WO2021144845A1 - 空気調和システム - Google Patents
空気調和システム Download PDFInfo
- Publication number
- WO2021144845A1 WO2021144845A1 PCT/JP2020/000872 JP2020000872W WO2021144845A1 WO 2021144845 A1 WO2021144845 A1 WO 2021144845A1 JP 2020000872 W JP2020000872 W JP 2020000872W WO 2021144845 A1 WO2021144845 A1 WO 2021144845A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- blower
- temperature detection
- detection device
- conditioning system
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/50—Control or safety arrangements characterised by user interfaces or communication
- F24F11/56—Remote control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/74—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2120/00—Control inputs relating to users or occupants
- F24F2120/10—Occupancy
Definitions
- This disclosure relates to an air conditioning system having a blower installed in an indoor space.
- a temperature sensor is attached to each personal computer on the desk used by the occupants (see, for example, Patent Document 1).
- the temperature sensor detects the face temperature or fingertip temperature of the occupant.
- an individual fan for blowing air to each occupant is attached to the personal computer.
- the face temperature or fingertip temperature that each occupant feels comfortable is stored in advance as the neutral temperature.
- the control unit controls the operation of the individual fans according to the deviation between the temperature detection value of each temperature sensor and the temperature at the time of neutral temperature.
- the control unit blows air to each occupant by an individual fan based on the face temperature or fingertip temperature that each occupant feels comfortable. It is carried out. Therefore, although it is possible to provide comfort to each occupant, there is a problem that the temperature unevenness of the entire indoor space cannot be eliminated.
- This disclosure is made to solve such a problem, and aims to obtain an air conditioning system capable of eliminating temperature unevenness in the entire indoor space.
- the air conditioning system includes an indoor unit installed in an indoor space, an outdoor unit installed outside the indoor space and connected to the indoor unit via a refrigerant pipe, and a plurality of the indoor space.
- a temperature detection device that detects the temperature of each of the areas, a plurality of blowers that blow air to each of the plurality of areas, and a remote that controls the operation of the blower based on the temperature detected by the temperature detection device.
- the remote controller includes a controller, and the remote controller has a relationship table that defines a correspondence relationship between the temperature detection device and the blower for each area, and the temperature detected in the temperature detection device is the first.
- a control signal for starting blowing is transmitted to the blowing device corresponding to the temperature exceeding threshold value detecting device with reference to the related table. be.
- the air conditioning system according to the present disclosure, it is possible to eliminate temperature unevenness in the entire indoor space.
- FIG. 5 is a side view showing a case where at least one of the three temperature detection devices 2a, 2b and 2c exceeds the first threshold value in the air conditioning system according to the first embodiment.
- FIG. 5 is a side view showing a case where at least one of the three temperature detection devices 2a, 2b and 2c exceeds the first threshold value in the air conditioning system according to the second embodiment. It is a flowchart which showed the process flow of the remote controller 1 of the air-conditioning system which concerns on Embodiment 2.
- FIG. 5 is a state transition diagram which showed the state transition of the air-conditioning system which concerns on Embodiment 3.
- FIG. 1 It is a flowchart which showed the process flow of the remote controller 1 of the air-conditioning system which concerns on Embodiment 3. It is a side view which shows typically an example of the state of the room where the air-conditioning harmony system which concerns on Embodiment 4 is installed. It is a figure which shows an example of the 2nd relation table 100A which defined the correspondence relation between the temperature detection device 2, the blower 3 and the person detection device 10 in the air conditioning system which concerns on Embodiment 4.
- FIG. It is a state transition diagram which showed the state transition of the air-conditioning system which concerns on Embodiment 4.
- FIG. It is a flowchart which showed the process flow of the remote controller 1 of the air-conditioning system which concerns on Embodiment 4.
- FIG. It is a side view which shows typically an example of the state of the room where the air-conditioning harmony system which concerns on the modification of Embodiments 1 to 4 is installed.
- FIG. 1 is a schematic block diagram showing a configuration of an air conditioning system according to the first embodiment.
- the air conditioning system includes a remote controller 1, a temperature detection device 2, a blower 3, an indoor unit 4, and an outdoor unit 5.
- the air conditioning system air-conditions the target indoor space.
- the indoor space is, for example, the inside of a restaurant.
- the remote controller 1 is electrically connected to the indoor unit 4 via the communication wiring 7a.
- the remote controller 1 is input with setting information such as a set temperature, a wind direction, a wind speed, and an operation mode for the indoor space from the user.
- the user is, for example, a clerk at a restaurant.
- the operation mode includes at least an operation mode of cooling operation and heating operation.
- the remote controller 1 generates a first control signal based on the setting information, and transmits the first control signal to the indoor unit 4 via the communication wiring 7a.
- the communication between the remote controller 1 and the indoor unit 4 is a wired communication using the communication wiring 7a. Further, the indoor unit 4 is electrically connected to the outdoor unit 5 via the communication wiring 7b.
- At least a part of the first control signal input to the remote controller 1 is transmitted to the outdoor unit 5 via the indoor unit 4 and the communication wiring 7b.
- the communication between the indoor unit 4 and the outdoor unit 5 is a wired communication using the communication wiring 7b.
- the communication between the indoor unit 4 and the outdoor unit 5 is not limited to this case, and may be wireless communication.
- the temperature detection device 2 detects the temperature of the air in the indoor space.
- the indoor space has a plurality of areas A, B, and C as shown in FIG. 4, which will be described later.
- the temperature detection device 2 detects the temperature of each of the plurality of areas A, B, and C.
- the temperature detection device 2 may be any temperature sensor that can detect the room temperature in each area of the indoor space, and is, for example, a digital temperature sensor.
- the temperature detection device 2 is a digital temperature sensor
- the temperature detection device 2 is installed in each of the plurality of areas A, B, and C. Therefore, the number of temperature detection devices 2 is plural.
- an infrared sensor such as a thermopile sensor may be used as the temperature detection device 2.
- the temperature detection device 2 can monitor the entire indoor space, it is possible for one temperature detection device 2 to detect the temperatures of each of the plurality of areas A, B, and C.
- the remote controller 1 detects the temperatures of the plurality of areas A, B, and C based on the colors in the two-dimensional image data captured by the infrared sensor.
- the number of the temperature detection devices 2 may be one or a plurality.
- the plurality of areas A, B and C are not separated by a wall or the like and communicate with each other.
- the plurality of areas A, B, and C are preset, for example, based on the temperature detectable range of the temperature detecting device 2.
- the number of areas in which the temperature detection device 2 detects the temperature may be 2 or more. That is, the number of the areas may be appropriately determined according to the size and structure of the indoor space.
- the temperature detection device 2 transmits the detected temperatures of the areas A, B, and C to the remote controller 1 via the wireless communication path 6a.
- the communication between the temperature detection device 2 and the remote controller 1 is wireless communication.
- the communication method of the wireless communication is, for example, BlueTooth (registered trademark), BLE (BlueTooth (registered trademark) Low Energy), Wi-Fi, or the like.
- the blower device 3 blows air to each of the plurality of areas A, B, and C.
- the blower device 3 is, for example, an axial fan composed of a propeller fan and a motor.
- the blower 3 blows air in a direction parallel to the axial direction.
- the blower 3 may be installed inside or outside each of the areas A, B, and C. Further, the blower 3 may be a wall-mounted type installed on the wall surface of the indoor space, or may be a floor-standing type installed on the floor surface of the indoor space.
- the blower 3 is controlled by the remote controller 1.
- a second control signal is transmitted from the remote controller 1 to the blower device 3 via the wireless communication path 6b.
- the blower device 3 is switched between operation and stop in response to the second control signal.
- blower device 3 may control the wind direction, the air volume, and the like by the second control signal.
- the communication between the blower 3 and the remote controller 1 is wireless communication.
- the communication method of the wireless communication is, for example, BlueTooth (registered trademark), BLE, Wi-Fi, or the like.
- FIG. 2 is a refrigerant circuit diagram showing the configuration of the indoor unit 4 and the outdoor unit 5 of the air conditioning system according to the first embodiment. As shown in FIG. 2, the indoor unit 4 is connected to the outdoor unit 5 by a refrigerant pipe 60.
- the indoor unit 4 includes an indoor heat exchanger 41.
- the indoor heat exchanger 41 exchanges heat between the refrigerant circulating inside and the air in the indoor space.
- the indoor heat exchanger 41 is, for example, a fin-and-tube heat exchanger.
- the indoor heat exchanger 41 functions as a condenser when the air conditioning system is in the heating operation and as an evaporator during the cooling operation.
- the outdoor unit 5 includes an outdoor heat exchanger 51, a compressor 52, a flow path switching device 53, an expansion valve 54, and a control unit 55.
- the outdoor unit 5 may further include other components such as an accumulator.
- the outdoor heat exchanger 51 exchanges heat between the refrigerant circulating inside and the outdoor air.
- the outdoor heat exchanger 51 is, for example, a fin-and-tube heat exchanger.
- the outdoor heat exchanger 51 functions as a condenser when the air conditioning system is in the cooling operation and as an evaporator during the heating operation.
- the compressor 52 sucks in a low-pressure gas refrigerant, compresses it, and discharges it as a high-pressure gas refrigerant.
- the compressor 52 for example, an inverter compressor that can change the amount of the refrigerant delivered per unit time by controlling an inverter circuit or the like may be used.
- the inverter circuit is mounted on, for example, the control unit 55, or is communicably connected to the control unit 55 and controlled by the control unit 55.
- the expansion valve 54 decompresses the inflowing liquid refrigerant by a squeezing action and flows out so that the refrigerant liquefied by the condenser can be easily evaporated by the evaporator. Further, the expansion valve 54 adjusts the amount of refrigerant so as to maintain an appropriate amount of refrigerant according to the load of the evaporator.
- the expansion valve 54 is composed of, for example, an electronic expansion valve.
- the opening degree of the expansion valve 54 is controlled by the control unit 55. As shown in FIG. 2, the expansion valve 54 is connected between the outdoor heat exchanger 51 and the indoor heat exchanger 41 by a refrigerant pipe 60.
- the flow path switching device 53 is a valve for switching the flow direction of the refrigerant.
- the flow path switching device 53 is composed of, for example, a four-way valve.
- the flow path switching device 53 is switched between the case where the air conditioning system is in the cooling operation and the case where it is in the heating operation under the control of the control unit 55.
- the air conditioning system is in the cooling operation
- the flow path switching device 53 is in the state shown by the solid line in FIG. 2, and the refrigerant discharged from the compressor 52 flows into the outdoor heat exchanger 51.
- the flow path switching device 53 is in the state shown by the broken line in FIG. 2, and the refrigerant discharged from the compressor 52 flows into the indoor heat exchanger 41 of the indoor unit 4.
- the refrigerant pipe 60 constitutes a refrigerant circuit by connecting a compressor 52, a flow path switching device 53, an outdoor heat exchanger 51, an expansion valve 54, and an indoor heat exchanger 41. is doing.
- the remote controller 1 includes a first control unit 11, a first wireless communication unit 12, a first wired communication unit 13, a first storage unit 14, a first operation unit 15, and a first. 1 Display unit 16 is provided.
- the first wireless communication unit 12 receives the temperature detected by the temperature detection device 2 from the temperature detection device 2 via the wireless communication path 6a. Further, the first wireless communication unit 12 transmits a second control signal, which will be described later, generated by the first control unit 11 to the blower device 3 via the wireless communication path 6b.
- the first wireless communication unit 12 is composed of, for example, a transmission / reception antenna and a signal processing circuit that processes a transmission signal and a reception signal.
- the first operation unit 15 is operated by the user, and setting information such as the set temperature, the wind direction, the air volume, and the operation mode for the indoor space is input.
- the first operation unit 15 is composed of, for example, a plurality of mechanical buttons and switches provided on the surface of the remote controller 1.
- the first operation unit 15 is not limited to this case, and any user interface that can receive instructions from the user can be applied.
- the first display unit 16 displays the setting information input to the first operation unit 15. Further, the first display unit 16 may display the temperature of each area detected by the temperature detection device 2.
- the first display unit 16 is composed of, for example, a liquid crystal screen.
- the plurality of buttons and switches constituting the first operation unit 15 may be composed of virtual buttons displayed on the screen of the first display unit 16. In that case, the first operation unit 15 and the first display unit 16 are integrated, and are composed of, for example, a touch panel.
- the first control unit 11 controls the operation of the entire remote controller 1.
- the first control unit 11 generates a first control signal for controlling the indoor unit 4 and the outdoor unit 5 based on the setting information input to the first operation unit 15.
- the first control unit 11 generates the first control signal based on the temperature received from the temperature detection device 2 by the first wireless communication unit 12.
- the first control unit 11 generates a second control signal for controlling the blower device 3 based on the temperature received by the first wireless communication unit 12 from the temperature detection device 2.
- the first control unit 11 is realized by a processing circuit.
- the processing circuit is dedicated hardware such as an ASIC (Application Specific Integrated Circuit) or FPGA (Field Programmable Gate Array), or an arithmetic unit such as a processor that executes a program stored in the memory constituting the first storage unit 14. , Or both.
- the first wired communication unit 13 transmits the first control signal generated by the first control unit 11 to the indoor unit 4 via the communication wiring 7a. A part of the first control signal is transmitted from the indoor unit 4 to the outdoor unit 5 via the communication wiring 7b.
