WO2021149153A1 - 加工チタン材及びその製造方法 - Google Patents

加工チタン材及びその製造方法 Download PDF

Info

Publication number
WO2021149153A1
WO2021149153A1 PCT/JP2020/001933 JP2020001933W WO2021149153A1 WO 2021149153 A1 WO2021149153 A1 WO 2021149153A1 JP 2020001933 W JP2020001933 W JP 2020001933W WO 2021149153 A1 WO2021149153 A1 WO 2021149153A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium material
pressing
pushing
pressing surface
processed
Prior art date
Application number
PCT/JP2020/001933
Other languages
English (en)
French (fr)
Inventor
知徳 國枝
一浩 ▲高▼橋
森 健一
義正 宮崎
洋介 井上
太千 田中
Original Assignee
日本製鉄株式会社
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社, 東邦チタニウム株式会社 filed Critical 日本製鉄株式会社
Priority to PCT/JP2020/001933 priority Critical patent/WO2021149153A1/ja
Priority to JP2020524914A priority patent/JP6794586B1/ja
Priority to KR1020227028374A priority patent/KR20220128425A/ko
Priority to CN202080094096.6A priority patent/CN115003426A/zh
Publication of WO2021149153A1 publication Critical patent/WO2021149153A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/02Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling heavy work, e.g. ingots, slabs, blooms, or billets, in which the cross-sectional form is unimportant ; Rolling combined with forging or pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Definitions

