WO2021157610A1 - ステアバイワイヤの操舵入力装置 - Google Patents

ステアバイワイヤの操舵入力装置 Download PDF

Info

Publication number
WO2021157610A1
WO2021157610A1 PCT/JP2021/003925 JP2021003925W WO2021157610A1 WO 2021157610 A1 WO2021157610 A1 WO 2021157610A1 JP 2021003925 W JP2021003925 W JP 2021003925W WO 2021157610 A1 WO2021157610 A1 WO 2021157610A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering
input device
reaction force
steer
wire
Prior art date
Application number
PCT/JP2021/003925
Other languages
English (en)
French (fr)
Inventor
泰仁 中岫
木村 誠
華軍 劉
敦士 平田
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to DE112021000847.1T priority Critical patent/DE112021000847T5/de
Priority to JP2021575830A priority patent/JP7204959B2/ja
Priority to US17/797,508 priority patent/US12091101B2/en
Priority to CN202180012613.5A priority patent/CN115038635A/zh
Publication of WO2021157610A1 publication Critical patent/WO2021157610A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0235Determination of steering angle by measuring or deriving directly at the electric power steering motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/108Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/001Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup
    • B62D5/005Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup means for generating torque on steering wheel or input member, e.g. feedback
    • B62D5/006Mechanical components or aspects of steer-by-wire systems, not otherwise provided for in this maingroup means for generating torque on steering wheel or input member, e.g. feedback power actuated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear

Definitions

  • the present invention relates to a steering input device for steer-by-wire.
  • the steer-by-wire system of Patent Document 1 detects a first lock device that regulates the rotation of the steering device when the lock is activated, a second lock device that regulates the steering of the steering wheel when the lock is activated, and a rotation angle of the steering device.
  • a vehicle including the operating states of the first and second locking devices based on the one-angle sensor, the second angle sensor that detects the steering angle of the steering wheel, and the state of the ignition switch and the angle difference between the rotation angle and the steering angle.
  • the ignition switch is turned off, the vehicle is turned off after the first and second lock devices are locked, and the ignition switch is turned on. , Turn on the power and acquire the angle difference. If the angle difference is less than or equal to the predetermined value, unlock the first and second lock devices and execute the normal start-up process. If the angle difference exceeds the predetermined value, the vehicle Perform fail-safe processing with limited functionality.
  • the present invention has been made in view of the conventional situation, and an object of the present invention is to operate while suppressing the phase shift between the steering wheel and the steering wheel when the start switch of the vehicle is switched to the off state. It is an object of the present invention to provide a steer-by-wire steering input device capable of suppressing a feeling of strangeness when a person steers.
  • the reaction motor increases the reaction torque against the steering operation by the driver. Further, after the reaction force torque is increased, the lock mechanism that regulates the rotation of the steering shaft is switched from the unlocked state to the locked state.
  • the start switch of the vehicle when the start switch of the vehicle is switched to the off state, it is possible to suppress the driver's discomfort during steering while suppressing the phase shift between the steering wheel and the steering wheel.
  • FIG. 1 is a configuration diagram showing an aspect of a steer-by-wire steering system 200 provided in a vehicle 100 such as an automobile.
  • the steering wheel steering system 200 is a steering system in which the steering wheel 1 and the steering wheels 2L and 2R (for example, front wheels) are mechanically separated, and includes a steering input device 300 and a steering actuator device 400.
  • the steering actuator device 400 includes a steering actuator 410 that applies steering force to the steering wheels 2L and 2R, and an actuator control device 420 as an actuator drive circuit.
  • the steering actuator 410 is a steering motor 411 (in other words, that generates steering force). If so, it is provided with an electric motor for steering) and a steering wheel lock mechanism 412 that regulates the steering of the steering wheels 2L and 2R.
  • the actuator control device 420 acquires an operation amount signal MS (in other words, a steering angle command signal) which is an electric signal related to the operation amount of the steering wheel 1 from the steering input device 300, and based on the acquired operation amount signal MS.
  • the steering motor 411 is driven and controlled to generate steering force, and the steering wheels 2L and 2R are steered.
  • the steering wheel lock mechanism 412 regulates the steering of the steering wheels 2L and 2R according to the steering wheel lock control signal TLCS from the controller 350 included in the steering input device 300 (in other words, the steering wheels 2L and 2R. It is switched between a locked state (which fixes the steering angle) and an unlocked state which allows steering of the steering wheels 2L and 2R (in other words, the steering angles of the steering wheels 2L and 2R can be changed).
  • the rotation of the steering motor 411 is converted into a linear motion by a ball screw or the like, whereby the steering rod 110 moves in the left-right direction of the vehicle 100, and the steering rod 110 moves left and right by the link mechanism.
  • the steering wheels 2L and 2R are steered.
  • the steering wheel lock mechanism 412 regulates the steering of the steering wheels 2L and 2R (in other words, the change in steering angle) by regulating the rotation of the output shaft of the steering motor 411 and the left-right movement of the steering rod 110. do.
  • the steering input device 300 includes a steering shaft 310, a steering reaction force actuator 320, a steering shaft lock mechanism 330, a steering amount sensor 340, and a controller 350.
  • the steering shaft 310 is provided so as to be rotatable as the steering wheel 1 rotates, and is mechanically separated from the steering wheels 2L and 2R.
  • the steering reaction force actuator 320 is a device that applies a steering load (steering reaction force) to the steering shaft 310 (steering wheel 1) by using a reaction force motor 321 such as a Bresilless DC motor, and is a device other than the reaction force motor 321. , A torque damper (not shown), a steering angle limiting mechanism, a speed reducer, etc. are provided.
  • the steering shaft lock mechanism 330 is a mechanism that regulates the rotation of the steering shaft 310, and regulates the rotation of the steering shaft 310 in response to the steering shaft lock control signal SLCS from the controller 350 (in other words, the steering shaft 310. It is switched between a locked state (which fixes the angle) and an unlocked state which allows the steering shaft 310 to rotate (in other words, the angle of the steering shaft 310 can be changed).
  • the controller 350 is an electronic control device mainly composed of a microcomputer 351 including an MPU (Microprocessor Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). Coordinated control with the force actuator 320.
  • MPU Microprocessor Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the rotation angle (in other words, the steering angle) of the steering shaft 310 due to the steering operation is detected by the steering amount sensor 340, which is an angle sensor, and is transmitted to the steering actuator device 400 as an operation amount signal MS, and the steering actuator device The 400 performs position control using the steering actuator 410 according to the operation amount signal MS. Further, the controller 350 calculates the target steering reaction force (in other words, the target steering load) based on the position information of the steering actuator 410, and controls the torque of the reaction force motor 321 based on the calculated target steering reaction force. Further, the steering shaft lock mechanism 330 and the steering wheel lock mechanism 412 are controlled to switch between the locked state and the unlocked state.
  • the steering shaft lock mechanism 330 for example, a pin engagement type or a brake type lock mechanism can be adopted.
  • FIGS. 2 and 3 are views showing one aspect of the pin engagement type steering shaft lock mechanism 330, FIG. 2 shows an unlocked state, and FIG. 3 shows a locked state.
  • the steering shaft lock mechanism 330 shown in FIGS. 2 and 3 includes a movable pin 332 on which a rack gear 331 is formed, a pinion gear 333 that meshes with the rack gear 331, a motor 334 that rotationally drives the pinion gear 333, and a stopper gear provided on the outer periphery of the steering shaft 310. It consists of 335.
  • the rack gear 331 and the pinion gear 333 convert the rotational force of the output shaft of the motor 334 into a linear motion of the movable pin 332, and the movable pin 332 is supported so as to be movable in the axial direction with the radial direction of the steering shaft 310 as the axial direction. NS. Then, as shown in FIG. 2, when the movable pin 332 is in the retracted position where it does not engage with the stopper gear 335, the movable pin 332 is in an unlocked state in which the rotation of the steering shaft 310 is not restricted.
  • the motor 334 is rotationally driven in the direction in which the movable pin 332 approaches the steering shaft 310, and as shown in FIG. 3, the tip of the movable pin 332 is inserted into the insertion groove 335a sandwiched between the teeth of the stopper gear 335.
  • the side surface of the tip end portion of the movable pin 332 and the teeth of the stopper gear 335 come into contact with each other with respect to the rotation of the steering shaft 310, and the rotation of the steering shaft 310 is restricted in a locked state.
  • the steering shaft lock mechanism 330 is a brake type, for example, a lock state that regulates the rotation of the steering shaft 310 by pressing the brake pad against the outer peripheral surface of the steering shaft 310 by a pin that linearly moves with the rotation of the motor. It can be a mechanism.
  • the steering wheel lock mechanism 412 can also be the pin engagement type lock mechanism or the brake type lock mechanism shown in FIGS.
  • a structure that regulates the steering of 2R can be adopted.
  • FIG. 4 shows a structure in which the steering actuator 410 integrally includes the steering motor 411 and the steering wheel locking mechanism 412 using the clutch mechanism as one aspect of the steering wheel locking mechanism 412.
  • the clutch mechanism shown in FIG. 4 is used as a steering wheel locking mechanism 412, and is also used as an electromagnetic brake that applies braking when the steering motor 411 is stopped.
  • the steering motor 411 includes a rotor 411a, a stator coil 411b, and an output shaft 411c
  • the steering wheel locking mechanism 412 includes a clutch mechanism 450.
  • the clutch mechanism 450 includes a fixed portion including a plate 451 and a stator 452 and a movable portion including a rotor 453 and an armature 454.
  • the rotor 453 and the armature 454 are movable in the axial direction of the output shaft 411c, and the output shaft 411c It is provided so as to rotate integrally with the armature.
  • the stator 452 includes a coil 452a and a torque spring 452b.
  • the torque spring 452b presses the armature 454 and the rotor 453 toward the plate 451 so that the rotor 453 comes into close contact with the plate 451 and the rotor 453 and the output shaft 411c rotate. Is restricted, and as a result, the steering wheels 2L and 2R are locked.
  • the armature 454 is attracted to the stator 452 against the urging force of the torque spring 452b, so that the rotor 453 is released from the plate 451 and can rotate (in other words, the clutch released state). ), As a result, the rotation of the output shaft 411c is allowed, and the steering wheels 2L and 2R are in a non-locked state.
  • a motor rotation angle sensor used for driving control of the reaction force motor 321 is provided, and a steering amount sensor 340 for detecting the operation amount of the steering wheel 1 by the driver is further provided. Can be provided separately from the motor rotation angle sensor.
  • the motor rotation angle sensor is also used as the steering amount sensor 340 and the output signal of the motor rotation angle sensor is used as the operation amount signal MS to detect the operation amount of the steering wheel 1 by the driver, dedicated steering is used. By omitting the amount sensor, it is possible to suppress the increase in size and complexity of the steer-by-wire steering system 200.
  • FIG. 5 is a schematic configuration diagram of a steering reaction force actuator 320 including a motor rotation angle sensor.
  • the reaction force motor 321 which is a blessingless DC motor includes a rotor 321a, a stator coil 321b, and a motor rotation angle sensor 321c for detecting the rotation angle of the rotor 321a.
  • the motor rotation angle sensor 321c which is an angle sensor, includes, for example, a magnet 321c1 that rotates integrally with the rotor 321a, and a magnetic sensor element 321c2 that detects a magnetic field change due to the magnet 321c1 and outputs an analog output.
  • the controller 350 drives and controls the reaction force motor 321 based on the output of the motor rotation angle sensor 321c, and the steering actuator device 400 acquires the output signal of the motor rotation angle sensor 321c as an operation amount signal MS. (In other words, the motor rotation angle sensor 321c is used as the steering amount sensor 340) to control the steering actuator 410.
  • the controller 350 applies the steering reaction force when the start switch of the vehicle 100 is switched from the on state to the off state and when the start switch is switched from the off state to the on state. Control to increase more than usual.
  • the control function of the steering reaction force will be described in detail.
  • FIG. 6 is a functional block diagram of the controller 350.
  • the microcomputer 351 of the controller 350 functions as an operation amount signal transmission unit 352, a reaction force command signal generation unit 353, a lock mechanism control unit 354, a stop control execution unit 355, a phase adjustment unit 356, and a start control execution unit 357. Prepare as software.
  • the operation amount signal transmission unit 352 transmits the operation amount signal MS of the steering amount sensor 340 to the actuator control device 420 of the steering actuator device 400.
  • the reaction force command signal generation unit 353 generates and generates a reaction force command signal (in other words, a reaction force motor drive signal) which is a signal for driving and controlling the reaction force motor 321 based on the manipulated variable signal MS or the like.
  • the reaction force command signal is output to the reaction force motor 321.
  • the reaction force motor 321 applies a reaction force torque to the steering shaft 310 against the steering operation by the driver in response to the reaction force command signal.
  • the lock mechanism control unit 354 switches and controls the steering shaft lock mechanism 330 and the steering wheel lock mechanism 412 between a locked state and an unlocked state.
  • the stop control execution unit 355 increases the reaction force torque (in other words, holding torque or friction torque) generated by the reaction force motor 321 after the start switch 510 of the vehicle 100 is switched from the on state to the off state. After the reaction torque is increased, the steering shaft lock mechanism 330 is switched from the unlocked state to the locked state, and after the steering shaft lock mechanism 330 is switched to the locked state, the steering wheel lock mechanism 412 is switched from the unlocked state. Executes stop control to switch to the locked state.
  • the start switch 510 includes an ignition switch, an accessory switch, a start switch for a hybrid vehicle, an electric vehicle, or the like.
  • the phase adjusting unit 356 controls the steering motor 411 of the steering actuator device 400 based on the operation amount signal MS so as to reduce the phase shift between the steering wheel 1 and the steering wheels 2L and 2R.
  • the start control execution unit 357 increases the reaction force torque after the start switch 510 is switched to the ON state, and then the steering shaft lock mechanism 330 is switched from the locked state to the unlocked state, and then the reaction force torque. To reduce.
  • FIG. 7 is a flowchart showing a processing procedure of the controller 350 (stop control execution unit 355) when the start switch 510 is switched from the on state to the off state.
  • the controller 350 and the actuator control device 420 continue to supply power until the predetermined process is completed even after the start switch 510 is switched to the off state, and after the predetermined process is completed, the power supply is self-cut off. It has a self-shut-off function.
  • step S1001 the controller 350 determines whether or not the start switch 510 has been switched from the on state to the off state by the driver of the vehicle 100. Then, when the start switch 510 is switched to the off state, the controller 350 proceeds to step S1002, and the speed [km / h] (hereinafter referred to as vehicle speed VS) of the vehicle 100 detected by the vehicle speed sensor 520 is equal to or less than the predetermined value VSth. Determine if it exists.
  • vehicle speed VS the speed [km / h]
  • the state in which the vehicle speed VS is equal to or less than the predetermined value VSth is a state in which the vehicle 100 is substantially stopped, and it is presumed that steering is unnecessary.
  • the driver operates the steering wheel 1 (steering operation) to control the vehicle 100. It is necessary to control the traveling locus.
  • the driver may steer the steering shaft lock mechanism 330 and the steering wheel lock mechanism 412 by increasing the reaction force torque for the steering operation or operating the steering shaft lock mechanism 330 or the steering wheel lock mechanism 412 by the stop control execution unit 355.
  • the controller 350 continues the vehicle speed signal from the vehicle speed sensor 520 even after the start switch 510 is switched to the off state. It is a system that can be acquired.
