WO2021159835A1 - 一种超支化酰胺类水合物动力学抑制剂及其制备方法和应用 - Google Patents

一种超支化酰胺类水合物动力学抑制剂及其制备方法和应用 Download PDF

Info

Publication number
WO2021159835A1
WO2021159835A1 PCT/CN2020/135060 CN2020135060W WO2021159835A1 WO 2021159835 A1 WO2021159835 A1 WO 2021159835A1 CN 2020135060 W CN2020135060 W CN 2020135060W WO 2021159835 A1 WO2021159835 A1 WO 2021159835A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass ratio
hyperbranched
amide hydrate
inhibitor
add
Prior art date
Application number
PCT/CN2020/135060
Other languages
English (en)
French (fr)
Inventor
龙臻
路智林
梁德青
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Publication of WO2021159835A1 publication Critical patent/WO2021159835A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/16Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity
    • F17D1/17Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity by mixing with another liquid, i.e. diluting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/22Hydrates inhibition by using well treatment fluids containing inhibitors of hydrate formers

Definitions

  • the invention relates to the technical field of hydrate inhibitors, in particular to a hyperbranched amide copolymer hydrate kinetic inhibitor and its preparation technology and application.
  • Natural gas hydrate is an ice-like clathrate crystalline compound formed from water and natural gas under high pressure and low temperature conditions. Due to the limitation of conditions during natural gas transportation, it will quickly block the pipeline after it is formed. In order to prevent its formation, the main method currently used is to add natural gas hydrate inhibitors. However, currently commonly used thermodynamic inhibitors such as ethylene glycol are less effective under low concentration conditions, and at the same time, they are used in large amounts and are not friendly to the environment.
  • kinetic inhibitors have become the focus of attention.
  • the amount of kinetic inhibitor is low, the effect is good, and there are many types, which can solve the problems well.
  • patents ZL201610802031.8, CN109764241A and ZL201610238183.X introduced the copolymerization of second cyclic monomers such as pyrrolidone or lactams, but the cyclic structure is not easy to decompose in nature, which is potentially harmful to the environment.
  • the patents CN109705246A and ZL201610861462.1 respectively modify the end groups, but this method does not substantially change the spatial structure of the inhibitor, and is only effective for the end groups, and the overall effect is limited.
  • the purpose of the present invention is to provide a hyperbranched amide copolymer hydrate kinetic inhibitor and its preparation technology and application.
  • the hydrate kinetic inhibitor has the advantages of good solubility and low dosage, and can be applied to oil, gas and water.
  • System, and the preparation method of the hydrate kinetic inhibitor has simple production process and controllable production process.
  • An object of the present invention is to provide a hyperbranched amide hydrate kinetic inhibitor, the structural formula of the hyperbranched amide hydrate kinetic inhibitor is shown in formula (1):
  • the weight average molecular weight of the hyperbranched amide hydrate kinetic inhibitor is 10,000 to 40,000, and the molecular weight distribution coefficient is between 1 to 3.
  • Another object of the present invention is to provide a method for preparing hyperbranched amide hydrate kinetic inhibitors.
  • 2,2-bipyridine are used as initiators, and vinyl caprolactam is used as monomer.
  • Reversible addition-fragmentation chain transfer polymerization (RAFT) reaction to synthesize hyperbranched poly(vinyl caprolactam-2-bromo propynyl succinate).
  • the method for preparing the above hyperbranched amide hydrate kinetic inhibitor specifically includes the following steps:
  • the mass ratio of aspartic acid to KBr in step (1) is 1:3 to 1:5, and the mass ratio of the total mass of aspartic acid and KBr to NaNO 2 is 4:1 to 6: 1;
  • the mass ratio of NaNO 2 to distilled water is 1:20 to 1:40, and the mass ratio of distilled water to concentrated sulfuric acid is 10:1 to 30:1.
  • the mass ratio of 2-bromosuccinic acid to propynol in step (2) is 1:2 ⁇ 1:4, and the total mass of 2-bromosuccinic acid and propynol is relative to
  • the mass ratio of toluenesulfonic acid is 50:1 ⁇ 85:1, the mass ratio of p-toluenesulfonic acid and benzene is 1:100 ⁇ 1:150, and the reaction is carried out at 85°C for 40 hours; the ethyl acetate and mass ratio in the mixed solution
  • the volume ratio of the 10wt% NaOH solution is 4:1 to 5:1.
  • step (2) the temperature of the first rotary steaming is 50°C, and the temperature of the second rotary steaming is 40°C.
  • the mass ratio of 2-bromopropynol succinate to vinylcaprolactam in step (3) is 1:10 to 1:30, and the ratio of 2-bromopropynol succinate to CuBr
  • the mass ratio is 2:1 to 1:1
  • the mass ratio of CuBr to 2,2-bipyridine is 1:2 to 1:4
  • the oil bath temperature is 100°C
  • the reaction time is 4 hours.
  • the invention also protects the application of the hyperbranched amide hydrate kinetic inhibitor, which is applied to the formation of hydrates in an oil-gas-water three-phase system and an oil-water or gas-water two-phase system.
  • the concentration of the hyperbranched amide hydrate kinetic inhibitor aqueous solution is 0.5 wt% to 2 wt%, and the applicable pressure is 1 to 25 MPa, The temperature is -25 ⁇ 25°C.
  • the present invention has the following advantages: Compared with the currently available kinetic inhibitors, the synthetic kinetic inhibitor of the present invention has a simple synthesis process, a higher yield, and contains a proportion of effective inhibitor components. High, but only one kind of cyclic structure, controllable molecular weight, small molecular dispersion coefficient, and contains biodegradable parts, which is more environmentally friendly and has a wider range of use and conditions.
  • the detection equipment is a visual high-pressure stirring experimental device, the main components include double-view mirror high-pressure reactor, magnetic stirrer, buffer tank, cryogenic thermostat, manual booster pump, temperature and pressure sensor, vacuum pump, gas cylinder and data acquisition instrument, etc.
  • the maximum working pressure of the high-pressure reactor is 30 MPa, and the working temperature range is -30 to 100°C.
