WO2021159290A1 - 车辆检测方法、系统和电子设备 - Google Patents

车辆检测方法、系统和电子设备 Download PDF

Info

Publication number
WO2021159290A1
WO2021159290A1 PCT/CN2020/074806 CN2020074806W WO2021159290A1 WO 2021159290 A1 WO2021159290 A1 WO 2021159290A1 CN 2020074806 W CN2020074806 W CN 2020074806W WO 2021159290 A1 WO2021159290 A1 WO 2021159290A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
instruction
tested
function data
data
Prior art date
Application number
PCT/CN2020/074806
Other languages
English (en)
French (fr)
Inventor
钱思维
张翼
庄尚芸
刘念邱
Original Assignee
深圳元戎启行科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳元戎启行科技有限公司 filed Critical 深圳元戎启行科技有限公司
Priority to PCT/CN2020/074806 priority Critical patent/WO2021159290A1/zh
Priority to CN202080003141.2A priority patent/CN113661526B/zh
Publication of WO2021159290A1 publication Critical patent/WO2021159290A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time

Definitions

  • This application relates to the field of vehicle technology, in particular to a vehicle detection method, system and electronic equipment.
  • Unmanned vehicles mainly rely on the intelligent driving instrument based on computer systems to realize unmanned driving. Therefore, the reliability requirements for the components contained in the vehicle are relatively high. If the components in the vehicle are abnormal, it is easy to cause the vehicle to appear. Failure, causing safety issues.
  • the safety inspection of the vehicle is usually carried out by the safety personnel, that is, before the vehicle starts the unmanned driving, the safety personnel shall inspect the vehicle, and if the inspection passes, the vehicle is allowed to perform unmanned driving.
  • the conventional technology has the problem of low vehicle detection efficiency.
  • a vehicle detection method, system, and electronic device are provided.
  • a vehicle detection method including:
  • a vehicle detection system includes:
  • An information acquisition module configured to acquire a vehicle detection instruction, and acquire power supply information of a device to be detected contained in the vehicle according to the vehicle detection instruction;
  • a data acquisition module configured to acquire target function data of the device to be tested when it is determined that the power supply information meets the running requirements of the device to be tested;
  • the device detection module is configured to determine whether the device to be tested is operating normally according to the target function data and the preset function data corresponding to the device to be tested;
  • the vehicle detection and determination module is used to determine that the vehicle has passed the detection when all the devices to be detected included in the vehicle are operating normally.
  • An electronic device includes a memory and a processor, and a computer program is stored in the memory.
  • the processor executes the following steps:
  • Fig. 1 is a schematic diagram of an application environment of a vehicle detection method in an embodiment.
  • Fig. 2 is a flowchart of a vehicle detection method in an embodiment.
  • Fig. 3 is a flowchart of a vehicle detection method in another embodiment.
  • Fig. 4 is a flowchart of a vehicle detection method in another embodiment.
  • Fig. 5 is a schematic diagram of a system architecture of a vehicle in an embodiment.
  • Fig. 6 is a structural block diagram of a vehicle detection system according to an embodiment.
  • Fig. 7 is a schematic diagram of the internal structure of an electronic device in an embodiment.
  • Fig. 1 is a schematic diagram of an application environment of a vehicle detection method in an embodiment.
  • the application environment includes a vehicle 110 and a server 120.
  • the vehicle 110 and the server 120 may be connected through a network.
  • the vehicle 110 can obtain the vehicle detection instruction, and obtain the power supply information of the device to be tested contained in the vehicle 110 according to the vehicle detection instruction.
  • it can obtain the target function data of the device to be tested during operation.
  • the target function data and the preset function data corresponding to the device to be tested determine whether the device to be tested is operating normally. When all the devices to be tested included in the vehicle 110 are operating normally, it is determined that the vehicle 110 has passed the test.
  • the vehicle 110 may send the detected information to the server 120 after it is determined that the detection is passed; it may also generate a driving start instruction and send it to the server 120, so that the server 120 controls the vehicle 110 to perform driving operations and the like.
  • the server 120 may be a single server, or a server cluster composed of multiple servers, or a server in the server cluster.
  • the vehicle 110 may be, but is not limited to, a private car, a bus, a passenger car, and the like.
  • Fig. 2 is a flowchart of a vehicle detection method in an embodiment.
  • the vehicle detection method in this embodiment is described by taking the vehicle running on the vehicle in FIG. 1 as an example.
  • the vehicle detection method includes step 202 to step 208.
  • Step 202 Obtain a vehicle detection instruction, and obtain power supply information of a device to be detected contained in the vehicle according to the vehicle detection instruction.
  • the vehicle detection instruction is used to instruct the vehicle to perform automatic detection.
  • the vehicle detection instruction may be a detection instruction input by the driver received by the vehicle; it may also be a vehicle detection instruction generated according to a triggered start driving instruction; it may also be a vehicle detection instruction generated according to a preset demand during the driving of the vehicle, etc. .
  • the vehicle can obtain the power supply information of the device to be detected contained in the vehicle according to the vehicle detection instruction.
  • the device to be detected is a device included in the vehicle.
  • the device to be detected may be a device that needs to be applied to the driverless vehicle during driving.
  • the device to be detected may include a monitoring device, a radar device, a sensor device, a controller, and so on.
  • the power supply information refers to the information supplied by the vehicle to the device to be tested.
  • the power supply information may include information such as voltage, current, and power of the device to be tested.
  • the vehicle can determine the power supply information that needs to be acquired according to different devices to be detected.
  • Step 204 When it is determined that the power supply information meets the operating requirements of the device to be tested, obtain target function data when the device to be tested is running.
  • the power supply information meeting the operating requirements of the device to be tested means that under the power supply information, the device to be tested can maintain a working state of normal operation.
  • the vehicle can obtain the target function data of the device to be tested when it is determined that the power supply information meets the operating requirements of the device to be tested, which can ensure that the acquired target function data is the function data of the device to be tested in normal operation.
  • Functional data refers to the data detected or collected during the operation of the device.
  • the target function data represents the function data corresponding to the device to be tested.
  • the functional data corresponding to the sensor is data collected by the sensor;
  • the functional data corresponding to the camera is image data taken by the camera.
  • the vehicle can determine whether the power supply information meets the operating requirements of the device to be tested, and if so, obtain the target function data of the device to be tested when it is running.
  • the vehicle may obtain a preset power supply range corresponding to the device to be tested, and when the power supply information is within the preset power supply range, it is determined that the power supply information meets the operating requirements of the device to be tested.
  • the preset power supply range can be determined according to the rated power supply information and the allowable error range of the device to be tested. For example, when the rated voltage of the device to be tested is 12V, the preset power supply range can be 10V to 14V; it can also be 9V to 13V.
  • Step 206 Determine whether the device to be tested is operating normally according to the target function data and the preset function data corresponding to the device to be tested.
  • the preset function data can characterize the function data of the normal operation of the device to be tested.
  • the preset function data may be obtained according to the function data of the device to be tested when the vehicle determines that the device to be tested is operating normally; it may also be function data obtained in other ways.
  • the preset function data corresponding to the camera may be determined by analyzing the image data when the camera is running normally, or it may be the preset function data obtained from a server or other devices.
  • the vehicle can determine whether the device to be tested is operating normally according to the target function data and the preset function data corresponding to the device to be tested. Specifically, the vehicle matches the target function data with the preset function data corresponding to the device to be tested, and if the matching is successful, it is determined that the device to be tested is operating normally.
  • the way the vehicle performs the matching may be different. For example, when the target function data is image data, the vehicle can analyze the matching degree between the target function data and the preset function data.
  • the matching degree is greater than the matching degree threshold, it is determined that the device to be tested is operating normally; when the target function When the data is a numerical value, the vehicle can be within the range of the preset function data, and the target function data matches the preset function data, and the device to be tested operates normally.
  • Step 208 When all the devices to be inspected included in the vehicle are operating normally, it is determined that the vehicle passes the inspection.
  • the vehicle When the vehicle is unmanned, it needs to rely on all the devices to be tested included in the vehicle. Therefore, it is necessary to ensure that all the devices to be tested included in the vehicle operate normally.
  • the vehicle can be determined to pass the test. Further, the vehicle can send a driving start instruction to the server after the vehicle has passed the detection; the vehicle can also perform the vehicle detection during the unmanned driving process. When it is determined that the vehicle has passed the detection, the unmanned driving will continue. Optionally, the The information that the vehicle has passed is fed back to the server.
  • the power supply information of the device to be tested contained in the vehicle is obtained by obtaining the vehicle detection instruction according to the vehicle detection instruction.
  • the power supply information meets the operating requirements of the device to be tested, it is based on the target function data of the device to be tested during operation.
  • the preset function data corresponding to the device to be tested determines whether the device to be tested is operating normally, and when all the devices to be tested included in the vehicle are operating normally, it is determined that the vehicle has passed the test.
  • the vehicle can be automatically detected to improve the efficiency of vehicle detection, and the functional data of the device can be obtained for detection after the power supply of the device is determined to meet the operating demand, which can avoid the abnormal function data of the device caused by the abnormal power supply and the inaccurate detection Problems can improve the accuracy of vehicle detection.
  • the device to be detected may include at least one of a sensor, a camera, a radar, and a vehicle controller.
  • the sensors may include inertial sensors, acceleration sensors, gyroscopes, and so on.
  • Cameras may include cameras for traffic light detection, vehicle and pedestrian detection cameras, reversing photography cameras, and the like.
  • the radar can be lidar, ultrasonic radar, microwave radar, solid-state radar, millimeter wave radar, etc.; radar can be used to search for obstacles around the vehicle, or for cruise control.
  • the vehicle controller refers to the controller that controls the driving of the vehicle, including but not limited to controlling the accelerator, brake, gear, and lights of the vehicle.
  • the vehicle can be preset with a device sequence.
  • the device sequence includes the detection sequence of each device to be tested.
  • the vehicle can obtain the power supply information and target function data of the device to be tested in sequence according to the device sequence to confirm the normal operation of the detection device ;
  • the vehicle can test each of the devices to be tested in parallel, and when it is determined that all the devices to be tested included in the vehicle are operating normally, it is determined that the vehicle has passed the test.
  • Vehicles equipped with sensors, cameras, radars, and vehicle controllers are all components that need to be applied in the process of unmanned driving.
  • the vehicle detects sensors, cameras, radars, and vehicle controllers according to vehicle detection instructions, which can improve the integrity of vehicle detection. Ensure the safety of vehicle operation.
  • the process of determining whether the device to be detected is operating normally according to the target function data and the preset function data corresponding to the device to be detected in the provided vehicle detection method includes: acquiring the corresponding camera The image data contained in the target function data; analyze whether the characteristic information of the image data meets the preset function data corresponding to the camera, and when the characteristic information of the image data meets the preset image characteristic information, it is determined that the camera is operating normally.
  • the preset function data corresponding to the camera is preset image feature information.
  • the functional data of the camera during operation is the image collected by the camera. That is, the target function data of the camera includes the image data collected by the camera.
  • the vehicle can obtain the image data contained in the target function data and analyze the characteristic information corresponding to the image data.
  • the feature information of the image data may include at least one of the resolution, brightness distribution, color distribution, and location and size of objects contained in the image data.
  • the vehicle can analyze whether the feature information of the image data meets the preset image feature information. Specifically, it can calculate the matching degree between the feature information of the image data and the preset image feature information.
  • the matching degree exceeds the matching degree threshold. Then it is determined that the characteristics of the image data meet the preset image characteristic information, and the camera operates normally; it can also be determined that the characteristics of the image data meet the preset image when the characteristic information of the image data is within the preset image characteristic information range. Characteristic information, the camera is operating normally.
  • the image data collected by the camera may have low resolution, abnormal brightness distribution, abnormal color distribution, no object detected, too small object area, etc.
  • the preset image feature information can be based on normal images Determined by the data, for example, the preset image feature information may be that the resolution is greater than the resolution threshold, the brightness distribution variance is less than the variance threshold, the number of detected objects is greater than the number threshold, and so on.
  • the feature information of the image data meets the preset image feature information, it means that the image data collected by the camera is normal and the camera is operating normally.