  • the present invention relates to a processed titanium material and a method for producing the same.
  • a general method for manufacturing titanium material for hot titanium rolling is as follows, for example. First, an ingot is manufactured by melting and solidifying titanium by a consumable electrode type arc melting method (VAR: Vacuum arc remelting) or an electron beam melting method (EBR: Electron beam remelting). Next, the ingot is broken down by hot working such as slabbing, forging, and rolling to obtain a titanium material for hot rolling such as slabs and billets. Further, in recent years, a technique has been developed in which the above-mentioned breakdown step is omitted by manufacturing a rectangular ingot that can be directly hot-rolled by an electron beam melting method.
  • VAR Vacuum arc remelting
  • EBR Electron beam remelting
  • Patent Document 1 when a titanium ingot is directly hot-processed, the surface layer is strained in order to make the crystal grains near the surface layer finer, and then the surface is heated to a temperature higher than the recrystallization temperature. A method of hot working after recrystallizing a depth of 2 mm or more has been proposed.
  • Patent Documents 2 and 3 a steel tool having a tip shape having a radius of curvature of 3 to 30 mm or a steel ball having a radius of 3 to 30 mm is used to plastically deform the surface of the titanium material to form a surface layer portion.
  • a strained titanium material for hot rolling is described. According to Patent Documents 2 and 3, by hot rolling such a titanium material for hot rolling, the influence of a coarse solidified structure can be detoxified and surface defects can be reduced.
  • Patent Document 1 lists forging, roll reduction, and shot blasting as means for imparting distortion.
  • the amount of strain given is also small because the diameter of the shot grains is as small as 0.5 to 1 mm.
  • dead metal is generated, the amount of strain is reduced, or strain is introduced into the inside. Therefore, the required thickness of the recrystallized layer may not be secured, or the granulation may be insufficient.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a processed titanium material capable of reducing surface defects generated during hot rolling and a method for producing the same.
  • the gist of the present invention for solving the above problems is as follows.
  • a method for manufacturing a processed titanium material that forms a plurality of first grooves on the surface of the titanium material.
  • a first step of pushing a first pressing body having an arc-shaped first pressing surface extending in a predetermined direction onto the surface of the titanium material is provided.
  • the radius of curvature of the first pressing surface in the first cross section orthogonal to the extending direction of the first pressing surface is 2.5 mm or more and 17.5 mm or less.
  • the first step satisfies the following equations (1) and (2). Manufacturing method of processed titanium material.
  • ⁇ 1 is 50 °
  • R 1 is the radius of curvature (mm) of the first pressing surface in the first cross section.
  • X 1 is the amount (mm) of the first pressing surface pushed into the titanium material.
  • Y 1 is a distance (mm) between adjacent pushing positions of the first pressing surface in a direction orthogonal to both the extending direction of the first pressing surface and the pushing direction of the first pressing body.
  • the occurrence of surface defects during hot rolling can be reduced. Further, according to the present invention, even if the titanium material is cast as it is without the breakdown step of the ingot, the surface defects generated during hot rolling can be stably reduced, and excellent hot rolling and cold rolling can be performed.
  • the product can be provided.
  • FIG. 1 is a perspective view showing an example of the shape of the processed titanium material according to the embodiment of the present invention.
  • FIG. 2 is a perspective view for explaining the shape of the grooves arranged on the processed titanium material according to the embodiment of the present invention.
  • FIG. 3 is a schematic view showing a cross section orthogonal to the direction in which the groove of the processed titanium material according to the embodiment of the present invention extends.
  • FIG. 4 is a schematic view showing a pressing body used in the method for producing a processed titanium material according to the embodiment of the present invention.
  • (A) is a perspective view
  • (b) is a schematic view showing a pushing state in a cross section orthogonal to the axial direction of the pressing body.
  • FIG. 1 is a perspective view showing an example of the shape of the processed titanium material according to the embodiment of the present invention.
  • FIG. 2 is a perspective view for explaining the shape of the grooves arranged on the processed titanium material according to the embodiment of the present invention.
  • FIG. 3 is a schematic
  • FIG. 5 is a schematic view showing a pressing body used in the method for producing a processed titanium material according to another embodiment of the present invention.
  • (A) is a perspective view
  • (b) is a schematic view showing a pushing state in a cross section orthogonal to the axial direction of the pressing body.
  • FIG. 6 is a schematic view showing a pressing body used in the method for producing a processed titanium material according to another embodiment of the present invention.
  • (A) is a perspective view, and (b) is a schematic view showing a pushing state in a cross section orthogonal to the axial direction of the pressing body.
  • FIG. 7 is a perspective view of a pressing body used in the method for producing a processed titanium material according to another embodiment of the present invention.
  • FIG. 8A and 8B are views for explaining the method for producing the processed titanium material according to the embodiment of the present invention, in which FIG. 8A is a schematic plan view and FIG. 8B is a schematic view showing a cross section orthogonal to the axial direction of the pressing body. It is a figure.
  • 9A and 9B are views for explaining the method for producing the processed titanium material according to the embodiment of the present invention, in which FIG. 9A is a schematic plan view and FIG. 9B is a schematic view showing a cross section orthogonal to the axial direction of the pressing body. It is a figure.
  • FIG. 10 is a schematic plan view showing a groove of the processed titanium material obtained by the method for producing the processed titanium material according to the embodiment of the present invention.
  • FIG. 11 shows the No. 1 in the examples. It is a figure which shows the lognormal distribution of the crystal grain size of the recrystallized layer of 2, 18 and 16.
  • a groove (dent) is provided on the surface to give strain, and then heating during hot rolling is performed.
  • a method of recrystallization can be considered by a predetermined heat treatment.
  • the present invention includes a step of pushing the pressing body into the surface of the titanium material so that a plurality of first grooves are formed on the surface of the titanium material. As a result, a plurality of grooves are provided on the surface of the titanium material to apply strain.
  • the processed titanium material obtained by this method can remarkably suppress surface defects during hot rolling. Further, in the present invention, by actually pushing the pressing surface of the pressing body and physically deforming it to form a groove, strain can be stably introduced regardless of the crystal orientation. Further, by performing the pressing step of the pressing body a plurality of times and preventing the extending directions of the grooves formed by each step from overlapping, efficient and sufficient strain can be introduced into the groove and its periphery. By forming fine recrystallization on the surface layer by heating during the subsequent hot rolling, the occurrence of surface defects can be suppressed.
  • the processed titanium material of the present embodiment has a plurality of grooves formed on its surface, and has a Vickers hardness of 3 mm from the bottom of the grooves and a Vickers hardness of 1/2 of the thickness in the thickness direction of the processed titanium material.
  • the difference ⁇ HV from the above is 20 or more.
  • Processed titanium materials with a difference ⁇ HV of 20 or more have an average grain size equivalent to a circle of 1.00 mm or less in a range of at least from the bottom of the groove to a depth of 3.0 mm when heat-treated at 800 ° C. for 4 hours.
  • Crystal grains are formed, and the standard deviation of the logarithmic conversion value of the circle-equivalent particle size of the crystal grains is 1.00 or less. That is, in the processed titanium material of the present embodiment, the structure of the surface layer can be miniaturized by heating during hot rolling, so that the occurrence of surface defects during hot working can be suppressed. Therefore, it is suitable for a titanium material for hot rolling.
  • the processed titanium material of the present embodiment preferably has an angle of 50 ° or less between the inner surface of the groove and the surface of the processed titanium material in a cross section orthogonal to the extending direction of the groove.
  • the titanium material used in the method for producing a processed titanium material of the present embodiment is preferably made of industrial pure titanium or a titanium alloy. Examples of the titanium material used in the method for producing a processed titanium material of the present embodiment include ingots, slabs, blooms and billets.
  • FIG. 1 shows an example of the processed titanium material of the present embodiment.
  • the processed titanium material of the present embodiment may be a slab 1 as shown in FIG. 1 (a), a bloom 2 as shown in FIG. 1 (b), and may be a bloom 2 as shown in FIG. 1 (c).
  • the billet 3 may have a rectangular cross section perpendicular to the longitudinal direction. Further, the billet may have a round cross section. Further, a plurality of linear grooves 1b, 2b, and 3b are formed on the surfaces 1a, 2a, and 3a of the slab 1 of FIG. 1A, the bloom 2 of FIG. 1B, and the billet 3 of FIG. 1C, respectively. Has been done.
  • the extending direction of the grooves 1b, 2b, and 3b is the longitudinal direction of each of the slab 1, bloom 2, and billet 3 in the drawing, but the extension direction is not limited to this, and for example, the slab 1, It may be formed in the width direction of each of the bloom 2 and the billet 3, or may be formed so as to extend in a direction having a predetermined inclination from the width direction of each of the slab 1, the bloom 2 and the billet 3.
  • grooves 1b, 2b, and 3b are formed along the longitudinal directions of the slab 1, the bloom 2, and the billet 3 will be described.
  • the processed titanium material of the present embodiment has a Vickers hardness at a depth of 3 mm from the groove bottom (position of the line of reference numeral S in FIG. 3) and a position of 1/2 depth of the thickness (position of the line of reference numeral M in FIG. 3). ),
  • the difference ⁇ HV from the Vickers hardness is 20 or more.
  • FIG. 3 is a schematic view showing a cross section orthogonal to the direction in which the groove of the processed titanium material extends.
  • the 1/2 depth position of the thickness is the position of 1 / 2t thickness of the slab thickness t or the bloom thickness t in the slab or bloom shown in FIG. 1 (a) or FIG. 1 (b), respectively. Further, in the billet having a rectangular cross section having an aspect ratio of about 1 shown in FIG. 1C, the position is the center of gravity of the billet cross section.
  • the surface layer referred to here is a region between the groove bottom of the processed titanium material and a position having a depth of 3 mm.
  • strain is applied to the region from the groove bottoms 1b 1 , 2b 1 , 3b 1 to a position at least 3 mm deep (the position of the line of reference numeral S in FIG. 3). Must be granted.
  • ⁇ HV is the hardness of the surface layer when an equivalent strain of 0.2 or more is introduced into the surface layer. Corresponds to the amount of increase. If the ⁇ HV of the processed titanium material is 20 or more, sufficient strain is introduced into the surface layer, and subsequent heating (heating of hot rolling) enables the formation of fine and uniform recrystallization. Become. The thickness of the recrystallized layer thus obtained is 3 mm or more, and surface defects during hot rolling can be suppressed.
  • the thickness of the recrystallized layer is sufficient if it is 3 mm or more, and the upper limit is not particularly set, but in order to increase this thickness, it is necessary to increase the press load for introducing strain. Therefore, from the viewpoint of limiting the load capacity of the press machine, the practical upper limit of the thickness of the recrystallized layer is 25 mm.
  • the Vickers hardness is measured by mirror-polishing a cross section (a cross section orthogonal to the direction in which the groove extends) cut so as to include a grooved surface of the processed titanium material, and measuring using a Vickers hardness tester. At a depth of 3 mm from the groove bottom and a position of 1/2 thickness of the processed titanium material, 7 points are measured with a load of 1 kg, and the average of 5 points excluding the maximum and minimum hardness is calculated. Then, the hardness difference ( ⁇ HV) between the position 3 mm from the groove bottom and the position 1/2 thickness is obtained.
  • the processed titanium material of the present embodiment has a plurality of linear lines along the longitudinal direction of the slab 1 of FIG. 1 (a), the bloom 2 of FIG. 1 (b), and the billet 3 of FIG. 1 (c). Grooves 1b, 2b and 3b are arranged. It is preferable that the angle ( ⁇ ) formed by the inner surfaces of the grooves 1b, 2b and 3b and the surfaces 1a, 2a and 3a in the cross section orthogonal to the extending direction of the groove is 50 ° or less.
  • the angle ⁇ formed by the inner surface of the grooves 1b, 2b, 3b and the surfaces 1a, 2a, and 3a in the cross section orthogonal to the extending direction of the grooves 1b, 2b, and 3b is set to 50 ° or less. Is preferable. As a result, the angle of the inner surface of the groove is not steep, and surface defects due to the groove shape can be prevented. More preferably, the angle ⁇ is 45 ° or less.
  • the angle ⁇ is not particularly specified. However, if the surface layer of the material is sufficiently strained and the angle ⁇ is made too small, that means that the pressing steps are repeated, and the manufacturing efficiency is significantly lowered. Therefore, the angle ⁇ is preferably 10 ° or more. More preferably, it is 20 ° or more.
  • the processed titanium material of the present embodiment has an average equivalent to a circle in a range of at least from the bottom of the groove to a depth of 3.0 mm when heat treatment is performed at a temperature of 800 ° C. for a heating time of 4 hours, simulating hot rolling. It is preferable that a crystal grain structure having a particle size of 1.00 mm or less is formed. Further, the standard deviation ⁇ for the logarithmic conversion value of the circle-equivalent particle size of the crystal grains is preferably 1.00 or less.
  • the crystal grains formed by the heat treatment simulating hot rolling have relatively uniform particle sizes.
  • the processed titanium material of the present embodiment is preferably heated at 800 ° C. for 4 hours to form a crystal grain structure in which the standard deviation ⁇ for the logarithmic conversion value of the circle-equivalent particle size is 1.00 or less.
  • the narrower the distribution width of the lognormal distribution the more uniform the crystal grain size and the less likely it is that surface defects will occur during hot spreading. That is, if the crystal grains are fine to some extent and the standard deviation of the lognormal distribution is within a certain range, the structure becomes uniform and surface defects are less likely to occur.
  • the standard deviation ⁇ of the distribution of the converted value obtained by converting the circle-equivalent particle size D of each crystal grain to the natural logarithm LnD is 1.00 or less
  • the surface defect is obtained when the circle-equivalent average particle size is 1.00 mm or less. Will be suppressed.
  • the standard deviation ⁇ is more preferably 0.80 or less. The narrower the distribution of the crystal grain size, that is, the smaller the standard deviation ⁇ , the less likely it is that surface defects will occur. Therefore, the lower limit of the standard deviation is not particularly specified.
