WO2021153395A1 - 非水電解液用添加剤およびこれを含む非水電解液ならびに非水電解液二次電池 - Google Patents

非水電解液用添加剤およびこれを含む非水電解液ならびに非水電解液二次電池 Download PDF

Info

Publication number
WO2021153395A1
WO2021153395A1 PCT/JP2021/001956 JP2021001956W WO2021153395A1 WO 2021153395 A1 WO2021153395 A1 WO 2021153395A1 JP 2021001956 W JP2021001956 W JP 2021001956W WO 2021153395 A1 WO2021153395 A1 WO 2021153395A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
aqueous electrolyte
negative electrode
electrolyte solution
bis
Prior art date
Application number
PCT/JP2021/001956
Other languages
English (en)
French (fr)
Inventor
翔 柴田
拡哲 鈴木
基浩 坂田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP21746921.2A priority Critical patent/EP4099467A4/en
Priority to US17/794,356 priority patent/US20230070559A1/en
Priority to CN202180010903.6A priority patent/CN115004438A/zh
Priority to JP2021574679A priority patent/JPWO2021153395A1/ja
Publication of WO2021153395A1 publication Critical patent/WO2021153395A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to an additive for a non-aqueous electrolyte solution, a non-aqueous electrolyte solution containing the same, and a non-aqueous electrolyte solution secondary battery.
  • Materials containing silicon elements are promising as high-capacity negative electrode materials for secondary batteries.
  • the material containing a silicon element has a large expansion and contraction due to charge and discharge, it is easy to induce a side reaction and the capacity retention rate in the charge and discharge cycle is likely to decrease.
  • Non-Patent Document 1 reports that the capacity retention rate in the charge / discharge cycle is improved by adding a vinyl group-containing silane coupling agent to the electrolytic solution of a unipolar battery using a Si / C composite.
  • Non-Patent Document 1 it is difficult to stably improve the capacity retention rate in the charge / discharge cycle.
  • One aspect of the present disclosure includes an alkoxysilyl compound, wherein the alkoxysilyl compound has two or more silyl groups linked by an alkylene group or an amino group, and each of the two or more silyl groups is an alkoxy group. And having at least one selected from the group consisting of oxyalkyl groups, the oxyalkyl group being represented by -O- (C x H 2x + 1 O y ), where x is an integer greater than or equal to 1.
  • y relates to an additive for a non-aqueous electrolyte solution, which is an integer of 1 or more.
  • Another aspect of the present disclosure relates to a non-aqueous electrolyte solution containing a non-aqueous solvent, a salt dissolved in the non-aqueous solvent, and the additive for the non-aqueous electrolyte solution.
  • Yet another aspect of the present disclosure comprises a negative electrode having a negative electrode mixture layer, a positive electrode, and the non-aqueous electrolytic solution, the negative electrode mixture layer contains a negative electrode active material, and the negative electrode active material is a negative electrode active material.
  • the present invention relates to a non-aqueous electrolyte secondary battery containing a material containing an element of silicon.
  • the capacity retention rate in the charge / discharge cycle of the non-aqueous electrolyte secondary battery can be stably improved.
  • FIG. 1 is a partially cutaway plan view schematically showing the structure of the non-aqueous electrolyte secondary battery according to the embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view taken along the line XX'of the non-aqueous secondary battery shown in FIG.
  • FIG. 3 is a diagram illustrating a method of manufacturing a negative electrode for performance evaluation.
  • FIG. 4 is a graph showing the relationship between the number of charge / discharge cycles of the non-aqueous electrolyte secondary battery and the capacity retention rate.
  • the additive for a non-aqueous electrolyte solution contains an alkoxysilyl compound.
  • This alkoxysilyl compound has two or more silyl groups linked by an alkylene group or an amino group.
  • the two or more silyl groups each have at least one selected from the group consisting of an alkoxy group and an oxyalkyl group, and the oxyalkyl group is -O- (C x H 2x + 1 O y ).
  • x is an integer of 1 or more
  • y is an integer of 1 or more.
  • the alkoxysilyl compound may be a bisalkoxysilyl compound or a trisalkoxysilyl compound.
  • a bisalkoxysilyl compound two silyl groups are linked by an alkylene group or a secondary amino group.
  • trisalkoxysilyl compound three alkoxysilyl groups are linked by a tertiary amino group.
  • each of the alkoxy group or the oxyalkyl group of each silyl group forms an X-O-Si bond with the surface of the material containing the silicon element.
  • X indicates the surface of the material containing the silicon element
  • O bonded to X indicates, for example, an O atom (or a residue of an OH group) existing on the surface of the material containing the silicon element.
  • Each of the alkoxy or oxyalkyl groups forms a bond with the surface of the material containing the silicon element, so that the surface of the material containing the silicon element has a bissilylalkane or bissilylamine structure having stable siloxane bonds at both ends. Includes trissilylamine structure).
  • the surface of the material containing the silicon element is covered with a film containing a bissilylalkane or bissilylamine structure (hereinafter, also referred to as an SRS film).
  • the SRS coating has high elasticity, is stable against reversible elastic deformation, and is not easily damaged even when the charge / discharge cycle is repeated. As a result, side reactions at the negative electrode are suppressed, and the capacity retention rate in the charge / discharge cycle is stably improved.
  • the alkoxysilyl compound has a general formula (1):
  • It may be at least one selected from the group consisting of a bis (alkoxysilyl) alkane represented by and a bis (alkoxysilylalkyl) amine having an alkylene group between N and Si.
  • R1 is an alkylene group or a secondary or tertiary amino group.
  • At least one of R2 to R4 is represented by an alkoxy group having 1 to 6 carbon atoms and -O- (C x1 H 2x1 + 1 O y1 ), x1 is an integer of 1 or more, and y1 is an integer of 1 or more.
  • At least one of R5 to R7 is represented by an alkoxy group having 1 to 6 carbon atoms and -O- (C x2 H 2x2 + 1 O y2 ), x2 is an integer of 1 or more, and y2 is an integer of 1 or more.
  • At least one selected from the group consisting of certain oxyalkyl groups At least one selected from the group consisting of certain oxyalkyl groups.
  • the rest of R2 to R7 are independently represented by C x3 H 2x3 + 1 O y3 , where x3 is an integer greater than or equal to 1 and y3 is an alkyl or oxyalkyl group which is an integer greater than or equal to 0.
  • the oxyalkyl group is a group other than the alkoxy group.
  • the alkoxy group or oxyalkyl group contained in R2 to R4 and R5 to R7 each form an XO—Si—R1 bond with the surface of the material containing the silicon element, and the surface of the material containing the silicon element is stable. It is covered with a Si-R1-Si structure having various siloxane bonds at both ends. That is, the surface of the material containing the silicon element is covered with the SRS coating containing the Si-R1-Si structure.
  • the alkylene group constituting R1 has a larger number of carbon atoms, the flexibility is excellent, so that the reversible deformation of the SRS coating is facilitated.
  • the alkylene group has 1 to 6 carbon atoms, and more preferably 2 to 4 carbon atoms.
  • the bis (alkoxysilyl) alkane is preferably a bis (alkoxysilyl) C 1-6 alkane and may be a bis (alkoxysilyl) C 2-4 alkane.
  • R1 may have a structure represented by R11-N-R12.
  • R11 and R12 are independently alkylene groups having one or more carbon atoms. It is considered that such R1 is excellent in flexibility, has a large electron shielding property, and has a greater effect of suppressing side reactions.
  • the alkylene group has 1 to 6 carbon atoms, and more preferably 2 to 4 carbon atoms.
  • the bis (alkoxysilylalkyl) amine is preferably a bis (alkoxysilyl C 1-6 alkyl) amine and may be a bis (alkoxysilyl C 2-4 alkyl) amine.
  • At least one of R2 to R4 is represented by an alkoxy group having 1 to 6 carbon atoms and -O- (C x1 H 2x1 + 1 O y1 ), x1 is an integer of 1 to 6, and y1 is 1 or 2. It may be at least one selected from the group consisting of certain oxyalkyl groups, and at least one of R5 to R7 is an alkoxy group having 1 to 6 carbon atoms and -O- (C x2 H 2x2 + 1 O). It is represented by y2 ), x2 is an integer of 1 to 6, and y2 may be at least one selected from the group consisting of oxyalkyl groups of 1 or 2.
  • the alkoxy group and the oxyalkyl group may be smaller from the viewpoint of enhancing the reactivity with the surface of the material containing the silicon element, and the number of carbon atoms of the alkoxy group and the oxyalkyl group may be, for example, 1 to 3.
  • R2 to R7 are independently represented by C x3 H 2x3 + 1 O y3 , x3 is an integer of 1 or more, and y3 is an integer of 0 or more (for example, an integer of 0 or more and 2 or less). It is an oxyalkyl group other than a group or an alkoxy group. From the viewpoint of reducing steric hindrance during the reaction, the group represented by C x3 H 2x3 + 1 O y3 may have 1 to 6 carbon atoms or 1 to 3 carbon atoms.
  • R2 to R4 are independent of each other, and all of R2 to R4 may have the same number of carbon atoms, all of them may have different numbers of carbon atoms, and two of R2 to R4 may have the same number of carbon atoms.
  • R5 to R7 are independent of each other, and all of R5 to R7 may have the same number of carbon atoms, all of them may have different numbers of carbon atoms, and two of R5 to R7 may have the same number of carbon atoms. ..
  • the two alkoxysilyl groups (R2R3R4Si- or R5R6R7Si-) linked to R1 may be the same or different from each other. However, in order to increase the symmetry of the structure of the SRS coating and make it a more stable structure, the two alkoxysilyl groups linked to R1 may have the same structure.
  • the alkoxysilyl compound when R1 is an alkylene group, is a kind of bis (alkoxysilyl) alkane.
  • the SRS coating formed when a bis (alkoxysilyl) alkane is used is composed of a stable siloxane structure and an alkylene structure. Such an SRS coating is not only easily elastically deformed, but also chemically and structurally stable.
  • the bis (alkoxysilyl) alkanes at least one selected from the group consisting of 1,2-bis (trialkoxysilyl) ethane and 1,6-bis (trialkoxysilyl) hexane is easily available.
  • the 1,2-bis (trialkoxysilyl) ethane include 1,2-bis (trimethoxysilyl) ethane and 1,2-bis (triethoxysilyl) ethane.
  • 1,6-bis (trialkoxysilyl) hexane include 1,6-bis (trimethoxysilyl) hexane and 1,6-bis (triethoxysilyl) hexane.
