WO2020147311A1 - 车辆行驶保障方法、装置、设备及可读存储介质 - Google Patents

车辆行驶保障方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2020147311A1
WO2020147311A1 PCT/CN2019/102959 CN2019102959W WO2020147311A1 WO 2020147311 A1 WO2020147311 A1 WO 2020147311A1 CN 2019102959 W CN2019102959 W CN 2019102959W WO 2020147311 A1 WO2020147311 A1 WO 2020147311A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
driving
state information
current road
environment information
Prior art date
Application number
PCT/CN2019/102959
Other languages
English (en)
French (fr)
Inventor
于高
薛晶晶
秦圣林
胡诗
Original Assignee
北京百度网讯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京百度网讯科技有限公司 filed Critical 北京百度网讯科技有限公司
Publication of WO2020147311A1 publication Critical patent/WO2020147311A1/zh
Priority to US17/125,293 priority Critical patent/US20210101594A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0145Measuring and analyzing of parameters relative to traffic conditions for specific applications for active traffic flow control
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/164Centralised systems, e.g. external to vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo or light sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • B60W2420/408
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/10Number of lanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/406Traffic density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle

Definitions

  • This application relates to the field of unmanned driving technology, and more specifically, to a method, device, equipment, and readable storage medium for ensuring vehicle driving.
  • Unmanned vehicles With the development of computer technology and artificial intelligence, unmanned vehicles (referred to as unmanned vehicles) have broad application prospects in transportation, military, logistics and warehousing, and daily life.
  • Unmanned driving technology mainly includes the perception of environmental information, intelligent decision-making of driving behavior, planning of collision-free paths, and vehicle motion control.
  • the purpose of at least one embodiment of the present application is to provide a vehicle driving guarantee method, device, equipment, and readable storage medium to provide guarantee for the normal driving of an unmanned vehicle and improve the driving stability of the vehicle.
  • the first aspect of the embodiments of the present application provides a vehicle driving guarantee method, including:
  • the vehicle's own state information meets the preset driving guarantee conditions, the vehicle's own state information and current road environment information are sent to the monitoring terminal, so that the monitoring user determines the driving strategy based on the vehicle's own state information and current road environment information, The monitoring terminal generates a control instruction according to the driving strategy;
  • the state information of the vehicle itself includes the driving speed of the vehicle
  • sending the vehicle's own state information and current road environment information to the monitoring terminal specifically includes:
  • the vehicle's own state information and current road environment information are sent to the monitoring terminal.
  • the state information of the vehicle itself includes the travel displacement of the vehicle
  • sending the vehicle's own state information and current road environment information to the monitoring terminal specifically includes:
  • the vehicle's own state information and current road environment information are sent to the monitoring terminal.
  • the controlling the vehicle to drive according to the control instruction is specifically:
  • the controlling the vehicle to drive on the non-congested road section in the current road environment information specifically includes:
  • the front road section in the current road environment information of the vehicle is a non-congested road section, controlling the vehicle to drive along the front road section;
  • the sending the vehicle's own state information and current road environment information to the monitoring terminal specifically includes:
  • the point-to-point network is used to send the vehicle's own state information and current road environment information to the monitoring terminal.
  • a second aspect of the embodiments of the present application provides a vehicle driving guarantee method, including:
  • the driving strategy being determined based on the vehicle's own state information and current road environment information when the vehicle's own state information meets preset driving guarantee conditions;
  • the control instruction is sent to the vehicle terminal, so that the vehicle terminal controls the vehicle to drive according to the control instruction.
  • generating a control instruction according to the driving strategy specifically includes:
  • the corresponding control instruction is generated according to the driving strategy of the vehicle on the non-congested road section in the current road environment information.
  • the generating a corresponding control instruction according to the driving strategy of the vehicle on the non-congested road section in the current road environment information specifically includes:
  • the second control instruction is generated according to the driving strategy of the vehicle on the surrounding non-congested road sections in the current road environment information.
  • a third aspect of the embodiments of the present application provides a vehicle driving guarantee device, including:
  • the acquisition module is used to acquire the vehicle's own state information and current road environment information in real time;
  • the sending module is used to send the vehicle's own state information and current road environment information to the monitoring terminal if the vehicle's own state information meets the preset driving guarantee conditions, so that the monitoring user can use the vehicle's own state information and current road environment information
  • the monitoring terminal After determining the driving strategy, the monitoring terminal generates a control instruction according to the driving strategy;
  • the receiving control module is used to receive the control instruction returned by the monitoring terminal and control the vehicle to drive according to the control instruction.
  • a fourth aspect of the embodiments of the present application provides a vehicle driving guarantee device, including:
  • a strategy receiving module configured to receive a driving strategy sent by a monitoring user, the driving strategy being determined based on the vehicle's own state information and current road environment information when the vehicle's own state information meets preset driving guarantee conditions;
  • An instruction generation module configured to generate control instructions according to the driving strategy
  • the instruction sending module is used to send the control instruction to the vehicle terminal, so that the vehicle terminal controls the vehicle to drive according to the control instruction.
  • a fifth aspect of the embodiments of the present application provides a vehicle-mounted device, including: a memory, a processor, and a computer program;
  • the computer program is stored in the memory and is configured to be executed by the processor to implement the method as described in the first aspect above.
  • a sixth aspect of the embodiments of the present application provides a monitoring device, including: a memory, a processor, and a computer program;
  • the computer program is stored in the memory, and is configured to be executed by the processor to implement the method according to the second aspect above.
  • a seventh aspect of the embodiments of the present application provides a computer-readable storage medium on which a computer program is stored, and the program is executed by a processor to implement the method described in the first aspect.
  • An eighth aspect of the embodiments of the present application provides a computer-readable storage medium on which a computer program is stored, and the program is executed by a processor to implement the method described in the second aspect.
  • the embodiment of the application obtains the vehicle's own state information and current road environment information in real time, and if the vehicle's own state information meets the preset driving guarantee conditions, the vehicle's own state information and the current road are sent to the monitoring terminal Environmental information, so that after the monitoring user determines the driving strategy according to the vehicle's own state information and current road environment information, the monitoring terminal generates control instructions according to the driving strategy, receives the control instructions returned by the monitoring terminal, and controls the vehicle Drive according to the control instruction, so that the vehicle can deal with unexpected situations such as road congestion in time according to the control instruction, and ensure that the vehicle arrives at the destination in a timely and stable manner, thereby avoiding certain economic losses.
  • Fig. 1 is a schematic diagram of a driving environment provided by an embodiment of the application
  • FIG. 2 is a flowchart of a method for guaranteeing vehicle driving according to Embodiment 1 of this application;
  • FIG. 3 is a flowchart of the vehicle driving guarantee method provided in the second embodiment of this application.
  • FIG. 4 is a flowchart of a method for guaranteeing vehicle driving according to Embodiment 3 of the application;
  • FIG. 5 is a schematic structural diagram of a vehicle driving guarantee device provided in Embodiment 4 of this application.
  • FIG. 6 is a schematic diagram of the structure of the vehicle driving guarantee device provided by the sixth embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a vehicle-mounted device according to Embodiment 7 of this application.
  • FIG. 8 is a schematic structural diagram of a monitoring device provided in Embodiment 8 of this application.
  • Fig. 1 exemplarily shows a schematic diagram of a driving environment to which the method, device, device and readable storage medium according to the embodiments of the present application are applicable.
  • the scenario shown in the figure is a two-way four-lane environment in which there are multiple vehicles.
  • the unmanned vehicle in this application is the vehicle A in the figure, and the figure B is the monitoring terminal of the application.
  • the two lanes to the right where vehicle A is located are more congested and there are fewer vehicles in the two lanes to the left.
  • Vehicle A is equipped with multiple cameras for autonomous driving, several millimeter wave radars, lidars and other equipment.
  • Lidar uses light detection and ranging (LIDAR) technology, more than one Lidar can scan the entire 360-degree field of view more completely and quickly.
  • the camera captures video or images, millimeter wave radar and lidar measure the distance to other vehicles or obstacles and the speed of the obstacles, and provide road environment information to the vehicle-mounted automatic driving system.
