WO2021145330A1 - ポリウレタン又はポリウレタンウレア、抗血栓性コーティング剤、抗血栓性医療用具、及び製造方法 - Google Patents

ポリウレタン又はポリウレタンウレア、抗血栓性コーティング剤、抗血栓性医療用具、及び製造方法 Download PDF

Info

Publication number
WO2021145330A1
WO2021145330A1 PCT/JP2021/000773 JP2021000773W WO2021145330A1 WO 2021145330 A1 WO2021145330 A1 WO 2021145330A1 JP 2021000773 W JP2021000773 W JP 2021000773W WO 2021145330 A1 WO2021145330 A1 WO 2021145330A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane
polyurethane urea
urea
antithrombotic
particularly limited
Prior art date
Application number
PCT/JP2021/000773
Other languages
English (en)
French (fr)
Inventor
西村 卓真
聖人 西浦
Original Assignee
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一工業製薬株式会社 filed Critical 第一工業製薬株式会社
Priority to CN202180008956.4A priority Critical patent/CN114938650B/zh
Priority to EP21741074.5A priority patent/EP4091644A4/en
Priority to US17/758,586 priority patent/US20230100493A1/en
Priority to KR1020227022755A priority patent/KR20220131230A/ko
Publication of WO2021145330A1 publication Critical patent/WO2021145330A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/06Use of macromolecular materials
    • A61L33/068Use of macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/69Polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/82Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers
    • C08G18/836Chemically modified polymers by phosphorus containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the present invention relates to polyurethane or polyurethane urea, an antithrombotic coating agent, an antithrombotic medical device, and a manufacturing method.
  • polyurethane or polyurethane urea as a material used for medical instruments such as artificial kidneys, artificial lungs, syringes, and blood bags (for example, Patent Document 1). It is desirable that the materials used in these medical devices do not coagulate when in contact with blood. In other words, the materials used in these medical devices preferably have excellent antithrombotic properties.
  • Patent Document 1 describes polyurethane or polyurethane urea having a phosphorylcholine structure in the side chain as a material used for medical instruments in order to improve antithrombotic properties.
  • Patent Document 1 the polyurethane or polyurethane urea described in Patent Document 1 does not have sufficient antithrombotic properties, and there is room for improvement.
  • the present invention has been made to solve the above problems, and can be realized as the following forms.
  • polyurethane or polyurethane urea is provided.
  • the polyurethane or polyurethane urea is characterized by having a graft chain containing a structure represented by the general formula (1).
  • R 1 and R 2 are an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms, and may be the same or different from each other. good.
  • phosphorus derived from the structure represented by the general formula (1) may be contained in an amount of 2.0 mmol or more and 10.0 mmol or less with respect to 1.0 g of the polymer.
  • polyurethane or polyurethane urea it is possible to exhibit excellent antithrombotic properties and excellent mechanical strength.
  • the R 1 and the R 2 may be alkyl groups having 1 to 20 carbon atoms, and may be the same or different from each other.
  • an antithrombotic coating agent containing the above-mentioned form of polyurethane or polyurethane urea is provided.
  • antithrombotic coating agent excellent antithrombotic property can be exhibited.
  • an antithrombotic medical device comprising the above-mentioned form of polyurethane or polyurethane urea.
  • antithrombotic medical device excellent antithrombotic property can be exhibited.
  • a method for producing polyurethane or polyurethane urea in the above-mentioned embodiment ionizing radiation is applied to the surface of the polyurethane or the polyurethane urea in a state where a compound having a structure represented by the general formula (1) and a functional group that reacts with radicals is brought into contact with the polyurethane or the polyurethane urea.
  • ionizing radiation is applied to the surface of the polyurethane or the polyurethane urea in a state where a compound having a structure represented by the general formula (1) and a functional group that reacts with radicals is brought into contact with the polyurethane or the polyurethane urea.
  • polyurethane or polyurethane urea exhibiting excellent antithrombotic properties can be produced.
  • a method for producing polyurethane or polyurethane urea in the above-mentioned embodiment a step of irradiating the surface of polyurethane or polyurethane urea with ionizing radiation to generate radicals, and a compound having a structure represented by the general formula (1) and a functional group that reacts with radicals are subjected to the surface. Includes the step of forming a radical chain by contacting with.
  • polyurethane or polyurethane urea exhibiting excellent antithrombotic properties can be produced.
  • polyurethane or polyurethane urea has a graft chain containing a structure represented by the following general formula (1).
  • polyurethane and polyurea are collectively referred to as “polyurethanes”.
  • structure represented by the general formula (1) is also referred to as a "choline hydrogen phosphate structure”.
  • R 1 and R 2 are an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 12 carbon atoms, or an aralkyl group having 7 to 20 carbon atoms, and are the same as each other. May also be different.
  • the polyurethanes of this embodiment have excellent antithrombotic properties.
  • antithrombotic refers to the property that blood does not easily coagulate when in contact with blood.
  • the mechanism by which the polyurethanes of the present embodiment are excellent in antithrombotic properties is not clear, but the following estimation mechanism can be considered. That is, the choline hydrogen phosphate structure is similar to phosphatidylcholine that forms a biological membrane, and is characterized by having a hydroxy group derived from a phosphate group at the end, unlike a phosphorylcholine group. It is considered that the polyurethanes of the present embodiment can exhibit excellent antithrombotic properties as a result of enhancing the interaction with water in the living body by having a hydroxy group derived from a phosphoric acid group at the terminal.
  • the polyurethanes of the present embodiment have a graft chain containing a choline hydrogen phosphate structure. That is, it has a choline hydrogen phosphate structure in the side chain of the resin composition.
  • a graft chain containing a choline hydrogen phosphate structure in the side chain of the resin composition.
  • the main chain of a polymer since the main chain of a polymer is entangled, when a functional group exhibiting performance is present in the main chain, it is difficult to sufficiently exhibit the performance of the functional group.
  • a functional group exhibiting performance is present in the side chain, it is considered that the performance of this functional group is sufficiently exerted because it is not suppressed by the main chain.
  • the polyurethanes of the present embodiment have a graft chain containing a choline hydrogen phosphate structure, they can sufficiently exert the biocompatibility of the hydroxy group derived from the phosphate group, and thus can exhibit excellent antithrombotic properties. it is conceivable that.
  • R 1 and R 2 are preferably an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 12 carbon atoms, and are an alkyl group having 1 to 20 carbon atoms. It is more preferable, an alkyl group having 1 to 10 carbon atoms is further preferable, and an alkyl group having 1 to 5 carbon atoms is even more preferable.
  • the phosphorus content derived from the choline hydrogen phosphate structure is preferably 0.03 mmol or more and 20.0 mmol or less, and 0.1 mmol or more and 10.0 mmol or less with respect to 1.0 g of the polyurethane of the present embodiment. More preferably, it is more preferably 2.0 mmol or more and 10.0 mmol or less. By setting it in a preferable range, it is possible to exhibit excellent antithrombotic properties and excellent mechanical strength.
  • the polyol used for the polyurethanes of the present embodiment is not particularly limited, but for example, known ones can be used.
  • the polyol include a hydroxyl group-containing conjugated diene polymer and its hydrogen additive, castor oil, castor oil polyol and its hydrogen additive, a polyether polyol, a polyester polyol, a polycaprolactone polyol, and a polycarbonate polyol.
  • the "castor oil polyol” is a modified castor oil and indicates a polyol having a hydroxyl group at the end.
  • the hydroxyl group-containing conjugated diene polymer and its hydrogenated product are not particularly limited, and examples thereof include a hydroxyl group-containing conjugated diene polymer such as polybutadiene polyol and polyisoprene polyol, and a hydrogenated product obtained by adding hydrogen to these.
  • the castor oil polyol and its hydrogenated additive are not particularly limited, and examples thereof include castor oil or castor oil-modified polyol using castor oil fatty acid as a raw material, and hydrogenated compounds thereof.
  • Such transesterification polyols are not particularly limited, but are, for example, transesterification products of transesterification oil and fats and oils other than perilla oil, transesterification products of transesterification oil and fat and oil fatty acids, and transesterification products of perilla oil and polyhydric alcohols.