- the first wired communication unit 13 is composed of, for example, a signal processing circuit that processes a transmission signal and an interface circuit connected to the communication wiring 7a.
- the first wired communication unit 13 may have a receiving function for receiving various signals such as failure information or outdoor air temperature from the indoor unit 4 or the outdoor unit 5.
- the first storage unit 14 stores the calculation result of the first control unit 11.
- the calculation result includes control information such as a first control signal and a second control signal.
- the first storage unit 14 stores the temperature of each area received from the temperature detection device 2 by the first wireless communication unit 12.
- the stored temperature may be time series data, or may be only the latest temperature.
- the first storage unit 14 stores the setting information input to the first operation unit 15.
- the first storage unit 14 is composed of a memory.
- the memory is composed of, for example, a non-volatile or volatile semiconductor memory such as a RAM (RandomAccessMemory), a ROM (ReadOnlyMemory), and a flash memory, a magnetic disk, a flexible disk, and the like.
- the temperature detection device 2 includes a second control unit 21, a temperature detection unit 22, and a second wireless communication unit 23.
- the second control unit 21 controls the operation of the entire temperature detection device 2.
- the second control unit 21 controls the operation of the temperature detection unit 22 and the second wireless communication unit 23.
- the temperature detection unit 22 detects the temperature of each area in the indoor space.
- the temperature detection unit 22 has a sensor element such as an infrared light receiving element that measures the temperature of an object in a non-contact manner.
- the temperature detection unit 22 is not limited to that case.
- the temperature detection unit 22 has a semiconductor element such as a thermistor whose resistance value changes with a temperature change, or a thermocouple whose electromotive force changes with a temperature change. You may.
- the second wireless communication unit 23 transmits the temperature detected by the temperature detection unit 22 to the first wireless communication unit 12 of the remote controller 1 via the wireless communication path 6a.
- the second wireless communication unit 23 includes, for example, a transmission / reception antenna and a signal processing circuit that processes a transmission signal and a reception signal.
- the blower device 3 includes a third control unit 31, a blower unit 32, and a third wireless communication unit 33.
- the third wireless communication unit 33 receives the second control signal from the first wireless communication unit 12 of the remote controller 1.
- the third wireless communication unit 33 transmits the received second control signal to the third control unit 31.
- the third wireless communication unit 33 includes, for example, a transmission / reception antenna and a signal processing circuit that processes a transmission signal and a reception signal.
- the blower 32 has a fan and a motor.
- the fan rotates when the motor operates.
- the rotation speed of the motor is controlled by the third control unit 31.
- the third control unit 31 controls the operation of the entire blower device 3.
- the third control unit 31 controls the operation of the blower unit 32 and the third wireless communication unit 33.
- the third control unit 31 switches the operation / stop of the blower 3 based on the second control signal received from the remote controller 1. Further, the third control unit 31 controls the rotation speed of the motor of the blower unit 32 based on the second control signal received from the remote controller 1.
- FIG. 3 is a configuration diagram showing the configuration of the entire air conditioning system according to the first embodiment.
- FIG. 4 is a diagram schematically showing an example of an indoor space in which the air conditioning harmonization system according to the first embodiment is installed.
- FIG. 4 is a side view of the indoor space.
- the air conditioning system has a plurality of blower devices 3 and a plurality of temperature detection devices 2.
- each of the plurality of blowers 3 is referred to as a blower 3a, a blower 3b, and a blower 3c.
- each of the plurality of temperature detection devices 2 is referred to as a temperature detection device 2a, a temperature detection device 2b, and a temperature detection device 2c. is doing.
- the temperature detection device 2a, the temperature detection device 2b, and the temperature detection device 2c each perform wireless communication with the remote controller 1 via the wireless communication path 6a.
- the blower 3a, the blower 3b, and the blower 3c each perform wireless communication with the remote controller 1 via the wireless communication path 6b.
- the interior space when the interior space is box-shaped, the interior space is a space partitioned by a ceiling, a floor surface, and four wall surfaces arranged between the ceiling and the floor surface. As described above, a plurality of areas A, B, and C are preset in the indoor space.
- the remote controller 1 is arranged in the indoor space.
- the remote controller 1 is arranged on the wall surface of the indoor space.
- the communication between the remote controller 1 and the indoor unit 4 may be made wireless communication so that the remote controller 1 can be attached to and detached from the wall surface in the room. Further, an indoor unit 4 is attached to the ceiling of the indoor space.
- a plurality of tables 8a, 8b and 8c are installed on the floor of the indoor space.
- the area where the table 8a is installed is the area A.
- the area where the table 8b is installed is the area B.
- the area where the table 8c is installed is the area C.
- the occupant 9a is at the table 8a
- the occupant 9c is at the table 8c.
- the occupants 9a and 9c are customers of the restaurant.
- the temperature detection device 2a is arranged in the area A
- the temperature detection device 2b is arranged in the area B
- the temperature detection device 2c is arranged in the area C.
- the temperature detection device 2a, the temperature detection device 2b, and the temperature detection device 2c may be arranged on the respective desks of the table 8a, the table 8b, and the table 8c.
- the temperature detection device 2a, the temperature detection device 2b, and the temperature detection device 2c may be arranged on the side surfaces of the table 8a, the table 8b, and the table 8c, respectively.
- the temperature detection device 2a detects the temperature of the air in the area A
- the temperature detection device 2b detects the temperature of the air in the area B
- the temperature detection device 2c detects the temperature of the air in the area C.
- a blower 3a, a blower 3b, and a blower 3c are arranged for Area A, Area B, and Area C, respectively.
- the blower 3a, blower 3b and blower 3c may be arranged on the desk of the table 8a, table 8b and table 8c, or arranged so as to face a part of the outer periphery of the table 8a, table 8b and table 8c. It may have been done.
- the blower 3a blows air to the area A
- the blower 3b blows air to the area B
- the blower 3c blows air to the area C.
- the air conditioning system configured as described above operates based on the setting information input to the remote controller 1 by the user during normal operation.
- the first threshold value is a fixed value, for example, 26 ° C.
- the first threshold value is not limited to this value, and may be appropriately changed depending on the season, outdoor temperature, and the like.
- the first threshold value may be variable. Specifically, the first threshold value may be updated based on the set temperature of the indoor unit 4. In that case, for example, a value higher than the set temperature of the indoor unit 4 by a certain temperature is set as the first threshold value. Assuming that the set temperature is 24 ° C. and the constant temperature is 2 ° C., the first threshold value is 26 ° C. In this case, when the detection temperature of the temperature detection device 2 is separated from the set temperature by a constant temperature (2 ° C.) or more, the first control unit 11 drives the blower device 3.
- FIG. 5 is a side view showing a case where at least one of the three temperature detection devices 2a, 2b and 2c exceeds the first threshold value in the air conditioning system according to the first embodiment.
- the case where the temperature of the air in the area C detected by the temperature detection device 2c exceeds the first threshold value is shown. That is, the temperature detection device 2c is a “threshold value exceeding temperature detection device”.
- the temperature of the air in the areas A and B detected by the temperature detection device 2a and the temperature detection device 2b is equal to or lower than the first threshold value. Therefore, the temperature detection devices 2a and 2b are not "threshold exceeding temperature detection devices”.
- the first control unit 11 of the remote controller 1 acquires the temperatures detected by the temperature detection devices 2a, 2b, and 2c, and determines the presence or absence of the "threshold exceeding temperature detection device" based on those temperatures. ..
- the temperature detection device 2c is a “threshold value exceeding temperature detection device”.
- the first control unit 11 generates a second control signal for the blower device 3c corresponding to the temperature detection device 2c with reference to the relationship table 100 shown in FIG. As a result, the blower device 3c starts operation.
- FIG. 6 is a diagram showing an example of a relationship table 100 that defines a correspondence relationship between a temperature detection device and a blower device in the air conditioning system according to the first embodiment. As shown in FIG.
- the correspondence between the first identification information of the temperature detection devices 2a, 2b and 2c and the second identification information of the blower devices 3a, 3b and 3c is provided for each of the areas A, B and C.
- the relationship is pre-registered.
- the relationship table 100 is stored in advance in the first storage unit 14 of the remote controller 1.
- the first identification information is unique identification information that identifies each of the temperature detection devices 2a, 2b, and 2c
- the second identification information is unique identification information that identifies each of the blower devices 3a, 3b, and 3c. Is.
- the first control unit 11 of the remote controller 1 counts the time from the time when the operation of the blower device 3c corresponding to the "threshold value exceeding temperature detection device" is started. Then, the first control unit 11 continuously stops the operation of the blower device 3c during the first time when the temperatures detected by the temperature detection devices 2a, 2b, and 2c are all equal to or lower than the first threshold value. Generate a second control signal. As a result, the blower device 3c stops operating.
- the first time is, for example, 5 minutes. However, the first time is not limited to 5 minutes and may be determined as appropriate. In the following description, in order to simplify the description, a case where the first time is set to 5 minutes will be described as an example.
- FIG. 7 is a flowchart showing a processing flow of the remote controller 1 of the air conditioning system according to the first embodiment.
- step S1 the first control unit 11 of the remote controller 1 acquires the temperatures detected by the temperature detection devices 2a, 2b, and 2c, respectively.
- step S2 the first control unit 11 determines whether or not there is a "threshold exceeding temperature detecting device" based on the temperatures detected by each of the temperature detecting devices 2a, 2b, and 2c. If there is a "threshold value exceeding temperature detection device", the process proceeds to step S3. Here, it is assumed that the temperature detection device 2c is a “threshold value exceeding temperature detection device”. On the other hand, if there is no “threshold value exceeding temperature detection device”, the process proceeds to step S4.
- step S3 the first control unit 11 extracts the blower device 3c corresponding to the temperature detection device 2c from the relationship table 100 shown in FIG.
- the first control unit 11 transmits a second control signal to the blower device 3c to operate the blower device 3c. After that, the process returns to the process of step S1.
- step S4 it is determined whether or not there is an operating blower among the blowers 3a, 3b and 3c. If there is no blower in operation, the process proceeds to step S7. On the other hand, if there is an operating blower, the process proceeds to step S5.
- step S5 the first control unit 11 determines whether or not 5 minutes have passed from the time when the operation of the blower device 3c was started in step S3. If 5 minutes have passed, the process proceeds to step S6. On the other hand, if 5 minutes have not passed, the process returns to step S1.
- step S6 the first control unit 11 stops the operating blower device 3c. Then, the process proceeds to step S7.
- step S7 the first control unit 11 changes the state of the air conditioning system and shifts to normal operation.
- the detection temperature exceeds the first threshold value based on the temperatures detected by the temperature detection devices 2a, 2b, and 2c by the first control unit 11 of the remote controller 1.
- the first control unit 11 drives the blower device 3c installed in the area C.
- the first control unit 11 again acquires the temperatures detected by the temperature detection devices 2a, 2b, and 2c.
- the first control unit 11 puts all the blowers 3a, 3b, and 3c into a stopped state. do.
- unevenness in temperature in the indoor space is eliminated.
- the locally hot area or the locally cold area disappears, so that comfort can be provided to all the occupants of the indoor space.
- the blower device 3c can be automatically operated by the control of the first control unit 11. Therefore, the occupants 9a and 9c of the areas A, B and C can blow air to the area C without operating the remote controller 1 and the blower devices 3a, 3b and 3c. Therefore, there is no workload for the occupants 9a and 9c.
- the blower when there is at least one over-threshold temperature detection device in which the temperature exceeds the first threshold value, the blower is applied to the area corresponding to the over-threshold temperature detection device. Blow air. As a result, the temperature of the area is lowered. As a result, the temperature of all areas can be kept below the first threshold. Therefore, the temperature unevenness in the indoor space is eliminated.
- convection is generated in the indoor space by blowing air from the blower to the area corresponding to the over-threshold temperature detection device.
- the high temperature air and the low temperature air are forcibly mixed, so that the temperature unevenness in the indoor space is quickly eliminated.
- the temperature of the indoor space reaches the set temperature quickly, so that cooling or heating can be performed efficiently. Therefore, the electric power consumed by the air conditioning system can be reduced, and an energy saving effect can be obtained.
- Embodiment 2 when there is a "threshold exceeding temperature detecting device", the first control unit 11 operates the blower devices 3a, 3b, and 3c corresponding to the "threshold exceeding temperature detecting device".
- the processing flow of the first embodiment shown in FIG. 7 will be referred to as a “blower operation processing flow”.
- the first control unit 11 when there is a "threshold value exceeding temperature detection device”, the first control unit 11 operates the blower devices 3a, 3b and 3c, and also controls the indoor unit 4.
- the processing flow of the second embodiment shown in FIG. 9, which will be described later, will be referred to as a “blower + indoor unit operation processing flow”.
- FIG. 8 is a side view showing a case where at least one of the three temperature detection devices 2a, 2b and 2c exceeds the first threshold value in the air conditioning system according to the second embodiment.
- the case where the temperature of the air in the area A and the area C detected by the temperature detecting devices 2a and 2c exceeds the first threshold value is shown.
- the temperature detection devices 2a and 2c are "threshold value exceeding temperature detection devices" in the indoor space.
- the first control unit 11 of the remote controller 1 operates the blower devices 3a and 3c corresponding to the temperature detection devices 2a and 2c with reference to the relationship table 100 of FIG.
