WO2021149545A1 - 金属回収方法 - Google Patents

金属回収方法 Download PDF

Info

Publication number
WO2021149545A1
WO2021149545A1 PCT/JP2021/000776 JP2021000776W WO2021149545A1 WO 2021149545 A1 WO2021149545 A1 WO 2021149545A1 JP 2021000776 W JP2021000776 W JP 2021000776W WO 2021149545 A1 WO2021149545 A1 WO 2021149545A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
crushed
powder
particle size
metal
Prior art date
Application number
PCT/JP2021/000776
Other languages
English (en)
French (fr)
Inventor
奨太 田畑
寿 佐々木
亮栄 渡邊
Original Assignee
Dowaエコシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowaエコシステム株式会社 filed Critical Dowaエコシステム株式会社
Priority to EP21744605.3A priority Critical patent/EP4095273A4/en
Priority to CN202180006226.0A priority patent/CN114641583A/zh
Priority to US17/793,515 priority patent/US20230116994A1/en
Priority to KR1020227027637A priority patent/KR20220130157A/ko
Publication of WO2021149545A1 publication Critical patent/WO2021149545A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/30Destroying solid waste or transforming solid waste into something useful or harmless involving mechanical treatment
    • B09B3/35Shredding, crushing or cutting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B4/00Separating solids from solids by subjecting their mixture to gas currents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • B02C23/20Adding fluid, other than for crushing or disintegrating by fluid energy after crushing or disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B9/00Combinations of apparatus for screening or sifting or for separating solids from solids using gas currents; General arrangement of plant, e.g. flow sheets
    • B07B9/02Combinations of similar or different apparatus for separating solids from solids using gas currents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B2101/00Type of solid waste
    • B09B2101/15Electronic waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/20Waste processing or separation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/60Glass recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Definitions

