41 further includes a hose 400 as shown in FIG. 5c.
  • the material constituting the hose 400 may be a flexible resin material.
  • the hose 400 passes through the inner hole of the main connecting pipe 411 and the inner hole of the auxiliary connecting pipe 412.
  • one end of the hose 400 is connected to the main flow passage structure 202 in the main heat dissipation plate 201 (as shown in FIG. 5a), and the other end is connected to the auxiliary flow structure 302 (as shown in FIG. 5b) in the auxiliary heat dissipation plate 301. through.
  • the inner hole of the hose 400 serves as the transmission channel of the first working fluid transmission part 41, so that the working fluid can flow in the inner hole of the hose 400 along the arrow direction as shown in FIG.
  • the working fluid is transmitted in the first working fluid transmission part 41.
  • the above-mentioned first working fluid transmission part 41 further includes a lyophobic coating 402 covering the outer wall surface of the hose 400 as shown in FIG. 5d.
  • the infusion coating 402 can reduce the probability of polymer leakage of the working fluid in the hose 400 through the hose 400.
  • the above-mentioned lyophobic coating 402 may be a nano-coating composed of nano-materials, or a coating composed of ultraviolet (UV) light curing materials.
  • the butting part of the main connecting pipe 411 and the auxiliary connecting pipe 412 is nested in the rotating connecting pipe 413, so that the auxiliary connecting pipe 412
  • the main connecting pipe 411 is rotationally connected to the main connecting pipe 411 through the above-mentioned rotating connecting pipe 413.
  • the material constituting the rotating connection pipe 413 may be a hard metal material, or may also be a flexible resin material. This application does not limit this.
  • the first working medium transmission part 41 further includes at least A sealing element, FIG. 5d is an example in which the first working medium transmission part 41 has two sealing elements (414a, 414b).
  • One of the sealing members 414a is located between the hole wall of the inner hole of the rotating connecting pipe 413 and the outer wall of the main connecting pipe 411.
  • the other sealing member 414 b is located between the hole wall of the inner hole of the rotating connecting pipe 413 and the outer wall of the auxiliary connecting pipe 412.
  • the above-mentioned sealing element may be a sealing ring.
  • an annular groove 415 may be formed on the outer wall of the main connecting pipe 411 (or the auxiliary connecting pipe 412).
  • the above-mentioned sealing ring can be sleeved on the outer wall of the main connecting pipe 411 (or the auxiliary connecting pipe 412) and locked into the annular groove 415, thereby preventing the auxiliary connecting pipe 412 from rotating relative to the main connecting pipe 411. Large displacement of the sealing ring reduces the sealing effect.
  • the main connecting pipe 411 may be provided with a first mounting member 4110, and the auxiliary connecting pipe 412 may be provided with a second mounting member 4110.
  • Piece 4120 the main connecting pipe 411 can be fixed to a component of the electronic device 01, such as the second housing 12, by passing through a threaded connection member, such as a screw or a bolt, through the through hole on the first mounting member 4110.
  • the auxiliary connecting pipe 412 can be fixed to a component of the electronic device 01, such as the first housing 11, through the above-mentioned screw connection through the through hole on the second mounting part 4120.
  • the above description is based on the structure of the first working fluid transmission unit 41 as an example.
  • the structure of the second working medium transmission part 42 for rotationally connecting the auxiliary heat dissipation plate 301 and the working medium driver 50 can be obtained in the same way, and will not be repeated here.
  • the heat dissipation system 02 uses the structure shown in FIG. 3b as an example to describe the structure of the first working fluid transmission part 41.
  • the structure of the first working fluid transmission part 41 includes a main connecting pipe 411 and an auxiliary connecting pipe 412 as shown in FIG. 6a.
  • the main connecting pipe 411 is connected to the main heat sink 201.
  • the auxiliary connecting pipe 412 is connected to the auxiliary heat sink 301.
  • the working fluid transmission assembly 40 further includes a seal 414.
  • the sealing member 414 is located between the outer wall of the main connecting pipe 411 and the hole wall of the inner hole of the auxiliary connecting pipe 412.
  • the sealing member 414 may be a sealing ring, and the arrangement of the sealing ring is the same as described above, and will not be repeated here.
  • the inner hole of the main connecting pipe 411 can be used as the transmission channel of the first working fluid transmission part 41, so that the working fluid can flow in the direction of the arrow as shown in FIG. 6b, thereby achieving The working fluid is transmitted in the first working fluid transmission part 41.
  • the above-mentioned first working fluid transmission part 41 further includes a hose 400 as shown in FIG. 6c.
  • the hose 400 passes through the inner hole of the main connecting pipe 411, and is in communication with the main flow passage structure 202 in the main heat dissipation plate 201 and the secondary flow structure 302 in the auxiliary heat dissipation plate 301 (as shown in FIG. 5b).
  • the inner hole of the hose 400 serves as the transmission channel of the first working medium transmission part 41, so that the working medium can flow in the inner hole of the hose 400 along the arrow direction as shown in FIG. 6c, thereby The transmission of the working fluid in the working fluid transmission component 40 is realized.
  • the outer wall of the hose 400 may also be provided with the above-mentioned lyophobic coating 402.
  • FIG. 6d a cross-sectional view cut along O2-O2 in FIG. 6a
  • a part of the auxiliary connecting pipe 412 extends into the inner hole of the main connecting pipe 411.
  • the above-mentioned sealing member 414 is located between the outer wall of the auxiliary connecting pipe 412 and the hole wall of the inner hole of the main connecting pipe 411.
  • the configuration of the transmission channel of the first working fluid transmission unit 41 is the same as described above, and will not be repeated here.
  • the above description is based on the structure of the first working fluid transmission unit 41 as an example.
  • the structure of the second working medium transmission part 42 for rotationally connecting the auxiliary heat dissipation plate 301 and the working medium driver 50 can be obtained in the same way, and will not be repeated here.
  • the structure of the working fluid transmission assembly 40 includes a first connecting pipe 421 and a second connecting pipe 422 as shown in FIG. 7a.
  • the second connecting pipe 422 is nested in the inner hole of the first connecting pipe 421.
  • the first connecting pipe 421 is rotatably connected with the main heat sink 201 and the auxiliary heat sink 301.
  • the liquid outlet A of the working fluid driver 50 is in communication with the main flow passage structure 202 in the main heat sink 201, and the inner hole of the first connecting pipe 421 is connected to the liquid inlet B of the working fluid driver 50 and the auxiliary heat sink.
  • the secondary circulation structure 302 in the plate 301 is connected.
  • the inner hole of the second connecting pipe 422 communicates with the main flow structure 202 in the main heat dissipation plate 201 and the secondary flow structure 302 in the auxiliary heat dissipation plate 301.
  • first connecting pipe 421 At least a part of the first connecting pipe 421 and the second connecting pipe 422 located between the main heat dissipation plate 201 and the auxiliary heat dissipation plate 301 is made of a flexible material, such as a resin material. Based on this, in the process of making the first connecting pipe 421, the metal part 420 and the resin part 430 as shown in FIG. 7b can be connected together by an injection molding process to form a first connecting pipe where the resin material and the metal material are spliced together. 421.
  • the above-mentioned injection molding process can be used to connect the metal part 420 and the resin part 430 as shown in FIG. 7b to form the second connecting pipe 422 where the resin material and the metal material are spliced together.
  • the arrangement of the first connecting pipe 421 may be the same as the arrangement of the first working fluid transmission part 41 described above, which will not be repeated here.
  • the working fluid output from the liquid outlet A of the working fluid driver flows into the main flow passage structure 202 in the arrow direction as shown in FIG. 7a. Then, the working fluid flows in the inner hole of the second connecting pipe 422 in the direction of the arrow to the right in FIG. 7b. Next, it flows from the second connecting pipe 422 to the secondary circulation structure 302 in the secondary heat dissipation plate 301 shown in FIG. 7a. Next, the working fluid in the secondary circulation structure 302 flows into the first connecting pipe 421 in the direction of the arrow shown in FIG. 7a, and flows in the inner hole of the first connecting pipe 421 in the direction of the arrow to the left in FIG. 7b.
  • the main flow passage structure 202 includes a first main channel 212 and a second main channel 222.
  • the working fluid transmission assembly 40 includes a third connecting pipe 423 and a fourth connecting pipe 424.
  • the fourth connecting tube 424 is nested in the inner hole of the third connecting tube 423.
  • the third connecting pipe 423 is rotatably connected with the main heat dissipation plate 201 and the auxiliary heat dissipation plate 301.
  • the liquid outlet A of the working fluid driver 50 communicates with the first main channel 212
  • the liquid inlet B communicates with the second main channel 222
  • the inner hole of the third connecting pipe 423 communicates with the second main channel 222 in the main heat dissipation plate 201 and the auxiliary circulation structure 302 in the auxiliary heat dissipation plate 301.
  • the inner hole of the fourth connecting pipe 424 communicates with the first main channel 212 and the auxiliary circulation structure 302.
  • the main heat dissipation plate 201 and the auxiliary heat dissipation plate 301 In order to enable the main heat dissipation plate 201 and the auxiliary heat dissipation plate 301 to be relatively rotated through the third connecting pipe 423.
  • the arrangement of the first connecting pipe 421 and the second connecting pipe 422 in Example 3 is the same.
  • At least the part of the third connecting pipe 423 and the fourth connecting pipe 424 located between the main heat sink 201 and the auxiliary heat sink 301 adopts flexible Material, such as resin material.
  • the working fluid flows into the secondary circulation structure 302 in the secondary heat dissipation plate 301 after passing through the first main channel 212 through the fourth connecting pipe 424 in the arrow direction as shown in FIG. 8.
  • the working fluid in the secondary circulation structure 302 can flow through the third connecting tube 423 in the arrow direction shown in FIG. 8 to the second main channel 222 of the main heat sink 201, and then flow back to the second main channel 222 through the second main channel 222 The liquid inlet B of the working fluid driver 50.
  • the working fluid enters through the fourth connecting pipe 424 located inside, and flows out through the third connecting pipe 423 located outside.
  • the liquid inlet B of the working fluid driver 50 may be connected to the first main channel 212, and the liquid outlet A is connected to the second main channel 222.
  • the circulation mode of the working fluid in the heat dissipation system 02 can be obtained in the same way, and will not be repeated here.
  • the primary heat sink 20 may be a heat equalizing plate.
  • the main flow passage structure 202 of the above-mentioned primary heat sink 20 may be a capillary structure in the heat equalizing plate.
  • the above-mentioned primary heat sink 20 may be a cold plate. There is no need to provide the aforementioned capillary structure in the cold plate, so that the structure of the primary heat sink 20 is simpler.
  • the main heat dissipation plate 201 may be a metal block
  • the main flow passage structure 202 may be a pipe disposed in the metal block and passing through the metal block.
  • the above-mentioned pipe may be a heat pipe with a capillary structure.
  • the heat dissipation system 02 also includes an auxiliary heat dissipation member 60.
  • the auxiliary heat sink 60 may be a heat sink made of metal material or a thermoelectric cooling film.
  • the aforementioned auxiliary heat sink 60 is located between the heating element 10 and the main heat sink 201, and the auxiliary heat sink 60 is in contact with the heating element 10 and the main heat sink 201.
  • the auxiliary heat sink 60 is a thermoelectric refrigerating film
  • the thermoelectric refrigerating film when the thermoelectric refrigerating film is energized, the lower temperature side surface can be in contact with the heating element 10, which is more conducive to heat dissipation of the heating element 10.
  • the secondary heat sink 30 may be a heat equalizing plate.
  • the aforementioned secondary flow structure 302 may be a capillary structure in the heat equalizing plate.
  • the above-mentioned auxiliary heat dissipation plate 301 may be a metal block, and the auxiliary flow structure 302 may be a heat pipe disposed in the metal block and passing through the metal block.
  • the above-mentioned secondary heat sink 30 may be a cold plate.
  • the secondary circulation structure 302 may be a cavity formed in the plate structure of the secondary heat dissipation plate 301.
  • One end of the cavity is connected to the liquid inlet of the auxiliary heat sink 301 (the working fluid enters the auxiliary channel along the arrow), and the other end is connected to the liquid outlet of the auxiliary heat sink 301 (the working fluid flows out of the auxiliary channel along the arrow) Connected.
  • the secondary circulation structure 302 includes at least one secondary channel 3021 penetrating the plate structure of the secondary heat dissipation plate 301.
  • the secondary circulation structure 302 includes at least one secondary channel 3021 penetrating the plate structure of the secondary heat dissipation plate 301.
  • two secondary channels 3021 penetrating through the plate structure of the secondary heat dissipation plate 301 may constitute the above-mentioned secondary circulation structure 302.
  • three secondary channels 3021 penetrating the plate structure of the secondary heat dissipation plate 301 may constitute the above-mentioned secondary circulation structure 302.
  • each two adjacent auxiliary channels 3021 is the liquid inlet of the auxiliary heat sink 301 (the working fluid enters the direction of the auxiliary channel along the arrow), and the other end is connected to the liquid outlet of the auxiliary heat sink 301 (the working fluid follow the direction of the arrow out of the secondary channel) to communicate.
  • Two adjacent secondary channels 3021 are separated by a plate structure. In this way, the secondary channel 3021 can divert the working fluid flowing into the secondary circulation structure 302 to flow along the shape of the secondary channel 3021.
  • FIGS. 10a, 10b, and 10c the description is made by taking the auxiliary heat dissipation plate 301 as a sector as an example.
  • the embodiment of the present application does not limit the shape of the auxiliary heat dissipation plate 301, and may also be circular or rectangular.
  • the shape of the secondary channel 3021 may be a square wave type.
  • the secondary channel 3021 may be in a spiral shape without intersecting everywhere. After the working fluid is dissipated from the liquid outlet A of the working fluid driver 50 through the primary heat sink to dissipate the heating element 10, it flows into the spiral secondary channel 3021 in the secondary heat sink, and then flows back to the inlet of the working fluid driver 50. Liquid port B.
  • the working fluid can be made to flow in the auxiliary channel 3021, effectively reducing the side wall of the auxiliary channel 3021.
  • Qualitative resistance As a result, the working fluid can flow more smoothly in the auxiliary channel 3021 and the power consumption of the working fluid driver 50 is reduced.
  • the secondary channel 3021 can also be a round S-shaped corner.
  • the secondary heat sink 301 of the secondary heat sink 30 includes a second upper cover 3011 and a second lower bottom 3012 as shown in FIG. 12a (a cross-sectional view of the secondary heat sink 301). .
  • the second upper cover 3011 and the second lower bottom 3012 are connected to form a cavity 3013.
  • the auxiliary heat sink 301 further includes a plurality of support bars 3014 located in the cavity 3013 and arranged at intervals.
  • the support bar 3014 is connected with the second upper cover 3011 and the second lower bottom 3012.