  • the alkoxysilyl compound when R1 is an amino group, is a kind of alkoxysilylalkylamine. More specifically, the alkoxysilylalkylamine may be at least one selected from the group consisting of bis (alkoxysilylalkyl) amines and tris (alkoxysilylalkyl) amines.
  • bis or tris (alkoxysilylalkyl) amines those easily available are selected from the group consisting of bis [3- (trialkoxysilyl) propyl] amines and tris [3- (trialkoxysilyl) propyl] amines. At least one type is mentioned.
  • the bis [3- (trialkoxysilyl) propyl] amine include bis [3- (trimethoxysilyl) propyl] amine and bis [3- (triethoxysilyl) propyl] amine.
  • tris [3- (trialkoxysilyl) propyl] amine examples include tris [3- (trimethoxysilyl) propyl] amine and tris [3- (triethoxysilyl) propyl] amine.
  • the non-aqueous electrolyte solution contains a non-aqueous solvent, a salt (solute) that dissolves in the non-aqueous solvent, and the additive for the non-aqueous electrolyte solution.
  • the salt (solute) is an electrolyte salt that dissociates ions in a non-aqueous solvent.
  • the salt comprises at least a lithium salt.
  • the components of the non-aqueous electrolyte solution other than the non-aqueous solvent and the salt are additives, and at least a part of the additives is the above-mentioned alkoxysilyl compound.
  • the concentration of the alkoxysilyl compound in the non-aqueous electrolytic solution may be, for example, 10% by mass or less, 8% by mass or less, or 5% by mass or less. This range is sufficient to form a good and appropriate SRS coating regardless of the amount of the silicon element-containing material contained in the negative electrode active material. If the concentration of the alkoxysilyl compound represented by the formula (1) in the non-aqueous electrolyte solution is, for example, 0.2% by mass or more, it is considered that a considerable SRS film is formed, and the non-aqueous electrolyte solution secondary A significant effect of improving the capacity retention rate in the charge / discharge cycle of the battery can be obtained.
  • the alkoxysilyl compound reacts in the non-aqueous electrolyte secondary battery, the concentration in the non-aqueous electrolyte solution gradually decreases. Therefore, if the completed non-aqueous electrolyte secondary battery or the non-aqueous electrolyte secondary battery on the market is disassembled and taken out, the alkoxysilyl compound exceeding the detection limit remains in the non-aqueous electrolyte solution. good.
  • cyclic carbonate ester for example, cyclic carbonate ester, chain carbonate ester, cyclic carboxylic acid ester, chain carboxylic acid ester and the like are used.
  • cyclic carbonate examples include propylene carbonate (PC), ethylene carbonate (EC), vinylene carbonate (VC) and the like.
  • chain carbonic acid ester examples include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC).
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • examples of the cyclic carboxylic acid ester examples include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • chain carboxylic acid ester examples include methyl acetate, ethyl acetate, propyl acetate, methyl propionate (MP), ethyl propionate (EP) and the like.
  • non-aqueous solvent one type may be used alone, or two or more types may be used in combination.
  • the chain carboxylic acid ester is suitable for preparing a low-viscosity non-aqueous electrolytic solution. Therefore, the non-aqueous electrolytic solution may contain 1% by mass or more and 90% by mass or less of the chain carboxylic acid ester.
  • the chain carboxylic acid esters methyl acetate has a particularly low viscosity. Therefore, 90% by mass or more of the chain carboxylic acid ester may be methyl acetate.
  • non-aqueous solvent examples include cyclic ethers, chain ethers, nitriles such as acetonitrile, and amides such as dimethylformamide.
  • cyclic ethers examples include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran, propylene oxide, 1,2-butylene oxide, 1,3-dioxane, 1,4-.
  • examples thereof include dioxane, 1,3,5-trioxane, furan, 2-methylfuran, 1,8-cineole, crown ether and the like.
  • chain ethers examples include 1,2-dimethoxyethane, dimethyl ether, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, dihexyl ether, ethyl vinyl ether, butyl vinyl ether, methyl phenyl ether, ethyl phenyl ether, and butyl phenyl ether.
  • Pentylphenyl ether methoxytoluene, benzyl ethyl ether, diphenyl ether, dibenzyl ether, o-dimethoxybenzene, 1,2-diethoxyethane, 1,2-dibutoxyethane, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, Examples thereof include 1,1-dimethoxymethane, 1,1-diethoxyethane, triethylene glycol dimethyl ether and tetraethylene glycol dimethyl ether.
  • These solvents may be fluorinated solvents in which a part of hydrogen atoms is replaced with fluorine atoms.
  • fluorination solvent fluoroethylene carbonate (FEC) may be used.
  • lithium salt such as LiClO 4, LiAlCl 4, LiB 10 Cl 10) chlorine lithium salt-containing acid, lithium salt of fluorine-containing acids (LiPF 6, LiPF 2 O 2 , LiBF 4, LiSbF 6, LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, etc.), Lithium salt of fluorine-containing acidimide (LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO) 2 ), LiN (C 2 F 5 SO 2 ) 2, etc.), lithium halide (LiCl, LiBr, LiI, etc.), etc. can be used.
  • One type of lithium salt may be used alone, or two or more types may be used in combination.
  • the concentration of the lithium salt in the non-aqueous electrolytic solution may be 0.5 mol / liter or more and 2 mol / liter or less, or 1 mol / liter or more and 1.5 mol / liter or less.
  • additives other than the alkoxysilyl compound include 1,3-propanesaltone, methylbenzenesulfonate, cyclohexylbenzene, biphenyl, diphenyl ether, and fluorobenzene.
  • Non-aqueous electrolyte secondary battery includes a negative electrode, a positive electrode, and the non-aqueous electrolyte solution.
  • the negative electrode includes, for example, a negative electrode current collector and a negative electrode mixture layer formed on the surface of the negative electrode current collector.
  • the negative electrode mixture layer contains a negative electrode active material as an essential component, and may contain an optional component such as a binder, a conductive material, and a thickener. Known materials can be used as optional components such as a binder, a conductive material, and a thickener.
  • the negative electrode mixture layer can be formed, for example, by applying a negative electrode slurry in which a negative electrode mixture containing a negative electrode active material and a predetermined optional component is dispersed in a dispersion medium to the surface of a negative electrode current collector and drying it. The dried coating film may be rolled if necessary.
  • the negative electrode mixture layer may be formed on one surface of the negative electrode current collector, or may be formed on both surfaces.
  • the negative electrode active material contains a material containing a silicon element.
  • Materials containing silicon elements may be treated as a type of alloy-based material.
  • the alloy-based material refers to a material containing an element capable of forming an alloy with lithium. Examples of elements that can be alloyed with lithium include silicon and tin, and silicon (Si) is particularly promising.
  • the material containing silicon may be a silicon alloy, a silicon compound, or the like, but may be a composite material. Among them, a composite material containing a lithium ion conductive phase and silicon particles dispersed in the lithium ion conductive phase is promising.
  • the lithium ion conductive phase for example, a silicon oxide phase, a silicate phase, a carbon phase and the like can be used.
  • the silicon oxide phase is a material having a relatively large irreversible capacity.
  • the silicate phase is preferable because it has a small irreversible capacity.
  • the main component of the silicon oxide phase may be silicon dioxide.
  • the composition of the composite material containing the silicon oxide phase and the silicon particles dispersed therein can be represented as SiO x as a whole.
  • SiO x has a structure in which fine particles of silicon are dispersed in amorphous SiO 2.
  • the oxygen content ratio x to silicon is, for example, 0.5 ⁇ x ⁇ 2.0, and more preferably 0.8 ⁇ x ⁇ 1.5.
  • the silicate phase may include, for example, at least one selected from the group consisting of Group 1 elements and Group 2 elements in the long periodic table.
  • Examples of the Group 1 element of the long periodic table and the Group 2 element of the long periodic table include lithium (Li), potassium (K), sodium (Na), magnesium (Mg), and calcium (Ca).
  • Strontium (Sr), barium (Ba) and the like can be used.
  • Other elements may include aluminum (Al), boron (B), lanthanum (La), phosphorus (P), zirconium (Zr), titanium (Ti) and the like.
  • a silicate phase containing lithium hereinafter, also referred to as a lithium silicate phase
  • a silicate phase containing lithium is preferable because the irreversible capacity is small and the initial charge / discharge efficiency is high.
  • the lithium silicate phase may be an oxide phase containing lithium (Li), silicon (Si), and oxygen (O), and may contain other elements.
  • the atomic ratio of O to Si in the lithium silicate phase: O / Si is, for example, greater than 2 and less than 4.
  • O / Si is greater than 2 and less than 3.
  • the atomic ratio of Li to Si in the lithium silicate phase: Li / Si is, for example, greater than 0 and less than 4.
  • Examples of elements other than Li, Si and O that can be contained in the lithium silicate phase include iron (Fe), chromium (Cr), nickel (Ni), manganese (Mn), copper (Cu) and molybdenum (Mo). Examples thereof include zinc (Zn) and aluminum (Al).
  • the carbon phase may be composed of, for example, amorphous carbon having low crystallinity (that is, amorphous carbon).
  • amorphous carbon may be, for example, hard carbon, soft carbon, or other carbon.
  • the negative electrode active material may include, in addition to the material containing the element silicon, a material that electrochemically occludes and releases lithium ions, a lithium metal, a lithium alloy, and the like.
  • a carbon material is preferable as a material that electrochemically occludes and releases lithium ions.
  • Examples of the carbon material include graphite, easily graphitized carbon (soft carbon), and non-graphitized carbon (hard carbon). Among them, graphite having excellent charge / discharge stability and a small irreversible capacity is preferable.
  • the negative electrode current collector for example, a metal sheet or a metal foil is used.
  • the material of the negative electrode current collector include stainless steel, nickel, nickel alloy, copper, and copper alloy.
  • the positive electrode includes, for example, a positive electrode current collector and a positive electrode mixture layer formed on the surface of the positive electrode current collector.