  • the present invention relates to a metal recovery method.
  • the solar cell module used for this solar cell power generation includes, for example, a glass substrate, a sealing material for sealing the solar cell, a protective member (so-called back sheet), and a metal pattern wired from the solar cell. , A frame member provided around the sealing material, and the like.
  • Valuable metals include copper and silver contained in metal patterns.
  • Patent Document 1 is disclosed as a method for recovering valuable metals from the solar cell module.
  • Patent Document 1 proposes a method of recovering a solar cell after heating a solar cell module to remove a back sheet.
  • Patent Document 1 relating to the recycling technology of the solar cell module, it takes a considerable amount of time and effort to heat the solar cell module and remove the back sheet.
  • the present inventor conducted a diligent study to save this time and effort. That is, the present inventors refer to the solar cell module or the solar cell module in a state in which only a part of the solar cell module is intentionally disassembled (referred to in this specification as a "solar cell sheet-like structure" in detail later. It was found that a certain crushing process is performed with (.) As the processing target.
  • the solar cell module since the solar cell module is disassembled from scratch, it takes a considerable amount of time and effort. Therefore, useful frame members and glass substrates among the members constituting the solar cell module are quickly collected, and the remaining solar cell sheet-like structure is used as a raw material for metal smelting at best, and finally as it is at worst.
  • the current situation is that they are disposed of (landfilled).
  • the solar cell sheet-like structure when used as a raw material for metal smelting, the solar cell sheet-like structure contains a large amount of impurities when viewed as a raw material for smelting, in other words, the content of valuable metals such as Ag and Au is low, and as a raw material for metal smelting. It is hard to say that it is suitable.
  • the present inventors have newly recollected a recovered product obtained by concentrating valuable metals from a solar cell module or a solar cell sheet-like structure which is a partially decomposed intermediate thereof. I found it as a problem.
  • An object of the present invention is to provide a technique for concentrating a valuable metal contained in a solar cell sheet-like structure which is a solar cell module or a partially decomposed intermediate thereof.
  • the present inventors have found that when recovering valuable metals from a solar cell module or a solar cell sheet-like structure which is a partially decomposed intermediate thereof, metal recovery by crushing and physical sorting of the crushed material is effective. did.
  • This finding is that in a solar cell module or a solar cell sheet-like structure, a member containing a valuable metal and a member containing an element other than the valuable metal (for example, carbon (C)) are powders formed when crushed. It is based on a new finding that the sizes of the cells tend to be different and are easy to classify (see the example section below for details). It is also found that when the particle sizes are the same, the powder containing a large amount of valuable metal tends to be heavier than the powder containing a large amount of elements other than the valuable metal.
  • the first aspect of the present invention is It has a crushing step of crushing a solar cell module or a solar cell sheet-like structure to form a crushed product, and a sorting step of separating the crushed material.
  • the glass substrate and the frame member are removed from the solar cell module, and at least the solar cell, the metal pattern wired from the solar cell, and the sealing material for sealing these are used. , Is a metal recovery method.
  • a second aspect of the present invention is, in the first aspect, The crushing step applies a shearing action to obtain the crushed product.
  • a third aspect of the present invention is, in the first or second aspect,
  • the sorting step includes a classification step of classifying the crushed material into fine powder having a small particle size and coarse powder having a large particle size, and collecting the fine powder.
  • a fourth aspect of the present invention is, in any one of the first to third aspects,
  • the sorting step includes a wind sorting step.
  • a fifth aspect of the present invention is, in the fourth aspect, In the wind power sorting step, the coarse powder is wind-sorted to separate a heavy product into a heavy product and other lightweight products, and the heavy product is collected.
  • a sixth aspect of the present invention is the fourth or fifth aspect.
  • the wind speed is 5 m / s or more and 20 m / s or less.
  • a seventh aspect of the present invention is, in any one of the first to sixth aspects, In the crushing step, the solar cell sheet-like structure or the solar cell sheet-like structure is crushed so that the particle size of the crushed product is 10 mm or less.
  • the eighth aspect of the present invention is, in any one of the third to seventh aspects,
  • the particle size of the fine powder is 4 mm or less.
  • a ninth aspect of the present invention is, in any one of the first to eighth aspects, A uniaxial crusher is used in the crushing step.
  • the valuable metal contained in the solar cell module can be concentrated and recovered.
  • the metal recovery method according to the embodiment of the present invention will be described by taking as an example metal recovery from a solar cell sheet-like structure which is a partially decomposed intermediate of a solar cell module.
  • the metal recovery method of the present embodiment includes a preparation step, a crushing step, and a sorting step. Hereinafter, each step will be described in detail.
  • a solar cell sheet-like structure to be processed (hereinafter, also simply referred to as a sheet-like structure) is prepared.
  • the sheet-like structure is obtained by removing the glass substrate and the frame member from the solar cell module.
  • the solar cell module 1 is a sealing material that seals a plurality of solar cell cells 11, a metal pattern 12 wired from the solar cell 11, and the solar cell 11 and the metal pattern 12.
  • a protective member 14 provided on one surface of the sealing material 13, a glass substrate 15 provided on the other surface of the sealing material 13, and a laminate such as the sealing material 13 and the glass substrate 15. It is configured to include a frame member 16 that surrounds the frame member 16.
  • the solar cell 11 is formed of a semiconductor containing, for example, silicon.
  • the metal pattern 12 is a metal member wired from the solar cell 11, and includes, for example, a surface electrode provided on the surface of the solar cell 11 and a bus bar electrode for electrically connecting between the solar cells 11. Will be done.
  • the metal pattern 12 contains a valuable metal such as copper (Cu) or silver (Ag), the surface electrode is mainly formed of Ag, and the bus bar electrode is mainly formed of Cu.
  • the encapsulant 13 is formed of, for example, a resin such as ethylene-vinyl acetate copolymer (EVA) or polyethylene.
  • the protective member 14 is formed of, for example, a resin such as polyethylene terephthalate or a fluororesin.
  • the glass substrate 15 is formed of, for example, glass.
  • the frame member 16 is formed of, for example, metal or resin.
  • the sheet-like structure 10 is configured as shown in FIG. 1 by removing the glass substrate 15 and the frame member 16 from the solar cell module 1. Specifically, one of the solar cell 11, the metal pattern 12 wired from the solar cell 11, the sealing material 13 for sealing the solar cell 11 and the metal pattern 12, and the sealing material 13. It is configured to include a protective member 14 provided on the surface.
  • the method for removing the glass substrate 15 and the frame member 16 from the solar cell module 1 is not particularly limited, and a known method can be adopted.
  • a hot knife method, a roll crushing method, a shot blasting method, or the like can be used as the removal of the glass substrate 15.
  • the sheet-like structure 10 is crushed.
  • the member formed from a soft and sticky material such as resin is crushed coarser, and the member formed from a hard and brittle material such as metal or Si is finer.
  • Tends to be crushed Specifically, the solar cell 11 containing silicon is easily crushed into small pieces.
  • the metal pattern 12 containing a valuable metal is easily crushed into small pieces, and among the metal patterns 12, the surface electrodes provided on the surface of the solar cell 11 are thinly configured, so that they are easily crushed together with the crushing of the solar cell 11. , It is easier to be crushed more finely than the bus bar electrode.
  • the sealing material 13 and the protective member 14 formed of the resin are soft, they are roughly crushed. Therefore, in the crushed product, the resin and the like are less likely to be mixed in the small particle size range, and the ratio of the valuable metal is high. On the other hand, since a large amount of resin or the like is contained in the large particle size range, the ratio of valuable metals tends to be low.
  • the sheet-like structure 10 In crushing the sheet-like structure 10, it is preferable to crush the crushed material so that the particle size is non-uniform, the particle size distribution is wide, and the particle size variation is large. As a result, the solar cell 11 and the metal pattern 12 (particularly the surface electrode) can be finely crushed, while the sealing material 13 and the protective member 14 can be left as coarse without being excessively finely crushed. It is possible to easily sort the resin as a powder having a different particle size.
  • the size of the crushed material is not particularly limited, but from the viewpoint of suitably recovering the valuable metal at the time of physical sorting described later, the sheet-like structure 10 is crushed so that the size of the crushed material is 20 mm or less. Is preferable. It is better to crush it so that it is more preferably 15 mm or less, still more preferably 10 mm or less. By crushing in this way, the particle size distribution of the powder contained in the crushed product can be widened and the particle size can be appropriately dispersed, and the ratio of the valuable metal contained in the crushed product on the smaller particle size side can be determined. Can be high.
  • shear crushing capable of giving a shearing action to the sheet-like structure 10 is preferable from the viewpoint of appropriately varying the particle size of the powder contained in the crushed material.
  • the crusher to be used for example, a known crusher such as a uniaxial crusher or a biaxial crusher can be used, but a uniaxial crusher is preferable.
  • the twin-screw crusher the crushed material is crushed uniformly and finely depending on the crushing conditions, and the particle size tends to be uniform, whereas in the uniaxial crusher, the crushing is coarse and the particle size of the obtained crushed material is not large. Easy to crush so that it is uniform and has a wide particle size distribution.
  • the uniaxial crusher includes a uniaxial cutter mill and a uniaxial hammer mill depending on the shape of the blade, but the uniaxial cutter mill is preferable from the viewpoint of shear crushing.
  • the crushing conditions are not particularly limited, and it is advisable to appropriately adjust the number of blades, the clearance of the blades, the number of rotations of the blades, etc. in the crusher so that the particle size distribution of the crushed material becomes wide.
  • the sheet-like structure may be crushed in one stage, or may be gradually crushed in multiple stages such as primary crushing and secondary crushing.
  • crushed material is sorted.
  • the crushed material is classified and wind-sorted.
  • the obtained crushed product is classified into a fine powder having a small particle size and a coarse powder having a large particle size.
