WO2018107609A1 - 一种新型水合物动力学抑制剂及其制备方法和应用 - Google Patents

一种新型水合物动力学抑制剂及其制备方法和应用 Download PDF

Info

Publication number
WO2018107609A1
WO2018107609A1 PCT/CN2017/077769 CN2017077769W WO2018107609A1 WO 2018107609 A1 WO2018107609 A1 WO 2018107609A1 CN 2017077769 W CN2017077769 W CN 2017077769W WO 2018107609 A1 WO2018107609 A1 WO 2018107609A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrate
inhibitor
water
gas
temperature
Prior art date
Application number
PCT/CN2017/077769
Other languages
English (en)
French (fr)
Inventor
梁德青
张倩
史伶俐
Original Assignee
中国科学院广州能源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院广州能源研究所 filed Critical 中国科学院广州能源研究所
Publication of WO2018107609A1 publication Critical patent/WO2018107609A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/524Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning organic depositions, e.g. paraffins or asphaltenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F126/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F126/06Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F126/10N-Vinyl-pyrrolidone
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/22Hydrates inhibition by using well treatment fluids containing inhibitors of hydrate formers

Definitions

  • the invention relates to the technical field of chemical industry, in particular to a novel hydrate kinetic inhibitor and a preparation method and application thereof.
  • Natural gas hydrate is an ice-like, non-stoichiometric clathrate complex formed by water and some light gases (hydrogen, carbon dioxide, nitrogen, methane, ethane, hydrogen sulfide, etc.) under high pressure and low temperature conditions. .
  • the method for preventing hydrate formation includes the following three types: 1. changing the environmental conditions, the hydrate formation environment can not be satisfied by depressurization, temperature rise, etc.; 2. changing the phase equilibrium condition of the natural gas hydrate, which can be added by adding methanol. And thermodynamic inhibitors such as ethylene glycol; 3, prolong the nucleation, growth, and aggregation time of the hydrate, so that it does not block during the mining and pipeline transportation, which can be added by adding a kinetic inhibitor and a polymerization inhibitor. to realise.
  • the first method and the second method can completely eliminate the formation of hydrates, but in consideration of environmental protection, cost saving, etc., management of temperature and pressure and addition of thermodynamic inhibitors (usually 10 to 50 wt% are effective) It is not practical to prevent hydrate formation.
  • Kinetic inhibitors and polymerization inhibitors are commonly referred to as low dose gas hydrate inhibitors (effectively added by adding 0.1 to 2 wt%). Due to its high efficiency, low environmental pollution and low cost, it has received extensive attention. Kinetic inhibitors can delay the nucleation time of hydrate crystals, reduce the growth rate, and prevent the further growth of hydrate crystals.
  • the polymerization inhibitors are some surfactants or polymers that can be mixed with oil to be adsorbed to hydrate particles.
  • Kinetic inhibitors mainly include heterocyclic polyamide kinetic inhibitors, chain polyamide kinetic inhibitors, natural product kinetic inhibitors, ionic liquid kinetic inhibitors; common polymerization inhibitors are alkyl Surfactants and polymers such as aromatic sulfonates, alkyl polyglycosides, alkyl ethoxylated phenyl compounds, amide compounds, and quaternary ammonium salts.
  • polyvinylpyrrolidone is a relatively common hydrate inhibitor.
  • the object of the present invention is to provide a novel hydrate kinetic inhibitor and a preparation method and application thereof, which can effectively delay hydrate in a low dose concentration (0.5 to 2 wt%) and a high degree of subcooling environment.
  • the nucleation reduces the rate of hydrate formation, and has the advantages of good inhibition effect, low dosage, wide applicability and the like.