  • the automatic driving system is based on the current road conditions. , The distance to the moving obstacle and other information generate control information, which acts on the various equipment and parts of the car to accelerate, decelerate or stop automatic driving.
  • Fig. 1 exemplarily shows that a vehicle running on the road will encounter unexpected situations such as road congestion.
  • Existing unmanned vehicle automatic driving systems will control the vehicle to stop or drive slowly after making the decision of road congestion. If the duration is too long, it will cause the unmanned vehicle to fail to reach the destination in time and cause corresponding losses.
  • Fig. 2 is a flowchart of the vehicle driving guarantee method provided by the first embodiment of the application. As shown in Fig. 2, the exemplified embodiment of the present application is executed by the vehicle driving guarantee device, which can be integrated in the automatic driving system in.
  • the method for guaranteeing vehicle travel provided by this embodiment includes the following steps:
  • S101 Acquire real-time vehicle state information and current road environment information.
  • the self-driving vehicle can use the configured camera, millimeter wave radar and/or lidar and other sensing devices to collect and record the vehicle’s own state information and current road environment information in real time when driving on the current road.
  • the self-state information may include the vehicle's speed, displacement, various perception information, and decision information made based on the perception information.
  • the current road environment information may include information about vehicles or obstacles around the vehicle, traffic light information, and so on.
  • the vehicle's own state information meets the preset driving guarantee conditions, send the vehicle's own state information and current road environment information to the monitoring terminal, so that the monitoring user can determine a driving strategy based on the vehicle's own state information and current road environment information After that, the monitoring terminal generates a control instruction according to the driving strategy.
  • the preset driving guarantee condition may be that the vehicle speed is low for a long time.
  • the preset driving guarantee condition may be that the displacement of the vehicle changes little over a period of time.
  • the preset driving guarantee condition may be that the decision information made by the vehicle according to the perception information has more abnormal situations.
  • the monitoring user of the monitoring terminal can comprehensively judge the current state of the vehicle itself and the real environment based on the received vehicle state information and current road environment information, so as to make timely and accurate decisions so that the vehicle can respond to current emergencies Driving strategy. For example, if it is detected that the speed and displacement of the vehicle meet the above-mentioned preset driving guarantee conditions, it is often because the automatic driving system has made a decision such as current road congestion or abnormal obstacles, but the actual situation may have two reasons. One is that the current road is indeed congested and cannot be circumvented automatically, and the other is that the vehicle's perception system is faulty, unable to accurately identify obstacles in time or perception errors.
  • the vehicle's own state information and current road environment information are sent to the monitoring terminal, and the monitoring user determines the driving strategy in time and accurately. If the current road is indeed congested, formulating a driving strategy based on the current road environment information can be to control the vehicle to drive to a non-congested road section. If the vehicle's perception system cannot accurately identify the current obstacle or identification error in time, it can control the vehicle to continue normal driving to pass the current incorrectly identified area or update the error software in the automatic driving system, and resume normal driving after the update.
  • the monitoring terminal generates corresponding control instructions according to the determined driving strategy and returns them to the vehicle.
  • S103 Receive a control instruction returned by the monitoring terminal, and control the vehicle to drive according to the control instruction.
  • the vehicle receives the control instruction returned by the monitoring terminal, and controls the vehicle to drive according to the control instruction. For example, control the vehicle to drive to a non-congested road section or continue to drive normally.
  • the vehicle's own state information and current road environment information are sent to the monitoring terminal, so that the monitoring user can
  • the monitoring terminal After determining the driving strategy based on its own state information and current road environment information, the monitoring terminal generates a control instruction according to the driving strategy, receives the control instruction returned by the monitoring terminal, and controls the vehicle to drive according to the control instruction, so that The vehicle can deal with unexpected situations such as road congestion in a timely manner according to the control instructions, ensuring that the vehicle can reach the destination in a timely and stable manner, thereby avoiding certain economic losses.
  • FIG. 3 is a flowchart of the method for guaranteeing vehicle travel provided in the second embodiment of the application. As shown in FIG. 3, the method for guaranteeing vehicle travel provided in this embodiment is based on the first embodiment of the method of the present application. Possible implementations of steps S102 and S103:
  • step S102 can be implemented through step S201 and/or step S202:
  • the vehicle's own state information includes the vehicle's driving speed. If the continuous time of the vehicle's driving speed being less than the preset speed threshold exceeds the preset time threshold, the vehicle's own state information and current state information are sent to the monitoring terminal. Road environment information.
  • the preset speed threshold is 10km/h
  • the preset time threshold is 10 minutes.
  • the vehicle's own state information includes the travel displacement of the vehicle. If the vehicle's travel displacement is less than a preset displacement threshold within a preset time period, the vehicle's own state information and current road environment information are sent to the monitoring terminal .
  • the preset time period is 10 minutes
  • the preset displacement threshold is 1 km.
  • the displacement of vehicle A is less than 1 km in 10 minutes, the state of the vehicle itself is sent to the monitoring terminal Information and current road environment information.
  • a point-to-point network may be used to send the vehicle's own state information and current road environment information to the monitoring terminal.
  • an unmanned vehicle and a monitoring terminal form a point-to-point network.
  • the unmanned vehicle can directly communicate with the monitoring terminal through the 4G/5G network without passing through the server, thereby reducing information transmission delay and improving communication efficiency.
  • step S103 of the example can be implemented by the following method:
  • step S203 may include:
  • S203a If the front road section in the current road environment information of the vehicle is a non-congested road section, control the vehicle to drive along the front road section.
  • the vehicle if the road ahead in the current road environment information of the vehicle is a non-congested road section, it means that the vehicle’s perception system misreports, leading to vehicle decision-making errors.
  • the reason for the misreporting of the perception system may be the software and hardware failure of the perception system or the perception system targeting The current road section is invalid. In the above case, the vehicle can be controlled to continue driving along the road section ahead.
  • S203b If only the surrounding road sections in the current road environment information of the vehicle are non-congested road sections, control the vehicle to drive along the surrounding road sections.
  • the vehicle can be controlled to drive along the surrounding non-congested road sections, and the vehicle can resume automatic driving after bypassing the congested road sections.
  • the point-to-point network is used to send the vehicle's own state information and current road environment information to the monitoring terminal, so that after the monitoring user determines the driving strategy based on the vehicle's own state information and current road environment information, the monitoring terminal
  • the driving strategy generates control instructions, receives the control instructions returned by the monitoring terminal, and controls the vehicle to drive according to the control instructions, so that the vehicle can deal with emergencies such as road congestion in a timely manner according to the control instructions, and ensure that the vehicle is timely Stably reach the destination, thus avoiding certain economic losses.
  • FIG. 4 is a flowchart of the vehicle driving guarantee method provided by the third embodiment of the application.
  • the execution subject of the exemplary embodiment of the present application may be a vehicle driving guarantee device, which may be integrated in the monitoring In the terminal.
  • the vehicle driving guarantee method provided in this embodiment includes the following steps:
  • S301 Receive a driving strategy sent by a monitoring user, where the driving strategy is determined based on the vehicle's own state information and current road environment information when the vehicle's own state information meets a preset driving guarantee condition.
  • the monitoring user of the monitoring terminal can comprehensively judge the current state of the vehicle itself and the real environment according to the received vehicle's own state information and current road environment information, so as to make timely and accurate decisions so that the vehicle can respond to current emergencies Driving strategy. For example, if it is detected that the speed and displacement of the vehicle meet the above-mentioned preset driving guarantee conditions, it is often because the automatic driving system has made a decision such as current road congestion or abnormal obstacles, but the actual situation may have two reasons. One is that the current road is indeed congested and cannot be circumvented automatically, and the other is that the vehicle's perception system is faulty, unable to accurately identify obstacles in time or perception errors. Therefore, the monitoring user can determine the driving strategy timely and accurately.
  • formulating a driving strategy based on the current road environment information can be to control the vehicle to drive to a non-congested road section. If the vehicle's perception system cannot accurately identify the current obstacle or identification error in time, it can control the vehicle to continue normal driving to pass the current incorrectly identified area or update the error software in the automatic driving system, and resume normal driving after the update.
