WO2020038446A1 - 车辆控制器、车辆控制方法及车辆 - Google Patents

车辆控制器、车辆控制方法及车辆 Download PDF

Info

Publication number
WO2020038446A1
WO2020038446A1 PCT/CN2019/102063 CN2019102063W WO2020038446A1 WO 2020038446 A1 WO2020038446 A1 WO 2020038446A1 CN 2019102063 W CN2019102063 W CN 2019102063W WO 2020038446 A1 WO2020038446 A1 WO 2020038446A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
control module
main control
module
interface
Prior art date
Application number
PCT/CN2019/102063
Other languages
English (en)
French (fr)
Inventor
薄云览
唐才荣
刘伟华
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2020038446A1 publication Critical patent/WO2020038446A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61CLOCOMOTIVES; MOTOR RAILCARS
    • B61C17/00Arrangement or disposition of parts; Details or accessories not otherwise provided for; Use of control gear and control systems
    • B61C17/12Control gear; Arrangements for controlling locomotives from remote points in the train or when operating in multiple units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/04Automatic systems, e.g. controlled by train; Change-over to manual control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present disclosure relates to the technical field of rail transit, and in particular, to a vehicle controller, a vehicle control method, and a vehicle.
  • the present disclosure proposes a vehicle controller, a vehicle control method, and a vehicle to achieve intelligent control of the vehicle, improve the automation and intelligence of rail transit, and the control method is safe and reliable, ensuring the safety and reliability of rail transit.
  • the device connection method is simple, which saves processing resources, shortens the data transmission path, reduces the processing time of the vehicle controller, and speeds up the response speed.
  • a vehicle controller includes a communication control main control module and an interface control module;
  • the interface control module is configured to obtain data collected by each vehicle sensor, preprocess the data collected by each vehicle sensor, and send the preprocessed data to the main control module, wherein the interface
  • the control module obtains data collected by each vehicle sensor through an interface connected to each vehicle sensor;
  • the main control module is configured to analyze the data sent by the interface control module to generate a corresponding control command, and pass the
  • the interface control module sends the vehicle execution mechanism to enable the vehicle execution mechanism to perform state adjustment according to a control command of the main control module.
  • the main control module includes: a first submodule and a second submodule that are redundant with each other and have the same structure;
  • the first sub-module and the second sub-module each include a graphics processor and a central processing unit;
  • the graphics processor is connected to at least one of a vehicle image sensor and a vehicle radar, and is configured to perform recognition processing on at least one of image data of the vehicle surroundings obtained by the image sensor and radar data obtained by the vehicle radar, and identify the Sending the processing result to the central processing unit;
  • the central processing unit is configured to parse the recognition processing result of the graphics processor and data obtained from the interface control module to generate a corresponding control command.
  • the central processing unit is specifically configured to determine whether a road condition in front of the vehicle is normal according to a recognition processing result of the graphics processor, and determine the vehicle When the road conditions in front are abnormal, an emergency braking command is generated and sent to the vehicle braking system through the interface control module.
  • the central processing unit is further configured to determine a distance between the vehicle and a vehicle in front according to a recognition processing result of the graphics processor, and When it is determined that the distance between the vehicle and the vehicle in front is abnormal, a speed adjustment instruction is generated and sent to at least one of a vehicle traction system and a vehicle braking system through the interface control module.
  • the interface control module further includes: a main control circuit;
  • the main control circuit is used for preprocessing the data collected by the sensors of each vehicle;
  • the main control circuit is further configured to determine whether the control command obtained from the first sub-module is consistent with the control command obtained from the second sub-module, and if they are consistent, send the control command to the vehicle for execution mechanism.
  • the main control circuit is further configured to:
  • the first sub-module and the second sub-module are controlled to synchronize, and when it is determined that the control command obtained from the first sub-module is inconsistent with the control command obtained from the second sub-module, Open the connection between the main control module and the vehicle actuator.
  • the interface control module is specifically configured to obtain the vehicle load collected by the vehicle load sensor through an interface connected to the vehicle load sensor;
  • the main control module is specifically configured to generate a traction system control instruction according to the vehicle load, and send the traction system control instruction to the vehicle traction system through the interface control module.
  • the interface control module includes: a power circuit
  • the power circuit is configured to convert a voltage connected from a vehicle system into an operating voltage of the main control module and the interface control module.
  • the interface control module further includes: a watchdog circuit
  • the watchdog circuit is used to monitor the safety of the main control circuit and generate a safe power supply for controlling the output of the main control circuit to cut off the safety when it is determined that the main control circuit is abnormal. power supply.
  • the vehicle controller proposed by the present disclosure can realize intelligent control of vehicles, improve the automation and intelligence of rail transit, and the control method is safe and reliable, ensuring the safety and reliability of rail transit.
  • the device connection method is simple , Saving processing resources, shortening the data transmission path, reducing the processing time of the vehicle controller, and speeding up the response speed.
  • An embodiment of the second aspect of the present disclosure provides a vehicle control method, including: acquiring data collected by each vehicle sensor through an interface connected to each vehicle sensor; and processing the data collected by each vehicle sensor to generate the data A control command corresponding to the vehicle; and controlling a vehicle executing mechanism corresponding to the control command so that the vehicle executing mechanism performs state adjustment according to the control command.
  • the acquiring data collected by each vehicle sensor includes:
  • Processing the data collected by the sensors of each vehicle to generate a control command corresponding to the vehicle includes:
  • the vehicle actuator includes a vehicle traction system and a vehicle braking system.
  • the vehicle control method implements intelligent control of a vehicle according to data collected by various sensors, improves the automation and intelligence of rail transit, and the control method is safe and reliable, ensuring the safety and reliability of rail transit. In addition, it saves processing resources, shortens the data transmission path, reduces data processing time, and speeds up response time.
  • a vehicle according to an embodiment of the third aspect of the present disclosure includes the vehicle controller according to the first aspect.
  • the vehicle controller in the vehicle according to the embodiment of the present disclosure can realize intelligent control of the vehicle, improve the automation and intelligence of rail transit, and the control method is safe and reliable, ensuring the safety and reliability of rail transit.
  • the device connection method is simple, which saves processing resources, shortens the data transmission path, reduces the processing time of the vehicle controller, and speeds up the response speed.
  • FIG. 1 is a schematic structural diagram of a vehicle controller according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a main control module according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of an interface control module according to an embodiment of the present disclosure.
  • FIG. 4 is another schematic structural diagram of an interface control module according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of a vehicle control method according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure proposes a vehicle controller.
  • the vehicle controller provided by the embodiment of the present disclosure includes a communication control main control module and an interface control module.
  • the interface control module can obtain data collected by each vehicle sensor through an interface connected to each vehicle sensor, and collect data from each vehicle sensor.
  • the data is pre-processed, and the pre-processed data is sent to the main control module, so that the main control module can analyze the data sent by the interface control module to generate the corresponding control command, and send it to the vehicle executive through the interface control module In order to make the vehicle actuator adjust the state according to the control command of the main control module.
  • intelligent control of the vehicle is achieved, the automation and intelligence of the rail transit are improved, and the control method is safe and reliable, ensuring the safety and reliability of the rail transit.
  • the device connection method is simple and saves processing resources , Shorten the data transmission path, reduce the processing time of the vehicle controller, and speed up the response speed.
  • FIG. 1 is a schematic structural diagram of a vehicle controller according to an embodiment of the present disclosure.
  • the vehicle controller includes a communication control main control module and an interface control module;
  • An interface control module is configured to obtain data collected by each vehicle sensor, preprocess the data collected by each vehicle sensor, and send the preprocessed data to the main control module, wherein the interface control module Obtain the data collected by each vehicle sensor through the interface connected to each vehicle sensor;
  • the main control module is used for analyzing the data sent by the interface control module to generate corresponding control commands, and sends the corresponding control commands to the vehicle execution agency through the interface control module, so that the vehicle execution agency makes state adjustments according to the control commands of the main control module.
  • the vehicle sensor may be any sensor that can collect data related to the vehicle, such as a speed sensor and a vehicle load sensor.
  • Vehicle actuators can be various vehicle systems such as air-conditioning controllers, vehicle braking systems, vehicle cooling systems, vehicle tire pressure systems, and vehicle traction systems.
  • the interface control module is connected to each vehicle sensor, so that the interface control module can obtain vehicle-related data collected by each vehicle sensor through the interface connected to each vehicle sensor.
  • the interface control module can also The data collected by each vehicle sensor is preprocessed, and the preprocessed data is sent to the main control module.
  • the interface control module preprocesses the data collected by each vehicle sensor, which may include the interface control module classifying the data collected by each sensor according to the correlation, or the interface control module converts the data format collected by each vehicle sensor into a main format. Control module corresponding format and so on.
  • the interface control module is also connected to the main control module and the vehicle actuator, so that the main control module can obtain the data sent by the interface control module and parse the data sent by the interface control module to generate the corresponding
  • the control command is then sent to the vehicle execution mechanism through the interface control module, so that the vehicle execution mechanism adjusts the state according to the control command of the main control module, thereby realizing the control of the vehicle by the vehicle controller.
  • the following describes the control process performed by the vehicle controller based on the data collected by each vehicle sensor in conjunction with a specific example.
  • vehicles usually include image sensors and vehicle radars such as lidar, millimeter-wave radar, and ultrasonic radar to obtain image data and radar data around the vehicle.
  • the vehicle controller may determine whether the road conditions in front of the vehicle are normal according to the image data or radar data around the vehicle, or according to the image data and radar data, and then generate corresponding control commands based on the determination results to Control the vehicle.
  • a lidar can transmit and receive a laser beam, analyze the return time after the laser encounters the target object, calculate the relative distance between the target object and the vehicle, and use a large number of dense target surface collected during this process.
  • the data of the three-dimensional coordinates, reflectance and texture of the point quickly reconstruct the three-dimensional model of the target object and various image data such as lines, areas, and volumes, establish a three-dimensional point cloud map, and draw an environment map.
  • the vehicle controller can determine whether the road conditions in front of the vehicle are normal according to radar data such as the environmental map drawn by the lidar, and then generate corresponding control commands to control the vehicle according to the determination result.
  • an image sensor or a vehicle radar may be connected to a main control module of a vehicle controller, and the main control module may directly acquire image data of the vehicle surroundings collected by the image sensor or radar data collected by the vehicle radar.
  • the image sensor and the vehicle radar may be connected to the main control module at the same time, and the main control module may directly obtain image data of the vehicle surroundings collected by the image sensor and radar data collected by the vehicle radar.
  • the image sensor or vehicle radar may also be connected to the interface control module of the vehicle controller, so that the interface control module may obtain image data of the vehicle surroundings collected by the image sensor through the interface connected to the vehicle image sensor or vehicle radar. Or the radar data collected by the vehicle radar, and then send the image data or radar data around the vehicle to the main control module.
  • the image sensor and the vehicle radar can be connected to the interface control module of the vehicle controller at the same time, so that the interface control module can obtain the image data of the vehicle surroundings collected by the image sensor and the vehicle radar acquisition through the interface connected to the vehicle image sensor and the vehicle radar. The radar data, and then send the image data and radar data around the vehicle to the main control module.
  • Figure 1 only uses the image sensor and vehicle radar to connect with the main control module for example.
  • the main control module After the main control module obtains the image data or radar data, or the image data and radar data, it can analyze the image data or radar data, or the image data and radar data, to determine whether the road ahead of the vehicle is normal. .
  • the main control module can analyze the environment map drawn by the lidar sent by the interface control module to determine whether a pedestrian appears in front of the vehicle. When a pedestrian appears in front of the vehicle, the main control module calculates the relative distance between the pedestrian and the vehicle based on the lidar. , You can determine the distance between the pedestrian and the vehicle to determine whether the road conditions in front of the vehicle are normal.
  • the main control module determines the presence of a pedestrian in front of the vehicle by analyzing the environmental map drawn by the lidar, and determines that the pedestrian and the vehicle are close according to the relative distance between the pedestrian and the vehicle calculated by the lidar. Then the main control module can generate an emergency braking command and send it to the vehicle braking system through the interface control module, so that the vehicle braking system can adjust the state according to the emergency braking command sent by the main control module, thereby controlling the vehicle for emergency braking. move.
  • the main control module can ignore the communication with the interface control module and not send control commands to the vehicle actuators, or it can send a command to maintain the current state to the vehicle actuators through the interface control module to enable each vehicle The actuator keeps the current state, so that the vehicle keeps running normally.
  • the main control module is specifically configured to analyze at least one of the acquired image data and radar data around the vehicle to determine whether the road conditions in front of the vehicle are normal, and when determining that the road conditions in front of the vehicle are abnormal , Generates an emergency braking command, and sends it to the vehicle braking system through the interface control module.
  • the interface control module obtains the image data of the vehicle surroundings collected by the image sensor or the radar data collected by the vehicle radar, or the image data and radar data, and sends the image data or radar data surrounding the vehicle, or the image data and radar data to the main control module Later, the main control module can also analyze the image data or radar data around the vehicle, or the image data and radar data to determine the distance between the vehicle and the vehicle in front. For example, the main control module analyzes the environment map drawn by the lidar sent by the interface control module, and determines that there is a vehicle in front of the vehicle, and then determines the distance between the vehicle and the vehicle in front according to the relative distance between the vehicle and the vehicle in front calculated by the lidar. Near and far.