- the first control unit 11 of the remote controller 1 controls the indoor unit 4. Specifically, the first control unit 11 of the remote controller 1 generates a command for lowering the set temperature of the indoor unit 4 by a preset constant value as the first control signal. The indoor unit 4 lowers the set temperature of the indoor unit 4 by a preset constant value in response to the first control signal.
- the constant value is determined in advance, for example, 0.5 ° C. or 1 ° C., and is set in advance in either the indoor unit 4 or the remote controller 1.
- the temperature detection devices 2a and 2c are "threshold value exceeding temperature detection devices". That is, the number of "threshold value exceeding temperature detection devices” is two. The total number of temperature detection devices 2 is three. Therefore, at present, the ratio of the number of "threshold value exceeding temperature detection devices” is 50% or more of the total. Therefore, the first control unit 11 of the remote controller 1 generates a first control signal that lowers the set temperature of the indoor unit 4 by a certain value.
- the first control unit 11 of the remote controller 1 restores the set temperature of the indoor unit 4. Further, the first control unit 11 of the remote controller 1 stops the blower devices 3a and 3c.
- FIG. 9 is a flowchart showing a processing flow of the remote controller 1 of the air conditioning system according to the second embodiment.
- step S10 the first control unit 11 of the remote controller 1 acquires the temperatures detected by the temperature detection devices 2a, 2b, and 2c, respectively.
- step S11 the first control unit 11 determines whether or not there is a "threshold value exceeding temperature detection device" in the temperature detection devices 2a, 2b, and 2c. If there is a "threshold value exceeding temperature detection device", the process proceeds to step S12. Here, it is assumed that the temperature detection devices 2a and 2c are “threshold value exceeding temperature detection devices”. On the other hand, if there is no “threshold value exceeding temperature detection device”, the process proceeds to step S16.
- step S12 the first control unit 11 extracts the blower devices 3a and 3c corresponding to the temperature detection devices 2a and 2c from the relationship table 100 shown in FIG.
- the first control unit 11 transmits a second control signal to the blower devices 3a and 3c to operate the blower devices 3a and 3c. After that, the process proceeds to step S13.
- step S13 the first control unit 11 determines whether or not the ratio of the number of "threshold exceeding temperature detection devices" is 50% or more of the total. If the ratio is 50% or more, the process proceeds to step S14. On the other hand, if the ratio is less than 50%, the process proceeds to step S15.
- step S14 the first control unit 11 lowers the set temperature of the indoor unit 4 by a preset constant value. Then, the process returns to step S10.
- step S15 the first control unit 11 changes the state of the air conditioning system and shifts to the blower operation flow of FIG. 7 shown in the first embodiment. At this time, if the set temperature of the indoor unit 4 has been lowered in step S14, the first control unit 11 restores the set temperature of the indoor unit 4.
- step S16 it is determined whether or not there is an operating blower device 3 among the blower devices 3a, 3b, and 3c. If there is no blower 3 in operation, the process proceeds to step S20. On the other hand, if there is a blower device 3 in operation, the process proceeds to step S17.
- step S17 the first control unit 11 determines whether or not 5 minutes have passed from the time when the operation of the blower device 3 was started in step S12. If 5 minutes have passed, the process proceeds to step S18. On the other hand, if 5 minutes have not passed, the process returns to step S10.
- step S18 the first control unit 11 restores the set temperature of the indoor unit 4. Then, the process proceeds to step S19.
- step S19 the first control unit 11 stops the operating blower device 3c. Then, the process proceeds to step S20.
- step S20 the first control unit 11 changes the state of the air conditioning system and shifts to normal operation.
- the first control unit 11 is assigned to the "threshold value exceeding temperature detecting device" as in the first embodiment. Operate the corresponding blowers 3a, 3b and 3c. Therefore, the same effect as that of the first embodiment can be obtained.
- the first control unit 11 only operates the blower devices 3a, 3b, and 3c when the ratio of the number of "threshold value exceeding temperature detection devices" is 50% or more of the total. It also controls the set temperature of the indoor unit 4. Therefore, the temperature unevenness of the indoor space can be eliminated, and the temperature of the indoor space can be quickly reached to the set temperature desired by the user.
- FIG. 10 is a state transition diagram showing the state transition of the air conditioning system according to the third embodiment.
- the air conditioning system has three states of a normal operating state 70, a blower operating state 71, and a blowing device + indoor unit operating state 72, and transitions between these states.
- Normal operation state 70 is a state in which the air conditioning system is performing normal operation. In the normal operating state 70, the air conditioning system operates based on the setting information input to the remote controller 1 by the user.
- the blower operation state 71 is a state in which the air conditioning system operates according to the blower operation flow shown in the first embodiment shown in FIG.
- the blower + indoor unit operating state 72 is a state in which the air conditioning system operates according to the blower + indoor unit operating flow shown in the second embodiment shown in FIG.
- the air conditioning system is normally in the normal operating state 70.
- the air conditioning system When the air conditioning system is in the normal operating state 70, if the ratio of the number of "threshold exceeding temperature detection devices" is 50% or more of the total, the air conditioning system shifts to the blower + indoor unit operating state 72.
- the air conditioning system when the air conditioning system is in the normal operating state 70, there is at least one "threshold exceeding temperature detecting device", and the ratio of the number of the "threshold exceeding temperature detecting devices" is less than 50% of the total. , The air conditioning system shifts to the blower operating state 71.
- the air conditioning system when the air conditioning system is in the blower operating state 71 and the ratio of the number of "threshold exceeding temperature detection devices" is 50% or more of the total, the air conditioning system is changed to the blower + indoor unit operating state 72. Transition.
- the air conditioning system when the air conditioning system is the blower + indoor unit operating state 72 and there is no "threshold exceeding temperature detecting device", the air conditioning system shifts to the normal operating state 70.
- FIG. 11 is a flowchart showing a processing flow of the remote controller 1 of the air conditioning system according to the third embodiment.
- the processing flow of the third embodiment shown in FIG. 11 will be referred to as a “normal operation processing flow”.
- step S21 the first control unit 11 of the remote controller 1 acquires the temperatures detected by the temperature detection devices 2a, 2b, and 2c, respectively.
- step S22 the first control unit 11 determines whether or not there is a "threshold value exceeding temperature detection device" in the temperature detection devices 2a, 2b, and 2c. If there is a "threshold value exceeding temperature detection device", the process proceeds to step S23. Here, it is assumed that the detection temperature of the temperature detection device 2a exceeds the first threshold value. On the other hand, if there is no “threshold value exceeding temperature detection device”, the process proceeds to step S28.
- step S23 the first control unit 11 extracts the blower device 3a corresponding to the temperature detection device 2a from the relationship table 100 shown in FIG.
- the first control unit 11 transmits a second control signal to the blower device 3a to operate the blower device 3a. After that, the process proceeds to step S24.
- step S24 the first control unit 11 determines whether or not the ratio of the number of "threshold value exceeding temperature detection devices" is 50% or more. If the ratio is 50% or more, the process proceeds to step S25. On the other hand, if the ratio is less than 50%, the process proceeds to step S27.
- step S25 the first control unit 11 lowers the set temperature of the indoor unit 4 by a preset constant value. Then, the process proceeds to step S26.
- step S26 the first control unit 11 changes the state of the air conditioning system and shifts to the blower + indoor unit operation processing flow of FIG.
- the process of step S14 may not be performed only for the first time.
- step S27 the first control unit 11 changes the state of the air conditioning system and shifts to the blower operation processing flow of FIG. 7.
- step S28 the first control unit 11 changes the state of the air conditioning system and controls the air Showa system to perform normal operation.
- the air conditioning system operates based on the setting information input by the user to the remote controller 1.
- the air conditioning system has a normal operation state 70, a blower operation state 71, and a blower + indoor unit operation state 72, depending on the situation. It shifts to one of the states.
- the first control unit 11 can control only the blower device 3, or can control both the blower device 3 and the indoor unit 4. Therefore, since only the necessary processing can be performed, the temperature unevenness in the indoor space can be quickly eliminated while suppressing the energy consumption.
- blower operation processing flow of FIG. 7 shown in the first embodiment and the blower + indoor unit operation processing flow of FIG. 9 shown in the second embodiment are performed. Therefore, the effect of the above-described first embodiment and the effect of the above-mentioned embodiment 2 can also be obtained.
- FIG. 12 is a side view schematically showing an example of the state of the room in which the air conditioning harmonization system according to the fourth embodiment is installed.
- the presence or absence of the occupants 9a and 9c is not considered, but in the fourth embodiment, the first control unit 11 of the remote controller 1 determines the occupants 9a and 9c.
- the first control unit 11 determines the detection temperatures of the temperature detection devices 2a, 2b and 2c, the ratio of the number of "threshold value exceeding temperature detection devices", and the presence or absence of a resident. Transition the state of the air conditioning system.
- the state includes a normal operation state 70, a blower operation state 71, and a blower + indoor unit operation state 72.
- a person detection device 10 is provided for each of the areas A, B, and C.
- the person detection device 10 detects occupants in each of the plurality of areas A, B, and C.
- the human detection device 10 is, for example, a motion sensor.
- each of the plurality of person detection devices 10 is referred to as a person detection device 10a, a person detection device 10b, and a person detection device 10c in FIG.
- the person detection device 10a detects a resident in the area A.
- the person detection device 10b detects a resident in the area B.
- the person detection device 10c detects a resident in the area C.
- the human detection devices 10a, 10b and 10c may be composed of, for example, an infrared sensor such as a thermopile sensor.
- the first control unit 11 processes the two-dimensional image taken by the infrared sensor to determine the presence or absence of a resident based on the color, size, shape, characteristics, etc. of the object in the image. do.
- one infrared sensor can monitor the entire indoor space, one person detection device 10 can detect the occupants of each of the plurality of areas A, B, and C. It is possible. Therefore, the number of the person detection devices 10 may be one or a plurality.
- the human detection devices 10a, 10b, and 10c are not limited to this case, and may be image sensors such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal-Oxide Semiconductor).
- the first control unit 11 processes the two-dimensional image captured by the image sensor to determine the presence or absence of a resident based on the size, shape, features, and the like of the object in the image. Further, in this case, since one image sensor can monitor the entire indoor space, one person detection device 10 can detect the occupants of each of the plurality of areas A, B, and C. It is possible. Therefore, the number of the person detection devices 10 may be one or a plurality.
- FIG. 13 is a diagram showing an example of a second relationship table 100A that defines the correspondence relationship between the temperature detection device 2, the blower device 3, and the person detection device 10 in the air conditioning system according to the fourth embodiment.
- the first identification information of the temperature detection devices 2a, 2b and 2c is associated with the second identification information of the blower devices 3a, 3b and 3c for each area. It is registered in advance.
- the first identification information of the temperature detection devices 2a, 2b and 2c and the third identification information of the person detection devices 10a, 10b and 10c are provided for each area. It is associated and registered in advance.
- the second relation table 100A is stored in advance in the first storage unit 14 of the remote controller 1.
- the first identification information is identification information that identifies each of the temperature detection devices 2a, 2b, and 2c
- the second identification information is identification information that identifies each of the blower devices 3a, 3b, and 3c.
- the third identification information is identification information that identifies each of the human detection devices 10a, 10b, and 10c.
- all three temperature detection devices 2a, 2b, and 2c are "threshold value exceeding temperature detection devices".
- the person detection device 10a detects the occupants 9a in the area A
- the person detection device 10c detects the occupants 9c in the area C.
- the first control unit 11 first acquires the detection results of the person detection devices 10a, 10b, and 10c corresponding to the "threshold value exceeding temperature detection device". From the detection result, the first control unit 11 determines that the person detection devices 10a and 10c have detected the occupants 9a and 9c. The first control unit 11 operates the blower devices 3a and 3c corresponding to the person detection devices 10a and 10c with reference to the second relation table 100A.
- the first control unit 11 determines whether or not the ratio of the number of "threshold exceeding temperature detection devices" is 50% or more of the total.
- the first control unit 11 generates a command for lowering the set temperature of the indoor unit 4 by a certain value as the first control signal when the ratio of the number of "threshold exceeding temperature detection devices" is 50% or more. It is transmitted to the indoor unit 4.
- the first control unit 11 restores the set temperature of the indoor unit 4. Further, the first control unit 11 stops the blower devices 3a and 3c.
- FIG. 14 is a state transition diagram showing the state transition of the air conditioning system according to the fourth embodiment.
- the air conditioning system has three states of a normal operating state 70, a blower operating state 71, and a blowing device + indoor unit operating state 72, and transitions between these states. Since these states have been described in the third embodiment, the description thereof will be omitted here.
- the air conditioning system is in the normal operating state 70 at the normal time.
- the air conditioning system When the air conditioning system is in the normal operating state 70, the number of "exceeding threshold temperature detectors" is 50% or more of the total, and the occupants 9a and the area corresponding to the "exceeding threshold temperature detectors" When 9c is present, the air conditioning system shifts to the blower + indoor unit operating state 72.
- the air conditioning system when the air conditioning system is in the normal operating state 70, at least one of the temperature detection devices 2a, 2b and 2c is a "threshold exceeding temperature detecting device", and the ratio of the number of "threshold exceeding temperature detecting devices" is 50. It is assumed to be less than%. At this time, if the occupants 9a and 9c are present in the area corresponding to the "threshold exceeding temperature detecting device", the air conditioning system shifts to the blower operating state 71.