  • the average crystal grain size is preferably finer than that of a cast structure having an average grain size of 10 mm or more.
  • the average particle size equivalent to a circle of crystal grains in the range from the groove bottom to the depth of 3.0 mm after heat treatment at 800 ° C. for a heating time of 4 hours is preferably 1.00 mm or less. It is more preferably 0.80 mm or less, still more preferably 0.70 mm or less. If it is coarser than that, surface defects may occur during hot spreading even within the above standard deviation ⁇ . The smaller the circle-equivalent average particle size, the less surface defects occur. Therefore, the lower limit of the circle-equivalent average particle size is not particularly specified.
  • the crystal grain size becomes coarser during hot rolling heating.
  • the range of the circle-equivalent average particle size and the standard deviation ⁇ of the crystal grains shall be those after heat treatment at 800 ° C. for 4 hours after straining the surface layer.
  • EBSD electron backscatter diffraction method
  • the titanium material is a titanium slab used for hot rolling, and examples of the titanium material include ingots, slabs, blooms, billets, etc. as described in (A) or (B) below. That is, the titanium material excludes titanium plates that have already been rolled to a thickness less than a predetermined thickness by hot rolling or cold rolling. Therefore, in the case of a rectangular parallelepiped or cubic titanium material, the thickness thereof is, for example, 100 mm or more, and in the case of a columnar titanium material, the diameter thereof is, for example, 90 mm or more. Further, the titanium material (B) is composed of a solidified structure obtained by melting and casting titanium, and has a structure as cast in which coarse particles having a crystal particle size of 10 mm or more are present.
  • VAR Rolling arc remelting
  • EBR Electron beam remelting
  • the irradiated electron beam can concentrate the beam by polarization, it is easy to supply heat even in a narrow region between the mold and the molten titanium, and therefore the casting surface can be well controlled.
  • the degree of freedom in the cross-sectional shape of the mold is high. Therefore, it is preferable to melt a rectangular or cylindrical ingot having a size that can be directly subjected to hot rolling, as in (B) above, using an electron beam melting furnace.
  • the titanium material is preferably made of industrial pure titanium or a titanium alloy.
  • Industrial pure titanium is JIS H4600 standard 1 to 4, and corresponding ASTM 265B standard Grade 1 to 4, DIN 17850 standard Grade I (WL3.7025), GradeII (WL3.7035), GradeIII (WL3. It shall contain pure industrial titanium specified in 7055). That is, the industrial pure titanium targeted in the present invention has a mass% of C: 0.1% or less, H: 0.015% or less, O: 0.4% or less, N: 0.07% or less, Fe: 0.5% or less, consisting of the balance Ti.
  • % for the content of each element means "mass%".
  • the alloy may be appropriately used in the required application. More preferably, a low alloy having a substantially alloy component of 5% or less is preferable.
  • examples of low alloys include high corrosion resistant alloys (ASTM Grade 7, 11, 16, 26, 13, 30, 33, JIS varieties corresponding to these, and those containing a small amount of various elements).
  • Examples of the ⁇ -type titanium alloy include Ti-5Al-2.5Sn, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-2.75Sn-4Zr-0.4Mo-0.45Si and the like.
  • Examples of the ⁇ + ⁇ type titanium alloy include Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al-7V, Ti-3Al-2.5V, Ti-3Al-5V, Ti-5Al-2Sn-2Zr. -4Mo-4Cr, Ti-6Al-2Sn-4Zr-6Mo, Ti-1Fe-0.35O, Ti-1.5Fe-0.5O, Ti-5Al-1Fe, Ti-5Al-1Fe-0.3Si, Ti There are -5Al-2Fe, Ti-5Al-2Fe-0.3Si, Ti-5Al-2Fe-3Mo, Ti-4.5Al-2Fe-2V-3Mo and the like.
  • examples of the ⁇ -type titanium alloy include, for example, Ti-11.5Mo-6Zr-4.5Sn, Ti-8V-3Al-6Cr-4Mo-4Zr, Ti-10V-2Fe-3Mo, Ti-13V-11Cr-3Al. , Ti-15V-3Al-3Cr-3Sn, Ti-6.8Mo-4.5Fe-1.5Al, Ti-20V-4Al-1Sn, Ti-22V-4Al and the like.
  • the titanium alloy according to the present invention is, for example, O: 0 to 0.5%, N: 0 to 0.2%, C: 0 to 2.0%, Al: 0 to 8.0%, Sn: 0 to. 10.0%, Zr: 0 to 20.0%, Mo: 0 to 25.0%, Ta: 0 to 5.0%, V: 0 to 30.0%, Nb: 0 to 40.0%, Si: 0 to 2.0%, Fe: 0 to 5.0%, Cr: 0 to 10.0%, Cu: 0 to 3.0%, Co: 0 to 3.0%, Ni: 0 to 2 One selected from 0.0%, platinum group element: 0 to 0.5%, rare earth element: 0 to 0.5%, B: 0 to 5.0%, and Mn: 0 to 10.0%.
  • the target function can be imparted to the surface of the processed titanium material.
  • Elements other than the above that can be contained in titanium are elements that can be expected to improve strength by solid solution strengthening and precipitation strengthening (sometimes they do not solid solution and some may form precipitates), as is common knowledge of metal materials. Is. Examples of these elements include elements with atomic numbers from hydrogen (1) to astatine (85) (excluding noble gas elements which are Group 18 elements), and a total of about 5% is allowed.
  • Impurities can be contained within a range that does not impair the target characteristics, and other impurities mainly include impurity elements mixed from raw materials and scrap and elements mixed during production, for example, C, N, O, Fe. , H and the like are typical elements, and there are other elements such as Mg and Cl that are mixed from raw materials and elements such as Si, Al and S that are mixed during production. If these elements are about 2% or less, it is considered that the target characteristics of the present application are not impaired.
  • the titanium alloy according to the present invention has, for example, O: 0.01 to 0.5%, N: 0.01 to 0.2%, C: 0.01 to 2.0%, Al: 0.1. ⁇ 8.0%, Sn: 0.1 ⁇ 10.0%, Zr: 0.5 ⁇ 20.0%, Mo: 0.1 ⁇ 25.0%, Ta: 0.1 ⁇ 5.0%, V: 1.0 to 30.0%, Nb: 0.1 to 40.0%, Si: 0.1 to 2.0%, Fe: 0.01 to 5.0%, Cr: 0.1 to 10.0%, Cu: 0.3-3.0%, Co: 0.05-3.0%, Ni: 0.05-2.0%, Platinum group element: 0.01-0.5% , Rare earth element: 0.001 to 0.5%, B: 0.01 to 5.0%, and Mn: 0.1 to 10.0%. ..
  • the titanium alloy according to the present invention has O: 0.02 to 0.4%, N: 0.01 to 0.15%, C: 0.01 to 1.0%, Al: 0.2 to 6.0. %, Sn: 0.15 to 5.0%, Zr: 0.5 to 10.0%, Mo: 0.2 to 20.0%, Ta: 0.1 to 3.0%, V: 2.
  • Nb 0.15 to 5.0%
  • Si 0.1 to 1.0%
  • Fe 0.05 to 2.0%
  • Cr 0.2 to 5.0%
  • Cu 0.3-2.0%
  • Co 0.05-2.0%
  • Ni 0.1-1.0%
  • Platinum group element 0.02-0.4%
  • Rare earth element It is more preferable to contain one or more selected from 0.001 to 0.3%, B: 0.1 to 5.0%, and Mn: 0.2 to 8.0%, and O: 0.03 to 0.3%
  • C 0.01 to 0.5%
  • Al 0.4 to 5.0%
  • Sn 0.2 to 3.
  • examples of the platinum group element include Ru, Rh, Pd, Os, Ir and Pt, and one or more of these can be contained.
  • the content of the platinum group elements means the total amount of the platinum group elements.
  • Specific examples of the rare earth element (REM) include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. , One or more of these can be contained.
  • REM rare earth element
  • REM rare earth element
  • REM rare earth element
  • REM rare earth element
  • REM include Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
  • a mixture or compound of rare earth elements such as mischmetal (Mm) or didymium alloy may be used.
  • the content of the rare earth elements means the total amount of the rare earth elements.
  • the manufacturing method of the present embodiment includes a step of pushing the pressing body into the surface of the titanium material so that a plurality of first grooves are formed on the surface of the titanium material.
  • the manufacturing method of the present embodiment includes a step of pushing the pressing body into the surface of the titanium material so that a plurality of first grooves are formed on the surface of the titanium material.
  • strain when strain is applied by the impact energy of impact using a protrusion as described in Patent Document 2 or the like, strain can be applied to the surface layer, so that the structure of the surface layer is made fine. be able to. However, in such a method, it may take a long time to stably apply strain to the entire surface. Further, in the high-strength material, the impact energy is not transmitted to the inside, and the required thickness of the fine-grained structure may not be secured.
  • the present inventors have investigated a method of preventing the generation of dead metal and efficiently and uniformly applying strain to the surface layer of the titanium material to prevent the generation of coarse-grained portions, and treat the titanium material by the following method. For example, it was found that strain can be efficiently applied to the surface layer.
  • the method for producing the processed titanium material of the present embodiment will be described in detail.
  • the manufacturing method of the present embodiment is a manufacturing method of a processed titanium material in which a plurality of first grooves are formed on the surface of the titanium material 10, and is an arc-shaped first pressing extending in a predetermined direction.
  • a step (first step) of pushing the first pressing body 51 having the surface 51a into the surface of the titanium material 10 is provided.
  • the present embodiment shows an example in which a round bar (a bar having a circular cross-sectional shape orthogonal to the direction in which the first pressing surface 51a extends) is used.
  • the pressing surface 51a of the first pressing body 51 has a radius of curvature (mm) of 2.5 mm or more and 17.5 mm or less in a cross section orthogonal to the direction in which the first pressing surface 51a extends.
  • the radius of curvature is set to 2.5 mm or more.
  • the preferred lower limit is 5.0 mm.
  • the radius of curvature is set to 17.5 mm or less.
  • the preferred upper limit is 15 mm.
  • the pressing body that can be used as the first pressing body is not limited in its cross-sectional shape as long as it has an arc-shaped pressing surface at least in the portion in contact with the titanium material 10.
  • the round bar-shaped pressing body 51 having a circular cross-sectional shape shown in FIG. 4A for example, as the first pressing body, as shown in FIG.
  • a pressing body 52 having an arc-shaped first pressing surface 52a extending in a predetermined direction on the portion) and a rigid body having a cubic shape (rectangular cross-sectional shape) on the upper portion may be used.
  • the pressing body 52 having such a shape is particularly useful in the case of a rod body having a small radius of curvature or a long rod body.
  • the cross-sectional coefficient can be increased by increasing the rectangular rigid body at the upper part, and the rigidity of the rod body can be increased.
  • a pressing body 53 having a plurality of pressing surfaces 53a at the lower portion may be used as the first pressing body.
  • the pressing body 53 having such a shape although there is a demerit that the pressing load becomes large, since a plurality of grooves can be formed on the surface of the titanium material 10 at the same time, the production efficiency can be improved.
  • FIG. 7 by increasing the load capacity of the press machine and further increasing the rectangular rigid body at the upper part, the pressing body of the planar body provided with more pressing surfaces 54a at the lower part, as shown in FIG. 54 can be used. When the pressing body 54 is used, the number of times the pressing body is pushed can be reduced, and the production efficiency can be improved.
  • the first step needs to satisfy the following equations (1) and (2).
  • a case where the pressing body shown in FIG. 4 is used will be mainly described as an example.
  • 0.5 ⁇ X 1 ⁇ R 1 x (1-cos ⁇ 1 ) (1) 1.0 ⁇ Y 1 ⁇ (-0.16R 1 2 + 4.4R 1) ⁇ (0.25X 1 +0.037) (2)
  • ⁇ 1 is 50 °
  • R 1 is the radius of curvature (mm) of the first pressing surface in the first cross section.
  • X 1 is the amount (mm) of the first pressing surface pushed into the titanium material.
  • Y 1 is a distance (mm) between adjacent pushing positions of the first pressing surface in a direction orthogonal to both the extending direction of the first pressing surface and the pushing direction of the first pressing body.
  • the pushing amount X 1 of the first pressing surface 51a into the titanium material 10 is the distance indicated by the sign X in FIG. 4 (b), and the surface and groove bottom of the processed titanium material in the thickness direction of the titanium material 10. Is the distance. If the pushing amount X 1 is too small, sufficient strain cannot be applied to the surface, and the processing time becomes long. Therefore, the pushing amount X 1 is set to 0.5 mm or more. The preferred lower limit is 1.0 mm. On the other hand, if the pushing amount X 1 is too large, the angle ⁇ formed by the inner surfaces of the grooves 1b, 2b, and 3b and the surfaces 1a, 2a, and 3a becomes too large in FIG. .. Therefore, the pushing amount X 1 is set to R 1 ⁇ (1-cos ⁇ 1 ) or less. Preferred upper limit is 0.29 ⁇ R 1.
  • the interval Y 1 is a distance indicated by the reference numeral Y in FIG. 4B, and is a direction of the first pressing surface 51a in a direction orthogonal to both the extending direction of the first pressing surface 51a and the pushing direction of the first pressing body 51. It is the distance between adjacent push-in positions. In this respect, in a cross section parallel to the first cross section of the manufactured processed titanium material 1, the distance between the groove bottom of the arbitrary first groove and the groove bottom of the other first groove adjacent to the arbitrary first groove. Matches with. If the interval Y 1 is too small, the processing time becomes long, so the interval Y 1 is set to 1.0 mm or more. The preferred lower limit is 5.0 mm. On the other hand, if the interval Y 1 is too large, sufficient strain cannot be applied to the surface layer. Therefore, the interval Y 1 is, (- 0.16R 1 2 + 4.4R 1) and ⁇ (0.25X 1 +0.037) or less.
  • the surfaces 1a and 2a having the largest area among the titanium materials are the surfaces to be rolled, so the pressing body 51 is pushed into the surface to form a groove. Should be formed.
  • the titanium material is a billet, the entire surface extending in the longitudinal direction thereof can be the surface to be rolled. Therefore, for example, in the case of the billet 3 having a rectangular cross section shown in FIG. 3, it is desirable to form a groove on the entire surface and introduce strain on the entire surface.
  • FIG. 8A and 8B are views for explaining the first pushing step (first step) in the method for manufacturing the processed titanium material of the present embodiment, where FIG. 8A is a schematic plan view and FIG. 8B is a side surface. It is a schematic diagram. Further, FIG. 9 is a diagram for explaining the second pressing step (second step) among the methods for producing the processed titanium material of the other embodiment, in which FIG. 9A is a schematic plan view and FIG. 9B is a plan view. Is a schematic side view. The second step is not an essential step.
  • a pressing body (round bar) 5 is arranged on the slab 1 as shown in FIG. After pushing in the thickness direction from the surface of 1 and unloading the load, the round bar 5 is moved in a certain direction (longitudinal direction of the slab 1 in FIG. 8), and the round bar 5 is similarly moved by the force F of the slab 1.
  • the step of pushing in from the surface toward the thickness direction is repeated to form a plurality of groove-shaped indentations 1c on the surface 1a of the slab 1.
  • such work is sometimes referred to as "pushing in while moving”.
  • a desired strain can be applied to the surface of the titanium material.
  • the pressing bodies 51, 52, and 53 shown in FIGS. 4 to 6 it is possible to repeat the steps of pushing, unloading, moving, and pushing.
  • FIG. 8 it is shown that the round bar 5 is moved in a certain direction, but the round bar 5 is moved in a certain direction and pushed in without being limited to such a form. After that, if a plurality of grooves are formed side by side on the surface of the titanium material 10 as a result of moving in the opposite direction and pushing in, there is no restriction on the moving direction.
  • the round bar 5 is pushed again by the force F from the groove formed for the first time in the thickness direction from the surface of the slab 1 as shown in FIG.
  • the round bar 5 is moved in a certain direction (the width direction of the slab 1 in FIG. 9), pushed in by the force F in the same manner, and the unloading step (second step) is repeated to repeat a plurality of grooves. 1b may be formed.