  • Transesterification reaction product with transesterification reaction product with, esterification reaction product with castor oil fatty acid and polyhydric alcohol, esterification reaction product with some hydroxyl groups contained in castor oil and monocarboxylic acid such as acetic acid, and alkylene oxide is added to these.
  • esterification reaction product with some hydroxyl groups contained in castor oil and monocarboxylic acid such as acetic acid, and alkylene oxide examples thereof include polymerized reactants and hydrogenated products obtained by adding hydrogen to them.
  • the polyether polyol is not particularly limited, and examples thereof include those obtained by addition polymerization of an alkylene oxide to a polyhydric alcohol.
  • the polyester polyol is not particularly limited, and examples thereof include an esterification reaction product of a polyhydric alcohol and a polyvalent carboxylic acid.
  • the polycaprolactone polyol is not particularly limited, and examples thereof include ring-opening polymerization of caprolactone.
  • the polycarbonate polyol is not particularly limited, and examples thereof include reaction products of a polyhydric alcohol and a carbonic acid derivative such as diphenyl carbonate, dimethyl carbonate and phosgene.
  • polyether polyol obtained by addition-polymerizing an alkylene oxide having 3 or more carbon atoms to a polyhydric alcohol, a hydroxyl group-containing conjugated diene polymer and its hydrogenated product, a polyhydric alcohol having 4 or more carbon atoms and 5 or more carbon atoms.
  • Polypolypolyol which is an esterification reaction product with a polyvalent carboxylic acid, and polytetramethylene glycol are preferable, and esterification of a polybutadiene polyol and a polyhydric alcohol having 4 or more carbon atoms and a polyvalent carboxylic acid having 5 or more carbon atoms.
  • the reaction product, a polyester polyol, is more preferable.
  • the polyol may be used alone or in combination of two or more.
  • the hydroxyl value of the polyol is not particularly limited, but is preferably 10 mgKOH / g or more and 200 mgKOH / g or less, more preferably 20 mgKOH / g or more and 150 mgKOH / g or less, and further preferably 30 mgKOH / g or more and 120 mgKOH / g or less.
  • the hydroxyl value is the number of milligrams (mg) of potassium hydroxide required to neutralize acetic acid bonded to the hydroxyl group when acetylating 1 g of the sample, and is in accordance with JIS K 0070-1992. It is to be measured.
  • the average molecular weight of the polyol is not particularly limited, but is preferably 500 or more and 5000 or less, and more preferably 800 or more and 4000 or less.
  • the polyisocyanate used for the polyurethanes of the present embodiment is not particularly limited, but for example, known ones can be used.
  • Examples of the polyisocyanate include aliphatic polyisocyanates, alicyclic polyisocyanates, aromatic polyisocyanates, and aromatic aliphatic polyisocyanates.
  • the aliphatic polyisocyanate is not particularly limited, but for example, tetramethylene diisocyanate, dodecamethylene diisocyanate, hexamethylene diisocyanate (hereinafter, also referred to as “HDI”), 2,2,4-trimethylhexamethylene diisocyanate, 2,4.
  • HDI hexamethylene diisocyanate
  • 2,2,4-trimethylhexamethylene diisocyanate 2,4,4-trimethylhexamethylene diisocyanate
  • Examples thereof include 4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2-methylpentane-1,5-diisocyanate, 3-methylpentane-1,5-diisocyanate and the like.
  • the alicyclic polyisocyanate is not particularly limited, and is, for example, isophorone diisocyanate, hydrogenated xylylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 1,4-cyclohexanediisocyanate, methylcyclohexylene diisocyanate, 1,3-bis. (Isocyanate methyl) cyclohexane and the like can be mentioned.
  • the aromatic polyisocyanate is not particularly limited, but for example, tolylene diisocyanate, 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate (hereinafter, also referred to as "MDI").
  • MDI 4,4'-diphenylmethane diisocyanate
  • the aromatic aliphatic polyisocyanate is not particularly limited, but for example, xylylene diisocyanate (hereinafter, also referred to as “XDI”), dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, ⁇ , ⁇ , ⁇ , ⁇ -tetramethylxylylene diisocyanate. And so on.
  • XDI xylylene diisocyanate
  • dialkyldiphenylmethane diisocyanate dialkyldiphenylmethane diisocyanate
  • tetraalkyldiphenylmethane diisocyanate ⁇ , ⁇ , ⁇ , ⁇ -tetramethylxylylene diisocyanate.
  • the above-mentioned modified product of the organic polyisocyanate may be used.
  • the modified form of the organic polyisocyanate is not particularly limited, and examples thereof include a carbodiimide form, an alohanate form, a burette form, an isocyanurate form, and an adduct form.
  • the polyisocyanate may be used alone or in combination of two or more.
  • hexamethylene diisocyanate HDI
  • MDI 4,4'-diphenylmethane diisocyanate
  • Hexamethylene diisocyanate is more preferable from the viewpoint of generating various radicals.
  • NCOindex the equivalent ratio (NCO group / OH group, hereinafter referred to as "NCOindex" of the isocyanate group (NCO group) of the polyisocyanate and the hydroxyl group (OH group) of the polyol and the hydroxyl group (OH group) of the chain extender and the cross-linking agent.
  • NCOindex the equivalent ratio of the isocyanate group (NCO group) of the polyisocyanate and the hydroxyl group (OH group) of the polyol and the hydroxyl group (OH group) of the chain extender and the cross-linking agent.
  • the free isocyanate group content of the polyisocyanate is not particularly limited, but is preferably 20% by mass or more and 70% by mass or less, more preferably 25% by mass or more and 65% by mass or less, and 30% by mass or more and 60% by mass or less. Is even more preferable. By setting it within a preferable range, the moldability is excellent.
  • the average molecular weight of the polyisocyanate is not particularly limited, but is preferably 100 or more and 400 or less, and more preferably 150 or more and 300 or less.
  • Urethanes include polyurethane urea.
  • polyurethane urea refers to a polyurethane having a urea bond formed by a chemical reaction between polyisocyanate and polyamine.
  • the polyamine used for the polyurethane urea is not particularly limited, but for example, ethylenediamine, propylenediamine, hexylylenediamine, isophoronediamine, xylylenediamine, piperazine, diphenylmethanediamine, ethylylenediamine, diethylenetriamine, dipropylenetriamine, triethylenetetramine. , Tetraethylenepentamine, polyetheramine and the like.
  • the polyamine used for polyurethane urea include aromatic diamines such as diethyltoluenediamine.
  • the chain extender is not particularly limited, but for example, ethylene glycol, diethylene glycol, 1,4-butanediol, 1,3-butanediol, 2,3-butanediol, 1,3-propylene glycol, 1,2- Examples thereof include propylene glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, neopentyl glycol and the like.
  • the cross-linking agent is not particularly limited, and examples thereof include aminoplast compounds, epoxy compounds, carbodiimide compounds, glycerin, and trimethylolpropane.
  • the catalyst is not particularly limited, and examples thereof include a metal catalyst and an amine-based catalyst.
  • the metal catalyst is not particularly limited, but for example, a tin catalyst such as dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctate, a lead catalyst such as lead octylate, lead octate, lead naphthenate, bismuth octylate, neodecanoic acid Examples thereof include bismuth catalysts such as bismuth acid.
  • the amine-based catalyst is not particularly limited, and examples thereof include tertiary amine compounds such as triethylenediamine.
  • the method for producing polyurethanes is not particularly limited, and polyurethanes can be produced by a known method. At that time, all the raw materials of polyurethanes may be reacted at the same time. For example, after reacting a part of the raw materials, the remaining raw materials may be reacted with the obtained product.
  • the method of providing the graft chain on the polyurethane is not particularly limited, and the polyurethane can be produced by a known method. Examples of the method of providing the graft chain on the polyurethane include a method of immersing the polyurethane in a solution containing the graft monomer for a predetermined time.
  • a method for producing polyurethanes for example, a compound having a choline hydrogen phosphate structure and a functional group that reacts with radicals is brought into contact with the polyurethanes, and the surface of the polyurethanes is irradiated with ionizing radiation to generate radicals.
  • ionizing radiation is not particularly limited, and examples thereof include an electron beam.
  • a step of irradiating the surface of polyurethanes with ionizing radiation to generate radicals a compound having a choline hydrogen phosphate structure and a functional group that reacts with radicals are used on the surface.
  • a step and manufacturing method of forming a radical chain by contacting with examples of the step and manufacturing method of forming a radical chain by contacting with.
  • the molecular weight of the polyurethanes is not particularly limited, and for example, the weight average molecular weight is preferably 5000 to 500,000, and more preferably 10,000 to 300,000.