  • the positive electrode mixture layer contains a positive electrode active material as an essential component, and may contain an optional component such as a binder, a conductive material, and a thickener. Known materials can be used as optional components such as a binder, a conductive material, and a thickener.
  • the positive electrode mixture layer can be formed, for example, by applying a positive electrode slurry in which a positive electrode mixture containing a positive electrode active material and a predetermined optional component is dispersed in a dispersion medium to the surface of a positive electrode current collector and drying it. The dried coating film may be rolled if necessary.
  • the positive electrode mixture layer may be formed on one surface of the positive electrode current collector, or may be formed on both surfaces.
  • the positive electrode active material contains, for example, a lithium-containing composite oxide.
  • the lithium-containing composite oxide is not particularly limited, but one having a layered rock salt type crystal structure containing lithium and a transition metal is promising.
  • the lithium-containing composite oxide for example, Li a Ni 1-x- y Co x M y O 2 (where a 0 ⁇ a ⁇ 1.2, 0 ⁇ x ⁇ 0.1,0 ⁇ y ⁇ 0.1, 0 ⁇ x + y ⁇ 0.1, and M is selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Cu, Zn, Al, Cr, Pb, Sb and B. It may be at least one kind.).
  • Al may be contained as M.
  • the value a which indicates the molar ratio of lithium, increases or decreases with charge and discharge. Specific examples include LiNi 0.9 Co 0.05 Al 0.05 O 2 , LiNi 0.91 Co 0.06 Al 0.03 O 2 .
  • the positive electrode active material usually has the form of secondary particles in which primary particles are aggregated.
  • the average particle size of the positive electrode active material may be, for example, 2 ⁇ m or more and 20 ⁇ m or less.
  • the average particle size means a median diameter at which the cumulative volume in the volume-based particle size distribution is 50%.
  • the volume-based particle size distribution can be measured by a laser diffraction type particle size distribution measuring device.
  • the positive electrode current collector for example, a metal sheet or a metal foil is used.
  • the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloy, and titanium.
  • Examples of conductive materials used for the positive electrode mixture layer and the negative electrode mixture layer include carbon materials such as carbon black (CB), acetylene black (AB), Ketjen black (KB), carbon nanotubes (CNT), and graphite. Is done. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • carbon black CB
  • AB acetylene black
  • KB Ketjen black
  • CNT carbon nanotubes
  • graphite graphite
  • binder used for the positive electrode mixture layer and the negative electrode mixture layer examples include fluororesins (polytetrafluoroethylene, polyvinylidene fluoride, etc.), polyacrylonitrile (PAN), polyimide resins, acrylic resins, polyolefin resins, and the like. Is done. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a separator is interposed between the positive electrode and the negative electrode.
  • the separator has high ion permeability and has appropriate mechanical strength and insulation.
  • a microporous thin film, a woven fabric, a non-woven fabric, or the like can be used.
  • polyolefins such as polypropylene and polyethylene are preferable.
  • An example of the structure of a secondary battery is a structure in which an electrode group in which a positive electrode and a negative electrode are wound via a separator and a non-aqueous electrolyte are housed in an exterior body.
  • another form of electrode group such as a laminated type electrode group in which a positive electrode and a negative electrode are laminated via a separator may be applied.
  • the non-aqueous electrolyte secondary battery may be in any form such as a cylindrical type, a square type, a coin type, a button type, and a sheet type (laminated type).
  • FIG. 1 is a partially cutaway plan view schematically showing an example of the structure of a non-aqueous electrolyte secondary battery.
  • FIG. 2 is a cross-sectional view taken along the line XX'of FIG.
  • the non-aqueous electrolyte secondary battery 100 is a sheet type battery, and includes a electrode plate group 4 and an exterior case 5 for accommodating the electrode plate group 4.
  • the electrode plate group 4 has a structure in which a positive electrode 10, a separator 30 and a negative electrode 20 are laminated in this order, and the positive electrode 10 and the negative electrode 20 face each other via the separator 30. As a result, the electrode plate group 4 is formed.
  • the electrode plate group 4 is impregnated with a non-aqueous electrolytic solution.
  • the positive electrode 10 includes a positive electrode active material layer 1a and a positive electrode current collector 1b.
  • the positive electrode active material layer 1a is formed on the surface of the positive electrode current collector 1b.
  • the negative electrode 20 includes a negative electrode mixture layer 2a and a negative electrode current collector 2b.
  • the negative electrode mixture layer 2a is formed on the surface of the negative electrode current collector 2b.
  • a negative electrode tab lead 1c is connected to the negative electrode current collector 1b, and a negative electrode tab lead 2c is connected to the negative electrode current collector 2b.
  • the positive electrode tab lead 1c and the negative electrode tab lead 2c each extend to the outside of the outer case 5.
  • the positive electrode tab lead 1c and the outer case 5 and the negative electrode tab lead 2c and the outer case 5 are each insulated by an insulating tab film 6.
  • SiO x (x 1) (Shinetsu Chemical Industry Co., Ltd., KSC1064), carbon black (Denka Co., Ltd., HS-100), and an aqueous solution of polyacrylamide (binding material
  • the negative electrode was cut out into the shape shown in FIG. 3A to obtain a negative electrode 20 for evaluation.
  • a region of 60 mm ⁇ 40 mm is a region to function as a negative electrode, and a protruding portion of 10 mm ⁇ 10 mm is a connection region with the tab lead 2c.
  • the negative electrode mixture layer 2a formed on the connection region was scraped off to expose the negative electrode current collector 2b.
  • the exposed portion of the negative electrode current collector 2b was connected to the negative electrode tab lead 2c, and a predetermined region on the outer periphery of the negative electrode tab lead 2c was covered with the insulating tab film 6.
  • a counter electrode was prepared by attaching a lithium metal foil to one side of an electrolytic copper foil (current collector).
  • the counter electrode was cut out into the same shape as the negative electrode, and the lithium metal leaf formed on the connection region formed in the same manner as the negative electrode was peeled off to expose the current collector. Then, the exposed portion of the current collector was connected to the tab lead in the same manner as the negative electrode, and a predetermined region on the outer circumference of the tab lead was covered with an insulating tab film.
  • LiPF 6 is dissolved in a mixed solvent of fluoroethylene carbonate (FEC) and dimethyl carbonate (DMC) at a volume ratio of 20:80 at a concentration of 1 mol / L to prepare a non-aqueous electrolyte solution.
  • FEC fluoroethylene carbonate
  • DMC dimethyl carbonate
  • EBTMOS 1,2-bis (trimethoxysilyl) ethane
  • a cell having a design capacity of 114 mAh with a negative electrode regulation was prepared by using the above-mentioned evaluation negative electrode and counter electrode.
  • the negative electrode and the counter electrode were opposed to each other through two polyethylene separators (thickness 15 ⁇ m) having an aramid coat so that the negative electrode mixture layer and the lithium metal foil overlapped with each other to obtain a electrode plate group.
  • the Al laminated film (thickness 100 ⁇ m) cut into a rectangle was folded in half, and the end on the long side was heat-sealed at 230 ° C. to form a cylinder.
  • the produced electrode plate group was put into a cylinder from one side on the short side, and the end face of the Al laminated film and the heat-welded resin of each tab lead were aligned and heat-sealed at 230 ° C.
  • the end face of the Al-laminated film on the injected liquid side was heat-sealed at 230 ° C. to obtain an evaluation cell A1.
  • the evaluation cell was prepared in a dry air atmosphere with a dew point of ⁇ 60 ° C. or lower.
  • the negative electrode was charged with lithium to a cell voltage of 0.01 V with a constant current of 0.05 C, and then rested for 20 minutes.
  • lithium was discharged from the negative electrode to a cell voltage of 1.5 V with a constant current of 0.05 C, and then rested for 20 minutes.
  • the negative electrode is charged with lithium to a cell voltage of 0.01 V with a constant current of 0.3 C, then paused for 20 minutes, and then lithium is discharged from the negative electrode to a cell voltage of 1.5 V with a constant current of 0.3 C, and then. , The cycle of resting for 20 minutes was repeated.
  • the ratio of the capacity obtained by the lithium discharge in the 50th cycle to the capacity obtained by the lithium discharge in the 1st cycle was calculated as the 50 cycle capacity retention rate. The results are shown in Table 1.
  • Examples 2 to 7 In the preparation of the non-aqueous electrolytic solution, evaluation cells A2 to A7 were prepared in the same manner as in Example 1 except that the content of EBTMOS added to the non-aqueous electrolytic solution was changed as shown in Table 1, and evaluated in the same manner. did.
  • Examples 8 to 10 In the preparation of the non-aqueous electrolyte solution, the content of 1,6-bis (trimethoxysilyl) hexane (HBTMOS) represented by the following formula (1-2) in the non-aqueous electrolyte solution instead of EBTMOS is shown in Table 1. Evaluation cells A8 to A10 were prepared in the same manner as in Example 1 except that they were added in the above manner, and evaluated in the same manner.
  • HBTMOS 1,6-bis (trimethoxysilyl) hexane
  • Comparative Example 3 In the preparation of the non-aqueous electrolyte solution, an evaluation cell B3 was prepared in the same manner as in Example 1 except that EBTMOS was not added, and the evaluation was carried out in the same manner.
  • FIG. 4 shows the relationship between the number of charge / discharge cycles of the evaluation cells A6, A9, B1, B2 and B3 and the capacity retention rate.
  • the additive for a non-aqueous electrolyte solution according to the present disclosure is suitably used for a non-aqueous electrolyte secondary battery containing a material in which the negative electrode active material contains a silicon element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