  • the pressure in the autoclave can be adjusted freely through a manual piston-type pressure-increasing valve, and the maximum pressure of the pump is 30 MPa.
  • the low-temperature constant-temperature tank can provide -30 ⁇ 100°C refrigerant circulating liquid for the jacket of the high-pressure reactor.
  • the data acquisition system collects the pressure and temperature in the reactor in real time.
  • the formation of hydrates can be judged by changes in temperature or pressure during the reaction or directly observed through a visual window. After the reaction starts, the point where the pressure in the kettle suddenly drops is the starting point for the formation of hydrates.
  • the hydrate induction time is the time from when the stirring is turned on under the stable initial pressure and temperature to when the pressure starts to drop sharply. The effect of the inhibitor is tested according to the hydrate induction time. The longer the time, the better the inhibitory effect.
  • the reaction experiment temperature was set to 0.5°C, the experiment pressure was 7.6 MPa, and the experiment gas was methane.
  • the equilibrium temperature of methane hydrate formation at 7.6MPa is 11°C.
  • clean the reactor 3-5 times with deionized water, and then purge the reactor and the experimental pipeline system with nitrogen to ensure that the system is dry.
  • the reactor was evacuated, and 30 mL of the prepared inhibitor solution was sucked in. Pass in 1MPa methane gas, then vacuumize, repeat this process three times to remove the air in the kettle. Start the low-temperature thermostat to cool the reaction kettle until the temperature in the kettle reaches 0.5°C.
  • a preparation method of hyperbranched amide hydrate kinetics inhibitor specifically includes the following steps:
  • the above inhibitors are configured as 0.5wt%, 1wt%, 2wt% aqueous solutions, and tested by a laboratory natural gas hydrate inhibition performance test device under the conditions of an initial temperature of 0.5°C and an initial pressure of 7.6MPa.
  • Inhibitors inhibit the induction time of hydrate formation, and the experimental results are shown in Table 1.
  • step (1) the mass ratio of aspartic acid to KBr is 1:3, the mass ratio of the total mass of aspartic acid and KBr to NaNO 2 is 4:1; the mass ratio of NaNO 2 to distilled water is 1:20, The mass ratio of distilled water to concentrated sulfuric acid is 10:1, and the reaction time is 3 hours.
  • step (2) the mass ratio of 2-bromosuccinic acid to propynol is 1:2, and the mass ratio of the total mass of 2-bromosuccinic acid and propynol to p-toluenesulfonic acid is 50:1 ,
  • the mass ratio of p-toluenesulfonic acid to benzene is 1:100, the reaction temperature is 80°C, and the reaction time is 48 hours;
  • the volume ratio of ethyl acetate to 10wt% NaOH solution in the mixed solution is 4:1,
  • the temperature of the first rotary steaming was 40°C, and the temperature of the second rotary steaming was 35°C.
  • step (3) the mass ratio of 2-bromosuccinate propynol to vinylcaprolactam is 1:10, the mass ratio of 2-bromosuccinate propynol to CuBr is 2:1, and the mass ratio of CuBr to 2
  • the mass ratio of 2-bipyridine is 1:2, the temperature of the oil bath is 90°C, and the reaction time is 6 hours.
  • step (1) the mass ratio of aspartic acid to KBr is 1:5, the mass ratio of the total mass of aspartic acid and KBr to NaNO 2 is 5:1; the mass ratio of NaNO 2 to distilled water is 1:40, The mass ratio of distilled water to concentrated sulfuric acid is 30:1, and the reaction time is 4 hours.
  • step (2) the mass ratio of 2-bromosuccinic acid and propynol is 1:4, and the mass ratio of the total mass of 2-bromosuccinic acid and propynol to p-toluenesulfonic acid is 70:1 ,
  • the mass ratio of p-toluenesulfonic acid to benzene is 1:150, the reaction temperature is 90°C, and the reaction time is 36 hours;
  • the volume ratio of ethyl acetate to 10wt% NaOH solution in the mixed solution is 5:1,
  • the temperature of the first rotary steaming was 55°C, and the temperature of the second rotary steaming was 45°C.
  • step (3) the mass ratio of 2-bromo propynol succinate to vinyl caprolactam is 1:30, the mass ratio of 2-bromo propynol succinate to CuBr is 1:1, and the mass ratio of CuBr to 2
  • the mass ratio of 2-bipyridine is 1:4, the temperature of the oil bath is 120°C, and the reaction time is 3 hours.
  • the product After it is naturally cooled, the product is slowly dropped into 250 ml of cold ethyl acetate to obtain a white viscous solid. After filtering with a glass sand core funnel, move the solid product together with the filter paper to a watch glass, place it in a vacuum drying oven at 45°C for 48 hours, and then heat up to 105°C to remove water for 1 hour. Finally, the target product polyvinylpyrrolidone (PVP) is obtained.
  • PVP polyvinylpyrrolidone
  • Suppression performance evaluation configure it as a 1wt% aqueous solution. Under the conditions of an initial temperature of 0.5°C and an initial pressure of 7.6MPa, it was tested by a laboratory natural gas hydrate inhibition performance test device to determine the induction time of the inhibitor inhibiting the formation of hydrates. The experimental results are shown in Table 1.
  • PVCap polyvinyl caprolactam
  • Suppression performance evaluation configure it as a 1wt% aqueous solution. Under the conditions of an initial temperature of 0.5°C and an initial pressure of 7.6MPa, it was tested by a laboratory natural gas hydrate inhibition performance test device to determine the induction time of the inhibitor inhibiting the formation of hydrates. The experimental results are shown in Table 1.
  • PVCap-PVP poly(vinylcaprolactam-vinylpyrrolidone)
  • the product prepared by the present invention can induce methane hydrate formation for up to 270 minutes, and at this temperature and Commonly used kinetic inhibitors PVP and PVCap and PVCap-PVP binary cyclic copolymer under pressure conditions are basically ineffective, and the product of the present invention has a wider application range and a better inhibitory effect.
  • the calculation shows that the hyperbranched amide hydrate kinetic inhibitor proposed by the present invention has 6.423g purified product under simple production process conditions, and the calculated yield is 32.1%. Compared with the same kind of multi-component inhibitor, the yield is relatively higher. High, further improving the implementation process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyamides (AREA)