- the air conditioning system when the air conditioning system is in the blower operating state 71, the number of "threshold exceeding temperature detecting devices" is 50% or more of the total, and the room is in the area corresponding to the "threshold exceeding temperature detecting device". In the presence of persons 9a and 9c, the air conditioning system transitions to the blower + indoor unit operating state 72.
- the air conditioning system when the air conditioning system is the blower + indoor unit operating state 72 and there is no "threshold exceeding temperature detecting device", the air conditioning system shifts to the normal operating state 70.
- FIG. 15 is a flowchart showing a processing flow of the remote controller 1 of the air conditioning system according to the fourth embodiment.
- the processing flow of the fourth embodiment shown in FIG. 15 will be referred to as a “second normal operation processing flow”.
- step S30 the first control unit 11 of the remote controller 1 acquires the temperatures detected by the temperature detection devices 2a, 2b, and 2c, respectively.
- step S31 the first control unit 11 determines whether or not there is a "threshold value exceeding temperature detection device" in the temperature detection devices 2a, 2b, and 2c. If there is a "threshold value exceeding temperature detection device", the process proceeds to step S32. Here, it is assumed that the detection temperatures of the temperature detection devices 2a, 2b, and 2c exceed the first threshold value. On the other hand, if there is no “threshold value exceeding temperature detection device”, the process proceeds to step S39.
- step S32 the first control unit 11 extracts the person detection devices 10a, 10b, and 10c corresponding to the temperature detection devices 2a, 2b, and 2c from the second relation table 100A shown in FIG. In addition, the first control unit 11 acquires the detection results of those person detection devices 10a, 10b, and 10c. After that, the process proceeds to step S33.
- step S33 the first control unit 11 detects the occupants 9a and 9c from the person detection devices 10a, 10b and 10c based on the detection results of the person detection devices 10a, 10b and 10c.
- the detection devices 10a and 10c are selected.
- step S34 the first control unit 11 operates the blower devices 3a and 3c corresponding to the selected person detection devices 10a and 10c with reference to the second relation table 100A shown in FIG. Then, the process proceeds to step S35.
- step S35 the first control unit 11 determines whether or not the ratio of the number of "threshold value exceeding temperature detection devices" is 50% or more. If the ratio is 50% or more, the process proceeds to step S36. On the other hand, if the ratio is less than 50%, the process proceeds to step S38.
- step S36 the first control unit 11 lowers the set temperature of the indoor unit 4 by a preset constant value. Then, the process proceeds to step S37.
- step S37 the first control unit 11 changes the state of the air conditioning system and shifts to the blower + indoor unit operation processing flow of FIG.
- the process of step S14 may not be performed only for the first time.
- step S38 the first control unit 11 changes the state of the air conditioning system and shifts to the blower operation processing flow of FIG. 7.
- step S39 the first control unit 11 controls the first control unit 11 to change the state of the air conditioning system so that the air Showa system performs normal operation.
- the air conditioning system operates based on the setting information input by the user to the remote controller 1.
- the blower device 3 corresponding to the "threshold value exceeding temperature detecting device” is provided as in the first to third embodiments. To run. Therefore, the same effect as that of the first to third embodiments can be obtained.
- the blower device 3 is operated and the set temperature of the indoor unit 4 is lowered by a certain value.
- the temperature unevenness of the indoor space can be eliminated, and the temperature of the indoor space can be quickly reached to the set temperature desired by the user.
- the person detection devices 10a, 10b and 10c are provided for each of the areas A, B and C.
- the blower device 3 is not operated, which saves energy.
- the indoor space is inside a restaurant is taken as an example, but the present invention is not limited to this.
- the indoor space may be, for example, an office, a production line of a factory, a classroom, a conference room, a hall, or the like, and it goes without saying that the air conditioning system according to the above-described first to fourth embodiments can be used in other environments.
- the blower device 3 is a propeller fan
- the blower 3 may be composed of a centrifugal fan.
- the blower 3 may be composed of a ceiling-mounted circulator or a floor-standing circulator.
- the wind direction of the blower device 3 is fixed.
- the wind direction of the blower 3 may be variable.
- the wind direction of the blower device 3 may be changed based on the detection results of the person detection devices 10a, 10b, and 10c. Specifically, when there are occupants 9a and 9c, the blower devices 3a and 3c blow air toward the occupants 9a and 9c. Further, when there are no occupants 9a and 9c, the wind directions of the blowers 3a, 3b and 3c so that the blowers 3a, 3b and 3c can blow air toward the entire areas A, B and C, respectively.
- the wind directions of the blowers 3a, 3b and 3c may be swung up and down.
- the top and bottom are, for example, the vertical direction
- the left and right are, for example, the horizontal direction perpendicular to the vertical direction.
- a plurality of levels may be further provided for the difference between the detection temperature of the temperature detection device 2 and the set temperature of the indoor unit 4.
- the blowing mode and the air volume of the blowing device 3 may be changed according to the level.
- the ventilation mode includes wind blowing, wind protection, and the like.
- the wind direction is a mode in which the wind direction is adjusted so as to blow the wind to the occupants
- the wind shield is a mode in which the wind direction is adjusted so that the occupants are not directly exposed to the wind.
- the level is set to 5 levels
- the case where the difference between the detection temperature of the temperature detection device 2 and the set temperature of the indoor unit 4 is 5 ° C. is defined as level 5.
- the case where the difference is 4 ° C. is defined as level 4
- the case where the difference is 3 ° C. is defined as level 3
- the case where the difference is 2 ° C. is defined as level 2
- the case where the difference is 1 ° C. is defined as level 1. .
- the first control unit 11 relies on the blowing mode of the blowing device 3 and sets the air volume to a large value.
- the first control unit 11 sets the blowing mode of the blowing device 3 to the windbreak and reduces the air volume.
- the first control unit 11 sets the blowing mode of the blowing device 3 to the air and sets the air volume to the middle.
- the wind direction of the indoor unit 4 may be changed.
- the first control unit 11 can blow air only toward the area where the occupants exist. , The wind direction of the indoor unit 4 may be changed.
- the first control unit 11 blows air from the blower device 3. You may swing it. As a result, all the occupants 9 in the area can be targeted for ventilation from the blower device 3.
- the person detection device 10 when the person detection device 10 is an infrared sensor such as a thermopile sensor, the person detection device 10 detects the presence or absence of the occupant 9 and the surface temperature of the occupant 9. Can also be detected. In that case, the first control unit 11 may change the operating state of the blower 3 based on the detected surface temperature. That is, the first control unit 11 adjusts the wind direction of the blower 3 so as to direct the occupant 9 having a high surface temperature. Further, when the person detection device 10 can detect the gender, body shape, etc. of the occupant 9, even if the first control unit 11 reflects the information in the control of the blower 3 or the indoor unit 4. good. Further, when the person detection device 10 can detect the sunshine state in the indoor space, the first control unit 11 may reflect the information on the sunshine state in the control of the blower device 3 or the indoor unit 4. The information on the sunshine state is information indicating whether the sunlight is good or bad.
- the first control unit 11 recognizes that the detected occupant 9 is a person who came from the outside.
- the first control unit 11 relies on the air blowing mode of the air blowing device 3 and sets the air volume to a large value to blow air to the occupant 9.
- the ventilation is continuously performed for a certain period of time. As a result, the surface temperature of the occupant 9 is lowered.
- the first control unit 11 may perform the ventilation regardless of the difference between the detection temperature of the temperature detection device 2 and the set temperature of the indoor unit 4.
- a level dedicated to summer may be set separately from the above level setting. In that case, even if the difference between the detected temperature of the temperature detecting device 2 and the set temperature of the indoor unit 4 is small, the first control unit 11 relies on the blowing mode of the blowing device 3 and sets the air volume to a large value. Then, the air is blown to the occupant 9. That is, the level dedicated to summer is, for example, level 5 when the difference between the detection temperature of the temperature detection device 2 and the set temperature of the indoor unit 4 is 2 ° C. when the level is set to 5 levels.
- the case where the difference is 1.5 ° C. is set to level 4
- the case where the difference is 1 ° C. is set to level 3
- the case where the difference is 0.5 ° C. is set to level 2
- the case where the difference is 0 ° C. is set.
- Level 1 The modified example can be applied to the case where the outdoor air temperature is higher than the constant temperature in the summer and the surface temperature of the occupant detected by the person detection device 10 is higher than the constant value. ..
- the air conditioning system according to the first to fourth embodiments can also be applied to the case of performing the heating operation.
- the first control unit 11 determines whether or not there is a temperature detection device whose detection temperature is lower than the first threshold value.
- step S11 of FIG. 9, step S22 of FIG. 11, and step S31 of FIG. Therefore, the description of the first to fourth embodiments will be referred to by replacing the "exceeding threshold temperature detecting device" with the "temperature detecting device below the threshold value".
- the blower 3 has a built-in heater.
- the first control unit 11 turns on the power of the heater and sends warm air from the blower device 3 to the areas A, B, and C.
- the blower 3 may be composed of a hot air blower that supplies hot air. Other configurations and operations are the same as during cooling, and thus description thereof will be omitted.
- the first control unit 11 recognizes that the detected occupant 9 is a person who came from the outside.
- the first control unit 11 turns on the power of the heater of the blower device 3, sets the blower mode to the wind, sets the air volume to a large value, and blows warm air to the occupant 9.
- the ventilation is continuously performed for a certain period of time. As a result, the surface temperature of the occupant 9 rises.
- the first control unit 11 may perform the ventilation regardless of the difference between the detection temperature of the temperature detection device 2 and the set temperature of the indoor unit 4.
- a level dedicated to winter may be set separately from the above level setting. In that case, even if the difference between the detected temperature of the temperature detecting device 2 and the set temperature of the indoor unit 4 is small, the first control unit 11 relies on the blowing mode of the blowing device 3 and sets the air volume to a large value. Then, warm air is blown to the occupant 9. That is, the level dedicated to winter is, for example, level 5 when the difference between the detection temperature of the temperature detection device 2 and the set temperature of the indoor unit 4 is 2 ° C. when the level is set to 5 levels.
- the case where the difference is 1.5 ° C. is set to level 4
- the case where the difference is 1 ° C. is set to level 3
- the case where the difference is 0.5 ° C. is set to level 2
- the case where the difference is 0 ° C. is set.
- Level 1 The modified example can be applied to the case where the outdoor air temperature is lower than the constant temperature in winter and the surface temperature of the occupant 9 detected by the person detection device 10 is lower than the constant value. be.
- FIG. 16 is a side view schematically showing an example of the state of the room in which the air conditioning harmonization system according to the modified examples of the first to fourth embodiments is installed.
- the message in the summer, for example, "Because the temperature is high, we are sending cold air. If the temperature drops, it will stop automatically.” In the winter, for example, "Because the temperature is low.” , We are sending warm air. If the temperature drops, it will stop automatically.
- the screens of the tablets 80a, 80b and 80c are displayed as “hot”, “cold”, “wind contact”, “wind shield”, and “wind protection”.
- An operation menu such as “Stop” may be displayed.
- the occupant 9 can fine-tune the drive system of the blower 3 by using the operation menu.
- the first control unit 11 controls the blower 3 or the indoor unit 4 based on the information input to the tablets 80a, 80b and 80c by the occupant 9 using the operation menu.
- buttons or switches such as "hot”, “cold”, “wind cover”, “wind shield” and “stop” are placed on the tables 8a, 8b and 8c. May be provided.
- the first control unit 11 controls the blower 3 or the indoor unit 4 based on the information input by the occupant 9 using the button or the switch.
- the microphones 81a, 81b and 81c shown in FIG. 16 may be provided on the tables 8a, 8b and 8c.
- the first control unit 11 controls the operation of the blower device 3 based on the sound information collected by the microphones 81a, 81b and 81c by using voice recognition or the like.
- the operation includes switching between operation / stop of the blower device 3, wind direction, air volume, and the like.
- the first control unit 11 stores the voice pattern in the first storage unit 14 in advance.
- the first control unit 11 analyzes the sound collected by the microphones 81a, 81b and 81c using the pattern.
- the first control unit 11 raises the set temperature of the indoor unit 4 or blows air.
- Set the ventilation mode of the device 3 to the windbreak, or reduce the air volume of the ventilation device 3. Examples of the sound emitted when the occupant 9 feels that the room temperature is cold include the sound of the occupant 9 rubbing his body, the sound of snorting, and the voice of "cold".
- the first control unit 11 lowers the set temperature of the indoor unit 4 or blows air.
- the blow mode of the device 3 is set to the wind, or the air volume of the blow device 3 is increased.
- Examples of the sound emitted when the occupant 9 feels that the room temperature is hot include the sound of the occupant 9 drinking a glass of water and the voice of "hot".
- both the tablet 80 and the microphone 81 are installed on the tables 8a, 8b, and 8c. However, not limited to this case, either the tablet 80 or the microphone 81 may be installed.
- the blower device 3 is stopped when the first hour has elapsed from the start of the operation of the blower device 3 has been described.
- the blower device 3 may be stopped based on the temperature detected by the temperature detection device 2.
- the first control unit 11 uses the blower device 3 Stop it.
- the specific processing flow is a processing flow in which step S5 of the processing flow of FIG. 7 is deleted, and similarly, a processing flow in which step S17 of the processing flow of FIG. 9 is deleted.
