WO2021157541A1 - 脱炭終点判定方法、脱炭終点判定装置、製鋼二次精錬操業方法、及び溶鋼の製造方法 - Google Patents

脱炭終点判定方法、脱炭終点判定装置、製鋼二次精錬操業方法、及び溶鋼の製造方法 Download PDF

Info

Publication number
WO2021157541A1
WO2021157541A1 PCT/JP2021/003616 JP2021003616W WO2021157541A1 WO 2021157541 A1 WO2021157541 A1 WO 2021157541A1 JP 2021003616 W JP2021003616 W JP 2021003616W WO 2021157541 A1 WO2021157541 A1 WO 2021157541A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten steel
decarburization
concentration
vacuum
value
Prior art date
Application number
PCT/JP2021/003616
Other languages
English (en)
French (fr)
Inventor
修司 久山
知義 小笠原
中井 由枝
圭介 溝端
智治 石田
真導 菊地
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to BR112022014906A priority Critical patent/BR112022014906A2/pt
Priority to JP2021526610A priority patent/JP6989056B1/ja
Priority to US17/797,909 priority patent/US20230083264A1/en
Priority to CN202180012349.5A priority patent/CN115038800A/zh
Priority to KR1020227025850A priority patent/KR20220115624A/ko
Priority to EP21750361.4A priority patent/EP4101937A4/en
Publication of WO2021157541A1 publication Critical patent/WO2021157541A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2022Non-metallic constituents
    • G01N33/2025Gaseous constituents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C2005/5288Measuring or sampling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2300/00Process aspects
    • C21C2300/06Modeling of the process, e.g. for control purposes; CII
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/06Forming or maintaining special atmospheres or vacuum within heating chambers
    • F27D2007/066Vacuum