  • S302 Generate a control instruction according to the driving strategy.
  • a control instruction for controlling the vehicle to travel to a non-congested road section is generated according to the aforementioned driving strategy. If the vehicle’s perception system cannot accurately identify the current obstacle or the recognition error in time, the generated control instruction can be to control the vehicle to continue to drive normally to pass the area where the current error is recognized or update the error software in the automatic driving system. After returning to normal driving.
  • the monitoring terminal generates a corresponding control instruction according to the determined driving strategy and returns it to the vehicle, and the vehicle terminal controls the vehicle to drive according to the returned control instruction.
  • step S302 may specifically be:
  • S401 Generate a corresponding control instruction according to a driving strategy of the vehicle on a non-congested road section in the current road environment information.
  • step S401 may include:
  • S401a Generate a first control instruction according to the driving strategy of the vehicle on the non-congested road ahead in the current road environment information.
  • the road ahead in the current road environment information is a non-congested road section, it means that the vehicle perception system is malfunctioning, and a control instruction to control the vehicle to continue normal driving on the road ahead is generated.
  • S401b Generate a second control instruction according to the driving strategy of the vehicle on the surrounding non-congested road sections in the current road environment information.
  • a control instruction for controlling the vehicle to detour the surrounding non-congested road sections to pass the congested road section ahead is generated.
  • FIG. 5 is a schematic structural diagram of a vehicle driving guarantee device provided in Embodiment 4 of this application. As shown in FIG. 5, the device provided in this embodiment includes:
  • the obtaining module 510 is used to obtain real-time vehicle state information and current road environment information
  • the sending module 520 is configured to send the vehicle's own state information and current road environment information to the monitoring terminal if the vehicle's own state information meets the preset driving guarantee conditions, so that the monitoring user can use the vehicle's own state information and the current road environment After the information determines the driving strategy, the monitoring terminal generates a control instruction according to the driving strategy;
  • the receiving control module 530 is configured to receive a control instruction returned by the monitoring terminal, and control the vehicle to drive according to the control instruction.
  • the device provided in this embodiment can execute the technical solution of the method embodiment shown in FIG. 2, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the device provided in this embodiment is on the basis of the device provided in Embodiment 4 of this application. Further, according to an embodiment of this application, if the state information of the vehicle itself includes the driving speed of the vehicle, the sending module 520 may It is used for: if the continuous time of the running speed of the vehicle being less than the preset speed threshold exceeds the preset time threshold, sending the vehicle's own state information and current road environment information to the monitoring terminal.
  • the state information of the vehicle itself includes the travel displacement of the vehicle
  • the sending module 520 is configured to: if the travel displacement of the vehicle is less than a preset displacement threshold within a preset time period , Then send the vehicle's own state information and current road environment information to the monitoring terminal.
  • the receiving control module 530 is specifically configured to: control the vehicle to drive on a non-congested road section in the current road environment information.
  • the receiving control module 530 is configured to: if the road section ahead in the current road environment information of the vehicle is a non-congested road section, control the vehicle to drive along the road section ahead. If only the surrounding road sections in the current road environment information of the vehicle are non-congested road sections, control the vehicle to drive along the surrounding road sections.
  • the sending module 520 is configured to send the vehicle's own state information and current road environment information to the monitoring terminal using a point-to-point network.
  • the device provided in this embodiment can execute the technical solution of the method embodiment shown in FIG. 3, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 6 is a schematic structural diagram of a vehicle driving guarantee device provided in Embodiment 6 of this application. As shown in FIG. 6, the device provided in this embodiment includes:
  • the strategy receiving module 610 is used to receive a driving strategy sent by a monitoring user, the driving strategy is determined based on the vehicle's own state information and current road environment information under the condition that the vehicle's own state information meets preset driving guarantee conditions.
  • the instruction generation module 620 is configured to generate a control instruction according to the driving strategy.
  • the instruction sending module 630 is configured to send the control instruction to the vehicle terminal, so that the vehicle terminal controls the vehicle to drive according to the control instruction.
  • the instruction generation module 630 is configured to:
  • the corresponding control instruction is generated according to the driving strategy of the vehicle on the non-congested road section in the current road environment information.
  • the instruction generation module 630 is used to:
  • the first control instruction is generated according to the driving strategy of the vehicle on the non-congested road section ahead in the current road environment information.
  • the second control instruction is generated according to the driving strategy of the vehicle on the surrounding non-congested road sections in the current road environment information.
  • the device provided in this embodiment can execute the technical solution of the method embodiment shown in FIG. 4, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 7 is a schematic structural diagram of a vehicle-mounted device provided in Embodiment 7 of the application.
  • the vehicle-mounted device provided in this embodiment includes: a memory 710, a processor 720, and a computer program;
  • the computer program is stored in the memory 710, and is configured to be executed by the processor 720 to implement the vehicle travel guarantee method in the first embodiment of the present application or the vehicle travel guarantee in the second embodiment of the present application method.
  • FIG. 8 is a schematic structural diagram of a monitoring device provided in Embodiment 8 of this application.
  • the monitoring device provided in this embodiment includes: a memory 810, a processor 820, and a computer program;
  • the computer program is stored in the memory 810 and is configured to be executed by the processor 820 to implement the vehicle driving guarantee method in the third embodiment of the present application.
  • the ninth embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, and the program is executed by the processor to implement the vehicle driving guarantee method in the first embodiment of the present application or the second embodiment of the present application.
  • Vehicle driving guarantee method Vehicle driving guarantee method.
  • the vehicle's own state information and current road environment information are sent to the monitoring terminal, so that the monitoring user can
  • the monitoring terminal After determining the driving strategy based on its own state information and current road environment information, the monitoring terminal generates a control instruction according to the driving strategy, receives the control instruction returned by the monitoring terminal, and controls the vehicle to drive according to the control instruction, so that The vehicle can deal with unexpected situations such as road congestion in a timely manner according to the control instructions, ensuring that the vehicle can reach the destination in a timely and stable manner, thereby avoiding certain economic losses.
  • the tenth embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, and the program is executed by a processor to implement the vehicle driving guarantee method in the third embodiment of the present application.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of modules is only a logical function division, and there may be other divisions in actual implementation, for example, multiple modules or components can be combined or integrated. To another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or modules, and may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical modules, that is, they may be located in one place, or they may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functional modules in the various embodiments of the present application may be integrated into one processing module, or each module may exist alone physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of hardware plus software functional modules.
  • the program code used to implement the method of the present application can be written in any combination of one or more programming languages. These program codes can be provided to the processors or controllers of general-purpose computers, special-purpose computers, or other programmable data processing devices, so that when the program codes are executed by the processor or controller, the functions specified in the flowcharts and/or block diagrams/ The operation is implemented.
  • the program code can be executed entirely on the machine, partly on the machine, as an independent software package, partly executed on the machine and partly executed on the remote machine, or entirely executed on the remote machine or server.
  • a machine-readable medium may be a tangible medium, which may contain or store a program for use by the instruction execution system, apparatus, or device or in combination with the instruction execution system, apparatus, or device.
  • the machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • the machine-readable medium may include, but is not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices, or equipment, or any suitable combination of the foregoing.
  • machine-readable storage media would include electrical connections based on one or more wires, portable computer disks, hard drives, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or flash memory erasable programmable read-only memory
  • CD-ROM compact disk read only memory
  • magnetic storage device magnetic storage device, or any suitable combination of the foregoing.