  • the surface electrodes are easily crushed finely in the solar cell 11 and the metal pattern 12 formed of silicon, and the busbar electrode, the sealing material 13 and the protective member 14 formed of the resin are among the metal patterns 12.
  • fine powder having a high ratio of valuable metals is collected.
  • the particle size of the fine powder that is, the range of the particle size collected as the fine powder during classification is not particularly limited, but is preferably 4 mm or less, more preferably 2 mm or less, and 1 mm or less. Is more preferable.
  • the uptake of impurities such as resin can be reduced and the ratio of valuable metals contained in the fine powder can be increased.
  • the ratio of Ag can be increased.
  • it is made excessively small the amount of valuable metal that can be recovered as fine powder is reduced, and the recovery efficiency may be lowered. In this respect, by collecting a powder having a size of 4 mm or less as a fine powder, it is possible to increase the recovery efficiency while maintaining a high ratio of valuable metals.
  • sieving classification is preferable because classification can be easily performed.
  • the coarse powder mainly contains a valuable metal derived from the bus bar electrode in the metal pattern 12 that could not be recovered in the classification step, and a resin derived from the sealing material 13 and the protective member 14.
  • a valuable metal derived from the bus bar electrode in the metal pattern 12 that could not be recovered in the classification step
  • a resin derived from the sealing material 13 and the protective member 14 By blowing wind on the coarse powder, it separates into a heavy object and a lightweight object.
  • coarse powder that is difficult to be blown when the wind is blown is separated as a heavy substance.
  • Such heavy objects include many coarse particles having a large specific gravity.
  • the lightweight material contains many coarse particles having a low specific density.
  • the lightweight ones mainly contain resin.
  • heavy objects tend to contain a large amount of valuable metals. In particular, it tends to contain a large amount of Cu.
  • heavy materials containing a large amount of valuable metals are collected from the coarse powder by wind power sorting.
  • the wind speed is not particularly limited, but it is preferably 5 m / s or more and 20 m / s or less from the viewpoint of efficiently recovering valuable metals.
  • the wind speed indicates the speed of air that hits the powder.
  • the wind power sorter to be used is not particularly limited, and a known sorter such as a circulation type, an air knife type, a blow-up type, a suction type or a closed type can be used. From the viewpoint of selectively and efficiently collecting heavy objects, the circulation type, the blow-up type and the closed type are preferable.
  • a known sorter such as a circulation type, an air knife type, a blow-up type, a suction type or a closed type
  • the circulation type, the blow-up type and the closed type are preferable.
  • dry or wet classification processing by specific gravity
  • inertial force inertial force
  • centrifugal force etc.
  • the sheet-like structure 10 from which the glass substrate 15 and the frame member 16 have been removed is crushed, it is possible to suppress the mixing of foreign substances derived from the glass substrate 15 and the like into the crushed material. Therefore, the ratio of the valuable metal contained in the crushed material can be increased, and when the crushed material is physically sorted, the powder containing the valuable metal can be efficiently separated. Specifically, by classifying the crushed material and collecting the fine powder, it is possible to recover the valuable metal derived from the surface electrode in the metal pattern 12. In addition, by wind-sorting the coarse powder separated by classification to collect heavy objects, valuable metals derived from surface electrodes and valuable metals derived from busbar electrodes that could not be recovered by classification were collected. Can be recovered.
  • the concentration ratio for concentrating the valuable metal in the sheet-like structure 10 can be 1.5 times or more, preferably 2.5 times or more, more preferably 4 times or more, and the valuable metal can be recovered at a high concentration. can do. Further, the valuable metal contained in the sheet-like structure 10 can be recovered in a high yield. For example, the recovery rate of Ag can be 99% or more and the recovery rate of Cu can be 80% or more.
  • the concentration ratio indicates the ratio obtained by dividing the concentration of the recovered valuable metal by the concentration of the valuable metal of the raw material.
  • the metal recovery method of the present embodiment since heat treatment is not required from the preparation process to the wind power sorting process, valuable metals can be recovered from the solar cell module without increasing the environmental load.
  • the metal recovery method of the present embodiment since heat treatment is not required, valuable metals can be recovered regardless of the components contained in the solar cell module. For example, when fluororesin or the like is used for the protective member of the solar cell module, fluoride gas may be generated by the heat treatment. In this respect, according to the metal recovery method of the present embodiment, there is no possibility that toxic gas is generated by heating, so that valuable metal can be recovered regardless of the components contained in the solar cell module.
  • the coarse powder is uniformly wind-sorted to collect heavy objects, but the present invention is not limited to this.
  • the coarse powder may contain a powder that is determined to be a heavy substance due to its large particle size, even though it is a lightweight substance with a small amount of valuable metal. From the viewpoint of suppressing the collection of such lightweight substances, the coarse powder is not uniformly wind-sorted, but the coarse powder is classified into a plurality of groups having different particle size ranges. , Wind sorting may be performed for each group at an appropriate wind speed, and heavy objects obtained in each group may be collected.
  • wind power is applied to each group at an appropriate wind speed. It is good to sort.
  • the present invention is not limited to this.
  • the sheet-like structure 10 may be preheated to remove the protective member 14 before the crushing step. In this case, since the amount of the resin component contained in the crushed product can be reduced, the powder containing the valuable metal can be collected more efficiently in the sorting step.
  • the processing target is the solar cell sheet-like structure 10, but the present invention can also treat the solar cell module 1 as the processing target.
  • the crushed material also contains powder derived from the glass substrate 15 and the frame member 16, but the valuable metal can be sorted and recovered as fine powder or heavy material by the above-mentioned classification step and wind power sorting step. can.
  • Example 1 As a processing target, a solar cell sheet-like structure (PV sheet) from which the glass substrate and the frame member were removed from the solar cell module was prepared. Subsequently, the PV sheet was pulverized using a nugget machine until it passed through a 10 mm screen so as to be pulverized to 10 mm or less, and if it did not pass, it was repeatedly processed. Subsequently, the obtained crushed PV sheet was introduced into a sieving machine having an opening of 4 mm. As a result, the crushed PV sheet was classified into a powder having a particle size of 1 mm or less and a powder having a particle size of 1 mm to 10 mm.
  • powders having a particle size of 1 mm or less were collected as fine powders.
  • the coarse powder that was not collected that is, the powder having a particle size of 1 mm to 10 mm
  • Heavy objects and lightweight objects were separated by wind power sorting, and heavy objects were collected.
  • a uniaxial cutter mill "SKC-25-540L” was used as crushing conditions.
  • the number of blades was adjusted to 45, the clearance was adjusted to about 2 mm, and the rotation speed of the blades was adjusted to 630 rpm.
  • "APS-250RB” was used as a wind power sorter.
  • the amount of valuable metal contained in the collected powder was measured, and the recovery rate from the PV sheet was determined. Specifically, first, when Ag and Cu contained in the crushed PV sheet are 100, the distribution ratio and concentration of each component contained in the powder having a particle size of 1 mm or less and the powder having a particle size of 1 mm to 10 mm. (Distribution ratio / mass ratio) was determined. The results are shown in Table 1 below.
  • the fine powder obtained by sieving contained 42.1% of Ag contained in the crushed PV sheet. On the other hand, about Cu, 0.7% was contained. From this, it was confirmed that Ag can be recovered in a larger amount than Cu by crushing the PV sheet to a size of 10 mm or less and collecting fine powder. It was confirmed that Cu was contained in the coarse powder rather than the fine powder. In the present invention, heavy and fine powders of coarse powder are used as recovered products.
  • the obtained heavy material of 1 mm or more contained 57.2% of Ag contained in the crushed PV sheet, and Cu. It was confirmed that 82.1% was contained.
  • Example 2 Valuable metals were recovered in the same manner as in Example 1 except that powder having a particle size of 2 mm or less was collected as a fine powder and powder having a particle size of 2 mm to 10 mm was collected as a coarse powder.
  • Example 2 the ratio of each component contained in each of the powder having a particle size of 2 mm or less and the powder having a particle size of 2 mm to 10 mm was determined. The results are shown in Table 3 below. Further, Table 4 below shows the ratio of each component contained in the heavy substance and the lightweight substance obtained by performing wind sorting on the coarse powder (powder of 2 mm to 10 mm).
  • Example 3 Valuable metals were recovered in the same manner as in Example 1 except that powder having a particle size of 4 mm or less was collected as a fine powder and powder having a particle size of 4 mm to 10 mm was collected as a coarse powder. Further, in Example 3, the ratio of each component contained in each of the powder having a particle size of 4 mm or less and the powder having a particle size of 4 mm to 10 mm was determined. The results are shown in Table 5 below. Further, Table 6 below shows the ratio of each component contained in the heavy substance and the lightweight substance obtained by performing wind sorting on the coarse powder (powder of 4 mm to 10 mm).
  • the recovery rate of Ag was 99.4% in Example 2 and 99.7% in Example 3.
  • the recovery rate of Cu was 87.2% in Example 2 and 99.4% in Example 3.
  • the concentration ratio of the PV sheet was 3.6 times in Example 2 and 1.7 times in Example 3.
  • the recovery rate of Ag can be as high as 99% or more and the recovery rate of Cu can be as high as 80% or more for valuable metals.
  • the smaller the particle size of the powder to be collected as the fine powder that is, the smaller the particle size of the powder is, that is, the more the powder of 2 mm or less and the powder of 1 mm or less are collected as the fine powder.
  • the mixing of impurities such as resin can be further reduced and the concentration ratio can be increased while maintaining a high recovery rate of valuable metals.
  • a solar cell is obtained by crushing, sieving, and wind-sorting a sheet-like structure from which the glass substrate and the frame member have been removed from the solar cell module.
  • Valuable metals such as Ag and Cu contained in the module can be recovered with a high recovery rate.
  • the glass substrate is removed in advance, it is possible to suppress the mixing of glass into the crushed material, suppress the loss of expensive Ag to a small extent, and collect the recovered material having a high concentration rate of valuable metals at a high ratio.
  • the effect of the recovery step can be enhanced.
  • the heat treatment is omitted, the valuable metal can be recovered without increasing the environmental load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