Definitions

  • the present invention relates to a decarburization end point determination method, a decarburization end point determination device, a steelmaking secondary refining operation method, and a molten steel manufacturing method.
  • the technology to measure the carbon concentration of molten steel during vacuum decarburization in real time has not been established. Therefore, conventionally, the carbon concentration of the molten steel is indirectly estimated from other measurement information other than the carbon concentration of the molten steel, and the completion determination (end point determination) of the vacuum decarburization treatment is performed based on the estimated carbon concentration of the molten steel. The method is adopted.
  • Patent Document 1 describes the carbon of molten steel based on the recirculation amount of molten steel calculated by taking into account the change in the inner diameter of the immersion tube, the mass balance formula of carbon, the decarburization rate, and the reaction model formula in the tank. A vacuum degassing device for estimating the concentration is described. Then, the vacuum degassing apparatus described in Patent Document 1 ends the vacuum decarburization treatment at the timing when the estimated carbon concentration of the molten steel reaches the target value.
  • Patent Document 2 describes in advance a method of obtaining a three-way relationship between the carbon concentration of molten steel, the dissolved oxygen concentration of molten steel, and the CO gas concentration of exhaust gas discharged from a vacuum degassing facility.
  • the method described in Patent Document 2 is when the carbon concentration of the molten steel estimated based on the relationship between the three parties from the dissolved oxygen concentration of the molten steel measured during the treatment and the CO gas concentration of the exhaust gas reaches the target value. Is determined to be the time when the vacuum decarburization process is completed.
  • Patent Document 3 describes a method for constructing a model for calculating the rate of change of the carbon concentration of molten steel using a mathematical model including the carbon concentration of molten steel, the pressure in a vacuum chamber, the dissolved oxygen concentration of molten steel, and the mass of molten steel. Has been done. Further, in the method described in Patent Document 3, a value obtained by multiplying the difference between the carbon outflow rate from the entire molten steel and the carbon outflow rate in the exhaust gas obtained from the model by a coefficient is added to the change rate of the carbon concentration of the molten steel. The carbon concentration of the molten steel is estimated over time by the compensating observer. Then, in the method described in Patent Document 3, the vacuum decarburization treatment is terminated when the estimated carbon concentration of the molten steel reaches the target value.
  • Patent Document 1 does not utilize the dissolved oxygen concentration of molten steel and the carbon dioxide gas concentration of exhaust gas measured during the vacuum decarburization treatment. Therefore, there is a possibility that the carbon concentration of molten steel may be estimated incorrectly due to the bias of the data used for parameter identification of the model formula or uncertain factors not considered in the model.
  • Patent Document 2 when it is desired to continuously know the change in the carbon concentration of the molten steel just before the end point of the vacuum decarburization treatment, the dissolved oxygen concentration of the molten steel must be measured sequentially.
  • the present invention has been made in view of the above problems, and an object of the present invention is a decarburization end point determination method capable of accurately estimating the carbon concentration of molten steel and accurately determining the end point of the vacuum decarburization treatment. And to provide a decarburization end point determination device. Another object of the present invention is to provide a steelmaking secondary refining operation method capable of performing a secondary refining operation with high accuracy and stability. Further, another object of the present invention is to provide a method for producing molten steel capable of stably producing molten steel with high accuracy.
  • the decarburization end point determination method is a decarburization end point determination method for determining the completion time of the vacuum decarburization treatment in a facility that performs a vacuum decarburization treatment for reducing the carbon concentration of molten steel by degassing the vacuum tank.
  • the measured values of the carbon concentration and the oxygen concentration of the molten steel before the start of the vacuum decarburization treatment, the measured values of the internal pressure of the vacuum chamber, and the model formula of the vacuum decarburization treatment are used.
  • the estimation step for estimating the carbon concentration and oxygen concentration of the molten steel during the vacuum decarburization treatment and the carbon dioxide gas concentration of the exhaust gas from the vacuum tank, and the timing at which the oxygen concentration of the molten steel is measured during the vacuum decarburization treatment is performed.
  • the parameters included in the model formula are corrected so as to reduce the difference between at least one of the above, the carbon concentration of the molten steel is estimated using the model formula in which the parameters are corrected, and the timing at which the estimated value reaches the target value.
  • the determination step calculates a probable value of the parameter when at least one of the measured value of the oxygen concentration of the molten steel and the measured value of the carbon dioxide concentration of the exhaust gas is obtained by inverse analysis using Bayesian inference. It is good to include steps.
  • the parameter should be the decarburization capacity coefficient.
  • the decarburization end point determination device is a decarburization end point determination device that determines the completion time of the vacuum decarburization treatment in a facility that performs a vacuum decarburization treatment that reduces the carbon concentration of molten steel by degassing the vacuum tank.
  • the measured values of the carbon concentration and the oxygen concentration of the molten steel before the start of the vacuum decarburization treatment, the measured values of the internal pressure of the vacuum chamber, and the model formula of the vacuum decarburization treatment are used.
  • the estimation means for estimating the carbon concentration and oxygen concentration of the molten steel during the vacuum decarburization treatment and the carbon dioxide gas concentration of the exhaust gas from the vacuum tank, and the timing at which the oxygen concentration of the molten steel is measured during the vacuum decarburization treatment are corrected so as to reduce the difference between at least one of the above, the carbon concentration of the molten steel is estimated using the model formula in which the parameters are corrected, and the timing at which the estimated value reaches the target value. Is provided with a determination means for determining the time when the vacuum decarburization process is completed.
  • the determination means calculates the most probable value of the parameter when at least one of the measured value of the oxygen concentration of the molten steel and the measured value of the carbon dioxide concentration of the exhaust gas is obtained by inverse analysis using Bayesian inference. It is good to do.
  • the parameter should be the decarburization capacity coefficient.
  • the steelmaking secondary refining operation method according to the present invention includes a step of determining the operation end of the steelmaking secondary refining process by the decarburization end point determination method according to the present invention.
  • the method for producing molten steel according to the present invention includes a step of producing molten steel using the method for secondary steelmaking according to the present invention.
  • the carbon concentration of molten steel can be estimated accurately and the end point determination of the vacuum decarburization treatment can be performed accurately.
  • the secondary refining operation can be performed with high accuracy and stability.
  • molten steel can be produced with high accuracy and stably.
  • FIG. 1 is a diagram showing a configuration of a vacuum degassing facility to which the decarburization end point determination method according to the embodiment of the present invention is applied.
  • FIG. 2 is a flowchart showing a flow of a decarburization end point determination process according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing a causal relationship between variables related to the vacuum decarburization treatment.
  • FIG. 4 is a diagram showing time-series changes of input variables.
  • FIG. 5 is a diagram showing time-series changes in output variables by the conventional method.
  • FIG. 6 is a diagram showing time-series changes in output variables according to the method of the present invention.
  • FIG. 1 is a diagram showing a configuration of a vacuum degassing facility to which the decarburization end point determination method according to the embodiment of the present invention is applied.
  • the vacuum degassing equipment 1 to which the decarburization end point determination method according to the embodiment of the present invention shown in FIG. 1 is applied is one of the secondary refining equipments in the steelmaking factory of the steelworks.
  • the vacuum degassing equipment 1 includes a ladle 2 for accommodating the molten steel S, a suction pipe 3 and a discharge pipe 4 immersed in the molten steel S, a vacuum tank 5, a vacuum device 6, and an acid feeding lance. 7 and a hopper 8 are provided.
  • argon is introduced into the suction pipe 3 while depressurizing the inside of the vacuum chamber 5 to a pressure of several tens to 100 mm hPa using the vacuum device 6.
  • Gas (reflux gas) A1 is blown.
  • the molten steel S in the suction pipe 3 is raised into the vacuum tank 5 by the action of the air lift pump, and the molten steel S is refluxed into the ladle 2 via the discharge pipe 4.
  • oxygen and carbon in the molten steel S react (decarburization reaction) to form carbon dioxide gas, and the carbon dioxide gas is taken into the bubbles of the argon gas A1 in the molten steel S. Then, the bubbles of the argon gas A1 that has taken in the carbon dioxide gas are discharged to the outside of the vacuum tank 5 as the exhaust gas A2 via the vacuum tank 5. As a result, the carbon concentration of the molten steel S is reduced from about 300 ppm to 10 to 100 ppm.
  • pure oxygen gas A3 is blown from the acid feeding lance 7 inserted into the vacuum tank 5 from the upper part of the vacuum tank 5 at the initial stage of the vacuum decarburization treatment to add oxygen to the molten steel S. It may be dissolved. Further, Al ore or the like may be charged from the hopper 8 for the purpose of stopping the decarburization reaction in the latter half of the vacuum decarburization treatment.
  • the vacuum degassing equipment 1 includes a measured value collecting device 10, a decarburization end point estimation device 11, and a display device 12 as a control system.
  • the measured value collecting device 10 includes an acid feed lance flow meter 21, a recirculation gas flow meter 22, a vacuum chamber internal pressure meter 23, a thermometer 24, a dissolved oxygen meter 25, an auxiliary material measuring instrument 26, an exhaust gas CO concentration meter 27, and an exhaust gas CO 2.
  • concentration meter 28 are connected exhaust gas O 2 concentration meter 29, and the exhaust gas flowmeter 30.
  • the measured value collecting device 10 acquires measured values from these measuring devices at predetermined control cycles, and outputs the acquired measured values to the decarburization end point estimation device 11.
  • the acid feed lance flow meter 21 measures the flow rate (oxygen flow rate) of the pure oxygen gas A3 blown into the vacuum chamber 5 from the acid feed lance 7, and inputs the measured value of the oxygen flow rate to the measured value collecting device 10.
  • the recirculation gas flow meter 22 measures the flow rate of the argon gas A1 blown into the suction pipe 3, and inputs the measured value of the flow rate of the argon gas A1 to the measured value collecting device 10.
  • the vacuum chamber internal pressure gauge 23 measures the internal pressure of the vacuum chamber 5 (vacuum chamber internal pressure), and inputs the measured value of the vacuum chamber internal pressure to the measured value collecting device 10.
  • the thermometer 24 measures the inner wall temperature of the lower part of the vacuum chamber 5, and inputs the measured value of the inner wall temperature to the measured value collecting device 10.
  • the dissolved oxygen meter 25 measures the dissolved oxygen concentration of the molten steel S in the ladle 2, and inputs the measured value of the dissolved oxygen concentration to the measured value collecting device 10.
  • the auxiliary raw material measuring instrument 26 measures the weight of the auxiliary raw material input from the hopper 8 and inputs the measured value of the weight of the auxiliary raw material to the measured value collecting device 10.
  • the exhaust gas CO concentration meter 27 measures the CO concentration (carbon dioxide gas concentration) of the exhaust gas A2 discharged from the vacuum device 6, and inputs the measured value of the CO concentration to the measured value collecting device 10.
  • the exhaust gas CO 2 concentration meter 28 measures the CO 2 concentration of the exhaust gas A2 discharged from the vacuum device 6, and inputs the measured value of the CO 2 concentration to the measured value collecting device 10.
  • the exhaust gas O 2 concentration meter 29 measures the oxygen concentration of the exhaust gas A2 discharged from the vacuum device 6, and inputs the measured value of the oxygen concentration to the measured value collecting device 10.
  • the exhaust gas flow meter 30 measures the flow rate of the exhaust gas A2 discharged from the vacuum device 6, and inputs the measured value of the flow rate to the measured value collecting device 10.
  • the decarburization end point estimation device 11 is composed of an information processing device such as a computer, and includes a RAM (Random Access Memory) 11a, a ROM (Read Only Memory) 11b, and an arithmetic processing unit 11c.
  • the RAM 11a, the ROM 11b, and the arithmetic processing unit 11c are electrically connected via the bus wiring 11d.
  • the RAM 11a functions as a working space for the arithmetic processing unit 11c by temporarily storing the computer program executed by the arithmetic processing unit 11c and various data necessary for executing the computer program.
  • the values of the variables and constants shown in Tables 1 to 7 below are stored in the RAM 11a in addition to the decarburization end point estimation program 11b1 described later.
  • the value of the variable is sequentially updated in the process of determining the decarburization end point.
  • Table 1 shows the state variables included in the model formula of the decarburization reaction described later.
  • Table 2 shows the adjustment parameters of the model formula of the decarburization reaction.
  • Table 3 shows the input variables of the model formula of the decarburization reaction.
  • Table 4 shows the output variables calculated from the model formula of the decarburization reaction.
  • Table 5 shows the constants included in the model formula of the decarburization reaction.
  • Table 6 shows the intermediate variables (variables tentatively used to calculate the state variables shown in Table 1) used in the model formula of the decarburization reaction.
  • Table 7 shows the measured values of the output variables calculated from the model formula of the decarburization reaction.
  • the ROM 11b is composed of a non-volatile storage device, and stores computer programs such as the decarburization end point estimation program 11b1 and various control data.
  • the arithmetic processing unit 11c is composed of electronic circuits such as a CPU (Central Processing Unit) inside the information processing device.