Abstract

一种超支化酰胺类水合物动力学抑制剂及其制备方法和应用。所述的超支化酰胺类水合物动力学抑制剂结构式如式(1)所示,其中:超支化酰胺类水合物动力学抑制剂的重均分子量为10000~40000,分子量分布系数在1~3之间。该水合物动力学抑制剂具有良好溶解性和用量少的优点,可应用于油气水体系,并且该水合物动力学抑制剂的制备方法生产工艺简单、生产过程可控。

Description

一种超支化酰胺类水合物动力学抑制剂及其制备方法和应用 技术领域:
本发明涉及水合物抑制剂技术领域,具体涉及一种超支化酰胺类共聚物水合物动力学抑制剂及其制备技术与应用。
背景技术:
天然气水合物在高压低温条件下由水和天然气形成的类冰笼形结晶化合物,在天然气运输过程中由于条件限制,形成后会很快堵塞管道。为了阻止其形成,目前主要采用的方法是添加天然气水合物抑制剂。然而,目前常用的乙二醇等热力学抑制剂在低浓度条件下效果较差,同时用量大,对环境不友好。
因此,为了解决这一问题,动力学抑制剂成为关注焦点。动力学抑制剂用量低,效果好,种类多,能够很好地解决出现的问题。
目前,以乙烯基酰胺类和链式酰胺基类聚合物为主,动力学抑制剂分别有着不同的发展方向。其中专利ZL201610802031.8、CN109764241A与ZL201610238183.X等引入了吡咯烷酮或内酰胺类等第二环状单体共聚,但是环状结构在自然界中不易分解,对环境有着潜在危害性。而专利CN109705246A,ZL201610861462.1分别对端基进行改性,不过这一方法没有本质性地改变抑制剂空间结构,仅对端基有效,综合效果有限。而已有的对空间结构改变的方案,如ZL201210150102.2,选用的共聚单体效果不佳,同时合成相对复杂,产率较低。在对结构进行改变的同时,专利ZL201611238756.5,CN104479660A,CN104388069A和CN105802599A等分别引入离子液体或者乙二醇等,试图通过复配双效或多效抑制剂来综合使用,同时改善环保性能。不过这种方案中使用条件为各部分均有效范围,实际使用情景受限,没有从本质 上解决问题。
发明内容:
本发明的目的是提供一种超支化酰胺类共聚物水合物动力学抑制剂及其制备技术与应用,该水合物动力学抑制剂具有良好溶解性和用量少的优点,可应用于油气水体系,并且该水合物动力学抑制剂的制备方法生产工艺简单、生产过程可控。
本发明的一个目的是提供了一种超支化酰胺类水合物动力学抑制剂,所述的超支化酰胺类水合物动力学抑制剂结构式如式(1)所示:
Figure PCTCN2020135060-appb-000001
其中:超支化酰胺类水合物动力学抑制剂的重均分子量为10000~40000,分子量分布系数在1~3之间。
上述超支化酰胺类水合物动力学抑制剂的合成路线如下(式2~4):
Figure PCTCN2020135060-appb-000002
Figure PCTCN2020135060-appb-000003
本发明的另一个目的是提供了超支化酰胺类水合物动力学抑制剂的制备方法,在无氧操作条件下,首先以天冬氨酸,丙炔醇等为单体,对甲苯磺酸,NaNO 2等为引发剂,在溶剂苯中通过多步反应获得2-溴代丁二酸丙炔醇酯,之后以其和2,2-联吡啶为引发剂,乙烯基己内酰胺为单体,通过可逆加成-断裂链转移聚合(RAFT)反应合成超支化聚(乙烯基己内酰胺-2-溴代丁二酸丙炔醇酯)。
上述的超支化酰胺类水合物动力学抑制剂的制备方法,具体包括以下步骤:
(1)在冰浴,氮气保护下,将天冬氨酸,KBr和NaNO 2加入反应容器中,加入蒸馏水后缓慢加入浓硫酸,反应2~4小时后将产物经由乙酸乙酯萃取,后加入无水MgSO 4干燥,得到目标产物2-溴代丁二酸;
(2)在无氧操作环境下,在2-溴代丁二酸中加入第二单体丙炔醇,引发剂对甲苯磺酸和溶剂苯,充分混合,80~90℃反应36~48小时后,溶液冷却至室温,然后40~55℃旋蒸干燥,冷却至室温,加入CH 2Cl 2重新溶解,将溶液滴入乙酸乙酯-10wt%NaOH的混合溶液 洗涤,再通过蒸馏水洗涤,MgSO 4干燥,所得液体在35~45℃下旋蒸干燥,得到目标产物2-溴代丁二酸丙炔醇酯;
(3)在无氧操作环境下,将2-溴代丁二酸丙炔醇酯和乙烯基己内酰胺加入溶剂苯中,在液氮中进行低温冷冻-抽真空-通氮气解冻循环3次,之后依次加入2,2-偶联吡啶,CuBr等引发剂,在90~120℃下反应3~6h,反应结束后冷却至室温,以四氢呋喃稀释后通过中性氧化铝柱子,除去金属离子后加入冰甲苯沉淀3次,所得产物过滤后装入真空干燥箱在45℃下干燥,得到超支化聚(乙烯基己内酰胺-2-溴代丁二酸丙炔醇酯)。
优选地,步骤(1)中所述的天冬氨酸与KBr质量比为1:3~1:5,天冬氨酸和KBr的总质量与NaNO 2的质量比为4:1~6:1;所述的NaNO 2与蒸馏水的质量比为1:20~1:40,蒸馏水与浓硫酸质量比为10:1~30:1。
优选地,步骤(2)中所述的2-溴代丁二酸与丙炔醇的质量比为1:2~1:4,2-溴代丁二酸和丙炔醇的总质量与对甲苯磺酸的质量比为50:1~85:1,对甲苯磺酸与苯的质量比为1:100~1:150,85℃反应40小时;所述的混合溶液中乙酸乙酯与质量分数为10wt%的NaOH溶液的体积比为4:1~5:1。