太陽電池モジュール又は太陽電池シート状構造物を破砕して破砕物を形成する破砕工程と、破砕物を選別する選別工程と、を有し、太陽電池シート状構造物は、太陽電池モジュールからガラス基板及びフレーム部材が取り除かれ、少なくとも、太陽電池セルと、太陽電池セルから配線される金属パターンと、これらを封止する封止材と、を備えることを特徴とする、金属回収方法である。

Description

金属回収方法
 本発明は、金属回収方法に関する。
 太陽電池発電は、太陽光というクリーンエネルギーを利用し、環境負荷が小さいことから、再生可能エネルギーとして着目されている。この太陽電池発電に使用される太陽電池モジュールは、例えば、ガラス基板と、太陽電池セルを封止する封止材と、保護部材(いわゆるバックシート)と、太陽電池セルから配線される金属パターンと、封止材の周囲に設けられるフレーム部材と、を備えて構成される。
 これまで太陽電池モジュールは、一定期間、使用された後に廃棄処分されていたが、近年、リサイクルの観点から有価金属を回収することが求められている。有価金属としては、金属パターンに含まれる銅や銀などがある。
 そこで、太陽電池モジュールから有価金属を回収する方法として、例えば特許文献1が開示されている。特許文献1では、太陽電池モジュールを加熱してバックシートを除去したうえで、太陽電池セルを回収する方法が提案されている。
特開2015-71162号公報
 太陽電池モジュールのリサイクル技術に関する特許文献1では、太陽電池モジュールを加熱してバックシートを除去するため、相応の時間と手間を要する。
 この時間と手間を省略すべく本発明者は鋭意検討を行った。即ち、本発明者らは、太陽電池モジュール、又は太陽電池モジュールを意図的に一部のみを分解した状態の太陽電池モジュール(本明細書では「太陽電池シート状構造物」と称する。詳しくは後述。)を処理対象として一定の破砕処理を行うことを知見した。
 上述のように、特許文献1のリサイクル技術では、太陽電池モジュールを一から分解するため、相応の時間と手間を要する。そのため、太陽電池モジュールを構成する部材のうち有用なフレーム部材やガラス基板を手っ取り早く回収し、残りの太陽電池シート状構造物は、良くて金属製錬の原料にされ、悪ければそのまま最終処分(埋め立て)されるのが現状である。但し、金属製錬の原料にされる場合、太陽電池シート状構造物は製錬原料として見ると不純物が多く、言い換えるとAg、Au等の有価金属の含有率が低く、金属製錬の原料として適しているとは言い難い。
 上記知見に加えてそのような現状を鑑み、本発明者らは、太陽電池モジュール又はその一部分解中間体である太陽電池シート状構造物中から有価金属を濃縮した回収物を回収することを新たな課題として知見した。
 本発明は、太陽電池モジュール又はその一部分解中間体である太陽電池シート状構造物に含まれる有価金属を濃縮する技術を提供することを目的とする。
 本発明者らは、太陽電池モジュール又はその一部分解中間体である太陽電池シート状構造物から有価金属を回収する際に、破砕と破砕物の物理選別とによる金属回収が有効であることを知見した。この知見は、太陽電池モジュール又は太陽電池シート状構造物において、有価金属を含む部材と、有価金属以外の元素(例えば炭素(C)など)を含む部材とは、破砕したときに形成する粉体のサイズが異なる傾向があり、区分けしやすいという新たな知見に基づいている(詳しくは後掲の実施例の項目参照)。そして、粒径が同等の場合、有価金属を多く含む粉体の方が、有価金属以外の元素を多く含む粉体よりも重い傾向にあるという知見もある。
 以上の複数の知見を基に創出されたのが以下の各態様である。
 本発明の第1の態様は、
 太陽電池モジュール又は太陽電池シート状構造物を破砕して破砕物を形成する破砕工程と、前記破砕物を分離する選別工程と、を有し、
 前記太陽電池シート状構造物は、太陽電池モジュールからガラス基板及びフレーム部材が取り除かれ、少なくとも、太陽電池セルと、前記太陽電池セルから配線される金属パターンと、これらを封止する封止材と、を備えることを特徴とする、金属回収方法である。
 本発明の第2の態様は、第1の態様において、
 前記破砕工程が、せん断作用を与えて前記破砕物を得る。
 本発明の第3の態様は、第1又は第2の態様において、
 前記選別工程が、前記破砕物を、粒径が小さな微小粉体と、粒径が大きな粗大粉体とに分級し、前記微小粉体を捕集する分級工程を含む。
 本発明の第4の態様は、第1~第3のいずれかの態様において、
 前記選別工程が、風力選別工程を含む。
 本発明の第5の態様は、第4の態様において、
 前記風力選別工程は、前記粗大粉体を風力選別することで、重量物と、それ以外の軽量物とに分離し、前記重量物を捕集する。
 本発明の第6の態様は、第4又は5の態様において、
 前記風力選別工程では、風速を5m/s以上20m/s以下とする。
 本発明の第7の態様は、第1~第6のいずれかの態様において、
 前記破砕工程では、前記破砕物の粒径が10mm以下となるように前記太陽電池シート状構造物又は太陽電池シート状構造物を破砕する。
 本発明の第8の態様は、第3~第7のいずれかの態様において、
 前記微小粉体の粒径が4mm以下である。
 本発明の第9の態様は、第1~第8のいずれかの態様において、
 前記破砕工程で、一軸破砕機を用いる。
 本発明によれば、太陽電池モジュールに含まれる有価金属を濃縮して回収することができる。
太陽電池シート状構造物の断面概略図である。 太陽電池モジュールの断面概略図である。
<本発明の一実施形態>
 以下、本発明の一実施形態に係る金属回収方法ついて、太陽電池モジュールの一部分解中間体である太陽電池シート状構造物からの金属回収を例に説明する。本実施形態の金属回収方法は、準備工程、破砕工程および選別工程を有する。以下、各工程について詳述する。
(準備工程)
 まず、処理対象である太陽電池シート状構造物(以下、単にシート状構造物ともいう)を準備する。シート状構造物は、太陽電池モジュールからガラス基板およびフレーム部材を取り除いたものである。
 太陽電池モジュール1は、例えば図2に示すように、複数の太陽電池セル11と、太陽電池セル11から配線される金属パターン12と、太陽電池セル11および金属パターン12を封止する封止材13と、封止材13の一方の面に設けられる保護部材14と、封止材13の他方の面に設けられるガラス基板15と、封止材13やガラス基板15などの積層体の周囲を囲むフレーム部材16と、を備えて構成される。
 太陽電池モジュール1において、太陽電池セル11は、例えばケイ素などを含む半導体から形成される。金属パターン12は、太陽電池セル11から配線される金属部材であって、例えば太陽電池セル11の表面に設けられる表面電極や太陽電池セル11の間を電気的に接続するバスバー電極を備えて構成される。金属パターン12は、例えば銅(Cu)や銀(Ag)などの有価金属を含み、表面電極は主にAgから形成され、バスバー電極は主にCuから形成される。封止材13は、例えばエチレン‐酢酸ビニル共重合体(EVA)やポリエチレンなどの樹脂から形成される。保護部材14は、例えば、ポリエチレンテレフタレートやフッ素樹脂などの樹脂から形成される。ガラス基板15は例えばガラスから形成される。フレーム部材16は、例えば金属や樹脂などから形成される。
 シート状構造物10は、太陽電池モジュール1からガラス基板15およびフレーム部材16が取り除かれて、図1のように構成される。具体的には、太陽電池セル11と、太陽電池セル11から配線される金属パターン12と、これら太陽電池セル11および金属パターン12を封止する封止材13と、封止材13の一方の面に設けられる保護部材14と、を備えて構成される。
 なお、太陽電池モジュール1からのガラス基板15やフレーム部材16の除去方法は、特に限定されず、公知の方法を採用することができる。ガラス基板15の除去としては、例えばホットナイフ法やロール破砕法、ショットブラスト法などを用いることができる。
(破砕工程)