  • a secondary channel 3021 as shown in FIG. 12b is formed between two adjacent support bars 3014.
  • the multiple secondary channels 3021 described above constitute the secondary flow structure 302 of the secondary heat sink 30.
  • the secondary channel 3021 formed by a plurality of support bars 3014 arranged at intervals can divert the working fluid flowing into the secondary circulation structure 302 to flow along the shape of the secondary channel 3021.
  • each auxiliary channel 3021 is the same as that described above, and it may adopt the shape of FIG. 11a or FIG. 11b, or it may also be an S-shape with rounded corners, which will not be repeated here.
  • the auxiliary heat dissipation plate 301 is thermally expanded, thereby causing the support bar 3014, the second upper cover 3011 and the second lower bottom 3012 to crack.
  • the auxiliary heat dissipation plate 301 further includes a plurality of support columns 3015 located in the cavity 3013. Each support column 3015 is connected to the second upper cover 3011 and the second lower bottom 3012 as shown in FIG. 12a.
  • the edge of the secondary heat sink 301 is also provided with a plurality of spaced protrusions 3016 as shown in FIG. 12b.
  • the positioning and installation of the auxiliary heat dissipation plate 301 are realized by matching the protrusion 3016 with the positioning component on the second housing 12, such as a groove.
  • the working fluid driver 50 can drive the working medium to circulate in the closed loop formed by the working medium driver 50, the main flow structure 202, and the secondary flow structure 302.
  • the working fluid driver 50 may be a micro pump body, a micro magnetic liquid propeller or a micro propeller.
  • the working medium driver 50 when the working medium driver 50 is the above-mentioned miniature magnetic hydraulic thruster, the working medium needs to have conductivity characteristics.
  • any one of the above-mentioned working fluid drivers 50 includes a first upper cover 501 and a first lower bottom 502.
  • the first upper cover 501 and the first lower bottom 502 are connected to form a receiving cavity 503.
  • the working fluid driver 50 further includes a partition 504, a stator 505, and a rotor 506.
  • the partition 504 is connected to the first lower bottom 502.
  • a sealed sub-cavity 510 is formed between the partition 504 and the first lower bottom 502, and the stator 505 is located in the sealed sub-cavity 510.
  • a liquid sub-cavity 511 is formed between the partition 504 and the first upper cover 501.
  • the aforementioned rotor 506 is located in the liquid sub-cavity 511.
  • the liquid outlet and the liquid inlet of the working medium driver 50 are arranged on the liquid sub-cavity 511.
  • the stator 505 can be separated from the working fluid in the liquid subcavity 511 by the partition 504.
  • an electrical signal is provided to the stator 505, for example, a pulse width modulation (PWM) signal
  • PWM pulse width modulation
  • the rotor 506 generates an induced electromotive force in a magnetic field, thereby generating a current in a closed-loop rotor circuit.
  • This current can generate another magnetic field around the rotor 506.
  • the above two magnetic fields have the same polarity, repulsion will occur, causing the rotor 506 to rotate.
  • the rotor 506 When the rotor 506 rotates, it can drive the working fluid in the liquid sub-cavity 511 to flow in the liquid sub-cavity 511, so that the fluid inlet and outlet of the working fluid driver 50 can flow out of the fluid outlet to realize the working fluid in the working fluid driver. 50. Circulating flow in a closed loop formed by the main flow structure 202 and the secondary flow structure 302.
  • the magnetic field generated by the stator 505 and the polarity of the magnetic field generated by the rotor 506 can be changed, thereby changing the rotation direction of the rotor 506, so that the rotor 506 can rotate forward or backward as required.
  • the purpose of changing the flow direction of the working fluid is achieved, and the positions of the liquid inlet and the liquid outlet of the working fluid accelerator 50 are interchanged.
  • the above-mentioned working fluid driver 50 may further include a temperature sensor 520, a flow rate controller 521, and a leakage detector 522 as shown in FIG. 13b.
  • the temperature sensor 520 may be located in the liquid subcavity 511 described above.
  • the temperature sensor 520 can be used to detect the temperature of the working fluid in the liquid subcavity 511.
  • the flow rate controller 521 is electrically connected to the temperature sensor 520 and the stator 505.
  • the flow rate controller 521 can be used to control the voltage applied to the stator 505 according to the detection result of the temperature sensor 520, that is, control the aforementioned PWM signal.
  • the temperature detected by the temperature sensor 520 may be proportional to the magnitude of the voltage applied to the stator 505.
  • the voltage applied to the stator 505 can be increased by the flow rate controller 521, so that the rotation speed of the rotor 506 is increased, the flow velocity of the working fluid is accelerated, and the heat resistance is increased. The efficiency of the element 10 to cool down. Conversely, when the temperature of the working fluid in the liquid subcavity 511 is low, the flow rate of the working fluid can be reduced.
  • the above-mentioned leakage detector 522 may be electrically connected to the stator 505 and the rotor 506 as shown in FIG. 13b.
  • the leakage detector 522 is used to detect the voltage applied to the stator 505 and the rotation speed of the rotor 506, and according to the rotor 506 The rotational speed determines the volume of the working fluid in the liquid subcavity 511.
  • each voltage applied to the stator 505 corresponds to a preset rotation speed of the rotor 506.
  • the actual rotation speed of the rotor 506 is detected by the leakage detector 522, and the actual rotation speed is compared with the above preset rotation speed. When the actual rotation speed is greater than the preset rotation speed, it can indicate that the load of the rotor 506 is different. Therefore, there is liquid leakage in the liquid sub-cavity 511.
  • the working medium driver 50 further includes a plurality of blades 530 arranged at intervals and connected to the rotor 506 as shown in FIG. 14a.
  • the above-mentioned multiple spaced blades 530 are arranged on the outer surface of the rotor 506. In this way, when the rotor 506 rotates, the blade 530 can be driven to rotate together, so that the blade 530 can push the working fluid in the liquid subcavity 511 to flow during the rotation.
  • the working medium driver 50 has a setting On the liquid sub-cavity 511, the liquid inlet B and the liquid outlet A are shown in FIG. 14a.
  • the included angle between the liquid inlet B and the liquid outlet A can be 0° ⁇ 180°.
  • the liquid inlet B and the liquid outlet A of the working fluid driver 50 are arranged in parallel, and the clamp between the liquid inlet B and the liquid outlet A The angle is 0°.
  • the liquid inlet B and the liquid outlet A of the working fluid driver 50 are arranged vertically, and the angle between the liquid inlet B and the liquid outlet A is 90° at this time.
  • the liquid inlet B and the liquid outlet A of the working fluid driver 50 are flush, and the angle between the liquid inlet B and the liquid outlet A at this time is 180°.
  • the working fluid can enter the edge of the blade 530 in the working fluid driver 50 through the liquid inlet B, and then driven by the blade 530, the edge of the blade 530 is accelerated and thrown out of the liquid outlet A. , To complete the driving of the working fluid.
  • the parameters of the working fluid driver 50 may be as shown in Table 1.
  • the XOY plane is a surface parallel to the bearing surface of the second housing 12 for bearing the working fluid driver 50.
  • the thickness of the working fluid driver 50 is the dimension of the working fluid driver 50 perpendicular to the XOY surface. Since the thickness of the working medium driver 50 can be less than or equal to 5 mm, the space occupied by the working medium driver 50 in the electronic device 01 can be effectively reduced, which is beneficial to the ultra-thin design of the electronic device 01. Thus, the thickness of the electronic device 01 can reach about 13 mm.
  • the noise of the working fluid driver 50 is less than or equal to 25 dB. Therefore, the noise of the entire heat dissipation system 02 during normal operation can be less than 25dB without a fan.
  • the electronic device 01 is tested in a double-bake scenario, that is, the electronic device 01 is subjected to a stress test and a graphics card test (furmark).
  • the test results are shown in Table 2.
  • the power consumption of the heating element 10 can be increased from 5W to 12W.
  • the power consumption of the electronic device 01 can be increased from 16W to 25W.
  • the temperature of the CPU is 62°C, which is less than 80°C.
  • the heat dissipation system 02 provided in the embodiment of the present application dissipates heat from the heating element 10, the keyboard surface of the electronic device 01, the back of the first housing 11, and the temperature of the entire electronic device 01 can be compared with the temperature of the heating element 10 with a pure fan.
  • the solution for heat dissipation is equivalent. Therefore, when the electronic device 01 adopts the embodiment of the present application to provide the heat dissipation system 02, the power consumption of the heating element 10 and the electronic device 01 can be increased while ensuring the heat dissipation effect, thereby facilitating the electronic device 01 to become multi-functional and high-speed The direction of development.
  • the above-mentioned primary heat dissipation member 20 further includes a main fan 203 as shown in FIG. 15.
  • the main fan 203 is connected to the main heat sink 201.
  • the main heat dissipation plate 201 that has absorbed the heat of the heating element 10 can dissipate heat, so as to improve the heat dissipation effect of the main heat dissipation plate 201 on the working fluid.
  • the secondary heat sink also includes an auxiliary fan 303 as shown in FIG. 15.
  • the auxiliary fan 303 is connected to the auxiliary heat sink 301.
  • the auxiliary heat dissipation plate 301 can dissipate heat, so as to improve the heat dissipation effect of the auxiliary heat dissipation plate 301 on the working fluid.
  • main fan 203 and auxiliary fan 303 include but are not limited to centrifugal fans, axial fans, suction turbines, and the like.
  • the electronic device 01 is a notebook computer as shown in FIG. 1.
  • the electronic device 01 may be a tablet computer or a mobile phone as shown in FIG. 16a.
  • the following description takes the electronic device 01 as a mobile phone as shown in FIG. 1 as an example.
  • the aforementioned electronic device 01 mainly includes a display module 110, a middle frame 111, and a rear casing 112.
  • the middle frame 111 is located between the display module 110 and the rear housing 112.
  • the display module 110 is connected to the rear housing 112 through the middle frame 111.
  • the driving circuit in the display module 110 may pass through the middle frame 111 through a flexible printed circuit (FPC), and then be electrically connected with a main board on the middle frame 111, such as a printed circuit board (PCB).
  • FPC flexible printed circuit
  • PCB printed circuit board
  • the electronic device 01 further includes a heat dissipation system 02 as shown in FIG. 17a.
  • the heat dissipation system 02 includes a first heat dissipation element 70, a second heat dissipation element 71 and a working fluid driver 50.
  • the first heat dissipation member 70 includes a main heat dissipation plate 201 and a main flow passage structure 202 disposed in the main heat dissipation plate 201.
  • the arrangement of the main heat dissipation plate 201 and the main flow passage structure 202 is the same as described above, and will not be repeated here.
  • the above-mentioned heat dissipation system 02 can be arranged between the middle frame 111 and the rear shell 112. Moreover, after the middle frame 111 is connected to the rear case 112, the heat dissipation system 02 is located in the rear case 112 as shown in FIG. 17b. In this way, one side of the main heat sink 201 can be in contact with the heating element 10, and the other side can be in contact with the rear case 112.
  • the heat dissipation system 02 also includes a first working medium (not shown in the figure) in the working medium driver 50 and the main flow passage structure 202.
  • the above-mentioned working medium driver 50 is used to drive the first working medium to circulate in a closed loop formed by the working medium driver 50 and the main flow structure 202.
  • the structure of the working fluid driver 50 is the same as that described above, and will not be repeated here.
  • the working medium driver 50 can drive the first working medium to flow from the liquid outlet A of the working medium driver 50 to the main flow passage structure 202 in the main heat dissipation plate 201 along the arrow direction. Since the main heat dissipation plate 201 is in contact with the heating element 10, the heat of the heating element 10 is absorbed by the first working medium. The first working fluid after absorbing the heat flows back to the liquid inlet B of the working fluid driver 50 so that the first working fluid circulates heat to the heating element 10.
  • the first working fluid can dissipate heat through the main heat dissipation plate 201 to the rear housing 112 during the flow of the main flow passage structure 202, and the rear housing 112 will dissipate the heat. Released into the environment.
  • the heat dissipation system 02 further includes an auxiliary heat dissipation member located between the heating element 10 and the main heat dissipation plate 201.
  • the auxiliary heat sink is in contact with the heating element 10 and the main heat sink 201.
  • the auxiliary heat sink may be a heat sink or a thermoelectric cooling film. The beneficial effects of the auxiliary heat sink are the same as those described above, and will not be repeated here.
  • the above-mentioned second heat dissipation member 71 includes an auxiliary heat dissipation pipe 711, a fan 712, and an auxiliary heat dissipation plate 301.
  • One end of the auxiliary heat dissipation pipe 711 is in contact with the heating element 10, and the other end is located between the air outlet of the fan 712 and the auxiliary heat dissipation plate 301, and is connected to the fan 712 and the auxiliary heat dissipation plate 301.
  • the auxiliary heat sink 301 may be a heat sink, a heat equalizing plate or a thermoelectric cooling film.
  • the auxiliary heat pipe 711 may be a heat pipe.
  • the aforementioned heat dissipation system 02 further includes a second working fluid (not shown in the figure) located in the auxiliary heat dissipation pipe 711.
  • the heat of the heating element 10 can cause the second working fluid in the auxiliary heat dissipation pipe 711 to vaporize, as shown in FIG. 17c, along the arrow direction The other end of the auxiliary heat pipe 711 having a lower temperature flows.
  • the auxiliary heat pipe 711 Since the other end of the auxiliary heat pipe 711 is located between the air outlet of the fan 712 and the auxiliary heat dissipation plate 301 and is connected to the fan 712 and the auxiliary heat dissipation plate 301, the auxiliary heat can be dissipated through the air outlet of the fan 712 and the auxiliary heat dissipation plate 301 The heat of the second working fluid in the tube 711 is taken away. In this way, the temperature of the second working fluid decreases and then condenses into a liquid state, and flows back to the end of the auxiliary heat pipe 711 that is in contact with the heating element 10 in the direction indicated by the arrow, so that the second working fluid realizes the heating element 10 Circulate heat.
  • the above-mentioned fan 712 includes, but is not limited to, a centrifugal fan, an axial fan, a suction turbine, and the like.
  • the heat dissipation system 02 includes two independent heat dissipation paths.
  • the first working fluid circulates in the main flow passage structure 202 in the working fluid driver 50 and the main heat dissipation plate 201 to dissipate heat of the heating element 10 contacting the main heat dissipation plate 201.
  • the second working fluid circulates in the auxiliary heat dissipation pipe 711 to dissipate heat for the heating element 10 that is in contact with the main heat dissipation plate 201.
  • the thickness of the working fluid driver 50 may be less than or equal to 5 mm, which effectively reduces the space occupied by the working fluid driver 50 in the electronic device 01. Therefore, the thickness of the mobile phone or tablet with the heat dissipation system 02 can reach within 7 mm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请实施例提供一种散热组件、电子设备,涉及电子设备的散热技术领域,用于对电子设备中的高发热元件进行散热。该散热系统包括系统部。系统部包括一级散热件和工质驱动器。散热系统还包括工质、二级散热件、工质传输组件。其中,一级散热件包括用于与发热元件相接触的主散热板、设置于主散热板内用于流通工质的主流通结构。二级散热件包括副散热板、设置于副散热板内用于流通工质的副流通结构。工质传输组件与副散热板和系统部转动连接。工质传输组件内的传输通道至少用于将主流通结构和副流通结构相连通。工质驱动器用于驱动工质在主流通结构、副流通结构以及工质传输组件的传输通道中流动。