  • the vehicle speed VS is equal to or less than the predetermined value VSth and the vehicle 100 is substantially stopped, the necessity of the driver's steering operation is sufficiently small, and the stop control can be performed by the stop control execution unit 355.
  • step S1003 the controller 350 increases the reaction force torque (in other words, holding torque or friction torque) by the reaction force motor 321 to make it difficult for the driver to rotate the steering wheel 1.
  • the controller 350 when the start switch 510 is switched to the off state, the controller 350 finally activates the steering shaft lock mechanism 330 to lock the steering shaft 310 and the steering wheel 1, but the start switch 510 does not. Immediately after the switch to the off state, the steering shaft lock mechanism 330 is not locked, and the steering shaft lock mechanism 330 is operated after a period in which the reaction force torque is made larger than usual.
  • the steering wheel 1 is not immediately locked, so that the driver's feeling of steering discomfort can be suppressed. Further, by increasing the reaction force torque after the start switch 510 is switched to the off state, the easy rotation of the steering wheel 1 is suppressed, so that the phase relationship between the steering wheel 1 and the steering wheels 2L and 2R is deviated. Can be suppressed.
  • FIG. 8 shows one aspect of the increase and change of the reaction force torque due to the process of step S1003.
  • the controller 350 gradually increases the reaction force torque when the reaction force torque by the reaction force motor 321 is increased in step S1003. As a result, even if the driver continues to hold the steering wheel 1 after the start switch 510 is switched to the off state, the reaction force torque does not increase all at once but gradually increases, so that the driver The feeling of steering discomfort can be reduced as much as possible.
  • the controller 350 responds to the reaction force command signal generated by the reaction force command signal generation unit 353 (in other words, the reaction force torque).
  • the reaction force torque is increased without decreasing from the normal reaction force torque), that is, with the normal reaction force torque corresponding to the reaction force command signal generated by the reaction force command signal generation unit 353 as the initial value.
  • the controller 350 increases the reaction force torque more than the predetermined reversal torque, which is the reaction force torque during stop control (in other words, the predetermined target reaction force torque).
  • the reaction force torque is equal to or greater than the reaction force torque during stop control
  • the steering shaft lock mechanism 330 is operated to lock the steering shaft 310 and the steering wheel 1.
  • the reaction force torque during stop control is a reaction force torque that makes it difficult for a general driver to rotate the steering wheel 1.
  • the upper limit reaction force torque set to be equal to or higher than the reaction force torque during stop control is set, and the controller 350 reacts after the reaction force torque reaches the upper limit reaction force torque.
  • the force torque can be maintained at the upper limit reaction torque.
  • the controller 350 controls the steering actuator device 400 based on the operation amount signal MS so that the phase shift between the steering wheel 1 and the steering wheels 2L and 2R does not increase by the phase adjusting unit 356.
  • the steering shaft lock mechanism 330 is operated to steer while maintaining a small phase shift between the steering wheel 1 and the steering wheels 2L and 2R.
  • the shaft 310 and the steering wheel 1 can be locked. Therefore, when the vehicle 100 is restarted, the vehicle 100 can start traveling in a state where the phase shift between the steering wheel 1 and the steering wheels 2L and 2R is small.
  • the phase adjusting unit 356 performs steering angular velocity (in other words, steering) of the steering wheels 2L and 2R when executing phase adjusting control for maintaining a small phase shift between the steering wheel 1 and the steering wheels 2L and 2R.
  • the steering actuator 410 is driven and controlled so that the angular velocity) does not exceed a predetermined value (in other words, the upper limit velocity).
  • a predetermined value in other words, the upper limit velocity.
  • the operation amount signal transmission unit 352 is configured to transmit the operation amount signal MS to the steering actuator device 400, and the steering actuator device 400 is controlled to keep the phase shift between the steering wheel 1 and the steering wheels 2L and 2R small. Can be done. Also in this case, the steering shaft 310 can be locked while the phase shift between the steering wheel 1 and the steering wheels 2L and 2R is kept small, and when the vehicle 100 is restarted, the steering wheel 1 and the steering wheel 1 are steered. The running of the vehicle 100 can be started in a state where the phase shift from the wheels 2L and 2R is small.
  • step S1005 determines whether or not the elapsed time ET from the start of increasing the reaction force torque has reached the predetermined time Tth, that is, the steering shaft lock mechanism 330 is switched from the unlocked state to the locked state. Determine if the conditions are met.
  • the above-mentioned predetermined time Tth is set to a time at which it can be estimated that at least the reaction force torque is equal to or greater than the reaction force torque during stop control.
  • step S1003 the controller 350 determines that the condition for switching the steering shaft lock mechanism 330 from the unlocked state to the locked state is satisfied, and proceeds to step S1006 to lock the steering shaft.
  • the mechanism 330 is switched from the unlocked state to the locked state.
  • the controller 350 switches the steering shaft lock mechanism 330 to the locked state after a predetermined time has elapsed from the start of increasing the reaction force torque. As described above, if the timing for switching the steering shaft lock mechanism 330 from the unlocked state to the locked state is determined based on the timed by the timer, the control of the controller 350 becomes simple.
  • the controller 350 determines in step S1005 whether or not there is a steering operation by the driver based on the operation amount signal MS, and the driver determines whether or not there is a steering operation.
  • the process proceeds to step S1006, and the steering shaft lock mechanism 330 can be switched from the unlocked state to the locked state.
  • the controller 350 determines in step S1005 whether or not the door of the vehicle 100 is switched from the unlocked state to the locked state, that is, whether or not the door of the vehicle 100 is locked, and when the door is locked. Then, in step S1006, the steering shaft lock mechanism 330 can be switched from the unlocked state to the locked state.
  • the controller 350 acquires information on door locking / unlocking from the BCM (body control module) 610 that controls the door lock of the vehicle 100.
  • BCM body control module
  • a door lock system in which the BCM 610 receives an operation signal for locking / unlocking the door from a remote controller 620 (remote control key) for locking / unlocking the door by wireless communication to control the door lock.
  • the controller 350 determines in step S1005 whether the remote controller 620 is separated from the vehicle 100 by a predetermined distance (in other words, is out of the operating range), and is remote.
  • the process proceeds to step S1006, and the steering shaft lock mechanism 330 can be switched from the unlocked state to the locked state.
  • the driver When the door of the vehicle 100 is locked or the remote controller 620 is separated from the vehicle 100 by a predetermined distance, the driver is not sitting in the driver's seat of the vehicle 100 and is not holding the steering wheel 1. It is a state that can be estimated. Therefore, even if the controller 350 switches the steering shaft locking mechanism 330 from the unlocked state to the locked state based on the above conditions, it does not cause a driver's feeling of steering discomfort.
  • the controller 350 switches the steering shaft lock mechanism 330 from the unlocked state to the locked state in step S1006, and then proceeds to step S1007 to reduce the reaction force torque by the reaction force motor 321 to a value smaller than the reaction force torque during stop control. Decrease. After the steering shaft lock mechanism 330 is switched to the locked state and the steering shaft 310 is mechanically locked, there is no need to generate a reaction force torque. Therefore, by reducing the reaction force torque by the reaction force motor 321. , The power consumption of the reaction force motor 321 can be reduced.
  • the process of reducing the reaction force torque of the reaction force motor 321 to a value smaller than the reaction force torque during stop control includes a process of cutting off the energization of the reaction force motor 321.
  • step S1008 switches the steering wheel locking mechanism 412 from the unlocked state to the locked state, and regulates the steering of the steering wheels 2L and 2R, in other words, the rudders of the steering wheels 2L and 2R.
  • the steering wheel locking mechanism 412 is operated so as to mechanically lock the corners. That is, the controller 350 switches the steering shaft lock mechanism 330 from the unlocked state to the locked state, and then switches the steering wheel lock mechanism 412 from the unlocked state to the locked state.
  • the controller 350 After switching the steering shaft lock mechanism 330 to the locked state, the controller 350 continues the phase adjustment control for following the steering angles of the steering wheels 2L and 2R according to the steering operation, and the phase shift becomes equal to or less than a predetermined value. After that, the steering wheel lock mechanism 412 can be switched to the locked state.
  • the controller 350 switches the steering shaft lock mechanism 330 from the unlocked state to the locked state and then switches the steering wheel lock mechanism 412 from the unlocked state to the locked state, the process proceeds to step S1009, and the steering input device 300 and the steering actuator device The power supply to the 400 is cut off.
  • the controller 350 includes, as software, a function of the start control execution unit 357 that controls the reaction force torque, the lock mechanisms 330, 412, and the like when the start switch 510 of the vehicle 100 is switched from the off state to the on state. ..
  • the flowchart of FIG. 9 is a flowchart showing a processing procedure of the controller 350 (startup control execution unit 357) when the start switch 510 is switched from the off state to the on state.
  • the controller 350 sets the reaction torque by the reaction force motor 321 in step S2001 to the reaction force torque during start control (in other words, the target during start control). Increase to more than reaction torque).
  • the reaction force torque during start control is a predetermined reversal torque higher than the normal reaction force torque, and can be made equivalent to the reaction force torque during stop control.
  • the controller 350 can be configured to be activated based on, for example, the release of the door lock of the vehicle 100. In that case, the controller 350 activated based on the release of the door lock is the processing procedure shown in the flowchart of FIG. Can be executed.
  • step S2002 switches the steering wheel locking mechanism 412 from the locked state to the unlocked state, and releases the locked state of the steering wheels 2L and 2R. Since the steering actuator device 400 controls the steering angles of the steering wheels 2L and 2R according to the operation amount signal MS, even if the steering wheel locking mechanism 412 is switched to the unlocked state in step S2002, the steering wheels 2L, The rudder angle of 2R will not be free.
  • the controller 350 switches the steering wheel locking mechanism 412 to the unlocked state, and then proceeds to step S2003 to set the steering actuator device 400 to the steering angle calibration mode.
  • the steering angle calibration mode is a mode in which the steering motor 411 is driven and controlled so as to reduce the phase shift between the steering wheel 1 and the steering wheels 2L and 2R, that is, a mode in which the phase adjustment unit 356 performs phase adjustment. be.
  • the controller 350 drives and controls the steering motor 411 so as to match the steering angles of the steering wheels 2L and 2R with the locked position of the steering shaft 310. Become.
  • the controller 350 determines whether or not the phase shift between the steering wheel 1 and the steering wheels 2L and 2R is equal to or less than a predetermined value. Then, when the phase shift exceeds the predetermined value, the controller 350 returns to step S2003 and continues the steering angle calibration mode, and the phase shift between the steering wheel 1 and the steering wheels 2L and 2R becomes equal to or less than the predetermined value. To be.
  • step S2005 to change the steering shaft lock mechanism 330 from the locked state to the unlocked state.
  • the steering shaft 310 and the steering wheel 1 are unlocked, and the driver can operate the steering. That is, during the steering angle calibration mode (in other words, during phase adjustment control), the steering shaft lock mechanism 330 is maintained in the locked state, and the steering wheel 1 is steered during the steering angle calibration mode to steer the steering wheel. It is possible to suppress an increase in the phase shift between 1 and the steering wheels 2L and 2R.
  • the controller 350 performs a process of disabling the vehicle 100 from the time when the start switch 510 is switched to the ON state until the steering shaft lock mechanism 330 is switched to the unlocked state in step S2005.
  • the process of disabling the vehicle 100 includes a process of not moving the shift position of the transmission of the vehicle 100 from parking to a drive or the like, a process of not releasing the parking brake of the vehicle 100, and the like.
  • step S2005 the controller 350 proceeds to step S2006 to reduce the reaction force torque by the reaction force motor 321 and in the next step S2007, the normal reaction force torque. Move to control.
  • the unlocking of the steering shaft 310 in step S2005 is performed in a state where the reaction force torque by the reaction force motor 321 is increased more than usual. Therefore, for example, even if the steering shaft lock mechanism 330 is switched to the unlocked state while the driver puts his / her hand on the steering wheel 1, the steering wheel 1 suddenly rotates, and the steering wheel 1 and the steering wheel 2L, It is possible to suppress an increase in the phase shift from 2R.
  • the controller 350 subsequently reduces the reaction force torque and shifts to the normal reaction force torque control state, so that the driver can perform the steering operation in a state where the phase shift is sufficiently small.
  • the controller 350 steers the steering wheel 1 because the steering wheel lock mechanism 412 is in the unlocked state.
  • the steering angles of the wheels 2L and 2R can be made to follow.
  • the steer-by-wire steering system 200 can be a system including a backup mechanism that mechanically connects the steering wheel 1 and the steering wheels 2L and 2R with a clutch or the like.
  • the steering actuator 410 may include a steering motor 411 that generates steering force and a sub motor that adjusts the toe angles of the steering wheels 2L and 2R.
  • the controller 350 and the actuator control device 420 can be made redundant.
  • the reaction force motor 321 and the steering motor 411 are provided with two winding sets
  • the controller 350 and the actuator control device 420 are a first microcomputer (first MCU) for driving and controlling the first winding set, and a second volume.
  • a second microcomputer (second MCU) for driving and controlling the wire set was provided, and a steering amount sensor 340 and multiple sensors for detecting the steering angles (for example, rack positions) of the steering wheels 2L and 2R were provided.
  • a dedicated battery can be provided for each system of the redundant system.
  • the steering actuator 410 is not limited to the configuration in which the steering force is generated by the steering motor 411, and an actuator that generates the steering force by the flood control can be adopted.
  • the controller 350 can change the speed of torque change in the increasing process in the control of gradually increasing the reaction force torque. For example, the controller 350 can increase the speed at which the reaction force torque is gradually increased when the phase shift between the steering wheel 1 and the steering wheels 2L and 2R increases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