 続いて、シート状構造物10を破砕する。シート状構造物10の破砕においては、例えば樹脂のような軟質で粘りのある材料から形成される部材ほど、粗く破砕され、金属やSiのような硬くて脆い材料から形成される部材は、細かく破砕される傾向がある。具体的には、ケイ素を含む太陽電池セル11は細かく破砕されやすい。また、有価金属を含む金属パターン12は細かく破砕されやすく、金属パターン12の中でも、太陽電池セル11の表面に設けられる表面電極は、薄く構成されるため、太陽電池セル11の破砕とともに破砕されやすく、バスバー電極よりも細かく破砕されやすい。一方、樹脂から形成される封止材13や保護部材14などは、軟質であるため、粗く破砕される。そのため、破砕物においては、粒径の小さな範囲には、樹脂などが混入しにくく、有価金属の比率が高くなる。一方、粒径の大きな範囲には、樹脂などが多く含まれるので、有価金属の比率は低くなる傾向がある。
 シート状構造物10の破砕においては、破砕物の粒径が不均一であって、粒度分布が広く、粒径のばらつきが大きくなるように破砕することが好ましい。これにより、太陽電池セル11や金属パターン12(特に表面電極)は細かく破砕する一方で、封止材13や保護部材14を過度に細かく破砕せず、粗いままとすることができ、有価金属と樹脂とを、異なる粒径の粉体として選別しやすくできる。
 破砕物の大きさは、特に限定されないが、後述の物理選別の際に有価金属を好適に回収する観点からは、破砕物の大きさが20mm以下となるようにシート状構造物10を破砕することが好ましい。より好ましくは15mm以下、さらに好ましくは10mm以下となるように破砕するとよい。このように破砕することにより、破砕物に含まれる粉体の粒度分布を広く、その粒径を適度にばらつかせることができ、破砕物において粒径の小さい側に含まれる有価金属の割合を高くすることができる。
 破砕方法としては、破砕物に含まれる粉体の粒径を適度にばらつかせる観点から、シート状構造物10にせん断作用を与えることができるせん断破砕が好ましい。使用する破砕機としては、例えば一軸破砕機や二軸破砕機など公知の破砕機を用いることができるが、一軸破砕機が好ましい。二軸破砕機では、破砕条件によっては破砕物が一様に細かく破砕されて、粒径が均一となりやすいのに対して、一軸破砕機では、破砕が粗く、得られる破砕物の粒径が不均一で、粒度分布が広くなるように、破砕しやすい。つまり、一軸破砕機によれば、封止材13や保護部材14を過度に細かく破砕することなく、樹脂が微小粉体に入り込むことを低減することが容易である。一軸破砕機としては、刃の形状によって一軸カッターミルや一軸ハンマーミルなどがあるが、せん断破砕する観点から、一軸カッターミルが好ましい。
 なお、破砕条件は、特に限定されず、破砕物の粒度分布が広くなるように、破砕機における刃の数、刃のクリアランス、および刃の回転数などを適宜調整するとよい。また、シート状構造物は一段階で破砕してもよく、一次破砕、二次破砕といったように多段階で徐々に破砕してもよい。
(選別工程)
 続いて、得られた破砕物を選別する。本実施形態では、破砕物に対して分級および風力選別を行う。
(分級工程)
 まず、得られた破砕物を、粒径が小さな微小粉体と、粒径が大きな粗大粉体とに分級する。上述したように、ケイ素から形成される太陽電池セル11や金属パターン12の中でも表面電極は細かく破砕されやすく、金属パターン12の中でもブスバー電極、樹脂から形成される封止材13や保護部材14は細かく破砕されにくい。そのため、粗大粉体は樹脂が多く含まれて有価金属の比率が低くなるのに対して、微小粉体は樹脂が少なく、有価金属の比率が高くなる傾向がある。本実施形態では、分級した後、有価金属の比率が高い微小粉体を捕集する。
 微小粉体の粒径、つまり、分級する際に微小粉体として捕集する粒径の範囲は、特に限定されないが、4mm以下であることが好ましく、2mm以下であることがより好ましく、1mm以下であることがさらに好ましい。粉体の粒径を小さくするほど、樹脂などの不純物の取り込みを低減し、微小粉体に含まれる有価金属の比率を高めることができる。特に、Agの比率を高くできる。一方で、過度に小さくすると、微小粉体として回収できる有価金属の量が少なくなり、回収効率が低くなるおそれがある。この点、微小粉体として、4mm以下の粉体を捕集することで、有価金属の比率を高く維持しながらも、回収効率を高くすることができる。
 破砕物の分級方法としては、重力や慣性力、遠心力などを用いた乾式または湿式分級、もしくは篩を用いた篩分け分級などを採用することができる。これらの中でも、分級を容易に行えることから、篩分け分級が好ましい。
(風力選別工程)
 続いて、分級工程で分級された粗大粉体に対して風力選別を行う。粗大粉体には、主に、分級工程で回収しきれなかった金属パターン12におけるブスバー電極に由来する有価金属、封止材13や保護部材14に由来する樹脂が含まれる。粗大粉体に対して風を吹き付けることにより、重量物と軽量物とに分離する。風力選別では、風を吹き付けたときに飛ばされにくい粗大粉体が重量物として分離される。このような重量物には、比重の大きい粗大粒子が多く含まれる。逆に軽量物には比重の低い粗大粒子が多く含まれる。粗大粉体のうちの軽量物には主に樹脂が含まれる。一方、重量物には有価金属が多く含まれる傾向にある。特に、Cuが多く含まれる傾向がある。本実施形態では、風力選別により、粗大粉体のうちの、有価金属を多く含む重量物を捕集する。
 風力選別工程において、風速は特に限定されないが、有価金属を効率的に回収する観点からは5m/s以上20m/s以下であることが好ましい。このような風速で風力選別を行うことにより、粗大粉体のうち、有価金属を多く含む粉体を重量物として分離することができる。なお、風速とは、粉体に当たる空気の速度を示す。
 使用する風力選別機としては、特に限定されず、循環式、エアナイフ式、吹き上げ式、吸引式もしくは密閉式など公知の選別機を用いることができる。重量物を選択的かつ効率的に捕集する観点からは、循環式、吹上式および密閉式が好ましい。風力選別の代わりに重力や慣性力、遠心力などを用いた乾式または湿式分級(比重により選別する処理)を用いることもできるが、処理能力やコストの観点から風力選別が好ましい。
 以上により、シート状構造物の破砕物から、分級により分離される微小粉体と、粗大粉体の風力選別により分離される重量物と、を捕集する。これにより、シート状構造物に含まれる有価金属を回収する。
 本実施形態では、ガラス基板15やフレーム部材16を除去したシート状構造物10を破砕しているので、ガラス基板15などに由来する異物の破砕物への混入を抑制することができる。そのため、破砕物に含まれる有価金属の比率を高くすることができ、破砕物を物理選別したときに、有価金属を含む粉体を効率的に分離することができる。具体的には、破砕物を分級して微小粉体を捕集することで、金属パターン12のうち、表面電極に由来する有価金属を回収することができる。また、分級により分離された粗大粉体に対して風力選別を行って重量物を捕集することにより、分級では回収しきれなかった、表面電極に由来する有価金属やブスバー電極に由来する有価金属を回収することができる。つまり、シート状構造物の破砕物に対して分級と風力選別とを行い、微小粉体や重量物を捕集することにより、樹脂などの不純物を取り除いて、有価金属を濃縮するとともに、シート状構造物10に含まれる有価金属を高い回収率で回収することができる。
 例えば、シート状構造物10中の有価金属を濃縮する濃縮倍率を1.5倍以上、好ましくは2.5倍以上、より好ましくは4倍以上とすることができ、有価金属を高い濃度で回収することができる。また、シート状構造物10に含まれる有価金属を高い収率で回収することができ、例えばAgの回収率は99%以上、Cuの回収率は80%以上とすることができる。なお、濃縮倍率とは、回収された有価金属の濃度を、原料の有価金属濃度で除した比率を示す。
 また本実施形態の金属回収方法によれば、準備工程後から風力選別工程に至るまでに加熱処理が不要なので、環境負荷を増やすことなく、太陽電池モジュールから有価金属を回収することができる。