Description

一种散热组件、电子设备
本申请要求在2019年6月18日提交中国国家知识产权局、申请号为201910526651.7的中国专利申请的优先权,发明名称为“一种散热组件、电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备的散热技术领域,尤其涉及一种散热组件、电子设备。
背景技术
随着科技的进步,现今电子设备朝向多功能、高速率、小尺寸的方向发展。电子设备中的一些芯片,例如系统芯片(system on chip,SOC)的集成度越来越高,数据处理过程中的运算量也越来越大。这样一来,会导致处理器在单位面积上产生的工作热量大幅增加,成为高发热元件。该高发热元件的工作热量会对处理器以及电子设备中其他部件的性能和寿命造成影响。
发明内容
本申请实施例提供一种散热组件、电子设备,用于对电子设备中的高发热元件进行散热。
为达到上述目的,本申请实施例采用如下技术方案:
本申请实施例的第一方面,提供一种散热系统。该散热系统包括系统部。该系统部包括一级散热件和工质驱动器。散热系统还包括工质、二级散热件、工质传输组件。其中,一级散热件包括用于与发热元件相接触的主散热板、设置于主散热板内用于流通工质的主流通结构。二级散热件包括副散热板、设置于副散热板内用于流通工质的副流通结构。工质传输组件与副散热板和系统部转动连接。工质传输组件内的传输通道至少用于将主流通结构和副流通结构相连通。工质驱动器用于驱动工质在主流通结构、副流通结构以及工质传输组件的传输通道中流动。
这样一来,工质驱动器可以驱动工质由工质驱动器传输至主散热板内的主流通结构中。由于主散热板与发热元件相接触,从而在工质流经主散热板时,可以吸收发热元件的热量,使得发热元件能够降温,从而达到对发热元件散热的目的。接下来,在工质驱动器的驱动下,吸收了发热元件热量的工质会经过工质传输组件的传输通道,流入副散热板中的副流通结构。该副散热板与电子设备的壳体相连接,从而可以通过壳体吸收工质中的一部分热量,使得工质的温度能够降低,达到对发热元件进行散热的目的。
可选的,工质传输组件包括至少一个第一工质传输部。第一工质传输部与主散热板和副散热板转动连接。第一工质传输部内的传输通道与主流通结构和副流通结构相连通。这样一来,通过第一工质传输部可以在实现主散热板和副散热板转动连接的基础上,通过将主散热板上的主流通结构和副散热板上的副流通结构相连通,使得主流通结构内的工质能够通过第一工质传输部内的传输通道流动至副流通结构。此外还可以使得副流通结构内的工质能够通过第一工质传输部内的传输通道流动至主流通结构。
可选的,第一工质传输部包括主连接管和副连接管。其中,主连接管与主散热板相连接,且其内孔与主流通结构相连通。副连接管与主连接管转动连接。副连接管与副散热板相连接,且其内孔与副流通结构相连通。这样一来,通过上述主连接管与副连接管,不仅可以将主散热板上的主流通结构和副散热板上的副流通结构相连通,还可以使得主散热板和副散热板转 动连接。
可选的,第一工质传输部还包括软管。软管穿过主连接管和副连接管的内孔。软管的一端与主流通结构相连通,另一端与副流通结构相连通。软管的内孔作为第一工质传输部的传输通道,使得工质可以在软管的内孔内流动,从而实现工质在第一工质传输部件内的传输。
可选的,第一工质传输部还包括覆盖软管外壁表面的疏液涂层。通过该输液涂层可以减小软管内的工质通过软管发生高分子渗漏的几率。
可选的,工第一工质传输部还包括转动连接管和至少一个密封件。主连接管的一端与副连接管的一端对接,且均嵌套于转动连接管内。密封件位于转动连接管内孔的孔壁与主连接管的外壁之间,或者,密封件位于转动连接管内孔的孔壁与副连接管的外壁之间。这样一来,通过设置上述密封件,可以降低第一工质传输部出现漏液的几率。
可选的,第一工质传输部还包括至少一个密封件。主连接管的一部分伸入副连接管的内孔中。密封件位于主连接管的外壁与副连接管内孔的孔壁之间。或者,副连接管的一部分伸入主连接管的内孔中。密封件位于副连接管的外壁与主连接管内孔的孔壁之间。这样一来,通过将主连接管的一部分伸入副连接管的内孔中,或者将副连接管的一部分伸入主连接管的内孔中可以使得主连接管和副连接管实现转动连接。此外,通过设置上述密封件,可以降低第一工质传输部出现漏液的几率。
可选的,工质传输组件还包括第二工质传输部。第二工质传输部与副散热板和工质驱动器转动连接。工质驱动器的出液口与主流通结构相连通,第二工质传输部内的传输通道与副流通结构和工质驱动器的进液口相连通。这样一来,在工质驱动器的驱动下,工质可以由工质驱动器的出液口流入主流通结构,并对发热元件进行散热,然后由第一工质传输部传输至副流通结构,在主散热板上进行散热。接下来,再通过副流通结构传输至第二工质传输部,并经过该第二工质传输部回流至工质驱动器的进液口,以使得工质可以对发热元件进行下一次的循环散热。
可选的,工质传输组件还包括两个并排设置的第一工质传输部,分别为右第一工质传输部和左第一工质传输部。主流通结构包括第一主通道和第二主通道。工质驱动器的出液口与第一主通道相连通,进液口与第二主通道相连通。右第一工质传输部的传输通道与第一主通道和副流通结构相连通。左第一工质传输部的传输通道与副流通结构和第二主通道相连通。这样一来,工质驱动器可以驱动工质由工质驱动器的出液口传输至主散热板内的第一主通道中。由于主散热板与主板上的发热元件相接触,从而在工质流经主散热板时,可以吸收发热元件的热量,使得发热元件能够降温,从而达到对发热元件散热的目的。接下来,在工质驱动器的驱动下,吸收了发热元件热量的工质会经过右第一工质传输部的传输通道,流入副散热板中的副流通结构。该副散热板与第一壳体相连接,从而可以通过第一壳体吸收工质中的一部分热量,使得工质的温度能够降低。接下来,在工质驱动器的驱动下,经过降温的工质可以由传输至副散热板中的副流通结构流动至左第一工质传输部的传输通道,并经过左第一工质传输部流动至主散热板内的第二主通道中,并通过第二主通道进入工质驱动器的进液口,从而通过工质驱动器的驱动后再次由该工质驱动器的出液口进入主散热板内的第一主通道中,进行下一轮的散热过程。
可选的,工质传输组件包括第一连接管和第二连接管。第二连接管嵌套于第一连接管的内孔中。第一连接管与主散热板和副散热板转动连接。第一连接管的内孔与工质驱动器的进液口和副流通结构相连通,工质驱动器的出液口与主流通结构相连通。第二连接管内孔与主流通结构和副流通结构相连通。这样一来,通过将第一连接管和第二连接管嵌套设置,可以 使得从工质驱动器的出液口中流至主流通结构中的工质,能够通过第二连接管流动至副流通结构,然后再从副流通结构经过第一连接管回流至工质驱动器的进液口。
可选的,第一连接管、第二连接管中至少位于主散热板和副散热板之间的部分为柔性材料,从而可以在第一连接管与主散热板和副散热板相连接的情况下,能够使得主散热板和副散热板通过第一连接管转动。
可选的,主流通结构包括第一主通道和第二主通道。工质驱动器的出液口与第一主通道相连通,进液口与第二主通道相连通。工质传输组件包括第三连接管和第四连接管。第四连接管嵌套于第三连接管的内孔中。第三连接管与主散热板和副散热板转动连接,且第三连接管的内孔与第二主通道和副流通结构相连通。第四连接管的内孔与第一主通道和与副流通结构相连通。这样一来,通过将第三连接管和第四连接管嵌套设置,可以使得从工质驱动器的出液口中流至第一主通道中的工质,能够通过第三连接管流动至副流通结构,然后再从副流通结构经过第四连接管流动至第二主通道,然后再通过该第二主通道回流至工质驱动器的进液口。此外,当工质驱动器的出液口与第二主通道相连通,进液口与第一主通道相连通时,工质的流通过程同上所述,此处不再赘述。
可选的,第三连接管、第四连接管中至少位于主散热板和副散热板之间的部分为柔性材料。该第三连接管、第四连接管的设置方式与第一连接管和第二连接管相同,此处不再赘述。
可选的,工质驱动器包括第一上盖、第一下底、隔板定子、转子。其中,第一下底与第一上盖相连接,形成容纳腔。隔板位于容纳腔内,与第一下底相连接。隔板与第一下底之间形成密封子腔,隔板与第一上盖之间形成液体子腔。工质驱动器的出液口和进液口设置于液体子腔上。定子位于密封子腔内。转子位于液体子腔内。转子用于在定子产生的磁场作用下,转动以驱动液体子腔内的工质发生流动。这样一来,通过隔板可以将定子与液体子腔内的工质隔离开。当向定子提供电信号,该定子的周围产生磁场。转子在磁场中生成感应电动势,从而在闭环的转子线路中产生电流。该电流能够使得转子周围产生另一个磁场。上述两个磁场同极时就会产生排斥,使得转子转动。转子在转动的情况下,可以驱动液体子腔内的工质在液体子腔内流动,从而由工质驱动器的进液口,流出出液口,以实现工质在工质驱动器、主流通结构以及副流通结构形成的闭环回路中的循环流动。
可选的,工质驱动器还包括温度传感器以及流速控制器。该温度传感器位于液体子腔内,用于检测液体子腔中工质的温度。流速控制器与温度传感器和定子电连接。流速控制器用于根据温度传感器的检测结果,控制施加至定子的电压。其中,温度传感器检测的温度与施加至定子的电压成正比。这样一来,当液体子腔中工质的温度较高时,可以通过流速控制器增大施加至定子的电压,从而使得转子的转速提高,加速工质的流速,提高对发热元件进行降温的效率。反之,当液体子腔中工质的温度较低时,可以减小工质的流速。
可选的,工质驱动器还包括渗漏检测器。渗漏检测器与定子和转子电连接,渗漏检测器用于检测施加至定子的电压与转子的转速,并根据转子的转速确定出液体子腔内工质的体积。这样一来,通过渗漏检测器对转子的实际转速进行检测,并将该实际转速与上述预设转速进行比对,当实际转速大于预设转速时,可以说明转子的负载有所减小,因此液体子腔内存在漏液的现象。
可选的,工质驱动器还包括多个间隔设置,且与转子相连接的叶片。多个叶片围设于转子外表面。这样一来,当转子转动的过程中,可以带动叶片一起转动,从而可以使得叶片在转动的过程中,推动上述液体子腔内的工质流动。
可选的,工质驱动器的进液口和出液口之间的夹角为0°、90°或180°。这样一来,工 质可以由进液口进入工质驱动器中叶片的边缘,然后在叶片的带动下由叶片的边缘加速甩出出液口,完成工质的驱动。
可选的,主流通结构、副流通结构包括至少一个热管。热管内设置有用于散热的毛细结构,从而有利于提高主散热板和副散热板的散热效果。
可选的,一级散热件、二级散热件为均热板。均热板内设置有用于散热的毛细结构,从而有利于提高一级散热件、二级散热件的散热效果。或者,在本申请的另一些实施例中,一级散热件、二级散热件可以为冷板(pipe sink)。冷板中无需设置毛细结构,从而使得一级散热件、二级散热件的制作工艺更加简单。
可选的,散热系统还包括辅助散热件。辅助散热件位于发热元件与主散热板之间,且与发热元件和主散热板相接触。辅助散热件为散热片或者热电制冷薄膜。散热片采用金属材料构成,具有良好的导热效果。此外,当上述辅助散热件为热电制冷薄膜时,在热电制冷薄膜通电的状态下,可以将温度低的一侧表面与发热元件相接触,从而更有利于对发热元件进行散热。
可选的,一级散热件还包括主风扇,主风扇与主散热板相连接。二级散热件还包括副风扇;副风扇与副散热板相连接。主风扇在转动的过程中,能够对吸收了发热元件热量的主散热板进行散热,以提高主散热板对工质的散热效果。该副风扇在转动的过程中,能够对副散热板进行散热,以提高副散热板对工质的散热效果。
可选的,副流通结构包括贯穿副散热板的板材结构的至少一个副通道。每个副通道的一端为副散热板的进液口相连通,另一端与副散热板的出液口相连通。相邻两个副通道之间通过板材结构间隔开。这样一来,副通道可以对流入副流通结构内的工质进行导流,使其沿着副通道的形状进行流动。
可选的,副散热板包括第二上盖、第二下底、多条间隔设置的支撑条。其中,第二下底与第二上盖相连接形成空腔。多条间隔设置的支撑条位于空腔内,且与第二上盖、第二下底相连接。相邻两条支撑条之间形成副通道;多个副通道构成副流通结构。这样一来,由多个间隔设置的支撑条构成的副通道,可以对流入副流通结构内的工质进行导流,使其沿着副通道的形状进行流动。
可选的,副通道呈螺旋状,且各处无相交。由于副通道的侧壁呈曲面,因此可以使得工质在副通道中流动的过程中,有效减小副通道的侧壁对工质的阻力。从而使得工质在副通道中能够更顺畅的流动,降低工质驱动器的功耗。
可选的,副散热板还包括位于空腔内的多个支撑柱。支撑柱与第二上盖和第二下底相连接。可以减小副散热板受热膨胀导致支撑条与第二上盖和第二下底发生开裂的几率。
本申请实施例的第二方面,提供一种电子设备。该电子设备包括转动连接的第一壳体和第二壳体,以及安装于第一壳体上的显示模组和安装于第二壳体上的主板;主板上设置有发热元件。此外,电子设备还包括如上所述的任意一种散热系统。该散热系统中一级散热件设置于第二壳体上,且一级散热件的主散热板与发热元件相接触。散热系统中二级散热件设置于第一壳体上,且二级散热件的副散热板与显示模组的背面和第一壳体相连接。该电子设备具有与前述实施例提供的散热系统相同的技术效果,此处不再赘述。
可选的,散热系统中的工质驱动器位于第二壳体上,且与二级散热件并排放置。从而可以节省散热系统在电子设备内的占用空间。
本申请实施例的第三方面,提供一种散热系统。该散热系统包括第一散热件、第一工质、工质驱动器、第二散热件以及第二工质。第一散热件包括用于与发热元件相接触的主散热板、 设置于主散热板内的主流通结构。工质驱动器其出液口和进液口与主流通结构相连通,用于驱动第一工质在工质驱动器、主流通结构形成的闭环回路中循环流动。第二散热件包括副散热管、风扇以及副散热板。副散热管的一端与发热元件相接触,另一端位于风扇的出风口和副散热板之间,且与风扇和副散热板相连接。第二工质位于副散热管内。