  • the provided vehicle detection method further includes: acquiring three-dimensional point cloud data corresponding to the target function data of the radar; when the feature information of the image data meets the preset image feature information, and the three-dimensional point cloud and the image data When it matches, it is determined that the radar is operating normally.
  • Radar is a device used to collect information about the surrounding environment by means of lasers, sound waves, etc.
  • the radar emits laser light, acoustic waves, or millimeter waves to the surrounding environment, and converts the reflected signals from the surrounding environment into point cloud data and saves it to a point cloud data set.
  • the analysis point cloud data set is provided to determine the surrounding environment information of the vehicle.
  • the radar can output three-dimensional point cloud data, where the three-dimensional point cloud data is converted from a point cloud data set; the radar can output target function data including three-dimensional point cloud data.
  • Cameras and radars are devices used to collect information about the surrounding environment.
  • the vehicle obtains the corresponding three-dimensional point cloud data in the target function data of the radar.
  • the feature information of the image data meets the preset image feature information and the three-dimensional point cloud data matches the image data, it is determined that the radar is operating normally.
  • the feature information of the image data meets the preset image feature information, it means that the camera is operating normally and the vehicle can obtain the three-dimensional point cloud data output by the radar.
  • the three-dimensional point cloud data matches the image data, it can be determined The radar is operating normally.
  • determining whether the device to be detected is operating normally according to the target function data and the preset function data corresponding to the device to be detected includes: converting the radar target function data The included point cloud data set is converted into three-dimensional point cloud data; whether the feature information of the three-dimensional point cloud data meets the preset function data corresponding to the radar, the preset function data corresponding to the radar is the preset three-dimensional feature information, when the three-dimensional point cloud When the characteristic information of the data meets the preset three-dimensional characteristic information, it is determined that the radar is operating normally.
  • the target function data during radar operation includes a point cloud data set, and the vehicle can convert the point cloud data set into three-dimensional point cloud data.
  • the three-dimensional point cloud data can characterize the environmental information around the vehicle.
  • three-dimensional point cloud data can express information such as where obstacles exist around the vehicle, the shape of the obstacle, and the distance between the obstacle and the vehicle.
  • the characteristic information of the 3D point cloud data can include information such as the distance distribution of the data, the shape of the constructed object, and the size of the constructed object.
  • the preset three-dimensional feature information refers to the radar three-dimensional feature information set by actual requirements that meets the needs of the vehicle.
  • the preset three-dimensional feature information may be information related to the distance distribution of the three-dimensional point cloud data, the shape, size, and location of the recognized object.
  • the vehicle can match the characteristic information of the 3D point cloud data with the preset 3D characteristic information.
  • the characteristic information of the 3D point cloud data matches the preset 3D characteristic information, it is determined that the radar is operating normally.
  • the vehicle after determining that the radar is operating normally, the vehicle obtains image data corresponding to the target function data of the camera.
  • the characteristic information of the three-dimensional point cloud data meets the preset function data corresponding to the radar, and the image data is consistent with
  • the three-dimensional point cloud data matches it is determined that the camera is operating normally. That is, after the normal operation of the radar is determined according to the characteristic information of the three-dimensional point cloud data and the preset three-dimensional characteristic information, it can be determined whether the camera is operating normally according to the three-dimensional point cloud data and the image data, which can improve the accuracy of camera detection.
  • the process of determining the normal operation of the radar may include: When the feature information of the image data meets the preset image feature information, the image data is acquired. When the feature information of the three-dimensional point cloud data meets the preset three-dimensional feature information, and the image data matches the three-dimensional point cloud data, it is determined that the radar and The camera is operating normally.
  • the vehicle when the feature information of the image data corresponding to the camera meets the preset image feature information, and the feature information of the three-dimensional point cloud data meets the preset three-dimensional feature information, the vehicle can be based on the image data and the three-dimensional point cloud data.
  • the degree of matching determines whether the radar and the camera are operating normally; when the image data and the 3D point cloud data match, the radar and the camera can be determined to be operating normally; when the image data and the 3D point cloud data do not match, the radar and the camera can be determined At least one of the operations is abnormal.
  • the function data of the radar and the camera can be matched and detected, which can further improve the accuracy of the camera and the radar detection.
  • the process of determining whether the device to be detected is operating normally according to the target function data and the preset function data corresponding to the device to be detected in the provided vehicle detection method further includes: The target function data is subjected to statistical calculations to obtain the corresponding target sensor data; when the target sensor data matches the preset function data corresponding to the sensor, it is determined that the device to be tested is operating normally.
  • the sensor can continuously collect sensor data while the sensor is running, and the vehicle can collect the data collected while the sensor is running as the target function data, that is, the target function data contains a large amount of data collected by the sensor.
  • the vehicle can perform statistical calculations on the target function data of the sensor to obtain the target sensor data.
  • the statistical calculation can be, but is not limited to, calculating one or more of the average value, variance, standard deviation, mode, etc. of the data.
  • the preset function data corresponding to the sensor may be sensor data collected when the sensor is operating normally and the vehicle is stationary. Specifically, when the vehicle is stationary, the sensor can detect data generated due to slight environmental disturbances.
  • the preset function data corresponding to the sensor can be determined according to the driving parameters of the vehicle.
  • the driving parameters of the vehicle may include information such as acceleration, gravity, and accelerator speed of the vehicle, which may be acquired by the vehicle controller of the vehicle.
  • the vehicle can perform statistical calculations on the target operating data of the sensor to obtain the corresponding target sensor data, and calculate the matching degree between the target sensor data and the preset function data corresponding to the sensor.
  • the matching degree exceeds the matching degree threshold, it is determined when When the target sensor data matches the preset function data corresponding to the sensor, it is determined that the target sensor data matches the preset function data corresponding to the sensor and the sensor is operating normally. It is possible to perform statistical calculations based on the data collected by the sensor, and determine whether the sensor is operating normally according to the results of the statistical calculation, which can improve the convenience of sensor detection, and it is not necessary to match all the data collected by the sensor.
  • the process of obtaining the target function data of the device to be tested when the device is running in the provided vehicle detection method includes: sending a test instruction to the vehicle controller, and the test instruction is used to instruct the vehicle The controller executes the corresponding test operation; acquires the control data fed back after the vehicle controller executes the test operation, and uses the control data as the target function data corresponding to the vehicle controller.
  • the vehicle controller is the vehicle wire control, which is the controller that controls the vehicle's driving.
  • the vehicle can control the accelerator, brake, gear, light, etc. through the vehicle controller.
  • the test instruction is an instruction for the vehicle controller to execute the corresponding test operation.
  • the test instruction may be generated by the vehicle after determining that the power supply information meets the power supply requirement of the vehicle controller; the test instruction may also be preset in the vehicle. When it is determined that the power supply information meets the power supply requirement of the vehicle controller, the vehicle obtains the test The instructions are sent to the vehicle controller.
  • the vehicle controller can execute the corresponding test operation according to the received test instruction.
  • the vehicle controller can control the throttle start according to the test instruction; when the test instruction includes a light turn on instruction, the vehicle controller can start lights and the like according to the test instruction.
  • the vehicle controller may obtain control data fed back after the test operation is performed.
  • the control data is used to characterize the operation result of the test operation.
  • the test command includes a throttle start command
  • the control data can include the speed of the vehicle after the throttle is started; when the test command includes a gear switching command, the control data can include the vehicle gear after the test operation is performed; when the test command includes The light control instruction, the control data may include the on and off state of the light after the test operation is performed.
  • the vehicle can use the feedback control data as the target function data, and match the target function data with the preset function data of the vehicle controller to determine whether the vehicle controller is operating normally.
  • the preset function data corresponding to the vehicle controller is the control data corresponding to the test instruction. For example, when the test command is a brake command, the corresponding preset function data includes information about braking the vehicle; when the test command is switching to the second gear, the corresponding preset function data includes information about the vehicle in the second gear.
  • the test instruction sent by the vehicle to the vehicle controller may be an instruction that has little effect on the state of the vehicle.
  • the throttle start command included in the test command can be 5%, 10%, or 15% of the start throttle
  • the brake command included in the test command can be 3%, 5%, 10%, 15%, etc. of the braking force. This is not limited.
  • the control data after the vehicle controller executes the test operation corresponding to the test instruction is used as the target function data, and the vehicle is determined according to the target function data and the preset function data corresponding to the vehicle controller. Whether the controller is operating normally can realize the automatic detection of the vehicle controller.
  • the use of test instructions that have less impact on the state of the vehicle can prevent vehicle detection from affecting the vehicle and cause greater power consumption, improve the convenience of vehicle detection, and reduce the power consumption of vehicle detection.
  • the provided vehicle detection method further includes: when it is determined that the power supply information does not meet the operation requirements of the device to be detected, determining that the vehicle fails the detection.
  • the vehicle may determine that the power supply information does not meet the operating requirements of the device to be tested when it is determined that the power supply information is not within the preset power supply range corresponding to the device to be tested.
  • the power supply information does not meet the operation requirements of the device to be tested, it may cause insufficient power supply of the device to be tested, unstable data collection, or excessive power supply, causing the risk of burning out the device to be tested, and the vehicle cannot use the device to be tested. Safe and stable unmanned operation.
  • the vehicle can determine that the vehicle fails the test. Further, when the power supply information does not meet the operating requirements of the device to be tested, the vehicle does not need to obtain further target function data of the device to be tested to confirm the operation of the device to be tested.
  • the provided vehicle detection method further includes: when it is determined that the target function data does not match the preset function data corresponding to the device to be detected, determining that the vehicle detection fails.
  • the vehicle can determine that the device to be detected is operating abnormally. If the device to be detected is operating abnormally, and the target function data does not match the preset function data, the vehicle cannot use the device to be detected for safe and stable unmanned driving. The vehicle can determine that the device to be detected is operating abnormally, and then the vehicle is determined to fail the detection.
  • the vehicle when it is determined that the vehicle has failed in detection, the vehicle may output information that the vehicle has failed in detection, and output the abnormally operating device to be detected.
  • the vehicle may also send information indicating that the vehicle has failed detection to the server, and the unmanned operation of the vehicle may be stopped or prohibited by the server.
  • the vehicle can determine that the vehicle detection fails when the power supply information of at least one device to be detected does not meet the power supply demand or the target function data of the device to be detected does not match the preset function data, which can improve the safety of vehicle detection.
  • Fig. 3 is a flowchart of a vehicle detection method in another embodiment. As shown in Figure 3, in one embodiment, the provided vehicle detection method includes:
  • Step 302 Receive a start-up driving instruction for the vehicle, and generate a vehicle detection instruction according to the start-up driving instruction.
  • the driving start instruction is an instruction used to instruct the vehicle to perform unmanned driving.
  • the vehicle may receive a start-up driving instruction for the vehicle sent by the server; may also receive a start-up driving instruction for the vehicle sent by a remote control; and may also generate the start-up driving instruction according to the door opening operation of the vehicle.
  • the vehicle can generate a vehicle detection instruction according to the start-up driving instruction to perform a self-check on the vehicle before the vehicle performs an unmanned driving operation to ensure the normal operation of the vehicle.
  • Step 304 Obtain the vehicle detection instruction, and obtain the power supply information of the device to be detected contained in the vehicle according to the vehicle detection instruction.