Abstract

一种车辆行驶保障方法、装置、设备及可读存储介质,该方法包括:实时获取车辆自身状态信息和当前道路环境信息,若所述车辆自身状态信息满足预设行驶保障条件,则向监控终端发送所述车辆自身状态信息和当前道路环境信息,以使监控用户根据车辆自身状态信息和当前道路环境信息确定行驶策略之后,所述监控终端根据所述行驶策略生成控制指令,接收所述监控终端返回的控制指令,并控制所述车辆按照所述控制指令行驶,以使车辆能够根据控制指令及时处理遇到的道路拥堵等突发情况,保障车辆及时稳定地到达目的地,从而避免了一定的经济损失。

Description

车辆行驶保障方法、装置、设备及可读存储介质
本申请要求于2019年01月15日提交中国专利局、申请号为201910037115.0、申请名称为“车辆行驶保障方法、装置、设备及可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无人驾驶技术领域,更为具体地,涉及一种车辆行驶保障方法、装置、设备及可读存储介质。
背景技术
随着计算机技术和人工智能的发展,无人驾驶汽车(简称:无人车)在交通、军事、物流仓储、日常生活等方面具有广阔的应用前景。无人驾驶技术主要包括环境信息的感知,驾驶行为的智能决策,无碰撞路径的规划,以及车辆的运动控制等部分。
现有的无人车在自动驾驶运营过程中,经常会遇到一些,诸如当前道路拥堵不能通行,或者依靠无人车自身无法及时绕开当前障碍物,再或者无人车自身软硬件出现故障导致不能正常行驶等突发情况,导致无人车不能及时稳定地到达目的地,从而给无人车运营商带来一定的经济损失。
发明内容
至少一个本申请实施例的目的在于提供一种车辆行驶保障方法、装置、设备及可读存储介质以能够对无人驾驶车辆的正常行驶提供保障,提高车辆的行驶稳定性。
本申请实施例第一方面提供一种车辆行驶保障方法,包括:
实时获取车辆自身状态信息和当前道路环境信息;
若所述车辆自身状态信息满足预设行驶保障条件,则向监控终端发送所述车辆自身状态信息和当前道路环境信息,以使监控用户根据车辆自身状态信息和当前道路环境信息确定行驶策略之后,所述监控终端根据所述行驶策略生成控制指令;
接收所述监控终端返回的控制指令,并控制所述车辆按照所述控制指令行驶。
在一种可能的实现方式中,本申请实施例提供的上述方法中,所述车辆自身状态信息包括车辆的行驶速度;
若所述车辆自身状态信息满足预设条件,则向监控终端发送所述车辆自身状态信息和当前道路环境信息,具体包括:
若所述车辆的行驶速度小于预设速度阈值的连续时间超过预设时间阈值,则向所述监控终端发送所述车辆自身状态信息和当前道路环境信息。
在一种可能的实现方式中,本申请实施例提供的上述方法中,所述车辆自身状态信息包括车辆的行驶位移;
若所述车辆自身状态信息满足预设条件,则向监控终端发送所述车辆自身状态信息和当前道路环境信息,具体包括:
若在预设时间段内,所述车辆的行驶位移小于预设位移阈值,则向监控终端发送所述车辆自身状态信息和当前道路环境信息。
在一种可能的实现方式中,本申请实施例提供的上述方法中,所述控制所述车辆按照所述控制指令行驶,具体为:
控制所述车辆在所述当前道路环境信息中的非拥堵路段进行行驶。
在一种可能的实现方式中,本申请实施例提供的上述方法中,所述控制所述车辆在所述当前道路环境信息中的非拥堵路段进行行驶,具体包括:
若所述车辆的当前道路环境信息中的前方路段为非拥堵路段,则控制所述车辆沿着所述前方路段行驶;
若所述车辆的当前道路环境信息中仅有周边路段为非拥堵路段,则控制所述车辆沿着所述周边路段行驶。
在一种可能的实现方式中,本申请实施例提供的上述方法中,所述向监控终端发送所述车辆自身状态信息和当前道路环境信息,具体包括:
采用点对点网络向所述监控终端发送所述车辆自身状态信息和当前道路环境信息。
本申请实施例第二方面提供一种车辆行驶保障方法,包括:
接收监控用户发送的行驶策略,所述行驶策略是在车辆自身状态信息满足预设行驶保障条件下根据所述车辆自身状态信息和当前道路环境信息确定的;
根据所述行驶策略生成控制指令;
将所述控制指令发送给车辆终端,以使所述车辆终端控制车辆按照所述控制指令行驶。
在一种可能的实现方式中,本申请实施例提供的上述方法中,根据所述行驶策略生成控制指令,具体包括:
根据所述车辆在所述当前道路环境信息中的非拥堵路段行驶策略生成对应的控制指令。
在一种可能的实现方式中,本申请实施例提供的上述方法中,所述根据所述车辆在所述当前道路环境信息中的非拥堵路段行驶策略生成对应的控制指令,具体包括:
根据所述车辆在所述当前道路环境信息中的前方非拥堵路段的行驶策略生成第一控制指令;
根据所述车辆在所述当前道路环境信息中的周边非拥堵路段的行驶策略生成第二控制指令。
本申请实施例第三方面提供一种车辆行驶保障装置,包括:
获取模块,用于实时获取车辆自身状态信息和当前道路环境信息;
发送模块,用于若所述车辆自身状态信息满足预设行驶保障条件,则向监控终端发送所述车辆自身状态信息和当前道路环境信息,以使监控用户根据车辆自身状态信息和当前道路环境信息确定行驶策略之后,所述监控终端根据所述行驶策略生成控制指令;
接收控制模块,用于接收所述监控终端返回的控制指令,并控制所述车辆按照所述控制指令行驶。
本申请实施例第四方面提供一种车辆行驶保障装置,包括:
策略接收模块,用于接收监控用户发送的行驶策略,所述行驶策略是在车辆自身状态信息满足预设行驶保障条件下根据所述车辆自身状态信息和当前道路环境信息确定的;
指令生成模块,用于根据所述行驶策略生成控制指令;
指令发送模块,用于将所述控制指令发送给车辆终端,以使所述车辆终端控制车辆按照所述控制指令行驶。
本申请实施例第五方面提供一种车载设备,包括:存储器,处理器以及计算机程序;
其中,所述计算机程序存储在所述存储器中,并被配置为由所述处理器执行以实现如上述第一方面所述的方法。
本申请实施例第六方面提供一种监控设备,包括:存储器,处理器以及计算机程序;
其中,所述计算机程序存储在所述存储器中,并被配置为由所述处理器执行以实现如上述第二方面所述的方法。
本申请实施例第七方面提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行以实现如上述第一方面所述的方法。
本申请实施例第八方面提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行以实现如上述第二方面所述的方法。
基于以上各方面,本申请实施例通过实时获取车辆自身状态信息和当前道路环境信息,若所述车辆自身状态信息满足预设行驶保障条件,则向监控终端发送所述车辆自身状态信息和当前道路环境信息,以使监控用户根据车辆自身状态信息和当前道路环境信息确定行驶策略之后,所述监控终端根据所述行驶策略生成控制指令,接收所述监控终端返回的控制指令,并控制所述车辆按照所述控制指令行驶,以使车辆能够根据控制指令及时处理遇到的道路拥堵等突发情况,保障车辆及时稳定地到达目的地,从而避免了一定的经济损失。
附图说明
图1为本申请实施例提供的行驶环境示意图;
图2为本申请实施例一提供的车辆行驶保障方法的流程图;
图3为本申请实施例二提供的车辆行驶保障方法的流程图;
图4为本申请实施例三提供的车辆行驶保障方法的流程图;
图5为本申请实施例四提供的车辆行驶保障装置的结构示意图;
图6为本申请实施例六提供的车辆行驶保障装置的结构示意图;
图7为本申请实施例七提供的一种车载设备的结构示意图;
图8为本申请实施例八提供的一种监控设备的结构示意图。
具体实施方式
图1示例性的示出了根据本申请实施例的方法、装置、设备及可读存储介质适用的行驶环境的示意图。图示情景为一个双向四车道的环境,该环境中有多辆车辆,本申请的无人车为图示车辆A,图示B为本申请的监控终端。如图所示,车辆A所处的右向两车道车辆较多,较为拥堵,而左向两车道中车辆则较少。车辆A上配有多部用于自动驾驶的摄像头、若干毫米波雷达、激光雷达以及其它设备。在车辆本体周围均匀布设多个毫米波雷达, 在车顶中央位置布设至少一个激光雷达,以保证车辆本体周围可以全覆盖。激光雷达采用光检测和测距(LIDAR)技术,多于一个的激光雷达可以更完全和快速地扫描整个360度视界。摄像头通过拍摄视频或图像,毫米波雷达和激光雷达通过测量与其它车辆或障碍物的距离及障碍物的运动速度,将道路环境信息提供给车载的自动驾驶系统,由自动驾驶系统根据当前的路况、与运动障碍物的距离等信息生成控制信息,控制信息则作用于汽车的各个设备、部件以加速、减速或停止自动驾驶。