  • a hydrate kinetic inhibitor of the formula I wherein the hydrate kinetic inhibitor is a phenylated poly N-vinyl pirone, from ethylbenzene and N-vinylpyrrolidine Polymerization of ketone monomers;
  • the volume ratio of the ethylbenzene to the N-vinylpyrrolidone monomer is from 1:50 to 5:1.
  • the hydrate kinetic inhibitor has an average molecular weight Mw of from 1000 to 1,000,000.
  • the preparation method of the hydrate kinetic inhibitor comprises the following steps: weigh the chain initiator azobisisobutyronitrile in a reaction bottle, and slowly add N-vinylpyrrolidone monomer sequentially under a nitrogen atmosphere. Ethylbenzene and N,N-dimethylformamide are reacted in a nitrogen atmosphere at a temperature of 40 to 140 ° C for 2 to 20 hours; the obtained preliminary product is cooled to room temperature, recrystallized, filtered, and dried to obtain a target product; The initiator is used in an amount of 0.5% by weight to 2% by weight based on the amount of the N,N-dimethylformamide; and the amount of the N,N-dimethylformamide is 1-20 times the volume of the N-vinylpyrrolidone monomer.
  • the volume ratio of ethylbenzene to N-vinylpyrrolidone monomer is from 1:50 to 5:1.
  • the reagent for recrystallization is ethyl acetate at -20 to 20 °C.
  • the present invention also protects the use of the hydrate kinetic inhibitor, which is applied to the formation of hydrates in a three-phase system of oil and gas water, oil-water or gas-water two-phase systems, when the hydrate inhibitor is used
  • concentration of water relative to the system is from 0.1 wt% to 20 wt%
  • the applicable pressure is from 1 to 25 MPa
  • the temperature is from -25 to 25 °C.
  • the hydrate inhibitor is preferably used in an amount of from 0.5% by weight to 2% by weight relative to the concentration of water in the system.
  • the present invention acts as a kinetic inhibitor polymer, and a phenyl group is added to a poly(N-vinylpyrrolidone) polymer chain, so that the polymer has a better inhibitory effect, a small amount, and a reagent cost is greatly reduced. It has wide applicability and is suitable for oil-gas-water three-phase or oil-water or gas-water two-phase coexistence system, which is used to inhibit the formation of hydrates during oil and gas production, processing and transportation.
  • the present invention has high inhibitory activity, low dosage, and low cost because the five-membered cyclic lactam polymer itself is a hydrate inhibitor, and the phenyl group is a cyclic group similar to a hydrate cage. It is easy to interact with the hydrate cage, thus preventing the contact of the guest molecules with the water molecules, further improving the inhibitory effect.
  • the present invention has high inhibitory activity, can achieve good inhibitory effect, and has a small dosage and a low cost, and can effectively delay the hydrate nucleation time and reduce the low-dose concentration (0.5 to 2 wt%) in a high subcooling environment.
  • Hydrate generation rate suitable for oil-gas-water three-phase or oil-water or gas-water two-phase coexistence system, used in oil and gas production, processing and transportation to inhibit the formation of hydrates, not subject to subcooling and application constraints, has a wide application prospect.
  • Figure 1 is a nuclear magnetic resonance spectrum of the product of Example 1;
  • Figure 2 is a Fourier infrared spectrum of the product of Example 1;
  • Example 3 is a view showing an example of a time-temperature, time-pressure curve of a hydrate inhibitor obtained in Example 1 added to a reaction hydrate formation process in an aqueous solution having a mass concentration of 1.0 wt%.
  • the synthesis method comprises the following steps: weighing 352 mg (2 mmol) of a chain initiator azobisisobutyronitrile in a 250 mL eggplant-shaped reaction bottle, sealing with a rubber stopper, vacuuming-passing nitrogen three times; and slowly adding N-vinylpyr 20 mL (206 mmol) of oxanone monomer, 0.56 mL of ethylbenzene (about 4.6 mmol) and 100 mL of N,N-dimethylformamide solvent, three times with liquid nitrogen freezing-exhausting-heating cycle; in a nitrogen atmosphere at 80