  • Step 306 When it is determined that the power supply information meets the operating requirements of the device to be tested, obtain target function data of the device to be tested when it is running.
  • Step 308 Determine whether the device to be tested is operating normally according to the target function data and the preset function data corresponding to the device to be tested.
  • Step 310 When all the devices to be detected included in the vehicle are operating normally, it is determined that the vehicle has passed the detection.
  • Step 312 Send a driving start instruction to the server, where the driving start instruction is used to instruct the server to control the vehicle to perform an unmanned driving operation.
  • the server is equivalent to the remote control center of the vehicle.
  • the server can manage and control at least one connected vehicle.
  • the vehicle When the vehicle is determined to pass the vehicle detection, it can send a driving start instruction to the server, and the server controls the vehicle to perform unmanned driving operations.
  • the vehicle may generate a vehicle detection instruction when receiving a driving start instruction to automatically detect the vehicle according to the vehicle detection instruction.
  • the vehicle may then send the driving start instruction to the server.
  • the server controls the vehicle to perform unmanned operation, which can improve the safety of unmanned vehicles.
  • the provided vehicle detection method further includes: obtaining the detection time of the last vehicle detection during the unmanned driving of the vehicle; when the time length of the distance detection time exceeds the time length threshold, generating a vehicle detection instruction.
  • the vehicle can also perform self-checking during unmanned driving. Specifically, the vehicle can generate a vehicle detection instruction every time a time interval threshold is exceeded, that is, when the time from the last detection time exceeds the time length threshold, a vehicle detection instruction can be generated. Wherein, the detection time of the last vehicle detection may include the time when the vehicle detection instruction was generated according to the driving instruction.
  • the duration threshold can be set according to actual application requirements, and is not limited here.
  • the duration threshold may be 30 minutes, 1 hour, 2 hours, 3 hours, and so on.
  • the vehicle may send a vehicle abnormality instruction to the server, and the vehicle abnormality instruction is used to instruct the server to stop the unmanned driving operation.
  • the vehicle can continue unmanned operation.
  • a vehicle detection instruction is generated to perform a self-inspection on the vehicle, which can improve the process of unmanned driving of the vehicle. In security.
  • Fig. 4 is a flowchart of a vehicle detection method in another embodiment. As shown in Figure 4, in one embodiment, the provided vehicle detection method includes:
  • Step 402 Obtain a vehicle detection instruction.
  • step 404 it is determined whether the power supply information of the sensor meets the power supply requirement, if yes, go to step 406, and if not, go to step 432.
  • Step 406 Obtain sensor data collected by the sensor.
  • Step 408 Determine whether the sensor is operating normally according to the sensor data, if yes, go to step 410, and if not, go to step 432.
  • step 410 it is determined whether the power supply information of the camera meets the power supply requirement, if yes, go to step 412, and if not, go to step 432.
  • Step 412 Obtain image data collected by the camera.
  • Step 414 Determine whether the camera is operating normally according to the image data, if yes, go to step 416, and if not, go to step 432.
  • step 416 it is determined whether the power supply information of the radar meets the power supply demand, if yes, go to step 418, and if not, go to step 432.
  • Step 418 Obtain the point cloud data set collected by the radar and convert it into three-dimensional point cloud data.
  • Step 420 Determine whether the radar is operating normally according to the three-dimensional point cloud data, if yes, go to step 422, and if not, go to step 432.
  • step 422 it is determined whether the power supply information of the vehicle controller meets the power supply requirement, if yes, go to step 424, and if not, go to step 432.
  • Step 424 Obtain test data fed back by the vehicle controller according to the test instruction.
  • Step 426 Determine whether the vehicle controller is operating normally according to the test data, if yes, go to step 428, and if not, go to step 432.
  • Step 428 Output the vehicle detection passing indication.
  • step 430 when the distance from the last detection time exceeds the duration threshold, a vehicle detection instruction is generated, and step 402 is returned.
  • Step 432 Output a vehicle detection failure indication.
  • Fig. 5 is a schematic diagram of a system architecture of a vehicle in an embodiment.
  • the devices to be detected of the vehicle include a sensor 502, a camera 504, a radar 506, and a vehicle controller 508; the vehicle is equipped with a vehicle detection module 510.
  • the vehicle detection module 510 can be connected to the sensor 502, the camera 504, the radar 506, and the vehicle controller 508 through the voltage and current detection ports, and is used to obtain the power supply information of each device to be detected.
  • the vehicle detection module 510 can be connected to the sensor 502 through a data transmission bus to obtain sensor data collected by the sensor; connected to the camera 504 through the network port/MIPI (Mobile Industry Processor Interface); and through the network port Connect with the radar 506; and connect with the vehicle controller 508 through a CAN (Controller Area Network) bus.
  • the vehicle detection module 510 can obtain target function data of the operation of the device to be detected from each device to be detected.
  • a vehicle detection method is provided, and the vehicle detection method may include the following steps:
  • the vehicle obtains the vehicle detection instruction, and obtains the power supply information of the device to be detected contained in the vehicle according to the vehicle detection instruction.
  • the device to be detected includes at least one of a sensor, a camera, a radar, and a vehicle controller.
  • the vehicle may receive a start-up driving instruction for the vehicle, and generate a vehicle detection instruction according to the start-up driving instruction.
  • the vehicle may also obtain the detection time of the last vehicle detection during the unmanned driving of the vehicle; when the time length of the distance detection time exceeds the time length threshold, a vehicle detection instruction is generated.
  • the vehicle obtains the target function data of the device to be tested when it is running.
  • the vehicle can send a test instruction to the vehicle controller.
  • the test instruction is used to instruct the vehicle controller to perform a corresponding test operation; to obtain control data fed back after the vehicle controller performs the test operation , Regard the control data as the target function data corresponding to the vehicle controller.
  • the vehicle can determine that the vehicle fails the test.
  • the vehicle determines whether the device to be tested is operating normally according to the target function data and the preset function data corresponding to the device to be tested.
  • the vehicle can obtain the image data contained in the target function data corresponding to the camera; when the feature information of the image data meets the preset image feature information, it is determined that the camera is operating normally. Further, when the feature information of the image data meets the preset image feature information, and the three-dimensional point cloud data of the radar matches the image data, it is determined that the radar is operating normally.
  • the vehicle can convert the point cloud data set contained in the target function data into three-dimensional point cloud data; when the feature information of the three-dimensional point cloud data meets the preset three-dimensional feature information, it is determined The radar is operating normally. Furthermore, when the image data corresponding to the camera matches the three-dimensional point cloud data, it can be determined that the camera is operating normally.
  • the vehicle can also acquire image data when the feature information of the image data corresponding to the camera meets the preset image feature information, and when the feature information of the 3D point cloud data meets the preset 3D feature information, and the image data is consistent with the preset image feature information.
  • the three-dimensional point cloud data matches, it is determined that the radar and the camera are operating normally.
  • the vehicle can perform statistical calculations on the target function data of the sensor to obtain the corresponding target sensor data; when the target sensor data matches the preset function data corresponding to the sensor, the sensor is determined normal operation.
  • the vehicle may determine that the vehicle fails the detection.
  • the vehicle may send a driving start instruction to the server, and the driving start instruction is used to instruct the server to control the vehicle to perform an unmanned driving operation.
  • the vehicle when it is determined that the vehicle detection fails, the vehicle sends a vehicle abnormality indication to the server, and the vehicle abnormality indication is used to instruct the server to stop the unmanned driving operation.
  • Fig. 6 is a structural block diagram of a vehicle detection system according to an embodiment.
  • the provided vehicle detection system includes an information acquisition module 602, a data acquisition module 604, a device detection module 606, and a vehicle detection determination module 608, wherein:
  • the information acquisition module 602 is configured to acquire a vehicle detection instruction, and acquire the power supply information of the device to be detected contained in the vehicle according to the vehicle detection instruction.
  • the data acquisition module 604 is configured to obtain target function data of the device to be tested when it is determined that the power supply information meets the running requirements of the device to be tested.
  • the device detection module 606 is configured to determine whether the device to be tested is operating normally according to the target function data and the preset function data corresponding to the device to be tested.
  • the vehicle detection and determination module 608 is used to determine that the vehicle has passed the detection when all the devices to be detected included in the vehicle are operating normally.
  • the device detection module 606 may also be used to analyze the image data contained in the target function data corresponding to the camera; when the image data matches the preset function data corresponding to the camera, it is determined that the camera is operating normally.
  • the device detection module 606 may also be used to obtain the three-dimensional point cloud data output by the radar, and use the three-dimensional point cloud data as the preset function data corresponding to the camera.
  • the device detection module 606 may also be used to determine that the camera and the radar are both operating normally when the image data matches the preset function data corresponding to the camera.
  • the device detection module 606 can also be used to convert the point cloud data set contained in the target function data into three-dimensional point cloud data; when the three-dimensional point cloud data matches the preset function data corresponding to the radar, it is determined The radar is operating normally.
  • the device detection module 606 may also be used to perform statistical calculations on the target function data of the sensor to obtain the corresponding target sensor data; when the target sensor data matches the preset function data corresponding to the sensor, the sensor is determined normal operation.
  • the data acquisition module 604 may also be used to send a test instruction to the vehicle controller.
  • the test instruction is used to instruct the vehicle controller to perform a corresponding test operation; to obtain the control data fed back after the vehicle controller performs the test operation, and
  • the control data is used as the target function data corresponding to the vehicle controller.
  • the vehicle detection and determination module 608 may also be used to determine that the vehicle detection fails when it is determined that the power supply information does not meet the operating requirements of the device to be detected.
  • the vehicle detection and determination module 608 may also be used to determine that the vehicle detection fails when it is determined that the target function data does not match the preset function data corresponding to the device to be detected.
  • the passing vehicle detection system may further include a detection instruction generation module 610 and an instruction output module 612.
  • the detection instruction generation module 610 is configured to receive a start-up driving instruction for the vehicle, and generate a vehicle detection instruction according to the start-up driving instruction;
  • the instruction output module 612 is used to send a driving start instruction to the server, and the driving start instruction is used to instruct the server to control the vehicle to perform an unmanned driving operation.
  • the instruction output module 612 may also be used to send a vehicle abnormality indication to the server when it is determined that the vehicle detection fails.
  • the vehicle abnormality indication is used to instruct the server to stop the unmanned driving operation.
  • each module in the vehicle detection system described above is only for illustration. In other embodiments, the vehicle detection system can be divided into different modules as needed to complete all or part of the functions of the vehicle detection system.
  • the various modules in the vehicle detection system described above can be implemented in whole or in part by software, hardware, and a combination thereof.
  • the above-mentioned modules may be embedded in the form of hardware or independent of the processor in the vehicle, or may be stored in the memory of the vehicle in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
  • Fig. 7 is a schematic diagram of the internal structure of an electronic device in an embodiment.
  • the electronic device includes a processor and a memory connected through a system bus.
  • the processor is used to provide computing and control capabilities to support the operation of the entire electronic device.
  • the memory may include a non-volatile storage medium and internal memory.
  • the non-volatile storage medium stores an operating system and a computer program.
  • the computer program can be executed by a processor to implement a vehicle control method provided in the following embodiments.
  • the internal memory provides a cached operating environment for the operating system computer program in the non-volatile storage medium.
  • the electronic device can be a vehicle such as a private car or a bus.
  • each module in the vehicle detection system provided in the embodiments of the present application may be in the form of a computer program.
  • the computer program can be run on a terminal or a server.
  • the program module constituted by the computer program can be stored in the memory of the electronic device.
  • the computer program is executed by the processor, it realizes the steps of the method described in the embodiments of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium.
  • a computer program product containing instructions that, when run on a computer, causes the computer to execute a vehicle detection method.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM), which acts as external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchronous Link (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous Link (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种车辆检测方法,包括:获取车辆检测指令,根据车辆检测指令获取车辆包含的待检测器件的供电信息;当确定供电信息满足待检测器件的运行需求时,获取待检测器件运行时的目标功能数据;根据目标功能数据与待检测器件对应的预设功能数据确定待检测器件是否正常运行;及当车辆包含的待检测器件全部正常运行时,则确定车辆检测通过。