  • the distance between the vehicle and the vehicle in front is abnormal, for example, if the distance between the vehicle and the vehicle in front is set to be less than 10 meters, it is determined that the distance between the vehicle and the vehicle in front is too short, and there is a risk of rear-end collision.
  • the drawn environment map is analyzed to determine that there is a vehicle in front of the vehicle, and the distance between the vehicle and the vehicle in front is calculated based on the laser radar to determine that the distance between the vehicle and the vehicle in front is less than 10 meters.
  • the main control module can generate a speed adjustment instruction and send it to the vehicle traction system or vehicle braking system through the interface control module, so that the vehicle traction system adjusts the traction force according to the speed adjustment instruction sent by the main control module, or makes the vehicle braking system Adjust the braking force to reduce the speed of the vehicle and prevent rear-end collisions.
  • the main control module can also send the speed adjustment instruction to the vehicle traction system or the vehicle braking system through the interface control module at the same time, so that the vehicle traction system and the vehicle braking system can adjust the traction force according to the speed adjustment instruction sent by the main control module. Size and braking force to reduce vehicle speed and prevent rear-end collisions.
  • the main control module can ignore the current communication with the interface control module and not send control commands to the vehicle actuators, or it can send the vehicle actuators through the interface control module to keep the current Status command to keep each vehicle actuator in its current state, so that the vehicle will keep driving in its current state.
  • the main control module is further configured to analyze at least one of the acquired image data and radar data around the vehicle to determine the distance between the vehicle and the vehicle in front, and determine the distance between the vehicle and the vehicle in front.
  • a speed adjustment instruction is generated and sent to at least one of a vehicle traction system and a vehicle braking system through an interface control module.
  • the interface control module can obtain the vehicle load collected by the vehicle load sensor through an interface connected to the vehicle load sensor, and then sends the vehicle load to the main control module.
  • the main control module can analyze the vehicle load, so as to calculate the traction force required by the vehicle during normal driving according to the vehicle load, generate a traction system control instruction, and then send it to the vehicle traction system through the interface control module.
  • the vehicle can run normally.
  • the interface control module is specifically configured to obtain the vehicle load collected by the vehicle load sensor through an interface connected to the vehicle load sensor;
  • the main control module is specifically configured to generate a traction system control instruction according to the vehicle load, and sends the traction system control instruction to the vehicle traction system through the interface control module.
  • the vehicle load sensor can collect the vehicle loads after the 10 pedestrians get on the vehicle.
  • the interface control module obtains the vehicle through the interface connected to the vehicle load sensor. After loading, the vehicle load can be sent to the main control module.
  • the main control module can analyze the vehicle load, calculate the traction force required for the vehicle to start normally, and generate a traction system control instruction, and then send it to the vehicle traction system through the interface control module, so that the vehicle traction system according to the traction system control instruction, Adjust the amount of traction to make the vehicle run normally.
  • the main control module can also generate traction system control instructions based on vehicle load, road condition information, and current vehicle speed, and send them to the vehicle through the interface control module. Traction system, so that the vehicle traction system adjusts the state according to the traction system control command sent by the main control module.
  • the interface control module obtains the vehicle load, the left and right wheel speeds, and the steering wheel angle through the interfaces connected to the vehicle load sensor, left and right wheel speed sensors, and steering wheel angle sensors, and sends these information to
  • the main control module can determine the vehicle load, the speed difference between the left and right wheels of the vehicle, and the driver's steering intention based on this information.
  • the degree of steering of the vehicle is the same as that of the driver. Steering intent is consistent.
  • the main control module can determine that the traction force of the driving wheels is too large, so that a traction system control instruction can be generated and sent to the vehicle traction system through the interface control module, so that the vehicle traction system can perform The system controls the instructions to reduce the traction of the drive wheels, thereby realizing the driver's steering intention.
  • the vehicle controller provided by the embodiment of the present disclosure collects vehicle-related data by a vehicle image sensor, a vehicle radar, and other vehicle sensors. When controlling a vehicle, the vehicle controller is based on the image sensor, the vehicle radar, and other various sensors. The data collected by the vehicle sensors are analyzed and generated by the control commands, so the safety and reliability are high.
  • the vehicle controller provided by the embodiment of the present disclosure can realize intelligent control of the vehicle through the communication control main control module and interface control module, which improves the automation and intelligence of rail transit, and the control method is safe and reliable, ensuring the rail Traffic safety and reliability.
  • In addition, in related technologies, vehicles are generally controlled by installing various function control systems in the vehicle, such as installing a vehicle-on-board controller (VOBC), and a train control management system (Train Control). and Management System (referred to as TCMS).
  • VOBC vehicle-on-board controller
  • TCMS Train Control management system
  • each control system is connected to each vehicle sensor to obtain data collected by each vehicle sensor, and then control the vehicle according to the data collected by each sensor.
  • each control system is connected to each vehicle sensor, which results in more interfaces for each control system and complicated device connection methods, and after each control system acquires the data collected by each vehicle sensor, it needs to process the collected data.
  • the data required by different control systems may be the same. This will cause the control system to repeatedly process the data collected by the same vehicle sensor when controlling the vehicle using the above method, resulting in processing. Waste of resources.
  • some information between the control systems needs to be shared, which requires the control systems to be interconnected with each other. As a result, the device connection method is more complicated, and data transmission between control systems exists. Delay, which results in long data transmission time and slow response time.
  • the main control module obtains data collected by each vehicle sensor through the interface control module, and controls each vehicle executive mechanism according to the data collected by each vehicle sensor, so as to realize the safety of the entire vehicle. control. That is, when the vehicle is safely controlled, each vehicle sensor only needs to be connected to the interface control module, the device connection method is simple, and only the data collected by each vehicle sensor needs to be processed once to achieve the safety control of the vehicle. It saves processing resources. In addition, all information in the vehicle controller can be directly shared, thereby shortening the data transmission path, reducing the processing time of the vehicle controller, and speeding up the response speed.
  • the vehicle controller proposed in the embodiment of the present disclosure only needs to include a communication control main control module and an interface control module.
  • the interface control module is connected to various vehicle sensors and vehicle actuators.
  • the vehicle controller has fewer interfaces, has a simple structure, and costs less. Low and small size, convenient for on-site maintenance and installation.
  • the main control module includes: a first submodule Module1 and a second submodule Module2 which are redundant and have the same structure; the first submodule Module1 and the second submodule Module2 each include a graphics processor (Graphics Processing Unit, GPU for short) and Central Processing Unit (Central Processing Unit, CPU for short).
  • graphics processor Graphics Processing Unit, GPU for short
  • Central Processing Unit Central Processing Unit
  • the graphics processor has a very good effect in processing graphics computing-related work in computer equipment.
  • the vehicle image sensor or vehicle radar may be connected with the main control module of the vehicle controller.
  • the graphics processor is connected, so that after the image sensor collects the image data around the vehicle or the vehicle radar collects the radar data, the image processor or the radar data can be processed by the graphics processor to improve the processing of the image data or radar data Effect to better use image data or radar data to control the vehicle.
  • the image sensor and the vehicle radar may also be connected to the graphics processor in the main control module of the vehicle controller at the same time, so that the image data of the vehicle surroundings collected by the image sensor and the radar data collected by the vehicle radar are processed by the graphics processor.
  • the image data and radar data can be better used to control the vehicle.
  • the graphics processor is connected to at least one of a vehicle image sensor and a vehicle radar, and is configured to perform at least one of image data of the surroundings of the vehicle obtained by the image sensor and radar data obtained by the vehicle radar. Perform recognition processing, and send the recognition processing result to the central processing unit;
  • the central processing unit is configured to analyze the recognition result of the graphics processor and the data obtained from the interface control module to generate corresponding control commands.
  • the first sub-module Module1 includes GPU1 and CPU1
  • the second sub-module Module2 includes GPU2 and CPU2.
  • the GPU1 may be connected to the vehicle image sensor or the vehicle radar, or connected to the image sensor and the vehicle radar at the same time, to perform recognition processing on the image data of the vehicle surroundings obtained through the image sensor, or to perform recognition processing on the radar data obtained through the vehicle radar, or Recognize the image data of the vehicle surroundings acquired by the image sensor and the radar data acquired by the vehicle radar, and send the recognition processing results to CPU1, so that CPU1 can analyze the recognition processing results of GPU1 and the data obtained from the interface control module To generate the corresponding control command and send the control command to the interface control module.
  • GPU2 can also be connected with the vehicle image sensor or vehicle radar, or connected with the image sensor and the vehicle radar at the same time, to identify and process the image data of the vehicle surroundings obtained by the image sensor, or the radar data obtained by the vehicle radar. Recognition processing, or recognition processing of the image data of the vehicle surroundings acquired by the image sensor and radar data obtained by the vehicle radar, and send the recognition processing result to CPU2, so that CPU2 can obtain the recognition processing result of GPU2 and obtain it from the interface control module The data is analyzed to generate corresponding control commands, and the control commands are sent to the interface control module.
  • the GPU of the main control module recognizes and processes the image data or radar data around the vehicle, or the image data and radar data around the vehicle, it can also perform image data or radar data, or image data and radar data. Perform preprocessing.
  • the pre-processing may include GPU filtering of blurred or incomplete low-quality images in the image data of the vehicle surroundings collected by the image sensor, or classifying the image data or radar data of the vehicle surroundings according to the correlation, etc. .
  • the GPU performs recognition processing on the preprocessed image data or radar data, or the image data and radar data, and sends the recognition processing result to the CPU of the main control module, so that the CPU of the main control module can process the recognition processing result and the
  • the data obtained from the interface control module is analyzed to generate corresponding control commands, and the control commands are sent to the vehicle executive through the interface control module to explain the process of controlling the vehicle.
  • the central processing unit of the main control module may only generate a corresponding control command based on the recognition processing result of the graphic processor of the main control module to control the vehicle.
  • a corresponding control command is generated to control the vehicle.
  • the central processing unit of the main control module After the central processing unit of the main control module obtains the recognition processing result sent by the graphics processor, it can determine whether the road conditions in front of the vehicle are normal according to the recognition processing result of the graphics processor of the main control module.
  • the graphics processor of the main control module determines the presence of pedestrians in front of the vehicle by identifying and processing the environmental map drawn by the lidar, and the central processor of the main control module obtains the recognition processing result sent by the graphic processor of the main control module. Then, according to the relative distance between the pedestrian and the vehicle calculated by the lidar, it is determined that the distance between the pedestrian and the vehicle is very close. Then the central processor of the main control module can generate an emergency braking command and send it to the vehicle braking system through the interface control module, so that the vehicle braking system can adjust the state according to the emergency braking command sent by the central processor, thereby controlling The vehicle performs emergency braking.
  • the central processing unit of the main control module can ignore the communication with the interface control module and not send control commands to the vehicle actuators, or it can send a command to maintain the current state to the vehicle actuators through the interface control module. In order to maintain the current state of each vehicle actuator, so that the vehicle maintains the current state to drive normally.
  • the central processing unit is specifically configured to determine whether the road condition in front of the vehicle is normal according to the recognition processing result of the graphics processor, and when determining that the road condition in front of the vehicle is abnormal, generate an emergency braking command and pass the interface
  • the control module sends it to the vehicle braking system.
  • the central processing unit of the main control module After the central processing unit of the main control module obtains the recognition processing result sent by the graphics processor of the main control module, it can determine the distance between the vehicle and the vehicle in front according to the recognition processing result of the graphics processor.
  • the distance between the vehicle and the vehicle in front is abnormal, for example, if the distance between the vehicle and the vehicle in front is set less than 10 meters in advance, it is determined that the distance between the vehicle and the vehicle in front is too short, and there is a risk of rear-end collision, and the graphics processor of the main control module Through the identification processing of the environmental map drawn by the lidar, it is determined that there is a vehicle in front of the vehicle, and the central processing unit of the main control module obtains the recognition processing result sent by the graphic processor of the main control module, and then calculates the vehicle and the front according to the lidar The relative distance of the vehicle. Make sure that the distance between the vehicle and the vehicle in front is less than 10 meters.
  • the central processor of the main control module can generate a speed adjustment instruction and send it to the vehicle traction system or the vehicle braking system through the interface control module, so that the vehicle traction system adjusts the traction force according to the speed adjustment instruction sent by the central processor, or makes the The vehicle braking system adjusts the braking force to reduce the vehicle's speed and prevent rear-end collisions.
  • the central processor may also send the speed adjustment instruction to the vehicle traction system or the vehicle braking system through the interface control module at the same time, so that the vehicle traction system and the vehicle braking system may adjust the traction force according to the speed adjustment instruction sent by the central processor. Size and braking force to reduce vehicle speed and prevent rear-end collisions.
  • the central processing unit of the main control module can ignore the communication with the interface control module and not send control commands to the vehicle executing agencies, or it can be executed by the interface control module to each vehicle.
  • the mechanism sends a command to maintain the current state, so that each vehicle executive mechanism maintains the current state, so that the vehicle keeps driving in the current state.
  • the central processing unit is further configured to determine a distance between the vehicle and the vehicle in front according to a recognition processing result of the graphics processor, and generate a speed adjustment when it is determined that the distance between the vehicle and the vehicle in front is abnormal.