  • the arithmetic processing unit 11c loads the computer program stored in the ROM 11b into the RAM 11a and executes the loaded computer program to control the operation of the entire decarburization end point estimation device 11.
  • the arithmetic processing unit 11c functions as an initialization unit 11c1, a measured value reading unit 11c2, a state estimation unit 11c3, and an end point determination unit 11c4 by executing the decarburization end point estimation program 11b1. The functions of each of these parts will be described later.
  • the display device 12 is composed of a well-known display device such as a liquid crystal display device, and visually displays various information according to a control signal from the decarburization end point estimation device 11.
  • the display device 12 visually displays the input variable value, the output variable value, and the measured value of the output variable of the model formula of the decarburization reaction for each calculation cycle similar to the decarburization end point estimation device 11.
  • the display device 12 visually displays information regarding the end point of the vacuum decarburization process.
  • the decarburization end point estimation device 11 executes the decarburization end point determination process shown below to estimate the carbon concentration of the molten steel S and determine the end point of the vacuum decarburization process. I do.
  • the operation of the decarburization end point estimation device 11 when executing the decarburization end point determination process will be described with reference to the flowchart shown in FIG.
  • FIG. 2 is a flowchart showing a flow of a decarburization end point determination process according to an embodiment of the present invention.
  • the decarburization end point determination process shown in FIG. 2 starts at the timing when the vacuum device 6 starts the suction process in the vacuum chamber 5, and the decarburization end point determination process proceeds to the process of step S1.
  • the initialization unit 11c1 resets the value of the program counter i that counts the number of loops (time step) of the decarburization end point determination process to 0 at the timing when the decarburization end point determination process is started.
  • the initialization unit 11c1 stores the values of the constants shown in Table 5 in the area of the RAM 11a corresponding to the constants included in the model formula of the decarburization reaction shown in Table 5, and is shown in Table 2. stores the initial value 0.0080 [kg kg -1 Pa -1 m -1 s -1] decarburization capacity coefficient K v decarburized capacity coefficient in a region of the corresponding RAM11a to K v of. These values may be appropriately changed depending on the equipment type and operation type of the vacuum degassing equipment 1. As a result, the process of step S1 is completed, and the decarburization end point determination process proceeds to the process of step S2.
  • the initialization unit 11c1 converts various measured values output from the measured value collecting device 10 into the input variables of the model formula of the decarburization reaction shown in Table 3 and the decarburization reaction shown in Table 7. It is stored in the area of RAM 11a corresponding to the measured value of the output variable calculated from the model formula. Further, the initialization unit 11c1 copies the value of the area of the RAM 11a corresponding to the measured value of the output variable shown in Table 7 to the area of the RAM 11a corresponding to the output variable (initial value of the output variable) shown in Table 4. ..
  • step S2 the decarburization end point determination process proceeds to the process of step S3.
  • the state estimation unit 11c3 determines the measured value of the carbon mass fraction of the molten steel stored in the RAM 11a, the measured value of the oxygen mass fraction of the molten steel, and the mole of carbon dioxide gas of the exhaust gas in the process of step S2.
  • the measured value of fraction carbon dioxide concentration
  • the state estimation unit 11c3 matches the estimated values of the carbon mass fraction of the molten steel, the estimated value of the oxygen mass fraction of the molten steel, and the estimated value of the mole fraction of the carbon dioxide gas of the exhaust gas, respectively.
  • the state estimation unit 11c3 determines the carbon mass fraction of the molten steel, the oxygen mass fraction of the molten steel, and the mole fraction of the carbon dioxide gas of the exhaust gas over the past predetermined period (for example, the past 60 seconds), which is the cause of such a result.
  • the history of changes in fractions is calculated by inverse analysis using Bayesian inference (statistical inference).
  • the estimated values of the carbon mass fraction of molten steel, the oxygen mass fraction of molten steel, and the mole fraction of carbon dioxide gas of exhaust gas are expressed as probability distributions. Then, in Bayesian theory, when at least one of the carbon mass fraction of molten steel, the oxygen mass fraction of molten steel, and the mole fraction of carbon dioxide gas of exhaust gas is known, that is, the measured value is obtained. When this happens, the causal relationship between the variables related to the vacuum decarburization treatment shown in FIG. 3 is traced in reverse.
  • the state estimation unit 11c3 solves the optimization problem shown below. This is based on the premise that the estimated value of the output variable in the current time step i matches the measured value, and the values of the state variable and the decarburized capacity coefficient in the past time horizon period h are the most in the model calculation. It means finding a value that is considered probable.
  • decarburization is represented by the model formula shown in the following equation (6) to (11), the value of the state variable x and decarburization capacity coefficient K v is given by a probability distribution. Probability distribution is expressed uncertainty of whether the value of the state variable x and decarburization capacity coefficient K v is not become approximate to the value of around here.
  • the value of the output variable y during the decarburization reaction may be around this range.
  • This is expressed by the following mathematical formula (5), which is the probability distribution (estimated value y) of the output variable y under the condition given the state variable x and the decarburization capacity coefficient K v. It shows whether it is given by (Gaussian distribution of standard deviation ⁇ ) with (i) as the average value).
  • any probability density function shown in the mathematical formula (5) may be used.
  • the initial value of the probability distribution of the state variable x is a Gaussian distribution having the same value as the standard deviation of the measurement error quantified in advance, with the value measured immediately before the start of the decarburization process as the average value. Set as. However, the function of the present invention is not impaired even if the probability distribution setting method is other than this method.
  • the left side of the formula (7) represents the change in the carbon weight of the molten steel in the vacuum chamber
  • the first term of the three terms on the right side is the effect of reflux
  • the second term is the effect of vacuum decarburization
  • the third term is. It shows the effect of added auxiliary materials.
  • the left side of the formula (8) represents the change in carbon weight of the molten steel in the ladle
  • the right side represents the effect of reflux.
  • the left side of the formula (9) represents the change in the dissolved oxygen weight of the molten steel in the vacuum chamber
  • the first of the three terms on the right side is the effect of reflux
  • the second term is the effect of vacuum decarburization
  • the third term Indicates the effect of the added auxiliary material.
  • the left side of the equation (10) represents the change in the dissolved oxygen weight of the molten steel in the molten steel pan, and the right side represents the effect of reflux.
  • the formula (11) represents the molar equilibrium between the carbon dioxide gas in the gas phase in the vacuum chamber and the carbon dioxide gas in the exhaust gas (the number of moles of carbon dioxide gas molecules is in equilibrium), and the equation on the left side is the equation for the gas phase in the vacuum chamber.
  • the number of moles of carbon dioxide gas, the first term on the right side represents the number of moles of carbon dioxide gas flowing into the gas phase from molten steel by vacuum decarburization, and the second term on the right side represents the number of moles of carbon dioxide gas released into the atmosphere by exhaust gas. ..
  • the end point determination unit 11c4 adds a predetermined value as a safety allowance to the average value (carbon concentration estimated value) of the probability distribution of the carbon concentration of the molten steel calculated in the process of step S3, which is the target carbon concentration. It is determined whether or not it is as follows. Then, as a result of the determination, when the value obtained by adding the predetermined value to the estimated carbon concentration value is equal to or less than the target carbon concentration (step S4: Yes), the end point determination unit 11c4 determines that the vacuum decarburization process is completed, and a series of series. Ends the decarburization end point determination process.
  • step S4 when the value obtained by adding the predetermined value to the estimated carbon concentration value is larger than the target carbon concentration (step S4: No), the end point determination unit 11c4 determines that the vacuum decarburization process has not been completed, and steps S5. After increasing the value of the program counter i by 1, the decarburization end point determination process is returned to the process of step S2.
  • the average value of the probability distribution of the molten steel carbon concentration is used to determine the completion of the vacuum decarburization treatment, but the maximum value or the value obtained by multiplying the standard deviation by 3 is added to the average value. May be good. If it is determined that the vacuum decarburization process has not been completed, the decarburization end point determination process returns from the process of step S4 to the process of step S2 via the process of step S5. It is desirable that the loop returning to the process of step S2 is performed with a cycle time of about 5 seconds.
  • FIG. 4 is a diagram showing time-series changes in input variables in a vacuum decarburization treatment with a 250-ton charge and a target carbon concentration of 13 ppm.
  • FIG. 4A shows a time-series change in the internal pressure of the vacuum chamber
  • FIG. 4B shows a time-series change in the flow rates of the exhaust gas (line L1) and argon gas (line L2)
  • FIG. 4C shows molten steel from the added auxiliary raw material.
  • the time series change of the mass flow rate of carbon (line L3) and aluminum (line L4) flowing into is shown.
  • FIG. 5 is a diagram showing time-series changes in output variables when the vacuum decarburization treatment shown in FIGS. 4 (a) to 4 (c) is performed.
  • FIG. 5 (a) is a time-series change of the estimated value (line) and the measured value (plot) of the molten steel carbon concentration
  • FIG. 5 (b) is a time-series of the estimated value (line) and the measured value (plot) of the molten steel oxygen concentration.
  • Changes FIG. 5 (c) shows time-series changes in the estimated value (line L5) and measured values (line L6) of the carbon dioxide concentration of the exhaust gas
  • FIG. 5 (d) shows the time-series changes in the decarburized capacity coefficient.
  • the estimated value here means a value estimated by a conventional method that does not learn the decarburization capacity coefficient of the model formula from the online measurement value.
  • the molten steel carbon concentration at the completion of the vacuum decarburization treatment is estimated to be 13 ppm by the conventional method, which is 37 ppm lower than the measured value of 50 ppm.
  • the molten steel oxygen concentration at 570 seconds is estimated to be 358 ppm by the conventional method, which is 33 ppm lower than the measured value of 391 ppm.
  • the carbon dioxide concentration of the exhaust gas at 90 seconds is estimated to be 58%, which is 40% higher than the measured value of 18%. The reason for obtaining these results is that the conventional method estimates the amount of decarburization larger than the actual value. As a result, it is erroneously determined that the molten steel carbon concentration has reached the target value of 13 ppm at 669 seconds, and the molten steel carbon concentration has not actually reached the target value, resulting in poor decarburization treatment.
  • FIG. 6 is a diagram showing the results of applying the present invention to the vacuum decarburization treatment shown in FIGS. 4 (a) to 4 (c).
  • FIG. 6 (a) is a time-series change of the estimated value (line) and the measured value (plot) of the molten steel carbon concentration
  • FIG. 6 (b) is a time-series of the estimated value (line) and the measured value (plot) of the molten steel oxygen concentration.
  • Changes FIG. 6 (c) shows time-series changes in the measured value (line L5) and measured values (line L6) of the carbon dioxide concentration of the exhaust gas
  • FIG. 6 (d) shows the time-series changes in the decarburized capacity coefficient value.
  • the decarburized capacity coefficient value that should be obtained from the difference between the online measured value and the estimated value by the model formula of the decarburization reaction with respect to the carbon dioxide gas concentration and the molten steel oxygen concentration of the exhaust gas is learned online, and the learned decarburization is performed.
  • the coal capacity coefficient value is reflected in the model formula of the decarburization reaction. Specifically, as shown in FIG. 6 (b), the molten steel oxygen concentration at 570 seconds coincides with the measured value, and as shown in FIG. 6 (c), the estimated value (line L5) of the carbon dioxide concentration of the exhaust gas is measured.
  • the value of the decarburization capacity coefficient is modified as shown in FIG. 6 (d) so as to match the value (line L6).
  • the molten steel carbon concentration can be estimated so as to finally match the measured value of the molten steel carbon concentration without directly modifying the molten steel carbon concentration.
  • the value of the decarburization capacity coefficient included in the model formula of the decarburization reaction is set to deviate from the actual value, by applying the present invention, the value of the decarburization capacity coefficient becomes the actual value. It means that it can be learned online so that the values are close to each other and reflected in the model formula. That is, by applying the present invention, the molten steel carbon concentration can be estimated with higher accuracy than the conventional method, and as a result, the end point of the vacuum decarburization treatment can be determined at an appropriate timing without taking an redundant processing time.
  • the secondary refining operation itself in the steelmaking factory becomes a highly accurate and stable operation, and as a result, the processing time is shortened. As a result, the variation in the composition of the molten steel in the steelmaking factory is reduced, and highly accurate and stable molten steel production becomes possible.
  • a decarburization end point determination method and a decarburization end point determination device capable of accurately estimating the carbon concentration of molten steel and accurately determining the end point of the vacuum decarburization treatment. Further, according to the present invention, it is possible to provide a steelmaking secondary refining operation method capable of performing a secondary refining operation with high accuracy and stability. Further, according to the present invention, it is possible to provide a method for producing molten steel capable of stably producing molten steel with high accuracy.
  • Vacuum degassing equipment Ladle 3
  • Suction pipe 4 Discharge pipe 5
  • Vacuum tank 6 Vacuum device 7
  • Acid feeding lance 8 Hopper 10 Measured value collecting device