图1中示例性的示出了车辆在道路上行驶会遇到道路拥堵等突发情况。现有的无人车自动驾驶系统在做出道路拥堵的决策之后,会控制车辆停车或者缓慢行驶,如果持续时间过长,会造成无人车不能及时到达目的地等结果,从而造成相应损失。以下将参照附图来具体描述本申请的实施例。
实施例一
图2为本申请实施例一提供的车辆行驶保障方法的流程图,如图2所示,示例的本申请实施例的执行主体为车辆行驶保障装置,该车辆行驶保障装置可以集成在自动驾驶系统中。则本实施例提供的车辆行驶保障方法包括以下几个步骤:
S101、实时获取车辆自身状态信息和当前道路环境信息。
在可能的实施方式中,自动驾驶车辆在当前道路上行驶可以通过配置的摄像头、毫米波雷达和/或激光雷达及其它感知设备可以实时采集并记录车辆自身状态信息和当前道路环境信息,该车辆自身状态信息可以包括车辆的车速、位移、各种感知信息及根据感知信息作出的决策信息,该当前道路环境信息可以包括车辆周边的车辆或障碍物信息,交通灯信息等。
S102、若所述车辆自身状态信息满足预设行驶保障条件,则向监控终端发送所述车辆自身状态信息和当前道路环境信息,以使监控用户根据车辆自身状态信息和当前道路环境信息确定行驶策略之后,所述监控终端根据所述行驶策略生成控制指令。
在可能的实施方式中,若检测到车辆的车速、位移、各种感知信息及根据感知信息作出的决策信息中的至少一种满足预设行驶保障条件,则向监控终端发送所述车辆自身状态信息和当前道路环境信息。比如,根据实施例的一个示例性的实施方式,预设行驶保障条件可以为车辆的车速长时间较低。根据本申请实施例的另一个示例性的实施方式,预设行驶保障条件可以为车辆的位移在一段时间内变化较小。根据本申请实施例的再一个示例性的实施方式,预设行驶保障条件可以为车辆根据感知信息作出的决策信息出现异常情况较多。
进一步地,监控终端的监控用户可以根据接收到的车辆自身状态信息和当前道路环境信息来综合判断车辆自身的当前状态以及所处的真实环境,从而及时准确做出使车辆能够应对当前突发情况的行驶策略。例如,若检测到车辆的速度、位移满足上述预设行驶保障条件,往往是因为自动驾驶系统做出了当前道路拥堵或者存在异常障碍物等决策,但是实际情况可能会有两种原因,其中的一种是当前道路确实拥堵且无法自动绕开,另一种是车辆的感知系统故障,无法及时准确识别障碍物或者感知错误。因此,当满足预设行驶保障条件时,则向监控终端发送所述车辆自身状态信息和当前道路环境信息,由监控用户及时准确地确定行驶策略。若当前道路确实拥堵,则根据当前道路环境信息制定行驶策略可以为控制车辆向非拥堵路段行驶。若是车辆的感知系统不能及时准确地识别当前障碍物或识 别错误,则可以控制车辆继续正常行驶以通过当前识别有误的区域或者对自动驾驶系统中的出错软件进行更新,更新后恢复正常行驶。监控终端根据确定的行驶策略生成相应的控制指令并返回给车辆。
S103、接收所述监控终端返回的控制指令,并控制所述车辆按照所述控制指令行驶。
在可能的实施方式中,车辆接收监控终端返回的控制指令,并控制车辆按照控制指令行驶。例如,控制车辆向非拥堵路段行驶或者继续正常行驶。
通过实时获取车辆自身状态信息和当前道路环境信息,若所述车辆自身状态信息满足预设行驶保障条件,则向监控终端发送所述车辆自身状态信息和当前道路环境信息,以使监控用户根据车辆自身状态信息和当前道路环境信息确定行驶策略之后,所述监控终端根据所述行驶策略生成控制指令,接收所述监控终端返回的控制指令,并控制所述车辆按照所述控制指令行驶,以使车辆能够根据控制指令及时处理遇到的道路拥堵等突发情况,保障车辆可以及时稳定地到达目的地,从而避免了一定的经济损失。
实施例二
图3为本申请实施例二提供的车辆行驶保障方法的流程图,如图3所示,本实施例提供的车辆行驶保障方法,是在本申请方法实施例一的基础上,示例性提供了对步骤S102和S103的可能的实施方式:
示例的,上述步骤S102,可以通过步骤S201和/或步骤S202实施:
S201、所述车辆自身状态信息包括车辆的行驶速度,若所述车辆的行驶速度小于预设速度阈值的连续时间超过预设时间阈值,则向所述监控终端发送所述车辆自身状态信息和当前道路环境信息。
举例来说,预设速度阈值为10km/h,预设时间阈值为10分钟,如图1所示,若车辆A的行驶速度已经超过10分钟处于10km/h以下,则向监控终端B发送车辆A自身状态信息和当前道路环境信息。
S202、所述车辆自身状态信息包括车辆的行驶位移,若在预设时间段内,所述车辆的行驶位移小于预设位移阈值,则向监控终端发送所述车辆自身状态信息和当前道路环境信息。
举例来说,预设时间段为10分钟,预设位移阈值为1公里,如图1所示,若车辆A在10分钟内的行驶位移小于1公里,则向监控终端发送所述车辆自身状态信息和当前道路环境信息。
其中,在一种可行的实施方式中,可以采用点对点网络向所述监控终端发送所述车辆自身状态信息和当前道路环境信息。例如,由无人车和监控终端组成点对点网络,无人车可以通过4G/5G网络直接与监控终端进行通信,无需经过服务器中转,从而降低信息传输时延,提高通信效率。
示例的上述步骤S103,可以通过如下方法实施:
S203、控制所述车辆在所述当前道路环境信息中的非拥堵路段进行行驶。
在一种实施方式中,步骤S203可以包括:
S203a、若所述车辆的当前道路环境信息中的前方路段为非拥堵路段,则控制所述车辆沿着所述前方路段行驶。
其中,若车辆的当前道路环境信息中的前方路段为非拥堵路段,这说明是车辆的感知系统误报,导致车辆决策错误,感知系统误报的原因可能是感知系统软硬件故障或者感知系统针对当前路段失效,上述情况下,则可以控制车辆沿着前方路段继续行驶。
S203b、若所述车辆的当前道路环境信息中仅有周边路段为非拥堵路段,则控制所述车辆沿着所述周边路段行驶。
其中,若车辆的当前道路环境信息中仅有周边路段为非拥堵路段,则说明当前道路确实拥堵,则可以控制车辆沿着周边非拥堵路段行驶,在绕过拥堵路段后恢复车辆自动驾驶。
通过实时获取车辆自身状态信息和当前道路环境信息,若所述车辆的行驶速度小于预设速度阈值的连续时间超过预设时间阈值,或若在预设时间段内所述车辆的行驶位移小于预设位移阈值,则采用点对点网络向监控终端发送所述车辆自身状态信息和当前道路环境信息,以使监控用户根据车辆自身状态信息和当前道路环境信息确定行驶策略之后,所述监控终端根据所述行驶策略生成控制指令,接收所述监控终端返回的控制指令,并控制所述车辆按照所述控制指令行驶,以使车辆能够根据控制指令及时处理遇到的道路拥堵等突发情况,保障车辆及时稳定地到达目的地,从而避免了一定的经济损失。
实施例三
图4为本申请实施例三提供的车辆行驶保障方法的流程图,如图4所示,示例性的本申请实施例的执行主体可以为车辆行驶保障装置,该车辆行驶保障装置可以集成在监控终端中。本实施例提供的车辆行驶保障方法包括以下几个步骤:
S301、接收监控用户发送的行驶策略,所述行驶策略是在车辆自身状态信息满足预设行驶保障条件下根据所述车辆自身状态信息和当前道路环境信息确定的。
示例的,监控终端的监控用户可以根据接收到的车辆自身状态信息和当前道路环境信息来综合判断车辆自身的当前状态以及所处的真实环境,从而及时准确做出使车辆能够应对当前突发情况的行驶策略。例如,若检测到车辆的速度、位移满足上述预设行驶保障条件,往往是因为自动驾驶系统做出了当前道路拥堵或者存在异常障碍物等决策,但是实际情况可能会有两种原因,其中的一种是当前道路确实拥堵且无法自动绕开,另一种是车辆的感知系统故障,无法及时准确识别障碍物或者感知错误。因此,由监控用户及时准确地确定行驶策略。若当前道路确实拥堵,则根据当前道路环境信息制定行驶策略可以为控制车辆向非拥堵路段行驶。若是车辆的感知系统不能及时准确地识别当前障碍物或识别错误,则可以控制车辆继续正常行驶以通过当前识别有误的区域或者对自动驾驶系统中的出错软件进行更新,更新后恢复正常行驶。