  • the command is sent to at least one of the vehicle traction system and the vehicle braking system through the interface control module.
  • GPU1 and GPU2 can communicate through a local area network (LAN), so that GPU1 and GPU2 can send the recognition processing results to CPU1 and CPU2 respectively when the recognition processing results of the two are the same.
  • LAN local area network
  • CPU1 and CPU2 can implement functions such as communication and security protocols.
  • GPU1 and GPU2 can also use deep neural network algorithm functions and integrate sensing technology to achieve intelligent control and diagnostic functions of vehicles.
  • CPU1 can cooperate with the power clock monitoring chip Power & Monitoring Chip1, and CPU2 cooperates with Power & Monitoring Chip2 to make the main control module meet the security level requirements.
  • CPU1 and CPU2 respectively obtain the data of GPU1 and GPU2 through the PCIE interface, and obtain the relevant data of the vehicle through the interface control module to analyze and process the data to realize the automatic driving and speed protection functions of the vehicle.
  • the interface control module may include a power supply circuit for converting the voltage connected from the vehicle system to the working voltage of the main control module and the interface control module.
  • the voltage connected from the vehicle system may be a 24V DC voltage or a 110V DC voltage, which is not limited here.
  • the power supply circuit may include a power supply access board and a power supply board.
  • the power access board may connect a vehicle power supply to the interior of a vehicle controller, so that the power supply board may implement the voltage access. Conversion, and supply power to the main control module and interface control module.
  • multiple power sources may be set according to the working voltage levels of the main control module and the interface control module, so as to pass Power supply for powering the corresponding module.
  • the interface control module may further include a main control circuit for preprocessing data collected by each vehicle sensor. It should be noted that when the main control circuit preprocesses the data collected by each vehicle sensor, it can be performed according to a preset period, or according to the memory occupied by the data collected by each vehicle sensor, which is not limited here. The preset period can be set as required.
  • the main control circuit can also be used to determine whether the control command obtained from the first sub-module Module1 is consistent with the control command obtained from the second sub-module Module2. If they are consistent, the control command is sent to the vehicle execution mechanism to ensure the vehicle The actuator adjusts the status according to the correct control command, thereby ensuring the safety and reliability of vehicle control.
  • the main control circuit can also control the synchronization of the first submodule Module1 and the second submodule Module2 according to a preset period, and determine the control command obtained from the first submodule Module1 and the control command obtained from the second submodule Module2.
  • the main control module is disconnected from the vehicle actuator, thereby avoiding the failure of the first sub-module Module1 or the second sub-module Module2 of the main control module to send control commands to the vehicle executive to further ensure vehicle control Security and reliability.
  • main control circuit can also implement vehicle control and management functions, vehicle fault diagnosis functions, and secure computer platform layer software scheduling algorithms, embedded real-time operating systems and data-based security protocol encapsulation and analysis.
  • the interface control module may further include a watchdog circuit for monitoring the safety of the main control circuit and generating a safe power supply for controlling the output of the main control circuit to determine that the main control circuit is abnormal. , Cut off the safety power.
  • a watchdog circuit for monitoring the safety of the main control circuit and generating a safe power supply for controlling the output of the main control circuit to determine that the main control circuit is abnormal. , Cut off the safety power.
  • the interface control module may further include a controller area network (CAN) communication board, an Ethernet communication board, and a global Positioning system (Global Positioning System, GPS for short) communication board and other communication boards.
  • CAN controller area network
  • Ethernet Ethernet
  • global Positioning system Global Positioning System, GPS for short
  • the CAN communication board is connected to the internal CAN network of the cabin to realize communication with the power supply system, traction braking system, door control system, lighting system, tire pressure system, and the like.
  • the Ethernet communication board is connected to the main control module and the vehicle, so as to realize the network communication between the main control module and the vehicle.
  • the GPS communication board is connected to a GPS antenna and is used to implement the GPS positioning function.
  • the CAN communication board, the Ethernet communication board, the GPS communication board and the main control circuit all use a parallel bus connection to realize large-capacity, high real-time data transmission and reception.
  • the CAN communication board, Ethernet communication board, and GPS communication board are controlled by the safety power generated by the watchdog circuit. When the CAN communication board, Ethernet communication board, or GPS communication board fails, the watchdog circuit can cut off the safety power. Thus fail-safe.
  • the interface control module may further include a speed board, the speed board is connected to the speed sensor, and a high-speed serial bus connection is used between the speed board and the main control board, thereby implementing the expansion of the input and output nodes.
  • the speed test board is controlled by the safe power generated by the watchdog circuit. When the speed test board fails, the watchdog circuit can cut off the safety power supply, thereby achieving fail-safe.
  • the interface control module may further include a security input Board, safety output board, general input output board, analog input board, relay output board.
  • the safety input board or safety output board can implement various input and output interfaces, such as relay-driven acquisition, speed sensor acquisition, and so on.
  • the high-speed serial bus connection is used between the safety input board or the safety output board and the main control board, so as to realize the expansion of the input and output nodes.
  • the output circuit of the safety input board or safety output board is controlled by the safety power supply generated by the watchdog circuit. When the safety input board or safety output board fails, the watchdog circuit can cut off the corresponding safety power supply, thereby achieving fault safety. .
  • the general input and output board can realize various input and output interfaces, and is compatible with 110V and 24V signal input and output.
  • a high-speed serial bus connection is generally used between the input / output board and the main control board, and each input / output channel has a fault diagnosis function.
  • the analog input board can realize the vehicle's analog signal collection, and supports voltage (-10V ⁇ 10V) acquisition, current (4 ⁇ 20mA) acquisition, pulse modulation signal acquisition functions.
  • the high-speed serial bus connection is used between the analog input board and the main control board, and each input and output channel has a fault diagnosis function.
  • the relay output board can realize the relay interface of the vehicle, and supports two node output modes, normally closed and normally open.
  • the relay interface power can be configured to support 0 ⁇ 137.5V.
  • a high-speed serial bus connection is used between the relay output board and the main control board, and a safety relay is used.
  • Each relay output channel has a back-test diagnostic function.
  • an embodiment of the present disclosure also proposes a vehicle control method.
  • FIG. 5 is a schematic flowchart of a vehicle control method according to an embodiment of the present disclosure.
  • the vehicle control method according to the embodiment of the present disclosure includes the following steps:
  • Step 101 Obtain data collected by each vehicle sensor through an interface connected to each vehicle sensor.
  • the vehicle control method of the embodiment of the present disclosure may be executed by a vehicle controller provided by the embodiment of the present disclosure.
  • the vehicle controller may be configured in any vehicle to intelligently control the vehicle.
  • the vehicle sensor may be any sensor that can collect data related to the vehicle, such as a speed sensor and a vehicle load sensor.
  • the vehicle running state data may include data such as a vehicle running speed and a load when the vehicle is running.
  • Step 102 Process the data collected by each vehicle sensor to generate a control command corresponding to the vehicle.
  • Step 103 Control the vehicle executing mechanism corresponding to the control command, so that the vehicle executing mechanism performs state adjustment according to the control command.
  • the vehicle execution mechanism may include a vehicle traction system and a vehicle braking system.
  • the vehicle controller may be connected with each vehicle sensor and the vehicle actuator, so that the vehicle controller may obtain data collected by each vehicle sensor through an interface connected with each vehicle sensor, and The data is processed, and the control command corresponding to the vehicle is generated, and then the control command is sent to the vehicle execution agency corresponding to the control command, so that the vehicle execution agency adjusts the state according to the control command, thereby realizing the vehicle execution mechanism corresponding to the control command. control.
  • the vehicle controller may also preprocess the data collected by the vehicle sensor, and then generate a control command corresponding to the vehicle based on the preprocessed data.
  • the preprocessing may include categorizing the data collected by each sensor according to the correlation, or converting the format of each data collected by each vehicle sensor into a format that can be processed by the vehicle controller, and so on.
  • a vehicle usually includes a vehicle image sensor and a vehicle radar such as a lidar, a millimeter wave radar, and an ultrasonic radar to obtain image data and radar data around the vehicle.
  • the vehicle controller may determine the road conditions of the current driving direction of the vehicle based on the image data or radar data around the vehicle, or generate the corresponding control commands according to the road conditions of the driving direction. To control the vehicle. That is, step 101 may specifically include:
  • Acquire at least one of radar data collected by a vehicle radar and image data collected by a vehicle image sensor.
  • step 102 may include:
  • the vehicle controller acquires radar data collected by the vehicle radar or image data collected by the vehicle image sensor through an interface connected to the vehicle radar or the vehicle image sensor, or through an interface connected to the vehicle radar and the vehicle image sensor.
  • the radar data or image data, or the radar data and image data can be processed to determine the road conditions of the current driving direction of the vehicle.
  • the vehicle controller can obtain the environment map drawn by the lidar and process the environment map drawn by the lidar to determine whether a pedestrian appears in front of the vehicle.
  • the vehicle control The device can determine the distance between the pedestrian and the vehicle according to the relative distance between the pedestrian and the vehicle calculated by the laser radar, thereby determining whether the road conditions in the current driving direction of the vehicle are normal.
  • the vehicle controller determines that the road conditions in the driving direction are abnormal, such as a pedestrian in front of the vehicle, and the distance between the pedestrian and the vehicle is very close, and according to the data collected by the speed sensor in the vehicle, it is determined that the current driving speed of the vehicle is too fast, the vehicle controller
  • the emergency braking command can be generated and sent to the vehicle braking system, so that the vehicle braking system can adjust the state according to the emergency braking command sent by the vehicle controller, thereby controlling the vehicle for emergency braking.
  • the vehicle controller may generate a command to maintain the current state, and send the command to maintain the current state to each vehicle executing agency, so that each vehicle executing agency maintains the current state, thereby keeping the vehicle in the normal state travel.
  • the vehicle controller may not generate a control command when it is determined that the road conditions in the driving direction are normal, so that each vehicle actuator maintains the state when the road conditions in the previous driving direction are normal, so that the vehicle maintains the current state of normal driving.
  • a vehicle controller that executes the vehicle control method of the embodiment of the present disclosure may include a communication control main control module and an interface control module, and the main control module and the interface control module of the vehicle controller may be respectively
  • the main control module and the interface control module of the vehicle controller may be respectively
  • the operations performed to control the vehicle reference may be made to the description of the vehicle controller in the foregoing embodiment, and details are not described herein again.
  • the vehicle control method in the embodiment of the present disclosure first obtains data collected by each vehicle sensor through an interface connected to each vehicle sensor, and then processes the data collected by each vehicle sensor to generate a control command corresponding to the vehicle, and finally The vehicle executive corresponding to the control command performs control so that the vehicle executive performs state adjustment according to the control command.
  • intelligent control of the vehicle is achieved based on the data collected by each sensor, which improves the automation and intelligence of rail transit, and the control method is safe and reliable, ensuring the safety and reliability of rail transit.
  • it saves Processing resources, shortening the data transmission path, reducing data processing time, and speeding up response times.
  • An embodiment of the present disclosure further provides a vehicle including the vehicle controller according to the foregoing embodiment.
  • the vehicle controller in the vehicle provided by the embodiment of the present disclosure includes a communication control main control module and an interface control module, which can realize automatic control of the vehicle, improve the automation and intelligence of rail transit, and the control method is safe and reliable.
  • the safety and reliability of rail transit are guaranteed.
  • the equipment connection is simple, saving processing resources, shortening the data transmission path, reducing the processing time of the vehicle controller, and speeding up the response speed.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present disclosure, the meaning of "a plurality” is at least two, for example, two, three, etc., unless it is specifically and specifically defined otherwise.
  • any process or method description in a flowchart or otherwise described herein can be understood as representing a module, fragment, or portion of code that includes one or more executable instructions for implementing steps of a custom logic function or process
  • the scope of the preferred embodiments of the present disclosure includes additional implementations in which functions may be performed out of the order shown or discussed, including performing functions in a substantially simultaneous manner or in the reverse order according to the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present disclosure belong.
  • Logic and / or steps represented in a flowchart or otherwise described herein, for example, a sequenced list of executable instructions that may be considered to implement a logical function, may be embodied in any computer-readable medium, For use by, or in combination with, an instruction execution system, device, or device (such as a computer-based system, a system that includes a processor, or another system that can fetch and execute instructions from an instruction execution system, device, or device) Or equipment.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer-readable media include the following: electrical connections (electronic devices) with one or more wirings, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read-only memory (ROM), erasable and editable read-only memory (EPROM or flash memory), fiber optic devices, and portable optical disk read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable Processing to obtain the program electronically and then store it in computer memory.
  • portions of the present disclosure may be implemented in hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • Discrete logic circuits with logic gates for implementing logic functions on data signals Logic circuits, ASICs with suitable combinational logic gate circuits, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • a person of ordinary skill in the art can understand that all or part of the steps carried by the methods in the foregoing embodiments can be implemented by a program instructing related hardware.
  • the program can be stored in a computer-readable storage medium.
  • the program is When executed, one or a combination of the steps of the method embodiment is included.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing module, or each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above integrated modules may be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种车辆控制器,包括:通信连接的主控模块及接口控制模块;接口控制模块,用于获取各车辆传感器采集的数据,并对所述各车辆传感器采集的数据进行预处理,以及将预处理后的数据发送给所述主控模块;主控模块,用于对接口控制模块发送的数据进行解析,以生成对应的控制命令,并通过接口控制模块发送给车辆执行机构,以使车辆执行机构根据主控模块的控制命令进行状态调整。提高了轨道交通的自动化和智能化,且控制方式安全、可靠,保障了轨道交通的安全性和可靠性,另外,设备连接方式简单,节省了处理资源,缩短了数据传输路径,减少了车辆控制器的处理时间,加快了响应速度。还公开了一种车辆控制方法及车辆。