Description

车辆检测方法、系统和电子设备 技术领域
本申请涉及车辆技术领域,特别是涉及一种车辆检测方法、系统和电子设备。
背景技术
随着车辆技术的发展,无人驾驶车辆的应用越来越广泛。无人驾驶车辆主要依靠于以计算机系统为主的智能驾驶仪来实现无人驾驶,因此,对于车辆中包含的器件的可靠性要求较高,若车辆中的器件出现异常,则容易导致车辆出现故障、引发安全性等问题。目前,车辆的安全检测通常由安全人员负责,即在车辆启动无人驾驶之前,由安全人员对车辆进行检测,检测通过则允许车辆进行无人驾驶。然而,传统技术存在车辆检测效率低的问题。
发明内容
根据本申请的各种实施例提供一种车辆检测方法、系统和电子设备。
一种车辆检测方法,包括:
获取车辆检测指令,根据车辆检测指令获取车辆包含的待检测器件的供电信息;
当确定供电信息满足待检测器件的运行需求时,获取待检测器件运行时的目标功能数据;
根据目标功能数据与待检测器件对应的预设功能数据确定待检测器件是 否正常运行;及
当车辆包含的待检测器件全部正常运行时,则确定车辆检测通过。
一种车辆检测系统,包括:
信息获取模块,用于获取车辆检测指令,根据所述车辆检测指令获取车辆包含的待检测器件的供电信息;
数据获取模块,用于当确定所述供电信息满足所述待检测器件的运行需求时,获取所述待检测器件运行时的目标功能数据;
器件检测模块,用于根据所述目标功能数据与所述待检测器件对应的预设功能数据确定所述待检测器件是否正常运行;及
车辆检测确定模块,用于当所述车辆包含的待检测器件全部正常运行时,则确定车辆检测通过。
一种电子设备,包括存储器及处理器,存储器中储存有计算机程序,计算机程序被处理器执行时,使得处理器执行如下步骤:
获取车辆检测指令,根据车辆检测指令获取车辆包含的待检测器件的供电信息;
当确定供电信息满足待检测器件的运行需求时,获取待检测器件运行时的目标功能数据;
根据目标功能数据与待检测器件对应的预设功能数据确定待检测器件是否正常运行;及
当车辆包含的待检测器件全部正常运行时,则确定车辆检测通过。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中车辆检测方法的应用环境示意图。
图2为一个实施例中车辆检测方法的流程图。
图3为另一个实施例中车辆检测方法的流程图。
图4为另一个实施例中车辆检测方法的流程图。
图5为一个实施例中车辆的系统架构示意图。
图6为一个实施例的车辆检测系统的结构框图。
图7为一个实施例中电子设备的内部结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
图1为一个实施例中车辆检测方法的应用环境示意图。如图1所示,该应用环境包括车辆110和服务器120。车辆110和服务器120可以通过网络连接。车辆110可以获取车辆检测指令,根据车辆检测指令获取车辆110包含的待检测器件的供电信息,当确定供电信息满足待检测器件的运行需求时,则获取待检测器件运行时的目标功能数据,根据目标功能数据与待检测器件对应的预设功能数据确定待检测器件是否正常运行,当车辆110包含的待检 测器件全部正常运行时,则确定车辆110检测通过。可选地,车辆110可以在确定检测通过之后,将检测通过的信息发送给服务器120;也可以生成启动驾驶指令发送给服务器120,以使服务器120控制车辆110进行驾驶操作等。其中,服务器120可以是单独的服务器,也可以是由多个服务器组成的服务器集群,或者服务器集群中的某一台服务器等。车辆110可以但不限于是私人汽车、公共汽车、客运汽车等。
图2为一个实施例中车辆检测方法的流程图。本实施例中的车辆检测方法,以运行于图1中的车辆上为例进行描述。如图2所示,车辆检测方法包括步骤202至步骤208。
步骤202,获取车辆检测指令,根据车辆检测指令获取车辆包含的待检测器件的供电信息。
车辆检测指令用于指示车辆进行自动检测。具体地,车辆检测指令可以是车辆接收的驾驶人员输入的检测指令;也可以是根据触发的启动驾驶指令生成的车辆检测指令;还可以是在车辆行驶过程中根据预设需求生成车辆检测指令等。
车辆可以根据车辆检测指令获取车辆包含的待检测器件的供电信息。待检测器件为车辆包含的器件。具体地,待检测器件可以是无人驾驶车辆在行驶过程中所需要应用到的器件。例如,待检测器件可以包括监控器件、雷达器件、传感器器件、控制器等。其中,供电信息是指车辆为待检测器件供给的信息。例如,供电信息可以包括待检测器件的电压、电流、功率等信息。可选地,车辆可以根据不同的待检测器件确定所需要获取的供电信息。
步骤204,当确定供电信息满足待检测器件的运行需求时,获取待检测器件运行时的目标功能数据。
供电信息满足待检测器件的运行需求是指在该供电信息下,待检测器件能够保持正常运行的工作状态。通常,供电信息不满足待检测器件的运行需求时,可能会造成待检测器件的供电不足、数据采集不稳定,或者供电过大、导致待检测器件烧坏等风险。在该实施例中,车辆可以在确定供电信息满足待检测器件的运行需求时,获取待检测器件运行时的目标功能数据,可以确保获取的目标功能数据为待检测器件正常运行时的功能数据。
功能数据是指器件在运行时所检测或采集的数据。目标功能数据表示待检测器件对应的功能数据。例如,传感器对应的功能数据为传感器采集的数据;相机对应的功能数据为相机拍摄的图像数据等。
车辆可以确定供电信息是否满足待检测器件的运行需求,当是时,则获取待检测器件运行时的目标功能数据。可选地,车辆可以获取待检测器件对应的预设供电范围,当供电信息处于该预设供电范围内时,则确定供电信息满足待检测器件的运行需求。其中,预设供电范围可以根据待检测器件的额定供电信息和允许误差范围来确定。例如,待检测器件的额定电压是12V时,则预设供电范围可以是10V至14V;也可以是9V至13V等。
步骤206,根据目标功能数据与待检测器件对应的预设功能数据确定待检测器件是否正常运行。
预设功能数据可以表征待检测器件正常运行的功能数据。可选地,预设功能数据可以是车辆在确定待检测器件正常运行时,根据待检测器件的功能数据得到的;也可以是通过其他方式获取的功能数据。例如,对于图像数据,可以是通过解析相机正常运行时图像数据确定相机对应的预设功能数据,也可以是从服务器、或者其他器件获取的预设功能数据。
车辆可以根据目标功能数据与待检测器件对应的预设功能数据确定待检 测器件是否正常运行。具体地,车辆将目标功能数据与待检测器件对应的预设功能数据进行匹配,若匹配成功则确定待检测器件正常运行。可选地,根据目标功能数据的不同,车辆进行匹配的方式可以有所不同。例如,当目标功能数据为图像数据时,则车辆可以解析目标功能数据与预设功能数据之间的匹配度,当该匹配度大于匹配度阈值时,则确定待检测器件正常运行;当目标功能数据为数值时,则车辆可以在目标功能数据处于预设功能数据的范围内时,则目标功能数据与预设功能数据匹配,待检测器件正常运行等。
步骤208,当车辆包含的待检测器件全部正常运行时,则确定车辆检测通过。
车辆在无人驾驶时需要依赖于车辆包含的全部待检测器件,因此,需要保证车辆包含的待检测器件全部正常运行。车辆可以在确定包含的待检测器件全部正常运行时,则确定车辆检测通过。进一步,车辆可以在车辆检测通过之后,向服务器发送启动驾驶指令;车辆也可以在无人驾驶过程中进行车辆检测,当确定车辆检测通过后,则持续进行无人驾驶,可选地,可以将车辆检测通过的信息反馈给服务器。
本申请实施例中,通过获取车辆检测指令,根据车辆检测指令获取车辆包含的待检测器件的供电信息,当确定供电信息满足待检测器件的运行需求时,根据待检测器件运行时的目标功能数据和待检测器件对应的预设功能数据确定待检测器件是否正常运行,当车辆包含的待检测器件全部正常运行时,则确定车辆检测通过。即可以对车辆进行自动检测,提高车辆检测的效率,并且先确定器件的供电满足运行需求后再获取器件的功能数据进行检测,可以避免由于供电异常导致的器件的功能数据异常,检测不准确的问题,可以提高车辆检测的准确性。
在一个实施例中,提供的车辆检测方法中,待检测器件可以包括传感器、相机、雷达和车辆控制器中的至少一种。
其中,传感器可以包括惯性传感器、加速度传感器、陀螺仪等。相机可以包括用于红绿灯检测相机、车辆和行人检测相机、倒车拍摄相机等。雷达可以是激光雷达、超声波雷达、微波雷达、固态雷达、毫米波雷达等;雷达可以用于查寻车辆周围的障碍物、或进行巡航控制等。车辆控制器是指控制车辆行驶的控制器,包括但不限于控制车辆的油门、刹车、挡位、灯光等。
在车辆检测过程中,车辆可以预设有器件序列,器件序列包含各个待检测器件的检测顺序,车辆可以按照该器件序列依次获取待检测器件的供电信息和目标功能数据对检测器件进行正常运行确认;车辆可以并行对包含的各个待检测器件进行检测,当确定车辆包含的待检测器件全部正常运行,则确定车辆检测通过。
车辆配置的传感器、相机、雷达、车辆控制器都是无人驾驶过程中需要应用的器件,车辆根据车辆检测指令对传感器、相机、雷达、车辆控制器进行检测,可以提高车辆检测的完整性、确保车辆运行的安全性。
在一个实施例中,当待检测器件包括相机时,提供的车辆检测方法中根据目标功能数据与待检测器件对应的预设功能数据确定待检测器件是否正常运行的过程,包括:获取相机对应的目标功能数据中包含的图像数据;解析图像数据的特征信息是否满足相机对应的预设功能数据,当图像数据的特征信息满足预设的图像特征信息时,则确定相机正常运行。其中,相机对应的预设功能数据为预设的图像特征信息。
相机在运行时的功能数据为相机所采集的图像。即相机的目标功能数据包含相机采集的图像数据。车辆可以获取目标功能数据中包含的图像数据, 并解析图像数据对应的特征信息。其中,图像数据的特征信息可以包括图像数据的分辨率、亮度分布、色彩分布、包含的物体的位置、大小等信息中的至少一种。车辆可以解析图像数据的特征信息是否满足预设的图像特征信息,具体地,可以通过计算图像数据的特征信息与预设的图像特征信息之间的匹配度,当匹配度超过匹配度阈值时,则确定图像数据的特征满足预设的图像特征信息,相机正常运行;也可以在确定图像数据的特征信息在预设的图像特征信息范围之内时,则确定图像数据的特征满足预设的图像特征信息,相机正常运行。
当相机出现异常时,相机采集的图像数据可能存在分辨率过低、亮度分布异常、色彩分布异常、没有检测到物体、物体区域过小等情况,预设的图像特征信息可以是根据正常的图像数据确定的,例如,预设的图像特征信息可以是分辨率大于分辨率阈值、亮度分布方差低于方差阈值、检测物体数量大于数量阈值等。当确定图像数据的特征信息满足预设的图像特征信息时,则说明相机采集的图像数据正常,相机正常运行。
通过获取相机对应的目标功能数据中包含的图像数据,当图像数据的特征信息满足相机对应的预设功能数据时,则确定相机正常运行,可以对相机进行检测。
在一个实施例中,提供的车辆检测方法中,还包括:获取雷达的目标功能数据对应的三维点云数据;当图像数据的特征信息满足预设的图像特征信息,且三维点云与图像数据相匹配时,则确定雷达正常运行。