非水電解液用添加剤は、アルキレン基またはアミノ基で連結された2つ以上のシリル基を有し、前記2つ以上のシリル基が、それぞれアルコキシ基およびオキシアルキル基からなる群より選択される少なくとも1種を有し、前記オキシアルキル基が、-O-(C2x+1y)で表され、xは1以上の整数であり、yは1以上の整数である、ビスアルコキシシリル化合物を含む。

Description

非水電解液用添加剤およびこれを含む非水電解液ならびに非水電解液二次電池
 本開示は、非水電解液用添加剤およびこれを含む非水電解液ならびに非水電解液二次電池に関する。
 ケイ素元素を含む材料は、二次電池の高容量な負極材料として有望である。しかし、ケイ素元素を含む材料は充放電に伴う膨張と収縮が大きいため、副反応を誘発しやすく、充放電サイクルにおける容量維持率が低下しやすい。
 非特許文献1は、Si/C複合物を用いた単極電池の電解液にビニル基含有シランカップリング剤を添加することで、充放電サイクルにおける容量維持率が改善すると報告している。
Ionics,2018,24,3691-3698
 非特許文献1の提案では、安定的に充放電サイクルにおける容量維持率を向上させることは困難である。
 本開示の一側面は、アルコキシシリル化合物を含み、前記アルコキシシリル化合物が、アルキレン基またはアミノ基で連結された2つ以上のシリル基を有し、前記2つ以上のシリル基が、それぞれアルコキシ基およびオキシアルキル基からなる群より選択される少なくとも1種を有し、前記オキシアルキル基が、-O-(C2x+1y)で表され、xは1以上の整数であり、yは1以上の整数である、非水電解液用添加剤に関する。
 本開示の別の側面は、非水溶媒と、前記非水溶媒に溶解する塩と、上記非水電解液用添加剤と、を含む、非水電解液に関する。
 本開示の更に別の側面は、負極合剤層を有する負極と、正極と、上記非水電解液と、を備え、前記負極合剤層は、負極活物質を含み、前記負極活物質は、ケイ素元素を含む材料を含む、非水電解液二次電池に関する。
 本開示によれば、負極活物質がケイ素元素を含む材料を含む場合に、非水電解液二次電池の充放電サイクルにおける容量維持率を安定的に向上させることができる。
図1は、本開示の一実施形態に係る非水電解液二次電池の構造を模式的に示す一部を切り欠いた平面図である。 図2は、図1に示す非水二次電池のX-X’線における断面図である。 図3は、性能評価用負極の作製方法を説明する図である。 図4は、非水電解液二次電池の充放電サイクル数と容量維持率との関係を示すグラフである。
 (非水電解液用添加剤)
 本開示の実施形態に係る非水電解液用添加剤は、アルコキシシリル化合物を含む。このアルコキシシリル化合物は、アルキレン基またはアミノ基で連結された2つ以上のシリル基を有する。当該2つ以上のシリル基は、それぞれアルコキシ基およびオキシアルキル基からなる群より選択される少なくとも1種を有し、当該オキシアルキル基は、-O-(C2x+1y)で表され、xは1以上の整数であり、yは1以上の整数である。
 アルコキシシリル化合物は、ビスアルコキシシリル化合物でもよく、トリスアルコキシシリル化合物でもよい。ビスアルコキシシリル化合物の場合、2つのシリル基がアルキレン基または2級アミノ基で連結されている。トリスアルコキシシリル化合物の場合、3つのアルコキシシリル基が3級アミノ基で連結されている。
 上記構成において、各シリル基が有するアルコキシ基もしくはオキシアルキル基は、それぞれがケイ素元素を含む材料の表面とX-O-Si結合を形成すると考えられる。ここで、Xは、ケイ素元素を含む材料の表面を示し、Xと結合するOは、例えば、ケイ素元素を含む材料の表面に存在していたO原子(もしくはOH基の残基)を示す。アルコキシ基もしくはオキシアルキル基のそれぞれがケイ素元素を含む材料の表面と結合を形成することで、ケイ素元素を含む材料の表面は、安定なシロキサン結合を両端に有するビスシリルアルカンまたはビスシリルアミン構造(トリスシリルアミン構造を包含する。)で覆われる。すなわち、ケイ素元素を含む材料の表面は、ビスシリルアルカンまたはビスシリルアミン構造を含む被膜(以下、SRS被膜とも称する。)で覆われる。SRS被膜は、高い弾性を有し、可逆的な弾性変形に対して安定であり、充放電サイクルを繰り返す場合でも、損傷を受けにくい。その結果、負極での副反応が抑制され、充放電サイクルにおける容量維持率が安定的に向上する。
 アルコキシシリル化合物は、一般式(1):
Figure JPOXMLDOC01-appb-C000002
で表されるビス(アルコキシシリル)アルカンおよびNとSiとの間にアルキレン基を有するビス(アルコキシシリルアルキル)アミンからなる群より選択される少なくとも1種であってもよい。
 ここで、R1はアルキレン基または2級もしくは3級アミノ基である。R2~R4の少なくとも1つは炭素数1~6のアルコキシ基および-O-(Cx12x1+1y1)で表され、x1は1以上の整数であり、y1は1以上の整数であるオキシアルキル基からなる群より選択される少なくとも1種である。R5~R7の少なくとも1つは炭素数1~6のアルコキシ基および-O-(Cx22x2+1y2)で表され、x2は1以上の整数であり、y2は1以上の整数であるオキシアルキル基からなる群より選択される少なくとも1種である。R2~R7の残りは、それぞれ独立にCx32x3+1y3で表され、x3は1以上の整数であり、y3は0以上の整数であるアルキル基またはオキシアルキル基である。ただし、オキシアルキル基はアルコキシ基以外の基である。
 R2~R4およびR5~R7に含まれるアルコキシ基もしくはオキシアルキル基は、それぞれがケイ素元素を含む材料の表面とX-O-Si-R1結合を形成し、ケイ素元素を含む材料の表面は、安定なシロキサン結合を両端に有するSi-R1―Si構造で覆われる。すなわち、ケイ素元素を含む材料の表面は、Si-R1―Si構造を含むSRS被膜で覆われる。
 R1を構成するアルキレン基は、炭素数が多いほど、柔軟性に優れるため、SRS被膜の可逆的な変形を容易にする。ただし、R1の炭素数が過度に多くなると、アルキレン鎖が長くなり過ぎ、SRS被膜の緻密さが低減し、副反応を抑制する効果が低減するものと考えられる。よって、アルキレン基の炭素数は、炭素数1~6とすることが望まれ、炭素数2~4がより望ましい。ビス(アルコキシシリル)アルカンは、ビス(アルコキシシリル)C1-6アルカンであることが望ましく、ビス(アルコキシシリル)C2-4アルカンであってもよい。
 R1を構成するアミノ基は、R11-N-R12で表される構造を有してもよい。ここで、R11およびR12は、それぞれ独立に炭素数1以上のアルキレン基である。このようなR1は、柔軟性に優れるとともに、電子遮蔽性が大きく、副反応を抑制する効果がより大きくなるものと考えられる。
 アミノ基は、炭素数が多いほど、柔軟性に優れるため、SRS被膜の可逆的な変形を容易にする。ただし、アミノ基の炭素数が過度に多くなると、R1が長くなり過ぎ、SRS被膜の緻密さが低減し、副反応を抑制する効果が低減するものと考えられる。よって、アルキレン基の炭素数は、炭素数1~6とすることが望まれ、炭素数2~4がより望ましい。例えば、ビス(アルコキシシリルアルキル)アミンは、ビス(アルコキシシリルC1-6アルキル)アミンであることが望ましく、ビス(アルコキシシリルC2-4アルキル)アミンであってもよい。
 R2~R4の少なくとも1つは炭素数1~6のアルコキシ基および-O-(Cx12x1+1y1)で表され、x1は1~6の整数であり、y1は1または2であるオキシアルキル基からなる群より選択される少なくとも1種であってもよく、かつR5~R7の少なくとも1つは炭素数1~6のアルコキシ基、および-O-(Cx22x2+1y2)で表され、x2は1~6の整数であり、y2は1または2であるオキシアルキル基からなる群より選択される少なくとも1種であってもよい。アルコキシ基およびオキシアルキル基は、ケイ素元素を含む材料の表面との反応性を高める観点から、より小さくてもよく、アルコキシ基およびオキシアルキル基の炭素数は、例えば1~3でもよい。