本発明に係るステアバイワイヤの操舵入力装置は、操舵輪と機械的に分離されている操舵軸と、操舵軸に対し操舵負荷を付与する反力モータと、操舵軸の回転を規制するロック機構と、操舵軸の操作量を検出して操作量信号を出力する操舵量センサと、コントローラと、を備え、コントローラは、車両の起動スイッチがオフ状態に切換えられた後、反力モータが発生する反力トルクを増大させ、更に、反力トルクが増大した後、ロック機構をロック状態に切換える。これにより、車両の起動スイッチがオフ状態に切換えられたときに、ステアリングホイールと操舵輪の位相ずれが生じることを抑えながら、運転者の操舵時の違和感を抑制できる。

Description

ステアバイワイヤの操舵入力装置
 本発明は、ステアバイワイヤの操舵入力装置に関する。
 特許文献1のステアバイワイヤシステムは、ロック作動時に操舵装置の回転を規制する第1ロック装置と、ロック作動時に操舵輪の操舵を規制する第2ロック装置と、操舵装置の回転角度を検出する第1角度センサと、操舵輪の操舵角度を検出する第2角度センサと、イグニッションスイッチの状態及び回転角度と操舵角度との角度差に基づいて、第1及び第2ロック装置の作動状態を含む車両の状態を制御する制御装置とを備え、制御装置は、イグニッションスイッチがOFFされた場合、第1及び第2ロック装置をロック作動させた後に車両の電源をオフし、イグニッションスイッチがONされた場合、電源をオンして角度差を取得し、角度差が所定値以下であれば第1及び第2ロック装置のロックを解除して正常起動処理を実行し、角度差が所定値を超えれば車両機能が制限されるフェールセーフ処理を実行する。
特開2019-098810号公報
 ところで、ステアバイワイヤシステムにおいて、イグニッションスイッチなどの車両の起動スイッチがオフ状態に切換えられたときに、反力モータなどの操舵反力アクチュエータの電源を切ると、ステアリングホイールが、位置によっては自重で自由回転し、次に車両の起動スイッチがオンされたときに、ステアリングホイールの操舵量と操舵輪の舵角とにずれ(以下、位相のずれという)が生じ、係るずれが修正されるまでの間、車両の走行が制限されてしまうという問題があった。
 また、操舵反力アクチュエータの電源を切られると、操舵反力が無くなることで、運転者に違和感を与えるという問題があった。
 本発明は、従来の実情に鑑みてなされたものであり、その目的は、車両の起動スイッチがオフ状態に切換えられたときに、ステアリングホイールと操舵輪の位相ずれが生じることを抑えながら、運転者の操舵時の違和感を抑制できる、ステアバイワイヤの操舵入力装置を提供することにある。
 本発明によれば、その1つの態様において、ステアバイワイヤの操舵入力装置は、車両の起動スイッチがオフ状態に切換えられた後、反力モータが運転者による操舵操作に抗する反力トルクを増大させ、更に、前記反力トルクが増大した後、操舵軸の回転を規制するロック機構を非ロック状態からロック状態に切換える。
 本発明によれば、車両の起動スイッチがオフ状態に切換えられたときに、ステアリングホイールと操舵輪の位相ずれが生じることを抑えながら、運転者の操舵時の違和感を抑制できる。
ステアバイワイヤ操舵システムの構成図である。 操舵軸ロック機構の非ロック状態を示す図である。 操舵軸ロック機構のロック状態を示す図である。 操舵輪ロック機構を示す断面図である。 操舵反力アクチュエータの概略構成図である。 コントローラの機能ブロック図である。 停止制御の処理手順を示すフローチャートである。 停止制御における反力トルクの変化を示すタイムチャートである。 起動制御の処理手順を示すフローチャートである。
 以下、本発明に係るステアバイワイヤの操舵入力装置の実施形態を、図面に基づいて説明する。
 図1は、自動車などの車両100に備えられるステアバイワイヤ操舵システム200の一態様を示す構成図である。
 ステアバイワイヤ操舵システム200は、ステアリングホイール1と操舵輪2L,2R(例えば、前輪)とが機械的に分離して構成された操舵システムであり、操舵入力装置300と操舵アクチュエータ装置400とを備える。
 操舵アクチュエータ装置400は、操舵輪2L,2Rに操舵力を付与する操舵アクチュエータ410と、アクチュエータ駆動回路としてのアクチュエータ制御装置420とを備え、操舵アクチュエータ410は、操舵力を発生させる操舵モータ411(換言すれば、操舵用電動モータ)、及び、操舵輪2L,2Rの操舵を規制する操舵輪ロック機構412を備える。
 そして、アクチュエータ制御装置420は、ステアリングホイール1の操作量に関する電気信号である操作量信号MS(換言すれば、舵角指令信号)を操舵入力装置300から取得し、取得した操作量信号MSに基づき操舵モータ411を駆動制御して操舵力を発生させ、操舵輪2L,2Rを操舵する。
 また、操舵輪ロック機構412は、操舵入力装置300が備えるコントローラ350からの操舵輪ロック制御信号TLCSに応じて、操舵輪2L,2Rの操舵を規制する(換言すれば、操舵輪2L,2Rの舵角を固定する)ロック状態と、操舵輪2L,2Rの操舵を許容する(換言すれば、操舵輪2L,2Rの舵角を変更可能とする)非ロック状態とに切換えられる。
 係る操舵アクチュエータ装置400において、操舵モータ411の回転は、ボールねじなどによって直線運動に変換され、これによりステアリングロッド110が車両100の左右方向に動き、ステアリングロッド110が左右に動くことでリンク機構によって操舵輪2L,2Rが操舵される。
 そして、操舵輪ロック機構412は、操舵モータ411の出力軸の回転やステアリングロッド110の左右の動きなどを規制することで、操舵輪2L,2Rの操舵(換言すれば、舵角変化)を規制する。
 操舵入力装置300は、操舵軸310、操舵反力アクチュエータ320、操舵軸ロック機構330、操舵量センサ340、コントローラ350を備える。
 操舵軸310は、ステアリングホイール1の回転に伴い回転可能に設けられ、操舵輪2L,2Rと機械的に分離されている。
 操舵反力アクチュエータ320は、操舵軸310(ステアリングホイール1)に対し、ブレシレスDCモータなどの反力モータ321を用いて操舵負荷(操舵反力)を付与するデバイスであり、反力モータ321の他、図示を省略したトルクダンパ、操舵角制限機構、減速機などを備える。
 操舵軸ロック機構330は、操舵軸310の回転を規制する機構であり、コントローラ350からの操舵軸ロック制御信号SLCSに応じて、操舵軸310の回転を規制する(換言すれば、操舵軸310の角度を固定する)ロック状態と、操舵軸310の回転を許容する(換言すれば、操舵軸310の角度を変更可能とする)非ロック状態とに切換えられる。
 コントローラ350は、MPU(Microprocessor Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)を含むマイクロコンピュータ351を主体とする電子制御装置であり、制御アプリケーションプログラムにしたがって、操舵アクチュエータ410と操舵反力アクチュエータ320とを協調制御する。
 ステアバイワイヤ操舵システム200では、運転者がステアリングホイール1を操舵操作することで発生する操舵トルクと、操舵反力アクチュエータ320が発生する操舵反力との差分トルクによってステアリングホイール1が回される。
 そして、係る操舵操作による操舵軸310の回転角(換言すれば、操舵角)が、角度センサである操舵量センサ340で検出され、操作量信号MSとして操舵アクチュエータ装置400に送信され、操舵アクチュエータ装置400は、操作量信号MSに応じて操舵アクチュエータ410を用いた位置制御を行う。
 また、コントローラ350は、操舵アクチュエータ410の位置情報などに基づき目標操舵反力(換言すれば、目標操舵負荷)を演算し、演算した目標操舵反力に基づき反力モータ321のトルク制御を行い、更に、操舵軸ロック機構330及び操舵輪ロック機構412について、ロック状態と非ロック状態とに切換える制御を行う。
 次に、前述した操舵軸ロック機構330及び操舵輪ロック機構412の構造を説明する。
 操舵軸ロック機構330としては、例えば、ピン係合式やブレーキ式のロック機構を採用できる。
 図2及び図3は、ピン係合式とした操舵軸ロック機構330の一態様を示す図であり、図2は非ロック状態を示し、図3はロック状態を示す。
 図2及び図3に示す操舵軸ロック機構330は、ラックギヤ331が形成された可動ピン332、ラックギヤ331と噛み合うピニオンギヤ333、ピニオンギヤ333を回転駆動するモータ334、操舵軸310の外周に設けたストッパーギヤ335からなる。
 ラックギヤ331及びピニオンギヤ333は、モータ334の出力軸の回転力を可動ピン332の直線運動に変換し、可動ピン332は、操舵軸310の径方向を軸方向として、軸方向に移動可能に支持される。
 そして、可動ピン332が、図2に示すように、ストッパーギヤ335と係合しない退避位置にあるときは、可動ピン332が操舵軸310の回転を規制しない非ロック状態となる。
 上記の非ロック状態から、モータ334を可動ピン332が操舵軸310に近づく方向に回転駆動させ、図3に示すように、可動ピン332の先端がストッパーギヤ335の歯で挟まれる挿入溝335aに入ると、操舵軸310の回転に対して可動ピン332の先端部の側面とストッパーギヤ335の歯とが当接して、操舵軸310の回転が規制されるロック状態となる。
 なお、操舵軸ロック機構330をブレーキ式とする場合、例えば、モータの回転で直線運動するピンによってブレーキパッドを操舵軸310の外周面に押し当てることで、操舵軸310の回転を規制するロック状態とする機構とすることができる。
 また、操舵輪ロック機構412も、図2,3に示したピン係合式ロック機構や、ブレーキ式ロック機構とすることができ、更に、ブレーキ式の一態様としてクラッチ機構を用いて操舵輪2L,2Rの操舵を規制する構造を採用できる。
 図4は、操舵輪ロック機構412の一態様として、操舵アクチュエータ410が操舵モータ411、及び、クラッチ機構を用いる操舵輪ロック機構412を一体的に備える構造を示す。
 なお、図4に示したクラッチ機構は、操舵輪ロック機構412として用いられるとともに、操舵モータ411を停止させるときなどに制動をかける電磁ブレーキとしても用いられる。
 図4の操舵アクチュエータ410において、操舵モータ411は、ロータ411a、ステータコイル411b、及び出力軸411cを備え、操舵輪ロック機構412は、クラッチ機構450を備える。
 また、出力軸411cの端部に設けた磁石431と、磁石431に対向して配置した磁気センサ素子432との組み合わせは、出力軸411cの回転角を検出するモータ角センサ433を構成する。
 クラッチ機構450は、プレート451、ステータ452を含む固定部と、ロータ453、アーマチュア454を含む可動部とからなり、ロータ453、アーマチュア454は、出力軸411cの軸方向に移動可能で、出力軸411cと一体に回転するように設けられている。
 ステータ452は、コイル452a及びトルクスプリング452bを備える。
 コイル452aへの通電を遮断したオフ状態では、トルクスプリング452bがアーマチュア454及びロータ453をプレート451に向けて押圧することで、ロータ453がプレート451に密着して、ロータ453及び出力軸411cの回転が規制されるクラッチ締結状態になり、結果、操舵輪2L,2Rの操舵を規制するロック状態になる。
 一方、コイル452aに通電するオン状態では、アーマチュア454がトルクスプリング452bの付勢力に抗してステータ452に引き寄せられるため、ロータ453がプレート451から解放されて回転可能(換言すれば、クラッチ解放状態)になり、結果、出力軸411cの回転が許容され、操舵輪2L,2Rの操舵を許容する非ロック状態になる。
 ところで、反力モータ321がブレシレスDCモータである場合、反力モータ321の駆動制御に用いるモータ回転角センサを設け、更に、運転者によるステアリングホイール1の操作量を検出するための操舵量センサ340を、モータ回転角センサとは別に設けることができる。