在此情况下,工质驱动器可以驱动第一工质由工质驱动器的出液口流动至主散热板内的主流通结构中。由于主散热板与发热元件相接触,从而通过第一工质吸收发热元件的热量。吸收热量后的第一工质回流至工质驱动器的进液口,从而使得第一工质对发热元件进行循环散热。此外,由于副散热管的一端与发热元件相接触,因此发热元件的热量可以使得副散热管内的第二工质发生气化,并向副散热管中温度较低的另一端流动。由于副散热管的另一端位于风扇的出风口和副散热板之间,且与风扇和副散热板相连接,因此可以通过风扇的出风口和副散热板将副散热管内第二工质的热量带走。这样一来,第二工质的温度降低后又凝结成液态,沿箭头所示的方向回流至副散热管与发热元件相接触的一端,从而通过第二工质实现对发热元件的循环散热。
可选的,工质驱动器包括第一上盖、第一下底、隔板、定子以及转子。第一下底与第一上盖相连接,形成容纳腔。隔板位于容纳腔内,与第一下底相连接。隔板与第一下底之间形成密封子腔,隔板与第一上盖之间形成液体子腔;工质驱动器的出液口和进液口设置于液体子腔上。定子位于密封子腔内。转子位于液体子腔内。转子用于在定子产生的磁场作用下,转动以驱动液体子腔内的工质发生流动。工质驱动器的技术效果同上所述,此处不再赘述。
可选的,工质驱动器还包括多个间隔设置,且与转子相连接的叶片。多个叶片围设于转子外表面。叶片的技术效果同上所述,此处不再赘述。
可选的,第一散热件为均热板或冷板。副散热板为散热片。均热板、散热片以及冷板的技术效果同上所述,此处不再赘述。
可选的,副散热管为热管。热管的技术效果同上所述,此处不再赘述。
可选的,散热系统还包括辅助散热件。辅助散热件位于发热元件与主散热板之间,且与发热元件和主散热板相接触。辅助散热件为散热片或者热电制冷薄膜。辅助散热件技术效果同上所述,此处不再赘述。
本申请实施例的第四方面,提供一种电子设备。该电子设备包括后壳、安装于后壳上的显示模组、位于显示模组与后壳之间的主板。主板上设置有发热元件。电子设备还包括如上所述的任意一种散热系统。散热系统位于显示模组与壳体之间。散热系统中第一散热件的主散热板、第二散热件的副散热管均与发热元件相接触。该电子设备具有与前述实施例提供的散热系统相同的技术效果,此处不再赘述。
附图说明
图1为本申请的一些实施例提供的一种电子设备的结构示意图;
图2为图1中显示模组的结构示意图;
图3a为本申请实施例提供的一种散热系统的结构示意图;
图3b为本申请实施例提供的一种具有散热系统的电子设备的结构示意图;
图4a为本申请实施例提供的另一种散热系统的结构示意图;
图4b为图4a所示的散热系统中,工质的循环散热示意图;
图4c为本申请实施例提供的另一种散热系统的循环结构示意图;
图5a为本申请实施例提供的另一种散热系统的结构示意图;
图5b为图5a中工质传输结构的一种结构示意图;
图5c为图5a中工质传输结构的另一种结构示意图;
图5d为图5a中工质传输结构的另一种结构示意图;
图5e为图5b中主连接管和副连接管的一种结构示意图;
图6a为本申请实施例提供的另一种散热系统的结构示意图;
图6b为图6a中工质传输结构的一种结构示意图;
图6c为图6a中工质传输结构的另一种结构示意图;
图6d为图6a中工质传输结构的另一种结构示意图;
图7a为本申请实施例提供的另一种散热系统的结构示意图;
图7b为图7a中第一连接管和第二连接管的一种结构示意图;
图8为本申请实施例提供的另一种散热系统的结构示意图;
图9为本申请实施例提供的散热系统的一种局部结构剖视图;
图10a为本申请实施例提供的一种二级散热件的结构示意图;
图10b为本申请实施例提供的另一种二级散热件的结构示意图;
图10c为本申请实施例提供的另一种二级散热件的结构示意图;
图11a为图10a中副通道的一种结构示意图;
图11b为图10a中副通道的一种结构示意图;
图12a为本申请实施例提供的一种二级散热件的截面结构示意图;
图12b为本申请实施例提供的另一种二级散热件的结构示意图;
图13a为本申请实施例提供的一种工质驱动器的截面结构示意图;
图13b为本申请实施例提供的一种工质驱动器结构示意图;
图14a为本申请实施例提供的一种转子结构示意图;
图14b为本申请实施例提供的另一种转子结构示意图;
图14c为本申请实施例提供的另一种转子结构示意图;
图15为本申请实施例提供的另一种散热系统的结构示意图;
图16a为本申请的一些实施例提供的另一种电子设备的结构示意图;
图16b为图16a所示的电子设备中部分部件的结构示意图;
图17a为本申请实施例提供的一种散热系统的结构示意图;
图17b为具有图17a所示的散热系统的电子设备的一种结构示意图;
图17c为图17a所示的散热系统的循环散热示意图。
附图标记:
01-电子设备;10-发热元件;11-第一壳体;110-显示模组;12-第二壳体;120-主板;100-系统部;101-液晶显示屏;102-背光模组;02-散热系统;20-一级散热件;201-主散热板;202-主流通结构;30-二级散热件;301-副散热板;302-副流通结构;40-工质传输组件;401-传输通道;50-工质驱动器;41-第一工质传输部;42-第二工质传输部;41a-右第一工质传输部;41b-左第二工质传输部;212-第一主通道;222-第二主通道;411-主连接管;412-副连接管;413-转动连接管;414-密封件;400-软管;402-疏液涂层;415-凹槽;4110-第一安装件;4120-第二安装件;421-第一连接管;422-第二连接管;423-第三连接管;424-第四连接管;420-金属部分;430-树脂部分;60-辅助散热件;3021-副通道;3011-第二上盖;3012-第二下底;3013-空腔;3014-支撑条;3015-支撑柱;3026-凸起;501-第一上盖;502-第一下底;503-容纳腔;510-密封子腔;511-液体子腔;504-隔板;505-定子;506-转子;520-温度传感器;521-流速控制器;522-渗漏检测器;530-叶片;203-主风扇;303-副风扇;111-中框;112-后壳;70-第 一散热件;71-第二散热件;711-副散热管;712-风扇。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
以下,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,本申请中,“上”、“下”、“左”、“右”等方位术语是相对于附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。
本申请实施例提供一种电子设备,该电子设备包括例如手机、平板电脑、笔记本电脑、车载电脑、智能穿戴产品等。本申请实施例对上述电子设备的具体形式不做特殊限制。
在本申请的一些实施例中,是以电子设备01如图1所示为笔记本电脑为例进行的说明。
在此情况下,如图1所示,电子设备01包括转动连接的第一壳体11和第二壳体12。上述电子设备01还包括安装于第一壳体11上的显示模组110。其中,显示模组110用于显示图像。显示模组110具有用于显示图像的显示面,以及远离该显示面板的背面。显示模组110的背面朝向如图1所示的第一壳体11。
在本申请的一些实施例中,显示模组110为液晶显示模组。在此情况下,该显示模组110包括如图2所示的液晶显示屏(liquid crystal display,LCD)101以及位于液晶显示屏101背面(远离LCD101用于显示画面的一侧表面)的背光模组(back light unit,BLU)102。
BLU102可以向液晶显示屏101提供光源,以使得液晶显示屏101中的各个亚像素(sub pixel)能够发光以实现图像显示。
或者,在本申请的另一些实施例中,显示模组110可以为有机发光二极管(organic light emitting diode,OLED)显示屏。由于OLED显示屏中每个亚像素内设置有电致发光层,所以可以使得OLED显示屏在接收到工作电压后,实现自发光。在此情况下,具有OLED显示屏的显示模组110中无需再设置上述BLU。
此外,上述电子设备01如图1所示,还包括安装于第二壳体12上的主板120以及安装于主板120上的发热元件10。该发热元件10可以为SOC、中央处理器(central processing unit,CPU)或者图形处理器(graphics processing unit,GPU)。其中,该主板120可以为印刷电路板(printed circuit board,PCB)。上述主板120与显示模组110上的驱动电路电连接,从而可以通过PCB上的处理器控制显示模组110进行图像显示。
在此基础上,为了对上述发热元件10进行散热,该电子设备01还包括如图3a所示的散热系统02。该散热系统02包括设置于第二壳体12上的系统部100、设置于第一壳体11上的二级散热件30,以及位于所述系统部100和所述二级散热件30之间的工质传输组件40。
其中,该系统部100包括如图3b所示的一级散热件20和工质驱动器50。该一级散热件20包括与发热元件10(如图1所示)相接触的主散热板201以及设置于主散热板201中用于流通工质的主流通结构202。
该二级散热件30包括副散热板301以及设置于副散热板301内用于流通工质的副流通结构302。如图3a所示,副散热板301位于显示模组110(如图1所示)的背面和第一壳体11之间,且与显示模组110和第一壳体11相连接。
此外,如图3a所示,工质传输组件40与系统部100和副散热板301转动连接。从而可以使得电子设备01的第一壳体11和第二壳体12相对转动时,系统部100和副散热板301可以通过工质传输组件40相对转动。
工质传输组件40的内部具有传输通道401。该工质传输组件40的传输通道401至少用于将主流通结构202和副流通结构302相连通。
此外,上述工质驱动器50具有出液口和进液口。上述散热系统02还包括位于主流通结构202、副流通结构302以及工质驱动器50中的工质。该工质驱动器50用于驱动工质在主流通结构202、副流通结构302以及工质传输组件40的传输通道401中流动。
在本申请的一些实施例中,如图3b所示,工质传输组件40包括第一工质传输部41和第二工质传输部42。该第一工质传输部41与主散热板201和副散热板301转动连接。第一工质传输部41内的传输通道与主散热版201内的主流通结构202,以及副散热板301内的副流通结构302相连通。
此外,第二工质传输部42与副散热板301和工质驱动器50转动连接。该第二工质传输部42内的传输通道与副散热板301的副流通结构302和工质驱动器50的进液口B相连通。工质驱动器50的出液口A与主散热板201内的主流通结构202相连通。
基于此,为了节省散热系统02在第二壳体12内的占用空间。如图3b所示,散热系统02中的工质驱动器50可以与二级散热件30并排放置。例如,在二级散热件30中主散热板201的左、右两侧。
在此情况下,工质驱动器50可以驱动工质,沿如图3b所示的箭头方向,由工质驱动器50的出液口A传输至主散热板201内的主流通结构202中。由于主散热板201与图3b所示的主板120上的发热元件10(图1所示)相接触,从而在工质流经主散热板201时,可以吸收发热元件10的热量,使得发热元件10能够降温,从而达到对发热元件10散热的目的。
接下来,在工质驱动器50的驱动下,吸收了发热元件10热量的工质会经过第一工质传输部41,流入副散热板301中的副流通结构302。该副散热板301与第一壳体11相连接,从而可以通过第一壳体11吸收工质中的一部分热量,使得工质的温度能够降低。
接下来,在工质驱动器50的驱动下,经过降温的工质可以通过第二工质传输部42传输至工质驱动器50的进液口B(图3a所示),从而通过工质驱动器50的驱动后再次由该工质驱动器50的出液口A进入主散热板201内的主流通结构202中,进行下一轮的散热过程。
这样一来,在工质驱动器50驱动工质在工质驱动器50、主流通结构202以及副流通结构302形成的闭环回路中循环流动的过程中,可以使得工质不断的吸收发热元件10的热量,并将该热量传递至第一壳体11进行散热,达到对发热元件10进行散热的目的。
或者,在本申请的另一些实施例中,在电子设备01的散热系统02中的工质传输组件40包括两个用于将主散热板201和副散热板301转动连接的第一工质传输部,分别为如图4a所示的右第一工质传输部41a和左第一工质传输部41b。
此外,如图4b所示,主散热板201内的主流通结构202包括第一主通道212和第二主通道222。工质驱动器50的出液口A与主散热板201内的第一主通道212相连通,进液口B与第二主通道222相连通。
右第一工质传输部41a的传输通道与第一主通道212和副流通结构302相连通。左第一 工质传输部41b的传输通道与副流通结构302和第二主通道222相连通。
在此情况下,工质驱动器50可以驱动工质沿图4b所示的箭头方向,由工质驱动器50的出液口A传输至主散热板201内的第一主通道212中。由于主散热板201与主板120上的发热元件10相接触,从而在工质流经主散热板201时,可以吸收发热元件10的热量,使得发热元件10能够降温,从而达到对发热元件10散热的目的。
接下来,在工质驱动器50的驱动下,吸收了发热元件10热量的工质会经过右第一工质传输部41a的传输通道401a,流入副散热板301中的副流通结构302。该副散热板301与第一壳体11相连接,从而可以通过第一壳体11吸收工质中的一部分热量,使得工质的温度能够降低。
接下来,在工质驱动器50的驱动下,经过降温的工质可以由副散热板301中的副流通结构302,经过左第一工质传输部41b流动至主散热板201内的第二主通道222中,并通过第二主通道222进入工质驱动器50的进液口B,从而通过工质驱动器50的驱动后再次进行下一轮的散热过程。
需要说明的是,上述是以工质驱动器50的出液口A与主散热板201内的第一主通道212相连通,进液口B与第二主通道222相连通为例,对工质的流动进行的说明。在本申请的另一些实施例中,还可以将工质驱动器50的进液口B与主散热板201内的第一主通道212相连通,出液口A与第二主通道222相连通。工质的流动过程同理可得,此处不再赘述。