S302、根据所述行驶策略生成控制指令。
示例的,若当前道路确实拥堵,则根据上述行驶策略生成控制车辆向非拥堵路段行驶的控制指令。若是车辆的感知系统不能及时准确地识别当前障碍物或识别错误,则生成的控制指令可以为控制车辆继续正常行驶以通过当前识别有误的区域或者对自动驾驶系统中的出错软件进行更新,更新后恢复正常行驶。
S303、将所述控制指令发送给车辆终端,以使所述车辆终端控制车辆按照所述控制指令行驶。
示例的,监控终端根据确定的行驶策略生成相应的控制指令并返回给车辆,车辆终端 控制车辆按照返回的控制指令行驶。
通过接收监控用户发送的行驶策略,根据行驶策略生成控制指令,将控制指令发送给车辆终端,以使车辆能够根据控制指令及时处理遇到的道路拥堵等突发情况,保障车辆可以及时稳定地到达目的地,从而避免了一定的经济损失。
根据本申请实施例的一个实施方式,上述步骤S302,可以具体为:
S401、根据所述车辆在所述当前道路环境信息中的非拥堵路段行驶策略生成对应的控制指令。
在一种实施方式中,步骤S401,可以包括:
S401a、根据所述车辆在所述当前道路环境信息中的前方非拥堵路段的行驶策略生成第一控制指令。
其中,若当前道路环境信息中的前方道路为非拥堵路段,则说明是车辆感知系统故障,则生成控制车辆在前方道路继续正常行驶的控制指令。
S401b、根据所述车辆在所述当前道路环境信息中的周边非拥堵路段的行驶策略生成第二控制指令。
其中,若当前道路环境信息中的仅有周边道路为非拥堵路段,则生成控制车辆绕道周边非拥堵路段以通过前方拥堵路段的控制指令。
实施例四
图5为本申请实施例四提供的车辆行驶保障装置的结构示意图,如图5所示,本实施例提供的装置包括:
获取模块510,用于实时获取车辆自身状态信息和当前道路环境信息;
发送模块520,用于若所述车辆自身状态信息满足预设行驶保障条件,则向监控终端发送所述车辆自身状态信息和当前道路环境信息,以使监控用户根据车辆自身状态信息和当前道路环境信息确定行驶策略之后,所述监控终端根据所述行驶策略生成控制指令;
接收控制模块530,用于接收所述监控终端返回的控制指令,并控制所述车辆按照所述控制指令行驶。
本实施例提供的装置可以执行图2所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
实施例五
本实施例提供的装置在本申请实施例四提供的装置的基础上,进一步地,根据本申请的一个实施方式,所述车辆自身状态信息包括车辆的行驶速度,则所述发送模块520,可以用于:若所述车辆的行驶速度小于预设速度阈值的连续时间超过预设时间阈值,则向所述监控终端发送所述车辆自身状态信息和当前道路环境信息。
根据本实施例的一个实施方式,所述车辆自身状态信息包括车辆的行驶位移,则所述发送模块520,用于:若在预设时间段内,所述车辆的行驶位移小于预设位移阈值,则向监控终端发送所述车辆自身状态信息和当前道路环境信息。
根据本实施例的一个实施方式,所述接收控制模块530,具体用于:控制所述车辆在所述当前道路环境信息中的非拥堵路段进行行驶。
所述接收控制模块530,用于:若所述车辆的当前道路环境信息中的前方路段为非拥 堵路段,则控制所述车辆沿着所述前方路段行驶。若所述车辆的当前道路环境信息中仅有周边路段为非拥堵路段,则控制所述车辆沿着所述周边路段行驶。
根据本实施例的一个实施方式中,所述发送模块520,用于:采用点对点网络向所述监控终端发送所述车辆自身状态信息和当前道路环境信息。
本实施例提供的装置可以执行图3所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
实施例六
图6为本申请实施例六提供的车辆行驶保障装置的结构示意图,如图6所示,本实施例提供的装置包括:
策略接收模块610,用于接收监控用户发送的行驶策略,所述行驶策略是在车辆自身状态信息满足预设行驶保障条件下根据所述车辆自身状态信息和当前道路环境信息确定的.
指令生成模块620,用于根据所述行驶策略生成控制指令。
指令发送模块630,用于将所述控制指令发送给车辆终端,以使所述车辆终端控制车辆按照所述控制指令行驶。
根据本实施例的一个实施方式,所述指令生成模块630,用于:
根据所述车辆在所述当前道路环境信息中的非拥堵路段行驶策略生成对应的控制指令。
所述指令生成模块630,用于:
根据所述车辆在所述当前道路环境信息中的前方非拥堵路段的行驶策略生成第一控制指令。根据所述车辆在所述当前道路环境信息中的周边非拥堵路段的行驶策略生成第二控制指令。
本实施例提供的装置可以执行图4所示方法实施例的技术方案,其实现原理和技术效果类似,此处不再赘述。
实施例七
图7为本申请实施例七提供的一种车载设备的结构示意图,如图7所示,本实施例提供的车载设备包括:存储器710,处理器720以及计算机程序;
其中,所述计算机程序存储在所述存储器710中,并被配置为由所述处理器720执行以实现如本申请实施例一中的车辆行驶保障方法或本申请实施例二中的车辆行驶保障方法。
相关说明可以对应参见图2至图3的步骤所对应的相关描述和效果进行理解,此处不做过多赘述。
实施例八
图8为本申请实施例八提供的一种监控设备的结构示意图,如图8所示,本实施例提供的监控设备包括:存储器810,处理器820以及计算机程序;
其中,所述计算机程序存储在所述存储器810中,并被配置为由所述处理器820执行以实现如本申请实施例三中的车辆行驶保障方法。
相关说明可以对应参见图4的步骤所对应的相关描述和效果进行理解,此处不做过多赘述。
实施例九
本申请实施例九还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行以实现如本申请实施例一中的车辆行驶保障方法或本申请实施例二中的车辆行驶保障方法。
通过实时获取车辆自身状态信息和当前道路环境信息,若所述车辆自身状态信息满足预设行驶保障条件,则向监控终端发送所述车辆自身状态信息和当前道路环境信息,以使监控用户根据车辆自身状态信息和当前道路环境信息确定行驶策略之后,所述监控终端根据所述行驶策略生成控制指令,接收所述监控终端返回的控制指令,并控制所述车辆按照所述控制指令行驶,以使车辆能够根据控制指令及时处理遇到的道路拥堵等突发情况,保障车辆可以及时稳定地到达目的地,从而避免了一定的经济损失。
实施例十
本申请实施例十还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行以实现如本申请实施例三中的车辆行驶保障方法。
通过接收监控用户发送的行驶策略,根据行驶策略生成控制指令,将控制指令发送给车辆终端,以使车辆能够根据控制指令及时处理遇到的道路拥堵等突发情况,保障车辆可以及时稳定地到达目的地,从而避免了一定的经济损失。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
用于实施本申请的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本申请的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读 介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
此外,虽然采用特定次序描绘了各操作,但是这应当理解为要求这样操作以所示出的特定次序或以顺序次序执行,或者要求所有图示的操作应被执行以取得期望的结果。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实现中。相反地,在单个实现的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实现中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。