 また、本実施形態の金属回収方法によれば、加熱処理が不要なので、太陽電池モジュールに含まれる成分によらず有価金属を回収することができる。例えば、太陽電池モジュールの保護部材にフッ素樹脂などが使用されている場合、加熱処理によりフッ化物ガスが発生するおそれがある。この点、本実施形態の金属回収方法によれば、加熱により有毒ガスが発生するおそれがないので、太陽電池モジュールに含まれる成分によらず有価金属を回収することができる。
 なお、回収した微小粉体や粗大粉体の重量物は精錬工程により純度を高めるとよい。
<他の実施形態>
 以上、本発明の実施形態について具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
 上述の実施形態では、粗大粉体に対して一様に風力選別を行い、重量物を捕集しているが、本発明はこれに限定されない。風力選別の際に、粗大粉体の中には、有価金属の少ない軽量物にもかかわらず、粒径が大きいために重量物と判別される粉体が含まれることがある。このような軽量物の捕集を抑制する観点からは、粗大粉体に対して一様に風力選別を行うのではなく、粗大粉体を、粒径範囲の異なる複数の群に分級した上で、それぞれの群に対して適切な風速で風力選別を行い、それぞれで得られる重量物を捕集してもよい。例えば、粗大粉体を、粒径が2mm~4mmの粉体、4mm~6mmの粉体、および6mm~10mmの粉体の3つのグループに分級した後、各グループに対して適切な風速で風力選別を行うとよい。
 また、上述の実施形態では、太陽電池シート状構造物10が保護部材14を備える場合を例に説明したが、本発明はこれに限定されない。シート状構造物10は、破砕工程前にプレヒーティングされて保護部材14が除去されていてもよい。この場合、破砕物に含まれる樹脂成分を減量できるので、選別工程において、有価金属を含む粉体をより効率的に捕集することができる。
 また、上述の実施形態では、処理対象が太陽電池シート状構造物10であるが、本発明は太陽電池モジュール1を処理対象とすることもできる。この場合、破砕物にガラス基板15やフレーム部材16に由来する粉体も含まれるが、上述した分級工程および風力選別工程により、有価金属を微小粉体や重量物として選別して回収することができる。
 次に、本発明について実施例に基づき、さらに詳細に説明するが、本発明はこれらの実施例に限定されない。
(実施例1)
 処理対象として、太陽電池モジュールからガラス基板およびフレーム部材を取り除いた太陽電池シート状構造物(PVシート)を準備した。続いて、ナゲット機を用いてPVシートを10mm以下に粉砕されるよう、10mmスクリーンを通過するまで粉砕し、通過しない場合は繰り返し処理した。続いて、得られたPVシート破砕物を目開き4mmの篩機に導入した。これにより、PVシート破砕物を、粒径が1mm以下の粉体、1mm~10mmの粉体に分級した。本実施例では、これらの粉体のうち、粒径が1mm以下の粉体を微小粉体として捕集した。次に、捕集しなかった粗大粉体、つまり、粒径が1mm~10mmの粉体に対して、風速8m/sで風力選別を行った。風力選別により重量物と軽量物とを分離し、重量物を捕集した。なお、ナゲット機としては、一軸カッターミルの「SKC-25-540L」を用いた。破砕条件として、刃の数は45個、クリアランスは2mm程度、刃の回転数は630rpmに調整した。また、風力選別機としては「APS-250RB」を用いた。
 捕集した粉体に含まれる有価金属の量を測定し、PVシートからの回収率を求めた。
 具体的には、まず、PVシート破砕物に含まれるAgおよびCuを100としたときの、粒径が1mm以下の粉体、1mm~10mmの粉体に含まれる各成分の分配比と濃縮度(分配比/質量比)を求めた。その結果を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 また、粗大粉体(1mm~~10mmの粉体)に対して風力選別を行ったときに得られる重量物と軽量物とに含まれるAgおよびCuの比率を求めた。その結果を下記表2に示す。なお、表2中では表1と同様、PVシート破砕物に含まれる各成分を100としたときの比率を示している。
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、篩分けにより得られる微小粉体には、PVシート破砕物に含まれるAgの42.1%が含まれていた。一方、Cuについては、0.7%が含まれていた。このことから、PVシートを10mm以下の大きさとなるように破砕し、微小粉体を捕集することにより、AgをCuよりも多く回収できることが確認された。Cuは、微小粉体よりも粗大粉体に含まれていることが確認された。本発明では、粗大粉体の重量物と微小粉体を回収物とする。
 また表2に示すように、粗大粉体に対して風力選別を行ったところ、得られる1mm以上の重量物には、PVシート破砕物に含まれるAgの57.2%が含まれ、Cuの82.1%が含まれることが確認された。
 表1および表2の結果によれば、分級により得られる微小粉体と、粗大粉体の風力選別により得られる重量物とを捕集することにより、PVシート破砕物に含まれるAgの99.3%を、Cuの82.8%を回収できることが確認された。また、最終的に得られた捕集物では、樹脂やSiの混入を低減し、PVシートに含まれる有価金属を4.4倍に濃縮することができた。なお、濃縮倍率は、表2の下に示す算定式より求めた。
(実施例2)
 粒径が2mm以下の粉体を微小粉体として捕集し、粒径が2mm~10mmの粉体を粗大粉体として捕集した以外は、実施例1と同様に有価金属を回収した。
 実施例2について、粒径が2mm以下の粉体、2mm~10mmの粉体のそれぞれに含まれる各成分の比率を求めた。その結果を下記表3に示す。また、粗大粉体(2mm~10mmの粉体)に対して風力選別を行ったときに得られる重量物と軽量物とに含まれる各成分の比率を下記表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(実施例3)
 粒径が4mm以下の粉体を微小粉体として捕集し、粒径が4mm~10mmの粉体を粗大粉体として捕集した以外は、実施例1と同様に有価金属を回収した。
 また、実施例3について、粒径が4mm以下の粉体、4mm~10mmの粉体のそれぞれに含まれる各成分の比率を求めた。その結果を下記表5に示す。また、粗大粉体(4mm~10mmの粉体)に対して風力選別を行ったときに得られる重量物と軽量物とに含まれる各成分の比率を下記表6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表3~6に示すように、PVシートに含まれる有価金属の回収率について、Agの回収率が実施例2では99.4%、実施例3では99.7%であった。また、Cuの回収率が実施例2では87.2%、実施例3では99.4%であった。また、PVシートの濃縮倍率は、実施例2が3.6倍、実施例3が1.7倍であった。
 実施例1~3によると、有価金属についてAgの回収率を99%以上、Cuの回収率を80%以上と高くできることが確認された。また、微小粉体として捕集する粉体の粒径を小さくするほど、つまり、微小粉体として、4mm以下の粉体よりも、2mm以下の粉体、さらには1mm以下の粉体を捕集するほうが、樹脂などの不純物の混入をより低減することができ、有価金属の回収率を高く維持しながらも濃縮倍率をより高くできることが確認された。
 以上のように、本発明の金属回収方法によれば、太陽電池モジュールからガラス基板およびフレーム部材を取り除いたシート状構造物に対して、破砕、篩分け、および風力選別を行うことにより、太陽電池モジュールに含まれるAgやCuなどの有価金属を高い回収率で回収できる。また、予めガラス基板を取り除いているので、破砕物へのガラスの混入を抑制することができ、高価なAgのロスを少なく抑えて有価金属の濃縮率が高い回収物を高い比率で捕集することができ、その回収物からAgとCuを回収することにより、回収工程の効果を高めることができる。また、加熱処理を省いているので、環境負荷を増やすことなく、有価金属を回収することができる。
 1 太陽電池モジュール
10 太陽電池シート状構造物
11 太陽電池セル
12 金属パターン
13 封止材
14 保護部材
15 ガラス基板
16 フレーム部材