这样一来,在工质驱动器50驱动工质在如图4c所示的,由工质驱动器50、一级散热件20的主流通结构202、工质传输组件40、以及二级散热件30的副流通结构302形成的闭环回路中循环流动的过程中,可以使得工质不断的吸收发热元件10的热量,并将该热量传递至第一壳体11进行散热,达到对发热元件10进行散热的目的。
以下根据散热系统02中工质驱动器50的进液口B、出液口A的连接方式,对工质传输组件40的结构进行举例说明。
示例一
本示例中,散热系统02以采用如图3b所示的结构为例,对第一工质传输部41的结构进行说明。
由上述可知,该散热系统02中的第一工质传输部41,不仅可以将主散热板201上的主流通结构202和副散热板301上的副流通结构302相连通,该第一工质传输部41还可以使得主散热板201和副散热板301转动连接。为了使得第一工质传输部41能够实现上述功能,该第一工质传输部41包括如图5a所示的主连接管411、副连接管412以及转动连接管413。
如图5a所示,主连接管411与主散热板201相连接。副连接管412与副散热板301相连接。此外,如图5b(沿图5a所示的O1-O1进行剖切得到的剖视图)所示,主连接管411的一端与副连接管412的一端对接,使得主连接管411的内孔与副连接管412的内孔相连通。
在本申请的一些实施例中,主连接管411的内孔与副连接管412的内孔可以作为上述第一工质传输部41的传输通道,使得工质可以沿如图5b所示的箭头方向,从而主连接管411的内孔流动至副连接管412的内孔中,从而实现工质在第一工质传输部41内的传输。
或者,在本申请的另一些实施例中,上述第一工质传输部41还包括如图5c所示的软管400。构成该软管400的材料可以为柔性树脂材料。软管400穿过主连接管411的内孔与副连接管412的内孔。此外,该软管400的一端与主散热板201内的主流通结构202(如图5a所示)相连通,另一端与副散热板301内的副流通结构302(如图5b所示)相连通。
在此情况下,软管400的内孔作为上述第一工质传输部41的传输通道,使得工质可以沿 如图5c所示的箭头方向,在软管400的内孔内流动,从而实现工质在第一工质传输部41内的传输。
在此基础上,上述第一工质传输部41还包括如图5d所示的,覆盖软管400外壁表面的疏液涂层402。通过该输液涂层402可以减小软管400内的工质通过软管400发生高分子渗漏的几率。在本申请的实施例中,上述疏液涂层402可以为由纳米材料构成的纳米涂层,或者采用紫外线(ultraviolet,UV)光固化材料构成的涂层。
此外,为了使得主连接管411与副连接管412能够相对转动,如图5d所示,主连接管411与副连接管412对接的部分嵌套于转动连接管413内,从而使得副连接管412与主连接管411通过上述转动连接管413转动连接。
需要说明的是,在本申请实施例中,构成转动连接管413的材料可以为硬质的金属材料,或者还可以为柔性的树脂材料。本申请对此不做限定。
在此基础上,为了在第一工质传输部41传输工质的过程中,降低工质传输组件40出现漏液的几率,如图5d所示,该第一工质传输部41还包括至少一个密封件,图5d是以第一工质传输部41具有两个密封件(414a、414b)为例进行的说明。
其中一个密封件414a位于转动连接管413内孔的孔壁与主连接管411的外壁之间。另一个密封件414b位于转动连接管413内孔的孔壁与副连接管412的外壁之间。
上述密封件可以为密封圈。在此情况下,为了固定密封圈的位置,如图5e所示,主连接管411(或者副连接管412)的外壁上可以制作有环形凹槽415。这样一来,可以将上述密封圈套在主连接管411(或者副连接管412)的外壁上,并卡入环形凹槽415内,从而可以防止副连接管412与主连接管411相对转动时,密封圈发生较大的位移而降低了密封效果。
此外,为了在电子设备01内安装上述第一工质传输部41,如图5e所示,上述主连接管411上可以设置有第一安装件4110,副连接管412上可以设置有第二安装件4120。在此情况下,可以通过螺纹连接件,例如螺钉或螺栓穿过第一安装件4110上的通孔,将主连接管411固定于电子设备01的一部件,例如第二壳体12上。此外,可以通过上述螺纹连接件穿过第二安装件4120上的通孔,将副连接管412固定于电子设备01的一个部件,例如第一壳体11上。
需要说明的是,上述是以第一工质传输部41的结构为例进行的说明。用于将副散热板301和工质驱动器50转动连接的第二工质传输部42的结构同理可得,此处不再赘述。
示例二
本示例中,与示例一相同,散热系统02是以图3b所示的结构为例对第一工质传输部41的结构进行说明。与示例一的不同之处在于,该第一工质传输部41的结构如图6a所示包括主连接管411、副连接管412。主连接管411与主散热板201相连接。副连接管412与副散热板301相连接。
例如,如图6b(沿图6a中的O2-O2进行剖切得到的剖视图)所示,该主连接管411的一部分伸入副连接管412的内孔中。此外,为了减小工质漏液的几率,上述工质传输组件40还包括密封件414。该密封件414位于主连接管411的外壁与副连接管412内孔的孔壁之间。密封件414可以为密封圈,密封圈的设置方式同上所述,此处不再赘述。
同理,在本申请的一些实施例中,主连接管411的内孔可以作为上述第一工质传输部41的传输通道,使得工质可以沿如图6b所示的箭头方向流动,从而实现工质在第一工质传输部41内的传输。
或者,在本申请的另一些实施例中,上述第一工质传输部41还包括如图6c所示的软管 400。软管400穿过主连接管411的内孔,且与主散热板201内的主流通结构202以及副散热板301内的副流通结构302(如图5b所示)相连通。在此情况下,软管400的内孔作为上述第一工质传输部41的传输通道,使得工质可以沿如图6c所示的箭头方向,从而在软管400的内孔内流动,从而实现工质在工质传输组件40内的传输。此外,该软管400的外壁还可以设置上述疏液涂层402。
或者,又例如,如图6d(沿图6a中的O2-O2进行剖切得到的剖视图)所示,副连接管412的一部分伸入主连接管411的内孔中。在此情况下,上述密封件414位于副连接管412的外壁与主连接管411内孔的孔壁之间。在此情况下,第一工质传输部41的传输通道的设置方式同上所述,此处不再赘述。
需要说明的是,上述是以第一工质传输部41的结构为例进行的说明。用于将副散热板301和工质驱动器50转动连接的第二工质传输部42的结构同理可得,此处不再赘述。
示例三
本示例中,工质传输组件40的结构如图7a所示包括第一连接管421和第二连接管422。第二连接管422嵌套于第一连接管421的内孔中。如图7a所示,第一连接管421与主散热板201和副散热板301转动连接。
如图7a所示,工质驱动器50的出液口A与主散热板201内的主流通结构202相连通,第一连接管421的内孔与工质驱动器50的进液口B以及副散热板301内的副流通结构302相连通。该第二连接管422内孔与主散热版201内的主流通结构202以及副散热板301内的副流通结构302相连通。
为了使得主散热板201和副散热板301可以通过第一连接管421相对转动。该第一连接管421、第二连接管422中至少位于主散热板201和副散热板301之间的部分采用柔性材料,例如树脂材料构成。基于此,在制作第一连接管421的过程中,可以采用注塑工艺将如图7b所示的金属部分420和树脂部分430连接在一起,形成树脂材料和金属材料拼接在一起的第一连接管421。同理,可以采用上述注塑工艺将如图7b所示的金属部分420和树脂部分430连接在一起,形成树脂材料和金属材料拼接在一起的第二连接管422。或者,在本申请的另一些实施例中,第一连接管421的设置方式可以与上述第一工质传输部41的设置方式相同此处不再赘述。
基于此,工质驱动器的出液口A输出的工质,沿如图7a所示的箭头方向流入主流通结构202中。然后,工质沿图7b中向右的箭头方向在第二连接管422的内孔中流动。接下来,由第二连接管422流动至图7a所示的副散热板301内的副流通结构302中。接下来,副流通结构302内的工质,沿图7a所示的箭头方向流入第一连接管421内,并沿图7b中向左的箭头方向在第一连接管421的内孔中流动。接下来,工质经过第一连接管421后,如图7a所示回流至工质驱动器50的进液口B。从而可以使得工质通过工质驱动器50的驱动后,再次由该工质驱动器50的出液口A进入主散热板201内的主流通结构202中,进行下一轮的散热过程。
由上述可知,如图7a所示的工质传输组件40中,工质由位于内部的第二连接管422进入,由位于外部的第一连接管421流出。
示例四
本示例中,如图8所示,主流通结构202包括第一主通道212和第二主通道222。该工质传输组件40包括第三连接管423和第四连接管424。第四连接管424嵌套于第三连接管423的内孔中。第三连接管423与主散热板201和副散热板301转动连接。
在本申请的一些实施例中,工质驱动器50的出液口A与第一主通道212相连通,进液口B与第二主通道222相连通。此外,且第三连接管423的内孔与主散热版201内的第二主通道222,以及副散热板301内的副流通结构302相连通。第四连接管424的内孔与第一主通道212以及副流通结构302相连通。
为了使得主散热板201和副散热板301可以通过第三连接管423相对转动。与示例三中第一连接管421和第二连接管422的设置方式相同,该第三连接管423和第四连接管424中至少位于主散热板201和副散热板301之间的部分采用柔性材料,例如树脂材料构成。
这样一来,工质沿如图8所示的箭头方向通过第一主通道212经过第四连接管424后,流动至副散热板301内的副流通结构302中。接下来,副流通结构302内的工质可以沿图8所示的箭头方向经过第三连接管423后流动至主散热板201的第二主通道222,然后在通过第二主通道222回流至工质驱动器50的进液口B。从而可以使得工质通过工质驱动器50的驱动后,再次进行下一轮的散热过程。在此情况下,如图8所示的工质传输组件40中,工质由位于内部的第四连接管424进入,由位于外部的第三连接管423流出。
或者,在本申请的另一些实施例中,还可以将工质驱动器50的进液口B与第一主通道212相连通,出液口A与第二主通道222相连通。此时工质在散热系统02中的流通方式同理可得,此处不再赘述。
以下对于上述任意一种示例而言,对一级散热件20中的主流通结构202和主散热板201结构进行说明。在本申请的一些实施例中,该一级散热件20可以为均热板。在此情况下,上述一级散热件20的主流通结构202可以为该均热板内的毛细结构。或者,上述一级散热件20可以为冷板。该冷板中无需设置上述毛细结构,从而使得一级散热件20的结构更加简单。
或者,在本申请的另一些实施例中,上述主散热板201可以为一金属块,而主流通结构202可以为设置于该金属块内,且贯穿该金属块的管道。示例的,上述管道可以为具有毛细结构的热管。
由上述可知,主散热板201用于与主板120上的发热元件10(如图1所示)相接触,从而对该发热元件10进行散热。在本申请的一些实施例中,为了进一步提高散热系统02对发热元件10的散热效果,如图9(对电子设备01沿垂直于第一壳体11的表面进行剖切得到的剖视图)所示,该散热系统02还包括辅助散热件60。该辅助散热件60可以为金属材料构成的散热片,或者热电制冷薄膜。
上述辅助散热件60位于发热元件10与主散热板201之间,且该辅助散热件60与发热元件10和主散热板201相接触。当上述辅助散热件60为热电制冷薄膜时,在热电制冷薄膜通电的状态下,可以将温度低的一侧表面与发热元件10相接触,从而更有利于对发热元件10进行散热。
以下对具有副流通结构302、副散热板301的二级散热件30的结构进行说明。同上所述,在本申请的一些实施例中,该二级散热件30可以为均热板。在此情况下,上述副流通结构302可以为该均热板内的毛细结构。或者,在本申请的另一些实施例中,上述副散热板301可以为一金属块,而副流通结构302可以为设置于该金属块内,且贯穿该金属块的热管。或者,上述二级散热件30可以为冷板。
又或者,在本申请的另一些实施例中,如图10a所示,副流通结构302可以为副散热板301的板材结构中形成的空腔。该空腔的一端与副散热板301的进液口(工质沿箭头进入副通道的方向)相连通,另一端与副散热板301的出液口(工质沿箭头流出副通道的方向)相连通。
又或者,在本申请的另一些实施例中,副流通结构302包括贯穿副散热板301的板材结构的至少一个副通道3021。例如,如图10b所示,贯穿副散热板301的板材结构的两个副通道3021可以构成上述副流通结构302。或者,如图10c所示,贯穿副散热板301的板材结构的三个副通道3021可以构成上述副流通结构302。
其中,每个相邻两个副通道3021的一端为副散热板301的进液口(工质沿箭头进入副通道的方向)相连通,另一端与副散热板301的出液口(工质沿箭头流出副通道的方向)相连通。相邻两个副通道3021之间通过板材结构间隔开。这样一来,副通道3021可以对流入副流通结构302内的工质进行导流,使其沿着副通道3021的形状进行流动。
需要说明的是,图10a、图10b以及图10c中均是以副散热板301为扇形为例进行的说明。本申请实施例对副散热板301的形状不做限定,还可以为圆形或者矩形等。
在此基础上,以副流通结构302中的一个副通道3021为例,在本申请的一些实施例中,如图11a所示,副通道3021的形状可以为方波型。工质由工质驱动器50的出液口A经过一级散热件对发热元件10进行散热后,流向二级散热件中的方波型副通道3021中,然后再回流至工质驱动器50的进液口B。