Description

车辆控制器、车辆控制方法及车辆
相关申请的交叉引用
本公开要求比亚迪股份有限公司于2018年08月23日提交的、发明名称为“车辆控制器、车辆控制方法及车辆”的、中国专利申请号“201810967882.7”的优先权。
技术领域
本公开涉及轨道交通技术领域,尤其涉及一种车辆控制器、车辆控制方法及车辆。
背景技术
城市轨道交通在缓解城市交通拥堵和节能减排方面发挥着越来越重要的作用,极大的促进了经济和社会发展。
而随着电子技术的发展及轨道交通用户对产品越来越高的要求,如何在保证轨道交通高度安全的同时,建立更加自动化、智能化的轨道交通控制系统,成为轨道交通发展的目标。
发明内容
本公开提出一种车辆控制器、车辆控制方法及车辆,以实现对车辆的智能控制,提高了轨道交通的自动化和智能化,且控制方式安全、可靠,保障了轨道交通的安全性和可靠性,另外,设备连接方式简单,节省了处理资源,缩短了数据传输路径,减少了车辆控制器的处理时间,加快了响应速度。
本公开第一方面实施例提出的车辆控制器,包括:通信连接的主控模块及接口控制模块;
所述接口控制模块,用于获取各车辆传感器采集的数据,并对所述各车辆传感器采集的数据进行预处理,以及将预处理后的数据发送给所述主控模块,其中,所述接口控制模块通过与各车辆传感器连接的接口,获取各车辆传感器采集的数据;所述主控模块,用于对所述接口控制模块发送的数据进行解析,以生成对应的控制命令,并通过所述接口控制模块发送给车辆执行机构,以使所述车辆执行机构根据所述主控模块的控制命令进行状态调整。
作为本公开第一方面实施例的第一种可能的实现方式,所述主控模块,包括:互为冗余、且结构相同的第一子模块及第二子模块;
所述第一子模块及第二子模块均分别包括图形处理器及中央处理器;
所述图形处理器与车辆图像传感器和车辆雷达中的至少一个连接,用于对通过图像传感器获取的车辆周围的图像数据和通过车辆雷达获取的雷达数据中的至少一个进行识别处理,并将识别处理结果发送给所述中央处理器;
所述中央处理器,用于对所述图形处理器的识别处理结果及从所述接口控制模块获取的数据进行解析,以生成对应的控制命令。
作为本公开第一方面实施例的第二种可能的实现方式,所述中央处理器,具体用于根据所述图形处理器的识别处理结果,判断所述车辆前方路况是否正常,并在确定车辆前方路况异常时,生成紧急制动命令,并通过所述接口控制模块发送给车辆制动系统。
作为本公开第一方面实施例的第三种可能的实现方式,所述中央处理器,还用于根据所述图形处理器的识别处理结果,确定所述车辆与前方车辆间的距离,并在确定所述车辆与前方车辆间的距离异常时,生成速度调整指令,并通过所述接口控制模块发送给车辆牵引系统和车辆制动系统中的至少一个。
作为本公开第一方面实施例的第四种可能的实现方式,所述接口控制模块,还包括:主控电路;
所述主控电路,用于将由所述各车辆传感器采集的数据进行预处理;
所述主控电路,还用于判断从所述第一子模块获取的控制命令与从所述第二子模块获取的控制命令是否一致,如果一致,将所述控制命令发送给所述车辆执行机构。
作为本公开第一方面实施例的第五种可能的实现方式,所述主控电路,还用于:
按照预设的周期,控制所述第一子模块及第二子模块同步,并在确定从所述第一子模块获取的控制命令与从所述第二子模块获取的控制命令不一致时,断开所述主控模块与所述车辆执行机构的连接。
作为本公开第一方面实施例的第六种可能的实现方式,所述接口控制模块,具体用于通过与车辆载荷传感器连接的接口,获取车辆载荷传感器采集的车辆载荷;
所述主控模块,具体用于根据所述车辆载荷,生成牵引系统控制指令,并通过所述接口控制模块发送给所述车辆牵引系统。
作为本公开第一方面实施例的第七种可能的实现方式,所述接口控制模块,包括:电源电路;
所述电源电路,用于将从车辆系统接入的电压转换为所述主控模块及所述接口控制模 块的工作电压。
作为本公开第一方面实施例的第八种可能的实现方式,所述接口控制模块,还包括:看门狗电路;
所述看门狗电路,用于对所述主控电路的安全进行监控,并且产生用于控制所述主控电路输出的安全电源,以在确定所述主控电路异常时,切断所述安全电源。
本公开提出的车辆控制器,可以实现对车辆的智能控制,提高了轨道交通的自动化和智能化,且控制方式安全、可靠,保障了轨道交通的安全性和可靠性,另外,设备连接方式简单,节省了处理资源,缩短了数据传输路径,减少了车辆控制器的处理时间,加快了响应速度。
本公开第二方面实施例提出一种车辆控制方法,包括:通过与各车辆传感器连接的接口,获取各车辆传感器采集的数据;对所述各车辆传感器采集的数据进行处理,以生成与所述车辆对应的控制命令;对与所述控制命令对应的车辆执行机构进行控制,以使所述车辆执行机构根据所述控制命令进行状态调整。
作为本公开第二方面实施例的第一种可能的实现方式,所述获取各车辆传感器采集的数据,包括:
获取车辆雷达采集的雷达数据和车辆图像传感器采集的图像数据中的至少一个;
所述对所述各车辆传感器采集的数据进行处理,以生成与所述车辆对应的控制命令,包括:
对所述雷达数据和所述图像数据中的至少一个进行处理,以确定所述车辆当前的行驶方向的路况;
根据所述行驶方向的路况,生成对应的控制命令。
作为本公开第二方面实施例的第二种可能的实现方式,所述车辆执行机构,包括车辆牵引系统及车辆制动系统。
本公开实施例的车辆控制方法,实现了根据各传感器采集的数据,对车辆进行智能控制,提高了轨道交通的自动化和智能化,且控制方式安全、可靠,保障了轨道交通的安全性和可靠性,另外,节省了处理资源,缩短了数据传输路径,减少了数据处理时间,加快了响应速度。
本公开第三方面实施例提出的车辆,包括如第一方面所述的车辆控制器。
本公开实施例的车辆中的车辆控制器,可以实现对车辆的智能控制,提高了轨道交通的自动化和智能化,且控制方式安全、可靠,保障了轨道交通的安全性和可靠性,另外,设备连接方式简单,节省了处理资源,缩短了数据传输路径,减少了车辆控制器的处理时 间,加快了响应速度。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例的车辆控制器的一个结构示意图;
图2是本公开实施例的主控模块的一个结构示意图;
图3是本公开实施例的接口控制模块的一个结构示意图;
图4是本公开实施例的接口控制模块的又一个结构示意图;
图5是本公开实施例的车辆控制方法的流程示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
为了在保证轨道交通高度安全的同时,建立更加自动化、智能化的轨道交通控制系统,本公开实施例提出一种车辆控制器。
本公开实施例提供的车辆控制器,包括通信连接的主控模块及接口控制模块,接口控制模块可以通过与各车辆传感器连接的接口,获取各车辆传感器采集的数据,并对各车辆传感器采集的数据进行预处理,以及将预处理后的数据发送给主控模块,从而主控模块可以对接口控制模块发送的数据进行解析,以生成对应的控制命令,并通过接口控制模块发送给车辆执行机构,以使车辆执行机构根据主控模块的控制命令进行状态调整。由此,实现了对车辆的智能控制,提高了轨道交通的自动化和智能化,且控制方式安全、可靠,保障了轨道交通的安全性和可靠性,另外,设备连接方式简单,节省了处理资源,缩短了数据传输路径,减少了车辆控制器的处理时间,加快了响应速度。
下面参考附图描述本公开实施例的车辆控制器。
图1是本公开一个实施例的车辆控制器的结构示意图。
如图1所示,该车辆控制器包括:通信连接的主控模块及接口控制模块;
接口控制模块,用于获取各车辆传感器采集的数据,并对所述各车辆传感器采集的数据进行预处理,以及将预处理后的数据发送给所述主控模块,其中,所述接口控制模块通过与各车辆传感器连接的接口,获取各车辆传感器采集的数据;
主控模块,用于对接口控制模块发送的数据进行解析,以生成对应的控制命令,并通过接口控制模块发送给车辆执行机构,以使车辆执行机构根据主控模块的控制命令进行状态调整。
其中,车辆传感器可以是如速度传感器、车辆载荷传感器等任意可以采集与车辆有关的数据的传感器。
车辆执行机构,可以是空调控制器、车辆制动系统、车辆冷却系统、车辆胎压系统及车辆牵引系统等各车辆系统。
本公开实施例中,接口控制模块分别与各车辆传感器连接,从而接口控制模块可以通过与各车辆传感器连接的接口,获取各车辆传感器采集的与车辆有关的数据,另外,接口控制模块还可以对各车辆传感器采集的数据进行预处理,并将预处理后的数据发送给主控模块。
其中,接口控制模块对各车辆传感器采集的数据进行预处理,可以包括接口控制模块对各传感器采集的数据按照相关性进行归类,或者,接口控制模块将各车辆传感器采集的数据格式转换为主控模块对应的格式等等。
作为一种可能的实现方式,接口控制模块还分别与主控模块、车辆执行机构连接,从而主控模块可以获取接口控制模块发送的数据,并对接口控制模块发送的数据进行解析,以生成对应的控制命令,然后通过接口控制模块发送给车辆执行机构,以使车辆执行机构根据主控模块的控制命令进行状态调整,从而实现车辆控制器对车辆的控制。
下面结合具体实例,对车辆控制器根据各车辆传感器采集的数据,对车辆进行的控制过程进行说明。
实例一
可以理解的是,车辆中通常包括图像传感器及激光雷达、毫米波雷达、超声波雷达等车辆雷达,以获取车辆周围的图像数据及雷达数据。在本公开实施例中,车辆控制器可以根据车辆周围的图像数据或雷达数据,或根据图像数据及雷达数据,对车辆前方路况是否正常进行判断,进而根据判断结果,生成相应的控制命令,以对车辆进行控制。以激光雷达为例,激光雷达可以通过发射和接受激光束,分析激光遇到目标对象后的折返时间,计算出目标对象与车辆的相对距离,并利用此过程中采集的目标对象表面大量密集的点的三 维坐标、反射率和纹理等数据,快速复建出目标对象的三维模型及线、面、体等各种图像数据,建立三维点云图,绘制出环境地图。在本公开实施例中,车辆控制器根据激光雷达绘制的环境地图等雷达数据,即可对车辆前方路况是否正常进行判断,进而根据判断结果,生成相应的控制命令,以对车辆进行控制。
本公开实施例中,图像传感器或车辆雷达可以与车辆控制器的主控模块连接,主控模块可以直接获取图像传感器采集的车辆周围的图像数据或车辆雷达采集的雷达数据。或者,图像传感器及车辆雷达可以同时与主控模块连接,主控模块可以直接获取图像传感器采集的车辆周围的图像数据及车辆雷达采集的雷达数据。