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

本発明に係る脱炭終点判定方法は、真空脱炭処理を開始する前の溶鋼の炭素濃度及び酸素濃度の計測値と、真空槽の内部圧力の計測値と、真空脱炭処理のモデル式と、を用いて、真空脱炭処理中の溶鋼の炭素濃度及び酸素濃度と真空槽の排ガスの炭酸ガス濃度を推定する推定ステップと、真空脱炭処理中に溶鋼の酸素濃度を計測したタイミングにおける溶鋼の酸素濃度の推定値と計測値との差、及び真空脱炭処理中に排ガスの炭酸ガス濃度を計測したタイミングにおける排ガスの炭酸ガス濃度の推定値と計測値との差のうちの少なくとも一方の差を小さくするようにモデル式に含まれるパラメータを補正し、パラメータが補正されたモデル式を用いて溶鋼の炭素濃度を推定し、推定値が目標値に達したタイミングを真空脱炭処理の完了時点と判定する判定ステップと、を含む。

Description

脱炭終点判定方法、脱炭終点判定装置、製鋼二次精錬操業方法、及び溶鋼の製造方法
 本発明は、脱炭終点判定方法、脱炭終点判定装置、製鋼二次精錬操業方法、及び溶鋼の製造方法に関する。
 近年、自動車部材として用いられる中炭素高張力鋼板(中炭ハイテン)や極低炭素鋼等の高級鋼板に対して、強度ばらつきの低減要求が高まっている。それに伴い、鉄鋼製造プロセスの製鋼プロセスにおける成分調整の厳格化要望が高まっている。特に製鋼二次精錬プロセスの一つである真空脱ガスプロセスにおいて、溶鋼の炭素濃度を約300ppmから100ppm前後まで低減することによって製造される中炭素高張力鋼板がある。また、溶鋼の炭素濃度を約300ppmから5~数十ppm程度まで低減することによって製造される極低炭素鋼がある。これらに対する真空脱炭処理を迅速、且つ、精度よく行うことが要求されるようになっている。
 しかしながら、真空脱炭処理中の溶鋼の炭素濃度をリアルタイムで計測する技術は確立されていない。このため、従来から、溶鋼の炭素濃度でない他の計測情報から溶鋼の炭素濃度を間接的に推定し、推定された溶鋼の炭素濃度に基づいて真空脱炭処理の完了判定(終点判定)を行う方法が採用されている。
 具体的には、特許文献1には、浸漬菅の内径変化を加味して算出された溶鋼の還流量、炭素の物質収支式、脱炭速度、及び槽内反応モデル式に基づいて溶鋼の炭素濃度を推定する真空脱ガス装置が記載されている。そして、特許文献1に記載の真空脱ガス装置は、推定された溶鋼の炭素濃度が目標値に達したタイミングで真空脱炭処理を終了させる。
 特許文献2には、溶鋼の炭素濃度と溶鋼の溶存酸素濃度と真空脱ガス設備から排出される排ガスのCOガス濃度との3者の関係を予め求める方法が記載されている。そして、特許文献2に記載の方法は、処理中に計測される溶鋼の溶存酸素濃度と排ガスのCOガス濃度から3者の関係に基づいて推定される溶鋼の炭素濃度が目標値になった時点を真空脱炭処理の完了時点と判定する。
 特許文献3には、溶鋼の炭素濃度と真空槽内の圧力と溶鋼の溶存酸素濃度と溶鋼質量とを含む数式モデルを用いて溶鋼の炭素濃度の変化速度を算出するモデルを構築する方法が記載されている。また、特許文献3に記載の方法は、モデルから求められる溶鋼全体からの炭素流出速度と排ガス中の炭素流出速度との差に係数を乗じた値を、溶鋼の炭素濃度の変化速度に加えて補正するオブザーバにより、溶鋼の炭素濃度を経時的に推定する。そして、特許文献3に記載の方法は、推定された溶鋼の炭素濃度が目標値に達した段階で真空脱炭処理を終了する。
特開2015-101742号公報 特開2007-169717号公報 特開2006-104521号公報
 しかしながら、特許文献1に記載の方法では、真空脱炭処理中に計測される溶鋼の溶存酸素濃度や排ガスの炭酸ガス濃度を活用していない。このため、モデル式のパラメータ同定に用いたデータの偏りやモデルでは考慮されていない不確実な要因によって、溶鋼の炭素濃度を推定し誤る可能性がある。一方、特許文献2に記載の方法では、真空脱炭処理の終点間際に連続的に溶鋼の炭素濃度の変化を知りたいときは、溶鋼の溶存酸素濃度の計測を逐次行わなければいけない。ところが、溶鋼の溶存酸素濃度を正確に計測するためには、溶鋼鍋から溶鋼を逐次採取して別途準備した分析器にかける必要があり、これは時間と手間がかかるため現実的ではない。また、特許文献3に記載の方法では、溶鋼の炭素濃度を知る上で重要な情報である溶鋼の溶存酸素濃度を用いていないため、特許文献2に記載の方法と比較しても溶鋼の炭素濃度の予測精度が低くなる可能性が高い。
 本発明は、上記課題に鑑みてなされたものであって、その目的は、溶鋼の炭素濃度を精度よく推定して真空脱炭処理の終点判定を精度よく行うことが可能な脱炭終点判定方法及び脱炭終点判定装置を提供することにある。また、本発明の他の目的は、高精度、且つ、安定的に二次精錬操業を行うことが可能な製鋼二次精錬操業方法を提供することにある。さらに、本発明の他の目的は、高精度、且つ、安定的に溶鋼を製造可能な溶鋼の製造方法を提供することにある。
 本発明に係る脱炭終点判定方法は、真空槽を脱ガスすることにより、溶鋼の炭素濃度を低下させる真空脱炭処理を行う設備における真空脱炭処理の完了時点を判定する脱炭終点判定方法であって、前記真空脱炭処理を開始する前の前記溶鋼の炭素濃度及び酸素濃度の計測値と、前記真空槽の内部圧力の計測値と、前記真空脱炭処理のモデル式と、を用いて、真空脱炭処理中の前記溶鋼の炭素濃度及び酸素濃度と前記真空槽の排ガスの炭酸ガス濃度を推定する推定ステップと、前記真空脱炭処理中に溶鋼の酸素濃度を計測したタイミングにおける前記溶鋼の酸素濃度の推定値と計測値との差、及び前記真空脱炭処理中に前記排ガスの炭酸ガス濃度を計測したタイミングにおける前記排ガスの炭酸ガス濃度の推定値と計測値との差のうちの少なくとも一方の差を小さくするように前記モデル式に含まれるパラメータを補正し、該パラメータが補正されたモデル式を用いて前記溶鋼の炭素濃度を推定し、推定値が目標値に達したタイミングを真空脱炭処理の完了時点と判定する判定ステップと、を含む。
 前記判定ステップは、ベイズ推論を用いた逆解析により、前記溶鋼の酸素濃度の計測値及び前記排ガスの炭酸ガス濃度の計測値の少なくとも一方を取得したときに、確からしい前記パラメータの値を算出するステップを含むとよい。
 前記パラメータは、脱炭容量係数であるとよい。
 本発明に係る脱炭終点判定装置は、真空槽を脱ガスすることにより、溶鋼の炭素濃度を低下させる真空脱炭処理を行う設備における真空脱炭処理の完了時点を判定する脱炭終点判定装置であって、前記真空脱炭処理を開始する前の前記溶鋼の炭素濃度及び酸素濃度の計測値と、前記真空槽の内部圧力の計測値と、前記真空脱炭処理のモデル式と、を用いて、真空脱炭処理中の前記溶鋼の炭素濃度及び酸素濃度と前記真空槽の排ガスの炭酸ガス濃度を推定する推定手段と、前記真空脱炭処理中に溶鋼の酸素濃度を計測したタイミングにおける前記溶鋼の酸素濃度の推定値と計測値との差、及び前記真空脱炭処理中に前記排ガスの炭酸ガス濃度を計測したタイミングにおける前記排ガスの炭酸ガス濃度の推定値と計測値との差のうちの少なくとも一方の差を小さくするように前記モデル式に含まれるパラメータを補正し、該パラメータが補正されたモデル式を用いて前記溶鋼の炭素濃度を推定し、推定値が目標値に達したタイミングを真空脱炭処理の完了時点と判定する判定手段と、を備える。
 前記判定手段は、ベイズ推論を用いた逆解析により、前記溶鋼の酸素濃度の計測値及び前記排ガスの炭酸ガス濃度の計測値の少なくとも一方を取得したときに、最も確からしい前記パラメータの値を算出するとよい。
 前記パラメータは、脱炭容量係数であるとよい。
 本発明に係る製鋼二次精錬操業方法は、本発明に係る脱炭終点判定方法により製鋼二次精錬プロセスの操業終了判定を行うステップを含む。
 本発明に係る溶鋼の製造方法は、本発明に係る製鋼二次精錬操業方法を利用して溶鋼を製造するステップを含む。
 本発明に係る脱炭終点判定方法及び脱炭終点判定装置によれば、溶鋼の炭素濃度を精度よく推定して真空脱炭処理の終点判定を精度よく行うことができる。また、本発明係る製鋼二次精錬操業方法によれば、高精度、且つ、安定的に二次精錬操業を行うことができる。さらに、本発明に係る溶鋼の製造方法によれば、高精度、且つ、安定的に溶鋼を製造することができる。
図1は、本発明の一実施形態である脱炭終点判定方法が適用される真空脱ガス設備の構成を示す図である。 図2は、本発明の一実施形態である脱炭終点判定処理の流れを示すフローチャートである。 図3は、真空脱炭処理に関係する変数間の因果関係を示す図である。 図4は、入力変数の時系列変化を示す図である。 図5は、従来手法による出力変数の時系列変化を示す図である。 図6は、本発明法による出力変数の時系列変化を示す図である。
 以下、図面を参照して、本発明の一実施形態である脱炭終点判定方法について詳しく説明する。
〔真空脱ガス設備の構成〕
 まず、図1を参照して、本発明の一実施形態である脱炭終点判定方法が適用される真空脱ガス設備の構成について説明する。
 図1は、本発明の一実施形態である脱炭終点判定方法が適用される真空脱ガス設備の構成を示す図である。