或者,在本申请的另一些实施例中,如图11b所示,副通道3021可以呈螺旋状,且各处无相交。工质由工质驱动器50的出液口A经过一级散热件对发热元件10进行散热后,流向二级散热件中的螺旋状的副通道3021中,然后再回流至工质驱动器50的进液口B。
相对于图11a的方案而言,由于图11b的方案中副通道3021的侧壁呈曲面,因此可以使得工质在副通道3021中流动的过程中,有效减小副通道3021的侧壁对工质的阻力。从而使得工质在副通道3021中能够更顺畅的流动,降低工质驱动器50的功耗。同理,副通道3021还可以为拐角处圆滑的S型。
又或者,在本申请的另一些实施例中,二级散热件30的副散热板301包括如图12a(副散热板301的截面图)所示的第二上盖3011和第二下底3012。该第二上盖3011和第二下底3012相连接形成空腔3013。
此外,副散热板301还包括位于空腔3013内,且间隔设置的多个支撑条3014。该支撑条3014与第二上盖3011和第二下底3012相连接。邻两条支撑条3014之间形成如图12b所示的副通道3021。上述多个副通道3021构成二级散热件30的副流通结构302。这样一来,由多个间隔设置的支撑条3014构成的副通道3021,可以对流入副流通结构302内的工质进行导流,使其沿着副通道3021的形状进行流动。
需要说明的是,每一条副通道3021的形状同上所述,可以采用图11a或图11b的形状,或者还可以为拐角处圆滑的S型,在此不再一一赘述。
此外,为了防止携带热量的工质经过副流通结构302时,使得副散热板301受热膨胀,从而导致支撑条3014与第二上盖3011和第二下底3012开裂。如图12b所示,该副散热板301还包括位于空腔3013内的多个支撑柱3015。每个支撑柱3015如图12a所示与第二上盖3011和第二下底3012相连接。从而可以减小副散热板301受热膨胀导致支撑条3014与第二上盖3011和第二下底3012发生开裂的几率。
此外,为了将二级散热件30的副散热板301精确安装于第二壳体12上,该副散热板301的边缘还设置有如图12b所示的多个间隔设置的凸起3016。通过上述凸起3016与第二壳体12上的定位部件,例如凹槽相配合,从而实现副散热板301的定位安装。
以下对工质驱动器50的结构进行说明。由上述可知,工质驱动器50可以驱动工质在工质驱动器50、主流通结构202以及副流通结构302形成的闭环回路中循环流动。基于此,在 本申请实施例中,工质驱动器50可以为微型泵体、微型磁液体推进器或者微型螺桨推进器。其中,当工质驱动器50为上述微型磁液推进器时,工质需要具备导电的特性。
对于上述任意一种类型的工质驱动器50如图13a(工质驱动器的截面图)所示,包括第一上盖501、第一下底502。该第一上盖501和第一下底502相连接,且形成了容纳腔503。此外,该工质驱动器50还包括隔板504、定子505以及转子506。
其中,如图13a所示,上述隔板504与第一下底502相连接。该隔板504与第一下底502之间形成密封子腔510,上述定子505位于该密封子腔510内。此外,隔板504与第一上盖501之间形成液体子腔511。上述转子506位于液体子腔511内。为了能够使得工质流入该液体子腔511内,该工质驱动器50的出液口和进液口设置于液体子腔511上。
这样一来,通过隔板504可以将定子505与液体子腔511内的工质隔离开。当向定子505提供电信号,例如,脉冲宽度调制(pulse width modulation,PWM)信号,该定子505的周围产生磁场。转子506在磁场中生成感应电动势,从而在闭环的转子线路中产生电流。该电流能够使得转子506周围产生另一个磁场。上述两个磁场同极时就会产生排斥,使得转子506转动。转子506在转动的情况下,可以驱动液体子腔511内的工质在液体子腔511内流动,从而由工质驱动器50的进液口,流出出液口,以实现工质在工质驱动器50、主流通结构202以及副流通结构302形成的闭环回路中的循环流动。
此外,当改变上述PWM信号时,可以改变定子505产生的磁场以及转子506产生的磁场的极性,从而改变转子506转动方向,使得转子506能够根据需要进行正向或反向的转动。从而达到改变工质流动方向的目的,实现工质加速器50的进液口和出液口位置的互换。
在本申请的一些实施例中,上述工质驱动器50还可以包括如图13b所示的温度传感器520、流速控制器521以及渗漏检测器522。
其中,温度传感器520可以位于上述液体子腔511内。该温度传感器520可以用于检测液体子腔511中工质的温度。此外,流速控制器521与温度传感器520和定子505电连接。该流速控制器521可以用于根据温度传感器520的检测结果,控制施加至定子505的电压,即控制上述PWM信号。其中,温度传感器520检测的温度与施加至定子505的电压的大小可以成正比。这样一来,当液体子腔511中工质的温度较高时,可以通过流速控制器521增大施加至定子505的电压,从而使得转子506的转速提高,加速工质的流速,提高对发热元件10进行降温的效率。反之,当液体子腔511中工质的温度较低时,可以减小工质的流速。
此外,上述渗漏检测器522如图13b所示,可以与定子505和转子506电连接,该渗漏检测器522用于检测施加至定子505的电压与转子506的转速,并根据转子506的转速确定出液体子腔511内工质的体积。通常每个施加至定子505的电压,都对应有转子506的一个预设转速。这样一来,通过渗漏检测器522对转子506的实际转速进行检测,并将该实际转速与上述预设转速进行比对,当实际转速大于预设转速时,可以说明转子506的负载有所减小,因此液体子腔511内存在漏液的现象。
在此基础上,为了能够推动工质流动,上述工质驱动器50还包括如图14a所示的,多个间隔设置,且与转子506相连接的叶片530。上述多个间隔设置的叶片530围设于转子506外表面。这样一来,当转子506转动的过程中,可以带动叶片530一起转动,从而可以使得叶片530在转动的过程中,推动上述液体子腔511内的工质流动。
此外,由上述可知,为了使得工质能够在工质驱动器50的驱动下,在工质驱动器50、主流通结构202以及副流通结构302形成的闭环回路中循环流动,该工质驱动器50具有设置于液体子腔511上的,如图14a所示的进液口B和出液口A。该进液口B和出液口A的夹角 可以为0°~180°。
示例的,在本申请的一些实施例中,如图14a所示,工质驱动器50的进液口B和出液口A平行设置,此时进液口B和出液口A之间的夹角为0°。或者,如图14b所示,工质驱动器50的进液口B和出液口A垂直设置,此时进液口B和出液口A之间的夹角为90°。又或者,如图14c所示,工质驱动器50的进液口B和出液口A平齐,此时进液口B和出液口A之间的夹角为180°。对于上述任意一种工质驱动器50而言,工质可以由进液口B进入工质驱动器50中叶片530的边缘,然后在叶片530的带动下由叶片530的边缘加速甩出出液口A,完成工质的驱动。
在本申请的一些实施例中,工质驱动器50的参数可以如表1所示。
表1
Figure PCTCN2020096575-appb-000001
需要说明的是,表1中,XOY平面与用于承载工质驱动器50的第二壳体12的承载面平行的表面。该工质驱动器50的厚度为该工质驱动器50在垂直与该XOY表面的向上的尺寸。由于工质驱动器50的厚度可以小于或等于5mm,因此可以有效减小工质驱动器50在电子设备01中的占用空间,有利于电子设备01超薄化设计。从而使得电子设备01的厚度可以达到13mm左右。
此外,且由表1可知,工质驱动器50的噪音小于或等于25dB。因此可以使得整个散热系统02在无风扇设计的情况下,正常工作时的噪音小于25dB。
基于此,采用双烤场景下对电子设备01进行测试,即对电子设备01进行压力(stress) 测试和显卡测试(furmark)。测试结果如表2所示。
表2
Figure PCTCN2020096575-appb-000002
由表2可知,相对于采用纯风扇对发热元件10进行散热的方案而言,当电子设备01中采用本申请实施例提供散热系统02对发热元件10进行散热后,该发热元件10的功耗可以由5W提升到12W。电子设备01的功耗可以由16W提升到25W。CPU的温度为62℃,小于80℃。
此外,本申请实施例提供散热系统02对发热元件10进行散热后,电子设备01的键盘面、第一壳体11的背面以及电子设备01的整机温度都可以与用纯风扇对发热元件10进行散热的方案相当。因此当电子设备01中采用本申请实施例提供散热系统02,可以在保证散热效果的同时,提高发热元件10以及电子设备01的整机功耗,从而有利于电子设备01朝向多功能、高速率的方向发展。
在此基础上,为了进一步提高散热系统02对发热元件10的散热效果,上述一级散热件20还包括如图15所示的主风扇203。该主风扇203与主散热板201相连接。主风扇203在转动的过程中,能够对吸收了发热元件10热量的主散热板201进行散热,以提高主散热板201对工质的散热效果。
同理,二级散热件还包括如图15所示的副风扇303。该副风扇303与副散热板301相连接。该副风扇303在转动的过程中,能够对副散热板301进行散热,以提高副散热板301对工质的散热效果。
在本申请的一些实施例中,上述主风扇203、副风扇303包括并不限于离心式风扇、轴流式风扇、吸风涡轮等。
上述是以电子设备01如图1所示为笔记本电脑为例进行的说明,在本申请的另一些实施例中,上述电子01可以为平板电脑或者如图16a所示的手机。以下为了方便说明,是以电子设备01为如图1所示的手机为例进行的说明。
在此情况下,如图16b所示,上述电子设备01主要包括显示模组110、中框111以及后壳112。中框111位于显示模组110和后壳112之间。显示模组110通过中框111与后壳112相连接。
显示模组110中的驱动电路可以通过柔性电路板(flexible printed circuit,FPC)穿过中框111后,与中框111上的主板,例如印刷电路板(printed circuit board,PCB)电连接。从而可以通过PCB上的芯片,即发热元件10,例如SOC控制显示模组110进行图像显示。
在此情况下,为了对该电子设备01中的发热元件10进行散热,该电子设备01还包括如图17a所示的散热系统02。该散热系统02包括第一散热件70、第二散热件71以及工质驱动器50。
该第一散热件70包括主散热板201以及设置于该主散热板201内的主流通结构202。该主散热板201和主流通结构202的设置方式同上所述,此处不再赘述。在此情况下,可以将上述散热系统02设置于中框111与后壳112之间。并且,当中框111与后壳112相连接后,如图17b所示散热系统02位于后壳112内。这样一来,可以使得主散热板201的一面与上述发热元件10相接触,另一面与后壳112相接触。
此外,工质驱动器50的出液口A和进液口B与上述主散热板201内的主流通结构202相连通。该散热系统02还包括位于工质驱动器50和主流通结构202中的第一工质(图中未示出)。上述工质驱动器50用于驱动第一工质在工质驱动器50、主流通结构202形成的闭环回路中循环流动。工质驱动器50的结构同上所述,此处不再赘述。
这样一来,如图17c所示,工质驱动器50可以驱动第一工质由工质驱动器50的出液口A,沿箭头方向流动至主散热板201内的主流通结构202中。由于主散热板201与发热元件10相接触,从而通过第一工质吸收发热元件10的热量。吸收热量后的第一工质回流至工质驱动器50的进液口B,从而使得第一工质对发热元件10进行循环散热。
此外,由于主散热板201还与后壳112相接触,因此第一工质在主流通结构202流动的过程中,可以将热量通过主散热板201散热至后壳112,该后壳112将热量释放于环境中。
在此基础上,同上所述,该散热系统02还包括位于发热元件10与主散热板201之间辅助散热件。该辅助散热件与发热元件10与主散热板201相接触。在本申请的一些实施例中,上述辅助散热件可以为散热片或者热电制冷薄膜。辅助散热件的有益效果同上所述,此处不再赘述。
如图17a所示,上述第二散热件71包括副散热管711、风扇712以及副散热板301。副散热管711的一端与发热元件10相接触,另一端位于风扇712的出风口和副散热板301之间,且与风扇712和副散热板301相连接。
在本申请的一些实施例中,副散热板301可以为散热片、均热板或者热电制冷薄膜。副散热管711可以为热管。在此基础上,上述散热系统02还包括位于副散热管711内的第二工质(图中未示出)。
这样一来,由于副散热管711的一端与发热元件10相接触,因此发热元件10的热量可以使得副散热管711内的第二工质发生气化,如图17c所示,沿箭头方向向副散热管711中温度较低的另一端流动。由于副散热管711的另一端位于风扇712的出风口和副散热板301之间,且与风扇712和副散热板301相连接,因此可以通过风扇712的出风口和副散热板301将副散热管711内第二工质的热量带走。这样一来,第二工质的温度降低后又凝结成液态,沿箭头所示的方向回流至副散热管711与发热元件10相接触的一端,从而通过第二工质实现对发热元件10的循环散热。
此外,上述风扇712包括并不限于离心式风扇、轴流式风扇、吸风涡轮等。
由上述可知,当电子设备01为手机或者平板电脑时,本申请实施例提供的散热系统02包括两个独立的散热路径。其中,第一个散热路径中,第一工质在工质驱动器50、主散热板 201内的主流通结构202中循环流动,对于主散热板201相接触的发热元件10进行散热。第二散热路径中,第二工质在副散热管711循环流动,对于主散热板201相接触的发热元件10进行散热。
此外,由上述可知,工质驱动器50的厚度可以小于或等于5mm,有效减小了工质驱动器50在电子设备01中的占用空间。因此具有该散热系统02的手机或者平板的厚度可以达到7mm以内。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (35)