  • the pushing step may be repeated 3 times or 4 times, or the pushing step may be performed a plurality of times within the range where the material itself is not cracked. ..
  • the larger the number of times of pressing the higher the equivalent strain and the finer the structure, which is preferable.
  • the second pressing body has an arcuate pressing surface at a portion in contact with the surface of the titanium material 10, and the radius of curvature (mm) of the pressing surface is 2.5 mm or more in the second cross section orthogonal to the axial direction. It is 5 mm or less.
  • the reason is the same as the reason for limiting the radius of curvature to the first pressing body.
  • the pressing body that can be used as the second pressing body is not limited in its cross-sectional shape as long as it has an arc-shaped pressing surface at least in the portion in contact with the titanium material 10. This point is the same as that of the first pressing body.
  • the second step needs to satisfy the following equations (3) and (4).
  • ⁇ 2 is 50 °
  • R 2 is the radius of curvature of the second pressing surface of the second section (mm)
  • X 2 is the amount (mm) of the second pressing surface pushed into the titanium material.
  • Y 2 is a distance (mm) between adjacent pushing positions of the second pressing surface in a direction orthogonal to both the extending direction of the second pressing surface and the pushing direction of the second pressing body.
  • the pushing amount X 2 of the second pressing surface 51a into the titanium material 10 is the distance indicated by the sign X of FIG. 4B, similarly to the pushing amount X 1 of the first pressing body, and is the distance of the processed titanium material 1. It is the distance between the surface of the processed titanium material and the groove bottom in the thickness direction. Pressing amount X 2 is, for the same reason as the pressing amount X 1 of the first pressing member, the pressing amount X 1 is good to the 0.5mm or more, preferable lower limit is 1.0 mm. On the other hand, the pushing amount X 2 is set to R 2 ⁇ (1-cos ⁇ 2 ) or less for the same reason as the pushing amount X 1 of the first pressing body. Preferred upper limit is 0.29 ⁇ R 1.
  • the interval Y 2 is the distance indicated by the reference numeral Y in FIG. 4B, and is the direction in which the second pressing surface 51a extends and the pushing direction of the second pressing body 51, similarly to the interval Y 1 of the first pressing body. It is a distance between adjacent pushing positions of the second pressing surface 51a in a direction orthogonal to both. In this respect, in a cross section parallel to the second cross section of the manufactured processed titanium material 1, the distance between the groove bottom of the arbitrary second groove and the groove bottom of the other second groove adjacent to the arbitrary second groove. Matches with.
  • the interval Y 2 is preferably 1.0 mm or more for the same reason as the interval Y 1 of the first pressing body, and the preferable lower limit is 5.0 mm.
  • the second step because it already the first step is subjected to applied surface, there is no problem even as a range wider than the interval Y 1 of the first step.
  • the interval Y 2 should be 50.0 mm or less.
  • Interval Y 2 similar to the interval Y 1 of the first pressing member, (- 0.16R 1 2 + 4.4R 1) ⁇ (0.25X 1 +0.037) preferably less.
  • the second step when a plurality of grooves (second groove) extending in the same direction as the groove (first groove) formed in the first step is formed, the amount of strain, particularly the amount of strain near the surface layer. Becomes very small, and there is a risk that fine structure cannot be formed during hot rolling heating. Therefore, when the second step is carried out following the first step, it is preferable to carry out the pushing step so that a plurality of second grooves extending in a direction different from the direction in which the first groove extends are formed. That is, in the first step shown in FIG. 8, the round bar (first pressing body) 5 is moved in the longitudinal direction of the slab 1 so that the groove-shaped indentation (groove) 1c extends in the width direction of the slab 1.
  • the groove 1b extends in the longitudinal direction of the slab 1 while moving the round bar (second pressing body) 5 in the width direction of the slab 1 so as to be orthogonal to this. Push in so that it is present and formed.
  • strain equivalent strain
  • the angle formed by the direction in which the first groove extends and the direction in which the plurality of second grooves extend may be 90 °, but is not particularly limited as long as it exceeds 0 °. However, in order to stably apply sufficient strain to the surface layer, it is preferable that this angle is in the range of 30 ° to 90 °.
  • the method of forming the groove by using the pressing surface extending linearly has been mainly described above, but the present invention is not limited to such a form as long as the strain (equivalent strain) can be stably applied to the surface layer. .. That is, for example, as shown in FIG. 10, it is also possible to form a surface groove 10b in the titanium material 10 by using a pressing body whose pressing surface is bent in the middle. In this case, observe a cross section orthogonal to the extending direction of the pressing surface (cross section shown by an arrow in FIG. 10), and in the observed cross section, the first groove satisfies the above equations (1) and (2).
  • the action and effect of the present invention can be obtained when the second groove satisfies the above equations (3) and (4).
  • the plurality of grooves formed by the first step or the second step are preferably arranged side by side, but do not have to be parallel. In particular, there may be parts that are not parallel. Even in this case, in any observation cross section of the processed titanium material (cross section orthogonal to the direction in which the pressing surface extends), whether the first groove of the observed portion satisfies the above equations (1) and (2), or the first When the two steps are also carried out, the effects of the present invention can be obtained when the second groove of the observed portion satisfies the above equations (3) and (4).
  • a pressing body in which the pressing surfaces intersect in an X shape may be used. In either case, the first groove and the second groove may not be formed on the entire surface of the processed titanium material.
  • FIG. 11 shows No. 1 in the examples described later. 2 (push once, large diameter round bar), No. 18 (one push, small diameter round bar) and No.
  • the lognormal distribution of the crystal grain size of the recrystallized layer of 16 (pressed twice) is shown.
  • the horizontal axis of FIG. 11 shows the crystal grain size (natural logarithm ln), and the vertical axis shows the probability of occurrence (%).
  • the pushing process is performed once
  • a large-diameter round bar radius of curvature: 30 mm
  • the distribution width of the lognormal distribution is wide (the standard deviation ⁇ is large).
  • the crystal grain size is non-uniform.
  • the pushing step may be performed cold without heating the titanium material, or may be performed after heating the titanium material to a temperature range of 500 ° C. or lower.
  • the above heating temperature is acceptable up to 650 ° C. depending on the chemical composition.
  • strain is applied to the surface of the processed titanium material to be rolled, from cold to warm.
  • it is necessary to form a recrystallized structure to a certain depth.
  • it is difficult for strain to enter the inside of the titanium material, and in order to apply strain to a deep position on the surface layer, it is necessary to apply groove formation processing with a large load.
  • the ductility in the vicinity of the surface layer decreased due to the application of strain, and cracks occurred on the surface.
  • the pressing process is performed at a high temperature of more than 500 ° C.
  • the strain applied by the processing disappears immediately, and it may not be possible to recrystallize during subsequent heating.
  • the temperature exceeds 500 ° C.
  • an oxide film may be formed on the surface of the titanium material, and the oxide film may be pushed in during processing to cause surface defects, which may develop into surface defects during subsequent hot rolling. .. Therefore, depending on the chemical composition, up to 650 ° C. is acceptable, but it is preferable that the upper limit is 500 ° C.
  • the strength and ductility of the titanium material differ depending on the type of alloy, so it is not always necessary to carry out at a higher temperature.
  • twinning deformation which is one of the important deformation mechanisms of titanium
  • the ductility is lower than that at room temperature, and cracks are more likely to occur.
  • this twinning deformation hardly occurs even near room temperature, so ductility can be ensured by heating to 500 ° C. or lower.
  • the lower limit of the surface temperature of the titanium material in the pushing step is preferably 0 ° C.
  • the round bar is actually pushed into the surface of the titanium material and physically plastically deformed to form a groove.
  • strain can be stably introduced into the surface layer of the material regardless of the crystal orientation, so that fine crystal grains can be uniformly dispersed in the surface layer of the material.
  • efficient and sufficient strain can be introduced into the bottom of the groove, and the surface layer becomes fine due to heating during subsequent hot rolling. By forming recrystallization, the occurrence of surface defects can be suppressed.
  • the processed titanium material to which the present invention is applied significantly suppresses surface defects after hot rolling.
  • the present invention By applying the present invention to a rectangular parallelepiped or cylindrical ingot (solidified structure as cast), when hot rolling into a plate, strip coil or bar wire without going through a breakdown process such as slabbing rolling, , It has the effect of suppressing surface defects to a level where there is no problem.
  • the hot-rolled material produced by hot rolling has significantly suppressed surface defects. After that, even if it is cold-rolled, it has the effect of producing a sound product.
  • Example 1 A slab (titanium material) having the chemical composition shown in Table 1 and having a width of 1050 mm, a thickness of 250 mm and a length of 6000 mm was cast by an electron beam melting method (EBR) or a plasma arc melting method (PAM). The pushing step shown in Table 2 was carried out on the cast titanium material. No. In the examples shown in 6, 9, 13 and 16, the pressing body shown in FIG. 5 was used, and in the other examples, the pressing body of a round bar was used.
  • EBR electron beam melting method
  • PAM plasma arc melting method
  • the pressing body is pushed into the surface of the titanium material, the load is removed, and then the pressing body is moved and pushed into the surface of the titanium material at that position repeatedly. Therefore, a plurality of grooves were formed on the surface of the titanium material.
  • the "radius of curvature of the pressing surface” is the radius of curvature (mm) of the pressing surface of the pressing body
  • the “pushing amount” is the pushing amount (mm) of the pressing surface into the titanium material
  • the "interval” is.
  • the distance (mm) between adjacent pressing positions of the pressing surface in the direction orthogonal to both the extending direction of the pressing surface of the pressing body and the pressing direction of the pressing body, the "direction” is the groove formed by the first step. It means the angle formed by the direction in which the groove extends and the direction in which the groove formed by each step extends.
  • the groove angle of the processed titanium material which was subjected to plastic deformation as described above and formed a groove was measured.
  • the Vickers hardness of the processed titanium material was measured by the following procedure, and the hardness difference ⁇ HV was determined.
  • the cross section cut so as to include the grooved surface of the processed titanium material is mirror-polished, and the Vickers hardness tester is used at a depth of 3 mm from the groove bottom and a position of 1/2 thickness of the processed titanium material.
  • the hardness difference ( ⁇ HV) between the position 3 mm from the groove bottom and the 1/2 thick position portion was determined.
  • the average circle equivalent diameter and standard deviation of the recrystallized structure (recrystallized layer) in the range (surface layer) from the bottom of the groove to the depth of 3 mm after heating at 800 ° C. for 4 hours are measured by the following procedure. did.
  • the processed titanium material before hot rolling was heat-treated under the condition of heating in an Ar atmosphere at a temperature reached at 800 ° C. for 4 hours.
  • the cross section cut so as to include the grooved surface is chemically polished, and electron backscatter diffraction method; EBSD (Electron Back Scattering Diffraction Pattern) is used to perform 5 mm ⁇ .
  • EBSD Electro Back Scattering Diffraction Pattern
  • the "thickness (mm) of the recrystallized layer" in the table was measured as follows. First, among the processed titanium materials after the heat treatment, the thickness of the recrystallized layer was measured while observing the cross section cut so as to include the grooved surface using EBSD. At this time, a portion near the surface layer of the processed titanium material having a crystal grain size finer than the average crystal grain size at the position of 1/2 thickness of the processed titanium material is defined as a "recrystallized layer", and the thickness of the layer is defined as “recrystallization”. It was defined as "layer thickness" and measured.
  • the processed titanium material that was subjected to the above plastic deformation and formed a groove was inserted into a furnace at 820 ° C. and then heated for about 240 minutes to produce a 5 mm thick hot-rolled plate with a continuous hot rolling strip mill and used as a coil. I rolled it up.
  • the hot-rolled plate was shot-blasted, and a continuous pickling line made of nitre-hydrofluoric acid was passed through the plate to melt and grind about 50 ⁇ m per side. After that, both surfaces to be rolled were visually observed to evaluate the occurrence of surface defects. The results are shown in Table 3.
  • the "groove angle” is the angle (°) formed by the inner surface of the groove and the surface of the processed titanium material in the cross section orthogonal to the direction in which the groove extends, and the “hardness difference” is 3 mm from the bottom of the groove. It means the difference ( ⁇ Hv) between the Vickers hardness at the position and the Vickers hardness at the position of 1/2 of the thickness.
  • the evaluation of surface defects is 0 if the number of surface defects of 10 mm or more exceeds 0.3 per 1 m 2 on the rolled surface of the hot-rolled plate after passing through the continuous pickling line as a failure (evaluation D). .Three or less were accepted (evaluations A to C). The case where the number of surface defects was 0.05 or less per 1 m 2 was evaluated as A, the case of more than 0.05 and 0.2 or less was evaluated as B, and the case of more than 0.2 and 0.3 or less was evaluated as C.
  • the hardness difference ⁇ HV of the processed titanium material is sufficiently large, and the crystal grain size of the recrystallized layer is large. was sufficiently small and uniform. As a result, in these examples, the surface texture of the surface of the hot-rolled plate after hot rolling and pickling was good.
  • Example 2 A slab (titanium material) having the chemical composition shown in Table 4 and having a width of 1050 mm ⁇ a thickness of 250 mm ⁇ a length of 5500 mm was cast by an electron beam melting method (EBR).
  • EBR electron beam melting method
  • the pushing step shown in Table 5 was carried out on the cast titanium material.
  • a round bar pressing body was used.
  • the pressing body is pushed into the surface of the titanium material, the load is removed, and then the pressing body is moved and pushed into the surface of the titanium material at that position repeatedly. Therefore, a plurality of grooves were formed on the surface of the titanium material.
  • the meaning of each term in Table 5 is the same as that in Table 2.
  • Titanium material 1b, 2b, 3b ... Groove 5 ... Pressing body (round bar) 51, 52, 53, 54 ... Pressing body 51a, 52a, 53a, 54a ... Pressing surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Forging (AREA)
  • Metal Rolling (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