- 1 remote controller 2 temperature detector, 2a temperature detector, 2b temperature detector, 2c temperature detector, 3 blower, 3a blower, 3b blower, 3c blower, 4 indoor unit, 5 outdoor unit, 6a wireless Communication path, 6b wireless communication path, 7a communication wiring, 7b communication wiring, 8a table, 8b table, 8c table, 9 occupants, 9a occupants, 9c occupants, 10 people detection device, 10a person detection device, 10b person detection device, 10c person detection device, 11 1st control unit, 12 1st wireless communication unit, 13 1st wired communication unit, 14 1st storage unit, 15 1st operation unit, 16 1st display unit, 21st 2 control unit, 22 temperature detection unit, 23 second wireless communication unit, 31 third control unit, 32 blower unit, 33 third wireless communication unit, 41 indoor heat exchanger, 51 outdoor heat exchanger, 52 compressor , 53 Flow path switching device, 54 expansion valve, 55 control unit, 60 refrigerant piping, 70 normal operation state, 71 blower operation state, 72
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
空気調和システムは、室内空間に設置された室内ユニットと、前記室内空間の外部に設置され、前記室内ユニットに冷媒配管を介して接続された室外ユニットと、前記室内空間の複数のエリアのそれぞれの温度を検出する温度検出装置と、前記複数のエリアのそれぞれに対する送風を行う複数の送風装置と、前記温度検出装置が検出した前記温度に基づいて前記送風装置の動作を制御するリモートコントローラとを備え、前記リモートコントローラは、前記エリアごとに前記温度検出装置と前記送風装置との対応関係を定義した関係テーブルを有し、前記温度検出装置の中に、検出した前記温度が第1閾値を超えている閾値超え温度検出装置が有る場合に、前記関係テーブルを参照して、前記閾値超え温度検出装置に対応する前記送風装置に対して、送風を開始させる制御信号を送信する。
Description
本開示は、室内空間に設置された送風装置を有する空気調和システムに関する。
空気調和システムが、オフィスなどの広い室内空間を制御対象とする場合、当該室内空間において温度ムラをなくすことは難しい。
従来の空気調和システムにおいては、在室者が使用する机上の各パーソナルコンピュータに、温度センサを取り付けている(例えば、特許文献1参照)。当該温度センサは、在室者の顔面温度または指先温度を検出する。また、各在室者に送風するための個別ファンが、パーソナルコンピュータに取り付けられている。空気調和システムの制御部には、予め、各在室者が快適と感じる顔面温度または指先温度が、中立温感時温度として記憶されている。制御部は、各温度センサの温度検出値と中立温感時温度との偏差に応じて、個別ファンの動作を制御する。
しかしながら、上記の特許文献1に記載の従来の空気調和システムにおいては、制御部が、各在室者が快適と感じる顔面温度または指先温度に基づいて、個別ファンにより各在室者に対して送風を行っている。そのため、各在室者に快適性を与えることができるが、室内空間全体の温度ムラを解消することはできないという課題があった。
本開示は、かかる課題を解決するためになされたものであり、室内空間全体の温度ムラの解消を図ることが可能な、空気調和システムを得ることを目的としている。
本開示に係る空気調和システムは、室内空間に設置された室内ユニットと、前記室内空間の外部に設置され、前記室内ユニットに冷媒配管を介して接続された室外ユニットと、前記室内空間の複数のエリアのそれぞれの温度を検出する温度検出装置と、前記複数のエリアのそれぞれに対する送風を行う複数の送風装置と、前記温度検出装置が検出した前記温度に基づいて前記送風装置の動作を制御するリモートコントローラとを備え、前記リモートコントローラは、前記エリアごとに前記温度検出装置と前記送風装置との対応関係を定義した関係テーブルを有し、前記温度検出装置の中に、検出した前記温度が第1閾値を超えている閾値超え温度検出装置が有る場合に、前記関係テーブルを参照して、前記閾値超え温度検出装置に対応する前記送風装置に対して、送風を開始させる制御信号を送信するものである。
本開示に係る空気調和システムによれば、室内空間全体の温度ムラの解消を図ることができる。
以下、本開示に係る空気調和システムの実施の形態について図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の実施の形態およびその変形例に示す構成のうち、組み合わせ可能な構成のあらゆる組み合わせを含むものである。また、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。なお、各図面では、各構成部材の相対的な寸法関係または形状等が実際のものとは異なる場合がある。
実施の形態1.
図1は、実施の形態1に係る空気調和システムの構成を示した概略ブロック図である。図1に示すように、空気調和システムは、リモートコントローラ1と、温度検出装置2と、送風装置3と、室内ユニット4と、室外ユニット5とを備えている。空気調和システムは、対象となる室内空間の空調を行う。なお、室内空間は、例えば、飲食店の店内である。
図1は、実施の形態1に係る空気調和システムの構成を示した概略ブロック図である。図1に示すように、空気調和システムは、リモートコントローラ1と、温度検出装置2と、送風装置3と、室内ユニット4と、室外ユニット5とを備えている。空気調和システムは、対象となる室内空間の空調を行う。なお、室内空間は、例えば、飲食店の店内である。
リモートコントローラ1は、室内ユニット4に、通信配線7aを介して電気的に接続されている。リモートコントローラ1には、ユーザから、室内空間に対する設定温度、風向、風速、および、運転モードなどの設定情報が入力される。ここで、当該ユーザは、例えば、飲食店の店員である。また、運転モードには、少なくとも冷房運転と暖房運転との運転モードが含まれる。リモートコントローラ1は、当該設定情報に基づいて第1の制御信号を生成して、当該第1の制御信号を通信配線7aを介して室内ユニット4に送信する。リモートコントローラ1と室内ユニット4との間の通信は、通信配線7aを使用する有線通信である。また、室内ユニット4は、室外ユニット5に、通信配線7bを介して電気的に接続されている。リモートコントローラ1に入力された第1の制御信号の少なくとも一部分は、室内ユニット4および通信配線7bを介して、室外ユニット5に送信される。室内ユニット4と室外ユニット5との間の通信は、通信配線7bを使用する有線通信である。なお、室内ユニット4と室外ユニット5との間の通信は、この場合に限らず、無線通信でもよい。
温度検出装置2は、室内空間の空気の温度を検出する。室内空間は、後述する図4に示すように、複数のエリアA、BおよびCを有している。温度検出装置2は、複数のエリアA、BおよびCのそれぞれの温度を検出する。温度検出装置2は、室内空間のエリアごとの室温が検出できる温度センサであればよく、例えば、デジタル温度センサである。温度検出装置2がデジタル温度センサの場合は、複数のエリアA、BおよびCのそれぞれに温度検出装置2を設置する。従って、温度検出装置2の個数は複数である。また、温度検出装置2として、サーモパイルセンサなどの赤外線センサを用いてもよい。その場合には、温度検出装置2が、室内空間全体をモニタすることができるので、1つの温度検出装置2で複数のエリアA、BおよびCのそれぞれの温度を検出することが可能である。この場合、リモートコントローラ1が、赤外線センサで撮影した2次元画像データ内の色に基づいて、複数のエリアA、BおよびCの温度を検出する。このように、温度検出装置2の個数は、1個でもよく、複数個でもよい。また、複数のエリアA、BおよびCは、壁などによって仕切られておらず、互いに連通している。複数のエリアA、BおよびCは、例えば、温度検出装置2の温度検出可能範囲に基づいて、予め設定される。温度検出装置2が温度を検出するエリアの個数は、2以上であればよい。すなわち、室内空間の広さおよび構造などに応じて、当該エリアの個数を適宜決定すればよい。温度検出装置2は、検出した各エリアA、BおよびCの温度を、無線通信路6aを介して、リモートコントローラ1に送信する。温度検出装置2とリモートコントローラ1との間の通信は、無線通信である。当該無線通信の通信方式は、例えば、BlueTooth(登録商標)、BLE(BlueTooth(登録商標) Low Energy)、または、Wi-Fiなどである。
送風装置3は、複数のエリアA、BおよびCのそれぞれに対して、送風を行う。送風装置3は、例えば、プロペラファンとモータとから構成された軸流ファンである。送風装置3は、軸方向に平行な向きに空気を送り出す。送風装置3は、各エリアA、BおよびCの内側に設置されていてもよく、外側に設置されていてもよい。また、送風装置3は、室内空間の壁面に設置される壁掛け型でもよく、室内空間の床面に設置される床置き型のものでもよい。送風装置3は、リモートコントローラ1により制御される。送風装置3には、無線通信路6bを介して、リモートコントローラ1から、第2の制御信号が送信される。送風装置3は、第2の制御信号に応じて、稼働/停止の切り替えが行われる。さらに、送風装置3は、第2の制御信号により、風向または風量などが制御されてもよい。送風装置3とリモートコントローラ1との間の通信は、無線通信である。当該無線通信の通信方式は、例えば、BlueTooth(登録商標)、BLE、または、Wi-Fiなどである。
室内ユニット4は室内空間に設置される。室外ユニット5は屋外に設置される。図2は、実施の形態1に係る空気調和システムの室内ユニット4と室外ユニット5との構成を示した冷媒回路図である。室内ユニット4は、図2に示すように、冷媒配管60により、室外ユニット5に接続される。
図2に示すように、室内ユニット4は、室内側熱交換器41を備えている。室内側熱交換器41は、内部を流通する冷媒と室内空間の空気との間の熱交換を行う。室内側熱交換器41は、例えばフィンアンドチューブ型熱交換器である。室内側熱交換器41は、空気調和システムが暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。
また、図2に示すように、室外ユニット5は、室外側熱交換器51と、圧縮機52と、流路切替装置53と、膨張弁54と、制御部55とを備えている。室外ユニット5は、さらに、アキュムレータなどの他の構成部品を備えていてもよい。
室外側熱交換器51は、内部を流通する冷媒と屋外の空気との間の熱交換を行う。室外側熱交換器51は、例えば、フィンアンドチューブ型熱交換器である。室外側熱交換器51は、空気調和システムが冷房運転時には凝縮器として機能し、暖房運転時には蒸発器として機能する。
圧縮機52は、低圧のガス冷媒を吸入して圧縮し、高圧のガス冷媒として吐出する。圧縮機52としては、例えば、インバータ回路などの制御により単位時間あたりに送り出す冷媒の量を変化させることができるインバータ圧縮機を用いてもよい。その場合、インバータ回路は、例えば制御部55に搭載されるか、あるいは、制御部55と通信可能に接続され、制御部55によって制御される。
膨張弁54は、凝縮器で液化した冷媒を蒸発器で蒸発しやすいように、流入された液冷媒を絞り作用により減圧させて流出する。また、膨張弁54は、蒸発器の負荷に応じた適切な冷媒量を維持するように、冷媒量を調整する。膨張弁54は、例えば、電子膨張弁から構成される。膨張弁54の開度は、制御部55により制御される。膨張弁54は、図2に示すように、室外側熱交換器51と室内側熱交換器41との間に冷媒配管60により接続されている。
流路切替装置53は、冷媒の流れる方向を切り替えるための弁である。流路切替装置53は、例えば四方弁から構成される。流路切替装置53は、制御部55の制御により、空気調和システムが冷房運転の場合と暖房運転の場合とで切り替えられる。空気調和システムが冷房運転時には、流路切替装置53は、図2の実線で示される状態になり、圧縮機52から吐出された冷媒が室外側熱交換器51に流入する。暖房運転時には、流路切替装置53は、図2の破線で示される状態になり、圧縮機52から吐出された冷媒が室内ユニット4の室内側熱交換器41に流入する。
冷媒配管60は、図2に示すように、圧縮機52、流路切替装置53、室外側熱交換器51、膨張弁54、および、室内側熱交換器41を接続して、冷媒回路を構成している。
図1の説明に戻る。図1に示すように、リモートコントローラ1は、第1制御部11と、第1無線通信部12と、第1有線通信部13と、第1記憶部14と、第1操作部15と、第1表示部16とを備えている。
第1無線通信部12は、温度検出装置2から、無線通信路6aを介して、温度検出装置2で検出された温度を受信する。また、第1無線通信部12は、第1制御部11で生成される後述の第2の制御信号を、無線通信路6bを介して、送風装置3に送信する。第1無線通信部12は、例えば、送受信アンテナと、送信信号および受信信号を処理する信号処理回路とから構成される。
第1操作部15は、ユーザによって操作され、室内空間に対する設定温度、風向、風量、および、運転モードなどの設定情報が入力される。第1操作部15は、例えばリモートコントローラ1の表面に設けられた複数の機械式のボタンおよびスイッチから構成される。第1操作部15は、この場合に限らず、ユーザからの指示を受け付けることが可能なユーザインターフェースであれば、いずれのものも適用可能である。
第1表示部16は、第1操作部15に入力された設定情報を表示する。また、第1表示部16は、温度検出装置2が検出した各エリアの温度を表示してもよい。第1表示部16は、例えば液晶画面から構成される。なお、第1操作部15を構成する複数のボタンおよびスイッチを、第1表示部16の画面に表示する仮想ボタンから構成するようにしてもよい。その場合には、第1操作部15および第1表示部16が一体化され、例えばタッチパネルで構成される。