  1. 一种散热系统,其特征在于,包括系统部;所述系统部包括一级散热件和工质驱动器;所述散热系统还包括工质、二级散热件、工质传输组件;
    所述一级散热件包括用于与发热元件相接触的主散热板、设置于所述主散热板内用于流通所述工质的主流通结构;
    所述二级散热件包括副散热板、设置于所述副散热板内用于流通所述工质的副流通结构;
    所述工质传输组件与所述副散热板和所述系统部转动连接;所述工质传输组件内的传输通道至少用于将所述主流通结构和所述副流通结构相连通;
    所述工质驱动器用于驱动所述工质在所述主流通结构、所述副流通结构以及所述工质传输组件的传输通道中流动。
  2. 根据权利要求1所述的散热系统,其特征在于,所述工质传输组件包括至少一个第一工质传输部;
    所述第一工质传输部与所述主散热板和所述副散热板转动连接;所述第一工质传输部内的传输通道与所述主流通结构和所述副流通结构相连通。
  3. 根据权利要求2所述的散热系统,其特征在于,所述第一工质传输部包括:
    主连接管,与所述主散热板相连接,且其内孔与所述主流通结构相连通;
    副连接管,与所述主连接管转动连接;所述副连接管与所述副散热板相连接,且其内孔与所述副流通结构相连通。
  4. 根据权利要求3所述的散热系统,其特征在于,所述第一工质传输部还包括软管;
    所述软管穿过所述主连接管和所述副连接管的内孔;所述软管的一端与所述主流通结构相连通,另一端与所述副流通结构相连通;所述软管的内孔作为所述第一工质传输部的传输通道。
  5. 根据权利要求4所述的散热系统,其特征在于,所述第一工质传输部还包括覆盖所述软管外壁表面的疏液涂层。
  6. 根据权利要求3所述的散热系统,其特征在于,所述第一工质传输部还包括转动连接管和至少一个密封件;
    所述主连接管的一端与所述副连接管的一端对接,且均嵌套于所述转动连接管内;
    所述密封件位于所述转动连接管内孔的孔壁与所述主连接管的外壁之间,或者,所述密封件位于所述转动连接管内孔的孔壁与副连接管的外壁之间。
  7. 根据权利要求3所述的散热系统,其特征在于,所述第一工质传输部还包括至少一个密封件;
    所述主连接管的一部分伸入所述副连接管的内孔中;所述密封件位于所述主连接管的外壁与所述副连接管内孔的孔壁之间;
    或者,
    所述副连接管的一部分伸入所述主连接管的内孔中;所述密封件位于所述副连接管的外壁与所述主连接管内孔的孔壁之间。
  8. 根据权利要求2-7任一项所述的散热系统,其特征在于,所述工质传输组件还包括第二工质传输部;所述第二工质传输部与所述副散热板和所述工质驱动器转动连接;
    所述工质驱动器的出液口与所述主流通结构相连通,所述第二工质传输部内的传输通道与所述副流通结构和所述工质驱动器的进液口相连通。
  9. 根据权利要求2-7任一项所述的散热系统,其特征在于,所述工质传输组件还包括两个并排设置的第一工质传输部,分别为右第一工质传输部和左第一工质传输部;
    所述主流通结构包括第一主通道和第二主通道;所述工质驱动器的出液口与所述第一主通道相连通,进液口与所述第二主通道相连通;
    所述右第一工质传输部的传输通道与所述第一主通道和所述副流通结构相连通;所述左第一工质传输部的传输通道与所述副流通结构和所述第二主通道相连通。
  10. 根据权利要求1所述的散热系统,其特征在于,所述工质传输组件包括第一连接管和第二连接管;所述第二连接管嵌套于所述第一连接管的内孔中;所述第一连接管与所述主散热板和所述副散热板转动连接;
    第一连接管的内孔与所述工质驱动器的进液口和所述副流通结构相连通,所述工质驱动器的出液口与所述主流通结构相连通;
    所述第二连接管内孔与所述主流通结构和所述副流通结构相连通。
  11. 根据权利要求10所述的散热系统,其特征在于,所述第一连接管、所述第二连接管中至少位于所述主散热板和所述副散热板之间的部分为柔性材料。
  12. 根据权利要求1所述的散热系统,其特征在于,所述主流通结构包括第一主通道和第二主通道;所述工质驱动器的出液口与所述第一主通道相连通,进液口与所述第二主通道相连通;或者,所述工质驱动器的出液口与所述第二主通道相连通,进液口与所述第一主通道相连通;
    所述工质传输组件包括第三连接管和第四连接管;所述第四连接管嵌套于所述第三连接管的内孔中;
    所述第三连接管与所述主散热板和所述副散热板转动连接,且所述第三连接管的内孔与所述第二主通道和所述副流通结构相连通;
    所述第四连接管的内孔与所述第一主通道和与所述副流通结构相连通。
  13. 根据权利要求12所述的散热系统,其特征在于,所述第三连接管、所述第四连接管中至少位于所述主散热板和所述副散热板之间的部分为柔性材料。
  14. 根据权利要求1所述的散热系统,其特征在于,所述工质驱动器包括:
    第一上盖;
    第一下底,与所述第一上盖相连接,形成容纳腔;
    隔板,位于所述容纳腔内,与所述第一下底相连接;所述隔板与所述第一下底之间形成密封子腔,所述隔板与所述第一上盖之间形成液体子腔;所述工质驱动器的出液口和进液口设置于所述液体子腔上;
    定子,位于所述密封子腔内;
    转子,位于所述液体子腔内;所述转子用于在定子产生的磁场作用下,转动以驱动所述液体子腔内的所述工质发生流动。
  15. 根据权利要求14所述的散热系统,其特征在于,所述工质驱动器还包括:
    温度传感器,位于所述液体子腔内,用于检测所述液体子腔中工质的温度;
    流速控制器,与所述温度传感器和所述定子电连接;所述流速控制器用于根据所述温度传感器的检测结果,控制施加至所述定子的电压;其中,所述温度传感器检测的温度与施加至所述定子的电压成正比。
  16. 根据权利要求14所述的散热系统,其特征在于,所述工质驱动器还包括渗漏检测器;
    所述渗漏检测器与所述定子和所述转子电连接,所述渗漏检测器用于检测施加至所述定 子的电压与所述转子的转速,并根据所述转子的转速确定出所述液体子腔内所述工质的体积。
  17. 根据权利要求14所述的散热系统,其特征在于,所述工质驱动器还包括多个间隔设置,且与所述转子相连接的叶片;多个所述叶片围设于所述转子外表面。
  18. 根据权利要求14所述的散热系统,其特征在于,所述工质驱动器的进液口和出液口之间的夹角为0°、90°或180°。
  19. 根据权利要求1所述的散热系统,其特征在于,所述主流通结构、所述副流通结构包括至少一个热管。
  20. 根据权利要求1所述的散热系统,其特征在于,所述一级散热件、所述二级散热件为均热板或冷板。
  21. 根据权利要求1所述的散热系统,其特征在于,所述散热系统还包括辅助散热件;
    所述辅助散热件位于所述发热元件与所述主散热板之间,且与所述发热元件和所述主散热板相接触;
    所述辅助散热件为散热片或者热电制冷薄膜。
  22. 根据权利要求1所述的散热系统,其特征在于,
    所述一级散热件还包括主风扇,所述主风扇与所述主散热板相连接;
    所述二级散热件还包括副风扇;所述副风扇与所述副散热板相连接。
  23. 根据权利要求1所述的散热系统,其特征在于,所述副流通结构包括贯穿所述副散热板的板材结构的至少一个副通道;
    每个所述副通道的一端为所述副散热板的进液口相连通,另一端与所述副散热板的出液口相连通;相邻两个所述副通道之间通过所述板材结构间隔开。
  24. 根据权利要求1所述的散热系统,其特征在于,所述副散热板包括:
    第二上盖;
    第二下底,与所述第二上盖相连接形成空腔;
    多条间隔设置的支撑条,位于所述空腔内,且与所述第二上盖、所述第二下底相连接;相邻两条所述支撑条之间形成副通道;多个所述副通道构成所述副流通结构。
  25. 根据权利要求23或24所述的散热系统,其特征在于,所述副通道呈螺旋状,且各处无相交。
  26. 根据权利要求24所述的散热系统,其特征在于,所述副散热板还包括位于所述空腔内的多个支撑柱;所述支撑柱与所述第二上盖和所述第二下底相连接。
  27. 一种电子设备,其特征在于,包括转动连接的第一壳体和第二壳体,以及安装于所述第一壳体上的显示模组和安装于第二壳体上的主板;所述主板上设置有发热元件;
    所述电子设备还包括如权利要求1-26任一项所述的散热系统;
    所述散热系统中一级散热件设置于所述第二壳体上,且所述一级散热件的主散热板与所述发热元件相接触;
    所述散热系统中二级散热件设置于第一壳体上,且所述二级散热件的副散热板与所述显示模组的背面和所述第一壳体相连接。
  28. 根据权利要求27所述的电子设备,其特征在于,所述散热系统中的工质驱动器位于所述第二壳体上,且与所述二级散热件并排放置。
  29. 一种散热系统,其特征在于,包括:
    第一散热件,包括用于与发热元件相接触的主散热板、设置于所述主散热板内的主流通结构;
    第一工质;
    工质驱动器;其出液口和进液口与所述主流通结构相连通,用于驱动所述第一工质在所述工质驱动器、所述主流通结构形成的闭环回路中循环流动;
    第二散热件,包括副散热管、风扇以及副散热板;
    所述副散热管的一端与所述发热元件相接触,另一端位于所述风扇的出风口和副散热板之间,且与所述风扇和所述副散热板相连接;
    第二工质,位于所述副散热管内。
  30. 根据权利要求29所述的散热系统,其特征在于,所述工质驱动器包括:
    第一上盖;
    第一下底,与所述第一上盖相连接,形成容纳腔;
    隔板,位于所述容纳腔内,与所述第一下底相连接;所述隔板与所述第一下底之间形成密封子腔,所述隔板与所述第一上盖之间形成液体子腔;所述工质驱动器的出液口和进液口设置于所述液体子腔上;
    定子,位于所述密封子腔内;
    转子,位于所述液体子腔内;所述转子用于在定子产生的磁场作用下,转动以驱动所述液体子腔内的所述工质发生流动。
  31. 根据权利要求30所述的散热系统,其特征在于,所述工质驱动器还包括多个间隔设置,且与所述转子相连接的叶片;多个所述叶片围设于所述转子外表面。
  32. 根据权利要求29所述的散热系统,其特征在于,所述第一散热件为均热板或冷板;所述副散热板为散热片。
  33. 根据权利要求29所述的散热系统,其特征在于,所述副散热管为热管。
  34. 根据权利要求29所述的散热系统,其特征在于,所述散热系统还包括辅助散热件;
    所述辅助散热件位于所述发热元件与所述主散热板之间,且与所述发热元件和所述主散热板相接触;
    所述辅助散热件为散热片或者热电制冷薄膜。
  35. 一种电子设备,其特征在于,包括后壳、安装于所述后壳上的显示模组、位于所述显示模组与所述后壳之间的主板;所述主板上设置有发热元件;
    所述电子设备还包括如权利要求29-34任一项所述的散热系统;所述散热系统位于所述显示模组与所述后壳之间;
    所述散热系统中第一散热件的主散热板、第二散热件的副散热管均与所述发热元件相接触。
PCT/CN2020/096575 2019-06-18 2020-06-17 一种散热组件、电子设备 WO2020253723A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20826479.6A EP3962255A4 (en) 2019-06-18 2020-06-17 HEAT DISSIPATION ASSEMBLY AND ELECTRONIC DEVICE
US17/596,612 US12004320B2 (en) 2019-06-18 2020-06-17 Thermal component and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910526651.7 2019-06-18
CN201910526651.7A CN110418549B (zh) 2019-06-18 2019-06-18 一种散热组件、电子设备