Claims (9)

  1.  太陽電池モジュール又は太陽電池シート状構造物を破砕して破砕物を形成する破砕工程と、前記破砕物を選別する選別工程と、を有し、
     前記太陽電池シート状構造物は、太陽電池モジュールからガラス基板及びフレーム部材が取り除かれ、少なくとも、太陽電池セルと、前記太陽電池セルから配線される金属パターンと、これらを封止する封止材と、を備えることを特徴とする、金属回収方法。
  2.  前記破砕工程が、せん断作用を与えて前記破砕物を得ることを特徴とする請求項1に記載の金属回収方法。
  3.  前記選別工程が、前記破砕物を、粒径が小さな微小粉体と、粒径が大きな粗大粉体とに分級し、前記微小粉体を捕集する分級工程を含むことを特徴とする請求項1又は2に記載の金属回収方法。
  4.  前記選別工程が、風力選別工程を含むことを特徴とする請求項1から3のいずれかに記載の金属回収方法。
  5.  前記風力選別工程は、前記粗大粉体を風力選別することで、重量物と、それ以外の軽量物とに分離し、前記重量物を捕集することを特徴とする請求項4に記載の金属回収方法。
  6.  前記風力選別工程では、風速を5m/s以上20m/s以下とする、請求項4又は5に記載の金属回収方法。
  7.  前記破砕工程では、前記破砕物の粒径が10mm以下となるように前記太陽電池シート状構造物又は太陽電池シート状構造物を破砕する、請求項1から請求項6のいずれか1項に記載の金属回収方法。
  8.  前記微小粉体の粒径が4mm以下である、請求項3から請求項7のいずれか1項に記載の金属回収方法。
  9.  前記破砕工程で、一軸破砕機を用いる、請求項1から8のいずれか1項に記載の金属回収方法。
PCT/JP2021/000776 2020-01-24 2021-01-13 金属回収方法 WO2021149545A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21744605.3A EP4095273A4 (en) 2020-01-24 2021-01-13 METAL RECOVERY PROCESS
CN202180006226.0A CN114641583A (zh) 2020-01-24 2021-01-13 金属回收方法
US17/793,515 US20230116994A1 (en) 2020-01-24 2021-01-13 Metal recovery method
KR1020227027637A KR20220130157A (ko) 2020-01-24 2021-01-13 금속 회수 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020009722A JP6905103B1 (ja) 2020-01-24 2020-01-24 金属回収方法
JP2020-009722 2020-01-24

Publications (1)

Publication Number Publication Date
WO2021149545A1 true WO2021149545A1 (ja) 2021-07-29

Family

ID=76919709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000776 WO2021149545A1 (ja) 2020-01-24 2021-01-13 金属回収方法

Country Status (6)