  • the reaction was carried out for 7 hours at a temperature of ° C; the obtained preliminary product was cooled to room temperature, and then slowly dropped into 1000 mL of ethyl acetate at -10 ° C to carry out recrystallization, suction filtration, and the obtained solid was dried to give the desired product.
  • the weight average molecular weight (Mw) is 56752, and its 1 H NMR spectrum (CD 3 CN as solvent) is shown in Figure 1. Its Fourier transform infrared (FTIR) spectrum is shown in Figure 2, and its gel permeation chromatography (GPC) The data is shown in Table 1:
  • the experimental equipment is a visual high-pressure stirring test device.
  • the main components of the device include sapphire high pressure reactor, magnetic stirrer, cryogenic air bath, temperature and pressure sensor, vacuum pump, camera, high pressure gas cylinder and data acquisition instrument.
  • the sapphire high pressure reactor has a maximum working pressure of 11 MPa and an operating temperature range of -30 to 80 °C.
  • the pressure in the sapphire autoclave can be freely adjusted by a gas valve.
  • the cryogenic air bath provides a constant temperature of -30 to 80 ° C for the sapphire high pressure reactor jacket.
  • the data acquisition system collects and stores parameters such as pressure and temperature in the reactor. The formation of the hydrate can be judged by the temperature or pressure change at the time of the reaction or directly by the camera.
  • the pressure drop in the autoclave that is, the point where the pressure drop trend deviates from the original trend, is the starting point of hydrate formation.
  • the temperature corresponding to this point is the lowest temperature that the solution can withstand.
  • methane gas is introduced when the temperature in the sapphire high pressure reactor is constant until the pressure in the reactor is set to close the intake valve.
  • the temperature in the reactor is lowered to a temperature below the formation temperature of the hydrate at a constant temperature drop rate (for example, 1 ° C/h).
  • the lowest temperature that the solution can withstand is the temperature at which the hydrate is formed during this process.
  • the effect of the novel inhibitor can be quantified based on the lowest temperature that the solution to which the inhibitor is added can withstand. The lower the temperature at which the hydrate is formed, the better the inhibition effect.
  • the reactor was washed three times to five times with deionized water, and then the reactor was purged with nitrogen. And test the piping system to ensure the system is dry.
  • the reaction kettle was evacuated, and 12.0 mL (about 1/3 of the volume of the sapphire reactor) of deionized water or the prepared hydrate inhibitor solution was taken in.
  • a methane gas having a purity of 9 MPa of 1 MPa was first introduced. Then, a vacuum was applied, and this was repeated three times.
  • the constant stirring rate was 800 rpm.
  • the temperature in the sapphire high pressure reactor was 20 ° C, methane gas was introduced, and the inlet valve was closed until the pressure in the reactor was constant at 8.0 MPa.
  • the temperature in the reactor was lowered from 20 ° C to -10 ° C at a temperature decreasing rate of 1 ° C / h.
  • the camera observation method and the temperature and pressure curve diagram method are used to judge whether or not the hydrate is formed.
  • the results are shown in Table 2. .
  • the hydrate kinetic inhibitor (PVPC 6 H 5 ) aqueous solution having the weight average molecular weight of 56752 obtained in Example 1 was added to the reaction kettle at a concentration of 0.1%, 0.5%, 1%, and 2%, respectively, and the test was performed. As shown in table 2.
  • the present invention can be used in a low dose concentration (0.5 to 2 wt%), high subcooling environment, can effectively delay the hydrate nucleation time, reduce the hydrate formation rate, has low dose, high efficiency, It has the advantages of wide applicability and good suppression effect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