 R2~R7の残りは、それぞれ独立にCx32x3+1y3で表され、x3は1以上の整数であり、y3は0以上の整数(例えば0以上、2以下の整数)であるアルキル基、またはアルコキシ基以外のオキシアルキル基である。反応時の立体障害を小さくする観点から、Cx32x3+1y3で表される基の炭素数は1~6でもよく、炭素数1~3でもよい。R2~R4はそれぞれ独立であり、R2~R4の全ての炭素数が同じでもよく、全ての炭素数が異なっていてもよく、R2~R4のうち2個の炭素数が同じでもよい。同様に、R5~R7はそれぞれ独立であり、R5~R7の全ての炭素数が同じでもよく、全ての炭素数が異なっていてもよく、R5~R7のうち2個の炭素数が同じでもよい。
 式(1)において、R1に連結する2つのアルコキシシリル基(R2R3R4Si-、またはR5R6R7Si-)は、互いに同じでもよく、異なってもよい。ただし、SRS被膜の構造の対称性を高めてより安定な構造とするために、R1に連結する2つのアルコキシシリル基を同じ構造にしてもよい。
 式(1)において、R1がアルキレン基である場合、アルコキシシリル化合物は、ビス(アルコキシシリル)アルカンの一種である。ビス(アルコキシシリル)アルカンを用いる場合に形成されるSRS被膜は、安定なシロキサン構造とアルキレン構造とで構成される。このようなSRS被膜は、弾性変形が容易であるだけでなく、化学的にも構造的にも安定である。
 ビス(アルコキシシリル)アルカンの中でも、入手が容易なものとして、1,2-ビス(トリアルコキシシリル)エタンおよび1,6-ビス(トリアルコキシシリル)ヘキサンからなる群より選択される少なくとも1種が挙げられる。1,2-ビス(トリアルコキシシリル)エタンとしては、1,2-ビス(トリメトキシシリル)エタン、1,2-ビス(トリエトキシシリル)エタンなどが挙げられる。1,6-ビス(トリアルコキシシリル)ヘキサンとしては、1,6-ビス(トリメトキシシリル)ヘキサン、1,6-ビス(トリエトキシシリル)ヘキサンなどが挙げられる。
 式(1)において、R1がアミノ基である場合、アルコキシシリル化合物は、アルコキシシリルアルキルアミンの一種である。より具体的には、アルコキシシリルアルキルアミンは、ビス(アルコキシシリルアルキル)アミンおよびトリス(アルコキシシリルアルキル)アミンからなる群より選択される少なくとも1種であってよい。
 ビスまたはトリス(アルコキシシリルアルキル)アミンの中でも、入手が容易なものとして、ビス[3-(トリアルコキシシリル)プロピル]アミンおよびトリス[3-(トリアルコキシシリル)プロピル]アミンからなる群より選択される少なくとも1種が挙げられる。ビス[3-(トリアルコキシシリル)プロピル]アミンとしては、ビス[3-(トリメトキシシリル)プロピル]アミン、ビス[3-(トリエトキシシリル)プロピル]アミンなどが挙げられる。トリス[3-(トリアルコキシシリル)プロピル]アミンとしては、トリス[3-(トリメトキシシリル)プロピル]アミン、トリス[3-(トリエトキシシリル)プロピル]アミンなどが挙げられる。
 (非水電解液)
 非水電解液は、非水溶媒と、非水溶媒に溶解する塩(溶質)と、上記非水電解液用添加剤とを含む。塩(溶質)は、非水溶媒中でイオン解離する電解質塩である。非水電解液がリチウムイオン二次電池に用いられる場合、塩は少なくともリチウム塩を含む。非水溶媒および塩以外の非水電解液の成分は添加剤であり、添加剤の少なくとも一部が上記アルコキシシリル化合物である。
 非水電解液におけるアルコキシシリル化合物の濃度は、例えば10質量%以下であってよく、8質量%以下であってよく、5質量%以下であってもよい。この範囲であれば、負極活物質に含まれるケイ素元素を含む材料の量にかかわらず、良好かつ適度なSRS被膜を形成するのに十分である。非水電解液中の式(1)で表されるアルコキシシリル化合物の濃度は、例えば0.2質量%以上であれば、相当のSRS被膜が形成されると考えられ、非水電解液二次電池の充放電サイクルにおける容量維持率を向上させる有意な効果を得ることができる。
 ただし、アルコキシシリル化合物は、非水電解質二次電池内で反応するため、非水電解液中の濃度が次第に減少する。よって、完成された非水電解質二次電池や、市場に流通する非水電解質二次電池を分解し、取り出した非水電解液中には、検出限界以上のアルコキシシリル化合物が残存していればよい。
 非水溶媒としては、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル、鎖状カルボン酸エステルなどが用いられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネート(VC)などが挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)などが挙げられる。また、環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)などが挙げられる。鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル(MP)、プロピオン酸エチル(EP)等が挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 中でも、鎖状カルボン酸エステルは、低粘度の非水電解液を調製するのに適している。よって、非水電解液は1質量%以上、90質量%以下の鎖状カルボン酸エステルを含んでもよい。鎖状カルボン酸エステルの中でも、酢酸メチルは特に低粘度である。よって、鎖状カルボン酸エステルの90質量%以上が酢酸メチルであってもよい。
 非水溶媒として、他に、環状エーテル類、鎖状エーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類などが挙げられる。
 環状エーテルの例としては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン、プロピレンオキシド、1,2-ブチレンオキシド、1,3-ジオキサン、1,4-ジオキサン、1,3,5-トリオキサン、フラン、2-メチルフラン、1,8-シネオール、クラウンエーテル等が挙げられる。
 鎖状エーテルの例としては、1,2-ジメトキシエタン、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、エチルビニルエーテル、ブチルビニルエーテル、メチルフェニルエーテル、エチルフェニルエーテル、ブチルフェニルエーテル、ペンチルフェニルエーテル、メトキシトルエン、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、o-ジメトキシベンゼン、1,2-ジエトキシエタン、1,2-ジブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、1,1-ジメトキシメタン、1,1-ジエトキシエタン、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等が挙げられる。
 これらの溶媒は、水素原子の一部がフッ素原子で置換されたフッ素化溶媒であってもよい。フッ素化溶媒としては、フルオロエチレンカーボネート(FEC)を用いてもよい。
 リチウム塩としては、例えば、塩素含有酸のリチウム塩(LiClO4、LiAlCl4、LiB10Cl10など)、フッ素含有酸のリチウム塩(LiPF6、LiPF、LiBF4、LiSbF6、LiAsF6、LiCF3SO3、LiCF3CO2など)、フッ素含有酸イミドのリチウム塩(LiN(FSO22、LiN(CF3SO22、LiN(CF3SO2)(C49SO2)、LiN(C25SO22など)、リチウムハライド(LiCl、LiBr、LiIなど)などが使用できる。リチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 非水電解液におけるリチウム塩の濃度は、0.5mol/リットル以上、2mol/リットル以下であってもよく、1mol/リットル以上、1.5mol/リットル以下であってもよい。リチウム塩濃度を上記範囲に制御することで、イオン伝導性に優れ、かつ低粘度の非水電解液を得ることができる。
 アルコキシシリル化合物以外の添加剤としては、1,3-プロパンサルトン、メチルベンゼンスルホネート、シクロヘキシルベンゼン、ビフェニル、ジフェニルエーテル、フルオロベンゼンなどが挙げられる。