第1制御部11は、リモートコントローラ1全体の動作の制御を行う。第1制御部11は、第1操作部15に入力された設定情報に基づいて、室内ユニット4および室外ユニット5を制御するための第1の制御信号を生成する。あるいは、第1制御部11は、第1無線通信部12が温度検出装置2から受信した温度に基づいて、当該第1の制御信号を生成する。また、第1制御部11は、第1無線通信部12が温度検出装置2から受信した温度に基づいて、送風装置3を制御するための第2の制御信号を生成する。
ここで、第1制御部11のハードウェア構成について簡単に説明する。第1制御部11は、処理回路により実現される。処理回路は、ASIC(Application Specific Integrated Circuit)またはFPGA(Field Programmable Gate Array)などの専用のハードウェア、または、第1記憶部14を構成するメモリに格納されるプログラムを実行するプロセッサなどの演算装置、もしくは、その両方で構成される。
第1有線通信部13は、第1制御部11が生成した第1の制御信号を、通信配線7aを介して、室内ユニット4に送信する。なお、第1の制御信号の一部分は、室内ユニット4から、通信配線7bを介して、室外ユニット5に送信される。第1有線通信部13は、例えば、送信信号を処理する信号処理回路と、通信配線7aに接続されたインターフェース回路とから構成される。なお、第1有線通信部13は、室内ユニット4または室外ユニット5からの故障情報または屋外気温などの各種信号を受信する受信機能を有していてもよい。
第1記憶部14は、第1制御部11の演算結果を記憶する。演算結果には、第1の制御信号および第2の制御信号などの制御情報が含まれる。また、第1記憶部14は、第1無線通信部12が温度検出装置2から受信した各エリアの温度を記憶する。記憶される温度は、時系列データであってもよく、あるいは、最新の温度のみでもよい。さらに、第1記憶部14は、第1操作部15に入力された設定情報を記憶する。第1記憶部14は、メモリから構成される。メモリは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリなどの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスクなどから構成される。
図1に示すように、温度検出装置2は、第2制御部21と、温度検出部22と、第2無線通信部23とを備えている。
第2制御部21は、温度検出装置2全体の動作の制御を行う。第2制御部21は、温度検出部22と第2無線通信部23との動作を制御する。
温度検出部22は、室内空間の各エリアの温度を検出する。温度検出装置2が赤外線センサの場合、温度検出部22は、対象物の温度を非接触で測定する赤外線受光素子などのセンサ素子を有する。しかしながら、温度検出部22は、その場合に限定されない。例えば、温度検出装置2がデジタル温度計の場合、温度検出部22は、温度変化により抵抗値が変化するサーミスタなどの半導体素子、あるいは、温度変化により起電力が変化する熱電対などを有していてもよい。
第2無線通信部23は、温度検出部22が検出した温度を、無線通信路6aを介して、リモートコントローラ1の第1無線通信部12に送信する。第2無線通信部23は、例えば、送受信アンテナと、送信信号および受信信号を処理する信号処理回路とから構成される。
図1に示すように、送風装置3は、第3制御部31と、送風部32と、第3無線通信部33とを備えている。
第3無線通信部33は、リモートコントローラ1の第1無線通信部12から、第2の制御信号を受信する。第3無線通信部33は、受信した第2の制御信号を、第3制御部31に送信する。第3無線通信部33は、例えば、送受信アンテナと、送信信号および受信信号を処理する信号処理回路とから構成される。
送風部32は、ファンとモータとを有している。モータが稼働することにより、ファンが回転する。モータは、第3制御部31によって回転速度が制御される。
第3制御部31は、送風装置3全体の動作の制御を行う。第3制御部31は、送風部32と第3無線通信部33との動作の制御を行う。第3制御部31は、リモートコントローラ1から受信した第2の制御信号に基づいて、送風装置3の稼働/停止の切り替えを行う。また、第3制御部31は、リモートコントローラ1から受信した第2の制御信号に基づいて、送風部32のモータの回転速度を制御する。
図3は、実施の形態1に係る空気調和システム全体の構成を示した構成図である。図4は、実施の形態1に係る空調調和システムが設置された室内空間の様子の一例を模式的に示した図である。図4は、室内空間を側面視している。
図3に示されるように、空気調和システムは、複数の送風装置3と、複数の温度検出装置2とを有している。複数の送風装置3のそれぞれを区別するために、図3および図4では、複数の送風装置3のそれぞれを、送風装置3a、送風装置3b、および、送風装置3cと表記している。また、複数の温度検出装置のそれぞれを区別するために、図3および図4では、複数の温度検出装置2のそれぞれを、温度検出装置2a、温度検出装置2b、および、温度検出装置2cと表記している。
また、図3に示すように、温度検出装置2a、温度検出装置2b、および、温度検出装置2cは、それぞれ、無線通信路6aを介して、リモートコントローラ1と無線通信を行う。送風装置3a、送風装置3b、および、送風装置3cは、それぞれ、無線通信路6bを介して、リモートコントローラ1と無線通信を行う。
図4に示されるように、室内空間が箱型の場合、室内空間は、天井と、床面と、天井と床面との間に配置された4つの壁面とによって区画された空間である。室内空間には、上述したように、複数のエリアA、BおよびCが予め設定されている。
図4に示すように、室内空間には、リモートコントローラ1が配置されている。図4においては、リモートコントローラ1は、室内空間の壁面に配置されている。なお、リモートコントローラ1と室内ユニット4との間の通信を無線通信にして、リモートコントローラ1を、室内の壁面に対して着脱可能にしてもよい。また、室内空間の天井には、室内ユニット4が取り付けられている。
また、室内空間の床面には、複数のテーブル8a、8bおよび8cが設置されている。テーブル8aが設置されている領域がエリアAである。テーブル8bが設置されている領域がエリアBである。テーブル8cが設置されている領域がエリアCである。
また、図4の例では、テーブル8aに在室者9aが居て、テーブル8cに在室者9cが居る。在室者9aおよび9cは、飲食店の客である。
また、エリアAに対しては温度検出装置2aが配置され、エリアBに対しては温度検出装置2bが配置され、エリアCに対しては温度検出装置2cが配置されている。温度検出装置2a、温度検出装置2b、および、温度検出装置2cは、テーブル8a、テーブル8bおよびテーブル8cのそれぞれの机上に配置されていてもよい。あるいは、温度検出装置2a、温度検出装置2b、および、温度検出装置2cは、テーブル8a、テーブル8bおよびテーブル8cのそれぞれの側面に配置されていてもよい。温度検出装置2aはエリアAの空気の温度を検出し、温度検出装置2bはエリアBの空気の温度を検出し、および、温度検出装置2cはエリアCの空気の温度を検出する。
エリアA、エリアB、および、エリアCに対して、送風装置3a、送風装置3bおよび送風装置3cがそれぞれ配置されている。送風装置3a、送風装置3bおよび送風装置3cは、テーブル8a、テーブル8bおよびテーブル8cの机上に配置されてもよく、あるいは、テーブル8a、テーブル8bおよびテーブル8cの外周の一部分に対向するように配置されていてもよい。送風装置3aはエリアAに対して送風を行い、送風装置3bはエリアBに対して送風を行い、送風装置3cはエリアCに対して送風を行う。
次に、実施の形態1に係る空気調和システムの動作について説明する。上記のように構成された空気調和システムは、通常運転時は、ユーザがリモートコントローラ1に入力した設定情報に基づいて動作する。
例えば、図4に示す室内空間において、3つの温度検出装置2a、2bおよび2cのうちの少なくとも1つの検出温度が予め設定された第1閾値を超えていた場合について説明する。
以下の説明においては、検出温度が第1閾値を超えている温度検出装置を、「閾値超え温度検出装置」と呼ぶこととする。ここで、第1閾値は、固定値であり、例えば26℃である。但し、第1閾値は、この値に限定されず、季節あるいは屋外の気温などによって適宜変更してもよい。
さらに、第1閾値を可変にしてもよい。具体的には、第1閾値を、室内ユニット4の設定温度に基づいて更新するようにしてもよい。その場合、例えば、室内ユニット4の設定温度よりも一定温度だけ高い値を、第1閾値とする。設定温度が24℃で、一定温度が2℃であるとすると、第1閾値は26℃となる。この場合には、温度検出装置2の検出温度が設定温度に対して一定温度(2℃)以上離れている場合に、第1制御部11が送風装置3を駆動させる。
図5は、実施の形態1に係る空気調和システムにおいて、3つの温度検出装置2a、2bおよび2cのうちの少なくとも1つの検出温度が第1閾値を超えていた場合を示した側面図である。図5の例では、温度検出装置2cが検出した、エリアCの空気の温度が第1閾値を超えている場合を示している。すなわち、温度検出装置2cが「閾値超え温度検出装置」である。一方、温度検出装置2aおよび温度検出装置2bが検出したエリアAおよびBの空気の温度は第1閾値以下である。従って、温度検出装置2aおよび2bは「閾値超え温度検出装置」でない。このとき、リモートコントローラ1の第1制御部11は、温度検出装置2a、2bおよび2cが検出した温度を取得して、それらの温度に基づいて、「閾値超え温度検出装置」の有無を判定する。ここでは、温度検出装置2cが「閾値超え温度検出装置」である。第1制御部11は、図6に示す関係テーブル100を参照して、温度検出装置2cに対応する送風装置3cに対する第2の制御信号を生成する。これにより、送風装置3cが稼働を開始する。図6は、実施の形態1に係る空気調和システムにおける温度検出装置と送風装置との対応関係を定義した関係テーブル100の一例を示す図である。図6に示すように、関係テーブル100は、エリアA、BおよびCごとに、温度検出装置2a、2bおよび2cの第1識別情報と送風装置3a、3bおよび3cの第2識別情報との対応関係が予め登録されている。関係テーブル100は、リモートコントローラ1の第1記憶部14に予め記憶されている。なお、第1識別情報は、温度検出装置2a、2bおよび2cのそれぞれを識別する固有の識別情報であり、第2識別情報は、送風装置3a、3bおよび3cのそれぞれを識別する固有の識別情報である。
リモートコントローラ1の第1制御部11は、「閾値超え温度検出装置」に対応する送風装置3cの稼働を開始した時点から、時間をカウントする。そして、第1制御部11は、第1時間の間、連続して、温度検出装置2a、2bおよび2cが検出した温度がすべて第1閾値以下の場合、送風装置3cの稼働を停止させるための第2の制御信号を生成する。これにより、送風装置3cは動作を停止する。なお、第1時間は、例えば、5分間である。但し、第1時間は、5分に限らず、適宜、決定してよい。なお、以下の説明においては、説明を簡略化させるために、第1時間を5分にした場合を例に挙げて説明する。
図7は、実施の形態1に係る空気調和システムのリモートコントローラ1の処理の流れを示したフローチャートである。
図7に示すように、ステップS1では、リモートコントローラ1の第1制御部11が、温度検出装置2a、2bおよび2cのそれぞれが検出した温度を取得する。
次に、ステップS2では、第1制御部11が、温度検出装置2a、2bおよび2cのそれぞれが検出した温度に基づいて、「閾値超え温度検出装置」が有るか判定する。「閾値超え温度検出装置」が有った場合は、ステップS3に進む。ここでは、温度検出装置2cが「閾値超え温度検出装置」であると仮定する。一方、「閾値超え温度検出装置」が無かった場合は、ステップS4に進む。
ステップS3では、第1制御部11が、図6に示す関係テーブル100から、温度検出装置2cに対応する送風装置3cを抽出する。第1制御部11は、送風装置3cに対して、第2の制御信号を送信して、送風装置3cを稼働させる。その後、ステップS1の処理に戻る。
ステップS4では、送風装置3a、3bおよび3cのうち、動作中の送風装置があるか判定する。動作中の送風装置が無ければ、ステップS7に進む。一方、動作中の送風装置があれば、ステップS5に進む。
ステップS5では、第1制御部11が、ステップS3で送風装置3cの稼働を開始した時点から、5分経過したか否かを判定する。5分経過していた場合は、ステップS6に進む。一方、5分経過していなかった場合、ステップS1の処理に戻る。
ステップS6では、第1制御部11が、動作中の送風装置3cを停止させる。その後、ステップS7に進む。
ステップS7では、第1制御部11が、空気調和システムの状態変更を行って、通常運転に移行する。
以上のように、実施の形態1では、リモートコントローラ1の第1制御部11が、温度検出装置2a、2b、および、2cが検出した温度に基づいて、検出温度が第1閾値を超えているエリアがあるか判定する。判定の結果、エリアCの温度が第1閾値を超えていたとすると、第1制御部11は、エリアCに設置されている送風装置3cを駆動させる。その後、再び、第1制御部11は、温度検出装置2a、2b、および、2cが検出した温度を取得する。すべてのエリアA、BおよびCの温度が第1閾値以下の状態が連続して5分続いた場合に、第1制御部11は、すべての送風装置3a、3b、および、3cを停止状態にする。これにより、室内空間の温度のムラが解消される。その結果、局所的に暑いエリアまたは局所的に寒いエリアがなくなるので、室内空間の在室者全員に対して、快適性を与えることができる。
また、実施の形態1では、第1制御部11の制御により、送風装置3cを自動的に稼働させることができる。そのため、各エリアA、BおよびCの在室者9a、9cが、リモートコントローラ1および送風装置3a、3bおよび3cを操作することなく、エリアCに対して送風を行うことができる。従って、在室者9a、9cの作業負荷はない。
このように、実施の形態1では、温度が第1閾値を超えている閾値超え温度検出装置が少なくとも1つあった場合に、当該閾値超え温度検出装置に対応するエリアに対して、送風装置から送風を行う。これにより、当該エリアの温度が下がる。その結果、すべてのエリアの温度を第1閾値以下にすることができる。従って、室内空間における温度ムラが解消される。
また、閾値超え温度検出装置に対応するエリアに対して送風装置から送風を行うことで、室内空間に対流が発生する。これにより、温度の高い空気と温度の低い空気とが強制的に混ざるので、室内空間における温度ムラが迅速に解消される。その結果、室内空間の温度が設定温度に迅速に到達されるので、効率よく冷房または暖房を行うことができる。そのため、空気調和システムが消費する電力を低減させることができ、省エネルギー効果が得られる。
実施の形態2.