チタン素材1の表面に、所定方向に延びる円弧状の第一押圧面51aを有する第一押圧体51を押込む工程を備え、第一押圧面51aが延びる方向に直交する断面における第一押圧面51の曲率半径(mm)が2.5mm以上、17.5mm以下であり、下記(1)式および(2)式を満たす、加工チタン材の製造方法。得られた加工チタン材は、熱間圧延時に表面疵が発生しにくい。 0.5≦X≦R×(1-cosθ)(1) 1.0≦Y≦(-0.16R +4.4R)×(0.25X+0.037) (2) ただし、上記式において、 θは、50°であり、 Rは、前記第一断面における前記第一押圧面の曲率半径(mm)であり、 Xは、前記チタン素材への前記第一押圧面の押込み量(mm)であり、 Yは、前記第一押圧面が延びる方向および前記第一押圧体の押込み方向の両方に直交する方向における前記第一押圧面の隣り合う押込み位置間の距離(mm)である。

Description

加工チタン材及びその製造方法
 本発明は、加工チタン材及びその製造方法に関する。
 一般的なチタン熱間圧延用チタン材の製造方法は例えば次の通りである。まず、消耗電極式アーク溶解法(VAR :Vacuum arc remelting)や電子ビーム溶解法(EBR :Electron beam remelting)により、チタンを溶融させて凝固することでインゴットを製造する。次いで、インゴットを分塊や鍛造、圧延などの熱間加工によってブレークダウンして、スラブやビレットなどの熱間圧延用チタン材とする。また近年では、電子ビーム溶解法により直接熱延可能な矩形インゴットを製造することで、上述のブレークダウン工程を省略する技術も開発されている。
 しかし、工業的に用いられる大型インゴットは、凝固組織中に数十mmにもおよぶ粗大な結晶粒が存在する。このようなインゴットを、ブレークダウン工程を経ることなく直接熱間圧延すると、粗大な結晶粒に起因して不均質な変形が生じ、大きな表面疵に発達する場合がある。また、ブレークダウン工程等を経る場合でも、加工率が低かったり温度が適切でない場合には、鋳造組織が残存したり、逆に組織が粗大するなどして、熱延時に表面疵が発生してしまう場合がある。
 このように表面疵が発生してしまうと、その後の脱スケール工程での歩留まりが非常に悪くなることから、熱延表面疵の発生し難い熱間圧延用チタン材が求められている。
 特許文献1には、チタン材のインゴットを直接熱間加工する際に、表層付近の結晶粒を細粒化するために、表面層にひずみを付与した後、再結晶温度以上に加熱して表面から深さ2mm以上を再結晶させた後に、熱間加工する方法が提案されている。
 また、特許文献2および3には、先端形状が曲率半径3~30mmを有する鋼製工具或いは半径3~30mmの鋼製球を用いて、チタン材の表面を塑性変形させることによって、表層部に歪みが付与された熱間圧延用チタン材が記載されている。特許文献2および3によれば、このような熱間圧延用チタン材を熱間圧延することで、粗大な凝固組織の影響を無害化でき、表面疵を軽減できるとされている。
特開平1-156456号公報 国際公開第2010/090352号 特開2018-1249号公報
 特許文献1では、歪みを付与する手段として、鍛造、ロール圧下、ショットブラストが挙げられている。しかしながら、一般的なショットブラストは、ショット粒の直径が0.5~1mmと小さいために与えられる歪み量も小さい。また、鍛造やロール圧下では、いわゆるデットメタルが発生して、歪み量が少なくなったり、より内部に歪みが導入されてしまったりする。したがって、必要とされる再結晶層の厚みを確保できない場合や、細粒化が不十分となる場合がある。
 特許文献2および3では、鋼製工具で打撃するか押し付けるかして歪みを付与しているので、表面全体に安定して歪みを付与するには長時間を要する場合があり効率的でない。また、高強度材では、衝撃エネルギーが内部にまで伝わらず、必要とする細粒組織の厚みを確保できない場合もある。そのため、さらなる改善の余地があった。
 本発明は、上記事情に鑑みてなされたものであり、熱間圧延時に発生する表面疵を低減できる加工チタン材及びその製造方法を提供することを課題とする。
 上記課題を解決するための本発明の要旨は以下の通りである。
 チタン素材の表面に、複数の第一溝を形成する加工チタン材の製造方法であって、
 所定方向に延びる円弧状の第一押圧面を有する第一押圧体を前記チタン素材の表面に押込む、第一工程を備え、
 前記第一押圧面が延びる方向に直交する第一断面における前記第一押圧面の曲率半径が2.5mm以上、17.5mm以下であり、
 前記第一工程は、下記(1)式および(2)式を満たす、
 加工チタン材の製造方法。
0.5≦X≦R×(1-cosθ)(1)
1.0≦Y≦(-0.16R +4.4R)×(0.25X+0.037) (2)
 ただし、上記式において、
θは、50°であり、
は、前記第一断面における前記第一押圧面の曲率半径(mm)であり、
は、前記チタン素材への前記第一押圧面の押込み量(mm)であり、
は、前記第一押圧面が延びる方向および前記第一押圧体の押込み方向の両方に直交する方向における前記第一押圧面の隣り合う押込み位置間の距離(mm)である。
 本発明によれば、熱間圧延時の表面疵の発生を低減できる。
 また本発明によれば、インゴットのブレークダウン工程を省略した鋳造ままのチタン素材であっても、熱延時に発生する表面疵を安定的に軽微にすることができ、優れた熱延、冷延製品を提供することができる。
図1は、本発明の実施形態における加工チタン材の形状の例を示す斜視図である。 図2は、本発明の実施形態の加工チタン材上に配列された溝の形状を説明するための斜視図である。 図3は、本発明の実施形態の加工チタン材の溝が延びる方向に直交する断面を示す模式図である。 図4は、本発明の実施形態の加工チタン材の製造方法において用いられる押圧体を示す模式図である。(a)は斜視図を、(b)は押圧体の軸方向に直交する断面における押込み状況を示す模式図を示す。 図5は、本発明の他の実施形態の加工チタン材の製造方法において用いられる押圧体を示す模式図である。(a)は斜視図を、(b)は押圧体の軸方向に直交する断面における押込み状況を示す模式図を示す。 図6は、本発明の他の実施形態の加工チタン材の製造方法において用いられる押圧体を示す模式図である。(a)は斜視図を、(b)は押圧体の軸方向に直交する断面における押込み状況を示す模式図を示す。 図7は、本発明の他の実施形態の加工チタン材の製造方法において用いられる押圧体の斜視図である。 図8は、本発明の実施形態の加工チタン材の製造方法を説明する図であって、(a)は平面模式図であり、(b)は押圧体の軸方向に直交する断面を示す模式図である。 図9は、本発明の実施形態の加工チタン材の製造方法を説明する図であって、(a)は平面模式図であり、(b)は押圧体の軸方向に直交する断面を示す模式図である。 図10は、本発明の実施形態の加工チタン材の製造方法によって得られた加工チタン材の溝を示す平面模式図である。 図11は、実施例におけるNo.2、18および16の再結晶層の結晶粒径の対数正規分布を示す図である。
 本発明の実施形態について図面を用いて以下に説明する。
 本発明者らは、熱間圧延による表面欠陥を低減する観点から、結晶粒が数十mmにもおよぶインゴットの粗大な凝固組織を、さらにはブレークダウン後にも残存している当該凝固組織の影響を、無害化する方法とそれを適応した加工チタン材について、鋭意研究を重ねた結果、以下の知見を得、本発明に至った。
 粗大な凝固組織を細粒化するため、或いは凝固組織の影響が残存している部位を解消するためには、表面に溝(凹み)を設けて歪みを付与した後、熱間圧延時の加熱など所定の熱処理によって、再結晶させる方法が考えられる。
 本発明では、チタン素材の表面に、複数の第一溝が形成されるように、押圧体をチタン素材の表面に押込む、工程を備える。これによって、チタン素材表面に複数の溝を設けてひずみを付与する。この方法によって得られた加工チタン材は、熱間圧延時の表面欠陥が顕著に抑制できる。また、本発明では押圧体の押圧面を実際に押し込み、物理的に塑性変形させて溝を形成することで、結晶方位によらず、安定して歪みを導入することができる。また、押圧体の押込み工程を複数回行い、かつ各工程によって形成される溝が延びる方向が重ならないようにすることで、溝およびその周辺に効率的かつ十分な歪を導入することができ、その後の熱間圧延の際の加熱によって表層に微細な再結晶を形成させることで、表面疵の発生を抑制できる。
 以下、本実施形態の加工チタン材及びその製造方法について説明する。
 本実施形態の加工チタン材は、表面に複数の溝が形成されており、加工チタン材の厚み方向において、溝の底部から3mmの位置のビッカース硬さと、厚みの1/2の位置のビッカース硬さとの差ΔHVが、20以上である。差ΔHVが、20以上の加工チタン材は、800℃で4時間の熱処理を施した場合に、少なくとも溝の底部から深さ3.0mmまでの範囲に円相当平均粒径が1.00mm以下の結晶粒が形成され、結晶粒の円相当粒径の対数変換値についての標準偏差が1.00以下になるものである。つまり、本実施形態の加工チタン材は、熱間圧延の際の加熱によって表層の組織を微細化できるので、熱間加工時の表面疵の発生を抑制できる。このため、熱間圧延用チタン材に適している。
 本実施形態の加工チタン材は、溝が延びる方向に直交する断面における溝の内面と加工チタン材表面との成す角度が50°以下であることが好ましい。本実施形態の加工チタン材の製造方法において用いられるチタン素材は、工業用純チタンまたはチタン合金からなることが好ましい。本実施形態の加工チタン材の製造方法において用いられるチタン素材は、インゴット、スラブ、ブルームまたはビレットが例示される。
 図1に、本実施形態の加工チタン材の例を示す。本実施形態の加工チタン材は、図1(a)に示すようにスラブ1であってもよく、図1(b)に示すようにブルーム2であってもよく、図1(c)に示すように長手方向と垂直な断面が矩形であるビレット3であってもよい。また、前記断面が丸形であるビレットであってもよい。また、図1(a)のスラブ1、図1(b)のブルーム2および図1(c)ビレット3それぞれの表面1a、2a、3aに、直線状の複数の溝1b、2b、3bが形成されている。なお、当該溝1b、2b、3bの延在する方向は、図中では、スラブ1、ブルーム2、ビレット3それぞれの長手方向としているが、これに限定されるわけではなく、例えば、スラブ1、ブルーム2、ビレット3それぞれの幅方向であってもよく、またスラブ1、ブルーム2、ビレット3それぞれの幅方向から所定の傾きを持った方向に延在するよう形成されていてもよい。以下の説明では、スラブ1、ブルーム2、ビレット3それぞれの長手方向に沿って溝1b、2b、3bが形成されている例を用いて説明することとする。
 本実施形態の加工チタン材は、溝底から3mm深さ位置(図3における符号Sの線の位置)のビッカース硬さと、厚みの1/2深さ位置(図3における符号Mの線の位置)のビッカース硬さとの差ΔHVが、20以上である。なお、図3は、加工チタン材の溝が延びる方向に直交する断面を示す模式図である。
 なお、厚みの1/2深さ位置は、図1(a)または図1(b)に示すスラブまたはブルームでは、それぞれスラブ厚tまたはブルーム厚tの1/2t厚の位置である。また、図1(c)に示すアスペクト比1程度の矩形断面のビレットでは、ビレット断面の重心位置になる。
 熱間圧延時の表面疵を抑制するには、加工チタン材の結晶組織を微細化する必要がある。もちろん、加工チタン材全体の結晶組織を微細化しても表面疵の抑制は可能であるが、そのためには、素材全体に多量のひずみを付与する必要がある。また、必要に応じて熱間圧延前に幅方向に圧延する場合があるところ、鋳造ままのチタン素材に対する幅方向の圧下量が大きくなると、粗大鋳造組織に起因した皺が発生し、熱間圧延後に表面疵が発生する場合がある。
 このように、鋳造組織起因だけでなく、幅方向の圧延を大きくした際の皺に由来する表面疵を安定的に抑制するためには、少なくとも表層を再結晶組織にする必要がある。ここでいう表層とは、加工チタン材の溝底から深さ3mmの位置までの間の領域である。熱間圧延の加熱時に表層を再結晶組織にするためには、溝底1b、2b、3bから少なくとも3mm深さの位置(図3の符号Sの線の位置)までの領域にひずみが付与されている必要がある。種々解析の結果、溝底1b、2b、3bから深さ3mm位置までにおける相当ひずみが0.2以上であれば、熱間圧延の加熱時に再結晶が生じ、表層に微細組織ができることが本発明者らによって明らかにされている。この相当ひずみはビッカース硬さと関係があり、溝底1b、2b、3bから深さ3mm位置におけるビッカース硬さが、加工チタン材の1/2厚の位置におけるビッカース硬さに対して20以上大きければ、この相当ひずみ0.2以上を達成できることが判明している。加工チタン材の1/2厚の位置におけるビッカース硬さは、鋳造ままの硬さとほぼ同じであることから、ΔHVは、表層に0.2以上の相当ひずみが導入された場合の表層の硬度の上昇量に相当する。加工チタン材におけるΔHVが20以上であれば、表層に十分なひずみが導入されたものとなり、その後の加熱(熱間圧延の加熱)により、微細で粒径が揃った再結晶を形成できるようになる。このようにして得られた再結晶層の厚さは、3mm以上となり、熱間圧延時の表面疵を抑制することができる。再結晶層の厚さは3mm以上であれば十分であり、上限は特に定めないが、この厚さを大きくするためには、ひずみ導入のためのプレス荷重を大きくする必要がある。よって、プレス機の耐荷重の制約の観点から、再結晶層の厚さの実質的な上限は25mmである。
 ビッカース硬さの測定方法は、加工チタン材の溝を形成した表面を含むように切断した断面(溝が延びる方向に直交する断面)を鏡面研磨し、ビッカース硬さ試験機を用いて測定する。溝底から深さ3mm位置と、加工チタン材の1/2厚の位置とにおいて、荷重1kgで7点測定し、最大と最小硬さを除いた5点の平均を求める。そして、溝底から3mmの位置と、1/2厚の位置との硬度差(ΔHV)を求める。
 また、本実施形態の加工チタン材は、図1(a)のスラブ1、図1(b)のブルーム2及び図1(c)ビレット3ともに、その長手方向に沿うように直線状の複数の溝1b、2b、3bが配列されている。溝が延びる方向に直交する断面における溝1b、2b、3bの内面と表面1a、2a、3aとの成す角度(θ)が50°以下であることが好ましい。
 上述したようにチタン素材表層にひずみを付与したとしても、過度に大きな(溝内面の角度が急峻な)溝を生じると、溝形状に起因して熱延時に表面疵が発生するおそれがある。そのため、図2に示すように、溝1b、2b、3b溝が延びる方向に直交する断面における溝1b、2b、3bの内面と表面1a、2a、3aとの成す角度θを50°以下とすることが好ましい。これにより、溝の内側面の角度が急峻にならず、溝形状に起因した表面疵を防止することができる。より好ましくは、角度θは45°以下である。なお、角度θが小さいほど、特に溝形状に起因した表面疵は発生し難くなる。したがって、角度θの下限は特に指定しない。しかしながら、素材表層に十分にひずみを付与した上で、角度θを小さくしすぎると、それはすなわち押込み工程の回数を重ねて処理することを意味し、製造効率が著しく低下する。したがって、角度θは10°以上であることが好ましい。さらに好ましくは20°以上である。
 本実施形態の加工チタン材は、熱間圧延を模擬した例えば温度800℃で加熱時間4時間の熱処理を行った場合に、少なくとも溝の底部から深さ3.0mmまでの範囲に、円相当平均粒径が1.00mm以下の結晶粒組織が形成されるものであることが好ましい。また結晶粒の円相当粒径の対数変換値についての標準偏差σは1.00以下になることが好ましい。熱間圧延を模擬した熱処理によって形成される結晶粒は、比較的粒径の大きさが揃ったものとなる。
 熱間圧延用チタン材を熱間圧延する際に発生し得る表面疵は、結晶粒が大きいほど生じ易い。例えば、細粒部と粗粒部が混在する混粒組織の場合、粒径が大きな結晶粒が起点となって熱延疵が発生し易くなる。従って、熱間圧延を模擬した加熱を行った場合に、粒径が比較的小さく、かつ、粒径のばらつきが少ない多結晶粒組織が形成されるとよい。従って本実施形態の加工チタン材は、800℃で4時間の加熱によって、円相当粒径の対数変換値についての標準偏差σが1.00以下になる結晶粒組織が形成されるものがよい。金属材料の結晶粒径は対数正規分布に近い分布となるところ、対数正規分布の分布幅が狭いほど、結晶粒径が均一であり熱延時の表面疵が発生し難くなる。すなわち、結晶粒がある程度微細であり、かつ、対数正規分布の標準偏差がある一定値以下の範囲にあれば、均一組織となり、表面疵が発生し難くなる。
 各結晶粒の円相当粒径Dを自然対数LnDに変換した変換値の分布の標準偏差σが1.00以下であれば、円相当平均粒径が1.00mm以下である場合に、表面疵の発生が抑制されるようになる。標準偏差σはより好ましくは0.80以下である。結晶粒径の分布が狭いほど、すなわち、標準偏差σが小さいほど表面疵が発生し難いため、標準偏差の下限値は特に規定しない。
 平均結晶粒径については、平均粒径が10mm以上の鋳造組織よりも微細にすることが好ましい。本実施形態の加工チタン材は、800℃で加熱時間4時間の熱処理した後の溝底から深さ3.0mmまでの範囲の結晶粒の円相当平均粒径が、好ましくは1.00mm以下、より好ましくは0.80mm以下、さらに好ましくは0.70mm以下がよい。それ以上粗大であると上記の標準偏差σ内であっても熱延時の表面疵が発生する場合がある。円相当平均粒径は小さいほど表面疵が発生しないため、円相当平均粒径の下限値は特に規定しない。
 結晶粒径は熱延加熱時に粗大化する。調査した結果、800℃、4時間の熱処理後の結晶粒径が上記内にあれば、実機の熱延温度範囲でも表面疵を十分に低減できることが判明している。従って、結晶粒の円相当平均粒径及び標準偏差σの範囲は、表層にひずみを付与後、800℃、4時間の熱処理後のものとする。