Country Link
US (1) US20230116994A1 (ja)
EP (1) EP4095273A4 (ja)
JP (1) JP6905103B1 (ja)
KR (1) KR20220130157A (ja)
CN (1) CN114641583A (ja)
WO (1) WO2021149545A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023083528A1 (de) * 2021-11-10 2023-05-19 SOLAR MATERIALS GmbH Verfahren und vorrichtung zum verarbeiten eines solarmoduls
WO2023145343A1 (ja) * 2022-01-28 2023-08-03 ソーラーフロンティア株式会社 光電変換パネルの素材回収方法及び光電変換パネル用の素材回収システム
WO2023205732A1 (en) * 2022-04-21 2023-10-26 SOLARCYCLE, Inc. Solar module recycling and testing
DE102022130988A1 (de) 2022-11-23 2024-05-23 SOLAR MATERIALS GmbH Verfahren und Vorrichtung zum Verarbeiten eines Solarmoduls
US12005485B2 (en) 2022-04-21 2024-06-11 SOLARCYCLE, Inc. Solar module recycling and testing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7021392B1 (ja) * 2021-11-09 2022-02-16 Dowaエコシステム株式会社 金属成分の濃縮処理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014054593A (ja) * 2012-09-12 2014-03-27 Terumu:Kk 太陽電池パネルのリサイクル装置およびリサイクル方法
JP2015071162A (ja) 2013-10-01 2015-04-16 韓国エネルギー技術研究院Korea Institute Of Energy Research 太陽電池モジュールの解体方法
JP2016203093A (ja) * 2015-04-22 2016-12-08 三菱電機株式会社 太陽電池パネルのリサイクル装置およびリサイクル方法
KR101842224B1 (ko) * 2016-11-11 2018-03-26 한국에너지기술연구원 태양광 모듈 국부 박리 장치
JP2019205982A (ja) * 2018-05-30 2019-12-05 東芝環境ソリューション株式会社 太陽電池モジュールのリサイクル方法及びこれに用いるリサイクル装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19847100A1 (de) * 1998-10-13 2000-04-20 Wacker Chemie Gmbh Verfahren und Vorrichtung zur Zerkleinerung von Halbleitermaterial
JP2003071386A (ja) * 2001-08-31 2003-03-11 Nkk Corp 軽量プラスチックの選別回収装置
JP2004335111A (ja) * 2003-04-30 2004-11-25 Sony Corp 電池の製造方法
DE102011000322A1 (de) * 2011-01-25 2012-07-26 saperatec GmbH Trennmedium, Verfahren und Anlage zum Trennen von Mehrschichtsystemen
JP5772755B2 (ja) * 2012-08-02 2015-09-02 信越化学工業株式会社 太陽電池電極用ペースト組成物
DE102012018548B4 (de) * 2012-09-20 2016-11-17 Technische Universität Bergakademie Freiberg Verfahren zur Verwertung von ausgedienten Solarmodulen und Solarzellen aus Silizium und siliziumhaltigen Bauelementen
ITRM20130286A1 (it) * 2013-05-14 2014-11-15 Eco Recycling S R L Processo per il trattamento di pannelli fotovoltaici a fine vita
CN103866129B (zh) * 2014-03-12 2016-01-20 中国科学院电工研究所 一种CdTe太阳能电池组件的回收方法
US10388812B2 (en) * 2015-09-18 2019-08-20 Toho Kasei Co., Ltd. Method of recycling solar cell module
WO2017057553A1 (ja) * 2015-09-30 2017-04-06 積水化学工業株式会社 積層体
CN106744972A (zh) * 2016-12-15 2017-05-31 中山市得高行知识产权中心(有限合伙) 一种太阳能电池片碎片回收方法
CN108043863A (zh) * 2017-12-12 2018-05-18 青海黄河上游水电开发有限责任公司光伏产业技术分公司 一种光伏组件的加热辅助分解回收方法
US11548032B2 (en) * 2018-01-31 2023-01-10 Jx Nippon Mining & Metals Corporation Method for removing wire-form objects, device for removing wire-form objects, and method for processing electronic/electrical apparatus component scrap
CN108787453A (zh) * 2018-04-04 2018-11-13 青海黄河上游水电开发有限责任公司光伏产业技术分公司 一种分离装置及晶硅光伏组件的回收方法
CN109092842B (zh) * 2018-06-20 2021-07-30 常州瑞赛环保科技有限公司 报废光伏组件拆解方法
CN110964907A (zh) * 2018-09-28 2020-04-07 荆门市格林美新材料有限公司 一种废旧光伏组件的回收再利用方法
CN110571306B (zh) * 2019-09-12 2021-11-19 英利能源(中国)有限公司 一种光伏组件的回收方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014054593A (ja) * 2012-09-12 2014-03-27 Terumu:Kk 太陽電池パネルのリサイクル装置およびリサイクル方法
JP2015071162A (ja) 2013-10-01 2015-04-16 韓国エネルギー技術研究院Korea Institute Of Energy Research 太陽電池モジュールの解体方法
JP2016203093A (ja) * 2015-04-22 2016-12-08 三菱電機株式会社 太陽電池パネルのリサイクル装置およびリサイクル方法
KR101842224B1 (ko) * 2016-11-11 2018-03-26 한국에너지기술연구원 태양광 모듈 국부 박리 장치
JP2019205982A (ja) * 2018-05-30 2019-12-05 東芝環境ソリューション株式会社 太陽電池モジュールのリサイクル方法及びこれに用いるリサイクル装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4095273A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023083528A1 (de) * 2021-11-10 2023-05-19 SOLAR MATERIALS GmbH Verfahren und vorrichtung zum verarbeiten eines solarmoduls
WO2023145343A1 (ja) * 2022-01-28 2023-08-03 ソーラーフロンティア株式会社 光電変換パネルの素材回収方法及び光電変換パネル用の素材回収システム
WO2023205732A1 (en) * 2022-04-21 2023-10-26 SOLARCYCLE, Inc. Solar module recycling and testing
US12005485B2 (en) 2022-04-21 2024-06-11 SOLARCYCLE, Inc. Solar module recycling and testing
DE102022130988A1 (de) 2022-11-23 2024-05-23 SOLAR MATERIALS GmbH Verfahren und Vorrichtung zum Verarbeiten eines Solarmoduls

Also Published As

Publication number Publication date
EP4095273A1 (en) 2022-11-30
JP6905103B1 (ja) 2021-07-21
US20230116994A1 (en) 2023-04-20
EP4095273A4 (en) 2024-02-14
JP2021116448A (ja) 2021-08-10
KR20220130157A (ko) 2022-09-26
CN114641583A (zh) 2022-06-17

Similar Documents

Publication Publication Date Title
WO2021149545A1 (ja) 金属回収方法
JP6238070B2 (ja) 使用済みリチウムイオン電池の処理方法
JP6378502B2 (ja) リチウムイオン二次電池からの有価物回収方法
JP7021392B1 (ja) 金属成分の濃縮処理方法
WO2009067570A1 (en) Dry processes for separating or recovering non-ferrous metals
CN107321472A (zh) 一种基于气流分选和浮选的鳞片石墨分选方法
JP6157904B2 (ja) 太陽電池モジュール部材の構成部材回収方法およびそのシステム
de Souza et al. Study of electrostatic separation to concentrate silver, aluminum, and silicon from solar panel scraps
KIM et al. Recovery of LiCoO2 from wasted lithium ion batteries by using mineral processing technology
JP6859151B2 (ja) 電子・電気機器部品屑の処理方法
JP6994418B2 (ja) 廃リチウムイオン電池の処理装置及び処理方法
WO2023148847A1 (ja) 太陽電池モジュールの処理方法
JP6676000B2 (ja) プリント基板屑の粉砕方法及びプリント基板屑からの有価金属の回収方法
US20220242009A1 (en) Method and system for recycling wind turbine blades
JP7253661B2 (ja) 太陽電池モジュールの処理方法
KR102504453B1 (ko) 태양광 모듈의 재활용을 위한 부품 선별장치 및 그 방법
Imaizumi et al. Silver recovery from spent photovoltaic panel sheets using electrical wire explosion
Diekmann et al. Material separation
JP6938414B2 (ja) 部品屑の処理方法
EP4302887A1 (en) Method for processing solar cell module
JP2024033832A (ja) 太陽電池構造物からの有価物の濃縮方法
WO2023204230A1 (ja) リチウムイオン二次電池からの有価物の回収方法
JP4389264B2 (ja) ブレーカーのマテリアルリサイクル処理方法
JP2023089446A (ja) 太陽光電池パネルの構成材料を回収する方法およびシステム
JP7307105B2 (ja) プリント基板屑の粉砕装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744605

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227027637

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021744605

Country of ref document: EP

Effective date: 20220824