一种结构式如式Ⅰ所示的水合物动力学抑制剂,该抑制剂抑制活性高,能取得良好抑制效果,且用量少,成本降低,可在低剂量浓度下(0.5~2wt%),高过冷度环境中有效延缓水合物成核时间,降低水合物生成速率,适用于油气水三相或油水或气水两相共存体系,应用于油气开采、加工和输送过程中抑制水合物的生成,不受过冷度和应用场合制约,具有广阔应用的前景。其中n=10~10000。

Description

一种新型水合物动力学抑制剂及其制备方法和应用 技术领域:
本发明涉及化工技术领域,具体涉及一种新型水合物动力学抑制剂及其制备方法和应用。
背景技术:
流动安全的保障是石油天然气行业所面临的重大问题之一,其中尤其重要的是防止天然气水合物的生成,因为天然气水合物一旦生成就会造成油气开采仪器设备的失灵、管道的堵塞,影响正常的油气开采、输运和作业。天然气水合物是在高压、低温条件下由水和一些轻质气体(氢气,二氧化碳,氮气,甲烷,乙烷,硫化氢等)形成的一种似冰的、非化学计量的笼形络合物。
防止水合物生成的方法包括以下三种:1、改变环境条件,可通过降压、升温等方式使水合物的生成环境无法满足;2、改变天然气水合物的相平衡条件,这可以通过添加甲醇、乙二醇等热力学抑制剂来实现;3、延长水合物的成核、生长、聚集时间,使其在开采和管道运输过程中不发生堵塞,这可以通过添加动力学抑制剂和阻聚剂来实现。第1种方法和第2种方法可以完全杜绝水合物的生成,但考虑到保护环境、节约成本等问题,通过温度压力的管理和加入热力学抑制剂(通常需加入10~50wt%才有效)的方法来防止水合物的生成是不实用的。动力学抑制剂和阻聚剂通常被称为低剂量天然气水合物抑制剂(加入0.1~2wt%即有效)。因其效率高、对环境污染小、成本低而受到广泛的关注。动力学抑制剂能够延缓水合物晶体的成核时间,降低生长速度,阻止水合物晶体的进一步生长;阻聚剂是一些表面活性剂或聚合物,能和油相混在一起被吸附到水合物颗粒的表面,使水合物晶粒悬浮分散在冷凝相中,从而防止水合物聚集结块,达到抑制其阻塞管道的目的。动力学抑制剂主要包括杂环聚酰胺类动力学抑制剂、链状聚酰胺类动力学抑制剂、天然产物类动力学抑制剂、离子液体类动力学抑制剂;常见的阻聚剂有烷基芳香族磺酸盐、烷基聚苷、烷基乙氧苯基化物、酰胺类化合物、四元季铵盐等表面活性剂和聚合物。
目前,聚乙烯基吡络烷酮是一种较为常用的水合物抑制剂。但由于其存在水溶性差、抑制效果不够理想甚至在较高过冷度的条件下(过冷度大于7℃)失去抑制效果等缺陷,使得其应用范围受到限制。这就促使科研工作者不断探索,力 求研发出抑制效果好、适用范围广、经济效益高且环境友好的新型水合物抑制剂。
发明内容:
本发明的目的是提供一种新型水合物动力学抑制剂及其制备方法和应用,该抑制剂可在低剂量浓度下(0.5~2wt%),高过冷度的环境中,有效延缓水合物的成核,降低水合物生成速率,具有抑制效果好、用量少、适用性广等优点。
本发明是通过以下技术方案予以实现的:
一种结构式如式Ⅰ所示的水合物动力学抑制剂,所述水合物动力学抑制剂为苯基化的聚N-乙烯基吡络烷酮,由乙苯和N-乙烯基吡络烷酮单体聚合而成;
Figure PCTCN2017077769-appb-000001
其中n=10~10000。
所述乙苯和N-乙烯基吡络烷酮单体的体积比为1:50~5:1。
所述水合物动力学抑制剂的平均分子量Mw=1000~1000000。
所述水合物动力学抑制剂的制备方法,包括以下步骤:称取链引发剂偶氮二异丁腈于反应瓶中,氮气氛围下依次缓慢滴加N-乙烯基吡络烷酮单体、乙苯和N,N-二甲基甲酰胺,氮气氛围中于40~140℃温度下反应2~20小时;得到的初产物冷却至室温后进行重结晶、过滤、干燥,得目标产品;所述引发剂用量占N,N-二甲基甲酰胺用量的0.5wt%~2wt%;N,N-二甲基甲酰胺用量为N-乙烯基吡络烷酮单体体积的1-20倍;乙苯和N-乙烯基吡络烷酮单体的体积比为1:50~5:1。
重结晶用的试剂是-20~20℃的乙酸乙酯。
本发明还保护所述水合物动力学抑制剂的应用,所述水合物抑制剂应用于油气水三相体系、油水或气水两相体系中水合物的生成,所述水合物抑制剂使用时相对于体系中水的浓度为0.1wt%~20wt%,适用压力为1~25MPa,温度为-25~25℃。
所述水合物抑制剂使用时相对于体系中水的浓度优选为0.5wt%~2wt%。
本发明的有益效果如下:
(1)本发明作为动力学抑制剂聚合物,在聚N-乙烯基吡络烷酮聚合链上添加苯基,因此该聚合物具有更好的抑制效果,用量少,试剂成本大大降低,具有广泛的适用性,适用于油气水三相或油水或气水两相共存体系,应用于油气开采、加工和输送过程中抑制水合物的生成。