 但し、モータ回転角センサを、操舵量センサ340としても用い、モータ回転角センサの出力信号を操作量信号MSとして、運転者によるステアリングホイール1の操作量を検出するシステムとすれば、専用の操舵量センサを省略して、ステアバイワイヤ操舵システム200の大型化、複雑化を抑制することができる。
 図5は、モータ回転角センサを含む操舵反力アクチュエータ320の概略構成図である。
 ブレシレスDCモータである反力モータ321は、ロータ321aと、ステータコイル321bと、ロータ321aの回転角を検出するモータ回転角センサ321cとを含む。
 角度センサであるモータ回転角センサ321cは、例えば、ロータ321aと一体に回転する磁石321c1と、磁石321c1による磁界変化を検出してアナログ出力する磁気センサ素子321c2とからなる。
 ここで、コントローラ350は、モータ回転角センサ321cの出力に基づき反力モータ321を駆動制御し、また、操舵アクチュエータ装置400は、モータ回転角センサ321cの出力信号を操作量信号MSとして取得して(換言すれば、モータ回転角センサ321cを操舵量センサ340として用いて)、操舵アクチュエータ410を制御する。
 ところで、コントローラ350は、通常の操舵反力制御に加え、車両100の起動スイッチがオン状態からオフ状態に切換えられたとき、及び、オフ状態からオン状態に切換えられたときに、操舵反力を通常よりも増大させる制御を実施する。
 以下では、係る操舵反力の制御機能を詳細に説明する。
 図6は、コントローラ350の機能ブロック図である。
 コントローラ350のマイクロコンピュータ351は、操作量信号送信部352、反力指令信号生成部353、ロック機構制御部354、停止制御実行部355、位相調整部356、及び起動制御実行部357としての機能をソフトウェアとして備える。
 操作量信号送信部352は、操舵量センサ340の操作量信号MSを、操舵アクチュエータ装置400のアクチュエータ制御装置420に送信する。
 反力指令信号生成部353は、操作量信号MSなどに基づき反力モータ321を駆動制御するための信号である反力指令信号(換言すれば、反力モータ駆動信号)を生成し、生成した反力指令信号を反力モータ321に出力する。
 反力モータ321は、反力指令信号に応じて、運転者による操舵操作に抗する反力トルクを操舵軸310に付与する。
 ロック機構制御部354は、操舵軸ロック機構330及び操舵輪ロック機構412を、ロック状態と非ロック状態とに切換え制御する。
 停止制御実行部355は、車両100の起動スイッチ510がオン状態からオフ状態に切換えられた後、反力モータ321が発生する反力トルク(換言すれば、保持トルク、或いは、フリクショントルク)を増大させ、反力トルクが増大した後、操舵軸ロック機構330を非ロック状態からロック状態に切換え、更に、操舵軸ロック機構330をロック状態に切換えた後、操舵輪ロック機構412を非ロック状態からロック状態に切換える、停止制御を実行する。
 なお、起動スイッチ510は、イグニッションスイッチ、アクセサリスイッチ、又は、ハイブリッド車や電動自動車などのスタートスイッチなどを含む。
 位相調整部356は、ステアリングホイール1と操舵輪2L,2Rとの位相のずれを小さくするように、操作量信号MSに基づき操舵アクチュエータ装置400の操舵モータ411を制御する。
 起動制御実行部357は、起動スイッチ510がオン状態に切換えられた後、反力トルクを増大させ、その後、操舵軸ロック機構330が、ロック状態から非ロック状態に切換えられた後、反力トルクを減少させる。
 図7は、起動スイッチ510がオン状態からオフ状態に切換えられたときのコントローラ350(停止制御実行部355)の処理手順を示すフローチャートである。
 なお、コントローラ350及びアクチュエータ制御装置420は、起動スイッチ510がオフ状態に切換えられた後も所定の処理が終了するまでは電源供給が継続され、所定の処理が終了した後に電源供給を自己遮断するセルフシャットオフ機能を有している。
 コントローラ350は、まず、ステップS1001で、車両100の運転者によって起動スイッチ510がオン状態からオフ状態に切換えられたか否かを判断する。
 そして、起動スイッチ510がオフ状態に切換えられると、コントローラ350は、ステップS1002に進み、車速センサ520が検出する車両100の速度[km/h](以下、車速VSという)が所定値VSth以下であるか否かを判断する。
 ここで、車速VSが所定値VSth以下である状態とは、車両100が略停止している状態であって、操舵が不要と推定される条件である。
 起動スイッチ510がオフ状態に切換えられた後に車両100が下り坂などを惰性で走行し、車速VSが所定値VSthを超えるときは、運転者によるステアリングホイール1の操作(操舵操作)によって車両100の走行軌跡をコントロールすることが必要になる。
 このような惰性走行の状況で、停止制御実行部355によって、操舵操作に対する反力トルクを増大させたり、操舵軸ロック機構330や操舵輪ロック機構412を作動させたりすることは、運転者による操舵操作を妨げることになり、車両100の走行安全上好ましくない。
 そこで、車速VSが所定値VSthを超える場合、コントローラ350は、停止制御実行部355による停止制御、つまり、反力トルクの増大やロック操作を実施せずに、運転者による通常の操舵操作を継続して可能とすることで、車両100の走行安全性の向上を図る。
 なお、上記のように、停止制御実行部355が車速VSに応じて停止制御を実施する場合、起動スイッチ510がオフ状態に切換えられた後も、コントローラ350が車速センサ520から車速信号を継続して取得できるシステムとする。
 一方、車速VSが所定値VSth以下であって車両100が略停止している場合、運転者の操舵操作の必要性は十分に小さく、停止制御実行部355による停止制御を実施できることになる。
 そこで、車速VSが所定値VSth以下である場合、コントローラ350は、ステップS1003以降に進み、停止制御実行部355による操舵入力装置300の停止制御を実施する。
 コントローラ350は、ステップS1003で、反力モータ321による反力トルク(換言すれば、保持トルク又はフリクショントルク)を増大させ、運転者がステアリングホイール1を回転させづらい状態にする。
 つまり、起動スイッチ510がオフ状態に切換えられたことで、コントローラ350は、最終的には操舵軸ロック機構330を作動させて、操舵軸310さらにはステアリングホイール1をロックするが、起動スイッチ510がオフ状態に切換えられた直後は操舵軸ロック機構330をロック状態とせず、反力トルクを通常よりも大きくした期間を経て操舵軸ロック機構330を作動させる。
 係る構成によれば、運転者が起動スイッチ510をオフ状態に切換えても、直ちにステアリングホイール1がロックされることがないので、運転者の操舵違和感を抑制できる。
 また、起動スイッチ510がオフ状態に切換えられた後に反力トルクを増大させることで、ステアリングホイール1の容易な回転が抑制されるため、ステアリングホイール1と操舵輪2L,2Rとの位相関係がずれることを抑制できる。
 図8は、ステップS1003の処理による反力トルクの増大変化の一態様を示す。
 コントローラ350は、ステップS1003で、反力モータ321による反力トルクを増大させるときに、反力トルクを漸増させる。
 これにより、起動スイッチ510がオフ状態に切換えられた後に、運転者がステアリングホイール1を握り続けている場合であっても、反力トルクが一挙に増大せずに徐々に増大するため、運転者の操舵違和感を可及的に小さくできる。
 また、コントローラ350は、起動スイッチ510のオフ操作に基づき、ステップS1003で反力トルクを増大させるときに、反力指令信号生成部353が生成する反力指令信号に応じた反力トルク(換言すれば、通常の反力トルク)から低下させることなく、つまり、反力指令信号生成部353が生成する反力指令信号に応じた通常の反力トルクを初期値として、反力トルクを増大させる。
 係る構成とすれば、起動スイッチ510がオフ状態に切換えられたときに、反力トルクが一旦抜けるような操作感覚になることを抑止でき、更に、ステアリングホイール1と操舵輪2L,2Rとの位相関係がずれることを抑制できる。
 また、コントローラ350は、ステップS1003で反力トルクを増大させるときに、所定の反転トルクである停止制御時反力トルク(換言すれば、所定の目標反力トルク)以上に反力トルクを増大させ、反力トルクが停止制御時反力トルク以上の状態で、操舵軸ロック機構330を作動させて操舵軸310さらにはステアリングホイール1をロックする。
 ここで、停止制御時反力トルクは、一般的な運転者がステアリングホイール1を回転させづらい反力トルクである。
 係る構成とすれば、ステアリングホイール1と操舵輪2L,2Rとの位相関係がずれることを抑制できる。
 なお、反力トルクを増大させる処理においては、停止制御時反力トルク以上に設定される上限反力トルクを設定し、コントローラ350は、反力トルクが上限反力トルクに達した後は、反力トルクを上限反力トルクに維持することができる。
 コントローラ350は、次のステップS1004で、位相調整部356によって、ステアリングホイール1と操舵輪2L,2Rとの位相のずれが増大しないように、操作量信号MSに基づき操舵アクチュエータ装置400を制御する。
 これにより、起動スイッチ510がオフ状態に切換えられた後であっても、ステアリングホイール1と操舵輪2L,2Rとの位相のずれを小さく維持した状態で、操舵軸ロック機構330を作動させて操舵軸310さらにはステアリングホイール1をロックすることができる。
 したがって、車両100が再起動されたときに、ステアリングホイール1と操舵輪2L,2Rとの位相のずれが小さい状態で、車両100の走行を開始することができる。
 ここで、位相調整部356は、ステアリングホイール1と操舵輪2L,2Rとの位相のずれを小さく維持する位相調整制御を実行するときに、操舵輪2L,2Rの操舵角速度(換言すれば、操舵角の変化速度)が所定値(換言すれば、上限速度)を超えないように、操舵アクチュエータ410を駆動制御する。
 これにより、位相調整制御に伴って操舵輪2L,2Rが急激に操舵されることで、タイヤと路面との摩擦音などの異音や車両100の揺れが発生することを抑止できる。
 なお、車両100の起動スイッチ510がオフ状態に切換えられた後であって、反力トルクを増大させる制御中(換言すれば、反力トルクの増大中)において、操舵操作が行われたときに、操作量信号送信部352が操舵アクチュエータ装置400に対し操作量信号MSを送信するよう構成し、操舵アクチュエータ装置400において、ステアリングホイール1と操舵輪2L,2Rとの位相のずれを小さく維持する制御を行わせることができる。
 この場合も、ステアリングホイール1と操舵輪2L,2Rとの位相のずれを小さく維持した状態で、操舵軸310をロックすることができ、車両100が再起動されたときに、ステアリングホイール1と操舵輪2L,2Rとの位相のずれが小さい状態で、車両100の走行を開始することができる。
 次いで、コントローラ350は、ステップS1005に進み、反力トルクを増大し始めてからの経過時間ETが所定時間Tthに達しているか否か、つまり、操舵軸ロック機構330を非ロック状態からロック状態に切換える条件が成立しているか否かを判断する。
 上記の所定時間Tthは、少なくとも反力トルクが停止制御時反力トルク以上になっていると推定できる時間に設定される。
 そして、経過時間ETが所定時間Tth未満である場合、コントローラ350は、ステップS1003に戻って、反力トルクの増大制御を継続させる。
 一方、経過時間ETが所定時間Tth以上である場合、コントローラ350は、操舵軸ロック機構330を非ロック状態からロック状態に切換える条件が成立していると判断し、ステップS1006に進み、操舵軸ロック機構330を非ロック状態からロック状態に切換える。
 つまり、コントローラ350は、反力トルクを増大し始めてから所定時間経過後に、操舵軸ロック機構330をロック状態に切換える。
 上記のように、操舵軸ロック機構330を非ロック状態からロック状態に切換えるタイミングを、タイマによる計時に基づき判断する構成であれば、コントローラ350の制御が簡便となる。