  • the weight average molecular weight is measured by a GPC apparatus using tetrahydrofuran (THF) as a solvent, and is obtained as a polystyrene-equivalent value.
  • THF tetrahydrofuran
  • the specific measurement conditions are as follows. Column: Polystyrene gel column manufactured by Tosoh Co., Ltd.
  • the polyurethanes of the present embodiment have excellent biocompatibility, can stably exhibit antithrombotic performance for a long period of time, and in particular, various medical instruments that require blood compatibility. It can be effectively used as a material for medical devices such as devices, or as an antithrombotic coating agent for these medical devices.
  • medical instruments, devices and the like having blood compatibility and capable of stably exhibiting excellent antithrombotic performance can be obtained.
  • Medical devices such as medical devices and devices provided with the polyurethanes of the present embodiment are not particularly limited, but for example, blood dialysis membranes, plasma separation membranes, adsorbents for blood waste products, membrane materials for artificial lungs ( Blood and oxygen bulkheads), seat lung seat materials in heart-lung machines, aortic balloons, blood bags, catheters, cannulas, shunts, blood circuits, stents and the like.
  • an antithrombotic coating agent containing polyurethanes of the present embodiment When used as an antithrombotic coating agent containing polyurethanes of the present embodiment, for example, after dissolving polyurethanes in an organic solvent, it is applied to the object to be treated by an appropriate method such as a coating method, a spray method, or a dip method. Examples include the method of application.
  • the organic solvent is not particularly limited, and is, for example, tetrahydrofuran (THF), hexamethylphosphoric acid triamide (HMPA), N-methyl-2-pyrrolidone (NMP), monomethylformamide (NMF), N, N-dimethylformamide (N, N-dimethylformamide).
  • the antithrombotic coating agent may contain, if necessary, a polymer material conventionally used as a material for various medical devices that require blood compatibility. good.
  • the polymer material is not particularly limited, and examples thereof include polyurethane, polyvinyl chloride, polyester, polypropylene, and polyethylene.
  • the concentration of polyurethanes in the antithrombotic coating agent is not particularly limited, and can be appropriately determined within a range soluble in an organic solvent according to the type of polyurethanes used.
  • the content ratio of the polyurethanes of the present embodiment is 100% by mass, which is the total amount of the polyurethanes of the present embodiment and the other polymers. In this case, it is preferably 1 to 99% by mass, and more preferably 5 to 80% by mass.
  • the organic solvent is removed to form a coating layer made of the polyurethanes of the present embodiment.
  • the method for removing the organic solvent is not particularly limited, but as a preferable method, for example, it is heated and dried at about 20 to 100 ° C. for about 0.1 to 180 minutes in an atmosphere of an inert gas such as nitrogen, argon or helium. After that, a method of drying under reduced pressure at about 20 to 100 ° C. for about 0.1 to 36 hours can be mentioned.
  • the thickness of the coating layer to be formed is not particularly limited, but can be usually about 0.1 to 100 ⁇ m, preferably about 0.5 to 70 ⁇ m.
  • the thickness of the coating layer can be easily adjusted by the polymer concentration in the coating composition and the number of coatings.
  • the material of the medical device forming the coating layer is not particularly limited, but generally, the polymer material conventionally used as the material of the medical device described above is used.
  • the polyurethanes of the present embodiment When the polyurethanes of the present embodiment are used as a material for medical devices, the polyurethanes of the present embodiment may be used alone, or the above-mentioned blood compatibility is required depending on the required physical properties and the like. It may be mixed with a polymer material used as a material for medical devices. When mixed and used, the content ratio of the polyurethanes of the present embodiment is usually 1 to 60% by mass when the total amount of the polyurethanes of the present embodiment and other polymers is 100% by mass. It may be 5 to 50% by mass. In order to obtain a medical device using the polyurethanes of the present embodiment as a material, it can be produced by a conventionally known method according to each object.
  • Example 1 a predetermined amount of Duranate 50MS as a polyisocyanate and NISSO-PBG-1000 as a polyol are mixed in a four-necked flask equipped with a stirrer, a reflux condenser, a thermometer and a nitrogen blowing tube, and at 80 ° C. The mixture was stirred for 2 hours to obtain a primary reaction product. Next, the primary reaction product was mixed with a predetermined amount of 1,4-butanediol and Neostan U-810, compressed by heating with a hot press, and cured at 80 ° C. for 24 hours to obtain a polyurethane film (thickness 100 ⁇ m). ) was obtained. Later, the mass of the polyurethane film was measured in order to calculate the amount of monomer grafted.
  • one surface of the polyurethane film was irradiated with an electron beam of 200 kGy in a nitrogen atmosphere using a low-energy electron beam (irradiation condition; acceleration voltage 300 kV). Further, a 20% by mass aqueous solution of cholinehydrogen phosphate 1 represented by the following structural formula (2) was prepared as a graft monomer.
  • the mass of the obtained film A was measured and compared with the mass of the polyurethane film before grafting to determine the mass of the graft chain with respect to the film A (1.0 g). By dividing this mass by the molecular weight (295) of choline hydrogen phosphate 1, the content (mol) of phosphorus derived from the choline hydrogen phosphate structure with respect to film A (1.0 g) was determined.
  • the antithrombotic property of film A was evaluated by the following method. Specifically, the film A was cut out into a circle having a diameter of about 3 cm and attached to the center of a watch glass having a diameter of 10 cm. Take 200 ⁇ l of rabbit (Japanese white species) sodium citrate plasma on this film, add 200 ⁇ l of 0.025 mol / l calcium chloride aqueous solution, and mix the liquid while floating the watch glass in a constant temperature bath at 37 ° C. Shake gently.
  • this elapsed time is the time required for plasma coagulation when the same operation is performed on the glass.
  • the antithrombotic property was evaluated by dividing by and using this value as a relative value of coagulation time. The larger the relative value of coagulation time, the better the antithrombotic property.
  • Example 2 The urethane film was immersed in a 20% aqueous solution of cholinehydrogen phosphate 1 at 50 ° C. for 4 hours, whereas Example 2 was immersed in the same method as in Example 1 except that the urethane film was immersed for 2 hours. Example 2 was made. Due to the above difference, the ratio of the graft chains is different, so that the phosphorus content derived from the structure represented by the general formula (1) contained in 1.0 g of the polymer is changed.
  • Example 3 The urethane film was immersed in a 20% aqueous solution of cholinehydrogen phosphate 1 at 50 ° C. for 4 hours, whereas Example 2 was immersed for 30 minutes, except that the same method as in Example 1 was used.
  • Example 3 was prepared.
  • Example 4 to 13> A polyurethane film was obtained by the same operation as in Example 1 using the predetermined raw materials shown in the table below.
  • Example 14 A polyurethane film was obtained by the same operation as in Example 1. Next, a polyurethane film having a graft chain containing a phosphorylcholine structure was obtained by the same operation as in Example 1 except that choline hydrogen phosphate 2 represented by the following structural formula (3) was used as the graft monomer.
  • a polyurethane film was obtained by the same operation as in Example 1 using the predetermined raw materials shown in the table below.
  • a polyurethane film having a graft chain containing a phosphorylcholine structure was obtained by the same operation as in Example 1 except that 2-methacryloyloxyethyl phosphorylcholine (manufactured by NOF CORPORATION) was used as the graft monomer.
  • This polymer was dissolved in THF to make a 5% solution. This solution was uniformly placed on a glass plate, dried at 40 ° C. for 8 hours under a nitrogen stream, and then dried under reduced pressure at 40 ° C. for 15 hours to obtain a film having a thickness of about 100 ⁇ m.
  • Tables 1 and 2 shown below show the blending materials and blending amounts in each experiment, and Table 3 shows the evaluation results of each experiment.
  • the present invention is not limited to the above-described embodiment, and can be realized with various configurations within a range not deviating from the gist thereof.
  • the embodiment corresponding to the technical feature in each embodiment described in the column of the outline of the invention the technical feature in the embodiment may be used to solve a part or all of the above-mentioned problems, or the above-mentioned above. It is possible to replace or combine them as appropriate to achieve some or all of the effects. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Surgery (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Abstract