 (非水電解液二次電池)
 本開示に係る非水電解液二次電池は、負極と、正極と、上記非水電解液とを備える。
 (負極)
 負極は、例えば、負極集電体と、負極集電体の表面に形成された負極合剤層とを具備する。前記負極合剤層は、必須成分として負極活物質を含み、結着材、導電材、増粘材などの任意成分を含んでもよい。結着材、導電材、増粘材などの任意成分には、それぞれ公知の材料を利用できる。
 負極合剤層は、例えば、負極活物質と所定の任意成分とを含む負極合剤を分散媒に分散させた負極スラリーを、負極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を必要により圧延してもよい。負極合剤層は、負極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 負極活物質は、ケイ素元素を含む材料を含む。ケイ素元素を含む材料は、合金系材料の一種として扱われることがある。ここでは、合金系材料とは、リチウムと合金形成可能な元素を含む材料をいう。リチウムと合金形成可能な元素として、ケイ素、スズなどが挙げられ、特にケイ素(Si)が有望である。
 ケイ素を含む材料としては、ケイ素合金、ケイ素化合物などでもよいが、複合材料であってもよい。中でも、リチウムイオン導電相と、リチウムイオン導電相に分散するケイ素粒子とを含む複合材料が有望である。リチウムイオン導電相としては、例えば、ケイ素酸化物相、シリケート相、炭素相などを用いることができる。ケイ素酸化物相は、不可逆容量が比較的多い材料である。一方、シリケート相は、不可逆容量が少ない点で好ましい。
 ケイ素酸化物相の主成分(例えば95~100質量%)は二酸化ケイ素であってもよい。ケイ素酸化物相とこれに分散するケイ素粒子とを含む複合材料の組成は、全体として、SiOで表すことができる。SiOは、ケイ素の微粒子がアモルファス状のSiO中に分散した構造を有している。ケイ素に対する酸素の含有比率xは、例えば、0.5≦x<2.0であり、0.8≦x≦1.5がより好ましい。
 シリケート相は、例えば、長周期型周期表の第1族元素および第2族元素からなる群より選択される少なくとも1種を含んでよい。長周期型周期表の第1族元素および長周期型周期表の第2族元素としては、例えば、リチウム(Li)、カリウム(K)、ナトリウム(Na)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)等を用い得る。その他の元素としてアルミニウム(Al)、ホウ素(B)、ランタン(La)、リン(P)、ジルコニウム(Zr)、チタン(Ti)等を含んでもよい。中でも、不可逆容量が小さく、初期の充放電効率が高いことから、リチウムを含むシリケート相(以下、リチウムシリケート相とも称する。)が好ましい。
 リチウムシリケート相は、リチウム(Li)と、ケイ素(Si)と、酸素(O)とを含む酸化物相であればよく、他の元素を含んでもよい。リチウムシリケート相におけるSiに対するOの原子比:O/Siは、例えば、2より大きく、4未満である。好ましくは、O/Siは、2より大きく、3未満である。リチウムシリケート相におけるSiに対するLiの原子比:Li/Siは、例えば、0より大きく、4未満である。リチウムシリケート相は、式:Li2zSiO2+z(0<z<2)で表される組成を有し得る。zは、0<z<1の関係を満たすことが好ましく、z=1/2がより好ましい。リチウムシリケート相に含まれ得るLi、SiおよびO以外の元素としては、例えば、鉄(Fe)、クロム(Cr)、ニッケル(Ni)、マンガン(Mn)、銅(Cu)、モリブデン(Mo)、亜鉛(Zn)、アルミニウム(Al)等が挙げられる。
 炭素相は、例えば、結晶性の低い無定形炭素(すなわちアモルファス炭素)で構成され得る。無定形炭素は、例えばハードカーボンでもよく、ソフトカーボンでもよく、それ以外でもよい。
 負極活物質は、ケイ素元素を含む材料以外に、電気化学的にリチウムイオンを吸蔵および放出する材料、リチウム金属、リチウム合金などを含んでもよい。電気化学的にリチウムイオンを吸蔵および放出する材料としては、炭素材料が好ましい。炭素材料としては、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)などが例示できる。中でも、充放電の安定性に優れ、不可逆容量が少ない黒鉛が好ましい。
 負極集電体には、例えば、金属シートもしくは金属箔が用いられる。負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金などが例示できる。
 (正極)
 正極は、例えば、正極集電体と、正極集電体の表面に形成された正極合剤層とを具備する。正極合剤層は、必須成分として正極活物質を含み、結着材、導電材、増粘材などの任意成分を含んでもよい。結着材、導電材、増粘材などの任意成分には、それぞれ公知の材料を利用できる。
 正極合剤層は、例えば、正極活物質と所定の任意成分とを含む正極合剤を分散媒に分散させた正極スラリーを、正極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を必要により圧延してもよい。正極合剤層は、正極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 正極活物質は、例えば、リチウム含有複合酸化物を含む。リチウム含有複合酸化物は、特に限定されないが、リチウムと遷移金属とを含む層状岩塩型結晶構造を有するものが有望である。具体的には、リチウム含有複合酸化物は、例えば、LiNi1-x-yCo(ただし、0<a≦1.2であり、0≦x≦0.1、0≦y≦0.1、0<x+y≦0.1であり、Mは、Na、Mg、Sc、Y、Mn、Fe、Cu、Zn、Al、Cr、Pb、SbおよびBからなる群より選択された少なくとも1種である。)であってもよい。結晶構造の安定性の観点から、MとしてAlを含んでいてもよい。なお、リチウムのモル比を示すa値は、充放電により増減する。具体例として、LiNi0.9Co0.05Al0.05、LiNi0.91Co0.06Al0.03などが挙げられる。
 正極活物質(特にリチウム含有複合酸化物)は、通常、一次粒子が凝集した二次粒子の形態を有している。正極活物質の平均粒子径は、例えば、2μm以上、20μm以下であってよい。ここで、平均粒子径とは、体積基準の粒度分布における累積体積が50%となるメディアン径をいう。体積基準の粒度分布は、レーザー回折式の粒度分布測定装置により測定することができる。
 正極集電体には、例えば、金属シートもしくは金属箔が用いられる。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンなどが例示できる。
 正極合剤層および負極合剤層に用いる導電材の例には、カーボンブラック(CB)、アセチレンブラック(AB)、ケッチェンブラック(KB)、カーボンナノチューブ(CNT)、黒鉛などの炭素材料が含まれる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 正極合剤層および負極合剤層に用いる結着材の例には、フッ素樹脂(ポリテトラフルオロエチレン、ポリフッ化ビニリデンなど)、ポリアクリロニトリル(PAN)、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂などが含まれる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 (セパレータ)
 正極と負極との間には、セパレータが介在している。セパレータは、イオン透過度が高く、適度な機械的強度および絶縁性を備えている。セパレータとしては、微多孔薄膜、織布、不織布などを用いることができる。セパレータの材質としては、ポリプロピレン、ポリエチレンなどのポリオレフィンが好ましい。
 二次電池の構造の一例としては、正極および負極がセパレータを介して巻回されてなる電極群と、非水電解質とが外装体に収容された構造が挙げられる。或いは、巻回型の電極群の代わりに、正極および負極がセパレータを介して積層されてなる積層型の電極群など、他の形態の電極群が適用されてもよい。非水電解液二次電池は、例えば円筒型、角型、コイン型、ボタン型、シート型(ラミネート型)などの何れの形態であってもよい。