(2)本发明抑制活性高,用量少,成本降低,因为五元环状的内酰胺聚合物本身就是水合物抑制剂,再加上苯基为类似于水合物笼的环状基团,易与水合物笼发生作用,从而阻止了客体分子与水分子接触,进一步提高了其抑制效果。
总之,本发明抑制活性高,能取得良好抑制效果,且用量少,成本降低,可在低剂量浓度下(0.5~2wt%),高过冷度环境中有效延缓水合物成核时间,降低水合物生成速率,适用于油气水三相或油水或气水两相共存体系,应用于油气开采、加工和输送过程中抑制水合物的生成,不受过冷度和应用场合制约,具有广阔应用的前景。
附图说明:
图1是实施例1的产物的核磁共振谱图;
图2是实施例1的产物的傅里叶红外光谱图;
图3是实施例1得到的水合物抑制剂按质量浓度为1.0wt%水溶液加入反应釜水合物生成过程中的时间-温度、时间-压力曲线示例图。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
实施例1:结构式如式Ⅰ所示的水合物动力学抑制剂(简称PVPC6H5)的合成
Figure PCTCN2017077769-appb-000002
合成方法包括以下步骤:称取链引发剂偶氮二异丁腈352mg(2mmol)于250mL茄形反应瓶,用橡皮塞密封后抽真空-通氮气3次;依次缓慢滴加N-乙烯基吡络烷酮单体20mL(206mmol)、乙苯0.56mL(约4.6mmol)和N,N-二甲基甲酰胺溶剂100mL,用液氮冷冻-抽气-升温循环3次;氮气氛围中于80℃温度下反应7小时;得到的初产物冷却至室温后缓慢滴入1000mL,-10℃的乙酸乙酯进行重结晶、抽滤、所得固体经干燥后得到目标产品。重均分子量(Mw)为56752,其1HNMR谱图(CD3CN作溶剂)如图1所示,其傅里叶红外(FTIR)光谱图如图2所示,其凝胶渗透色谱(GPC)数据如表1所示:
表1
Figure PCTCN2017077769-appb-000003
实施例2:抑制效果评价
本发明抑制效果评价的方法如下:
实验设备为可视化高压搅拌试验装置,该装置主要组成部分包括蓝宝石高压反应釜、磁力搅拌器、低温空气浴、温度压力传感器、真空泵、摄像头、高压气瓶和数据采集仪等。所述蓝宝石高压反应釜最高工作压力11MPa,工作温度范围-30~80℃。所述蓝宝石高压反应釜釜内压力可通过气阀自由调节。低温空气浴可为蓝宝石高压反应釜夹套提供-30~80℃的恒定温度。数据采集系统实时采集和储存反应釜釜内压力、温度等参数。水合物的形成可通过反应时的温度或压力变化进行判断或者摄像头直接观察。反应开始后,釜内压力骤降即压力下降趋势偏离原来趋势的点降点即为水合物生成的起点,这个点所对应的温度即为溶液所能承受的最低温度。恒定搅拌速率,当蓝宝石高压反应釜内温度恒定时开始通入甲烷气体物,直到反应釜内压力为设定值时关闭进气阀。然后,以恒定的降温速率(比如1℃/h)使反应釜内的温度降到该压力时水合物的生成温度以下。溶液所能承受的最低温度为此过程中水合物的生成温度。新型抑制剂的作用效果可根据添加了该抑制剂的溶液所能承受的最低温度来量化。水合物的生成温度越低,抑制效果越好。
具体实施过程:
实验运行前,先用去离子水反复清洗反应釜三至五遍,再用氮气吹扫反应釜 和实验管路系统,确保系统干燥。将反应釜抽真空,吸入12.0mL(约为蓝宝石反应釜容积1/3)的去离子水或配制的水合物抑制剂溶液,为排除釜内空气,先通入1MPa纯度99.99%的甲烷气体,然后再抽真空,如此反复3次,恒定搅拌速率为800rpm,当蓝宝石高压反应釜内温度为20℃时开始通入甲烷气体物,直到反应釜内压力恒定为8.0MPa时关闭进气阀。然后,以1℃/h的降温速率使反应釜内的温度从20℃降到-10℃。同时采用摄像头观察法和温度压力变化曲线图法,判断水合物是否生成。
将纯水加入反应釜中进行测试,结果表明,该体系下的水合物的生成温度为7.0℃。
将重均分子量为3.6×105,质量浓度分别为0.1%、1%、2%的聚N-乙烯基吡络烷酮(简称PVPK90)水溶液加入反应釜中进行测试,结果如表2所示。
将实施例1得到的重均分子量为56752的水合物动力学抑制剂(简称PVPC6H5)水溶液按质量浓度分别为0.1%、0.5%、1%、2%加入反应釜中进行测试,结果如表2所示。
表2
水合物动力学抑制剂 质量浓度% 水合物生成温度℃
PVPC6H5 0.1% 6.5
PVPK90 0.1% 5.0
PVPC6H5 0.5% 5.0
PVPK90 0.5% 5.1
PVPC6H5 1% 1.4
PVPK90 1% 3.1
PVPC6H5 2% 1.36
PVPK90 2% 3.7
  7.0
由表2可知,本发明可在低剂量浓度下(0.5~2wt%),高过冷度的环境中使用,能有效延缓水合物成核时间,降低水合物生成速率,具有低剂量、高效、适用性广等优点,具有较好的抑制效果。