Publications (1)

Publication Number Publication Date
WO2020253723A1 true WO2020253723A1 (zh) 2020-12-24

Family

ID=68359288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096575 WO2020253723A1 (zh) 2019-06-18 2020-06-17 一种散热组件、电子设备

Country Status (3)

Country Link
EP (1) EP3962255A4 (zh)
CN (1) CN110418549B (zh)
WO (1) WO2020253723A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110418549B (zh) * 2019-06-18 2021-01-29 华为技术有限公司 一种散热组件、电子设备
CN111031763B (zh) * 2019-12-23 2022-03-01 维沃移动通信有限公司 电子设备
CN111443786B (zh) * 2020-02-28 2023-04-11 华为技术有限公司 散热转轴、散热系统及电子设备
CN112506319B (zh) * 2020-12-07 2023-02-24 华为技术有限公司 液冷系统及电子设备
CN115413184A (zh) * 2021-05-29 2022-11-29 华为技术有限公司 一种散热系统和电子设备
CN113473803B (zh) * 2021-06-30 2022-11-15 青岛海信移动通信技术股份有限公司 均温板以及终端设备
TWI802979B (zh) * 2021-09-02 2023-05-21 雙鴻科技股份有限公司 散熱裝置
CN116249311A (zh) * 2021-12-07 2023-06-09 中兴通讯股份有限公司 一种移动终端散热装置、移动终端散热方法以及移动终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1487387A (zh) * 2002-08-27 2004-04-07 株式会社东芝 配备了冷却发热部件的液冷型冷却装置的电子仪器
CN102072168A (zh) * 2009-11-19 2011-05-25 现代自动车株式会社 电动水泵
CN105159421A (zh) * 2015-07-27 2015-12-16 电子科技大学 笔记本电脑配套用水冷散热装置
US20160234968A1 (en) * 2015-02-10 2016-08-11 Dynatron Corporation Liquid-Cooled Heat Sink for Electronic Devices
CN108882615A (zh) * 2017-05-15 2018-11-23 广达电脑股份有限公司 具有散热结构的电子装置
CN109599375A (zh) * 2017-09-30 2019-04-09 京东方科技集团股份有限公司 用于电路板的散热件以及应用其的显示面板
CN110418549A (zh) * 2019-06-18 2019-11-05 华为技术有限公司 一种散热组件、电子设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3556578B2 (ja) * 2000-06-29 2004-08-18 株式会社東芝 携帯形電子機器およびこの電子機器に用いる冷却装置
JP3607608B2 (ja) * 2000-12-19 2005-01-05 株式会社日立製作所 ノート型パソコンの液冷システム
US7209355B2 (en) * 2002-05-15 2007-04-24 Matsushita Electric Industrial Co., Ltd. Cooling device and an electronic apparatus including the same
JP3600606B2 (ja) * 2002-09-20 2004-12-15 株式会社東芝 電子機器
JP4157451B2 (ja) * 2003-09-30 2008-10-01 株式会社東芝 気液分離機構、リザーブタンク、及び電子機器
CN100346261C (zh) * 2004-11-19 2007-10-31 童明辉 一种笔记本电脑用液相冷却系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1487387A (zh) * 2002-08-27 2004-04-07 株式会社东芝 配备了冷却发热部件的液冷型冷却装置的电子仪器
CN102072168A (zh) * 2009-11-19 2011-05-25 现代自动车株式会社 电动水泵
US20160234968A1 (en) * 2015-02-10 2016-08-11 Dynatron Corporation Liquid-Cooled Heat Sink for Electronic Devices
CN105159421A (zh) * 2015-07-27 2015-12-16 电子科技大学 笔记本电脑配套用水冷散热装置
CN108882615A (zh) * 2017-05-15 2018-11-23 广达电脑股份有限公司 具有散热结构的电子装置
CN109599375A (zh) * 2017-09-30 2019-04-09 京东方科技集团股份有限公司 用于电路板的散热件以及应用其的显示面板
CN110418549A (zh) * 2019-06-18 2019-11-05 华为技术有限公司 一种散热组件、电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3962255A4

Also Published As

Publication number Publication date
CN110418549A (zh) 2019-11-05
EP3962255A4 (en) 2022-10-05
CN110418549B (zh) 2021-01-29
EP3962255A1 (en) 2022-03-02
US20220304189A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
WO2020253723A1 (zh) 一种散热组件、电子设备
US6833992B2 (en) Electronic apparatus having a plurality of radiators in which liquid coolant flows
US8289701B2 (en) Liquid cooling unit and heat receiver therefor
EP1890217B1 (en) Electronic apparatus with liquid cooling unit and heat exchanger
US7652884B2 (en) Electronic apparatus including liquid cooling unit
JP2004347291A (ja) 冷却装置
US7978474B2 (en) Liquid-cooled portable computer
US20090056911A1 (en) Electronic apparatus
EP1564809A1 (en) Liquid cooling system and electronic apparatus comprising that system
EP1708263B1 (en) Cooling jacket
KR20140126912A (ko) 디지털 사이니지
US7701715B2 (en) Electronic apparatus
WO2022083159A1 (zh) 一种实现高效散热的pc主机机箱
EP1884866A1 (en) Electronic apparatus
US20040070942A1 (en) Electronic apparatus
JP2006242176A (ja) 圧電ポンプおよびこれを用いた冷却装置
KR20080010333A (ko) 액체 냉각 유닛용 수열기, 액체 냉각 유닛 및 전자 기기
JP2001320187A (ja) 電子部品の液体冷却装置
JP2006234255A (ja) ラジエータと、当該ラジエータを備えた液冷システム
JP2006039663A (ja) 液循環システム及びこれを用いる液冷システム
US20120160460A1 (en) Electronic Apparatus Cooling Device With Integrated Pump And Heat Receiving Part
US20080023178A1 (en) Liquid cooling unit and heat exchanger therefor
JP2004134742A (ja) 電子機器の冷却装置
US12004320B2 (en) Thermal component and electronic device
KR200364071Y1 (ko) 컴퓨터용 수냉식 냉각 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826479

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020826479

Country of ref document: EP

Effective date: 20211124

NENP Non-entry into the national phase

Ref country code: DE