 結晶粒径の測定方法は、加工チタン材のひずみを付与した表面を含むように切断した断面を化学研磨し、電子線後方散乱回折法;EBSD(Electron Back Scattering Diffraction Pattern)を用いて、5mm×5mmの領域をステップ5~20μmで2~10視野程度測定する。その後、結晶粒径についてはEBSDにより測定した結晶粒面積より円相当粒径(面積A=π×(粒径D/2))を求め、結晶粒径分布より対数正規分布における標準偏差σを算出する。
 チタン素材は、熱間圧延に供されるチタン鋳片であり、例えば次の(A)または(B)のようなインゴット、スラブ、ブルーム、ビレットなどがチタン素材として例示できる。すなわち、チタン素材には、既に熱間圧延または冷間圧延により所定の厚み未満に圧延されたチタン板は除かれる。よって、直方体や立方体のチタン素材の場合、その厚みは例えば100mm以上であり、円柱状のチタン素材の場合、その直径は例えば90mm以上であるものを対象とする。また、チタン素材(B)は、チタンを溶解して鋳造させたことによって得られる凝固組織からなり、結晶粒径が10mm以上である粗大粒が存在する鋳造ままの組織を有している。
(A)消耗電極式アーク溶解法(VAR : Vacuum arc remelting)や電子ビーム溶解法(EBR : Electron beam remelting)などにより、チタンを一旦溶融させてから凝固させて得たインゴットを、更に分塊や鍛造、圧延などの熱間加工によってブレークダウンして、スラブやビレットなどの形状に成形したチタン素材。
(B)電子ビーム溶解法またはプラズマアーク溶解法により、チタンを一旦溶融させてから凝固させる際に、直接熱延可能な大きさの矩形状や円柱状のインゴットとし、上記(A)のブレークダウン工程を省略して得られたチタン素材。
 電子ビーム溶製方法は、照射する電子ビームが偏光によりビームを集中できるため、鋳型と溶融チタンの間の狭い領域でも、熱を供給しやすく、それ故に鋳肌を良好に制御することができる。また、鋳型の断面形状の自由度が高い。そのため、上記(B)のような、直接熱間圧延に供することが可能なサイズの矩形や円柱形のインゴットは、電子ビーム溶解炉を用いて溶製することが好ましい。
 チタン素材は、工業用純チタンもしくはチタン合金からなることが好ましい。
 工業用純チタンは、JIS H4600規格の1種~4種、およびそれに対応するASTM 265B規格のGrade1~4、DIN 17850規格のGradeI(WL3.7025)、GradeII(WL3.7035)、GradeIII(WL3.7055)で規定される工業用純チタンを含むものとする。すなわち、本発明で対象とする工業用純チタンは、質量%で、C:0.1%以下、H:0.015%以下、O:0.4%以下、N:0.07%以下、Fe:0.5%以下、残部Tiからなる。以下、各元素の含有量についての「%」は「質量%」を意味する。
 一方、低合金やα型チタン合金は、必要とする用途において適切は合金を用いればよい。より好ましくは、実質的に合金成分が5%以下の低合金がよい。たとえば、Pd<0.15%や、Ru<0.10%、さらに希土類元素<0.02%を添加した高耐食性合金や、Cu、Al、Si、Sn、Nb、Feを合計で5%未満添加した耐熱合金などが例示できる。
 より具体的には、低合金として、例えば高耐食性合金(ASTM Grade 7、11、16、26、13、30、33あるいはこれらに対応するJIS品種や更に種々の元素を少量含有させたもの)、Ti-0.5Cu、Ti-1.0Cu、Ti-1.0Cu-0.5Nb、Ti-1.0Cu-1.0Sn-0.3Si-0.25Nb、Ti-0.5Al-0.45Si、Ti-0.9Al-0.35Siなどがある。またα型チタン合金としては、例えば、Ti-5Al-2.5Sn、Ti-6Al-2Sn-4Zr-2Mo、Ti-6Al-2.75Sn-4Zr-0.4Mo-0.45Siなどがある。
 α+β型チタン合金としては、例えば、Ti-6Al-4V、Ti-6Al-6V-2Sn、Ti-6Al-7V、Ti-3Al-2.5V、Ti-3Al-5V、Ti-5Al-2Sn-2Zr-4Mo-4Cr、Ti-6Al-2Sn-4Zr-6Mo、Ti-1Fe-0.35O、Ti-1.5Fe-0.5O、Ti-5Al-1Fe、Ti-5Al-1Fe-0.3Si、Ti-5Al-2Fe、Ti-5Al-2Fe-0.3Si、Ti-5Al-2Fe-3Mo、Ti-4.5Al-2Fe-2V-3Moなどがある。
 さらに、β型チタン合金としては、例えば、Ti-11.5Mo-6Zr-4.5Sn,Ti-8V-3Al-6Cr-4Mo-4Zr,Ti-10V-2Fe-3Mo,Ti-13V-11Cr-3Al,Ti-15V-3Al-3Cr-3Sn,Ti-6.8Mo-4.5Fe-1.5Al、Ti-20V-4Al-1Sn、Ti-22V-4Alなどがある。
 本発明に係るチタン合金は、例えば、O:0~0.5%、N:0~0.2%、C:0~2.0%、Al:0~8.0%、Sn:0~10.0%、Zr:0~20.0%、Mo:0~25.0%、Ta:0~5.0%、V:0~30.0%、Nb:0~40.0%、Si:0~2.0%、Fe:0~5.0%、Cr:0~10.0%、Cu:0~3.0%、Co:0~3.0%、Ni:0~2.0%、白金族元素:0~0.5%、希土類元素:0~0.5%、B:0~5.0%、および、Mn:0~10.0%から選択される1種以上を0%を超えて含有させることによって、加工チタン材の表面に目標とする機能を付与することができる。
 上記以外の元素でチタンに含有させることができる元素は、金属材料の一般常識として固溶強化、析出強化(固溶しない場合と析出物を形成させる場合がある)による強度向上などが期待できる元素である。これらの元素としては、原子番号で水素(1)からアスタチン(85)までの元素(但し、第18族元素である貴ガス元素を除く)が例示され、合計で5%程度まで許容される。
 上記以外の残部は、Tiおよび不純物である。不純物としては、目標特性を阻害しない範囲で含有することができ、その他の不純物は主に原料やスクラップから混入する不純物元素及び製造中に混入する元素があり、例としてC、N、O、Fe、H等が代表的な元素で、その他にMg、Cl等原料から混入する元素やSi、Al、S等製造中に混入する元素等がある。これらの元素は、2%程度以下であれば本願の目標特性を阻害しない範囲と考えられる。
 また、本発明に係るチタン合金は、例えば、O:0.01~0.5%、N:0.01~0.2%、C:0.01~2.0%、Al:0.1~8.0%、Sn:0.1~10.0%、Zr:0.5~20.0%、Mo:0.1~25.0%、Ta:0.1~5.0%、V:1.0~30.0%、Nb:0.1~40.0%、Si:0.1~2.0%、Fe:0.01~5.0%、Cr:0.1~10.0%、Cu:0.3~3.0%、Co:0.05~3.0%、Ni:0.05~2.0%、白金族元素:0.01~0.5%、希土類元素:0.001~0.5%、B:0.01~5.0%、および、Mn:0.1~10.0%、から選択される1種以上を含有してもよい。
 本発明に係るチタン合金は、O:0.02~0.4%、N:0.01~0.15%、C:0.01~1.0%、Al:0.2~6.0%、Sn:0.15~5.0%、Zr:0.5~10.0%、Mo:0.2~20.0%、Ta:0.1~3.0%、V:2.0~25.0%、Nb:0.15~5.0%、Si:0.1~1.0%、Fe:0.05~2.0%、Cr:0.2~5.0%、Cu:0.3~2.0%、Co:0.05~2.0%、Ni:0.1~1.0%、白金族元素:0.02~0.4%、希土類元素:0.001~0.3%、B:0.1~5.0%、および、Mn:0.2~8.0%、から選択される1種以上を含有するのがより好ましく、O:0.03~0.3%、N:0.01~0.1%、C:0.01~0.5%、Al:0.4~5.0%、Sn:0.2~3.0%、Zr:0.5~5.0%、Mo:0.5~15.0%、Ta:0.2~2.0%、V:5.0~20.0%、Nb:0.2~2.0%、Si:0.15~0.8%、Fe:0.1~1.0%、Cr:0.2~3.0%、Cu:0.3~1.5%、Co:0.1~1.0%、Ni:0.1~0.8%、白金族元素:0.03~0.2%、希土類元素:0.001~0.1%、B:0.2~3.0%、および、Mn:0.2~5.0%、から選択される1種以上を含有するのがさらに好ましい。
 ここで、白金族元素としては、具体的には、Ru、Rh、Pd、Os、IrおよびPtが挙げられ、これらのうち1種以上を含有させることができる。2種以上の白金族元素を含有させる場合、上記白金族元素の含有量は、白金族元素の総量を意味する。また、希土類元素(REM)としては、具体的にはSc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuが挙げられ、これらのうち1種以上を含有させることができる。2種以上の希土類元素を含有させる場合、例えば、ミッシュメタル(Mm)や、ジジム合金のような希土類元素の混合物や化合物を用いてもよい。また、2種以上の希土類元素を含有させる場合、上記希土類元素の含有量は、希土類元素の総量を意味する。
 次に、本実施形態の加工チタン材の製造方法を説明する。
 本実施形態の製造方法では、チタン素材の表面に、複数の第一溝が形成されるように、押圧体をチタン素材の表面に押込む工程を備える。一般に、インゴット等に対して鍛造や大径ロールでひずみを付与しようとした場合、型と接触する部分ではメタルフローを生じず、いわゆるデットメタルと呼ばれる部位が発生する。このデットメタル部はひずみ量が少なくなるため、鍛造や大径ロールでひずみを付与すると、表層部ではなく、より内部にひずみが導入されてしまい、表層部の組織を細粒にすることはできない。一方、特許文献2などに記載されているような、突起物を用いた打撃の衝撃エネルギーでひずみを付与する場合では、表層にひずみを付与することができるため、表層の組織を細粒にすることができる。しかしながら、このような方法では、表面全体に安定してひずみを付与するには多大な時間を要する場合がある。さらに、高強度材では、衝撃エネルギーが内部にまで伝わらず、必要とする細粒組織の厚みを確保できない場合もある。
 そこで、本発明者らは、デットメタルの発生を防ぎ、かつ、効率的にチタン素材表層にひずみを均一に付与することで、粗粒部を発生させない方法について検討し、下記の方法で処理すれば表層に効率的にひずみが付与可能であることを見出した。
 以下、本実施形態の加工チタン材の製造方法について詳述する。
 本実施形態の製造方法は、図4に示すように、チタン素材10の表面に、複数の第一溝を形成する加工チタン材の製造方法であって、所定方向に延びる円弧状の第一押圧面51aを有する第一押圧体51を前記チタン素材10の表面に押込む工程(第一工程)を備える。本実施形態は、丸棒(第一押圧面51aが延びる方向に直交する断面の形状が円である棒体)を用いる例を示している。
 第一押圧体51の押圧面51aは、第一押圧面51aが延びる方向に直交する断面において前記押圧面の曲率半径(mm)が2.5mm以上、17.5mm以下である。曲率半径が小さすぎると、深さ3mm位置での相当ひずみが小さくなる。また、処理時間が長くなる。このため、曲率半径は、2.5mm以上とする。好ましい下限は5.0mmである。一方、曲率半径が大きすぎると、デットメタル部が大きくなり、チタン素材表層に十分なひずみを付与することができず、深さ3mm位置での相当ひずみが小さくなる。このため、曲率半径は、17.5mm以下とする。好ましい上限は、15mmである。
 ここで、第一押圧体として用いることができる押圧体は、少なくともチタン素材10と接する部分に円弧状の押圧面を有するものであれば、その断面形状に制約はない。例えば、図4(a)に示す、断面形状が円である丸棒状の押圧体51のほか、例えば、第一押圧体として、図5(a)に示すように、下部(チタン素材10と接する部分)に所定方向に延びる円弧状の第一押圧面52aを備え、上部に立方体状(断面形状が矩形)の剛体を備える押圧体52を用いてもよい。このような形状の押圧体52は、特に、曲率半径が小さい棒体や長尺の棒体などの場合に有用である。つまり、上部にある矩形状の剛体を大きくすることにより断面係数を大きくして、棒体の剛性を高めることができるからである。また、第一押圧体としては、例えば、図6(a)に示すように、下部に複数の押圧面53aを備える押圧体53でもよい。このような形状の押圧体53によれば、押圧荷重が大きくなるというデメリットはあるものの、チタン素材10の表面に同時に複数の溝を形成することができるので、生産効率を高めることができる。なお、プレス機の耐荷重を大きくすること、上部の矩形状の剛体をさらに大きくすることなどにより、図7に示すように、下部にさらに多くの押圧面54aを備える、面状体の押圧体54を用いることが可能である。押圧体54を用いれば、押圧体を押し込む回数を少なくすることが可能となり、生産効率を向上させることができる。
 ここで、第一工程は、下記(1)式および(2)式を満たす必要がある。以下、主として、図4に示す押圧体を用いる場合を例にとって説明する。
0.5≦X≦R×(1-cosθ)(1)
1.0≦Y≦(-0.16R +4.4R)×(0.25X+0.037)(2)
 ただし、上記式において、
θは、50°であり、
は、前記第一断面における前記第一押圧面の曲率半径(mm)であり、
は、前記チタン素材への前記第一押圧面の押込み量(mm)であり、
は、前記第一押圧面が延びる方向および前記第一押圧体の押込み方向の両方に直交する方向における前記第一押圧面の隣り合う押込み位置間の距離(mm)である。
 チタン素材10への第一押圧面51aの押込み量Xは、図4(b)の符合Xで示される距離であり、チタン素材10の厚さ方向における、加工チタン材の表面と溝底との距離である。押込み量Xが小さすぎると、表面に十分なひずみを付与することができず、また、処理時間が長くなる。このため、押込み量Xは、0.5mm以上とする。好ましい下限は、1.0mmである。一方、押込み量Xが大きすぎると、図2において、溝1b、2b、3bの内面と表面1a、2a、3aとの成す角度θが大きくなりすぎて、被さり疵dなどの不具合を生じさせる。このため、押込み量Xは、 R×(1-cosθ)以下とする。好ましい上限は、0.29×Rである。
 インターバルYは、図4(b)の符号Yで示される距離であり、第一押圧面51aが延びる方向および第一押圧体51の押込み方向の両方に直交する方向における第一押圧面51aの隣り合う押込み位置間の距離である。この点、製造された加工チタン材1の第一断面に平行な断面において、任意の第一溝の溝底と、前記任意の第一溝に隣り合う他の第一溝の溝底との距離と一致する。インターバルYが小さすぎると、処理時間が長くなるため、1.0mm以上とする。好ましい下限は、5.0mmである。一方、インターバルYが大きすぎると、表層に十分なひずみを付与することができなくなる。このため、インターバルYは、(-0.16R +4.4R)×(0.25X+0.037) 以下とする。
 チタン素材がスラブ1やブルーム2である場合は、図1に示したようにチタン素材のうち最も面積が大きな面1a、2aが被圧延面になるので、その面に押圧体51を押込み、溝を形成すればよい。チタン素材がビレットの場合は、その長手方向に延びる全面が被圧延面になり得る。そのため、例えば、図3に示す断面が矩形のビレット3の場合は、その全面に溝を形成し、全表面にひずみを導入することが望ましい。
 以下、押圧体として丸棒を用いた処理方法について具体的に説明する。なお、以下の説明では、第一押圧体または更に第二押圧体として丸棒を用いて、図1(a)のスラブ1を製造する方法について例に挙げ説明する。図8は、本実施形態の加工チタン材の製造方法のうち、1回目の押込み工程(第一工程)を説明する図であって、(a)は平面模式図であり、(b)は側面模式図である。また図9は、他の実施形態の加工チタン材の製造方法のうち、2回目の押込み工程(第二工程)を説明する図であって、(a)は平面模式図であり、(b)は側面模式図である。なお、第二工程は、必須の工程ではない。
 丸棒を押込み、素材表面に溝状の圧痕を形成する方法としては、まず、図8のようにスラブ1上に押圧体(丸棒)5を配置し、力Fにて丸棒5をスラブ1の表面から厚み方向に向かって押込み、除荷した後、丸棒5を一定方向(図8ではスラブ1の長手方向)に移動させ、同じように力Fにて丸棒5をスラブ1の表面から厚み方向に向かって押込み、除荷する工程(第一工程)を繰り返して、スラブ1の表面1aに溝状の複数の圧痕1cを形成する。なお、本明細書では、このような作業を「移動させながら押し込む」ということがある。このような作業を行うことにより、チタン素材表面に所望のひずみを与えることができる。押込み回数には、制約はない。例えば、図4~図6に示される押圧体51、52、53を用いて、押込み、除荷、移動、押込みの工程を繰り返し行うことも可能である。また、図8に示す例では、丸棒5を一定の方向に移動することを示しているが、このような形態に限定されることなく、丸棒5を一定の方向に移動し、押し込んだ後、逆方向に移動して押し込むなど、結果として、チタン素材10の表面に複数の溝が並んで形成されておれば、移動方向に制約はない。ただし、丸棒5を一定の方向に移動する場合には生産効率が良い。さらに、図7に示されるように、下部にさらに多くの押圧面54aを備える、面状の押圧体54を用いることが可能である。このような面状の押圧体54を用いれば、押圧体を押し込む回数を少なくする(たとえば、1回とする)ことが可能となり、生産効率を向上させることができる。
 第一工程を表面1a全面に施した後には、引き続き、図9に示すように1回目に形成された溝上から再び丸棒5を力Fにてスラブ1の表面から厚み方向に向かって押込み、除荷した後、丸棒5を一定方向(図9ではスラブ1の幅方向)に移動させ、同じように力Fにて押込み、除荷する工程(第二工程)を繰り返して、複数の溝1bを形成させてもよい。本実施形態では押込み工程の回数を2回とした場合を説明しているが、例えば3回、4回と繰り返し行ってもよく、素材自体が割れない範囲で押込み工程を複数回行ってもよい。押込み回数が多いほど、相当ひずみは高くなり組織をより微細化することができるので好ましい。