 なお、コントローラ350は、タイマによる計時に基づき操舵軸ロック機構330をロック状態に切換える代わりに、ステップS1005で運転者による操舵操作があるか否かを操作量信号MSに基づき判断し、運転者による操舵操作が無いと判断したときに、ステップS1006に進み、操舵軸ロック機構330を非ロック状態からロック状態に切換えることができる。
 係る構成であれば、起動スイッチ510がオフ状態に切換えられた後であっても、運転者の操舵操作中は、操舵軸ロック機構330をロック状態に切換えないため、運転者の操舵違和感を少なくできる。
 また、コントローラ350は、ステップS1005で、車両100のドアが非ロック状態からロック状態に切換えられたか否か、つまり、車両100のドアが施錠されたか否かを判断し、ドアが施錠されたときに、ステップS1006に進んで、操舵軸ロック機構330を非ロック状態からロック状態に切換えることができる。
 なお、コントローラ350は、車両100のドアロックを制御するBCM(ボディコントロールモジュール)610からドア施錠・解除に関する情報を取得する。
 また、BCM610が、ドアロック施錠及び解除用のリモートコントローラー620(リモコンキー)からドア施錠・解除の操作信号を無線通信で受けてドアロックを制御する、ドアロックシステムが公知である。
 係るドアロックシステムが採用されている場合、コントローラ350は、ステップS1005で、リモートコントローラー620が車両100から所定距離離れたか否か(換言すれば、作動範囲から外れたか否か)を判断し、リモートコントローラー620が車両100から所定距離離れたときに、ステップS1006に進んで、操舵軸ロック機構330を非ロック状態からロック状態に切換えることができる。
 車両100のドアが施錠された状態、若しくは、リモートコントローラー620が車両100から所定距離離れた状態は、車両100の運転席に運転者が座っておらず、ステアリングホイール1を握っていない状態であると推定できる状態である。
 したがって、コントローラ350が、上記条件に基づき操舵軸ロック機構330を非ロック状態からロック状態に切換えても、運転者の操舵違和感を生じさせることにはならない。
 コントローラ350は、ステップS1006で操舵軸ロック機構330を非ロック状態からロック状態に切換えた後、ステップS1007に進み、反力モータ321による反力トルクを、停止制御時反力トルクよりも小さい値に低下させる。
 操舵軸ロック機構330がロック状態に切換えられ、操舵軸310が機械的にロックされた後は、反力トルクを発生させる必要性がないため、反力モータ321による反力トルクを低下させることで、反力モータ321の消費電力を低減することができる。
 なお、反力モータ321による反力トルクを、停止制御時反力トルクよりも小さい値に低下させる処理には、反力モータ321への通電を遮断する処理が含まれる。
 次いで、コントローラ350は、ステップS1008に進み、操舵輪ロック機構412を非ロック状態からロック状態に切換え、操舵輪2L,2Rの操舵を規制するように、換言すれば、操舵輪2L,2Rの舵角を機械的にロックするように、操舵輪ロック機構412を作動させる。
 つまり、コントローラ350は、操舵軸ロック機構330を非ロック状態からロック状態に切換えた後、操舵輪ロック機構412を非ロック状態からロック状態に切換える。
 操舵軸ロック機構330の非ロック状態では、運転者によるステアリングホイール1の操舵操作に合わせて操舵輪2L,2Rの舵角を変更する必要がある。
 そこで、操舵軸ロック機構330をロック状態に切換えた後に操舵輪ロック機構412をロック状態に切換えることで、ステアリングホイール1の操舵操作が行われたときは、係る操舵操作に合わせて操舵輪2L,2Rの舵角を追従させることができるようにする。
 なお、コントローラ350は、操舵軸ロック機構330をロック状態に切換えた後、操舵操作に合わせて操舵輪2L,2Rの舵角を追従させる位相調整制御を継続し、位相ずれが所定値以下になった後に、操舵輪ロック機構412をロック状態に切換えることができる。
 コントローラ350は、操舵軸ロック機構330を非ロック状態からロック状態に切換えた後、操舵輪ロック機構412を非ロック状態からロック状態に切換えると、ステップS1009に進み、操舵入力装置300及び操舵アクチュエータ装置400への電源供給を遮断する。
 以上は、コントローラ350の停止制御実行部355によって実行される、車両100の起動スイッチ510がオン状態からオフ状態に切換えられたときの反力トルク及びロック機構330,412の制御である。
 更に、コントローラ350は、車両100の起動スイッチ510がオフ状態からオン状態に切換えられたときに、反力トルク及びロック機構330,412などを制御する、起動制御実行部357の機能をソフトウェアとして備える。
 図9のフローチャートは、起動スイッチ510がオフ状態からオン状態に切換えられたときのコントローラ350(起動制御実行部357)の処理手順を示すフローチャートである。
 コントローラ350は、起動スイッチ510がオフ状態からオン状態に切換えられて起動すると、ステップS2001で、反力モータ321による反力トルクを、起動制御時反力トルク(換言すれば、起動制御時における目標反力トルク)以上にまで増大させる。
 ここで、起動制御時反力トルクは、通常の反力トルクよりも高い所定の反転トルクであり、停止制御時反力トルクと同等とすることができる。
 なお、コントローラ350が、例えば、車両100のドアロックの解除に基づき起動されるよう構成することができ、その場合、ドアロックの解除に基づき起動したコントローラ350が、図9のフローチャートに示す処理手順を実行することができる。
 次いで、コントローラ350は、ステップS2002に進み、操舵輪ロック機構412をロック状態から非ロック状態に切換え、操舵輪2L,2Rのロック状態を解除する。
 なお、操舵アクチュエータ装置400は、操作量信号MSに応じて操舵輪2L,2Rの舵角を制御するので、ステップS2002で、操舵輪ロック機構412を非ロック状態に切換えても、操舵輪2L,2Rの舵角はフリーにはならない。
 コントローラ350は、反力トルクを増大させた後、操舵輪ロック機構412を非ロック状態に切換えると、その後、ステップS2003に進み、操舵アクチュエータ装置400を舵角キャリブレーションモードに設定する。
 舵角キャリブレーションモードとは、ステアリングホイール1と操舵輪2L,2Rとの位相のずれを小さくするように操舵モータ411を駆動制御するモード、つまり、位相調整部356による位相調整を実施するモードである。
 このとき、操舵軸ロック機構330はロック状態に保持されているので、コントローラ350は、操舵軸310のロック位置に操舵輪2L,2Rの舵角を合わせるように操舵モータ411を駆動制御することになる。
 コントローラ350は、次のステップS2004で、ステアリングホイール1と操舵輪2L,2Rとの位相のずれが所定値以下になっているか否かを判断する。
 そして、位相のずれが所定値を超えている場合、コントローラ350は、ステップS2003に戻って舵角キャリブレーションモードを継続し、ステアリングホイール1と操舵輪2L,2Rとの位相ずれが所定値以下になるようにする。
 舵角キャリブレーションモードによって、ステアリングホイール1と操舵輪2L,2Rとの位相ずれが所定値以下になると、コントローラ350は、ステップS2005に進んで、操舵軸ロック機構330をロック状態から非ロック状態に切換えて、操舵軸310及びステアリングホイール1のロックを解除し、運転者の操舵操作を可能にする。
 つまり、舵角キャリブレーションモード中(換言すれば、位相調整制御中)は、操舵軸ロック機構330がロック状態に維持され、舵角キャリブレーションモード中にステアリングホイール1が操舵操作されて、ステアリングホイール1と操舵輪2L,2Rとの位相のずれが増大することを抑制できる。
 なお、コントローラ350は、起動スイッチ510がオン状態に切換えられてから、ステップS2005で操舵軸ロック機構330を非ロック状態に切換えるまで間、車両100を走行不能とする処理を行う。
 車両100を走行不能とする処理には、車両100の変速機のシフトポジションをパーキングからドライブなどに移動させない処理、車両100のパーキングブレーキを解除しない処理などが含まれる。
 操舵軸ロック機構330のロック状態では、運転者がステアリングホイール1を操作することができず、操舵輪2L,2Rの舵角を変更できないので、コントローラ350は、車両100を走行不能な状態にすることで、車両100の安全性を向上させる。
 コントローラ350は、ステップS2005で操舵軸ロック機構330を非ロック状態に切換えた後、ステップS2006に進んで、反力モータ321による反力トルクを低下させ、次のステップS2007で、通常の反力トルク制御に移行する。
 ステップS2005での操舵軸310のロック解除は、反力モータ321による反力トルクを通常よりも増大させている状態で実施される。
 したがって、例えば、運転者がステアリングホイール1に手を掛けた状態で操舵軸ロック機構330が非ロック状態に切換えられても、ステアリングホイール1が急に回転して、ステアリングホイール1と操舵輪2L,2Rとの位相のずれが増大することを抑制できる。
 そして、コントローラ350は、その後に反力トルクを低下させて、通常の反力トルクの制御状態に移行するので、位相ずれが十分に小さい状態で運転者による操舵操作を可能にできる。
 なお、コントローラ350は、反力トルクを低下させている途中で、ステアリングホイール1が操舵操作された場合、操舵輪ロック機構412が非ロック状態になっているので、ステアリングホイール1の操舵操作に操舵輪2L,2Rの舵角を追従させることができる。
 上記実施形態で説明した各技術的思想は、矛盾が生じない限りにおいて、適宜組み合わせて使用することができる。
 また、好ましい実施形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の変形態様を採り得ることは自明である。
 例えば、ステアバイワイヤ操舵システム200は、ステアリングホイール1と操舵輪2L,2Rとをクラッチなどで機械的に結合するバックアップ機構を備えるシステムとすることができる。
 また、操舵アクチュエータ410は、操舵力を発生させる操舵モータ411とともに、操舵輪2L,2Rのトー角調整を行うサブのモータを備えることができる。
 また、コントローラ350及びアクチュエータ制御装置420を冗長化することができる。
 例えば、反力モータ321及び操舵モータ411は巻線組を2つ備え、コントローラ350及びアクチュエータ制御装置420は、第1巻線組を駆動制御する第1マイクロコンピュータ(第1MCU)と、第2巻線組を駆動制御する第2マイクロコンピュータ(第2MCU)とを設け、更に、操舵量センサ340、及び、操舵輪2L,2Rの舵角(例えば、ラック位置)を検出するセンサを多重に設けた、冗長システムとすることができる。
 更に、冗長システムの系統毎に専用のバッテリを設けることができる。
 また、操舵アクチュエータ410は、操舵モータ411によって操舵力を発生させる構成に限定されず、油圧によって操舵力を発生させるアクチュエータを採用できる。
 また、コントローラ350は、反力トルクを漸増させる制御において、増大過程においてトルク変化の速度を変更することができる。例えば、コントローラ350は、ステアリングホイール1と操舵輪2L,2Rとの位相ずれが拡大する場合に、反力トルクを漸増させる速度を速めることができる。
 1…ステアリングホイール、2L,2R…操舵輪、100…車両、200…ステアバイワイヤ操舵システム、300…操舵入力装置、310…操舵軸、320…操舵反力アクチュエータ、321…反力モータ、330…操舵軸ロック機構、340…操舵量センサ、コントローラ350、352…操作量信号送信部、353…反力指令信号生成部、354…ロック機構制御部、355…停止制御実行部、356…位相調整部、357…起動制御実行部、400…操舵アクチュエータ装置、410…操舵アクチュエータ、411…操舵モータ、412…操舵輪ロック機構、420…アクチュエータ制御装置、510…起動スイッチ