 以下、図1および図2を参照しながら、本開示の一実施形態に係る非水電解液二次電池について説明する。図1は、非水電解液二次電池の構造の一例を模式的に示す一部を切り欠いた平面図である。図2は、図1のX-X’線における断面図である。
 図1および図2に示されるように、非水電解液二次電池100は、シート型の電池であり、極板群4と、極板群4を収容する外装ケース5とを備えている。
 極板群4は、正極10、セパレータ30および負極20をこの順で積層した構造であり、正極10と負極20とがセパレータ30を介して対向している。これにより、極板群4が形成されている。極板群4には、非水電解液が含浸されている。
 正極10は、正極活物質層1aと正極集電体1bとを含む。正極活物質層1aは、正極集電体1bの表面に形成されている。
 負極20は、負極合剤層2aと負極集電体2bとを含む。負極合剤層2aは、負極集電体2bの表面に形成されている。
 負極集電体1bには負極タブリード1cが接続され、負極集電体2bには負極タブリード2cが接続されている。正極タブリード1cおよび負極タブリード2cは、それぞれ外装ケース5の外まで延伸している。
 正極タブリード1cと外装ケース5との間および負極タブリード2cと外装ケース5との間は、それぞれ絶縁タブフィルム6によって絶縁されている。
 以下、本開示を実施例および比較例に基づいて具体的に説明するが、本開示は以下の実施例に限定されるものではない。
 《実施例1》
 (1)負極の作製
 SiO(x=1)(信越化学工業(株)、KSC1064)と、カーボンブラック(デンカ(株)、HS-100)と、ポリアクリルアミド(結着材)の水溶液とを、SiO:カーボンブラック:ポリアクリルアミドの質量比が、75:15:10となるよう混合し、さらに水を加えて撹拌することによって負極スラリーを調製した。次に、負極スラリーを負極集電体(電解銅箔)の片面に塗布することによって塗膜を形成した。塗膜を乾燥させた後、圧延ローラーによって負極集電体とともに塗膜を圧延して、負極合剤層を有する負極を得た。
 負極を図3(a)の形状に切り出し、評価用の負極20を得た。図3(a)において、60mm×40mmの領域が負極として機能させる領域であり、10mm×10mmの突起部分はタブリード2cとの接続領域である。その後さらに、図3(b)に示すように、上記接続領域上に形成された負極合剤層2aを削り取り、負極集電体2bを露出させた。その後、図3(c)に示すように、負極集電体2bの露出部分を負極タブリード2cと接続し、負極タブリード2cの外周の所定の領域を絶縁タブフィルム6で覆った。
 (2)対極の作製
 電解銅箔(集電体)の片面にリチウム金属箔を貼り付けることによって対極を作製した。
 対極を負極と同様の形状に切り出し、負極と同様に形成した接続領域上に形成されたリチウム金属箔を剥がし取り、集電体を露出させた。その後、負極と同様に集電体の露出部分をタブリードと接続し、タブリードの外周の所定の領域を絶縁タブフィルムで覆った。
 (3)非水電解液の調製
 フルオロエチレンカーボネート(FEC)とジメチルカーボネート(DMC)との体積比20:80の混合溶媒に、LiPFを1mol/Lの濃度で溶解させて非水電解液を調製した。非水電解液には、0.25質量%の下記式(1-1)で表される1,2-ビス(トリメトキシシリル)エタン(EBTMOS)を添加した。
Figure JPOXMLDOC01-appb-C000003
 (4)評価用セルの作製
 上記の評価用負極と対極とを用いて、負極規制の設計容量114mAhのセルを作製した。まず、負極と対極とをアラミドコートを有するポリエチレン製セパレータ(厚み15μm)2枚を介して負極合剤層とリチウム金属箔とが重なるように対向させて極板群を得た。次に、長方形に切り取ったAlラミネートフィルム(厚み100μm)を半分に折りたたみ、長辺側の端部を230℃で熱封止し、筒状にした。その後、作製した極板群を、短辺側の一方から筒の中に入れ、Alラミネートフィルムの端面と各タブリードの熱溶着樹脂の位置を合わせて230℃で熱封止した。次に、筒の熱封止されていない短辺側から非水電解液を1.2cm注液し、注液後、0.02MPaの減圧下で3分間静置後に大気圧に戻す操作を2回実施し、負極合剤層内に非水電解液を含浸させた。最後に、注液した側のAlラミネートフィルムの端面を230℃で熱封止し、評価用セルA1を得た。なお、評価用セルの作製は、露点-60℃以下のドライエア雰囲気で行った。
 (5)電池の評価
 評価用セルを、一対の10×5cmのステンレス鋼(厚み6mm)のクランプで挟んで3.2MPaで加圧固定した。
 <第1サイクル>
 25℃の恒温槽中で、0.05C(1Cは設計容量を1時間で放電する電流値)の定電流で2時間かけて負極にリチウムを充電し、その後、12時間休止させた。次に、0.05Cの定電流でセル電圧0.01Vまで更に負極にリチウムを充電し、その後、20分間休止させた。次に、0.05Cの定電流でセル電圧1.5Vまで負極からリチウムを放電させ、その後、20分間休止させた。
 <第2~3サイクル>
 次に、0.05Cの定電流でセル電圧0.01Vまで負極にリチウムを充電し、その後、20分間休止させた。次に、0.05Cの定電流でセル電圧1.5Vまで負極からリチウムを放電させ、その後、20分間休止させた。
 <第4~50サイクル>
 0.3Cの定電流でセル電圧0.01Vまで負極にリチウムを充電し、その後、20分間休止させ、引き続き、0.3Cの定電流でセル電圧1.5Vまで負極からリチウムを放電させ、その後、20分間休止させるサイクルを繰り返した。
 50サイクル目のリチウム放電で得られた容量の、1サイクル目のリチウム放電で得られた容量に対する割合を、50サイクル容量維持率として求めた。結果を表1に示す。
 《実施例2~7》
 非水電解液の調製において、非水電解液に添加するEBTMOSの含有量を表1に示すように変更したこと以外、実施例1と同様に評価用セルA2~A7を作製し、同様に評価した。
 《実施例8~10》
 非水電解液の調製において、EBTMOSの代わりに、非水電解液に下記式(1-2)で表される1,6-ビス(トリメトキシシリル)ヘキサン(HBTMOS)を表1に示す含有量で添加したこと以外、実施例1と同様に評価用セルA8~A10を作製し、同様に評価した。
Figure JPOXMLDOC01-appb-C000004
 《比較例1、2》
 非水電解液の調製において、EBTMOSの代わりに、非水電解液に下記式(2)で表されるビニルトリス(2-メトキシエトキシ)シラン(VTMS)を表1に示す含有量で添加したこと以外、実施例1と同様に評価用セルB1~B2を作製し、同様に評価した。なお、VTMSは、非特許文献1で用いられている添加剤である。
Figure JPOXMLDOC01-appb-C000005
 《比較例3》
 非水電解液の調製において、EBTMOSを添加しなかったこと以外、実施例1と同様に評価用セルB3を作製し、同様に評価した。
Figure JPOXMLDOC01-appb-T000006
 図4に、評価用セルA6、A9、B1、B2およびB3の充放電サイクル数と容量維持率との関係を示す。
 表1および図4より、非水電解液に式(1)で表されるアルコキシシリル化合物であるEBTMOSおよびHBTMOSを添加した場合には、容量維持率が向上することが理解できる。中でもEBTMOSの効果が大きく、EBTMOSの含有量に応じて効果が顕著になることがわかる。なお、EBTMOSの効果は、非水電解液における含有量が4~5質量%で概ね飽和している。
 一方、図4に示すように、非特許文献1で用いられているVTMSでは、容量維持率を向上させることはできなかった。
 本開示に係る非水電解液用添加剤は、負極活物質がケイ素元素を含む材料を含む非水電解液二次電池に好適に用いられる。
1a  正極合剤層
1b  正極集電体
1c  正極タブリード
2a  負極合剤層
2b  負極集電体
2c  負極タブリード
4  極板群
5  外装ケース
6  絶縁タブフィルム
10  正極
20  負極
30  セパレータ
100  リチウムイオン二次電池