雷达是用于通过激光、声波等方式采集周围环境信息的器件。雷达将激 光、声波、或毫米波等发射至周围环境,并将周围环境反射的信号转换为点云数据保存至点云数据集,提供分析点云数据集可以确定车辆的周围环境信息。在该实施例中,雷达可以输出三维点云数据,其中,三维点云数据是根据点云数据集转换得到的;雷达可以输出包含三维点云数据的目标功能数据。
相机和雷达都是用于采集周围环境信息的器件。车辆获取雷达的目标功能数据中对应的三维点云数据,当图像数据的特征信息满足预设的图像特征信息,且三维点云数据与图像数据相匹配时,则确定雷达正常运行。具体地,当图像数据的特征信息满足预设的图像特征信息时,则说明相机正常运行,车辆可以获取雷达输出的三维点云数据,当三维点云数据与图像数据相匹配时,则可以确定雷达正常运行。
车辆在图像数据的特征信息满足预设的图像特征信息,且三维点云数据与图像数据相匹配时,则确定雷达正常运行,可以提高相机检测和雷达检测的准确性,避免由于雷达所处环境发生变换导致车辆预设的功能数据不准确,雷达检测不准确的问题。在一个实施例中,提供的车辆检测方法中,当待检测器件包括雷达时,根据目标功能数据与待检测器件对应的预设功能数据确定待检测器件是否正常运行,包括:将雷达目标功能数据包含的点云数据集转换为三维点云数据;解析三维点云数据的特征信息是否满足雷达对应的预设功能数据,雷达对应的预设功能数据为预设的三维特征信息,当三维点云数据的特征信息满足预设的三维特征信息时,则确定雷达正常运行。
雷达运行时的目标功能数据包含点云数据集,车辆可以将点云数据集转换为三维点云数据。三维点云数据可以表征车辆周围的环境信息。例如,三维点云数据可以表达车辆周围哪个位置存在障碍物、障碍物的形状、以及障碍物与车辆之间的距离等信息。三维点云数据的特征信息可以包括数据的距 离分布、构成的物体形状、构成的物体大小等信息。预设的三维特征信息是指由实际需求设定的满足车辆需求的雷达三维特征信息。例如,预设的三维特征信息可以是与三维点云数据的距离分布、识别的物体形状、大小、位置等相关的信息。
车辆可以将三维点云数据的特征信息与预设的三维特征信息进行匹配,当确定三维点云数据的特征信息与预设的三维特征信息相匹配时,则确定雷达正常运行。
进一步地,在一个实施例中,车辆在确定雷达正常运行之后,获取相机的目标功能数据对应的图像数据,当确定三维点云数据的特征信息满足雷达对应的预设功能数据,且图像数据与三维点云数据相匹配时,则确定相机正常运行。即可以在根据三维点云数据的特征信息与预设的三维特征信息确定雷达正常运行之后,根据三维点云数据与图像数据确定相机是否正常运行,可以提高相机检测的准确性。
在一个实施例中,当待检测器件包括相机和雷达时,车辆在当三维点云数据的特征信息满足预设的三维特征信息时,则确定雷达正常运行的过程,可以包括:当相机对应的图像数据的特征信息满足预设的图像特征信息时,获取图像数据,当三维点云数据的特征信息满足预设的三维特征信息,且图像数据与三维点云数据相匹配时,则确定雷达与相机正常运行。
在该实施例中,车辆可以在相机对应的图像数据的特征信息满足预设的图像特征信息,并且三维点云数据的特征信息满足预设的三维特征信息时,根据图像数据和三维点云数据的匹配程度确定雷达和相机是否正常运行;当图像数据和三维点云数据相匹配时,则可以确定雷达和相机正常运行;当图像数据和三维点云数据不匹配时,则可以确定雷达和相机中的至少一种运行 异常。
即可以在根据预设功能数据分别对雷达和相机进行自检之后,再对雷达和相机运行的功能数据进行匹配检测,可以进一步提高相机和雷达检测的准确性。
在一个实施例中,当待检测器件包括传感器时,提供的车辆检测方法中根据目标功能数据与待检测器件对应的预设功能数据确定待检测器件是否正常运行的过程,还包括:将传感器的目标功能数据进行统计运算,得到对应的目标传感器数据;当目标传感器数据与传感器对应的预设功能数据相匹配时,则确定待检测器件正常运行。
传感器在运行时可以持续采集传感器数据,车辆可以采集传感器运行时采集的数据作为目标功能数据,即目标功能数据包含传感器采集的大量数据。车辆可以对传感器的目标功能数据进行统计计算,得到目标传感器数据。其中,统计计算可以但不限于是计算数据的平均值、方差、标准差、众数等中的一种或多种。
当车辆检测时车辆处于静止状态时,传感器对应的预设功能数据可以是传感器正常运行、且车辆静止时所采集的传感器数据。具体地,车辆静止的情况下,传感器可以检测到由于环境轻微扰动而产生的数据。
当车辆检测时车辆处于无人驾驶状态时,传感器对应的预设功能数据可以根据车辆的驾驶参数进行确定。其中,车辆的驾驶参数可以包括车辆行驶的加速度、重力、油门速度等信息,可以由车辆的车辆控制器获取。
车辆可以将传感器的目标运行数据进行统计计算,得到对应的目标传感器数据,并计算目标传感器数据与传感器对应的预设功能数据之间的匹配度,当匹配度超过匹配度阈值时,则确定当目标传感器数据与传感器对应的预设 功能数据相匹配时,则确定目标传感器数据与传感器对应的预设功能数据相匹配、传感器正常运行。既可以根据将传感器采集的数据进行统计计算,根据统计计算的结果确定传感器是否正常运行,可以提高传感器检测的便捷性,不需要针对传感器采集的全部数据进行匹配。
在一个实施例中,当待检测器件包括车辆控制器,提供的车辆检测方法中获取待检测器件运行时的目标功能数据的过程,包括:向车辆控制器发送测试指令,测试指令用于指示车辆控制器执行对应的测试操作;获取车辆控制器执行测试操作之后反馈的控制数据,将控制数据作为车辆控制器对应的目标功能数据。
车辆控制器即为车辆线控,是控制车辆行驶的控制器。车辆可以通过车辆控制器实现对油门、刹车、挡位、灯光等的控制。测试指令是用于车辆控制器执行对应的测试操作的指令。具体地,测试指令可以是车辆在确定供电信息满足车辆控制器的供电需求后生成;测试指令也可以预设于车辆中,当确定供电信息满足车辆控制器的供电需求时,则车辆获取该测试指令发送给车辆控制器。
车辆控制器可以根据接收的测试指令执行对应的测试操作。例如,当测试指令包括油门发动指令,则车辆控制器可以根据该测试指令控制油门发动;当测试指令包括灯光开启指令时,则车辆控制器可以根据该测试指令启动灯光等。进一步地,车辆控制器可以获取执行测试操作之后反馈的控制数据。控制数据用于表征测试操作的操作结果。例如,当测试指令包括油门发动指令时,控制数据可以包括油门发动后车辆的速度;当测试指令包括挡位切换指令时,则控制数据可以包括执行测试操作后的车辆挡位;当测试指令包括灯光控制指令,则控制数据可以包括执行测试操作后灯光的亮灭状态等。
车辆可以将反馈的控制数据作为目标功能数据,并根据目标功能数据与车辆控制器的预设功能数据进行匹配,以确定车辆控制器是否正常运行。其中,车辆控制器对应的预设功能数据为与测试指令相对应的控制数据。例如,当测试指令为刹车指令时,则对应的预设功能数据包含车辆刹车的信息;当测试指令为切换为二档时,则对应的预设功能数据包含车辆处于二档的信息。
在一个实施例中,车辆向车辆控制器发送的测试指令可以是对车辆状态造成影响较小的指令。例如,测试指令包含的油门启动指令可以是启动油门的5%、10%、或15%等,测试指令包含的刹车指令可以是刹车力度为3%、5%、10%、15%等,在此不做限定。
在本实施中,通过向车辆控制器发送测试指令,将车辆控制器执行测试指令对应的测试操作之后的控制数据作为目标功能数据,根据目标功能数据与车辆控制器对应的预设功能数据确定车辆控制器是否正常运行,即可以实现车辆控制器的自动检测。并且采用对车辆状态造成影响较小的测试指令进行检测,可以避免车辆检测对车辆造成影响和造成较大的功耗,提高车辆检测的便捷性,并降低车辆检测的功耗。
在一个实施例中,提供的车辆检测方法还包括:当确定供电信息不满足待检测器件的运行需求时,则确定车辆检测不通过。
具体地,车辆可以在确定供电信息不处于该待检测器件对应的预设供电范围时,则确定供电信息不满足待检测器件的运行需求。通常,供电信息不满足待检测器件的运行需求时,可能会造成待检测器件的供电不足、数据采集不稳定,或者供电过大、导致待检测器件烧坏等风险,车辆无法应用待检测器件进行安全、稳定的无人驾驶操作。车辆可以在供电信息不满足待检测器件的运行需求时,则确定车辆检测不通过。进一步地,供电信息不满足待 检测器件的运行需求时,车辆不需要进一步获取待检测器件的目标功能数据对待检测器件的运行进行确认。
在一个实施例中,提供的车辆检测方法还包括:当确定目标功能数据与待检测器件对应的预设功能数据不匹配时,则确定车辆检测不通过。
具体地,当目标功能数据与待检测器件对应的预设功能数据不匹配时,则车辆可以确定待检测器件运行异常。待检测器件运行异常,目标功能数据与预设功能数据不匹配,则车辆无法应用待检测器件进行安全、稳定的无人驾驶,车辆可以在确定待检测器件运行异常,则确定车辆检测不通过。
进一步地,在一个实施例中,当确定车辆检测不通过时,车辆可以输出车辆检测不通过的信息,并输出运行异常的待检测器件。可选地,车辆还可以将车辆检测不通过的信息发送给服务器,由服务器停止或禁止该车辆的无人驾驶的操作。
车辆可以在至少一个待检测器件的供电信息不满足供电需求、或者待检测器件的目标功能数据与预设功能数据不匹配时,则确定车辆检测不通过,可以提高车辆检测的安全性。
图3为另一个实施例中车辆检测方法的流程图。如图3所示,在一个实施例中,提供的车辆检测方法包括:
步骤302,接收针对于车辆的启动驾驶指令,根据启动驾驶指令生成车辆检测指令。
启动驾驶指令是用于指示车辆进行无人驾驶的指令。可选地,车辆可以接收由服务器发送的针对于车辆的启动驾驶指令;也可以接收由遥控器发送的针对于车辆的启动驾驶指令;还可以根据车辆的车门开启操作生成该启动驾驶指令等。在本申请实施例中,车辆可以根据启动驾驶指令生成车辆检测 指令,以在车辆进行无人驾驶操作之前对车辆进行自检,以确保车辆的正常运行。
步骤304,获取车辆检测指令,根据车辆检测指令获取车辆包含的待检测器件的供电信息。
步骤306,当确定供电信息满足待检测器件的运行需求时,获取待检测器件运行时的目标功能数据。
步骤308,根据目标功能数据与待检测器件对应的预设功能数据确定待检测器件是否正常运行。
步骤310,当车辆包含的待检测器件全部正常运行时,则确定车辆检测通过。
步骤312,将启动驾驶指令发送给服务器,启动驾驶指令用于指示服务器控制车辆进行无人驾驶操作。
服务器相当于车辆的远程控制中心。服务器可以对连接的至少一个车辆进行管控。车辆可以在确定车辆检测通过时,则将启动驾驶指令发送给服务器,由服务器控制车辆进行无人驾驶操作。
在该实施例中,车辆可以在接收到启动驾驶指令时生成车辆检测指令,以根据该车辆检测指令对车辆进行自动检测,当确定车辆检测通过之后,再将启动驾驶指令发送给服务器,以由服务器控制车辆进行无人驾驶操作,可以提高无人驾驶车辆的安全性。
在一个实施例中,提供的车辆检测方法还包括:在车辆无人驾驶的过程中,获取上一次车辆检测的检测时刻;当距离检测时刻的时长超过时长阈值时,则生成车辆检测指令。