Claims (21)

  1.  ステアバイワイヤの操舵入力装置であって、
     ステアリングホイールの回転に伴い回転可能に設けられ、操舵輪と機械的に分離されている、操舵軸と、
     前記操舵軸に対し、操舵負荷を付与する、反力モータと、
     前記操舵軸の回転を規制する、ロック機構と、
     前記操舵軸の操作量を検出し、前記操作量に関する信号である操作量信号を出力する、操舵量センサと、
     コントローラであって、操作量信号送信部と、反力指令信号生成部と、ロック機構制御部と、停止制御実行部と、を備え、
     前記操作量信号送信部は、操舵輪に操舵力を付与する操舵アクチュエータの制御装置に対し、前記操作量信号を送信し、
     前記反力指令信号生成部は、前記操作量信号に基づき、反力指令信号を生成し、
     前記反力指令信号は、前記反力モータが運転者による操舵操作に抗する反力トルクを発生するように前記反力モータを駆動制御するための信号であって、
     前記ロック機構制御部は、前記ロック機構が前記操舵軸の回転を規制するロック状態と前記操舵軸の回転を許容する非ロック状態とを切換え制御し、
     前記停止制御実行部は、車両の起動スイッチがオフ状態に切換えられた後、前記反力トルクを増大させ、更に、前記反力トルクが増大した後、前記ロック機構を前記非ロック状態から前記ロック状態に切換える、
     前記コントローラと、
     を有することを特徴とするステアバイワイヤの操舵入力装置。
  2.  請求項1に記載のステアバイワイヤの操舵入力装置であって、
     前記停止制御実行部は、前記車両の起動スイッチがオフ状態に切換えられた後、前記反力トルクを漸増させることを特徴とするステアバイワイヤの操舵入力装置。
  3.  請求項1に記載のステアバイワイヤの操舵入力装置であって、
     前記停止制御実行部は、前記車両の起動スイッチがオフ状態に切換えられた後、前記反力トルクが増大し始めてから、所定時間経過後に、前記ロック機構を前記ロック状態に切換えることを特徴とするステアバイワイヤの操舵入力装置。
  4.  請求項1に記載のステアバイワイヤの操舵入力装置であって、
     前記停止制御実行部は、前記操作量信号に基づき、運転者による操舵操作が無いと判断したとき、前記ロック機構を前記ロック状態に切換えることを特徴とするステアバイワイヤの操舵入力装置。
  5.  請求項4に記載のステアバイワイヤの操舵入力装置であって、
     前記反力モータは、ロータと、ステータコイルを含み、
     前記操舵量センサは、前記ロータの回転角を検出するモータ回転角センサであって、
     前記停止制御実行部は、前記モータ回転角センサの出力信号に基づき、運転者による操舵操作の有無を判断することを特徴とするステアバイワイヤの操舵入力装置。
  6.  請求項1に記載のステアバイワイヤの操舵入力装置であって、
     前記停止制御実行部は、車両の速度が所定値以下のとき、前記反力トルクを増大させることを特徴とするステアバイワイヤの操舵入力装置。
  7.  請求項1に記載のステアバイワイヤの操舵入力装置であって、
     前記停止制御実行部は、前記反力トルクを所定の前記反力トルクである、停止制御時反力トルク以上に増大させ、前記反力トルクが前記停止制御時反力トルク以上の状態で、前記ロック機構を前記非ロック状態から前記ロック状態に切換えることを特徴とするステアバイワイヤの操舵入力装置。
  8.  請求項7に記載のステアバイワイヤの操舵入力装置であって、
     前記停止制御実行部は、前記ロック機構を前記非ロック状態から前記ロック状態に切換えた後、前記反力トルクを前記停止制御時反力トルクよりも小さい値に低下させることを特徴とするステアバイワイヤの操舵入力装置。
  9.  請求項1に記載のステアバイワイヤの操舵入力装置であって、
     前記停止制御実行部は、車両の起動スイッチがオフ状態に切換えられたとき、前記反力指令信号生成部が生成している前記反力指令信号の値から低下させることなく、前記反力トルクを増大させることを特徴とするステアバイワイヤの操舵入力装置。
  10.  請求項1に記載のステアバイワイヤの操舵入力装置であって、
     前記操舵アクチュエータは、操舵輪の操舵を規制する操舵輪ロック機構を備え、
     前記停止制御実行部は、前記ロック機構を前記非ロック状態から前記ロック状態に切換えた後、前記操舵輪の操舵を規制するように前記操舵輪ロック機構を作動させることを特徴とするステアバイワイヤの操舵入力装置。
  11.  請求項1に記載のステアバイワイヤの操舵入力装置であって、
     前記操作量信号送信部は、車両の起動スイッチがオフ状態に切換えられた後であって、前記反力トルクの増大中、操舵操作が行われたときは、前記操舵アクチュエータの制御装置に対し、前記操作量信号を送信することを特徴とするステアバイワイヤの操舵入力装置。
  12.  請求項1に記載のステアバイワイヤの操舵入力装置であって、
     前記コントローラは、位相調整部を更に備え、
     前記位相調整部は、前記起動スイッチがオフ状態に切換えられた後、前記ステアリングホイールが操舵操作されたとき、前記ステアリングホイールと前記操舵輪の位相のずれの増大を抑制するように、前記操作量信号に基づき、前記操舵アクチュエータを駆動制御する位相調整制御を行うことを特徴とするステアバイワイヤの操舵入力装置。
  13.  請求項12に記載のステアバイワイヤの操舵入力装置であって、
     前記位相調整部は、前記位相調整制御を実行するとき、前記操舵輪の操舵角速度が所定値を超えないように前記操舵アクチュエータを駆動制御することを特徴とするステアバイワイヤの操舵入力装置。
  14.  請求項1に記載のステアバイワイヤの操舵入力装置であって、
     前記停止制御実行部は、車両のドアロック施錠および解除用のリモートコントローラーが前記車両から所定距離離れたとき、または前記車両のドアロックが施錠されたとき、前記ロック機構を前記非ロック状態から前記ロック状態に切換えることを特徴とするステアバイワイヤの操舵入力装置。
  15.  請求項1に記載のステアバイワイヤの操舵入力装置であって、
     前記操舵アクチュエータは、操舵力を発生する操舵用電動モータと、クラッチ機構を含み、
     前記クラッチ機構は、前記操舵用電動モータのロータと締結することで、前記操舵用電動モータの回転を規制可能であり、
     前記停止制御実行部は、前記ロック機構を前記非ロック状態から前記ロック状態に切換えた後、前記クラッチ機構を締結状態とすることで、前記操舵輪の操舵を規制することを特徴とするステアバイワイヤの操舵入力装置。
  16.  請求項1に記載のステアバイワイヤの操舵入力装置であって、
     前記コントローラは、起動制御実行部を備え、
     前記起動制御実行部は、前記起動スイッチがオン状態に切換えられた後、前記反力トルクを増大させることを特徴とするステアバイワイヤの操舵入力装置。
  17.  請求項16に記載のステアバイワイヤの操舵入力装置であって、
     前記起動制御実行部は、前記ロック機構が前記ロック状態から前記非ロック状態に切換えられた後、前記反力トルクを減少させることを特徴とするステアバイワイヤの操舵入力装置。
  18.  請求項16に記載のステアバイワイヤの操舵入力装置であって、
     前記コントローラは、位相調整部を更に備え、
     前記位相調整部は、前記起動スイッチがオン状態に切換えられた後、前記ステアリングホイールと前記操舵輪の位相のずれが減少するように、前記操舵アクチュエータを駆動制御する位相調整制御を行い、
     前記起動制御実行部は、前記位相調整制御が終了した後、前記ロック機構を前記ロック状態から前記非ロック状態に切換えることを特徴とするステアバイワイヤの操舵入力装置。
  19.  請求項16に記載のステアバイワイヤの操舵入力装置であって、
     前記コントローラは、位相調整部を更に備え、
     前記位相調整部は、前記起動スイッチがオン状態に切換えられた後、前記ステアリングホイールと前記操舵輪の位相のずれが減少するように、前記操舵アクチュエータを駆動制御する位相調整制御を行い、
     前記起動制御実行部は、前記位相調整制御が終了した後、前記反力トルクを減少させることを特徴とするステアバイワイヤの操舵入力装置。
  20.  請求項16に記載のステアバイワイヤの操舵入力装置であって、
     前記起動制御実行部は、前記ロック機構が前記ロック状態から前記非ロック状態に切換えられるまでは、車両が走行不能となる処理を行うことを特徴とするステアバイワイヤの操舵入力装置。
  21.  請求項16に記載のステアバイワイヤの操舵入力装置であって、
     前記操舵アクチュエータは、操舵輪の操舵を規制する操舵輪ロック機構を備え、
     前記起動制御実行部は、前記操舵輪ロック機構を前記操舵輪の操舵を規制するロック状態から前記操舵輪の操舵を許容する非ロック状態に切換えた後、前記ロック機構を前記非ロック状態に切換え、その後、前記反力トルクを減少させることを特徴とするステアバイワイヤの操舵入力装置。
PCT/JP2021/003925 2020-02-05 2021-02-03 ステアバイワイヤの操舵入力装置 WO2021157610A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021000847.1T DE112021000847T5 (de) 2020-02-05 2021-02-03 Lenkungseingabevorrichtung für Steer-by-Wire
JP2021575830A JP7204959B2 (ja) 2020-02-05 2021-02-03 ステアバイワイヤの操舵入力装置
US17/797,508 US12091101B2 (en) 2020-02-05 2021-02-03 Steering input device for steer-by-wire
CN202180012613.5A CN115038635A (zh) 2020-02-05 2021-02-03 线控转向的转向输入装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020017745 2020-02-05
JP2020-017745 2020-02-05