本公开实施例中,图像传感器或车辆雷达还可以与车辆控制器的接口控制模块连接,从而接口控制模块可以通过与车辆图像传感器或车辆雷达连接的接口,获取图像传感器采集的车辆周围的图像数据或车辆雷达采集的雷达数据,然后将车辆周围的图像数据或雷达数据发送给主控模块。或者,图像传感器及车辆雷达可以同时与车辆控制器的接口控制模块连接,从而接口控制模块可以通过与车辆图像传感器及车辆雷达连接的接口,获取图像传感器采集的车辆周围的图像数据及车辆雷达采集的雷达数据,然后将车辆周围的图像数据及雷达数据发送给主控模块。图1仅以图像传感器和车辆雷达与主控模块连接进行示例。
主控模块获取到车辆周围的图像数据或雷达数据,或图像数据及雷达数据后,即可对车辆周围的图像数据或雷达数据,或图像数据及雷达数据进行解析,以判断车辆前方路况是否正常。比如主控模块通过对接口控制模块发送的激光雷达绘制的环境地图进行解析,可以判断车辆前方是否出现行人,在车辆前方出现行人时,主控模块根据激光雷达计算出的行人与车辆的相对距离,即可确定行人与车辆的距离远近,从而判断车辆前方路况是否正常。
若异常,比如主控模块通过对激光雷达绘制的环境地图进行解析,确定车辆前方出现行人,且根据激光雷达计算出的行人与车辆的相对距离,确定行人与车辆的距离很近。则主控模块可以生成紧急制动命令,并通过接口控制模块发送给车辆制动系统,以使车辆制动系统根据主控模块发送的紧急制动命令,进行状态调整,从而控制车辆进行紧急制动。若正常,则主控模块可以忽略此次与接口控制模块的通信,不向各车辆执行机构发送控制命令,或者,可以通过接口控制模块向各车辆执行机构发送保持当前状态命令,以使各车辆执行机构保持当前的状态,从而使车辆保持当前状态正常行驶。
即,在本公开实施例中,主控模块,具体用于对获取的车辆周围的图像数据和雷达数据中的至少一个进行解析,以判断车辆前方路况是否正常,并在确定车辆前方路况异常时,生成紧急制动命令,并通过接口控制模块发送给车辆制动系统。
实例二
接口控制模块获取图像传感器采集的车辆周围的图像数据或车辆雷达采集的雷达数据,或图像数据及雷达数据,并将车辆周围的图像数据或雷达数据,或图像数据及雷达数据发送给主控模块后,主控模块还可以对车辆周围的图像数据或雷达数据,或图像数据及雷达数据进行解析,以确定车辆与前方车辆间的距离。比如主控模块通过对接口控制模块发送的激光雷达绘制的环境地图进行解析,确定车辆前方存在车辆时,根据激光雷达计算出的车辆与前方车辆的相对距离,即可确定车辆与前方车辆的距离远近。
若车辆与前方车辆间的距离异常,比如预先设置了车辆与前方车辆间的距离小于10米时,则确定车辆与前方车辆间的距离过短,存在追尾风险,而主控模块通过对激光雷达绘制的环境地图进行解析,确定车辆前方存在车辆,且根据激光雷达计算出的车辆与前方车辆的相对距离,确定车辆与前方车辆间的距离小于10米。则主控模块可以生成速度调整指令,并通过接口控制模块发送给车辆牵引系统或车辆制动系统,以使车辆牵引系统根据主控模块发送的速度调整指令调整牵引力大小,或使车辆制动系统调整制动力大小,从而减小车辆的行驶速度,防止追尾。或者,主控模块也可以将速度调整指令通过接口控制模块同时发送给车辆牵引系统或车辆制动系统,以使车辆牵引系统及车辆制动系统根据主控模块发送的速度调整指令,分别调整牵引力大小及制动力大小,从而减小车辆的行驶速度,防止追尾。
若车辆与前方车辆间的距离正常,则主控模块可以忽略此次与接口控制模块的通信,不向各车辆执行机构发送控制命令,或者,可以通过接口控制模块向各车辆执行机构发送保持当前状态命令,以使各车辆执行机构保持当前的状态,从而使车辆保持当前状态行驶。
即,在本公开实施例中,主控模块,还用于对获取的车辆周围的图像数据和雷达数据中的至少一个进行解析,以确定车辆与前方车辆间的距离,并在确定车辆与前方车辆间的距离异常时,生成速度调整指令,并通过接口控制模块发送给车辆牵引系统和车辆制动系统中的至少一个。
实例三
接口控制模块可以通过与车辆载荷传感器连接的接口,获取车辆载荷传感器采集的车辆载荷,然后将车辆载荷发送给主控模块。主控模块获取到车辆载荷后,即可对车辆载荷进行解析,从而根据车辆载荷,计算车辆正常行驶时所需的牵引力,并生成牵引系统控制指令,然后通过接口控制模块发送给车辆牵引系统,以使车辆牵引系统根据牵引系统控制指令,调整牵引力大小,从而使车辆正常行驶。
即,接口控制模块,具体用于通过与车辆载荷传感器连接的接口,获取车辆载荷传感 器采集的车辆载荷;
主控模块,具体用于根据车辆载荷,生成牵引系统控制指令,并通过接口控制模块发送给车辆牵引系统。
举例来说,假设车辆运行到本站后,有10个行人上车,则车辆载荷传感器可以采集该10个行人上车后的车辆载荷,接口控制模块通过与车辆载荷传感器连接的接口,获取车辆载荷后,即可将车辆载荷发送给主控模块。主控模块即可对车辆载荷进行解析,计算出车辆正常启动所需的牵引力,并生成牵引系统控制指令,然后通过接口控制模块发送给车辆牵引系统,以使车辆牵引系统根据牵引系统控制指令,调整牵引力大小,从而使车辆正常行驶。
作为一种可能的实现方式,为了提高对车辆控制的准确性和可靠性,主控模块还可以根据车辆载荷、路况信息及车辆当前车速,生成牵引系统控制指令,并通过接口控制模块发送给车辆牵引系统,以使车辆牵引系统根据主控模块发送的牵引系统控制指令,进行状态调整。
举例来说,假设车辆正要拐弯,则接口控制模块通过与车辆载荷传感器、左右车轮车速传感器、方向盘转角传感器连接的接口,获取车辆载荷、车辆左右车轮速度及方向盘转角,并将这些信息发送给主控模块后,主控模块可以根据这些信息,确定车辆载荷、车辆左右车轮速度差及司机转向意图,并通过车辆载荷、车辆左右车轮速度差及司机转向意图,判断车辆转向程度是否和司机的转向意图一致。如果确定车辆转向不足(或过度转向),则主控模块可以确定驱动轮的牵引力过大,从而可以生成牵引系统控制指令,并通过接口控制模块发送给车辆牵引系统,以使车辆牵引系统根据牵引系统控制指令,降低驱动轮的牵引力,从而实现司机的转向意图。
可以理解的是,通过本公开实施例提供的车辆控制器的主控模块,可以实现整车自动驾驶、速度距离安全防护计算、列车管理的逻辑计算等功能,同时可以实现对接口控制模块上传的车辆数据进行分析,判断车辆潜在的故障。通过接口控制模块,可以实现对车辆执行机构的监控和故障诊断,并根据主控模块的控制命令,对车辆执行机构输出控制命令,以使车辆执行机构根据主控模块的控制命令进行状态调整,从而实现对车辆的智能控制。且本公开实施例提供的车辆控制器,是由车辆图像传感器、车辆雷达及其它各车辆传感器采集与车辆有关的数据,在对车辆进行控制时,根据的是对图像传感器、车辆雷达及其它各车辆传感器采集的数据进行解析生成的控制命令,因此,安全性和可靠性高。
本公开实施例提供的车辆控制器,通过通信连接的主控模块及接口控制模块即可实现对车辆的智能控制,提高了轨道交通的自动化和智能化,且控制方式安全、可靠,保障了 轨道交通的安全性和可靠性。
另外,相关技术中,多是通过在车辆中安装各种功能的控制系统,来对车辆进行安全控制,比如安装车载控制器(vehicle on-board controller,简称VOBC)、列车控制管理系统(Train Control and Management System,简称TCMS)等。在实际使用时,各控制系统分别与各车辆传感器连接,以获取各车辆传感器采集的数据,进而根据各传感器采集的数据对车辆的控制。
由于每个控制系统均与各车辆传感器连接,从而导致各控制系统的接口较多,设备连接方式复杂,且由于各控制系统获取各车辆传感器采集的数据后,均需要对采集的数据进行处理,而在实际运用中,不同控制系统所需的数据可能是相同的,这就会导致利用上述方式对车辆进行控制时,各控制系统需要对同一车辆传感器采集的数据进行重复处理,从而造成了处理资源的浪费。另外,通常在对车辆进行控制时,各控制系统之间的部分信息需要共享,这就需要各控制系统之间互相连接,从而导致设备的连接方式更加复杂,且控制系统之间进行传输数据存在延时,从而导致数据传输时间长,响应速度慢。
而本公开实施例提供的车辆控制器,主控模块通过接口控制模块获取各车辆传感器采集的数据,并根据各车辆传感器采集的数据,对各车辆执行机构进行控制,以实现对整车的安全控制。即在对整车进行安全控制时,各车辆传感器只需与接口控制模块连接,设备连接方式简单,且仅需将各车辆传感器采集的数据进行一次处理,即可实现对整车的安全控制,节省了处理资源,另外,车辆控制器中的所有信息可以直接共享,从而缩短了数据传输路径,减少了车辆控制器的处理时间,加快了响应速度。
而且,本公开实施例提出的车辆控制器,只需包括通信连接的主控模块及接口控制模块,接口控制模块与各车辆传感器及车辆执行机构连接,车辆控制器的接口少、结构简单,成本低,且尺寸小,方便现场维护、安装。
下面结合图2,对本公开实施例的车辆控制器的主控模块的结构进行说明。
如图2所示,主控模块,包括:互为冗余、且结构相同的第一子模块Module1及第二子模块Module2;第一子模块Module1及第二子模块Module2均分别包括图形处理器(Graphics Processing Unit,简称GPU)及中央处理器(Central Processing Unit,简称CPU)。
可以理解的是,图形处理器在处理计算机设备中与图形计算有关的工作方面,具有很好的效果。在本公开实施例中,为了能够更好的利用车辆图像传感器获取的图像数据及车辆雷达获取的雷达数据,对车辆进行控制,车辆图像传感器或车辆雷达可以与车辆控制器的主控模块中的图形处理器连接,从而在图像传感器采集车辆周围的图像数据或车辆雷达采集雷达数据后,可以通过图形处理器对车辆周围的图像数据或雷达数据进行处理,以提 高对图像数据或雷达数据的处理效果,从而更好的利用图像数据或雷达数据对车辆进行控制。或者,图像传感器和车辆雷达也可以同时与车辆控制器的主控模块中的图形处理器连接,从而通过图形处理器对图像传感器采集的车辆周围的图像数据和车辆雷达采集的雷达数据进行处理,以提高对图像数据和雷达数据的处理效果,从而更好的利用图像数据和雷达数据对车辆进行控制。
即,在本公开实施例中,图形处理器与车辆图像传感器和车辆雷达中的至少一个连接,用于对通过图像传感器获取的车辆周围的图像数据和通过车辆雷达获取的雷达数据中的至少一个进行识别处理,并将识别处理结果发送给中央处理器;
中央处理器用于对图形处理器的识别结果及从接口控制模块获取的数据进行解析,以生成对应的控制命令。