车辆还可以在无人驾驶的过程中进行自检。具体地,车辆可以每相隔时 长阈值则生成一次车辆检测指令,即可以距离上一次检测时刻的时长超过时长阈值时,则生成车辆检测指令。其中,上一次车辆检测的检测时刻可以包括据启动驾驶指令生成车辆检测指令的时刻。
时长阈值可以是根据实际应用需求设定,在此不做限定。例如,时长阈值可以是30分钟、1小时、2小时、3小时等。
进一步地,在一个实施例中,当确定车辆检测不通过时,则车辆可以向服务器发送车辆异常指令,该车辆异常指令用于指示服务器停止无人驾驶操作。当确定车辆检测通过时,则车辆可以持续进行无人驾驶操作。
通过在车辆无人驾驶的过程中获取上一次车辆检测的检测时刻,当距离该检测时刻的时长超过时长阈值时,则生成车辆检测指令,以对车辆进行自检,可以提高车辆无人驾驶过程中的安全性。
图4为另一个实施例中车辆检测方法的流程图。如图4所示,在一个实施例中,提供的车辆检测方法包括:
步骤402,获取车辆检测指令。
步骤404,确定传感器的供电信息是否满足供电需求,若是,则进入步骤406,若否,则进入步骤432。
步骤406,获取传感器采集的传感器数据。
步骤408,根据传感器数据确定传感器是否正常运行,若是,则进入步骤410,若否,则进入步骤432。
步骤410,确定相机的供电信息是否满足供电需求,若是,则进入步骤412,若否,则进入步骤432。
步骤412,获取相机采集的图像数据。
步骤414,根据图像数据确定相机是否正常运行,若是,则进入步骤416, 若否,则进入步骤432。
步骤416,确定雷达的供电信息是否满足供电需求,若是,则进入步骤418,若否,则进入步骤432。
步骤418,获取雷达采集的点云数据集并转换为三维点云数据。
步骤420,根据三维点云数据确定雷达是否正常运行,若是,则进入步骤422,若否,则进入步骤432。
步骤422,确定车辆控制器的供电信息是否满足供电需求,若是,则进入步骤424,若否,则进入步骤432。
步骤424,获取车辆控制器根据测试指令反馈的测试数据。
步骤426,根据测试数据确定车辆控制器是否正常运行,若是,则进入步骤428,若否,则进入步骤432。
步骤428,输出车辆检测通过指示。
步骤430,当距离上一次检测时刻超过时长阈值时,则生成车辆检测指令,并返回步骤402。
步骤432,输出车辆检测不通过指示。
图5为一个实施例中车辆的系统架构示意图。如图5所示,车辆的待检测器件包括传感器502、相机504、雷达506和车辆控制器508;车辆部署有车辆检测模块510。车辆检测模块510可以通过电压电流检测口分别与传感器502、相机504、雷达506和车辆控制器508连接,用于获取各个待检测器件的供电信息。进一步地,车辆检测模块510可以通过数据传输总线与传感器502连接,用于获取传感器采集的传感器数据;通过网口/MIPI(Mobile Industry Processor Interface,移动产业处理接口)与相机504连接;通过网口与雷达506连接;及通过CAN(Controller Area Network,控制器局 域网)总线与车辆控制器508连接。从而,车辆检测模块510可以从各个待检测器件获取待检测器件运行的目标功能数据。
在一个实施例中,提供了一种车辆检测方法,该车辆检测方法可以包括以下步骤:
首先,车辆获取车辆检测指令,根据车辆检测指令获取车辆包含的待检测器件的供电信息。
可选地,待检测器件包括传感器、相机、雷达和车辆控制器中的至少一种。
可选地,车辆可以接收针对于车辆的启动驾驶指令,根据启动驾驶指令生成车辆检测指令。
可选地,车辆也可以在车辆无人驾驶的过程中,获取上一次车辆检测的检测时刻;当距离检测时刻的时长超过时长阈值时,则生成车辆检测指令。
接着,当确定供电信息满足待检测器件的运行需求时,车辆获取待检测器件运行时的目标功能数据。
可选地,当待检测器件包括车辆控制器时,车辆可以向车辆控制器发送测试指令,测试指令用于指示车辆控制器执行对应的测试操作;获取车辆控制器执行测试操作之后反馈的控制数据,将控制数据作为车辆控制器对应的目标功能数据。
当确定供电信息不满足待检测器件的运行需求时,则车辆可以确定车辆检测不通过。
接着,车辆根据目标功能数据与待检测器件对应的预设功能数据确定待检测器件是否正常运行。
可选地,当待检测器件包括相机时,车辆可以获取相机对应的目标功能 数据中包含的图像数据;当图像数据的特征信息满足预设的图像特征信息时时,则确定相机正常运行。进一步地,当图像数据的特征信息满足预设的图像特征信息,且雷达的三维点云数据与图像数据相匹配时,则确定雷达正常运行。
可选地,当待检测器件包括雷达时,车辆可以将目标功能数据包含的点云数据集转换为三维点云数据;当三维点云数据的特征信息满足预设的三维特征信息时,则确定雷达正常运行。进一地,相机对应的图像数据与三维点云数据匹配时,则可以确定相机正常运行。
可选地,车辆也可以在当相机对应的图像数据的特征信息满足预设的图像特征信息时,获取图像数据,当三维点云数据的特征信息满足预设的三维特征信息,且图像数据与三维点云数据相匹配时,则确定雷达与相机正常运行。
可选地,当待检测器件包括传感器时,车辆可以将传感器的目标功能数据进行统计运算,得到对应的目标传感器数据;当目标传感器数据与传感器对应的预设功能数据相匹配时,则确定传感器正常运行。
可选地,当确定目标功能数据与待检测器件对应的预设功能数据不匹配时,则车辆可以确定车辆检测不通过。
接着,当车辆包含的待检测器件全部正常运行时,则确定车辆检测通过。
可选地,当确定车辆检测通过时,车辆可以将启动驾驶指令发送给服务器,启动驾驶指令用于指示服务器控制车辆进行无人驾驶操作。
可选地,当确定车辆检测不通过时,则车辆向服务器发送车辆异常指示,车辆异常指示用于指示服务器停止无人驾驶操作。
应该理解的是,虽然图2-4的流程图中的各个步骤按照箭头的指示依次 显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2-4中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
图6为一个实施例的车辆检测系统的结构框图。如图6所示,在一个实施例中,提供的车辆检测系统包括信息获取模块602、数据获取模块604、器件检测模块606和车辆检测确定模块608,其中:
信息获取模块602,用于获取车辆检测指令,根据车辆检测指令获取车辆包含的待检测器件的供电信息。
数据获取模块604,用于当确定供电信息满足待检测器件的运行需求时,获取待检测器件运行时的目标功能数据。
器件检测模块606,用于根据目标功能数据与待检测器件对应的预设功能数据确定待检测器件是否正常运行。
车辆检测确定模块608,用于当车辆包含的待检测器件全部正常运行时,则确定车辆检测通过。
在一个实施例中,器件检测模块606还可以用于解析相机对应的目标功能数据中包含的图像数据;当图像数据与相机对应的预设功能数据相匹配时,则确定相机正常运行。
在一个实施例中,器件检测模块606还可以用于获取雷达输出的三维点 云数据,将三维点云数据作为相机对应的预设功能数据。
在一个实施例中,器件检测模块606还可以用于当图像数据与相机对应的预设功能数据相匹配时,则确定相机与雷达均正常运行。
在一个实施例中,器件检测模块606还可以用于将目标功能数据包含的点云数据集转换为三维点云数据;当三维点云数据与雷达对应的预设功能数据相匹配时,则确定雷达正常运行。
在一个实施例中,器件检测模块606还可以用于将传感器的目标功能数据进行统计运算,得到对应的目标传感器数据;当目标传感器数据与传感器对应的预设功能数据相匹配时,则确定传感器正常运行。
在一个实施例中,数据获取模块604还可以用于向车辆控制器发送测试指令,测试指令用于指示车辆控制器执行对应的测试操作;获取车辆控制器执行测试操作之后反馈的控制数据,将控制数据作为车辆控制器对应的目标功能数据。
在一个实施例中,车辆检测确定模块608还可以用于当确定供电信息不满足待检测器件的运行需求时,则确定车辆检测不通过。
在一个实施例中,车辆检测确定模块608还可以用于当确定目标功能数据与待检测器件对应的预设功能数据不匹配时,则确定车辆检测不通过。
在一个实施例中,通过的车辆检测系统还可以包括检测指令生成模块610和指令输出模块612,检测指令生成模块610用于接收针对于车辆的启动驾驶指令,根据启动驾驶指令生成车辆检测指令;指令输出模块612用于将启动驾驶指令发送给服务器,启动驾驶指令用于指示服务器控制车辆进行无人驾驶操作。
在一个实施例中,指令输出模块612还可以用于当确定车辆检测不通过 时,则向服务器发送车辆异常指示,车辆异常指示用于指示服务器停止无人驾驶操作。
上述车辆检测系统中各个模块的划分仅用于举例说明,在其他实施例中,可将车辆检测系统按照需要划分为不同的模块,以完成上述车辆检测系统的全部或部分功能。
关于车辆检测系统的具体限定可以参见上文中对于车辆检测方法的限定,在此不再赘述。上述车辆检测系统中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于车辆中的处理器中,也可以以软件形式存储于车辆中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
图7为一个实施例中电子设备的内部结构示意图。如图7所示,该电子设备包括通过系统总线连接的处理器和存储器。其中,该处理器用于提供计算和控制能力,支撑整个电子设备的运行。存储器可包括非易失性存储介质及内存储器。非易失性存储介质存储有操作系统和计算机程序。该计算机程序可被处理器所执行,以用于实现以下各个实施例所提供的一种车辆控制方法。内存储器为非易失性存储介质中的操作系统计算机程序提供高速缓存的运行环境。该电子设备可以是至私人汽车、公共汽车等车辆。
本申请实施例中提供的车辆检测系统中的各个模块的实现可为计算机程序的形式。该计算机程序可在终端或服务器上运行。该计算机程序构成的程序模块可存储在电子设备的存储器上。该计算机程序被处理器执行时,实现本申请实施例中所描述方法的步骤。
本申请实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当计算机可执行指令被一个或多个处理器执行时,使得处理器执行车辆检测方法的步骤。
一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行车辆检测方法。
本申请所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM),它用作外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDR SDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (15)