上記の実施の形態1においては、「閾値超え温度検出装置」が有った場合に、第1制御部11が、「閾値超え温度検出装置」に対応する送風装置3a、3bおよび3cを稼働させる実施形態について説明した。なお、以下では、図7に示した実施の形態1の処理フローを、「送風装置運転処理フロー」と呼ぶこととする。実施の形態2においては、「閾値超え温度検出装置」が有った場合に、第1制御部11が、送風装置3a、3bおよび3cを稼働させると共に、室内ユニット4の制御も行う。以下では、後述する図9に示す実施の形態2の処理フローを、「送風装置+室内ユニット運転処理フロー」と呼ぶこととする。
上記の実施の形態1においては、「閾値超え温度検出装置」が有った場合に、第1制御部11が、「閾値超え温度検出装置」に対応する送風装置3a、3bおよび3cを稼働させる実施形態について説明した。なお、以下では、図7に示した実施の形態1の処理フローを、「送風装置運転処理フロー」と呼ぶこととする。実施の形態2においては、「閾値超え温度検出装置」が有った場合に、第1制御部11が、送風装置3a、3bおよび3cを稼働させると共に、室内ユニット4の制御も行う。以下では、後述する図9に示す実施の形態2の処理フローを、「送風装置+室内ユニット運転処理フロー」と呼ぶこととする。
図8は、実施の形態2に係る空気調和システムにおいて、3つの温度検出装置2a、2bおよび2cのうちの少なくとも1つの検出温度が第1閾値を超えていた場合を示した側面図である。図8の例では、温度検出装置2aおよび2cが検出した、エリアAおよびエリアCの空気の温度が第1閾値を超えている場合を示している。
すなわち、図8の例では、室内空間において、温度検出装置2aおよび2cが「閾値超え温度検出装置」である。この場合、リモートコントローラ1の第1制御部11は、図6の関係テーブル100を参照して、温度検出装置2aおよび2cに対応する送風装置3aおよび3cを稼働させる。
さらに、実施の形態2では、「閾値超え温度検出装置」の割合が、全体の50%以上だった場合に、リモートコントローラ1の第1制御部11が、室内ユニット4を制御する。具体的には、リモートコントローラ1の第1制御部11は、室内ユニット4の設定温度を予め設定された一定値だけ低下させる指令を、第1の制御信号として生成する。室内ユニット4は、当該第1の制御信号に応じて、室内ユニット4の設定温度を予め設定された一定値だけ低下させる。なお、当該一定値は、例えば、0.5℃、あるいは、1℃のように予め決定され、予め、室内ユニット4またはリモートコントローラ1のいずれかに設定されている。
図8の例では、温度検出装置2aおよび2cが「閾値超え温度検出装置」である。すなわち、「閾値超え温度検出装置」の個数は2個である。温度検出装置2の全体の個数は3個である。そのため、現在、「閾値超え温度検出装置」の個数の割合は、全体の50%以上である。そのため、リモートコントローラ1の第1制御部11は、室内ユニット4の設定温度を一定値だけ低下させる第1の制御信号を生成する。
その後、温度検出装置2a、2bおよび2cが検出する温度が、5分間、第1閾値を下回っていれば、リモートコントローラ1の第1制御部11は、室内ユニット4の設定温度を元に戻す。さらに、リモートコントローラ1の第1制御部11は、送風装置3aおよび3cを停止させる。
図9は、実施の形態2に係る空気調和システムのリモートコントローラ1の処理の流れを示したフローチャートである。
図9に示すように、ステップS10では、リモートコントローラ1の第1制御部11が、温度検出装置2a、2bおよび2cのそれぞれが検出した温度を取得する。
次に、ステップS11では、第1制御部11が、温度検出装置2a、2bおよび2cの中に「閾値超え温度検出装置」が有るか否かを判定する。「閾値超え温度検出装置」が有った場合は、ステップS12に進む。ここでは、温度検出装置2aおよび2cが「閾値超え温度検出装置」であると仮定する。一方、「閾値超え温度検出装置」が無かった場合は、ステップS16に進む。
ステップS12では、第1制御部11が、図6に示す関係テーブル100から、温度検出装置2aおよび2cに対応する送風装置3aおよび3cを抽出する。第1制御部11は、送風装置3aおよび3cに対して、第2の制御信号を送信して、送風装置3aおよび3cを稼働させる。その後、ステップS13の処理に進む。
ステップS13では、第1制御部11が、「閾値超え温度検出装置」の個数の割合が全体の50%以上か否かを判定する。当該割合が50%以上の場合は、ステップS14に進む。一方、当該割合が50%未満の場合は、ステップS15に進む。
ステップS14では、第1制御部11が、室内ユニット4の設定温度を、予め設定された一定値だけ下げる。その後、ステップS10に戻る。
ステップS15では、第1制御部11が、空気調和システムの状態変更を行って、実施の形態1で示した図7の送風装置運転フローに移行する。このとき、ステップS14で室内ユニット4の設定温度を低下させていた場合には、第1制御部11は、室内ユニット4の設定温度を元に戻す。
ステップS16では、送風装置3a、3bおよび3cのうち、動作中の送風装置3があるか判定する。動作中の送風装置3が無ければ、ステップS20に進む。一方、動作中の送風装置3が有れば、ステップS17に進む。
ステップS17では、第1制御部11が、ステップS12で送風装置3の稼働を開始した時点から、5分経過したか否かを判定する。5分経過していた場合は、ステップS18に進む。一方、5分経過していなかった場合、ステップS10の処理に戻る。
ステップS18では、第1制御部11が、室内ユニット4の設定温度を元に戻す。その後、ステップS19に進む。
ステップS19では、第1制御部11が、動作中の送風装置3cを停止させる。その後、ステップS20に進む。
ステップS20では、第1制御部11が、空気調和システムの状態変更を行って、通常運転に移行する。
以上のように、実施の形態2においては、実施の形態1と同様に、「閾値超え温度検出装置」が有った場合に、第1制御部11が、当該「閾値超え温度検出装置」に対応する送風装置3a、3bおよび3cを稼働させる。そのため、実施の形態1と同様の効果が得られる。
さらに、実施の形態2においては、第1制御部11は、「閾値超え温度検出装置」の個数の割合が全体の50%以上だった場合に、送風装置3a、3bおよび3cを稼働させるだけでなく、室内ユニット4の設定温度も制御する。そのため、室内空間の温度ムラが解消されるとともに、室内空間の温度をユーザが希望する設定温度に早く到達させることができる。
実施の形態3.
実施の形態3では、上記の実施の形態1と実施の形態2とを組み合わせた実施形態について説明する。図10は、実施の形態3に係る空気調和システムの状態遷移を示した状態遷移図である。
実施の形態3では、上記の実施の形態1と実施の形態2とを組み合わせた実施形態について説明する。図10は、実施の形態3に係る空気調和システムの状態遷移を示した状態遷移図である。
図10に示すように、空気調和システムは、通常運転状態70と、送風装置運転状態71と、送風装置+室内ユニット運転状態72との3つの状態を有し、それらの状態間を遷移する。
通常運転状態70は、空気調和システムが、通常運転を行っている状態である。通常運転状態70においては、空気調和システムは、ユーザがリモートコントローラ1に入力した設定情報に基づいて動作する。
送風装置運転状態71は、空気調和システムが、図7に示す実施の形態1で示した送風装置運転フローに従って動作する状態である。
送風装置+室内ユニット運転状態72は、空気調和システムが、図9に示す実施の形態2で示した送風装置+室内ユニット運転フローに従って動作する状態である。
空気調和システムは、通常時は、通常運転状態70である。
空気調和システムが通常運転状態70のときに、「閾値超え温度検出装置」の個数の割合が全体の50%以上だった場合、空気調和システムは、送風装置+室内ユニット運転状態72に移行する。
また、空気調和システムが通常運転状態70のときに、「閾値超え温度検出装置」が少なくとも1つ有って、当該「閾値超え温度検出装置」の個数の割合が全体の50%未満だった場合、空気調和システムは、送風装置運転状態71に移行する。
また、空気調和システムが送風装置運転状態71のときに、「閾値超え温度検出装置」の個数の割合が全体の50%以上だった場合、空気調和システムは、送風装置+室内ユニット運転状態72に移行する。
また、空気調和システムが送風装置運転状態71のときに、「閾値超え温度検出装置」が無かった場合、空気調和システムは、通常運転状態70に移行する。
また、空気調和システムが送風装置+室内ユニット運転状態72のときに、「閾値超え温度検出装置」が無かった場合、空気調和システムは、通常運転状態70に移行する。
図11は、実施の形態3に係る空気調和システムのリモートコントローラ1の処理の流れを示したフローチャートである。以下では、図11に示した実施の形態3の処理フローを、「通常運転処理フロー」と呼ぶこととする。
図11に示すように、ステップS21で、リモートコントローラ1の第1制御部11が、温度検出装置2a、2bおよび2cのそれぞれが検出した温度を取得する。
次に、ステップS22では、第1制御部11が、温度検出装置2a、2bおよび2cの中に「閾値超え温度検出装置」が有るか否かを判定する。「閾値超え温度検出装置」が有った場合は、ステップS23に進む。ここでは、温度検出装置2aの検出温度が第1閾値を超えていたと仮定する。一方、「閾値超え温度検出装置」が無かった場合は、ステップS28に進む。
ステップS23では、第1制御部11が、図6に示す関係テーブル100から、温度検出装置2aに対応する送風装置3aを抽出する。第1制御部11は、送風装置3aに対して、第2の制御信号を送信して、送風装置3aを稼働させる。その後、ステップS24の処理に進む。
ステップS24では、第1制御部11が、「閾値超え温度検出装置」の個数の割合が50%以上か否かを判定する。当該割合が50%以上の場合は、ステップS25に進む。一方、当該割合が50%未満の場合は、ステップS27に進む。
ステップS25では、第1制御部11が、室内ユニット4の設定温度を、予め設定された一定値だけ下げる。その後、ステップS26に進む。
ステップS26では、第1制御部11が、空気調和システムの状態変更を行って、図9の送風装置+室内ユニット運転処理フローに移行する。但し、図9の処理フローに移行した場合、ステップS25で室内ユニット4の設定温度を既に下げているため、初回のみ、ステップS14の処理を行わないようにしてもよい。
ステップS27では、第1制御部11が、空気調和システムの状態変更を行って、図7の送風装置運転処理フローに移行する。
ステップS28では、第1制御部11が、空気調和システムの状態変更を行って、空気昭和システムが通常運転を行うように制御する。通常運転時は、空気調和システムは、ユーザがリモートコントローラ1に入力した設定情報に基づいて動作する。
以上のように、実施の形態3においては、図10に示すように、空気調和システムが、状況に応じて、通常運転状態70、送風装置運転状態71、および、送風装置+室内ユニット運転状態72のいずれかの状態に移行する。これにより、第1制御部11が、送風装置3だけを制御することもでき、あるいは、送風装置3と室内ユニット4との両方を制御することもできる。そのため、必要な処理のみを行うことができるので、消費エネルギーを抑えながら、室内空間の温度ムラを早く解消することができる。
また、実施の形態3においては、実施の形態1で示した図7の送風装置運転処理フロー、および、実施の形態2で示した図9の送風装置+室内ユニット運転処理フローを行う。そのため、上記の実施の形態1の効果および上記の実施の形態2の効果も得ることができる。
実施の形態4.