 第二押圧体は、チタン素材10の表面に接する部分に円弧状の押圧面を有し、軸方向に直交する第二断面において前記押圧面の曲率半径(mm)が2.5mm以上、17.5mm以下である。その理由は、第一押圧体に曲率半径を制限した理由と同様である。また、第二押圧体として用いることができる押圧体は、少なくともチタン素材10と接する部分に円弧状の押圧面を有するものであれば、その断面形状に制約はない。この点、第一押圧体と同様である。 
 ここで、第二工程は、下記(3)式および(4)式を満たす必要がある。以下、主として、図4に示す押圧体を用いる場合を例にとって説明する。
0.5≦X≦R×(1-cosθ) (3)
1.0≦Y≦50.0 (4)
 ただし、上記式において、
θは、50°であり、
は、前記第二断面における前記第二押圧面の曲率半径(mm)であり、
は、前記チタン素材への前記第二押圧面の押込み量(mm)であり、
は、前記第二押圧面が延びる方向および前記第二押圧体の押込み方向の両方に直交する方向における前記第二押圧面の隣り合う押込み位置間の距離(mm)である。
 チタン素材10への第二押圧面51aの押込み量Xは、第一押圧体の押込み量Xと同様に、図4(b)の符合Xで示される距離であり、加工チタン材1の厚さ方向における、加工チタン材の表面と溝底との距離である。押込み量Xは、第一押圧体の押込み量Xと同様の理由から、押込み量Xは、0.5mm以上とするのがよく、好ましい下限は、1.0mmである。一方、押込み量Xは、第一押圧体の押込み量Xと同様の理由から、 R×(1-cosθ)以下とする。好ましい上限は、0.29×Rである。
 インターバルYは、図4(b)の符号Yで示される距離であり、第一押圧体のインターバルYと同様に、第二押圧面51aが延びる方向および第二押圧体51の押込み方向の両方に直交する方向における第二押圧面51aの隣り合う押込み位置間の距離である。この点、製造された加工チタン材1の第二断面に平行な断面において、任意の第二溝の溝底と、前記任意の第二溝に隣り合う他の第二溝の溝底との距離と一致する。インターバルYは、第一押圧体のインターバルYと同様の理由から、1.0mm以上とするのがよく、好ましい下限は、5.0mmである。第二工程は、既に第一工程が施された表面に施されるため、第一工程のインターバルYよりも広い範囲としても支障がない。しかし、表層に十分なひずみを付与するためには、インターバルYは、50.0mm以下とするのがよい。インターバルYは、第一押圧体のインターバルYと同様に、(-0.16R +4.4R)×(0.25X+0.037)以下とするのが好ましい。
 ここで、第二工程において、第一工程によって形成した溝(第一溝)が延びる方向と同じ方向に延びる複数の溝(第二溝)を形成した場合、ひずみ量、特に表層近傍のひずみ量が非常に小さくなり、熱延加熱時に微細組織を形成することができないおそれがある。そのため、第一工程に引き続き、第二工程を実施する場合には、第一溝が延びる方向とは異なる方向に延びる複数の第二溝が形成されるように、押込み工程を行うのがよい。すなわち、図8に示す第一工程では、溝状の圧痕(溝)1cがスラブ1幅方向に延在して形成されるよう丸棒(第一押圧体)5をスラブ1長手方向に移動させながら押し込んでいるが、図9に示す第二工程では、これとは直交するように丸棒(第二押圧体)5をスラブ1幅方向に移動させながら、スラブ1長手方向に溝1bが延在して形成されるように押し込む。このような手法で溝1bを形成することで、表層にひずみ(相当ひずみ)を安定して付与することができる。さらに、異なる方向からひずみが付与されることで熱延加熱時に集合組織が発達せずに、表面疵の発生を抑制することができる。なお、第一溝が延びる方向と複数の第二溝が延びる方向とが構成する角度は、図9に示すように、90°でもよいが、0°を超えておれば特に制約はない。ただし、表層に十分なひずみを安定して付与するためには、この角度を30°~90°の範囲とすることが好ましい。
 以上、主として、直線状に延びる押圧面を用いて溝を形成する方法について説明したが、表層にひずみ(相当ひずみ)を安定して付与することができるのであれば、このような形態に限定されない。すなわち、例えば、図10に示すように、押圧面が途中で折れ曲がった押圧体を用いて、チタン素材10に表面溝10bを形成することも可能である。この場合において、押圧面が延びる方向に直交する断面(図10中の矢視で示す断面)を観察し、観察断面において、第一溝が上記の(1)式および(2)式を満たしている場合、第二工程をも実施する場合には、第二溝が上記の(3)式および(4)式を満たしている場合には、本発明の作用効果が得られる。また、第一工程または第二工程により形成する複数の溝は、並んでいることが好ましいが、平行である必要はない。特に、平行ではない部分があってもよい。この場合でも、加工チタン材の任意の観察断面(押圧面が延びる方向に直交する断面)において、観察した部分の第一溝が上記の(1)式および(2)式を満たしているか、第二工程をも実施する場合には、観察した部分の第二溝が上記の(3)式および(4)式を満たしている場合には、本発明の作用効果が得られる。さらに、押圧面がX字状に交差しているような押圧体を用いてもよい。いずれの場合も、上記の第一溝および第二溝は、加工チタン材の全面に形成されていなくてもよい。
 図11に、後述する実施例におけるNo.2(押込み1回、大径丸棒)、No.18(押込み1回、小径丸棒)およびNo.16(押込み2回)の再結晶層の結晶粒径の対数正規分布を示す。図11の横軸は結晶粒径(自然対数ln)、縦軸は発生確率(%)を示す。図11からも明らかなように、押込み工程が1回の場合には、押圧体として大径丸棒(曲率半径:30mm)を用いると、対数正規分布の分布幅が広く(標準偏差σが大きく)、結晶粒径が不均一であることが分かる。一方、押込み工程が1回の場合でも、押圧体として小径丸棒(曲率半径:5mm)を用いると、対数正規分布の分布幅が狭く(標準偏差σが小さく)なり、結晶粒径が均一になることが分かる。さらに、押込み工程を2回行った場合、対数正規分布の分布幅がさらに狭く(標準偏差σが小さく)なり、結晶粒径がより均一となっていることが分かる。すなわち、曲率半径が小さい押圧面を備える押圧体で押し込み工程を行うこと、さらには、押込み工程を2回以上行うことで、表層近傍のひずみ量が非常に小さくなり、表層組織の微細化および均一化を図ることができ、結果、表面疵の発生を十分に低減することが可能となる。
 押込み工程は、チタン素材を加熱せずに冷間で行ってもよく、チタン素材を500℃以下の温度域に加熱した後に行ってもよい。上記の加熱温度は、化学組成によっては650℃まで許容できる。
 本実施形態では、加工チタン材の被圧延面になる表面に、冷間~温間でひずみを付与することとしている。熱間圧延時に発生する表面疵を低減するためには、ある程度の深さまでの再結晶組織を形成させる必要がある。特に高硬度のチタン素材では、ひずみがチタン素材の内部まで入り難く、表層の深い位置までひずみを付与するためには大きな荷重で溝形成の加工を付与する必要がある。しかしながら、ひずみが付与されたことにより表層近傍の延性が低下し、表面で割れが発生することが新たに明らかとなった。そのため、安定的に深い位置までひずみを付与すると共に、表層の延性を向上させるためには、ある程度温度を高くしてチタン素材自体の強度を低くすることも効果的である。一方で、強度が低いチタン素材では、表層にひずみを集中させた方が表層の組織を微細にすることできるため室温でひずみを付与した方がよい。
 一方、500℃超の高温で押込み工程を行うと、加工によって付与したひずみが即座に消失してしまい、その後の加熱時に再結晶させることができなくなる場合がある。また、500℃超ではチタン素材の表面に酸化被膜が形成される場合があり、その酸化被膜が加工時に押し込まれて表面欠陥が発生し、その後の熱間圧延時に表面疵に進展する恐れがある。このため、化学組成によっては650℃まで許容できるが、500℃を上限とすることが好ましい。
 また、チタン素材の強度及び延性は、合金種類によって高くなる温度域が異なるため、より高い温度で行えばよいというわけではない。例えば、工業用純チタンなどでは、室温近傍ではチタンの変形機構の重要な1つである双晶変形が活発に活動するが、400~500℃程度の温度ではこの双晶変形が発生しなくなるため、室温よりも延性が低下し、かえって割れが発生し易くなる。一方、Alを多く含む合金系ではこの双晶変形が室温近傍でも殆ど発生しないため、500℃以下に加熱にすることで延性を担保することが出来る。また、チタン素材を高温にし、極端に材料強度を弱くすると塑性変形させた際に表面の溝形状の起伏(溝の深さ)が大きくなり過ぎ、その起伏に起因して表面疵が発生してしまうおそれがある。従って、圧延後に表面に割れを発生させず、かつ、適切な再結晶組織や表面状態が得られるような温度範囲を選択すればよい。押込み工程におけるチタン素材の表面温度の下限は、0℃とすることが好ましい。
 以上説明したように、本実施形態の製造方法では、丸棒をチタン素材表面に実際に押し込み、物理的に塑性変形させて溝を形成する。その結果、結晶方位によらず、安定して素材表層に歪みを導入することができるため、素材表層部において、微細な結晶粒を均一に分散させることができる。その上、所定の条件で、丸棒の押込み工程を複数回行えば、溝の底部に効率的かつ十分な歪を導入することができ、その後の熱間圧延の際の加熱によって表層に微細な再結晶を形成させることで、表面疵の発生を抑制できる。
 本発明を適用した加工チタン材によって、熱間圧延後の表面欠陥は顕著に抑制される。直方体形状や円柱形のインゴット(鋳造ままの凝固組織)に本発明を適用することによって、分塊圧延などのブレークダウン工程を経ずとも、板や帯状コイルまたは棒線へ熱間圧延した際に、表面欠陥が問題ないレベルまで抑制できるという効果を奏でる。
 このように、本実施形態に従って製造された加工チタン材は、熱間圧延に好適に供されるのみならず、熱間圧延されて製造された熱延材は、表面欠陥が顕著に抑制されており、その後、冷間圧延を施しても健全な製品を製造できるという効果を奏するものである。
 以上説明したように、本実施形態によれば、インゴットのブレークダウン工程を省略した鋳造ままのチタン素材であっても、熱延時に発生する表面疵を軽微にすることができ、優れた熱延、冷延製品を提供することができる。
 また、本実施形態を、ブレークダウン工程を経たチタン素材に適用すると、熱間圧延時に生じる表面欠陥が極めて軽微なものとなる。その結果、熱間圧延した板や棒線の脱スケール工程や最終製品の歩留を、より高めることが可能になる。
 以下、本発明を実施例によってより詳細に説明する。
<実施例1>
 表1に示す化学組成を有し、1050mm幅×250mm厚×6000mm長のスラブ(チタン素材)を、電子ビーム溶解法(EBR)またはプラズマアーク溶解法(PAM)により鋳造した。鋳造されたチタン素材に対して、表2に示す押込み工程を実施した。No.6,9,13および16に示す例では、図5に示す押圧体を用い、その他の例では、いずれも丸棒の押圧体を用いた。第一工程~第四工程の各工程おいては、押圧体をチタン素材の表面に押込み、除荷し、その後、押圧体を移動させて、その位置でチタン素材の表面に押込む動作を繰り返して、チタン素材の表面に複数の溝を形成した。
 表2において、「押圧面の曲率半径」は、押圧体の押圧面の曲率半径(mm)を、「押込み量」は、チタン素材への押圧面の押込み量(mm)を、「インターバル」は、押圧体の押圧面が延びる方向および押圧体の押込み方向の両方に直交する方向における押圧面の隣り合う押込み位置間の距離(mm)を、「方向」は、第一工程によって形成された溝が延びる方向と、各工程によって形成された溝が延びる方向とが構成する角度をそれぞれ意味する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 次に、上記のように塑性変形を施し、溝を形成した加工チタン材の溝角度を測定した。加工チタン材のビッカース硬さについて以下の手順で測定し、硬度差ΔHVを求めた。
 まず、加工チタン材の溝を形成した表面を含むように切断した断面を鏡面研磨し、溝底から深さ3mm位置と、加工チタン材の1/2厚の位置とにおいて、ビッカース硬さ試験機を用い、荷重1kgで7点測定し、最大と最小硬さを除いた5点の平均を求めた。そして、溝底から3mmの位置と、1/2厚位置部との硬度差(ΔHV)を求めた。
 次に、800℃、4時間加熱後の、溝の底部から深さ3mmまでの範囲(表層)の再結晶組織(再結晶層)の平均円相当径及び標準偏差については、以下の手順で測定した。
 まず、熱間圧延前の加工チタン材を、Ar雰囲気中で800℃の到達温度で4時間加熱する条件で熱処理を行った。次に、熱処理後の加工チタン材のうち、溝を形成した表面を含むように切断した断面を化学研磨し、電子線後方散乱回折法;EBSD(Electron Back Scattering Diffraction Pattern)を用いて、5mm×5mmの領域をステップ5~20μmで2~10視野程度測定した。その後、結晶粒径についてEBSDにより測定した結晶粒面積Aより円相当粒径(面積A=π×(粒径D/2))を求め、結晶粒径分布より対数正規分布における標準偏差σを算出した。
 また、表中の「再結晶層の厚み(mm)」については、以下のように測定した。
 まず、上記熱処理後の加工チタン材のうち、溝を形成した表面を含むように切断した断面についてEBSDを用いて観察しながら、再結晶層の厚みを測定した。このとき、加工チタン材の1/2厚の位置の平均結晶粒径より細かい結晶粒径を有する加工チタン材表層付近の部位を「再結晶層」と定義し、その層の厚みを「再結晶層の厚み」と定義し測定した。
 次いで、上記塑性変形を施し、溝を形成した加工チタン材を820℃の炉に挿入後、約240分加熱し、連続熱間圧延ストリップミルにて5mm厚の熱延板を製造し、コイルに巻き取った。次に、熱延板にショットブラストを施し、更に、硝フッ酸からなる連続酸洗ラインを通板させて、片面あたり約50μmを溶削した。その後、両方の被圧延面を目視観察し、表面疵の発生状況を評価した。
 結果を表3に示す。表3において、「溝角度」は、溝が延びる方向に直交する断面において、溝の内面と加工チタン材の表面とがなす角度(°)を、[硬度差」は、溝の底部から3mmの位置のビッカース硬さと、厚みの1/2の位置のビッカース硬さとの差(ΔHv)をそれぞれ意味する。
 表面疵の評価は、連続酸洗ライン通過後の熱延板の被圧延面において、10mm以上の表面疵の数が1m当たり0.3個を超える場合を不合格(評価D)とし、0.3個以下を合格(評価A~C)とした。表面疵数が1m当たり0.05個以下の場合を評価Aとし、0.05個超0.2個以下を評価Bとし、0.2個超0.3個以下を評価Cとした。
Figure JPOXMLDOC01-appb-T000003
 表1~3に示すように、No.1は、押圧面の曲率半径が1.5mmと小さすぎたため、溝の内面と加工チタン材の表面とがなす溝角度が急峻になってしまい、熱間圧延および酸洗後の熱延板の表面に粗大な表面疵が多発した。
 No.2は、押圧面の曲率半径が30mmと大きかったため、十分な硬度差が得られなかった。その結果、再結晶層の結晶粒径が大きく、また、対数正規分布の分布幅が広く(標準偏差σが大きく)、結晶粒径が不均一であった(図11も併せて参照)。そのため、表面疵が多発した。
 No.3は、押圧面の曲率半径および押込量は適切であったが、インターバルが大きすぎたため、再結晶層の結晶粒径が大きく、また、対数正規分布の分布幅が広く(標準偏差σが大きく)、結晶粒径が不均一であった。そのため、表面疵が多発した。
 No.4は、押圧面の曲率半径およびインターバルは適切であったが、押込量が小さすぎて、十分な硬度差が得られなかった。その結果、再結晶層の結晶粒径が大きく、また、対数正規分布の分布幅が広く(標準偏差σが大きく)、結晶粒径が不均一であった。そのため、表面疵が多発した。
 一方、No.5~27は、少なくとも、第一工程における押圧面の曲率半径、押込量およびインターバルのいずれもが適切であり、加工チタン材の硬度差ΔHVが十分に大きく、また、再結晶層の結晶粒径を十分に小さく、かつ均一にすることができた。その結果、これらの例では、熱間圧延、酸洗後の熱延板の表面の表面性状が良好であった。
<実施例2>
 表4に示す化学組成を有し、1050mm幅×250mm厚×5500mm長のスラブ(チタン素材)を電子ビーム溶解法(EBR)により鋳造した。鋳造されたチタン素材に対して、表5に示す押込み工程を実施した。いずれの例でも丸棒の押圧体を用いた。第一工程および第二工程の各工程おいては、押圧体をチタン素材の表面に押込み、除荷し、その後、押圧体を移動させて、その位置でチタン素材の表面に押込む動作を繰り返して、チタン素材の表面に複数の溝を形成した。表5中の各用語の意味は、表2と同様である。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 硬度差ΔHV、結晶粒の円相当平均粒径、標準偏差、表面疵の評価は、<実施例1>の場合と同様に行った。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 No.28~36は、少なくとも、第一工程における押圧面の曲率半径、押込量およびインターバルのいずれもが適切であり、加工チタン材の硬度差ΔHVが十分に大きく、また、再結晶層の結晶粒径を十分に小さく、かつ均一にすることができた。その結果、これらの例では、熱間圧延、酸洗後の熱延板の表面の表面性状が良好であった。
1、2、3・・・加工チタン材(スラブ、ブルーム、ビレット)
10・・・チタン素材
1b、2b、3b・・・溝
5・・・押圧体(丸棒)
51,52,53,54・・・押圧体
51a,52a,53a,54a・・・押圧面
 