Claims (14)

  1. 一种车辆行驶保障方法,其特征在于,包括:
    实时获取车辆自身状态信息和当前道路环境信息;
    若所述车辆自身状态信息满足预设行驶保障条件,则向监控终端发送所述车辆自身状态信息和当前道路环境信息,以使监控用户根据车辆自身状态信息和当前道路环境信息确定行驶策略之后,所述监控终端根据所述行驶策略生成控制指令;
    接收所述监控终端返回的控制指令,并控制所述车辆按照所述控制指令行驶。
  2. 根据权利要求1所述的方法,其特征在于,所述车辆自身状态信息包括车辆的行驶速度;
    若所述车辆自身状态信息满足预设条件,则向监控终端发送所述车辆自身状态信息和当前道路环境信息,具体包括:
    若所述车辆的行驶速度小于预设速度阈值的连续时间超过预设时间阈值,则向所述监控终端发送所述车辆自身状态信息和当前道路环境信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述车辆自身状态信息包括车辆的行驶位移;
    若所述车辆自身状态信息满足预设条件,则向监控终端发送所述车辆自身状态信息和当前道路环境信息,包括:
    若在预设时间段内,所述车辆的行驶位移小于预设位移阈值,则向监控终端发送所述车辆自身状态信息和当前道路环境信息。
  4. 根据权利要求2或3所述的方法,其特征在于,所述控制所述车辆按照所述控制指令行驶,包括:
    控制所述车辆在所述当前道路环境信息中的非拥堵路段进行行驶。
  5. 根据权利要求4所述的方法,其特征在于,所述控制所述车辆在所述当前道路环境信息中的非拥堵路段进行行驶,包括:
    若所述车辆当前道路的前方路段为非拥堵路段,则控制所述车辆沿着所述前方路段行驶;
    若所述车辆当前道路的周边路段为非拥堵路段,则控制所述车辆沿着所述周边路段行驶。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述向监控终端发送所述车辆自身状态信息和当前道路环境信息,包括:
    采用点对点网络向所述监控终端发送所述车辆自身状态信息和当前道路环境信息。
  7. 一种车辆行驶保障方法,其特征在于,包括:
    接收监控用户发送的行驶策略,所述行驶策略是在车辆自身状态信息满足预设行驶保障条件下根据所述车辆自身状态信息和当前道路环境信息确定的;
    根据所述行驶策略生成控制指令;
    将所述控制指令发送给车辆终端,以使所述车辆终端控制车辆按照所述控制指令行驶。
  8. 根据权利要求7所述的方法,其特征在于,根据所述行驶策略生成控制指令,包括:
    当所述行驶策略为沿当前道路环境中的非拥堵路段行驶时,生成用于控制车辆沿所述非用户路段行驶的控制指令。
  9. 根据权利要求8所述的方法,其特征在于,所述当所述行驶策略为沿当前道路环境中的非拥堵路段形式时,生成用于控制车辆沿所述非用户路段行驶的控制指令, 包括:
    根据所述车辆在所述当前道路环境信息中的前方非拥堵路段的行驶策略生成用于控制所述车辆沿当前道路的前方道路行驶的第一控制指令;或者
    根据所述车辆在所述当前道路环境信息中的周边非拥堵路段的行驶策略生成用于控制所述车辆沿所述周边非拥堵路段行驶的第二控制指令。
  10. 一种车辆行驶保障装置,其特征在于,包括:
    获取模块,用于实时获取车辆自身状态信息和当前道路环境信息;
    发送模块,用于若所述车辆自身状态信息满足预设行驶保障条件,则向监控终端发送所述车辆自身状态信息和当前道路环境信息,以使监控用户根据车辆自身状态信息和当前道路环境信息确定行驶策略之后,所述监控终端根据所述行驶策略生成控制指令;
    接收控制模块,用于接收所述监控终端返回的控制指令,并控制所述车辆按照所述控制指令行驶。
  11. 一种车辆行驶保障装置,其特征在于,包括:
    策略接收模块,用于接收监控用户发送的行驶策略,所述行驶策略是在车辆自身状态信息满足预设行驶保障条件下根据所述车辆自身状态信息和当前道路环境信息确定的;
    指令生成模块,用于根据所述行驶策略生成控制指令;
    指令发送模块,用于将所述控制指令发送给车辆终端,以使所述车辆终端控制车辆按照所述控制指令行驶。
  12. 一种车载设备,其特征在于,包括:存储器,处理器以及计算机程序;
    其中,所述计算机程序存储在所述存储器中,并被配置为由所述处理器执行以实现如权利要求1-6中任一项所述的方法。
  13. 一种监控设备,其特征在于,包括:存储器,处理器以及计算机程序;
    其中,所述计算机程序存储在所述存储器中,并被配置为由所述处理器执行以实现如权利要求1-9中任一项所述的方法。
  14. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行以实现如权利要求1-9中任一项所述的方法。
PCT/CN2019/102959 2019-01-15 2019-08-28 车辆行驶保障方法、装置、设备及可读存储介质 WO2020147311A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/125,293 US20210101594A1 (en) 2019-01-15 2020-12-17 Vehicle driving guarantee method, apparatus, device and readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910037115.0A CN109808709B (zh) 2019-01-15 2019-01-15 车辆行驶保障方法、装置、设备及可读存储介质
CN201910037115.0 2019-01-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/125,293 Continuation US20210101594A1 (en) 2019-01-15 2020-12-17 Vehicle driving guarantee method, apparatus, device and readable storage medium

Publications (1)

Publication Number Publication Date
WO2020147311A1 true WO2020147311A1 (zh) 2020-07-23

Family

ID=66603835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102959 WO2020147311A1 (zh) 2019-01-15 2019-08-28 车辆行驶保障方法、装置、设备及可读存储介质

Country Status (3)

Country Link
US (1) US20210101594A1 (zh)
CN (1) CN109808709B (zh)
WO (1) WO2020147311A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112613482A (zh) * 2021-01-04 2021-04-06 深圳裹动智驾科技有限公司 无人驾驶车辆的监控方法及系统、以及计算机设备
CN113792085A (zh) * 2021-08-16 2021-12-14 天津布尔科技有限公司 一种高污染车辆经常行驶路段监控方法、装置及存储介质
CN114426028A (zh) * 2022-03-03 2022-05-03 一汽解放汽车有限公司 智能驾驶控制方法、装置、计算机设备和存储介质

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109808709B (zh) * 2019-01-15 2021-08-03 北京百度网讯科技有限公司 车辆行驶保障方法、装置、设备及可读存储介质
CN110335370A (zh) * 2019-06-03 2019-10-15 浙江吉利控股集团有限公司 一种紧急车道保持辅助功能的更新方法、装置及汽车
WO2021102958A1 (zh) * 2019-11-29 2021-06-03 驭势(上海)汽车科技有限公司 一种交通拥堵辅助驾驶方法、系统、车载设备和存储介质
CN112991713B (zh) * 2019-12-13 2022-11-22 百度在线网络技术(北京)有限公司 数据处理方法、装置、设备及存储介质
CN113223317B (zh) * 2020-02-04 2022-06-10 华为技术有限公司 一种更新地图的方法、装置和设备
CN111580522A (zh) * 2020-05-15 2020-08-25 东风柳州汽车有限公司 无人驾驶汽车的控制方法、汽车和存储介质
CN114435469B (zh) * 2020-11-03 2023-04-28 北京地平线机器人技术研发有限公司 一种车辆导向提示方法及装置
CN112660145A (zh) * 2020-12-24 2021-04-16 李敏 一种无人驾驶车辆的控制系统及其控制方法
CN114241747B (zh) * 2021-11-19 2022-11-18 深圳成谷科技有限公司 一种道路设备的控制方法、装置、终端及可读存储介质
CN114179787A (zh) * 2021-12-09 2022-03-15 广州小鹏自动驾驶科技有限公司 泊车方法、终端设备及计算机存储介质
CN114283601A (zh) * 2021-12-23 2022-04-05 深圳创维-Rgb电子有限公司 车辆驾驶方法、系统、电视机以及存储介质
CN116341560B (zh) * 2023-02-13 2024-03-19 安徽龙鼎信息科技有限公司 一种针对运输过程安全的监控策略调整方法和系统
CN116520753B (zh) * 2023-06-21 2023-09-19 禾多科技(北京)有限公司 车辆远程控制方法、装置、电子设备和计算机可读介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110066312A1 (en) * 2009-09-15 2011-03-17 Electronics And Telecommunications Research Institute Navigation apparatus and driving route information providing method using the same and automatic driving system and method
CN104943684A (zh) * 2014-03-31 2015-09-30 比亚迪股份有限公司 无人驾驶汽车控制系统和具有其的汽车
US20150336576A1 (en) * 2014-05-23 2015-11-26 Electronics And Telecommunications Research Institute Unmanned vehicle driving apparatus and method for obstacle avoidance
CN107139917A (zh) * 2017-04-27 2017-09-08 江苏大学 一种基于混杂理论的无人驾驶汽车横向控制系统和方法
CN206691107U (zh) * 2017-03-08 2017-12-01 深圳市速腾聚创科技有限公司 无人驾驶汽车系统及汽车
CN108645409A (zh) * 2018-05-14 2018-10-12 深圳万发创新进出口贸易有限公司 一种基于无人驾驶的行车安全系统
CN109808709A (zh) * 2019-01-15 2019-05-28 北京百度网讯科技有限公司 车辆行驶保障方法、装置、设备及可读存储介质