步骤(2)中第一次旋蒸温度为50℃,第二次旋蒸温度为40℃。
优选地,步骤(3)中所述的2-溴代丁二酸丙炔醇酯与乙烯基己内酰胺质量比为1:10~1:30,2-溴代丁二酸丙炔醇酯与CuBr质量比为2:1~1:1,CuBr与2,2-联吡啶质量比为1:2~1:4,油浴温度为100℃,反应时间为4小时。
本发明还保护所述的超支化酰胺类水合物动力学抑制剂的应用,应用于油气水三相体系、油水或气水两相体系中水合物的生成。
优选地,所述的超支化酰胺类水合物动力学抑制剂的使用时,所述的超支化酰胺类水合物动力学抑制剂水溶液浓度为0.5wt%~2wt%,适用压力为1~25MPa,温度为-25~25℃。
与现有的技术相比,本发明具有以下优点:本发明合成的动力学抑制剂,相比于目前具有的动力学抑制剂,其合成过程简单,产率较高,含有有效抑制剂成分比例高,但仅有一种环状结构,分子量可控,分子分散系数较小,同时含有可生物降解部分,对环境更加友好,具有更加广泛的使用范围与条件。
具体实施方式:
以下实施例是对本发明的进一步说明,而不是对本发明的限制。
下述实施例中所述实验方法,对于未特别注明的工艺参数,可参照常规技术进行;所述试剂和材料,无特殊说明,均可从商业途径获得。
检测和测定本方法制备产品抑制效果的方法如下:
检测设备为可视化高压搅拌实验装置,主要组成部分包括双视镜高压反应釜、磁力搅拌器、缓冲罐、低温恒温槽、手动增压泵、温度压力传感器、真空泵、气瓶和数据采集仪等。所述高压反应釜最高工作压力30MPa,工作温度范围-30~100℃。所述高压反应釜釜内压力可通过手动活塞式增压阀自由调节,泵的最大压力为30MPa。低温恒温槽可为高压反应釜夹套提供-30~100℃的冷媒循环液。数据采集系统实时采集反应釜内压力和温度。水合物的形成可通过反应时的温度或压力变化进行判断或者可视化视窗直接观察。反应开始后,釜内压力突然下降点即为水合物生成的起点。水合物诱导时间为从稳定的初始压力温度条件下打开搅拌开始,到压力开始剧烈下降所经历的时间。根据水合物诱导时间检测抑制剂的作用效果,时间越长,抑制效果越好。
具体检测过程:
反应实验温度设为0.5℃,实验压力为7.6MPa,实验气体为甲烷。7.6MPa下甲烷水合物生成的平衡温度为11℃。实验运行前,先用去离子水反复清洗反应釜3-5遍,再用氮气吹洗反应釜和实验管线系统,确保系统干燥。将反应釜抽真空,吸入30mL配置的抑制剂溶液。通入1MPa甲烷气体,然后抽真空,反复该过程三次以除净釜内空气。启动低温恒温槽对反应釜降温,直至釜内温度达到0.5℃。当温度稳定后,打开进气阀,通过缓冲罐预冷进甲烷气体达7.6MPa。稍候一段时间待釜内温度压力均达到稳定后,打开磁力搅拌,并保持转速800rpm。由于甲烷溶于水,搅拌刚开始釜内压力微降,观察此后压力温度曲线变化,判断水合物是否生成
实施例1:
一种超支化酰胺类水合物动力学抑制剂的制备方法,具体包括以下步骤:
(1)取10.156g天冬氨酸,42.1gKBr加入三口烧瓶中,然后将烧瓶三口与温度计、冷凝管、橡胶孔塞相连,冷凝管上端连通气路。抽真空后通氮气,初步排除管路内空气。在冰浴条件下将25.8mL浓硫酸缓慢加入200mL蒸馏水中,冷却后转移至烧瓶。将9.57gNaNO 2加入20mL蒸馏水中,低温下用注射器从橡胶塞孔中逐滴滴加至烧瓶后密封,2h后停止反应,用乙酸乙酯萃取产物,再用无水MgSO 4进行干燥,得到2-溴代丁二酸;
(2)在通氮气环境下,将10.64g 2-溴代丁二酸与30g丙炔醇,0.5g对甲苯磺酸依次加入烧瓶,溶解于100mL苯中,充分混合,在油浴温度85℃反应36小时后,冷却至室温,然后在45℃旋蒸干燥出苯,再次冷却至室温后,加入100mL CH 2Cl 2重新溶解,将溶液用体积比为4:1的乙酸乙酯-10wt%NaOH混合溶液洗涤3次,再通过蒸馏水洗涤2次,经过无 水MgSO4干燥。所得液体在40℃下旋蒸干燥,得到目标产物2-溴代丁二酸丙炔醇酯;
(3)在通氮气环境下,将0.517g 2-溴代丁二酸丙炔醇酯和20g乙烯基己内酰胺加入溶剂100mL苯中,之后依次加入0.977g 2,2-偶联吡啶,0.304g CuBr,在液氮中迅速进行低温冷冻-抽真空-通氮气解冻循环3次,抽真空后在100℃油浴下反应4h,反应结束后冷却至室温,以200mL四氢呋喃稀释后通过中性氧化铝柱子,除去金属离子后加入冰甲苯沉淀3次,所得产物过滤后装入真空干燥箱在45℃下干燥,得到最终产物超支化聚(乙烯基己内酰胺-2-溴代丁二酸丙炔醇酯)。
检测和测定:将上述抑制剂配置为0.5wt%、1wt%、2wt%的水溶液,在初始温度0.5℃,初始压力7.6MPa的条件下,通过实验室天然气水合物抑制性能测试装置进行检测,测定抑制剂抑制水合物生成的诱导时间,实验结果见表1。
实施例2:
与实施例1相同,不同之处在于:
步骤(1)中天冬氨酸与KBr质量比为1:3,天冬氨酸和KBr的总质量与NaNO 2的质量比为4:1;NaNO 2与蒸馏水的质量比为1:20,蒸馏水与浓硫酸质量比为10:1,反应时间为3小时。
步骤(2)中2-溴代丁二酸与丙炔醇的质量比为1:2,2-溴代丁二酸和丙炔醇的总质量与对甲苯磺酸的质量比为50:1,对甲苯磺酸与苯的质量比为1:100,反应温度为80℃,反应时间为48小时;混合溶液中乙酸乙酯与质量分数为10wt%的NaOH溶液的体积比为4:1,第一次旋蒸温度为40℃,第二次旋蒸温度为35℃。