優れた抗血栓性を発揮する技術を提供する。 ポリウレタンまたはポリウレタンウレアは、所定の構造を有するグラフト鎖を有し、所定の構造が有する2つの官能基は、炭素数1~20のアルキル基、炭素数6~12のアリール基又は炭素数7~20のアラルキル基であり、互いに同じであっても異なっていてもよい。

Description

ポリウレタン又はポリウレタンウレア、抗血栓性コーティング剤、抗血栓性医療用具、及び製造方法
 本発明は、ポリウレタン又はポリウレタンウレア、抗血栓性コーティング剤、抗血栓性医療用具、及び製造方法に関する。
 従来から、人工腎臓や人工肺、注射器、血液バッグ等の医療用器具に用いる材料として、ポリウレタンやポリウレタンウレアを用いることが知られている(例えば、特許文献1)。これらの医療用器具に用いる材料は、血液と接触した場合に血液が凝固しないことが望ましい。換言すると、これらの医療用器具に用いる材料は、抗血栓性に優れることが好ましい。
 特許文献1には、抗血栓性を向上させるために、医療用器具に用いる材料として、ホスホリルコリン構造を側鎖に有するポリウレタン又はポリウレタンウレアについて記載されている。
国際公開第1998/046659号
 しかしながら、特許文献1に記載のポリウレタン又はポリウレタンウレアは、十分な抗血栓性を有しておらず、改善の余地があった。
 本発明は、上記の課題を解決するためになされたものであり、以下の形態として実現することができる。
(1)本発明の一形態によれば、ポリウレタン又はポリウレタンウレアが提供される。このポリウレタン又はポリウレタンウレアは、一般式(1)で表される構造を含むグラフト鎖を有することを特徴とする。
Figure JPOXMLDOC01-appb-C000002
(式中、R及びRは、炭素数1~20のアルキル基、炭素数6~12のアリール基又は炭素数7~20のアラルキル基であり、互いに同じであっても異なっていてもよい。)
 この形態のポリウレタン又はポリウレタンウレアによれば、優れた抗血栓性を発揮することができる。
(2)上記形態のポリウレタン又はポリウレタンウレアにおいて、ポリマー1.0gに対して、前記一般式(1)で表される構造に由来するリンを、2.0mmol以上10.0mmol以下含んでもよい。
 この形態のポリウレタン又はポリウレタンウレアによれば、優れた抗血栓性を発揮するとともに、優れた機械的強度を発揮することができる。
(3)上記形態のポリウレタン又はポリウレタンウレアにおいて、前記R及び前記Rは、炭素数1~20のアルキル基であってもよく、互いに同じであっても異なっていてもよい。
 この形態のポリウレタン又はポリウレタンウレアによれば、より優れた抗血栓性を発揮することができる。
(4)本発明の他の形態によれば、上記形態のポリウレタン又はポリウレタンウレアを含む抗血栓性コーティング剤が提供される。
 この形態の抗血栓性コーティング剤によれば、優れた抗血栓性を発揮することができる。
(5)本発明の他の形態によれば、上記形態のポリウレタン又はポリウレタンウレアを備える抗血栓性医療用具が提供される。
 この形態の抗血栓性医療用具によれば、優れた抗血栓性を発揮することができる。
(6)本発明の他の形態によれば、上記形態のポリウレタン又はポリウレタンウレアの製造方法が提供される。この製造方法は、前記一般式(1)で表される構造及びラジカルに反応する官能基を有する化合物を、ポリウレタンまたはポリウレタンウレアに接触させた状態で、前記ポリウレタンまたは前記ポリウレタンウレアの表面に電離放射線を照射してラジカルを生成することにより、グラフト鎖を形成する工程を含む。
 この形態の製造方法によれば、優れた抗血栓性を発揮するポリウレタン又はポリウレタンウレアを製造することができる。
(6)本発明の他の形態によれば、上記形態のポリウレタン又はポリウレタンウレアの製造方法が提供される。この製造方法は、電離放射線をポリウレタンまたはポリウレタンウレアの表面に照射してラジカルを生成する工程と、前記一般式(1)で表される構造及びラジカルに反応する官能基を有する化合物を、前記表面に接触させることにより、グラフト鎖を形成する工程と、を含む。
 この形態の製造方法によれば、優れた抗血栓性を発揮するポリウレタン又はポリウレタンウレアを製造することができる。
<ポリウレタン又はポリウレタンウレア>
 本発明の実施形態であるポリウレタン又はポリウレタンウレアは、以下の一般式(1)で表される構造を含むグラフト鎖を有する。以下、ポリウレタンとポリウレアとを総称して、「ポリウレタン類」とも呼ぶ。また、「一般式(1)で表される構造」を、「コリンハイドロゲンホスフェート構造」とも呼ぶ。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)の式中、R及びRは、炭素数1~20のアルキル基、炭素数6~12のアリール基又は炭素数7~20のアラルキル基であり、互いに同じであっても異なっていてもよい。
 本実施形態のポリウレタン類は、優れた抗血栓性を有する。本明細書において、「抗血栓性」とは、血液と接触した場合に血液が凝固しにくい性質を示す。本実施形態のポリウレタン類が抗血栓性に優れるメカニズムは定かでないが、以下のような推定メカニズムが考えられる。つまり、コリンハイドロゲンホスフェート構造は、生体膜を形成するホスファチジルコリンと類似する構造であり、かつ、ホスホリルコリン基と異なり、末端にリン酸基由来のヒドロキシ基を有するという特徴がある。そして、末端にリン酸基由来のヒドロキシ基を有することにより、生体中の水との相互作用が高まる結果として、本実施形態のポリウレタン類は、優れた抗血栓性を発揮できると考えられる。
 また、本実施形態のポリウレタン類は、コリンハイドロゲンホスフェート構造を含むグラフト鎖を有する。つまり、コリンハイドロゲンホスフェート構造を樹脂組成の側鎖に有する。一般に、高分子の主鎖は絡まっているため、性能を発揮する官能基が主鎖に存在する場合には、その官能基の性能を十分に発揮しにくい。これに対して、性能を発揮する官能基が側鎖に存在する場合には、この官能基の性能が主鎖に抑制されないために十分に発揮されると考えられる。つまり、本実施形態のポリウレタン類は、コリンハイドロゲンホスフェート構造を含むグラフト鎖を有することにより、リン酸基由来のヒドロキシ基が有する生体親和性を十分に発揮できるため、優れた抗血栓性を発揮できると考えられる。
 抗血栓性を向上させる観点から、R及びRは、炭素数1~20のアルキル基、又は炭素数6~12のアリール基であることが好ましく、炭素数1~20のアルキル基であることがより好ましく、炭素数1~10のアルキル基であることがさらに好ましく、炭素数1~5のアルキル基であることがより一層好ましい。
 また、本実施形態のポリウレタン類1.0gに対して、コリンハイドロゲンホスフェート構造に由来するリン含有量が、0.03mmol以上20.0mmol以下であることが好ましく、0.1mmol以上10.0mmol以下であることがより好ましく、2.0mmol以上10.0mmol以下であることがさらに好ましい。好ましい範囲とすることにより、優れた抗血栓性を発揮するとともに、優れた機械的強度を発揮することができる。
<ポリオール>
 本実施形態のポリウレタン類に用いられるポリオールは、特に限定されないが、例えば、公知のものを使用することができる。ポリオールとしては、例えば、水酸基含有共役ジエン重合体およびその水素添加物、ヒマシ油、ヒマシ油ポリオールおよびその水素添加物、ポリエーテルポリオール、ポリエステルポリオール、ポリカプロラクトンポリオール、ポリカーボネートポリオール等が拳げられる。本明細書において、「ヒマシ油ポリオール」とは、ヒマシ油を変性させたものであって、末端が水酸基のポリオールを示す。
 水酸基含有共役ジエン重合体およびその水素添加物としては、特に限定されないが、例えば、ポリブタジエンポリオールやポリイソプレンポリオールなどの水酸基含有共役ジエン重合体やこれらに水素を付加した水素添加物等が挙げられる。