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8509982B2 (en) * 2010-10-05 2013-08-13 Google Inc. Zone driving
JP5874414B2 (ja) * 2012-01-30 2016-03-02 株式会社デンソー ナビゲーションシステム、及びサーバ装置
EP2921363A1 (en) * 2014-03-18 2015-09-23 Volvo Car Corporation Vehicle, vehicle system and method for increasing safety and/or comfort during autonomous driving
EP3223256B1 (en) * 2014-11-17 2021-11-17 Hitachi Astemo, Ltd. Automatic driving system
ITBA20150017A1 (it) * 2015-03-05 2016-09-05 Virgilio Savino Sistema intelligente di sicurezza e soccorso per veicoli in genere
US10131362B1 (en) * 2015-06-23 2018-11-20 United Services Automobile Association (Usaa) Automobile detection system
US10023188B2 (en) * 2015-11-09 2018-07-17 Cummins Inc. Systems and methods for pre-hill cruise speed adjustment
DE102015222605A1 (de) * 2015-11-17 2017-05-18 MAN Trucks & Bus AG Verfahren und Vorrichtung zum assistierten, teilautomatisierten, hochautomatisierten, vollautomatisierten oder fahrerlosen Fahren eines Kraftfahrzeuges
CN105739534B (zh) * 2016-04-22 2020-02-21 百度在线网络技术(北京)有限公司 基于车联网的无人驾驶车多车协同驾驶方法及装置
JP2017197011A (ja) * 2016-04-27 2017-11-02 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
US10102744B2 (en) * 2016-09-27 2018-10-16 International Business Machines Corporation Predictive traffic management using virtual lanes
US10665039B2 (en) * 2016-12-09 2020-05-26 Traffilog Ltd. Distributed monitoring and control of a vehicle
CN106781471B (zh) * 2016-12-15 2019-08-16 北京小米移动软件有限公司 交通状况确定方法及装置
JP6790960B2 (ja) * 2017-03-29 2020-11-25 株式会社デンソー 自動運転制御装置
US10365654B2 (en) * 2017-03-31 2019-07-30 Uber Technologies, Inc. System for safe passenger departure from autonomous vehicle
US11511761B2 (en) * 2017-06-02 2022-11-29 Honda Motor Co., Ltd. Vehicle control system and vehicle control method
CN107745713A (zh) * 2017-09-25 2018-03-02 南京律智诚专利技术开发有限公司 一种基于环境分析的车辆自动行驶系统的工作方法
US11305782B2 (en) * 2018-01-11 2022-04-19 Tusimple, Inc. Monitoring system for autonomous vehicle operation
US10884418B2 (en) * 2018-04-25 2021-01-05 Aptiv Technologies Limited Vehicle route planning based on instances of other vehicles stopping automated operation
CN108407819A (zh) * 2018-05-16 2018-08-17 江西精骏电控技术有限公司 一种汽车自动驾驶系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110066312A1 (en) * 2009-09-15 2011-03-17 Electronics And Telecommunications Research Institute Navigation apparatus and driving route information providing method using the same and automatic driving system and method
CN104943684A (zh) * 2014-03-31 2015-09-30 比亚迪股份有限公司 无人驾驶汽车控制系统和具有其的汽车
US20150336576A1 (en) * 2014-05-23 2015-11-26 Electronics And Telecommunications Research Institute Unmanned vehicle driving apparatus and method for obstacle avoidance
CN206691107U (zh) * 2017-03-08 2017-12-01 深圳市速腾聚创科技有限公司 无人驾驶汽车系统及汽车
CN107139917A (zh) * 2017-04-27 2017-09-08 江苏大学 一种基于混杂理论的无人驾驶汽车横向控制系统和方法
CN108645409A (zh) * 2018-05-14 2018-10-12 深圳万发创新进出口贸易有限公司 一种基于无人驾驶的行车安全系统
CN109808709A (zh) * 2019-01-15 2019-05-28 北京百度网讯科技有限公司 车辆行驶保障方法、装置、设备及可读存储介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112613482A (zh) * 2021-01-04 2021-04-06 深圳裹动智驾科技有限公司 无人驾驶车辆的监控方法及系统、以及计算机设备
CN113792085A (zh) * 2021-08-16 2021-12-14 天津布尔科技有限公司 一种高污染车辆经常行驶路段监控方法、装置及存储介质
CN114426028A (zh) * 2022-03-03 2022-05-03 一汽解放汽车有限公司 智能驾驶控制方法、装置、计算机设备和存储介质
CN114426028B (zh) * 2022-03-03 2023-12-22 一汽解放汽车有限公司 智能驾驶控制方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
CN109808709B (zh) 2021-08-03
CN109808709A (zh) 2019-05-28
US20210101594A1 (en) 2021-04-08

Similar Documents

Publication Publication Date Title
WO2020147311A1 (zh) 车辆行驶保障方法、装置、设备及可读存储介质
US10832502B2 (en) Calibration for autonomous vehicle operation
US20220227394A1 (en) Autonomous Vehicle Operational Management
US20210129845A1 (en) Road anomaly detection for autonomous vehicle
CN109164809B (zh) 一种车辆编队自主跟随控制系统及方法
US10994748B2 (en) Transportation network infrastructure for autonomous vehicle decision making
US9720415B2 (en) Sensor-based object-detection optimization for autonomous vehicles
US11269332B2 (en) Multi-perspective system and method for behavioral policy selection by an autonomous agent
US20230202467A1 (en) Automatic Imposition of Vehicle Speed Restrictions Depending on Road Situation Analysis
US20180281815A1 (en) Predictive teleassistance system for autonomous vehicles
US20210261123A1 (en) Autonomous Vehicle Operation with Explicit Occlusion Reasoning
WO2017079321A1 (en) Sensor-based object-detection optimization for autonomous vehicles
US11927952B2 (en) Adaptive multi-network vehicle architecture
US20180050694A1 (en) Method and device for monitoring a setpoint trajectory to be traveled by a vehicle for being collision free
US11613254B2 (en) Method to monitor control system of autonomous driving vehicle with multiple levels of warning and fail operations
CN109298713B (zh) 指令发送方法、装置及系统、自动驾驶车辆
US11635758B2 (en) Risk aware executor with action set recommendations
US20200283014A1 (en) Continual Planning and Metareasoning for Controlling an Autonomous Vehicle
US20230415762A1 (en) Peer-to-peer occupancy estimation
US20230033297A1 (en) Complementary control system for an autonomous vehicle
EP4006680B1 (en) Systems and methods for controlling a robotic vehicle
US11767031B2 (en) Oversight system to autonomous vehicle communications
US11854269B2 (en) Autonomous vehicle sensor security, authentication and safety
US11733696B2 (en) Detecting loops for autonomous vehicles
US20230169871A1 (en) Allochronic obstacle avoidance system for platooning and method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910082

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910082

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19910082

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19910082

Country of ref document: EP

Kind code of ref document: A1