 図1に示す本発明の一実施形態である脱炭終点判定方法が適用される真空脱ガス設備1は製鉄所の製鋼工場内にある二次精錬設備の一つである。図1に示すように、真空脱ガス設備1は、溶鋼Sを収容する取鍋2、溶鋼S内に浸漬された吸上管3及び排出管4、真空槽5、真空装置6、送酸ランス7、及びホッパー8を備えている。
 この真空脱ガス設備1を用いて真空脱炭処理を行う際には、真空装置6を用いて真空槽5内を数十~百ミリhPaの圧力まで減圧しながら、吸上管3内にアルゴンガス(還流ガス)A1を吹き込む。これにより、エアリフトポンプ作用によって吸上管3内の溶鋼Sを真空槽5内に上昇させ、排出管4を介して取鍋2内に溶鋼Sを還流させる。この減圧・還流の過程で溶鋼S中の酸素と炭素が反応(脱炭反応)して炭酸ガスとなり、炭酸ガスは溶鋼S中のアルゴンガスA1の気泡の中に取り込まれる。そして、炭酸ガスを取り込んだアルゴンガスA1の気泡は、真空槽5を経由して排ガスA2として真空槽5外に排出される。これにより、溶鋼Sの炭素濃度は約300ppmから10~100ppmまで減少する。なお、脱炭反応を加速させるために、真空脱炭処理の初期段階で真空槽5の上部から真空槽5内に挿入された送酸ランス7から純酸素ガスA3を吹き込み、溶鋼Sに酸素を溶存させることもある。また、真空脱炭処理の後半で脱炭反応を止める目的でホッパー8からAl鉱石等を投入することもある。
 真空脱ガス設備1は、制御系として、計測値収集装置10、脱炭終点推定装置11、及び表示装置12を備えている。
 計測値収集装置10は、送酸ランス流量計21、還流ガス流量計22、真空槽内圧計23、温度計24、溶存酸素計25、副原料計量器26、排ガスCO濃度計27、排ガスCO濃度計28、排ガスO濃度計29、及び排ガス流量計30に接続されている。計測値収集装置10は、所定の制御周期毎に、これらの計測装置から計測値を取得し、取得した計測値を脱炭終点推定装置11に出力する。
 送酸ランス流量計21は、送酸ランス7から真空槽5内に吹き込まれる純酸素ガスA3の流量(酸素流量)を計測し、酸素流量の計測値を計測値収集装置10に入力する。還流ガス流量計22は、吸上管3内に吹き込まれるアルゴンガスA1の流量を計測し、アルゴンガスA1の流量の計測値を計測値収集装置10に入力する。真空槽内圧計23は、真空槽5の内部圧力(真空槽内圧)を計測し、真空槽内圧の計測値を計測値収集装置10に入力する。温度計24は、真空槽5下部の内壁温度を計測し、内壁温度の計測値を計測値収集装置10に入力する。溶存酸素計25は、取鍋2内の溶鋼Sの溶存酸素濃度を計測し、溶存酸素濃度の計測値を計測値収集装置10に入力する。
 副原料計量器26は、ホッパー8から投入される副原料の重量を計測し、副原料の重量の計測値を計測値収集装置10に入力する。排ガスCO濃度計27は、真空装置6から排出される排ガスA2のCO濃度(炭酸ガス濃度)を計測し、CO濃度の計測値を計測値収集装置10に入力する。排ガスCO濃度計28は、真空装置6から排出される排ガスA2のCO濃度を計測し、CO濃度の計測値を計測値収集装置10に入力する。排ガスO濃度計29は、真空装置6から排出される排ガスA2の酸素濃度を計測し、酸素濃度の計測値を計測値収集装置10に入力する。排ガス流量計30は、真空装置6から排出される排ガスA2の流量を計測し、流量の計測値を計測値収集装置10に入力する。
 脱炭終点推定装置11は、コンピュータ等の情報処理装置によって構成され、RAM(Random Access Memory)11a、ROM(Read Only Memory)11b、及び演算処理部11cを備えている。RAM11a、ROM11b、及び演算処理部11cは、バス配線11dを介して電気的に接続されている。
 RAM11aは、演算処理部11cが実行するコンピュータプログラムやコンピュータプログラムの実行に必要な各種データを一時的に記憶することにより演算処理部11cのワーキングスペースとして機能する。本実施形態では、後述する脱炭終点判定処理を実行する際、RAM11aには、後述する脱炭終点推定プログラム11b1のほかに、以下の表1~7に示す変数や定数の値が保存され、変数の値は脱炭終点判定処理の過程で逐次更新される。
 表1は、後述する脱炭反応のモデル式に含まれる状態変数を示す。表2は、脱炭反応のモデル式の調整パラメータを示す。表3は、脱炭反応のモデル式の入力変数を示す。表4は、脱炭反応のモデル式から算出される出力変数を示す。表5は、脱炭反応のモデル式に含まれる定数を示す。表6は、脱炭反応のモデル式に用いられる中間変数(表1に示す状態変数を算出するために暫定的に用いられる変数)を示す。表7は、脱炭反応のモデル式から算出される出力変数の計測値を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 ROM11bは、不揮発性の記憶装置によって構成され、脱炭終点推定プログラム11b1等のコンピュータプログラム及び各種制御データを格納している。
 演算処理部11cは、情報処理装置内部のCPU(Central Processing Unit)等の電子回路により構成されている。演算処理部11cは、ROM11b内に格納されているコンピュータプログラムをRAM11a内にロードし、ロードしたコンピュータプログラムを実行することにより、脱炭終点推定装置11全体の動作を制御する。本実施形態では、演算処理部11cは、脱炭終点推定プログラム11b1を実行することにより、初期化部11c1、計測値読取部11c2、状態推定部11c3、及び終点判定部11c4として機能する。これら各部の機能については後述する。
 表示装置12は、液晶ディスプレイ装置等の周知の表示装置によって構成され、脱炭終点推定装置11からの制御信号に従って各種情報を可視表示する。本実施形態では、表示装置12は、脱炭終点推定装置11と同様の計算周期毎に、脱炭反応のモデル式の入力変数値、出力変数値、及び出力変数の計測値を可視表示する。また、表示装置12は、真空脱炭処理の終点に関する情報を可視表示する。
 このような構成を有する真空脱ガス設備1では、脱炭終点推定装置11が以下に示す脱炭終点判定処理を実行することにより、溶鋼Sの炭素濃度を推定して真空脱炭処理の終点判定を行う。以下、図2に示すフローチャートを参照して、脱炭終点判定処理を実行する際の脱炭終点推定装置11の動作について説明する。
〔脱炭終点判定処理〕
 図2は、本発明の一実施形態である脱炭終点判定処理の流れを示すフローチャートである。図2に示す脱炭終点判定処理は、真空装置6が真空槽5内の吸引処理を開始したタイミングで開始となり、脱炭終点判定処理はステップS1の処理に進む。なお、初期化部11c1は、脱炭終点判定処理が開始されたタイミングで、脱炭終点判定処理のループ回数(タイムステップ)をカウントするプログラムカウンタiの値を0にリセットする。
 ステップS1の処理では、初期化部11c1が、表5に記載の脱炭反応のモデル式に含まれる定数に対応するRAM11aの領域に表5に記載の定数の値を格納し、表2に記載の脱炭容量係数Kに対応するRAM11aの領域に脱炭容量係数Kの初期値0.0080[kg kg-1 Pa-1 m-1 s-1]を格納する。なお、これらの値は真空脱ガス設備1の設備形態や操業形態によって適宜変更して構わない。これにより、ステップS1の処理は完了し、脱炭終点判定処理はステップS2の処理に進む。
 ステップS2の処理では、初期化部11c1が、計測値収集装置10から出力される各種計測値を、表3に記載の脱炭反応のモデル式の入力変数及び表7に記載の脱炭反応のモデル式から算出される出力変数の計測値に対応するRAM11aの領域に格納する。また、初期化部11c1は、表7に記載の出力変数の計測値に対応するRAM11aの領域の値を表4に記載の出力変数(出力変数の初期値)に対応するRAM11aの領域にコピーする。なお、脱炭終点判定処理の開始時(プログラムカウンタi=0)には、表7に記載の溶鋼の炭素質量分率(炭素濃度)や酸素質量分率(溶存酸素濃度)の計測値として、前工程である転炉から出鋼された直後に計測された値を用いるとよい。これにより、ステップS2の処理は完了し、脱炭終点判定処理はステップS3の処理に進む。
 ステップS3の処理では、状態推定部11c3が、ステップS2の処理においてRAM11a内に格納された溶鋼の炭素質量分率の計測値、溶鋼の酸素質量分率の計測値、及び排ガスの炭酸ガスのモル分率(炭酸ガス濃度)の計測値を前提とする。すなわち、状態推定部11c3は、溶鋼の炭素質量分率の推定値、溶鋼の酸素質量分率の推定値、及び排ガスの炭酸ガスのモル分率の推定値がそれぞれ計測値に一致したとする。そして、状態推定部11c3は、そのような結果をもたらした原因である過去の所定期間(例えば過去60秒)にわたる溶鋼の炭素質量分率、溶鋼の酸素質量分率、及び排ガスの炭酸ガスのモル分率の変化履歴をベイズ推論(統計的因果推論)を用いた逆解析により算出する。