Claims (9)

  1.  チタン素材の表面に、複数の第一溝を形成する加工チタン材の製造方法であって、
     所定方向に延びる円弧状の第一押圧面を有する第一押圧体を前記チタン素材の表面に押込む、第一工程を備え、
     前記第一押圧面が延びる方向に直交する第一断面における前記第一押圧面の曲率半径が2.5mm以上、17.5mm以下であり、
     前記第一工程は、下記(1)式および(2)式を満たす、
     加工チタン材の製造方法。
    0.5≦X≦R×(1-cosθ)(1)
    1.0≦Y≦(-0.16R +4.4R)×(0.25X+0.037) (2)
     ただし、上記式において、
    θは、50°であり、
    は、前記第一断面における前記第一押圧面の曲率半径(mm)であり、
    は、前記チタン素材への前記第一押圧面の押込み量(mm)であり、
    は、前記第一押圧面が延びる方向および前記第一押圧体の押込み方向の両方に直交する方向における前記第一押圧面の隣り合う押込み位置間の距離(mm)である。
  2.  前記第一工程が、前記第一押圧体を前記チタン素材の表面に押込み、その後、前記第一押圧面の押込み位置が前記(2)式を満たすように、前記第一押圧体を移動させて押込む動作を繰り返す、
     請求項1に記載の加工チタン材の製造方法。
  3.  前記複数の第一溝を形成した前記チタン素材の表面に、前記第一溝が延びる方向とは異なる方向に延びる複数の第二溝を形成する加工チタン材の製造方法であって、
     所定方向に延びる円弧状の第二押圧面を有する第二押圧体を、前記複数の第一溝を形成した前記チタン素材の表面に押込む、第二工程を備え、
     前記第二押圧面が延びる方向に直交する第二断面における前記第二押圧面の曲率半径が2.5mm以上、17.5mm以下であり、
     前記第二工程は、下記(3)式および(4)式を満たす、
     請求項1または2に記載の加工チタン材の製造方法。
    0.5≦X≦R×(1-cosθ) (3)
    1.0≦Y≦50.0 (4)
     ただし、上記式において、
    θは、50°であり、
    は、前記第二断面における前記第二押圧面の曲率半径(mm)であり、
    は、前記チタン素材への前記第二押圧面の押込み量(mm)であり、
    は、前記第二押圧面が延びる方向および前記第二押圧体の押込み方向の両方に直交する方向における前記第二押圧面の隣り合う押込み位置間の距離(mm)である。
  4.  前記第二工程が、前記第二押圧体を前記チタン素材の表面に押込み、その後、前記第二押圧面の押込み位置が前記(4)式を満たすように、前記第二押圧体を移動させて押込む動作を繰り返す、
     請求項3に記載の加工チタン材の製造方法。
  5. 前記第一溝が延びる方向と前記第二溝が延びる方向とが構成する角度が、0°超90°以下である、
     請求項3または4に記載の加工チタン材の製造方法。
  6. 前記第一押圧体および前記第二押圧体が、同一または異なる、
     請求項3から5までのいずれかに記載の加工チタン材の製造方法。
  7.  前記第一工程および/または第二工程を、前記チタン素材の表面温度が0℃以上、500℃以下の温度で行う、
     請求項1から6までのいずれかに記載の加工チタン材の製造方法。
  8.  請求項1から7までのいずれかに記載の製造方法によって製造された加工チタン材であって、
     前記加工チタン材の厚み方向において、前記溝の溝底から深さ3mmの位置のビッカース硬さと、前記厚みの1/2の位置のビッカース硬さとの差ΔHVが、20以上である、
    加工チタン材。
  9.  800℃で4時間の熱処理を施した場合に、前記加工チタン材の厚み方向において、前記溝の溝底から深さ3.0mmまでの範囲に、円相当平均粒径が1.00mm以下の結晶粒が形成され、前記結晶粒の円相当粒径の対数変換値についての標準偏差が1.00以下となる、
     請求項8に記載の加工チタン材。

     
PCT/JP2020/001933 2020-01-21 2020-01-21 加工チタン材及びその製造方法 WO2021149153A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2020/001933 WO2021149153A1 (ja) 2020-01-21 2020-01-21 加工チタン材及びその製造方法
JP2020524914A JP6794586B1 (ja) 2020-01-21 2020-01-21 加工チタン材及びその製造方法
KR1020227028374A KR20220128425A (ko) 2020-01-21 2020-01-21 가공 티타늄재 및 그 제조 방법
CN202080094096.6A CN115003426A (zh) 2020-01-21 2020-01-21 加工钛材及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/001933 WO2021149153A1 (ja) 2020-01-21 2020-01-21 加工チタン材及びその製造方法

Publications (1)

Publication Number Publication Date
WO2021149153A1 true WO2021149153A1 (ja) 2021-07-29

Family

ID=73544791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001933 WO2021149153A1 (ja) 2020-01-21 2020-01-21 加工チタン材及びその製造方法

Country Status (4)

Country Link
JP (1) JP6794586B1 (ja)
KR (1) KR20220128425A (ja)
CN (1) CN115003426A (ja)
WO (1) WO2021149153A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276903A (ja) * 1996-04-10 1997-10-28 Nippon Steel Corp 曲げ加工時のゆがみが少ない建材用チタン薄板
JP2013076548A (ja) * 2011-09-16 2013-04-25 Kobe Steel Ltd 熱交換用プレートの元板材、及び熱交換用プレートの元板材の製造方法
JP2018001249A (ja) * 2016-07-06 2018-01-11 新日鐵住金株式会社 熱間圧延用チタン素材の製造方法
WO2020003784A1 (ja) * 2018-06-27 2020-01-02 東邦チタニウム株式会社 熱間圧延用チタン材の製造方法、および熱間圧延材の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01156456A (ja) 1987-12-11 1989-06-20 Nippon Steel Corp チタンインゴツトの熱間加工方法
EP2394752B1 (en) 2009-02-09 2018-04-04 Nippon Steel & Sumitomo Metal Corporation Titanium material for hot rolling and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09276903A (ja) * 1996-04-10 1997-10-28 Nippon Steel Corp 曲げ加工時のゆがみが少ない建材用チタン薄板
JP2013076548A (ja) * 2011-09-16 2013-04-25 Kobe Steel Ltd 熱交換用プレートの元板材、及び熱交換用プレートの元板材の製造方法
JP2018001249A (ja) * 2016-07-06 2018-01-11 新日鐵住金株式会社 熱間圧延用チタン素材の製造方法
WO2020003784A1 (ja) * 2018-06-27 2020-01-02 東邦チタニウム株式会社 熱間圧延用チタン材の製造方法、および熱間圧延材の製造方法

Also Published As

Publication number Publication date
KR20220128425A (ko) 2022-09-20
JP6794586B1 (ja) 2020-12-02
CN115003426A (zh) 2022-09-02
JPWO2021149153A1 (ja) 2021-07-29

Similar Documents

Publication Publication Date Title
US10913242B2 (en) Titanium material for hot rolling
EP2615186A1 (en) Titanium material
JP6709695B2 (ja) 熱間圧延用チタン素材の製造方法
KR101953043B1 (ko) 열간 압연용 공업용 순티타늄 주조편 및 그 제조 방법
WO2021149154A1 (ja) 加工チタン材の製造方法
JP6794586B1 (ja) 加工チタン材及びその製造方法
JP6939893B2 (ja) チタン熱間圧延板の製造方法
JP6794585B1 (ja) 熱間圧延用チタン材の製造方法
TWI744780B (zh) 加工鈦材及其製造方法
TWI732435B (zh) 加工鈦材的製造方法
JP4371201B2 (ja) β型チタン合金およびその製造方法
TWI741484B (zh) 加工鈦材的製造方法
JP3297010B2 (ja) nearβ型チタン合金コイルの製法
JP5098583B2 (ja) 化成処理性に優れた高加工性高強度冷延鋼板およびその製造方法
JP2004183079A (ja) チタン合金およびチタン合金材の製造方法
KR20170047339A (ko) 열간 압연용 티타늄 주조편 및 그 제조 방법
JP2016137502A (ja) α相を主とするチタン材の製造方法およびチタン製熱間圧延用素材
JP4305207B2 (ja) 微細フェライト組織を有する熱延鋼板の製造方法
Naizabekov et al. Evolution of the brass microstructure during rolling in relief and smooth rolls
RU2808020C1 (ru) Холоднокатаная полоса для изготовления коррозионно-стойких компонентов оборудования и способ ее получения
TWI796118B (zh) 鈦合金板及鈦合金捲材暨鈦合金板之製造方法及鈦合金捲材之製造方法
JPH0135915B2 (ja)
JP2023092454A (ja) チタン合金、チタン合金棒、チタン合金板及びエンジンバルブ
JP2020152941A (ja) 二相ステンレス鋼およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020524914

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915879

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915879

Country of ref document: EP

Kind code of ref document: A1