本公开实施例中,如图2所示,第一子模块Module1包括GPU1及CPU1,第二子模块Module2包括GPU2及CPU2。GPU1可以与车辆图像传感器或车辆雷达,或与图像传感器和车辆雷达同时连接,以对通过图像传感器获取的车辆周围的图像数据进行识别处理,或对通过车辆雷达获取的雷达数据进行识别处理,或对通过图像传感器获取的车辆周围的图像数据及车辆雷达获取的雷达数据进行识别处理,并将识别处理结果发送给CPU1,从而CPU1可以对GPU1的识别处理结果及从接口控制模块获取的数据进行解析,以生成对应的控制命令,并将控制命令发送给接口控制模块。同样的,GPU2也可以与车辆图像传感器或车辆雷达,或与图像传感器和车辆雷达同时连接,以对通过图像传感器获取的车辆周围的图像数据进行识别处理,或对通过车辆雷达获取的雷达数据进行识别处理,或对通过图像传感器获取的车辆周围的图像数据及车辆雷达获取的雷达数据进行识别处理,并将识别处理结果发送给CPU2,从而CPU2可以对GPU2的识别处理结果及从接口控制模块获取的数据进行解析,以生成对应的控制命令,并将控制命令发送给接口控制模块。
需要说明的是,主控模块的GPU在对车辆周围的图像数据或雷达数据,或车辆周围的图像数据及雷达数据进行识别处理之前,还可以对图像数据或雷达数据,或图像数据及雷达数据进行预处理。其中,预处理可以包括GPU对图像传感器采集的车辆周围的图像数据中,模糊或不完整的低质量图像进行过滤,或者,对车辆周围的图像数据或雷达数据按照相关性进行归类,等等。然后,GPU再对预处理后的图像数据或雷达数据,或图像数据及雷达数据进行识别处理,并将识别处理结果发送给主控模块的CPU,以使主控模块的CPU根据识别处理结果及从接口控制模块获取的数据进行解析,生成对应的控制命令,并将控制命令通过接口控制模块发送给车辆执行机构,以对车辆进行控制的过程进行说明。
需要说明的是,在具体实现时,主控模块的中央处理器可以仅根据主控模块的图形处 理器的识别处理结果,生成对应的控制命令,以对车辆进行控制。下面结合具体实例,对主控模块的中央处理器接收到主控模块的图形处理器的识别处理结果后,根据图形处理器的识别处理结果,生成对应的控制命令,以对车辆进行控制的过程进行说明。
实例四
主控模块的中央处理器获取图形处理器发送的识别处理结果后,可以根据主控模块的图形处理器的识别处理结果,判断车辆前方路况是否正常。
若异常,比如主控模块的图形处理器通过对激光雷达绘制的环境地图进行识别处理,确定车辆前方出现行人,而主控模块的中央处理器获取主控模块的图形处理器发送的识别处理结果后,根据激光雷达计算出的行人与车辆的相对距离,确定行人与车辆的距离很近。则主控模块的中央处理器可以生成紧急制动命令,并通过接口控制模块发送给车辆制动系统,以使车辆制动系统根据中央处理器发送的紧急制动命令,进行状态调整,从而控制车辆进行紧急制动。
若正常,则主控模块的中央处理器可以忽略此次与接口控制模块的通信,不向各车辆执行机构发送控制命令,或者,可以通过接口控制模块向各车辆执行机构发送保持当前状态命令,以使各车辆执行机构保持当前的状态,从而使车辆保持当前状态正常行驶。
即,在本公开实施例中,中央处理器,具体用于根据图形处理器的识别处理结果,判断车辆前方路况是否正常,并在确定车辆前方路况异常时,生成紧急制动命令,并通过接口控制模块发送给车辆制动系统。
实例五
主控模块的中央处理器获取主控模块的图形处理器发送的识别处理结果后,可以根据图形处理器的识别处理结果,确定车辆与前方车辆间的距离。
若车辆与前方车辆间的距离异常,比如预先设置了车辆与前方车辆间的距离小于10米时,则确定车辆与前方车辆间的距离过短,存在追尾风险,而主控模块的图形处理器通过对激光雷达绘制的环境地图进行识别处理,确定车辆前方存在车辆,且主控模块的中央处理器获取主控模块的图形处理器发送的识别处理结果后,根据激光雷达计算出的车辆与前方车辆的相对距离,确定车辆与前方车辆间的距离小于10米。则主控模块的中央处理器可以生成速度调整指令,并通过接口控制模块发送给车辆牵引系统或车辆制动系统,以使车辆牵引系统根据中央处理器发送的速度调整指令调整牵引力大小,或使车辆制动系统调整制动力大小,从而减小车辆的行驶速度,防止追尾。或者,中央处理器也可以将速度调整指令通过接口控制模块同时发送给车辆牵引系统或车辆制动系统,以使车辆牵引系统及车辆制动系统根据中央处理器发送的速度调整指令,分别调整牵引力大小及制动力大小,从 而减小车辆的行驶速度,防止追尾。
若车辆与前方车辆间的距离正常,则主控模块的中央处理器可以忽略此次与接口控制模块的通信,不向各车辆执行机构发送控制命令,或者,可以通过接口控制模块向各车辆执行机构发送保持当前状态命令,以使各车辆执行机构保持当前的状态,从而使车辆保持当前状态行驶。
即,在本公开实施例中,中央处理器,还用于根据图形处理器的识别处理结果,确定车辆与前方车辆间的距离,并在确定车辆与前方车辆间的距离异常时,生成速度调整指令,并通过接口控制模块发送给车辆牵引系统和车辆制动系统中的至少一个。
在某些实施例中,GPU1和GPU2可以通过局域网(Local Area Network,简称LAN)通信,从而GPU1和GPU2可以在两者的识别处理结果相同时,再分别向CPU1和CPU2发送识别处理结果,由CPU1和CPU2进行表决,从而可靠性更高。
另外,CPU1和CPU2可以实现通信、安全协议等功能,同时,GPU1和GPU2还可以采用深度神经网络算法功能,融合传感技术,从而实现车辆的智能控制和诊断功能。
CPU1可以配合电源时钟监控芯片Power&Monitoring Chip1,CPU2配合Power&Monitoring Chip2,使主控模块符合安全等级要求。CPU1和CPU2分别通过PCIE接口获取GPU1和GPU2的数据,通过接口控制模块得到车辆的相关数据,以对数据进行分析处理,实现车辆自动驾驶及速度防护功能。
下面结合图3和图4,对本公开实施例的车辆控制器的接口控制模块的结构进行说明。
如图3所示,接口控制模块可以包括电源电路,用于将从车辆系统接入的电压转换为主控模块及接口控制模块的工作电压。
其中,从车辆系统接入的电压,可以为24V直流电压或110V直流电压,此处不作限制。
本公开实施例中,如图3所示,电源电路可以包括电源接入板及电源板,电源接入板可以将车辆电源接入车辆控制器内部,从而电源板可以实现对接入的电压的转换,并为主控模块及接口控制模块供电。
需要说明的是,由于主控模块及接口控制模块的工作电压可能不同,在本公开实施例中,还可以根据主控模块及接口控制模块的工作电压等级,设置多路电源,从而通过各路电源,为对应等级的模块供电。
作为一种可能的实现方式,接口控制模块,还可以包括主控电路,用于将由各车辆传感器采集的数据进行预处理。需要说明的是,主控电路对各车辆传感器采集的数据进行预处理时,可以按照预设的周期进行,也可以按照各车辆传感器采集的数据所占内存大小进 行,此处不作限制。其中,预设的周期,可以根据需要设置。
另外,主控电路还可以用于判断从第一子模块Module1获取的控制命令与从第二子模块Module2获取的控制命令是否一致,如果一致,则将控制命令发送给车辆执行机构,以确保车辆执行机构根据正确的控制命令,进行状态调整,从而保证车辆控制的安全性和可靠性。
并且,主控电路还可以按照预设的周期,控制第一子模块Module1及第二子模块Module2同步,并在确定从第一子模块Module1获取的控制命令及第二子模块Module2获取的控制命令不一致时,断开主控模块与车辆执行机构的连接,从而避免了主控模块的第一子模块Module1或第二子模块Module2故障时,将控制命令发送给车辆执行机构,进一步保证了车辆控制的安全性和可靠性。
另外,主控电路还可以实现车辆控制管理功能,车辆故障诊断功能,并且实现安全计算机平台层软件调度算法,基于嵌入式实时操作系统及数据的安全协议封装和解析等等。
作为一种可能的实现方式,接口控制模块还可以包括看门狗电路,用于对主控电路的安全进行监控,并且产生用于控制主控电路输出的安全电源,以在确定主控电路异常时,切断安全电源。由此,实现了接口控制模块的自诊断,从而提高了接口控制模块的安全性和可靠性,进而提高了车辆控制器的整体安全性和可靠性。
另外,为了实现车辆控制器与车辆执行机构、车辆网络通信等通信功能,在接口控制模块中,如图4所示,还可以包括控制器局域网络(CAN)通信板、以太网通信板及全球定位系统(Global Positioning System,简称GPS)通信板等通信板。
其中,CAN通信板连接车厢内部CAN网络,以实现与电源系统、牵引制动系统、门控系统、照明系统、胎压系统等通信。以太网通信板与主控模块及车辆连接,以实现主控模块与车辆的网络通信。GPS通信板与GPS天线连接,用于实现GPS定位功能。CAN通信板、以太网通信板、GPS通信板与主控电路之间均采用并行总线连接,从而实现大容量、高实时性的数据收发。且CAN通信板、以太网通信板、GPS通信板受看门狗电路产生的安全电源控制,当CAN通信板、以太网通信板或GPS通信板出现故障时,看门狗电路可以切断安全电源,从而实现故障安全。
另外,接口控制模块中,还可以包括测速板,测速板与速度传感器连接,且测速板与主控板之间采用高速串行总线连接,从而实现输入输出节点的扩展。另外,测速板受看门狗电路产生的安全电源控制,当测速板出现故障时,看门狗电路可以切断安全电源,从而实现故障安全。
另外,由于各传感器采集的数据可能既包括模拟数据,也包括进行安全监控等所需的 与安全有关的数据和一般数据等,那么,在本公开实施例中,接口控制模块还可以包括安全输入板、安全输出板、一般输入输出板、模拟输入板、继电器输出板。
其中,安全输入板或安全输出板可以实现各种输入输出接口,如继电器驱动采集、速度传感器采集等。安全输入板或安全输出板与主控板之间采用高速串行总线连接,从而实现输入输出节点的扩展。且安全输入板或安全输出板的输出电路部分受看门狗电路产生的安全电源控制,当安全输入板或安全输出板出现故障时,看门狗电路可以切断对应的安全电源,从而实现故障安全。
一般输入输出板可以实现各种输入输出接口,且兼容110V和24V信号的输入输出。另外,一般输入输出板与主控板之间采用高速串行总线连接,且每个输入输出通道具有故障诊断功能。
模拟输入板可以实现车辆的模拟信号采集,且支持电压(-10V~10V)采集、电流(4~20mA)采集、脉冲调制信号采集功能。另外,模拟输入板与主控板之间采用高速串行总线连接,且每个输入输出通道具有故障诊断功能。