 ここで、ベイズ推論では、溶鋼の炭素質量分率、溶鋼の酸素質量分率、及び排ガスの炭酸ガスのモル分率の推定値を確率分布として表現する。そして、ベイズ理論では、溶鋼の炭素質量分率、溶鋼の酸素質量分率、及び排ガスの炭酸ガスのモル分率のうちの少なくとも1つの値が既知となったときに、すなわちその計測値が得られたときに、図3に記載の真空脱炭処理に関係する変数間の因果関係を逆に辿る。これにより、ベイズ理論では、最も確からしい脱炭速度及び脱炭容量係数と、溶鋼の炭素質量分率、溶鋼酸素質量分率、及び排ガスの炭酸ガスのモル分率との変化履歴を推定する。
 具体的には、状態推定部11c3は、以下に示す最適化問題を解く。これは、現在のタイムステップiにおける出力変数の推定値が計測値に一致したという前提のもと、過去のタイムホライズン期間h内における状態変数及び脱炭容量係数の値が、モデル計算上、最も確からしいと考えられる値を求めることを意味する。詳しくは、脱炭反応は以下の数式(6)~(11)に示すモデル式で表され、状態変数x及び脱炭容量係数Kの値は確率分布で与えられる。確率分布は、状態変数x及び脱炭容量係数Kの値がおよそこのあたりの値になるのではないかという不確実性を表現している。このため、脱炭反応の進行中の出力変数yの値もおおよそこの辺りになるのではないかという不確実性をはらんでいる。それを表現したものが以下に示す数式(5)であり、これは状態変数xと脱炭容量係数Kが与えられた条件のもと、出力変数yがどのような確率分布(推定値y(i)を平均値とする標準偏差σのガウス分布)で与えられるかを表している。但し、数式(5)に示す確率密度関数はどのようなものでも構わない。なお、状態変数xの確率分布の初期値は、脱炭処理を開始する直前に計測した値を平均値とし、予め定量化しておいた計測誤差の標準偏差と同じ値を標準偏差としてもつガウス分布として設定する。但し、本方法以外の確率分布の設定方法であっても本発明の機能は損なわれない。
 そして、もし現在の出力変数yの値が実計測によって確定すると、不確実に推定していた過去の状態変数x及び脱炭容量係数Kの値もある程度の確度をもって推定しなおすことができる。その過去に遡る計算式を表現したものが以下に示す数式(1)~(4)であり、出力変数yの値が計測値yハットに確定したという条件のもと、状態変数xと脱炭容量係数Kが最も確からしい値(確率pが最大)を返すことを意味する。なお、数式(1)のP()は数式(5)の逆算式を意味している。これにより、ステップS3の処理は完了し、脱炭終点判定処理はステップS4の処理に進む。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 なお、数式(7)の左辺は真空槽内における溶鋼の炭素重量の変化を表し、右辺の3つの項の第1項は還流による影響、第2項は真空脱炭による影響、第3項は添加副原料による影響を表している。また、数式(8)の左辺は取鍋内の溶鋼の炭素重量の変化を表し、右辺は還流による影響を表している。また、数式(9)の左辺は真空槽内の溶鋼の溶存酸素重量の変化を表し、右辺の3つの項の第1項は還流による影響、第2項は真空脱炭による影響、第3項は添加副原料による影響を表している。また、数式(10)の左辺は溶鋼鍋内の溶鋼の溶存酸素重量の変化を表し、右辺は還流による影響を表している。また、数式(11)は真空槽内の気相の炭酸ガスと排ガス中炭酸ガスのモル平衡(炭酸ガス分子のモル数が平衡すること)を表し、左辺の式は真空槽内の気相の炭酸ガスのモル数、右辺の第1項は真空脱炭によって溶鋼から気相へ流入する炭酸ガスのモル数、右辺第2項は排ガスによって大気に放散される炭酸ガスのモル数を表している。
 ステップS4の処理では、終点判定部11c4が、ステップS3の処理において算出された溶鋼の炭素濃度の確率分布の平均値(炭素濃度推定値)に安全代として所定値を加算した値が目標炭素濃度以下であるか否かを判別する。そして、判別の結果、炭素濃度推定値に所定値を加算した値が目標炭素濃度以下である場合(ステップS4:Yes)、終点判定部11c4は、真空脱炭処理は完了したと判断し、一連の脱炭終点判定処理を終了する。一方、炭素濃度推定値に所定値を加算した値が目標炭素濃度より大きい場合には(ステップS4:No)、終点判定部11c4は、真空脱炭処理は完了していないと判断し、ステップS5の処理としてプログラムカウンタiの値を1増数した後、脱炭終点判定処理をステップS2の処理に戻す。
 なお、本実施形態では、真空脱炭処理の完了判定に溶鋼炭素濃度の確率分布の平均値を用いたが、最大値や標準偏差に3を乗じた値を平均値に加算した値を用いてもよい。また、真空脱炭処理が完了していないと判断した場合、脱炭終点判定処理はステップS5の処理を介してステップS4の処理からステップS2の処理に戻ることになるが、このステップS4の処理からステップS2の処理に戻るループは5秒程度の周期時間で行われることが望ましい。
 図4は、250トンチャージ、目標炭素濃度が13ppmである真空脱炭処理における入力変数の時系列変化を示す図である。図4(a)は真空槽内圧の時系列変化、図4(b)は排ガス(線L1)及びアルゴンガス(線L2)の流量の時系列変化、図4(c)は添加副原料から溶鋼へ流入した炭素(線L3)及びアルミニウム(線L4)の質量流量の時系列変化を示す。
 また、図5は、図4(a)~(c)に示す真空脱炭処理が行われたときの出力変数の時系列変化を示す図である。図5(a)は溶鋼炭素濃度の推定値(線)及び計測値(プロット)の時系列変化、図5(b)は溶鋼酸素濃度の推定値(線)及び計測値(プロット)の時系列変化、図5(c)は排ガスの炭酸ガス濃度の推定値(線L5)及び計測値(線L6)の時系列変化、図5(d)は脱炭容量係数の時系列変化を示す。なお、ここでいう推定値とは、オンライン計測値からモデル式の脱炭容量係数を学習しない従来手法によって推定された値のことを意味する。
 図5(a)に示すように、従来手法では真空脱炭処理完了時の溶鋼炭素濃度は13ppmと推定されており、これは計測値50ppmより37ppm低い値である。また、図5(b)に示すように、従来手法では570秒における溶鋼酸素濃度が358ppmと推定されており、これは計測値391ppmより33ppm低い値である。さらに、図5(c)に示すように、90秒における排ガスの炭酸ガス濃度は58%と推定されており、これは計測値18%より40%大きい値である。これらの結果が得られた理由は、従来手法では脱炭量を実績値よりも大きく見積もっているためである。この結果、669秒の時点で溶鋼炭素濃度が目標値13ppmに達したと誤って判定し、実際には溶鋼炭素濃度は目標値に達していないため脱炭処理不良となってしまう。
 一方、図6は、図4(a)~(c)に示す真空脱炭処理に対して本発明を適用した結果を示す図である。図6(a)は溶鋼炭素濃度の推定値(線)及び計測値(プロット)の時系列変化、図6(b)は溶鋼酸素濃度の推定値(線)及び計測値(プロット)の時系列変化、図6(c)は排ガスの炭酸ガス濃度の実測値(線L5)及び計測値(線L6)の時系列変化、図6(d)は脱炭容量係数値の時系列変化を示す。本発明では、排ガスの炭酸ガス濃度及び溶鋼酸素濃度に対して、オンライン計測値と脱炭反応のモデル式による推定値の差からあるべき脱炭容量係数値をオンラインで学習し、学習された脱炭容量係数値を脱炭反応のモデル式に反映させている。具体的には、図6(b)に示すように570秒における溶鋼酸素濃度が計測値と一致し、図6(c)に示すように排ガスの炭酸ガス濃度の推定値(線L5)が計測値(線L6)と一致するように、図6(d)に示すように脱炭容量係数の値が修正されている。
 このため、図6(a)に示すように、溶鋼炭素濃度に直接的な修正を加えなくとも、最終的に溶鋼炭素濃度の計測値に一致するように溶鋼炭素濃度を推定できている。このことは、たとえ脱炭反応のモデル式に含まれる脱炭容量係数の値を実績値から乖離して設定したとしても、本発明を適用することによって、脱炭容量係数の値が実績値に近い値になるようにオンラインで学習されてモデル式に反映できることを意味している。つまり、本発明を適用することによって、溶鋼炭素濃度を従来手法より高い精度で推定でき、結果として、冗長な処理時間をかけず適切なタイミングで真空脱炭処理の終点を判定できる。また、製鋼工場における二次精錬操業そのものが高精度で安定した操業となり、結果として処理時間の短縮にもつながることになる。これによって、製鋼工場における溶鋼の成分のばらつきが低減し、高精度かつ安定した溶鋼製造が可能となる。
 以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。
 本発明によれば、溶鋼の炭素濃度を精度よく推定して真空脱炭処理の終点判定を精度よく行うことが可能な脱炭終点判定方法及び脱炭終点判定装置を提供することができる。また、本発明によれば、高精度、且つ、安定的に二次精錬操業を行うことが可能な製鋼二次精錬操業方法を提供することができる。さらに、本発明によれば、高精度、且つ、安定的に溶鋼を製造可能な溶鋼の製造方法を提供することができる。
 1 真空脱ガス設備
 2 取鍋
 3 吸上管
 4 排出管
 5 真空槽
 6 真空装置
 7 送酸ランス
 8 ホッパー
 10 計測値収集装置