 ヒマシ油ポリオールおよびその水素添加物としては、特に限定されないが、例えば、ヒマシ油またはヒマシ油脂肪酸を原料として用いたヒマシ油変性ポリオール、および、これらの水素添加物等が挙げられる。このようなヒマシ油変性ポリオールとしては、特に限定されないが、例えば、ヒマシ油とヒマシ油以外の油脂とのエステル交換反応物、ヒマシ油と油脂脂肪酸とのエステル交換反応物、ヒマシ油と多価アルコールとのエステル交換反応物、ヒマシ油脂肪酸と多価アルコールとのエステル化反応物、ヒマシ油に含まれる水酸基の一部と酢酸などのモノカルボン酸とのエステル化反応物、これらにアルキレンオキサイドを付加重合した反応物、および、これらに水素を付加した水素添加物等が挙げられる。
 ポリエーテルポリオールとしては、特に限定されないが、例えば、多価アルコールにアルキレンオキサイドを付加重合したものが挙げられる。ポリエステルポリオールとしては、特に限定されないが、例えば、多価アルコールと多価カルボン酸とのエステル化反応物が挙げられる。ポリカプロラクトンポリオールとしては、特に限定されないが、例えば、カプロラクトンを開環重合したものが挙げられる。ポリカーボネートポリオールとしては、特に限定されないが、例えば、多価アルコールと、ジフェニルカーボネート、ジメチルカーボネートおよびホスゲン等の炭酸誘導体との反応生成物が挙げられる。
 上記ポリオールのうちグラフト重合後のウレタン類の耐水性を向上させる観点から、ポリオールは疎水性の高い構造を有するものが好ましい。具体的には、多価アルコールに炭素数3以上のアルキレンオキサイドを付加重合させたポリエーテルポリオール、水酸基含有共役ジエン重合体およびその水素添加物、炭素数4以上の多価アルコールと炭素数5以上の多価カルボン酸とのエステル化反応物であるポリエステルポリオール、およびポリテトラメチレングリコールが好ましく、ポリブタジエンポリオール、および炭素数4以上の多価アルコールと炭素数5以上の多価カルボン酸とのエステル化反応物であるポリエステルポリオールがより好ましい。尚、ポリオールは、単独で又は2種以上を併用して用いることもできる。
 また、ポリオールの水酸基価は、特に限定されないが、10mgKOH/g以上200mgKOH/g以下が好ましく、20mgKOH/g以上150mgKOH/g以下がより好ましく、30mgKOH/g以上120mgKOH/g以下がさらに好ましい。本明細書において、水酸基価とは、試料1gをアセチル化するとき、水酸基と結合した酢酸を中和するのに要する水酸化カリウムのミリグラム(mg)数であり、JIS K 0070-1992に準じて測定されるものである。
 また、ポリオールの平均分子量は、特に限定されないが、500以上5000以下が好ましく、800以上4000以下がより好ましい。
<ポリイソシアネート>
 本実施形態のポリウレタン類に用いられるポリイソシアネートは、特に限定されないが、例えば、公知のものを使用することができる。ポリイソシアネートとしては、例えば、脂肪族ポリイソシアネート、脂環族ポリイソシアネート、芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネート等を挙げることができる。
 脂肪族ポリイソシアネートとしては、特に限定されないが、例えば、テトラメチレンジイソシアネート、ドデカメチレンジイソシアネート、ヘキサメチレンジイソシアネート(以下、「HDI」とも呼ぶ)、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2-メチルペンタン-1,5-ジイソシアネート、3-メチルペンタン-1,5-ジイソシアネート等を挙げることができる。
 脂環族ポリイソシアネートとしては、特に限定されないが、例えば、イソホロンジイソシアネート、水素添加キシリレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,4-シクロヘキサンジイソシアネート、メチルシクロヘキシレンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン等を挙げることができる。
 芳香族ポリイソシアネートとしては、特に限定されないが、例えば、トリレンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート(以下、「MDI」とも呼ぶ)、ポリメチレンポリフェニルポリイソシアネート、4,4’-ジベンジルジイソシアネート、1,5-ナフチレンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート等を挙げることができる。
 芳香脂肪族ポリイソシアネートとしては、特に限定されないが、例えば、キシリレンジイソシアネート(以下、「XDI」とも呼ぶ)、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、α,α,α,α-テトラメチルキシリレンジイソシアネート等を挙げることができる。
 また、ポリイソシアネートとして、上述の有機ポリイソシアネートの変性体を用いてもよい。有機ポリイソシアネートの変性体としては、特に限定されないが、例えば、カルボジイミド体、アロハネート体、ビューレット体、イソシアヌレート体、アダクト体等を挙げることができる。尚、ポリイソシアネートは、単独で又は2種以上を併用して用いることもできる。
 ウレタン類のフィルムの機械的特性を向上させる観点から、ポリイソシアネートとして、ヘキサメチレンジイソシアネート(HDI)、4,4’-ジフェニルメタンジイソシアネート(MDI)を用いることが好ましく、電離放射線を照射した際に、安定なラジカルを生成する観点から、ヘキサメチレンジイソシアネートを用いることがより好ましい。
 また、ポリイソシアネートのイソシアネート基(NCO基)と、ポリオールの水酸基(OH基)並びに鎖伸長剤及び架橋剤の水酸基(OH基)との当量比(NCO基/OH基、以下、「NCOindex」とも呼ぶ)は、特に限定されないが、0.5以上3.0以下が好ましく、0.8以上1.5以下がより好ましい。
 また、ポリイソシアネートの遊離イソシアネート基含有量は、特に限定されないが、例えば、20質量%以上70質量%以下が好ましく、25質量%以上65質量%以下がより好ましく、30質量%以上60質量%以下がさらに好ましい。好ましい範囲内とすることにより、成型加工性に優れる。
 また、ポリイソシアネートの平均分子量は、特に限定されないが、100以上400以下が好ましく、150以上300以下がより好ましい。
<ポリアミン>
 ウレタン類には、ポリウレタンウレアが含まれる。本明細書において、「ポリウレタンウレア」とは、ポリイソシアネートとポリアミンとの化学反応で生成されるウレア結合を有するポリウレタンを示す。ポリウレタンウレアに用いるポリアミンとしては、特に限定されないが、例えば、エチレンジアミン、プロピレンジアミン、ヘキシレンジアミン、イソホロンジアミン、キシリレンジアミン、ピペラジン、ジフェニルメタンジアミン、エチルトリレンジアミン、ジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエーテルアミン等を挙げることができる。また、ポリウレタンウレアに用いるポリアミンとしては、例えば、ジエチルトルエンジアミン等の芳香族ジアミンを挙げることができる。
<その他>
 本実施形態のポリウレタン類は、本発明の効果を阻害しない範囲で他の材料を加えてもよい。他の材料としては、特に限定されないが、例えば、鎖伸長剤、架橋剤、触媒等が挙げられる。
 鎖伸長剤としては、特に限定されないが、例えば、エチレングリコール、ジエチレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,3-プロピレングリコール、1,2-プロピレングリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール等を挙げることができる。架橋剤としては、特に限定されないが、例えば、アミノプラスト化合物、エポキシ化合物、カルボジイミド化合物、グリセリン、トリメチロールプロパン等を挙げることができる。