Claims (9)

  1.  アルコキシシリル化合物を含み、
     前記アルコキシシリル化合物は、アルキレン基またはアミノ基で連結された2つ以上のシリル基を有し、
     前記2つ以上のシリル基が、それぞれアルコキシ基およびオキシアルキル基からなる群より選択される少なくとも1種を有し、
     前記オキシアルキル基が、-O-(C2x+1y)で表され、xは1以上の整数であり、yは1以上の整数である、非水電解液用添加剤。
  2.  前記アルコキシシリル化合物が、一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    で表されるビス(アルコキシシリル)アルカンおよびNとSiとの間にアルキレン基を有するビス(アルコキシシリルアルキル)アミンからなる群より選択される少なくとも1種であり、
     R1はアルキレン基または2級もしくは3級アミノ基であり、
     R2~R4の少なくとも1つは、炭素数1~6のアルコキシ基および-O-(Cx12x1+1y1)で表され、x1は1以上の整数であり、y1は1以上の整数であるオキシアルキル基からなる群より選択される少なくとも1種であり、
     R5~R7の少なくとも1つは、炭素数1~6のアルコキシ基および-O-(Cx22x2+1y2)で表され、x2は1以上の整数であり、y2は1以上の整数であるオキシアルキル基からなる群より選択される少なくとも1種であり、
     R2~R7の残りは、それぞれ独立にCx32x3+1y3で表され、x3は1以上の整数であり、y3は0以上の整数であるアルキル基またはオキシアルキル基である、請求項1に記載の非水電解液用添加剤。
  3.  前記ビス(アルコキシシリル)アルカンが、1,2-ビス(トリアルコキシシリル)エタンおよび1,6-ビス(トリアルコキシシリル)ヘキサンからなる群より選択される少なくとも1種である、請求項2に記載の非水電解液用添加剤。
  4.  前記ビス(アルコキシシリルアルキル)アミンが、ビス[3-(トリアルコキシシリル)プロピル]アミンである、請求項2に記載の非水電解液用添加剤。
  5.  非水溶媒と、前記非水溶媒に溶解する塩と、請求項1~4のいずれか1項に記載の非水電解液用添加剤と、を含む、非水電解液。
  6.  前記非水電解液用添加剤の濃度が、10質量%以下である、請求項5に記載の非水電解液。
  7.  前記非水電解液用添加剤の濃度が、0.2質量%以上である、請求項6に記載の非水電解液。
  8.  負極合剤層を有する負極と、正極と、請求項5~7のいずれか1項に記載の非水電解液と、を備え、
     前記負極合剤層は、負極活物質を含み、
     前記負極活物質は、ケイ素元素を含む材料を含む、非水電解液二次電池。
  9.  前記ケイ素元素を含む材料は、複合材料であり、
     前記複合材料は、リチウムイオン導電相と、リチウムイオン導電相に分散するケイ素粒子と、を含む、請求項8に記載の非水電解液二次電池。
PCT/JP2021/001956 2020-01-30 2021-01-21 非水電解液用添加剤およびこれを含む非水電解液ならびに非水電解液二次電池 WO2021153395A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21746921.2A EP4099467A4 (en) 2020-01-30 2021-01-21 ADDITIVE FOR NON-AQUEOUS ELECTROLYTE SOLUTIONS, CONTAINING THIS NON-AQUEOUS ELECTROLYTE SOLUTION AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
US17/794,356 US20230070559A1 (en) 2020-01-30 2021-01-21 Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution containing same, and nonaqueous electrolyte secondary battery
CN202180010903.6A CN115004438A (zh) 2020-01-30 2021-01-21 非水电解液用添加剂和包含其的非水电解液以及非水电解液二次电池
JP2021574679A JPWO2021153395A1 (ja) 2020-01-30 2021-01-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020014238 2020-01-30
JP2020-014238 2020-01-30

Publications (1)

Publication Number Publication Date
WO2021153395A1 true WO2021153395A1 (ja) 2021-08-05

Family

ID=77079860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001956 WO2021153395A1 (ja) 2020-01-30 2021-01-21 非水電解液用添加剤およびこれを含む非水電解液ならびに非水電解液二次電池

Country Status (5)

Country Link
US (1) US20230070559A1 (ja)
EP (1) EP4099467A4 (ja)
JP (1) JPWO2021153395A1 (ja)
CN (1) CN115004438A (ja)
WO (1) WO2021153395A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114156526A (zh) * 2021-12-02 2022-03-08 浙江大学 一种用于锂电池的高电压电解液
EP4080612A1 (en) * 2021-04-21 2022-10-26 Prime Planet Energy & Solutions, Inc. Electrolyte solution for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2023032592A1 (ja) * 2021-08-31 2023-03-09 パナソニックIpマネジメント株式会社 非水電解質二次電池用の負極活物質、それを用いた非水電解質二次電池、および非水電解質二次電池用の負極活物質の製造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724160A (zh) * 2019-11-12 2020-01-24 成都硅宝科技股份有限公司 一种有机硅阻燃添加剂及阻燃型锂离子电池电解液

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1760084A1 (de) * 2005-09-02 2007-03-07 Sika Technology AG Tensid-stabilisierte Organoalkoxysilanzusammensetzung
JP2012169249A (ja) * 2011-01-28 2012-09-06 Sanyo Electric Co Ltd 非水電解質二次電池用正極及びその製造方法並びに非水電解質二次電池
CN103588807B (zh) * 2013-11-18 2016-05-04 南通大学 一种双(烷氧硅基)烷烃的制备方法
CN106866723A (zh) * 2017-01-25 2017-06-20 湖北新蓝天新材料股份有限公司 一种醇性硅烷交联剂双三乙氧基硅基乙烷的合成方法
CN107394268B (zh) * 2017-07-28 2019-08-09 广州天赐高新材料股份有限公司 锂二次电池电解液及其锂二次电池
CN107910591B (zh) * 2017-11-14 2019-12-10 石家庄圣泰化工有限公司 一种耐高温锂电池电解液
US20210151759A1 (en) * 2018-06-29 2021-05-20 Panasonic Intellectual Property Management Co., Ltd. Non-aqueous electrolyte secondary battery
CN109980280A (zh) * 2019-01-18 2019-07-05 安徽屹盛机电科技有限公司 一种园林工具用防过充锂电池电解液

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724160A (zh) * 2019-11-12 2020-01-24 成都硅宝科技股份有限公司 一种有机硅阻燃添加剂及阻燃型锂离子电池电解液

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IONICS, vol. 24, 2018, pages 3691 - 3698
See also references of EP4099467A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4080612A1 (en) * 2021-04-21 2022-10-26 Prime Planet Energy & Solutions, Inc. Electrolyte solution for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2022166385A (ja) * 2021-04-21 2022-11-02 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池用電解液および非水電解質二次電池
JP7315614B2 (ja) 2021-04-21 2023-07-26 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池用電解液および非水電解質二次電池
WO2023032592A1 (ja) * 2021-08-31 2023-03-09 パナソニックIpマネジメント株式会社 非水電解質二次電池用の負極活物質、それを用いた非水電解質二次電池、および非水電解質二次電池用の負極活物質の製造方法
CN114156526A (zh) * 2021-12-02 2022-03-08 浙江大学 一种用于锂电池的高电压电解液

Also Published As

Publication number Publication date
CN115004438A (zh) 2022-09-02
EP4099467A1 (en) 2022-12-07
JPWO2021153395A1 (ja) 2021-08-05
US20230070559A1 (en) 2023-03-09
EP4099467A4 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
JP6678351B2 (ja) 非水電解質二次電池用負極活物質及び負極
WO2021153395A1 (ja) 非水電解液用添加剤およびこれを含む非水電解液ならびに非水電解液二次電池
WO2021153397A1 (ja) 二次電池用正極および二次電池
US20120115043A1 (en) Nonaqueous electrolyte secondary battery
JP2019179724A (ja) 二次電池
JP5017778B2 (ja) 非水電解質電池用正極及び非水電解質電池
WO2022070893A1 (ja) 二次電池用正極活物質および二次電池
JP2000138072A (ja) 非水電解液二次電池
KR102199028B1 (ko) Li 이온 2차 전지용 부극 재료 및 그의 제조 방법, Li 이온 2차 전지용 부극 그리고 Li 이온 2차 전지
WO2022044554A1 (ja) 二次電池用正極活物質および二次電池
JP2003017056A (ja) リチウム二次電池正極活物質用リチウム遷移金属複合酸化物およびそれを用いたリチウム二次電池
JP5372589B2 (ja) 二次電池用非水電解液及び非水電解質二次電池
WO2021153396A1 (ja) 非水電解液用添加剤およびこれを含む非水電解液ならびに非水電解液二次電池
JPWO2019065196A1 (ja) 非水電解質二次電池
US20230013168A1 (en) Positive electrode for secondary batteries, and secondary battery
JP7454796B2 (ja) 非水電解質二次電池およびこれに用いる電解液
JP7458033B2 (ja) 非水電解質二次電池およびこれに用いる電解液
JP7133776B2 (ja) 非水電解質二次電池
JP7113272B2 (ja) 非水電解質二次電池用正極活物質及び非水電解質二次電池
WO2022092212A1 (ja) アルコキシシリル化合物およびこれを含む非水電解液用添加剤、ならびにこれを含む非水電解液ならびに非水電解液二次電池
WO2021039178A1 (ja) 非水電解質二次電池
WO2020110590A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極活物質の製造方法及び非水電解質二次電池
JP3525921B2 (ja) 非水系二次電池用正極活物質
WO2023032592A1 (ja) 非水電解質二次電池用の負極活物質、それを用いた非水電解質二次電池、および非水電解質二次電池用の負極活物質の製造方法
WO2021153399A1 (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21746921

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574679

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021746921

Country of ref document: EP

Effective date: 20220830