Claims (8)

  1.  真空槽を脱ガスすることにより、溶鋼の炭素濃度を低下させる真空脱炭処理を行う設備における真空脱炭処理の完了時点を判定する脱炭終点判定方法であって、
     前記真空脱炭処理を開始する前の前記溶鋼の炭素濃度及び酸素濃度の計測値と、前記真空槽の内部圧力の計測値と、前記真空脱炭処理のモデル式と、を用いて、真空脱炭処理中の前記溶鋼の炭素濃度及び酸素濃度と前記真空槽の排ガスの炭酸ガス濃度を推定する推定ステップと、
     前記真空脱炭処理中に溶鋼の酸素濃度を計測したタイミングにおける前記溶鋼の酸素濃度の推定値と計測値との差、及び前記真空脱炭処理中に前記排ガスの炭酸ガス濃度を計測したタイミングにおける前記排ガスの炭酸ガス濃度の推定値と計測値との差のうちの少なくとも一方の差を小さくするように前記モデル式に含まれるパラメータを補正し、該パラメータが補正されたモデル式を用いて前記溶鋼の炭素濃度を推定し、推定値が目標値に達したタイミングを真空脱炭処理の完了時点と判定する判定ステップと、
     を含む、脱炭終点判定方法。
  2.  前記判定ステップは、ベイズ推論を用いた逆解析により、前記溶鋼の酸素濃度の計測値及び前記排ガスの炭酸ガス濃度の計測値の少なくとも一方を取得したときに、確からしい前記パラメータの値を算出するステップを含む、請求項1に記載の脱炭終点判定方法。
  3.  前記パラメータは、脱炭容量係数である、請求項1又は2に記載の脱炭終点判定方法。
  4.  真空槽を脱ガスすることにより、溶鋼の炭素濃度を低下させる真空脱炭処理を行う設備における真空脱炭処理の完了時点を判定する脱炭終点判定装置であって、
     前記真空脱炭処理を開始する前の前記溶鋼の炭素濃度及び酸素濃度の計測値と、前記真空槽の内部圧力の計測値と、前記真空脱炭処理のモデル式と、を用いて、真空脱炭処理中の前記溶鋼の炭素濃度及び酸素濃度と前記真空槽の排ガスの炭酸ガス濃度を推定する推定手段と、
     前記真空脱炭処理中に溶鋼の酸素濃度を計測したタイミングにおける前記溶鋼の酸素濃度の推定値と計測値との差、及び前記真空脱炭処理中に前記排ガスの炭酸ガス濃度を計測したタイミングにおける前記排ガスの炭酸ガス濃度の推定値と計測値との差のうちの少なくとも一方の差を小さくするように前記モデル式に含まれるパラメータを補正し、該パラメータが補正されたモデル式を用いて前記溶鋼の炭素濃度を推定し、推定値が目標値に達したタイミングを真空脱炭処理の完了時点と判定する判定手段と、
     を備える、脱炭終点判定装置。
  5.  前記判定手段は、ベイズ推論を用いた逆解析により、前記溶鋼の酸素濃度の計測値及び前記排ガスの炭酸ガス濃度の計測値の少なくとも一方を取得したときに、確からしい前記パラメータの値を算出する、請求項4に記載の脱炭終点判定装置。
  6.  前記パラメータは、脱炭容量係数である、請求項4又は5に記載の脱炭終点判定装置。
  7.  請求項1~3のうち、いずれか1項に記載の脱炭終点判定方法により製鋼二次精錬プロセスの操業終了判定を行うステップを含む、製鋼二次精錬操業方法。
  8.  請求項7に記載の製鋼二次精錬操業方法を利用して溶鋼を製造するステップを含む、溶鋼の製造方法。
PCT/JP2021/003616 2020-02-06 2021-02-02 脱炭終点判定方法、脱炭終点判定装置、製鋼二次精錬操業方法、及び溶鋼の製造方法 WO2021157541A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112022014906A BR112022014906A2 (pt) 2020-02-06 2021-02-02 Método de determinação do ponto final de descarburação, dispositivo de determinação do ponto final de descarburação, método de operação de refino secundário para fabricação de aço e método para produzir aço fundido
JP2021526610A JP6989056B1 (ja) 2020-02-06 2021-02-02 脱炭終点判定方法、脱炭終点判定装置、製鋼二次精錬操業方法、及び溶鋼の製造方法
US17/797,909 US20230083264A1 (en) 2020-02-06 2021-02-02 Decarburization end point determination method, decarburization end point determination device, secondary refining operation method for steel making, and method for producing molten steel
CN202180012349.5A CN115038800A (zh) 2020-02-06 2021-02-02 脱碳终点判定方法、脱碳终点判定装置、炼钢二次精炼操作方法及钢水的制造方法
KR1020227025850A KR20220115624A (ko) 2020-02-06 2021-02-02 탈탄 종점 판정 방법, 탈탄 종점 판정 장치, 제강 2차 정련 조업 방법 및, 용강의 제조 방법
EP21750361.4A EP4101937A4 (en) 2020-02-06 2021-02-02 DECARBURIZING FINAL POINT DETERMINATION METHOD, DECARBURIZING FINAL POINT DETERMINING DEVICE, SECONDARY STEELMAKING REFINEMENT OPERATION PROCESS AND METHOD FOR MOLTEN STEEL PRODUCTION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-018450 2020-02-06
JP2020018450 2020-02-06