 触媒としては、特に限定されないが、例えば、金属触媒やアミン系触媒等を挙げることができる。金属触媒としては、特に限定されないが、例えば、ジブチルチンジラウレート、ジオクチルチンジラウレート、ジブチルチンジオクテート等の錫触媒、オクチル酸鉛、オクテン酸鉛、ナフテン酸鉛等の鉛触媒、オクチル酸ビスマス、ネオデカン酸ビスマスなどのビスマス触媒等を挙げることができる。アミン系触媒としては、特に限定されないが、例えば、トリエチレンジアミン等の3級アミン化合物等が挙げられる。
<製造方法>
 ポリウレタン類の製造方法は、特に限定されず、公知の方法により製造することができる。その際、ポリウレタン類の原材料を全て同時に反応させてもよく、例えば、一部の原材料を反応させた後、得られた生成物に残りの原材料を反応させてもよい。また、ポリウレタン類にグラフト鎖を設ける方法は、特に限定されず、公知の方法により製造することができる。ポリウレタン類にグラフト鎖を設ける方法としては、例えば、ポリウレタン類を、グラフトモノマー含む溶液に所定時間浸漬させる方法が挙げられる。
 ポリウレタン類の製造方法としては、例えば、コリンハイドロゲンホスフェート構造及びラジカルに反応する官能基を有する化合物を、ポリウレタン類に接触させた状態で、ポリウレタン類の表面に電離放射線を照射してラジカルを生成することにより、グラフト鎖を形成する工程を含む製造方法が挙げられる。電離放射線としては、特に限定されないが、例えば、電子線が挙げられる。
 また、他のポリウレタン類の製造方法としては、例えば、電離放射線をポリウレタン類の表面に照射してラジカルを生成する工程と、コリンハイドロゲンホスフェート構造及びラジカルに反応する官能基を有する化合物を、この表面に接触させることにより、グラフト鎖を形成する工程と製造方法が挙げられる。
 ポリウレタン類の分子量は、特に限定されず、例えば、重量平均分子量が5000~500000であることが好ましく、10000~300000であることがより好ましい。ここで、重量平均分子量の測定は、テトラヒドロフラン(THF)を溶媒とするGPC装置により行い、ポリスチレン換算値として求められる。具体的な測定条件は、下記のとおりである。
カラム:東ソー社製のポリスチレンゲルカラム(TSK gel G4000HXL+TSK gel G3000HXL+TSK gel G2000HXL+TSK gel G1000HXL2本をこの順で直列に接続)
カラム温度:40℃
検出器:示差屈折率検出器(島津製作所社製のRID-6A)
流速:1ml/分。
<抗血栓性材料>
 本実施形態のポリウレタン類は、優れた生体適合性を有し、長期間に亘って抗血栓性能を安定して発揮することができ、特に、血液適合性が要求される各種の医療用器具、機器類等の医療用具の素材、又はこれらの医療用具に対する抗血栓性コーティング剤等として有効に用いることができる。本実施形態のポリウレタン類をこの様な目的で用いることによって、血液適合性を有し、優れた抗血栓性能を安定して発揮できる医療用器具、機器類等を得ることができる。
 本実施形態のポリウレタン類を備える医療用器具、機器類等の医療用具は、特に限定されないが、例えば、血液透析膜、血漿分離膜、血液中老廃物の吸着材、人工肺用の膜素材(血液と酸素の隔壁)や人工心肺におけるシート肺のシート材料、大動脈バルーン、血液バッグ、カテーテル、カニューレ、シャント、血液回路やステント等を挙げることができる。
 本実施形態のポリウレタン類を含む抗血栓性コーティング剤として用いる場合には、例えば、ポリウレタン類を有機溶剤に溶解した後、塗布法、スプレー法、ディップ法等の適当な方法で、処理対象物に塗布する方法が挙げられる。有機溶剤としては、特に限定されないが、例えば、テトラヒドロフラン(THF)、ヘキサメチルリン酸トリアミド(HMPA)、N-メチル-2-ピロリドン(NMP)、モノメチルホルムアミド(NMF)、N,N-ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、THF-メタノール混合溶液、THF-エタノール混合溶液、THF-プロパノール混合溶液等が挙げられる。抗血栓性コーティング剤には、本実施形態のポリウレタン類の他に、必要に応じて、血液適合性が要求される各種の医療用具の材料として従来から使用されているポリマー材料を配合しても良い。ポリマー材料としては、特に限定されないが、例えば、ポリウレタン、ポリ塩化ビニル、ポリエステル、ポリプロピレン、ポリエチレン等が挙げられる。
 抗血栓性コーティング剤中のポリウレタン類の濃度については、特に限定されるものではなく、使用するポリウレタン類の種類に応じて、有機溶媒中に可溶な範囲で適宜決めることができる。本実施形態のポリウレタン類を、他のポリマーと混合して用いる場合には、本実施形態のポリウレタン類の含有割合は、本実施形態のポリウレタン類と他のポリマーとの合計量を100質量%とした場合に、1~99質量%とすることが好ましく、5~80質量%とすることがより好ましい。
 抗血栓性コーティング剤を塗布した後、有機溶媒を除去することによって、本実施形態のポリウレタン類によるコーティング層が形成される。有機溶媒を除去する方法については、特に限定はないが、例えば、好ましい方法として、窒素、アルゴン、ヘリウム等の不活性ガス雰囲気下で20~100℃程度で0.1~180分間程度加熱乾燥した後、20~100℃程度で0.1~36時間程度減圧乾燥する方法を挙げることができる。
 形成されるコーティング層の厚さは、特に限定されるものではないが、通常、0.1~100μm程度、好ましくは0.5~70μm程度とすることができる。コーティング層の厚さは、コーティング組成物中のポリマー濃度やコーティングの回数によって容易に調整できる。
 コーティング層を形成する医療用具の材質については、特に限定はされないが、一般に、上記した医療用具の材料として従来から使用されているポリマー材料が用いられる。
 本実施形態のポリウレタン類を医療用具の素材として用いる場合には、本実施形態のポリウレタン類を単独で用いてもよく、或いは、要求される物性等に応じて、上述した血液適合性が要求される医療用具の材料として使用されているポリマー材料と混合して用いてもよい。混合して用いる場合には、本実施形態のポリウレタン類の含有割合は、通常、本実施形態のポリウレタン類と他のポリマーとの合計量を100質量%とした場合に、1~60質量%としてもよく、5~50質量%としてもよい。本実施形態のポリウレタン類を素材として医療用具を得るには、それぞれの目的物に応じて、従来から行われている公知の方法で製造することができる。
 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の実施例及び比較例において、「部」又は「%」とあるのは、特に指定しない限り質量基準とする。
<使用試薬>
(1)ポリイソシアネート
・デュラネート(登録商標)50MS(旭化成社製)(HDI)
・ミリオネートMT(東ソー社製)(MDI)
・ベスタネート H12-MDI(Evonik社製)(水素添加MDI)
・タケネート(登録商標)500(三井化学社製)(XDI)
(2)ポリオール
・NISSO-PB G-1000(日本曹達社製)
・NISSO-PB G-3000(日本曹達社製)
・NISSO-PB GI-1000(日本曹達社製)
・PTMG-1000(三菱ケミカル社製)
・クラレポリオールP-1010(クラレ社製)
・エクセノール1020(旭硝子社製)
(3)鎖伸長剤・架橋剤
・1,4-ブタンジオール(三菱ケミカル社製)
・グリセリン(阪本薬品工業社製)
・ジェファーミンD-230(ハンツマン社製)
(4)触媒
・ネオスタンU-810(日東化成社製)
<実施例1>
 まず、撹拌機、還流冷却管、温度計及び窒素吹き込み管を備えた4つ口フラスコ内で、ポリイソシアネートとしてデュラネート50MSと、ポリオールとしてNISSO-PBG-1000とを所定量混合し、80℃にて2時間撹拌し一次反応物を得た。次いで、上記一次反応物と所定量の1,4-ブタンジオールおよびネオスタンU-810を混合した後、熱プレス機で加熱圧縮後、80℃で24時間養生することにより、ポリウレタンフィルム(膜厚100μm)を得た。後に、モノマーのグラフト量を算出するために、ポリウレタンフィルムの質量を測定しておいた。