Publications (1)

Publication Number Publication Date
WO2021157610A1 true WO2021157610A1 (ja) 2021-08-12

Family

ID=77200657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003925 WO2021157610A1 (ja) 2020-02-05 2021-02-03 ステアバイワイヤの操舵入力装置

Country Status (5)

Country Link
US (1) US12091101B2 (ja)
JP (1) JP7204959B2 (ja)
CN (1) CN115038635A (ja)
DE (1) DE112021000847T5 (ja)
WO (1) WO2021157610A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2230175A1 (en) * 2022-04-06 2023-10-07 Chassis Autonomy Sba Ab A steer-by-wire steering assembly
WO2023195900A1 (en) * 2022-04-06 2023-10-12 Chassis Autonomy Sba Ab A steer-by-wire steering assembly

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230088081A (ko) 2021-12-10 2023-06-19 에이치엘만도 주식회사 조향 제어 장치 및 제어 방법
JP2024058904A (ja) * 2022-10-17 2024-04-30 株式会社ジェイテクト 操舵制御装置および操舵制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004004537A1 (de) * 2004-01-29 2005-08-18 Volkswagen Ag Lenkunterstützung als Wegfahrsperre
JP2006315658A (ja) * 2005-04-13 2006-11-24 Honda Motor Co Ltd 車両用操舵装置
JP2010173592A (ja) * 2009-02-02 2010-08-12 Toyota Motor Corp ステアリングシステム
JP2013095353A (ja) * 2011-11-04 2013-05-20 Toyota Motor Corp 車両操舵装置
JP2014054916A (ja) * 2012-09-12 2014-03-27 Toyota Motor Corp 操舵装置
JP2020011646A (ja) * 2018-07-19 2020-01-23 トヨタ自動車株式会社 車両の制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7552795B2 (en) * 2005-04-13 2009-06-30 Honda Motor Co., Ltd. Steering apparatus for vehicle
JP2007022461A (ja) * 2005-07-20 2007-02-01 Fuji Kiko Co Ltd 車両用操舵装置
JP2012096722A (ja) * 2010-11-04 2012-05-24 Nippon Soken Inc 操舵制御装置
US9096254B2 (en) * 2012-01-31 2015-08-04 Toyota Jidosha Kabushiki Kaisha Vehicle steering control apparatus
US9988072B2 (en) * 2015-05-29 2018-06-05 Jtekt Corporation Steering apparatus
JP6462646B2 (ja) * 2016-11-24 2019-01-30 本田技研工業株式会社 車両用制御装置
JP6888531B2 (ja) 2017-11-29 2021-06-16 トヨタ自動車株式会社 ステアバイワイヤシステム
CN112203923B (zh) * 2018-06-12 2023-03-07 日立安斯泰莫株式会社 转向角限制装置
KR102548787B1 (ko) * 2018-10-18 2023-06-29 에이치엘만도 주식회사 스티어 바이 와이어식 조향장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004004537A1 (de) * 2004-01-29 2005-08-18 Volkswagen Ag Lenkunterstützung als Wegfahrsperre
JP2006315658A (ja) * 2005-04-13 2006-11-24 Honda Motor Co Ltd 車両用操舵装置
JP2010173592A (ja) * 2009-02-02 2010-08-12 Toyota Motor Corp ステアリングシステム
JP2013095353A (ja) * 2011-11-04 2013-05-20 Toyota Motor Corp 車両操舵装置
JP2014054916A (ja) * 2012-09-12 2014-03-27 Toyota Motor Corp 操舵装置
JP2020011646A (ja) * 2018-07-19 2020-01-23 トヨタ自動車株式会社 車両の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2230175A1 (en) * 2022-04-06 2023-10-07 Chassis Autonomy Sba Ab A steer-by-wire steering assembly
WO2023195900A1 (en) * 2022-04-06 2023-10-12 Chassis Autonomy Sba Ab A steer-by-wire steering assembly
SE546175C2 (en) * 2022-04-06 2024-06-18 Chassis Autonomy Sba Ab A steer-by-wire steering assembly

Also Published As

Publication number Publication date
JPWO2021157610A1 (ja) 2021-08-12
CN115038635A (zh) 2022-09-09
JP7204959B2 (ja) 2023-01-16
US12091101B2 (en) 2024-09-17
US20230059965A1 (en) 2023-02-23
DE112021000847T5 (de) 2022-12-01

Similar Documents

Publication Publication Date Title
WO2021157610A1 (ja) ステアバイワイヤの操舵入力装置
JP7233298B2 (ja) ステアバイワイヤ式パワーステアリング装置
JP4388383B2 (ja) 車両用操舵装置
CN108100028B (zh) 车辆控制系统
JP5263581B2 (ja) シート駆動装置
JP6630252B2 (ja) 車両用制御装置
JP2004513829A (ja) ワイヤステアリング式操舵装置のためのクラッチ
JP4746350B2 (ja) 操舵装置
CN111483516B (zh) 电动转向式转向装置
KR20190143575A (ko) Sbw시스템의 조향각 제한장치
JP2009090939A (ja) 操舵制御装置および操舵入力装置
JP2014046909A (ja) 操舵装置
JPH10205357A (ja) 絞弁制御装置
CN105936293B (zh) 用于机动车辆的包括锁止控件的转向系统,以及包括转向系统的机动车辆
JP2010173592A (ja) ステアリングシステム
JP2002087308A (ja) 車両用操舵装置
JP4193576B2 (ja) 車両用操舵装置
JP3952796B2 (ja) 車両用操舵装置
JP7386351B2 (ja) 車両操舵装置
JP3923691B2 (ja) 車両用操舵装置
WO2022185478A1 (en) Steering system for vehicle
JP3555129B2 (ja) 車両用操舵制御装置
JP2007106327A (ja) 車両用パーキング装置
JP2007190938A (ja) 車両用ステアリングシステム
JP7137591B2 (ja) シフト装置、および、シフト装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575830

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21750639

Country of ref document: EP

Kind code of ref document: A1