步骤(3)中2-溴代丁二酸丙炔醇酯与乙烯基己内酰胺质量比为1:10,2-溴代丁二酸丙 炔醇酯与CuBr质量比为2:1,CuBr与2,2-联吡啶质量比为1:2,油浴温度为90℃,反应时间为6小时。
实施例3:
与实施例1相同,不同之处在于:
步骤(1)中天冬氨酸与KBr质量比为1:5,天冬氨酸和KBr的总质量与NaNO 2的质量比为5:1;NaNO 2与蒸馏水的质量比为1:40,蒸馏水与浓硫酸质量比为30:1,反应时间为4小时。
步骤(2)中2-溴代丁二酸与丙炔醇的质量比为1:4,2-溴代丁二酸和丙炔醇的总质量与对甲苯磺酸的质量比为70:1,对甲苯磺酸与苯的质量比为1:150,反应温度为90℃,反应时间为36小时;混合溶液中乙酸乙酯与质量分数为10wt%的NaOH溶液的体积比为5:1,第一次旋蒸温度为55℃,第二次旋蒸温度为45℃。
步骤(3)中2-溴代丁二酸丙炔醇酯与乙烯基己内酰胺质量比为1:30,2-溴代丁二酸丙炔醇酯与CuBr质量比为1:1,CuBr与2,2-联吡啶质量比为1:4,油浴温度为120℃,反应时间为3小时。
利用美国Waters公司产的GPC-1515型凝胶色谱仪,检测条件为28℃,流量1mL/min,用聚苯乙烯标样,DMF溶剂做流动相,检测实施例1~3得到的终产物超支化聚(乙烯基己内酰胺-2-溴代丁二酸丙炔醇酯)的分子量以及分子量分布,得到上述的超支化酰胺类水合物动力学抑制剂的重均分子量为10000~40000,分子量分布系数在1~3之间。
对比例1:
取352mg链引发剂偶氮二异丁腈加入250mL三口烧瓶中,抽真空后通氮气,保证无 氧操作环境。在氮气保护下,将22mL单体乙烯基吡咯烷酮和100mL溶剂二甲基甲酰胺混合加入到烧瓶中。打开磁力搅拌与油浴,在油浴80℃与转速300rpm下反应7h。反应结束,将聚合而成的混合液转入到圆底烧瓶,90℃下旋蒸至液体显得粘稠时停止。待其自然冷却后将产物慢慢滴入到250ml冷乙酸乙酯中,得到白色粘稠固体。用玻璃砂芯漏斗过滤后,将固体产品连同滤纸移到表面皿中,置于真空干燥箱中45℃下干燥48h,然后升温至105℃除水1h。最终得到目标产物聚乙烯基吡咯烷酮(PVP)。
抑制性能评测:将其配置为1wt%的水溶液。在初始温度0.5℃,初始压力7.6MPa的条件下,通过实验室天然气水合物抑制性能测试装置进行检测,测定抑制剂抑制水合物生成的诱导时间,实验结果见表1。
对比例2:
取20.127g单体乙烯基己内酰胺溶于100mL溶剂二甲基甲酰胺中,密封后抽真空后通氮气,如此操作3次。在氮气保护下,称取0.205g链引发剂偶氮二异丁腈加入250mL三口烧瓶中,再进行真空-通氮气循环三次。打开磁力搅拌与油浴,在油浴80℃与转速300rpm下反应10h。反应结束,将聚合而成的混合液转入到圆底烧瓶,75℃下旋蒸直至液体显得粘稠时停止。待其自然冷却后往产物中滴入250mL冷无水乙醚中,得到白色粘稠固体。抽滤后置于真空干燥箱中40℃下干燥48h,再升温至110℃干燥5h。最终得到目标产物聚乙烯基己内酰胺(PVCap)。
抑制性能评测:将其配置为1wt%的水溶液。在初始温度0.5℃,初始压力7.6MPa的条件下,通过实验室天然气水合物抑制性能测试装置进行检测,测定抑制剂抑制水合物生成的诱导时间,实验结果见表1。
对比例3:
取13.92g单体乙烯基己内酰胺与11mL单体乙烯基吡咯烷酮加入到250mL三口烧瓶中,抽真空后通氮气,保证无氧操作环境。称取0.164g链引发剂偶氮二异丁腈和90mL溶剂二甲基甲酰胺,将偶氮二异丁腈溶于二甲基甲酰胺中,用注射器从橡胶塞孔中注入烧瓶内,封闭橡胶塞上的孔。然后抽真空通氮气循环三次,除净氧气。打开冷凝水循环,在油浴80℃与转速300rpm下反应8小时后,关闭油浴与搅拌。待溶液冷却至室温后将溶液转入圆底烧瓶。将溶液在90℃下旋蒸至沉淀析出完全,冷却至室温,然后滴入大量冷无水乙醚中沉淀,所得固体洗涤后,在80℃真空干燥24小时。最终得到目标产物聚(乙烯基己内酰胺-乙烯基吡咯烷酮)(PVCap-PVP)。
抑制性能评测:在初始温度4℃,初始压力7.6MPa的条件下,通过实验室天然气水合物抑制性能测试装置进行检测,测定抑制剂抑制水合物生成的诱导时间,实验结果见表1。
对比例4:
将30mL去离子水加入反应釜,在初始温度0.5℃,初始压力7.6MPa的条件下,通过实验室天然气水合物抑制性能测试装置进行检测,测定抑制剂抑制水合物生成的诱导时间,实验结果见表1。
表1
Figure PCTCN2020135060-appb-000004
经检测,在初始压力为7.6MPa,温度为0.5℃,过冷度大于10K,抑制剂浓度为1wt% 时,本发明制备的产品使甲烷水合物生成诱导时间长达270min,而在此温度和压力条件下常用的动力学抑制剂PVP和PVCap以及PVCap-PVP二元环状共聚物基本没有效果,本发明产品使用范围更广,抑制效果更好。
同时,经过计算可知本发明提出的超支化酰胺类水合物动力学抑制剂在生产工艺简单的条件下纯化产物有6.423g,计算产率为32.1%,对比同类多组分抑制剂产率相对较高,进一步改进了实施工艺。
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