 次に、ポリウレタンフィルムの一方の表面に、低エネルギー電子線を用いて、窒素雰囲気下で電子線を200kGy照射した(照射条件;加速電圧300kV)。また、グラフトモノマーとして下記構造式(2)で示されるコリンハイドロゲンホスフェート1の20質量%水溶液を作製した。
Figure JPOXMLDOC01-appb-C000004
 この水溶液の作製には、メルク社製のMilli-Q IQ7015純水製造装置の純水を使用した。次いで、窒素混入下にて上記水溶液中の溶存酸素を除去した後に、ウレタンフィルムを大気暴露せずに当該溶液中に50℃で4時間浸漬した。浸漬後、純水およびエタノールで洗浄することにより、コリンハイドロゲンホスフェート構造を含むグラフト鎖を有するフィルムAを得た。
[コリンハイドロゲンホスフェート1の合成]
 窒素置換した4つ口フラスコに、2-(Dimethylamino)ethyl methacrylate(10mmol)、2-Bromoethanol(10mmol)、脱水CHCN(20ml)を加えた後、70℃で24時間還流することにより溶液を濃縮した後、酢酸エチルを加えて再沈殿を行うことによって、中間物質として2-Cholinium methacrylate bromideを得た。窒素置換し0℃に温度調節した4つ口フラスコに、2-Cholinium methacrylate bromide(10mmol)、脱水CHCN(30ml)を加え、塩化ホスホリル(30mmol)を滴下した。12時間後、脱イオン水(2.8mL)を加え、12時間撹拌した。溶液を濃縮した後、粗生成物を逆層シリカゲルカラムクロマトグラフィーにて単離操作を行うことにより、コリンハイドロゲンホスフェート1を得た。
 得られたフィルムAの質量測定を行い、グラフト前のポリウレタンフィルムの質量と比較することにより、フィルムA(1.0g)に対するグラフト鎖の質量を求めた。この質量をコリンハイドロゲンホスフェート1の分子量(295)で除することにより、フィルムA(1.0g)に対するコリンハイドロゲンホスフェート構造に由来するリンの含有量(mol)を求めた。
<フィルムAでの抗血栓性の評価>
 フィルムAでの抗血栓性の評価は、以下の方法で行った。具体的には、フィルムAを直径約3cmの円形に切り抜き、直径10cmの時計皿の中央に貼り付けた。このフィルム上にウサギ(日本白色種)のクエン酸ナトリウム加血漿200μlを取り、0.025mol/lの塩化カルシウム水溶液200μlを加え、時計皿を37℃の恒温槽に浮かせながら液が混和するように穏やかに振盪した。塩化カルシウム水溶液を添加した時点から血漿が凝固する(血漿が動かなくなる時点)までの経過時間を測定した後、この経過時間を、同様の操作をガラス上で行った場合の血漿凝固に要した時間で割り、この値を凝固時間相対値として、抗血栓性を評価した。凝固時間相対値が大きいほど、抗血栓性に優れる。
<フィルムBでの抗血栓性の評価>
 さらに、フィルムAをPBS緩衝液に浸漬し、37℃の振盪恒温槽で2週間にわたって溶出を行うことにより、フィルムBを得た。PBS緩衝液は毎日交換した。そして、フィルムAと同様の方法でフィルムBでの抗血栓性について評価を行った。つまり、フィルムBでの抗血栓性の評価は、フィルムAでの抗血栓性の評価と比較して、より過酷な条件で行っている点で異なるが、それ以外は同じである。
<実施例2>
 ウレタンフィルムをコリンハイドロゲンホスフェート1の20%水溶液に50℃で4時間浸漬した実施例1に対して、実施例2では2時間浸漬した点が異なるが、それ以外は実施例1と同じ方法で実施例2を作製した。上記相違により、グラフト鎖の割合が異なることとなることにより、ポリマー1.0gに含まれる一般式(1)で表される構造に由来するリン含有量が変わることとなる。
<実施例3>
 ウレタンフィルムをコリンハイドロゲンホスフェート1の20%水溶液に50℃で4時間浸漬した実施例1に対して、実施例2では30分間浸漬した点が異なるが、それ以外は実施例1と同じ方法で実施例3を作製した。
<実施例4ないし実施例13>
 以下の表に示す所定の原料を用いて、実施例1と同様の操作によりポリウレタンフィルムを得た。
<実施例14>
 実施例1と同様の操作により、ポリウレタンフィルムを得た。次に、下記構造式(3)で示されるコリンハイドロゲンホスフェート2をグラフトモノマーに用いた以外は、実施例1と同様の操作により、ホスホリルコリン構造を含むグラフト鎖を有するポリウレタンフィルムを得た。
Figure JPOXMLDOC01-appb-C000005
<比較例1、2>
 以下の表に示す所定の原料を用いて、実施例1と同様の操作により、ポリウレタンフィルムを得た。次に、2-メタクリロイルオキシエチルホスホリルコリン(日油社製)をグラフトモノマーに用いた以外は、実施例1と同様の操作により、ホスホリルコリン構造を含むグラフト鎖を有するポリウレタンフィルムを得た。
<比較例3>
 特許第4042162号を参照して、リン酸由来のOH基を有するジオールが主鎖に導入された物質として、下記構造式(4)で示されるアルコール誘導体Aを合成した。
Figure JPOXMLDOC01-appb-C000006
 具体的には、2-Hydroxy-1,3,2-dioxaphospholane 2-oxide(Chemieliva Pharmaceutical社製)(以下の構造式(5)に示す)と4-(3-N,N-ジメチルアミノプロピル)-4-アザ-2,6-ジヒドロキシヘプタンとを、等モルずつ乾燥アセトニトリルに溶解させた後、密閉反応器中で、65℃で24時間反応を行った。反応後、溶媒を減圧下留去し、残渣をシクロヘキサンで数回洗浄することによって、中間物質としてアルコール誘導体を得た。
Figure JPOXMLDOC01-appb-C000007
 得られたアルコール誘導体41gを、ジメチルアセトアミド(DMAc)100mlに溶解させた。この溶液に、デュラネート50MS20gをDMAc30mlに溶解した溶液を、アルゴンガスによって反応器内を充分に置換した後、ゆっくり滴下した。滴下後、100℃24時間攪拌することにより、重合を行った。この反応混合物を水1500mlに攪拌しながら注ぎ込み、生成した沈澱物を濾別し、テトラヒドロフラン(THF)に溶解後、さらに50体積%メタノール水溶液に攪拌しながら注ぎ込み、生じた沈澱物を回収して減圧乾燥し、重合体を得た。この重合体をTHFに溶解して5%溶液とした。この溶液をガラス板上に均一に載せ、窒素気流下で40℃8時間乾燥後、40℃で減圧乾燥を15時間行なうことにより、厚さ約100μmのフィルムを得た。
 以下に示す表1,2は、各実験における配合材料や配合量を示し、表3は、各実験の評価結果を示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 表3の結果から以下のことが分かった。つまり、一般式(1)で表される構造を含むグラフト鎖を有する実施例は、比較例に比べて、フィルムAとフィルムBとを用いたいずれの場合においても、凝固時間相対値が大きいことが分かった。つまり、実施例は、比較例と比べて、抗血栓性に優れることが分かった。
 さらに、実施例1から実施例3を比較することにより、リン含有量が増えるほど、つまり、グラフト鎖の割合が増えるほど凝固時間相対値が大きくなる傾向にあることが分かった。したがって、グラフト鎖の割合が増えるほど、抗血栓性に優れることが分かった。
 本発明は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態、実施例中の技術的特徴は、上述の課題の一部または全部を解決するために、あるいは、上述の効果の一部または全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。