继电器输出板可以实现车辆的继电器接口,且支持常闭、常开两种节点方式输出,继电器接口电源可配置支持0~137.5V。另外,继电器输出板与主控板之间采用高速串行总线连接,且采用安全继电器,每个继电器输出通道具有回检诊断功能。
基于上述实施例中的车辆控制器,本公开实施例还提出一种车辆控制方法。
图5是本公开实施例的车辆控制方法的流程示意图。
如图5所示,本公开实施例的车辆控制方法,包括如下步骤:
步骤101,通过与各车辆传感器连接的接口,获取各车辆传感器采集的数据。
本公开实施例中,本公开实施例的车辆控制方法,可以由本公开实施例提供的车辆控制器执行,该车辆控制器可以被配置在任意车辆中,以对车辆进行智能控制。
其中,车辆传感器,可以是如速度传感器、车辆载荷传感器等任意可以采集与车辆有关的数据的传感器。
车辆行驶状态数据,可以包括车辆的行驶速度、车辆行驶时的载荷等数据。
步骤102,对各车辆传感器采集的数据进行处理,以生成与车辆对应的控制命令。
步骤103,对与控制命令对应的车辆执行机构进行控制,以使车辆执行机构根据控制命令进行状态调整。
其中,车辆执行机构,可以包括车辆牵引系统及车辆制动系统。
本公开实施例中,车辆控制器可以与各车辆传感器及车辆执行机构连接,从而车辆控 制器可以通过与各车辆传感器连接的接口,获取各车辆传感器采集的数据,并在对各车辆传感器采集的数据进行处理,生成与车辆对应的控制命令后,将控制命令发送给与控制命令对应的车辆执行机构,以使车辆执行机构根据控制命令进行状态调整,从而实现对与控制命令对应的车辆执行机构的控制。
需要说明的是,车辆控制器在获取各车辆传感器采集的数据后,也可以先对车辆传感器采集的数据进行预处理,然后再根据预处理后的数据,生成与车辆对应的控制命令。其中,预处理,可以包括对各传感器采集的各数据按照相关性进行归类,或者,将各车辆传感器采集的各数据的格式转换为车辆控制器能够处理的格式,等等。
可以理解的是,车辆中通常包括车辆图像传感器及激光雷达、毫米波雷达、超声波雷达等车辆雷达,以获取车辆周围的图像数据及雷达数据。在本公开实施例中,车辆控制器可以根据车辆周围的图像数据或雷达数据,或根据图像数据及雷达数据,确定车辆当前的行驶方向的路况,进而根据行驶方向的路况,生成相应的控制命令,以对车辆进行控制。即,步骤101具体可以包括:
获取车辆雷达采集的雷达数据和车辆图像传感器采集的图像数据中的至少一个。
相应的,步骤102可以包括:
对雷达数据和图像数据中的至少一个进行处理,以确定车辆当前的行驶方向的路况;
根据行驶方向的路况,生成对应的控制命令。
本公开实施例中,车辆控制器在通过与车辆雷达或车辆图像传感器连接的接口,获取车辆雷达采集的雷达数据或车辆图像传感器采集的图像数据,或通过与车辆雷达及车辆图像传感器连接的接口,获取车辆雷达采集的雷达数据及车辆图像传感器采集的图像数据后,即可对雷达数据或图像数据,或雷达数据及图像数据进行处理,以确定车辆当前的行驶方向的路况。比如以车辆雷达为激光雷达为例,车辆控制器可以获取激光雷达绘制的环境地图,并对激光雷达绘制的环境地图进行处理,从而判断车辆前方是否出现行人,在车辆前方出现行人时,车辆控制器根据激光雷达计算出的行人与车辆的相对距离,即可确定行人与车辆的距离远近,从而确定车辆当前的行驶方向的路况是否正常。
若车辆控制器确定行驶方向的路况异常,比如车辆前方出现行人,且行人与车辆的距离很近,而根据车辆中的速度传感器采集的数据,确定车辆当前的行驶速度过快,则车辆控制器可以生成紧急制动命令,并将紧急制动命令发送给车辆制动系统,以使车辆制动系统根据车辆控制器发送的紧急制动命令,进行状态调整,从而控制车辆进行紧急制动。若确定行驶方向的路况正常,则车辆控制器可以生成保持当前状态命令,并将保持当前状态命令发送给各车辆执行机构,以使各车辆执行机构保持当前的状态,从而使车辆保持当前 状态正常行驶。或者,车辆控制器在确定行驶方向的路况正常时,也可以不生成控制命令,从而使各车辆执行机构保持之前行驶方向的路况正常时的状态,从而使车辆保持当前状态正常行驶。
需要说明的是,由前述实施例可知,执行本公开实施例的车辆控制方法的车辆控制器,可以包括通信连接的主控模块及接口控制模块,车辆控制器的主控模块及接口控制模块分别通过执行何种操作,实现对车辆的控制的过程可以参照前述实施例中对车辆控制器的说明,此处不再赘述。
本公开实施例的车辆控制方法,首先通过与各车辆传感器连接的接口,获取各车辆传感器采集的数据,然后对各车辆传感器采集的数据进行处理,以生成与车辆对应的控制命令,最后对与控制命令对应的车辆执行机构进行控制,以使车辆执行机构根据控制命令进行状态调整。由此,实现了根据各传感器采集的数据,对车辆进行智能控制,提高了轨道交通的自动化和智能化,且控制方式安全、可靠,保障了轨道交通的安全性和可靠性,另外,节省了处理资源,缩短了数据传输路径,减少了数据处理时间,加快了响应速度。
本公开实施例还提出一种车辆,包括如上述实施例所述的车辆控制器。
本公开实施例提供的车辆中的车辆控制器,包括通信连接的主控模块及接口控制模块,可以实现对车辆的自动控制,提高了轨道交通的自动化和智能化,且控制方式安全、可靠,保障了轨道交通的安全性和可靠性,另外,设备连接方式简单,节省了处理资源,缩短了数据传输路径,减少了车辆控制器的处理时间,加快了响应速度。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种车辆控制器,其特征在于,包括:通信连接的主控模块及接口控制模块;
    所述接口控制模块,用于获取各车辆传感器采集的数据,并对所述各车辆传感器采集的数据进行预处理,以及将预处理后的数据发送给所述主控模块,其中,所述接口控制模块通过与各车辆传感器连接的接口,获取各车辆传感器采集的数据;
    所述主控模块,用于对所述接口控制模块发送的数据进行解析,以生成对应的控制命令,并通过所述接口控制模块将控制命令发送给车辆执行机构,以使所述车辆执行机构根据所述控制命令进行状态调整。
  2. 如权利要求1所述的车辆控制器,其特征在于,所述主控模块,包括:互为冗余、且结构相同的第一子模块及第二子模块;
    所述第一子模块及第二子模块均分别包括图形处理器及中央处理器;
    所述图形处理器与车辆图像传感器和车辆雷达中的至少一个连接,用于对通过图像传感器获取的车辆周围的图像数据和通过车辆雷达获取的雷达数据中的至少一个进行识别处理,并将识别处理结果发送给所述中央处理器;
    所述中央处理器,用于对所述图形处理器的识别处理结果及从所述接口控制模块获取的数据进行解析,以生成对应的控制命令。
  3. 如权利要求2所述的车辆控制器,其特征在于,所述中央处理器具体用于根据所述图形处理器的识别处理结果,判断所述车辆前方路况是否正常,并在确定车辆前方路况异常时,生成紧急制动命令,并通过所述接口控制模块发送给车辆制动系统。
  4. 如权利要求2或3所述的车辆控制器,其特征在于,所述中央处理器还用于根据所述图形处理器的识别处理结果,确定所述车辆与前方车辆间的距离,并在确定所述车辆与前方车辆间的距离异常时,生成速度调整指令,并通过所述接口控制模块发送给车辆牵引系统和车辆制动系统中的至少一个。
  5. 如权利要求2-4任一项所述的车辆控制器,其特征在于,所述接口控制模块,还包括:主控电路;
    所述主控电路,用于将由所述各车辆传感器采集的数据进行预处理;
    所述主控电路,还用于判断从所述第一子模块获取的控制命令与从所述第二子模块获取的控制命令是否一致,如果一致,将所述控制命令发送给所述车辆执行机构。
  6. 如权利要求5所述的车辆控制器,其特征在于,所述主控电路,还用于:
    按照预设的周期,控制所述第一子模块及第二子模块同步,并在确定从所述第一子模 块获取的控制命令与从所述第二子模块获取的控制命令不一致时,断开所述主控模块与所述车辆执行机构的连接。
  7. 如权利要求1-6任一项所述的车辆控制器,其特征在于,所述接口控制模块,具体用于通过与车辆载荷传感器连接的接口,获取车辆载荷传感器采集的车辆载荷;
    所述主控模块,具体用于根据所述车辆载荷,生成牵引系统控制指令,并通过所述接口控制模块发送给所述车辆牵引系统。
  8. 如权利要求1-7任一所述的车辆控制器,其特征在于,所述接口控制模块,包括:电源电路;
    所述电源电路,用于将从车辆系统接入的电压转换为所述主控模块及所述接口控制模块的工作电压。
  9. 如权利要求8所述的车辆控制器,其特征在于,所述接口控制模块,还包括:看门狗电路;
    所述看门狗电路,用于对所述主控电路的安全进行监控,并且产生用于控制所述主控电路输出的安全电源,以在确定所述主控电路异常时,切断所述安全电源。
  10. 一种车辆控制方法,其特征在于,包括:
    通过与各车辆传感器连接的接口,获取各车辆传感器采集的数据;
    对所述各车辆传感器采集的数据进行处理,以生成与所述车辆对应的控制命令;
    对与所述控制命令对应的车辆执行机构进行控制,以使所述车辆执行机构根据所述控制命令进行状态调整。
  11. 如权利要求10所述的控制方法,其特征在于,所述获取各车辆传感器采集的数据,包括:
    获取车辆雷达采集的雷达数据和车辆图像传感器采集的图像数据中的至少一个;
    所述对所述各车辆传感器采集的数据进行处理,以生成与所述车辆对应的控制命令,包括:
    对所述雷达数据和所述图像数据中的至少一个进行处理,以确定所述车辆当前的行驶方向的路况;
    根据所述行驶方向的路况,生成对应的控制命令。
  12. 如权利要求10或11所述的控制方法,其特征在于,所述车辆执行机构,包括车辆牵引系统及车辆制动系统。
  13. 一种车辆,其特征在于,包括如权利要求1-9任一所述的车辆控制器。
PCT/CN2019/102063 2018-08-23 2019-08-22 车辆控制器、车辆控制方法及车辆 WO2020038446A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810967882.7A CN110857111B (zh) 2018-08-23 2018-08-23 车辆控制器、车辆控制方法及车辆
CN201810967882.7 2018-08-23