  1. 一种超支化酰胺类水合物动力学抑制剂,其特征在于,所述的超支化酰胺类水合物动力学抑制剂结构式如式(1)所示:
    Figure PCTCN2020135060-appb-100001
    其中:超支化酰胺类水合物动力学抑制剂的重均分子量为10000~40000,分子量分布系数在1~3之间。
  2. 权利要求1所述的超支化酰胺类水合物动力学抑制剂的制备方法,其特征在于,具体包括以下步骤:
    (1)在冰浴,氮气保护下,将天冬氨酸,KBr和NaNO 2加入反应容器中,加入蒸馏水后缓慢加入浓硫酸,反应2~4小时后将产物经萃取,干燥后,得到目标产物2-溴代丁二酸;
    (2)在无氧操作环境下,在2-溴代丁二酸中依次加入丙炔醇,对甲苯磺酸和苯,充分混合,80~90℃反应36~48小时后,溶液冷却至室温,然后40~55℃干燥,冷却至室温,加入CH 2Cl 2重新溶解,将溶液滴入乙酸乙酯和质量分数为10wt%的NaOH的混合溶液洗涤,再通过蒸馏水洗涤干燥后,得到目标产物2-溴代丁二酸丙炔醇酯;
    (3)在无氧操作环境下,将2-溴代丁二酸丙炔醇酯和乙烯基己内酰胺加入苯中,在液氮中进行低温冷冻-抽真空-通氮气解冻循环,之后依次加入2,2-偶联吡啶和CuBr,在 90~120℃下反应3~6h,反应结束后冷却至室温,以四氢呋喃稀释后通过中性氧化铝柱子,除去金属离子后加入冰甲苯沉淀,所得产物过滤后干燥,得到超支化聚(乙烯基己内酰胺-2-溴代丁二酸丙炔醇酯)。
  3. 根据权利要求2所述的超支化酰胺类水合物动力学抑制剂的制备方法,其特征在于,步骤(1)中所述的天冬氨酸与KBr质量比为1:3~1:5,天冬氨酸和KBr的总质量与NaNO 2的质量比为4:1~6:1,所述的NaNO 2与蒸馏水的质量比为1:20~1:40,蒸馏水与浓硫酸质量比为10:1~30:1。
  4. 根据权利要求2所述的超支化酰胺类水合物动力学抑制剂的制备方法,其特征在于,步骤(2)中所述的2-溴代丁二酸与丙炔醇的质量比为1:2~1:4,2-溴代丁二酸和丙炔醇的总质量与对甲苯磺酸的质量比为50:1~85:1。
  5. 根据权利要求2所述的超支化酰胺类水合物动力学抑制剂的制备方法,其特征在于,步骤(2)中对甲苯磺酸与苯的质量比为1:100~1:150,85℃反应40小时。
  6. 根据权利要求2所述的超支化酰胺类水合物动力学抑制剂的制备方法,其特征在于,步骤(2)中所述的混合溶液中乙酸乙酯与质量分数为10wt%的NaOH溶液的体积比为4:1~5:1。
  7. 根据权利要求2所述的超支化酰胺类水合物动力学抑制剂的制备方法,其特征在于,步骤(3)中所述的2-溴代丁二酸丙炔醇酯与乙烯基己内酰胺质量比为1:10~1:30,2-溴代丁二酸丙炔醇酯与CuBr质量比为2:1~1:1,CuBr与2,2-联吡啶质量比为1:2~1:4。
  8. 权利要求1所述的超支化酰胺类水合物动力学抑制剂的应用,其特征在于,应用于油气水三相体系、油水或气水两相体系中水合物的生成。
  9. 根据权利要求8所述的超支化酰胺类水合物动力学抑制剂的应用,其特征在于,所述的超支化酰胺类水合物动力学抑制剂使用时,超支化酰胺类水合物动力学抑制剂水溶液浓度为0.5wt%~2wt%,适用压力为1~25MPa,温度为-25~25℃。
PCT/CN2020/135060 2020-03-06 2020-12-10 一种超支化酰胺类水合物动力学抑制剂及其制备方法和应用 WO2021159835A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010151149.5A CN111285969A (zh) 2020-03-06 2020-03-06 一种超支化酰胺类水合物动力学抑制剂及其制备方法和应用
CN202010151149.5 2020-03-06