Claims (7)

  1.  一般式(1)で表される構造を含むグラフト鎖を有する、ポリウレタン又はポリウレタンウレア。
    Figure JPOXMLDOC01-appb-I000001
    (式中、R及びRは、炭素数1~20のアルキル基、炭素数6~12のアリール基又は炭素数7~20のアラルキル基であり、互いに同じであっても異なっていてもよい。)
  2.  請求項1に記載のポリウレタン又はポリウレタンウレアであって、
     ポリマー1.0gに対して、前記一般式(1)で表される構造に由来するリンを、2.0mmol以上10.0mmol以下含む、ポリウレタン又はポリウレタンウレア。
  3.  請求項1又は請求項2に記載のポリウレタン又はポリウレタンウレアであって、
     前記R及び前記Rは、炭素数1~20のアルキル基であり、互いに同じであっても異なっていてもよい、ポリウレタン又はポリウレタンウレア。
  4.  請求項1から請求項3までのいずれか1項に記載のポリウレタン又はポリウレタンウレアを含む、抗血栓性コーティング剤。
  5.  請求項1から請求項3までのいずれか1項に記載のポリウレタン又はポリウレタンウレアを備える、抗血栓性医療用具。
  6.  請求項1から請求項3までのいずれか1項に記載のポリウレタン又はポリウレタンウレアの製造方法であって、
     前記一般式(1)で表される構造及びラジカルに反応する官能基を有する化合物を、ポリウレタンまたはポリウレタンウレアに接触させた状態で、前記ポリウレタンまたは前記ポリウレタンウレアの表面に電離放射線を照射してラジカルを生成することにより、グラフト鎖を形成する工程を含む、ポリウレタン又はポリウレタンウレアの製造方法。
  7.  請求項1から請求項3までのいずれか1項に記載のポリウレタン又はポリウレタンウレアの製造方法であって、
     電離放射線をポリウレタンまたはポリウレタンウレアの表面に照射してラジカルを生成する工程と、
     前記一般式(1)で表される構造及びラジカルに反応する官能基を有する化合物を、前記表面に接触させることにより、グラフト鎖を形成する工程と、を含む製造方法。
PCT/JP2021/000773 2020-01-17 2021-01-13 ポリウレタン又はポリウレタンウレア、抗血栓性コーティング剤、抗血栓性医療用具、及び製造方法 WO2021145330A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180008956.4A CN114938650B (zh) 2020-01-17 2021-01-13 聚氨酯或聚氨酯脲、抗血栓性涂敷剂、抗血栓性医疗用具及制造方法
EP21741074.5A EP4091644A4 (en) 2020-01-17 2021-01-13 POLYURETHANE OR POLYURETHANE UREA, ANTITHROMABIC COATING AGENT, ANTITHROMABIC MEDICAL INSTRUMENT AND PRODUCTION METHOD
US17/758,586 US20230100493A1 (en) 2020-01-17 2021-01-13 Polyurethane or polyurethane urea, antithrombogenic coating agent, antithrombogenic medical tool, and production method
KR1020227022755A KR20220131230A (ko) 2020-01-17 2021-01-13 폴리우레탄 또는 폴리우레탄우레아, 항혈전성 코팅제, 항혈전성 의료용구, 및 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-005904 2020-01-17
JP2020005904A JP7425609B2 (ja) 2020-01-17 2020-01-17 ポリウレタン又はポリウレタンウレア、抗血栓性コーティング剤、抗血栓性医療用具、及び製造方法

Publications (1)

Publication Number Publication Date
WO2021145330A1 true WO2021145330A1 (ja) 2021-07-22

Family

ID=76863794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000773 WO2021145330A1 (ja) 2020-01-17 2021-01-13 ポリウレタン又はポリウレタンウレア、抗血栓性コーティング剤、抗血栓性医療用具、及び製造方法

Country Status (7)

Country Link
US (1) US20230100493A1 (ja)
EP (1) EP4091644A4 (ja)
JP (1) JP7425609B2 (ja)
KR (1) KR20220131230A (ja)
CN (1) CN114938650B (ja)
TW (1) TW202136341A (ja)
WO (1) WO2021145330A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023282164A1 (ja) 2021-07-08 2023-01-12 国立大学法人九州大学 プローブ、プローブセット、及び哺乳動物の核酸検出キット

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046659A1 (fr) 1997-04-17 1998-10-22 Toyobo Co., Ltd. Polymeres biocompatibles
JP2009113315A (ja) * 2007-11-06 2009-05-28 Asahi Kasei Chemicals Corp 焼結体層積層物
JP2017526732A (ja) * 2014-06-19 2017-09-14 ペントラコール ゲーエムベーハー ホスホリルコリン誘導体を含む分離物質

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5350778A (en) * 1993-10-28 1994-09-27 Miles Inc. Polyisocyanate based upon 4,4'- and 2,4'-diphenylmethane diisocyanates and use thereof in a rim process
DE19727554A1 (de) * 1997-06-28 1999-01-07 Huels Chemische Werke Ag Verfahren zur Hydrophilierung der Oberfläche polymerer Substrate mit einem Makroinitiator als Primer
JP4143878B2 (ja) * 1998-10-26 2008-09-03 東洋紡績株式会社 抗血栓性ポリウレタン類、抗血栓性組成物および抗血栓性医療用具
JP2007538233A (ja) * 2004-05-21 2007-12-27 エムディーエス インコーポレイテッド ドゥーイング ビジネス スルー イッツ エムディーエス ファーマ サービシーズ ディビジョン 医療デバイスの細胞結合特性を定量する方法
TWI418373B (zh) * 2009-12-01 2013-12-11 Far Eastern New Century Corp 抗血小板貼附材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046659A1 (fr) 1997-04-17 1998-10-22 Toyobo Co., Ltd. Polymeres biocompatibles
JP4042162B2 (ja) 1997-04-17 2008-02-06 東洋紡績株式会社 生体適合性ポリマー
JP2009113315A (ja) * 2007-11-06 2009-05-28 Asahi Kasei Chemicals Corp 焼結体層積層物
JP2017526732A (ja) * 2014-06-19 2017-09-14 ペントラコール ゲーエムベーハー ホスホリルコリン誘導体を含む分離物質

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4091644A4

Also Published As

Publication number Publication date
CN114938650A (zh) 2022-08-23
CN114938650B (zh) 2023-09-26
EP4091644A4 (en) 2023-12-27
JP7425609B2 (ja) 2024-01-31
KR20220131230A (ko) 2022-09-27
JP2021113260A (ja) 2021-08-05
EP4091644A1 (en) 2022-11-23
TW202136341A (zh) 2021-10-01
US20230100493A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
JP5638003B2 (ja) ポリイソブチレン系ポリウレタン
JP4929175B2 (ja) 脂肪酸から誘導されたヒドロキシメチル含有ポリエステルポリオールから製造される水性ポリウレタン分散体
KR101142689B1 (ko) 향상된 이소프로판올 내성, 가요성 및 유연성을 갖는폴리우레탄 분산액 (pud)
JP2005518841A (ja) ポリ(ビニルピロリドン)単位を含むAnBブロックコポリマー、医療用デバイス、及び方法
JP2010095726A (ja) アルコール可溶型ウレタン樹脂組成物の製造方法、ポリウレタン多孔体及び透湿性フィルム
US12049535B2 (en) Polyol composition comprising anhydrosugar alcohols and anhydrosugar alcohol polymer
JP5570043B2 (ja) 乾燥速度が速くかつ耐性が改善されたソフトフィール塗料用硬化性組成物
JP5827745B2 (ja) ポリウレタン
JP5260834B2 (ja) 熱可塑性ポリウレタン樹脂組成物及び透湿性フィルム
TW201717755A (zh) 生物殺滅活性聚合物組成物
TW201000578A (en) Hydrophilic polyurethane solutions
TWI525119B (zh) 聚醇組成物
WO2021145330A1 (ja) ポリウレタン又はポリウレタンウレア、抗血栓性コーティング剤、抗血栓性医療用具、及び製造方法
WO2018075663A1 (en) Plasticized pvc admixtures with surface modifying macromolecules and articles made therefrom
CN112334216A (zh) 平板多孔pvc膜
JP2008037987A (ja) 水性ポリウレタン組成物
JP5375606B2 (ja) 耐久性に優れた湿潤時潤滑性表面コーティング用組成物、コーティング液、表面コーティング、ならびに表面コーティング方法と、この表面コーティングを有する医療用具
US20100104880A1 (en) Biocompatible polymers polymer, tie-coats-, methods of making and using the same, and products incorporating the polymers
RU2805516C2 (ru) Половолоконная мембрана
JP7030307B2 (ja) ポリウレタンウレア樹脂組成物及びその製造方法
WO2023100827A1 (ja) 医療機器
KR20220025813A (ko) 중공 섬유 멤브레인
JP2021017476A (ja) ポリウレタン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021741074

Country of ref document: EP

Effective date: 20220817