  1. 一种车辆检测方法,包括:
    获取车辆检测指令,根据所述车辆检测指令获取车辆包含的待检测器件的供电信息;
    当确定所述供电信息满足所述待检测器件的运行需求时,获取所述待检测器件运行时的目标功能数据;
    根据所述目标功能数据与所述待检测器件对应的预设功能数据确定所述待检测器件是否正常运行;及
    当所述车辆包含的待检测器件全部正常运行时,则确定车辆检测通过。
  2. 根据权利要求1所述的方法,其特征在于,所述待检测器件包括传感器、相机、雷达和车辆控制器中的至少一种。
  3. 根据权利要求2所述的方法,其特征在于,当所述待检测器件包括所述相机时,所述根据所述目标功能数据与所述待检测器件对应的预设功能数据确定所述待检测器件是否正常运行,包括:
    获取所述相机对应的目标功能数据中包含的图像数据;
    解析所述图像数据的特征信息是否满足所述相机对应的预设功能数据,其中,所述相机对应的预设功能数据为预设的图像特征信息;及
    当所述图像数据的特征信息满足所述预设的图像特征信息时,则确定所述相机正常运行。
  4. 根据权利要求3所述的方法,其特征在于,还包括:
    获取所述雷达的目标功能数据对应的三维点云数据;及
    当所述图像数据的特征信息满足所述预设的图像特征信息,且所述三维点云数据与所述图像数据相匹配时,则确定所述雷达正常运行。
  5. 根据权利要求2所述的方法,其特征在于,当所述待检测器件包括所述雷达时,所述根据所述目标功能数据与所述待检测器件对应的预设功能数据确定所述待检测器件是否正常运行,包括:
    将所述雷达的目标功能数据包含的点云数据集转换为三维点云数据;
    解析所述三维点云数据的特征信息是否满足所述雷达对应的预设功能数据,其中,所述雷达对应的预设功能数据为预设的三维特征信息;及
    当所述三维点云数据的特征信息满足所述预设的三维特征信息时,则确定所述雷达正常运行。
  6. 根据权利要求5所述的方法,其特征在于,所述当所述三维点云数据的特征信息满足所述预设的三维特征信息时,则确定所述雷达正常运行,包括:
    当所述相机对应的图像数据的特征信息满足所述预设的图像特征信息时,获取所述图像数据;及
    当所述三维点云数据的特征信息满足所述预设的三维特征信息,且所述图像数据与所述三维点云数据相匹配时,则确定所述雷达与所述相机正常运行。
  7. 根据权利要求2所述的方法,其特征在于,当所述待检测器件包括所述传感器时,所述根据所述目标功能数据与所述待检测器件对应的预设功能数据确定所述待检测器件是否正常运行,包括:
    将所述传感器的目标功能数据进行统计运算,得到对应的目标传感器数据;及
    当所述目标传感器数据与所述传感器对应的预设功能数据相匹配时,则确定所述传感器正常运行。
  8. 根据权利要求2所述的方法,其特征在于,当所述待检测器件包括车辆控制器时,所述获取所述待检测器件运行时的目标功能数据,包括:
    向所述车辆控制器发送测试指令,所述测试指令用于指示所述车辆控制器执行对应的测试操作;及
    获取所述车辆控制器执行所述测试操作之后反馈的控制数据,将所述控制数据作为所述车辆控制器对应的目标功能数据。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述获取车辆检测指令之前,包括:
    接收针对于所述车辆的启动驾驶指令,根据所述启动驾驶指令生成所述车辆检测指令;
    所述当所述车辆包含的待检测器件全部正常运行时,则确定车辆检测通过之后,包括:
    将所述启动驾驶指令发送给服务器,所述启动驾驶指令用于指示所述服务器控制所述车辆进行无人驾驶操作。
  10. 根据权利要求1所述的方法,其特征在于,还包括:
    在所述车辆无人驾驶的过程中,获取上一次车辆检测的检测时刻;及
    当距离所述检测时刻的时长超过时长阈值时,则生成所述车辆检测指令。
  11. 根据权利要求10所述的方法,其特征在于,还包括:
    当确定车辆检测不通过时,则向服务器发送车辆异常指示,所述车辆异常指示用于指示所述服务器停止无人驾驶操作。
  12. 一种车辆检测系统,包括:
    信息获取模块,用于获取车辆检测指令,根据所述车辆检测指令获取车辆包含的待检测器件的供电信息;
    数据获取模块,用于当确定所述供电信息满足所述待检测器件的运行需求时,获取所述待检测器件运行时的目标功能数据;
    器件检测模块,用于根据所述目标功能数据与所述待检测器件对应的预设功能数据确定所述待检测器件是否正常运行;及
    车辆检测确定模块,用于当所述车辆包含的待检测器件全部正常运行时,则确定车辆检测通过。
  13. 根据权利要求12所述的系统,其特征在于,还包括:
    检测指令生成模块,用于接收针对于所述车辆的启动驾驶指令,根据所述启动驾驶指令生成所述车辆检测指令;
    指令输出模块,用于将所述启动驾驶指令发送给服务器,所述启动驾驶指令用于指示所述服务器控制所述车辆进行无人驾驶操作。
  14. 根据权利要求13所述的系统,其特征在于,所述检测指令生成模块还用于在所述车辆无人驾驶的过程中,获取上一次车辆检测的检测时刻;及当距离所述检测时刻的时长超过时长阈值时,则生成所述车辆检测指令。
  15. 一种电子设备,包括存储器及处理器,所述存储器中储存有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如权利要求1至11中任一项所述的车辆检测方法的步骤。
PCT/CN2020/074806 2020-02-12 2020-02-12 车辆检测方法、系统和电子设备 WO2021159290A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/074806 WO2021159290A1 (zh) 2020-02-12 2020-02-12 车辆检测方法、系统和电子设备
CN202080003141.2A CN113661526B (zh) 2020-02-12 2020-02-12 车辆检测方法、系统和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074806 WO2021159290A1 (zh) 2020-02-12 2020-02-12 车辆检测方法、系统和电子设备