Claims (7)

  1. 一种结构式如式Ⅰ所示的水合物动力学抑制剂,所述水合物动力学抑制剂为苯基化的聚N-乙烯基吡络烷酮,由乙苯和N-乙烯基吡络烷酮单体聚合而成;
    Figure PCTCN2017077769-appb-100001
    其中n=10~10000。
  2. 根据权利要求1所述的水合物动力学抑制剂,其特征在于,所述乙苯和N-乙烯基吡络烷酮单体的体积比为1:50~5:1。
  3. 一种权利要求1所述的水合物动力学抑制剂的制备方法,其特征在于,包括以下步骤:称取链引发剂偶氮二异丁腈于反应瓶中,氮气氛围下依次缓慢滴加N-乙烯基吡络烷酮单体、乙苯和N,N-二甲基甲酰胺,氮气氛围中于40~140℃温度下反应2~20小时;得到的初产物冷却至室温后进行重结晶、过滤、干燥,得目标产品;所述引发剂用量占N,N-二甲基甲酰胺用量的0.5wt%~2wt%;N,N-二甲基甲酰胺用量为N-乙烯基吡络烷酮单体体积的1-20倍;乙苯和N-乙烯基吡络烷酮单体的体积比为1:50~5:1。
  4. 根据权利要求3所述的水合物动力学抑制剂的制备方法,其特征在于,所述重结晶用的试剂是-20~20℃的乙酸乙酯。
  5. 权利要求1所述的所述水合物动力学抑制剂的应用。
  6. 根据权利要求5所述的水合物动力学抑制剂的应用,其特征在于,所述水合物抑制剂应用于油气水三相体系、油水或气水两相体系中水合物的生成,所述水合物抑制剂使用时相对于水的浓度为0.1wt%~20wt%,适用压力为1~25MPa,温度为-25~25℃。
  7. 根据权利要求6所述的水合物动力学抑制剂的应用,其特征在于,所述水合物抑制剂使用时相对于水的浓度为0.5wt%~2wt%。
PCT/CN2017/077769 2016-12-14 2017-03-22 一种新型水合物动力学抑制剂及其制备方法和应用 WO2018107609A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611153269.9 2016-12-14
CN201611153269.9A CN108219762B (zh) 2016-12-14 2016-12-14 一种新型水合物动力学抑制剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2018107609A1 true WO2018107609A1 (zh) 2018-06-21

Family

ID=62557872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/077769 WO2018107609A1 (zh) 2016-12-14 2017-03-22 一种新型水合物动力学抑制剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN108219762B (zh)
WO (1) WO2018107609A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116041706A (zh) * 2022-12-30 2023-05-02 中国科学院广州能源研究所 一种微球型水合物抑制剂及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109735316B (zh) * 2018-12-11 2020-07-03 中国科学院广州能源研究所 一种天然气水合物抑制剂
US20230272264A1 (en) * 2021-12-28 2023-08-31 Dalian University Of Technology Environmentally friendly natural gas hydrate inhibitor and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101629071A (zh) * 2009-07-31 2010-01-20 中国科学院广州能源研究所 一种天然气水合物抑制剂
CN102161720A (zh) * 2011-02-12 2011-08-24 中国海洋石油总公司 一种高效复合型水合物抑制剂及其制备方法与应用
CN102190750A (zh) * 2011-04-21 2011-09-21 华南理工大学 苯乙烯与n-乙烯基吡咯烷酮的共聚物及其制法和应用
US20130098623A1 (en) * 2011-10-20 2013-04-25 Baker Hughes Incorporated Low Dosage Kinetic Hydrate Inhibitors for Natural Gas Production Systems