Publications (1)

Publication Number Publication Date
WO2021159835A1 true WO2021159835A1 (zh) 2021-08-19

Family

ID=71017102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135060 WO2021159835A1 (zh) 2020-03-06 2020-12-10 一种超支化酰胺类水合物动力学抑制剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111285969A (zh)
WO (1) WO2021159835A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111649237B (zh) * 2020-01-16 2021-11-26 中石化中原石油工程设计有限公司 一种枯竭气藏储气库用地面集输系统
CN111285969A (zh) * 2020-03-06 2020-06-16 中国科学院广州能源研究所 一种超支化酰胺类水合物动力学抑制剂及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104072797A (zh) * 2014-06-27 2014-10-01 西北工业大学 环糊精功能化的长链超支化聚苯乙烯多孔膜的制备方法
CN107429154A (zh) * 2015-09-18 2017-12-01 亨斯迈石油化学有限责任公司 改进的聚(乙烯基己内酰胺)动力学气体水合物抑制剂及其制备方法
CN107868156A (zh) * 2016-09-27 2018-04-03 中国科学院广州能源研究所 一种新型水合物动力学抑制剂
CN108070063A (zh) * 2017-12-29 2018-05-25 中国科学院广州能源研究所 一种乙烯基酰胺类嵌段共聚物水合物动力学抑制剂及其制备方法与应用
CN109776723A (zh) * 2018-12-26 2019-05-21 中国科学院广州能源研究所 一种酰胺类共聚物水合物动力学抑制剂及其应用
CN110467701A (zh) * 2019-08-26 2019-11-19 西北大学 一种天然气水合物抑制剂、复配抑制剂及其制备方法
CN111285969A (zh) * 2020-03-06 2020-06-16 中国科学院广州能源研究所 一种超支化酰胺类水合物动力学抑制剂及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8980798B2 (en) * 2010-03-31 2015-03-17 Baker Hughes Incorporated Precipitation prevention in produced water containing hydrate inhibitors injected downhole
CN106947107B (zh) * 2017-03-24 2019-08-09 西北工业大学 孔壁上接枝有阿霉素的超支化聚苯乙烯多孔膜的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104072797A (zh) * 2014-06-27 2014-10-01 西北工业大学 环糊精功能化的长链超支化聚苯乙烯多孔膜的制备方法
CN107429154A (zh) * 2015-09-18 2017-12-01 亨斯迈石油化学有限责任公司 改进的聚(乙烯基己内酰胺)动力学气体水合物抑制剂及其制备方法
CN107868156A (zh) * 2016-09-27 2018-04-03 中国科学院广州能源研究所 一种新型水合物动力学抑制剂
CN108070063A (zh) * 2017-12-29 2018-05-25 中国科学院广州能源研究所 一种乙烯基酰胺类嵌段共聚物水合物动力学抑制剂及其制备方法与应用
CN109776723A (zh) * 2018-12-26 2019-05-21 中国科学院广州能源研究所 一种酰胺类共聚物水合物动力学抑制剂及其应用
CN110467701A (zh) * 2019-08-26 2019-11-19 西北大学 一种天然气水合物抑制剂、复配抑制剂及其制备方法
CN111285969A (zh) * 2020-03-06 2020-06-16 中国科学院广州能源研究所 一种超支化酰胺类水合物动力学抑制剂及其制备方法和应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HE FUXI, TANG GANG, MIN XIAOYAN, HU MINQI, SHAO LIDONG, BI YUNMEI: "Living / Controlled Free Radical Polymerization of N-Vinyl Caprolactam", PROGRESS IN CHEMISTRY, vol. 28, no. 2/3, 24 March 2016 (2016-03-24), pages 328 - 336, XP055835576, DOI: 10. 7536 /PC150823 *
JEFFREY A. FRICK ET AL.: "An Efficient Synthesis of Enantiomerically pure (R)-(2-Benzyloxyethyl)oxirane from (S)-Aspartic Acid", SYNTHESIS, GEORG THIEME VERLAG, STUTTGART, DE., no. 7, 1 July 1992 (1992-07-01), STUTTGART, DE., pages 621 - 623, XP002147517, ISSN: 0039-7881, DOI: 10.1055/s-1992-26176 *