Publications (1)

Publication Number Publication Date
WO2021159290A1 true WO2021159290A1 (zh) 2021-08-19

Family

ID=77291982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074806 WO2021159290A1 (zh) 2020-02-12 2020-02-12 车辆检测方法、系统和电子设备

Country Status (2)

Country Link
CN (1) CN113661526B (zh)
WO (1) WO2021159290A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114454815A (zh) * 2022-03-10 2022-05-10 商丘师范学院 智能化的自动驾驶处理方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114821853A (zh) * 2022-04-18 2022-07-29 重庆长安汽车股份有限公司 基于区块链的行驶前车辆数据检测及保存系统、方法及车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104678990A (zh) * 2014-12-25 2015-06-03 上海通用汽车有限公司 一种用于车辆自诊断的方法、装置和车辆自诊断系统
CN105035055A (zh) * 2015-08-31 2015-11-11 南车株洲电力机车有限公司 一种ecp系统中车辆控制单元可用性的判断方法和装置
JP2018010506A (ja) * 2016-07-14 2018-01-18 オムロン株式会社 交通情報取得装置、交通情報取得方法、および交通情報取得プログラム
CN109215172A (zh) * 2018-11-14 2019-01-15 北京伏羲车联信息科技有限公司 车辆状态的检测方法、装置及可读存储介质

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5697466A (en) * 1992-11-12 1997-12-16 Kabushikikaisha Equos Research Hybrid vehicle
JP5110149B2 (ja) * 2010-10-28 2012-12-26 株式会社Jvcケンウッド 車載器制御装置、車載器制御方法、及び、プログラム
CN102393733B (zh) * 2011-10-28 2014-04-23 北京清佰华通科技有限公司 故障诊断方法、故障诊断仪及其系统、新能源汽车
KR101433307B1 (ko) * 2013-10-30 2014-08-25 하나테크 주식회사 차량 관리 및 진단 장치
DE102015003124A1 (de) * 2015-03-12 2016-09-15 Daimler Ag Verfahren und Vorrichtung zum Betreiben eines Fahrzeugs
CN105197012B (zh) * 2015-10-10 2017-12-15 广东轻工职业技术学院 一种车辆自动控制方法
CN106774306B (zh) * 2016-11-30 2018-09-11 百度在线网络技术(北京)有限公司 应用于无人驾驶车辆的启动检测方法、装置和系统
CN107817786A (zh) * 2017-11-09 2018-03-20 上汽通用五菱汽车股份有限公司 车辆下线检测方法及系统
KR101921074B1 (ko) * 2017-11-23 2018-11-22 (주) 모토텍 차량의 aeb 구동을 위한 센서 퓨전 시스템
CN108062099A (zh) * 2017-12-17 2018-05-22 成都育芽科技有限公司 一种车辆自动驾驶系统
CN108733032B (zh) * 2018-06-05 2021-02-05 北京智行者科技有限公司 车辆的自检方法
CN109353345B (zh) * 2018-10-29 2021-03-19 百度在线网络技术(北京)有限公司 车辆控制方法、装置、设备、介质和车辆
CN109460313A (zh) * 2018-11-02 2019-03-12 安徽江淮汽车集团股份有限公司 自动驾驶安全控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104678990A (zh) * 2014-12-25 2015-06-03 上海通用汽车有限公司 一种用于车辆自诊断的方法、装置和车辆自诊断系统
CN105035055A (zh) * 2015-08-31 2015-11-11 南车株洲电力机车有限公司 一种ecp系统中车辆控制单元可用性的判断方法和装置
JP2018010506A (ja) * 2016-07-14 2018-01-18 オムロン株式会社 交通情報取得装置、交通情報取得方法、および交通情報取得プログラム
CN109215172A (zh) * 2018-11-14 2019-01-15 北京伏羲车联信息科技有限公司 车辆状态的检测方法、装置及可读存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114454815A (zh) * 2022-03-10 2022-05-10 商丘师范学院 智能化的自动驾驶处理方法
CN114454815B (zh) * 2022-03-10 2024-03-29 商丘师范学院 智能化的自动驾驶处理方法

Also Published As

Publication number Publication date
CN113661526B (zh) 2023-09-19
CN113661526A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
US20220242425A1 (en) Monitoring system for autonomous vehicle operation
US20220157092A1 (en) Black box data management method, apparatus, and device for intelligent driving vehicle
CN108919785B (zh) 一种测试系统及测试方法
US9769469B2 (en) Failure detection apparatus and failure detection program
WO2021159290A1 (zh) 车辆检测方法、系统和电子设备
WO2020147311A1 (zh) 车辆行驶保障方法、装置、设备及可读存储介质
US11042763B2 (en) Method, device and sensor system for monitoring the surroundings for a vehicle
US10974730B2 (en) Vehicle perception system on-line diangostics and prognostics
CN111179468A (zh) 无人车故障检测方法、装置、计算机设备和存储介质
US11703874B2 (en) System and method for collection of performance data by a vehicle
WO2020038446A1 (zh) 车辆控制器、车辆控制方法及车辆
CN214504177U (zh) 汽车驾驶控制装置、设备及汽车设备
US11453413B2 (en) Driving warning method and vehicle-mounted device
US20220281498A1 (en) Railway vehicle and control method and system therefor, and train control and management system
WO2021035701A1 (zh) 一种传感器检测方法及车载控制终端
EP3671123A1 (en) Positioning method, positioning apparatus of mobile device and electronic device
US11511735B2 (en) Signal processing apparatus and signal processing method
CN115631626A (zh) 一种车辆数据监控分析方法、装置、设备及介质
US20210146940A1 (en) Method and system for synchronizing at least two sensor systems
AU2019206628B2 (en) Monitoring system for autonomous vehicle operation
WO2022140881A1 (zh) 无人驾驶车辆车底盘控制方法、装置和计算机设备
US20210061285A1 (en) Method for generating a reference representation
US11158139B2 (en) Vehicle telematics system
US11820393B2 (en) Functionally safe rationalization check for autonomous vehicle machine learning algorithms
CN113391626B (zh) 一种自动制动系统的检测方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20918993

Country of ref document: EP

Kind code of ref document: A1