Publications (1)

Publication Number Publication Date
WO2020038446A1 true WO2020038446A1 (zh) 2020-02-27

Family

ID=69592866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102063 WO2020038446A1 (zh) 2018-08-23 2019-08-22 车辆控制器、车辆控制方法及车辆

Country Status (2)

Country Link
CN (1) CN110857111B (zh)
WO (1) WO2020038446A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112104608A (zh) * 2020-08-17 2020-12-18 华人运通(上海)云计算科技有限公司 一种车辆信息安全防护方法、系统及存储介质
CN113472865B (zh) * 2021-06-21 2023-03-21 上汽通用五菱汽车股份有限公司 车辆控制器接入方法、接入控制器、车辆及可读存储介质
CN113721503A (zh) * 2021-08-16 2021-11-30 北京超星未来科技有限公司 一种车载计算平台、无人驾驶系统及车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201145913Y (zh) * 2007-10-30 2008-11-05 比亚迪股份有限公司 车辆数据采集记录装置
CN101765866A (zh) * 2007-09-06 2010-06-30 威伯科有限公司 汽车的车辆控制系统
CN201689311U (zh) * 2010-01-04 2010-12-29 北汽福田汽车股份有限公司 一种用于远程监控的车载控制器
CN201721346U (zh) * 2009-11-23 2011-01-26 天津市松正电动科技有限公司 一种双系统集成式电动汽车控制器
CN103339009A (zh) * 2010-10-05 2013-10-02 谷歌公司 对自主车辆的诊断和修理
CN105346389A (zh) * 2014-08-18 2016-02-24 比亚迪股份有限公司 车辆的控制系统、方法及车辆
CN106627438A (zh) * 2016-12-15 2017-05-10 奇瑞汽车股份有限公司 新能源汽车车辆控制器连接结构
CN107010028A (zh) * 2016-01-27 2017-08-04 比亚迪股份有限公司 电动汽车的防碰撞系统、控制方法及电动汽车

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103838189B (zh) * 2012-11-20 2016-05-04 北汽福田汽车股份有限公司 Can通信监控防护装置及车辆
CN205113335U (zh) * 2015-11-01 2016-03-30 李俊娇 一种带gps信号的车道识别车辆巡航装置
CN106527118A (zh) * 2017-01-05 2017-03-22 株洲中车时代电气股份有限公司 基于冗余架构的铁路车辆电气控制回路监测装置及方法
CN107351821A (zh) * 2017-07-10 2017-11-17 合肥思博特软件开发有限公司 一种车辆行驶安全车距控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101765866A (zh) * 2007-09-06 2010-06-30 威伯科有限公司 汽车的车辆控制系统
CN201145913Y (zh) * 2007-10-30 2008-11-05 比亚迪股份有限公司 车辆数据采集记录装置
CN201721346U (zh) * 2009-11-23 2011-01-26 天津市松正电动科技有限公司 一种双系统集成式电动汽车控制器
CN201689311U (zh) * 2010-01-04 2010-12-29 北汽福田汽车股份有限公司 一种用于远程监控的车载控制器
CN103339009A (zh) * 2010-10-05 2013-10-02 谷歌公司 对自主车辆的诊断和修理
CN105346389A (zh) * 2014-08-18 2016-02-24 比亚迪股份有限公司 车辆的控制系统、方法及车辆
CN107010028A (zh) * 2016-01-27 2017-08-04 比亚迪股份有限公司 电动汽车的防碰撞系统、控制方法及电动汽车
CN106627438A (zh) * 2016-12-15 2017-05-10 奇瑞汽车股份有限公司 新能源汽车车辆控制器连接结构

Also Published As

Publication number Publication date
CN110857111B (zh) 2021-06-18
CN110857111A (zh) 2020-03-03

Similar Documents

Publication Publication Date Title
US20210101594A1 (en) Vehicle driving guarantee method, apparatus, device and readable storage medium
WO2020038446A1 (zh) 车辆控制器、车辆控制方法及车辆
DE102020118412A1 (de) Unabhängige sicherheitsüberwachung eines automatisierten fahrsystems
WO2020259705A1 (en) Autonomous driving handoff systems and methods
JP7247042B2 (ja) 車両制御システム、車両制御方法、及びプログラム
CN112805648A (zh) 用于自主驾驶车辆的故障安全处理系统
US20210146953A1 (en) Electronic Control Unit
US11453410B2 (en) Reducing processing requirements for vehicle control
DE112019005785T5 (de) Sensorzusammenführung zur bestimmung der zuverlässigkeit des autonomen fahrzeugbetriebs
CN113682323A (zh) 一种基于双目视觉的低速无人驾驶车辆安全冗余架构与方法
KR20200130881A (ko) V2x 기반 군집주행 상황별 차간거리 설정 방법 및 장치
CN116215571A (zh) 车辆的自动驾驶系统及方法
US11908200B2 (en) System and method in the prediction of target vehicle behavior based on image frame and normalization
CN113581171B (zh) 一种自动驾驶方法、系统、可读存储介质及车辆
WO2022246853A1 (zh) 一种车辆系统的安全测试方法和测试用车辆
CN117058867A (zh) 一种会车方法及相关装置
JP7450982B2 (ja) インテリジェントコネクテッドビークル用の制御システム及び制御方法
US20210309260A1 (en) Automatic running vehicle and operation management device for automatic running vehicle
US20240067216A1 (en) Verification of vehicle prediction function
US11919526B1 (en) Model-based vehicle drive system monitors
US11987266B2 (en) Distributed processing of vehicle sensor data
CN109017787A (zh) 一种行驶控制方法
US12033399B1 (en) Turn and brake action prediction using vehicle light detection
US20240046790A1 (en) Augmented path planning for automotive applications
CN117962777A (zh) Tbox的控制方法、装置、电子设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19852663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19852663

Country of ref document: EP

Kind code of ref document: A1