KONG LIZHI, SUN MIAO, PAN CAIYUAN: "Hyperbranched Polystyrene via Click Reaction of AB2 Macromonomer", GAOFENZI-TONGBAO = POLYMER BULLETIN, CHINA NATIONAL MICROFORMS IMPORT & EXPORT CORP., CN, no. 6, 15 June 2010 (2010-06-15), CN, pages 71 - 74, XP055835579, ISSN: 1003-3726, DOI: 10.14028/j.cnki.1003-3726.2010.06.010 *
KONG LI-ZHI, SUN MIAO, QIAO HUA-MING, PAN CAI-YUAN: "Synthesis and characterization of hyperbranched polystyrene via click reaction of AB 2 macromonomer : Synthesis of Hyperbranched Polystyrene", JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY, JOHN WILEY & SONS, INC., US, vol. 48, no. 2, 15 January 2010 (2010-01-15), US, pages 454 - 462, XP055835601, ISSN: 0887-624X, DOI: 10.1002/pola.23806 *
SEO SEONG DEOK, PAIK HYUN-JONG, LIM DONG-HA, LEE JU DONG: "Effects of Poly( N -vinylcaprolactam) Molecular Weight and Molecular Weight Distribution on Methane Hydrate Formation", ENERGY & FUELS, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, US., vol. 31, no. 6, 15 June 2017 (2017-06-15), WASHINGTON, DC, US., pages 6358 - 6363, XP055835602, ISSN: 0887-0624, DOI: 10.1021/acs.energyfuels.7b00318 *

Also Published As

Publication number Publication date
CN111285969A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
CN108070063B (zh) 一种乙烯基酰胺类嵌段共聚物水合物动力学抑制剂及其制备方法与应用
WO2021159835A1 (zh) 一种超支化酰胺类水合物动力学抑制剂及其制备方法和应用
CN109776723B (zh) 一种酰胺类共聚物水合物动力学抑制剂及其应用
Zhang et al. Experimental research of syneresis mechanism of HPAM/Cr3+ gel
WO2018058786A1 (zh) 一种新型水合物动力学抑制剂
CN109764241B (zh) 一种基于乙烯基咪唑共聚物的复合水合物动力学抑制剂及其应用
WO2023193314A1 (zh) 一种氨基酸聚合物及其制备方法与作为天然气水合物动力学抑制剂的应用
CN112694875A (zh) 一种基于有机溶剂的气体水合物动力学抑制剂及其应用
WO2018107609A1 (zh) 一种新型水合物动力学抑制剂及其制备方法和应用
CN115260391A (zh) 基于乙烯基己内酰胺的水合物抑制剂及制备方法
CN115260392A (zh) 基于乙烯基己内酰胺的三元水合物抑制剂及制备方法
WO2018058787A1 (zh) 一种新型水合物动力学抑制剂及其制备方法
CN103242484A (zh) 一种丙烯醇/n-乙烯基吡咯烷酮共聚物及制备方法
CN105542735B (zh) 一种水合物动力学抑制剂及其应用
CN115353584B (zh) 一种基于环状乙烯基共聚物的复合水合物动力学抑制剂及其应用
CN111116797B (zh) 一种天然气水合物抑制剂
CN115141312A (zh) 基于乙烯基吡咯烷酮的水合物抑制剂及制备方法
CN115197367A (zh) 基于乙烯基吡咯烷酮的三元水合物抑制剂及制备方法
Yan et al. Synthesis and evaluation of a new kind of kinetic hydrate inhibitor
CN109705246B (zh) 一种水合物动力学抑制剂
CN111116798B (zh) 一种改性的天然气水合物动力学抑制剂
CN115403702B (zh) 抑制剂及其制备方法与应用
CN116396429B (zh) 一种天然气水合物动力学抑制剂及其制备方法
CN116063602B (zh) 一种结构改性的聚乙烯吡咯烷酮及其制备方法和应用
CN109735316B (zh) 一种天然气水合物抑制剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918699

Country of ref document: EP

Kind code of ref document: A1