Publications (1)

Publication Number Publication Date
WO2021157541A1 true WO2021157541A1 (ja) 2021-08-12

Family

ID=77200275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003616 WO2021157541A1 (ja) 2020-02-06 2021-02-02 脱炭終点判定方法、脱炭終点判定装置、製鋼二次精錬操業方法、及び溶鋼の製造方法

Country Status (7)

Country Link
US (1) US20230083264A1 (ja)
EP (1) EP4101937A4 (ja)
JP (1) JP6989056B1 (ja)
KR (1) KR20220115624A (ja)
CN (1) CN115038800A (ja)
BR (1) BR112022014906A2 (ja)
WO (1) WO2021157541A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114085955A (zh) * 2021-10-19 2022-02-25 首钢集团有限公司 真空脱碳过程的碳含量监测方法、装置、设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09202913A (ja) * 1996-01-24 1997-08-05 Nkk Corp Rh真空脱ガス装置における終点炭素濃度制御方法及び炭素濃度制御装置
WO2003004707A1 (en) * 2001-07-02 2003-01-16 Nippon Steel Corporation Method for decarbonization refining of chromium-containing molten steel
JP2006104521A (ja) 2004-10-05 2006-04-20 Sumitomo Metal Ind Ltd Rh真空脱ガス装置における溶鋼脱炭方法
JP2007169717A (ja) 2005-12-22 2007-07-05 Jfe Steel Kk 真空脱ガス設備における脱炭終点判定方法
JP2008266751A (ja) * 2007-04-24 2008-11-06 Nippon Steel Corp 溶鋼の精錬方法
JP2015101742A (ja) 2013-11-21 2015-06-04 Jfeスチール株式会社 真空脱ガス装置およびこれを用いた溶鋼の脱炭処理方法
JP2016141875A (ja) * 2015-02-04 2016-08-08 新日鐵住金株式会社 排ガス成分の分析装置および溶鋼の減圧脱炭処理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185720A (ja) * 1983-04-06 1984-10-22 Nisshin Steel Co Ltd 減圧下での溶鋼の脱炭精錬方法
US5327357A (en) * 1991-12-03 1994-07-05 Praxair Technology, Inc. Method of decarburizing molten metal in the refining of steel using neural networks
JPH05239540A (ja) * 1992-02-28 1993-09-17 Sumitomo Metal Ind Ltd 真空脱ガス装置における溶鋼中炭素濃度推定方法
JPH11172323A (ja) * 1997-12-11 1999-06-29 Nkk Corp Rh真空脱ガス処理における溶鋼の炭素濃度の制御方法
CN101881981A (zh) * 2010-07-02 2010-11-10 北京首钢自动化信息技术有限公司 一种rh钢水温度、成分闭环控制系统
CN102766730B (zh) * 2012-06-25 2014-04-02 攀钢集团研究院有限公司 一种在线预测循环真空脱气法中钢水总脱碳量的方法
CN103382514B (zh) * 2013-07-19 2015-11-04 东北大学 一种在线预测rh精炼过程中钢水成分的系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09202913A (ja) * 1996-01-24 1997-08-05 Nkk Corp Rh真空脱ガス装置における終点炭素濃度制御方法及び炭素濃度制御装置
WO2003004707A1 (en) * 2001-07-02 2003-01-16 Nippon Steel Corporation Method for decarbonization refining of chromium-containing molten steel
JP2006104521A (ja) 2004-10-05 2006-04-20 Sumitomo Metal Ind Ltd Rh真空脱ガス装置における溶鋼脱炭方法
JP2007169717A (ja) 2005-12-22 2007-07-05 Jfe Steel Kk 真空脱ガス設備における脱炭終点判定方法
JP2008266751A (ja) * 2007-04-24 2008-11-06 Nippon Steel Corp 溶鋼の精錬方法
JP2015101742A (ja) 2013-11-21 2015-06-04 Jfeスチール株式会社 真空脱ガス装置およびこれを用いた溶鋼の脱炭処理方法
JP2016141875A (ja) * 2015-02-04 2016-08-08 新日鐵住金株式会社 排ガス成分の分析装置および溶鋼の減圧脱炭処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4101937A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114085955A (zh) * 2021-10-19 2022-02-25 首钢集团有限公司 真空脱碳过程的碳含量监测方法、装置、设备及介质

Also Published As

Publication number Publication date
US20230083264A1 (en) 2023-03-16
BR112022014906A2 (pt) 2022-09-27
JP6989056B1 (ja) 2022-01-05
JPWO2021157541A1 (ja) 2021-08-12
EP4101937A4 (en) 2023-08-09
CN115038800A (zh) 2022-09-09
KR20220115624A (ko) 2022-08-17
EP4101937A1 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
WO2018012257A1 (ja) 溶鋼中りん濃度推定方法及び転炉吹錬制御装置
KR102348892B1 (ko) 용탕 성분 추정 장치, 용탕 성분 추정 방법, 및 용탕의 제조 방법
TWI553123B (zh) 轉爐吹煉設備的控制裝置和控制方法
WO2021157541A1 (ja) 脱炭終点判定方法、脱炭終点判定装置、製鋼二次精錬操業方法、及び溶鋼の製造方法
JP6687080B2 (ja) 溶湯温度補正装置、溶湯温度補正方法、及び溶湯の製造方法
JP6376200B2 (ja) 溶湯状況推定装置、溶湯状況推定方法、及び溶湯の製造方法
CN103194574B (zh) 一种vod精炼终点碳含量预报模型的动态调整方法
JP3287204B2 (ja) Rh真空脱ガス装置における終点炭素濃度制御方法及び炭素濃度制御装置
TW201502280A (zh) 補正裝置、補正方法及鋼鐵精煉方法
JP6414045B2 (ja) 溶湯成分推定装置及び溶湯成分推定方法
JP2018178199A (ja) 溶鋼中りん濃度推定方法、転炉吹錬制御装置、プログラム及び記録媒体
JP6825711B2 (ja) 溶湯成分推定装置、溶湯成分推定方法、及び溶湯の製造方法
RU2803908C1 (ru) Способ определения конечной точки обезуглероживания, устройство для определения конечной точки обезуглероживания, способ выполнения операции вторичного рафинирования для производства стали и способ производства расплавленной стали
JP6098553B2 (ja) 復燐量予測装置および復燐量予測方法、ならびに転炉脱燐制御方法
JP2020031512A (ja) 燃料電池車
JP2020105606A (ja) 転炉吹錬制御装置、転炉吹錬制御方法およびプログラム
JP3891564B2 (ja) 溶鋼の減圧脱炭法における脱炭処理時間の制御方法
TWI627284B (zh) 熔融生鐵預備處理方法及熔融生鐵預備處理控制裝置
KR101570582B1 (ko) 크롬 함유 용강의 진공정련 장치 및 이를 이용한 진공정련방법
JP3204068B2 (ja) 真空脱ガス装置における脱水素濃度制御方法
JP7376787B2 (ja) 溶鋼中りん濃度推定装置、統計モデル構築装置、溶鋼中りん濃度推定方法、統計モデル構築方法、およびプログラム
JP2023166207A (ja) 真空脱ガス設備の制御装置、真空脱ガス設備の制御方法、操業方法及び溶鋼の製造方法
RU2817694C1 (ru) Устройство управления процессом рафинирования и способ управления процессом рафинирования
TWI778563B (zh) 減壓下之熔鋼的脫碳精煉方法
JPH11279625A (ja) 極低炭素鋼の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021526610

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227025850

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022014906

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021750361

Country of ref document: EP

Effective date: 20220906

ENP Entry into the national phase

Ref document number: 112022014906

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220727