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL126837C (zh) * 1958-01-17
DE10114638C1 (de) * 2001-03-24 2002-05-23 Clariant Gmbh Additive zur Inhibierung der Gashydratbildung und deren Verwendung
CN102504786B (zh) * 2011-09-26 2013-10-16 中国石油天然气股份有限公司 一种含硫天然气水合物抑制剂
CN104194756B (zh) * 2014-08-12 2017-02-22 华南理工大学 一种新型水合物动力学抑制剂及其制备方法及应用
CN104830291A (zh) * 2015-04-30 2015-08-12 中国石油大学(华东) 复合型低剂量天然气水合物抑制剂
CN106190060A (zh) * 2015-05-25 2016-12-07 西北大学 一种复配型天然气水合物抑制剂
CN105802599A (zh) * 2016-04-19 2016-07-27 中国石油化工股份有限公司 一种高效复合型水合物动力学抑制剂

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101629071A (zh) * 2009-07-31 2010-01-20 中国科学院广州能源研究所 一种天然气水合物抑制剂
CN102161720A (zh) * 2011-02-12 2011-08-24 中国海洋石油总公司 一种高效复合型水合物抑制剂及其制备方法与应用
CN102190750A (zh) * 2011-04-21 2011-09-21 华南理工大学 苯乙烯与n-乙烯基吡咯烷酮的共聚物及其制法和应用
US20130098623A1 (en) * 2011-10-20 2013-04-25 Baker Hughes Incorporated Low Dosage Kinetic Hydrate Inhibitors for Natural Gas Production Systems

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116041706A (zh) * 2022-12-30 2023-05-02 中国科学院广州能源研究所 一种微球型水合物抑制剂及其应用

Also Published As

Publication number Publication date
CN108219762B (zh) 2020-04-07
CN108219762A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2018058786A1 (zh) 一种新型水合物动力学抑制剂
RU2126513C1 (ru) Способ замедления образования гидратов
WO2018107609A1 (zh) 一种新型水合物动力学抑制剂及其制备方法和应用
CN108070063B (zh) 一种乙烯基酰胺类嵌段共聚物水合物动力学抑制剂及其制备方法与应用
JP3836880B2 (ja) 水和物の形成を抑制する方法
JP3938405B2 (ja) 水和物の形成を抑制する方法
CN114656632B (zh) 一种氨基酸聚合物及其制备方法与作为天然气水合物动力学抑制剂的应用
CN104194756A (zh) 一种新型水合物动力学抑制剂及其制备方法及应用
CN104388069A (zh) 一种组合型水合物抑制剂
WO2018058787A1 (zh) 一种新型水合物动力学抑制剂及其制备方法
WO2021159835A1 (zh) 一种超支化酰胺类水合物动力学抑制剂及其制备方法和应用
CN112694875A (zh) 一种基于有机溶剂的气体水合物动力学抑制剂及其应用
CN105505358B (zh) 一种深水油田开发用水合物抑制剂
CN105542735B (zh) 一种水合物动力学抑制剂及其应用
WO2023193313A1 (zh) 一种氨基酸聚合物及其制备方法与作为天然气水合物动力学抑制剂的应用
WO2020118780A1 (zh) 一种水合物动力学抑制剂
CN111116797B (zh) 一种天然气水合物抑制剂
CN109735316B (zh) 一种天然气水合物抑制剂
CN115353584B (zh) 一种基于环状乙烯基共聚物的复合水合物动力学抑制剂及其应用
CN113388379B (zh) 一种水合物动力学抑制剂及其制备方法与应用
CN116063602B (zh) 一种结构改性的聚乙烯吡咯烷酮及其制备方法和应用
CN116535571A (zh) 一种水合物动力学抑制剂及其制备方法和应用
CN116144332A (zh) 一种井筒中水合物流动障碍高效处理剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17880293

Country of ref document: EP

Kind code of ref document: A1