図12は、実施の形態4に係る空調調和システムが設置された室内の様子の一例を模式的に示した側面図である。
図12は、実施の形態4に係る空調調和システムが設置された室内の様子の一例を模式的に示した側面図である。
上記の実施の形態1~3においては、在室者9aおよび9cの有無については考慮していなかったが、実施の形態4では、リモートコントローラ1の第1制御部11が、在室者9aおよび9cの有無についても考慮する。すなわち、実施の形態4では、第1制御部11が、温度検出装置2a、2bおよび2cの検出温度、「閾値超え温度検出装置」の個数の割合、および、在室者の有無に基づいて、空気調和システムの状態を移行する。当該状態には、通常運転状態70、送風装置運転状態71、および、送風装置+室内ユニット運転状態72が含まれる。
実施の形態4においては、図12に示すように、各エリアA、BおよびCに対して、人検出装置10が設けられている。人検出装置10は、複数のエリアA、BおよびCのそれぞれの在室者を検出する。人検出装置10は、例えば、人感センサである。複数の人検出装置10を区別するために、図12では、複数の人検出装置10のそれぞれを、人検出装置10a、人検出装置10b、および、人検出装置10cと表記している。人検出装置10aは、エリアAに存在する在室者を検出する。人検出装置10bは、エリアBに存在する在室者を検出する。人検出装置10cは、エリアCに存在する在室者を検出する。人検出装置10a、10bおよび10cは、例えば、サーモパイルセンサなどの赤外線センサから構成してもよい。この場合は、第1制御部11が、赤外線センサで撮影された2次元画像を画像処理することによって、画像内の物体の色、大きさ、形、特徴などによって、在室者の有無を判定する。また、この場合には、1つの赤外線センサが室内空間全体をモニタすることができるので、1つの人検出装置10で、複数のエリアA、BおよびCのそれぞれの在室者を検出することが可能である。従って、人検出装置10の個数は、1個でも、複数個でもよい。人検出装置10a、10bおよび10cは、この場合に限らず、例えばCCD(Charge Coupled Device)、または、CMOS(Complementary Metal-Oxide Semiconductor)などのイメージセンサであってもよい。この場合は、第1制御部11が、イメージセンサで撮影された2次元画像を画像処理することによって、画像内の物体の大きさ、形、特徴などによって、在室者の有無を判定する。また、この場合には、1つのイメージセンサが室内空間全体をモニタすることができるので、1つの人検出装置10で、複数のエリアA、BおよびCのそれぞれの在室者を検出することが可能である。従って、人検出装置10の個数は、1個でも、複数個でもよい。
図13は、実施の形態4に係る空気調和システムにおける温度検出装置2と送風装置3と人検出装置10との対応関係を定義した第2関係テーブル100Aの一例を示す図である。図13に示すように、第2関係テーブル100Aは、エリアごとに、温度検出装置2a、2bおよび2cの第1識別情報と、送風装置3a、3bおよび3cの第2識別情報とが対応付けられて、予め登録されている。さらに、図13に示すように、第2関係テーブル100Aは、エリアごとに、温度検出装置2a、2bおよび2cの第1識別情報と、人検出装置10a、10bおよび10cの第3識別情報とが対応付けられて、予め登録されている。第2関係テーブル100Aは、リモートコントローラ1の第1記憶部14に予め記憶されている。なお、第1識別情報は、温度検出装置2a、2bおよび2cのそれぞれを識別する識別情報であり、第2識別情報は、送風装置3a、3bおよび3cのそれぞれを識別する識別情報である。また、第3識別情報は、人検出装置10a、10bおよび10cのそれぞれを識別する識別情報である。
以下、具体的な例を挙げて、実施の形態4について説明する。例えば、図12に示す室内空間においては、3つの温度検出装置2a、2bおよび2cのすべてが、「閾値超え温度検出装置」である。また、人検出装置10aが、エリアA内の在室者9aを検出し、人検出装置10cが、エリアC内の在室者9cを検出している。
この場合、第1制御部11は、まず、「閾値超え温度検出装置」に対応する人検出装置10a、10bおよび10cの検出結果を取得する。第1制御部11は、当該検出結果から、人検出装置10aおよび10cが在室者9aおよび9cを検出していると判定する。第1制御部11は、第2関係テーブル100Aを参照して、それらの人検出装置10aおよび10cに対応する送風装置3aおよび3cを稼働させる。
さらに、第1制御部11は、「閾値超え温度検出装置」の個数の割合が、全体の50%以上か否かを判定する。第1制御部11は、「閾値超え温度検出装置」の個数の割合が50%以上だった場合に、室内ユニット4の設定温度を一定値だけ低下させる指令を第1の制御信号として生成し、室内ユニット4に送信する。
この後、温度検出装置2a、2bおよび2cの検出温度が、5分間連続して第1閾値を下回っていれば、第1制御部11は、室内ユニット4の設定温度を元に戻す。さらに、第1制御部11は、送風装置3aおよび3cを停止させる。
図14は、実施の形態4に係る空気調和システムの状態遷移を示した状態遷移図である。
図14に示すように、空気調和システムは、通常運転状態70と、送風装置運転状態71と、送風装置+室内ユニット運転状態72との3つの状態を有し、それらの状態間を遷移する。これらの状態については、実施の形態3で説明したため、ここでは、その説明を省略する。
実施の形態4においても、上記の実施の形態1~3と同様に、空気調和システムは、通常時は、通常運転状態70である。
空気調和システムが通常運転状態70のときに、「閾値超え温度検出装置」の個数が、全体の50%以上で、且つ、当該「閾値超え温度検出装置」に対応するエリアに在室者9aおよび9cがいる場合、空気調和システムは、送風装置+室内ユニット運転状態72に移行する。
また、空気調和システムが通常運転状態70のときに、温度検出装置2a、2bおよび2cのうちの少なくとも1つが「閾値超え温度検出装置」で、「閾値超え温度検出装置」の個数の割合が50%未満であるとする。このとき、当該「閾値超え温度検出装置」に対応するエリアに在室者9aおよび9cが存在する場合には、空気調和システムは、送風装置運転状態71に移行する。
また、空気調和システムが送風装置運転状態71のときに、「閾値超え温度検出装置」の個数が、全体の50%以上で、且つ、当該「閾値超え温度検出装置」に対応するエリアに在室者9aおよび9cが存在する場合、空気調和システムは、送風装置+室内ユニット運転状態72に移行する。
また、空気調和システムが送風装置運転状態71のときに、「閾値超え温度検出装置」が無かった場合、空気調和システムは、通常運転状態70に移行する。
また、空気調和システムが送風装置+室内ユニット運転状態72のときに、「閾値超え温度検出装置」が無かった場合、空気調和システムは、通常運転状態70に移行する。
図15は、実施の形態4に係る空気調和システムのリモートコントローラ1の処理の流れを示したフローチャートである。以下では、図15に示した実施の形態4の処理フローを、「第2の通常運転処理フロー」と呼ぶこととする。
図15に示すように、ステップS30で、リモートコントローラ1の第1制御部11が、温度検出装置2a、2bおよび2cのそれぞれが検出した温度を取得する。
次に、ステップS31では、第1制御部11が、温度検出装置2a、2bおよび2cの中で「閾値超え温度検出装置」が有るか否かを判定する。「閾値超え温度検出装置」が有った場合は、ステップS32に進む。ここでは、温度検出装置2a、2bおよび2cの検出温度が第1閾値を超えていたと仮定する。一方、「閾値超え温度検出装置」が無かった場合は、ステップS39に進む。
ステップS32では、第1制御部11が、図13に示す第2関係テーブル100Aから、温度検出装置2a、2bおよび2cに対応する人検出装置10a、10bおよび10cを抽出する。また、第1制御部11は、それらの人検出装置10a、10bおよび10cの検出結果を取得する。その後、ステップS33に進む。
ステップS33では、第1制御部11は、人検出装置10a、10bおよび10cの検出結果に基づいて、人検出装置10a、10bおよび10cの中から、在室者9aおよび9cを検出している人検出装置10aおよび10cを選択する。
ステップS34では、第1制御部11は、図13に示す第2関係テーブル100Aを参照して、選択した人検出装置10aおよび10cに対応する送風装置3aおよび3cを稼働させる。その後、ステップS35に進む。
ステップS35では、第1制御部11が、「閾値超え温度検出装置」の個数の割合が50%以上か否かを判定する。当該割合が50%以上の場合は、ステップS36に進む。一方、当該割合が50%未満の場合は、ステップS38に進む。
ステップS36では、第1制御部11が、室内ユニット4の設定温度を、予め設定された一定値だけ下げる。その後、ステップS37に進む。
ステップS37では、第1制御部11が、空気調和システムの状態変更を行って、図9の送風装置+室内ユニット運転処理フローに移行する。但し、図9の処理フローに移行した場合、ステップS36で室内ユニット4の設定温度を既に下げているため、初回のみ、ステップS14の処理を行わないようにしてもよい。
ステップS38では、第1制御部11が、空気調和システムの状態変更を行って、図7の送風装置運転処理フローに移行する。
ステップS39では、第1制御部11が、第1制御部11が、空気調和システムの状態変更を行って、空気昭和システムが通常運転を行うように制御する。通常運転時は、空気調和システムは、ユーザがリモートコントローラ1に入力した設定情報に基づいて動作する。
以上のように、実施の形態4においても、実施の形態1~3と同様に、「閾値超え温度検出装置」が有った場合に、当該「閾値超え温度検出装置」に対応する送風装置3を稼働させる。そのため、実施の形態1~3と同様の効果が得られる。
さらに、「閾値超え温度検出装置」の個数の割合が、全体の50%以上の場合は、送風装置3を稼働させるとともに、室内ユニット4の設定温度を一定値だけ低下させる。これにより、室内空間の温度ムラが解消されるとともに、室内空間の温度をユーザが希望する設定温度に早く到達させることができる。
また、実施の形態4においては、各エリアA、BおよびCに対して、人検出装置10a、10bおよび10cを設けている。第1制御部11は、人検出装置10a、10bおよび10cの検出結果に基づいて、在室者9aおよび9cがいないと判定した場合は、送風装置3を稼働させないため、省エネルギーになる。
なお、上記の実施の形態1~4の説明では、室内空間が飲食店の店内である場合を例にしたが、それに限らない。室内空間は、例えば、オフィス、工場の生産ライン、教室、会議室、ホールなどでよく、上記の実施の形態1~4に係る空気調和システムが、他の環境にも利用できることは言うまでもない。
また、上記の実施の形態1~4の説明では、送風装置3が、プロペラファンである場合を例に挙げて説明した。しかしながら、その場合に限らず、送風装置3を、遠心ファンから構成するようにしてもよい。また、送風装置3を、天井設置型のサーキュレータから構成してもよく、あるいは、床置き型のサーキュレータから構成してもよい。
また、上記の実施の形態1~4においては、送風装置3の風向が固定であるとして説明した。しかしながら、その場合に限らず、送風装置3の風向を可変にしてもよい。その場合には、例えば、人検出装置10a、10bおよび10cの検出結果に基づいて、送風装置3の風向を変更してもよい。具体的には、在室者9aおよび9cが存在する場合には、送風装置3aおよび3cが、在室者9aおよび9cに向けて送風を行う。また、在室者9aおよび9cがいない場合には、送風装置3a、3bおよび3cが、エリアA、BおよびCのそれぞれの全体に向けて送風できるように、送風装置3a、3bおよび3cの風向を左右にスイングさせてもよい。あるいは、送風装置3a、3bおよび3cの風向を上下にスイングさせてもよい。なお、この場合、上下とは、例えば鉛直方向であり、左右とは、例えば鉛直方向に垂直な水平方向である。
また、上記の実施の形態1~4において、さらに、温度検出装置2の検出温度と室内ユニット4の設定温度との差に対して、複数のレベルを設けておいてもよい。その場合には、当該レベルに応じて、送風装置3の送風モードおよび風量を変更するようにしてもよい。送風モードには、風あて、風よけなどが含まれる。風あてとは、在室者に風を当てるように風向を調整するモードであり、風よけとは、在室者に直接風が当たらないように風向を調整するモードである。
上記の複数のレベルを設ける場合の例について説明する。例えば、レベルを5段階としたとき、温度検出装置2の検出温度と室内ユニット4の設定温度との差が5℃の場合をレベル5とする。また、当該差が4℃の場合をレベル4とし、当該差が3℃の場合をレベル3とし、当該差が2℃の場合をレベル2とし、当該差が1℃の場合をレベル1とする。検出温度と設定温度との差がレベル5またはレベル4の場合、第1制御部11は、送風装置3の送風モードを風あてにし、且つ、風量を大に設定する。一方、検出温度と設定温度との差がレベル2または1の場合、第1制御部11は、送風装置3の送風モードを風よけにし、風量を小にする。また、検出温度と設定温度との差がレベル3の場合、第1制御部11は、送風装置3の送風モードを風あてで、且つ、風量を中に設定する。
また、レベル5の温度検出装置2が1つだけで、他の温度検出装置2がレベル1またはレベル2であった場合、レベル5の温度検出装置2に対応するエリアに向かってのみ送風できるように、室内ユニット4の風向を変更してもよい。あるいは、温度検出装置2の中で、複数の温度検出装置2がレベル5であった場合、第1制御部11は、その中で、在室者が存在するエリアに向かってのみ送風できるように、室内ユニット4の風向を変更してもよい。
また、上記の実施の形態1~4において、人検出装置10で、1つのエリア内で複数の在室者9を検出した場合には、第1制御部11は、送風装置3からの送風をスイングさせてもよい。それにより、エリア内のすべての在室者9を、送風装置3からの送風の対象とすることができる。
また、上記の実施の形態1~4において、人検出装置10がサーモパイルセンサなどの赤外線センサの場合、人検出装置10は、在室者9の有無を検出するとともに、在室者9の表面温度も検出することができる。その場合、第1制御部11は、検出した表面温度に基づいて、送風装置3の稼働状態を変更してもよい。すなわち、第1制御部11は、送風装置3の風向を、表面温度が高い在室者9に向けるように調整する。また、人検出装置10が、在室者9の性別、体型などが検出できる場合には、第1制御部11が、それらの情報を、送風装置3または室内ユニット4の制御に反映させてもよい。さらには、人検出装置10が、室内空間の日照状態を検出できる場合には、第1制御部11が、日照状態の情報を、送風装置3または室内ユニット4の制御に反映させてもよい。なお、日照状態の情報は、日当たりが良いか悪いか示す情報である。
また、上記の実施の形態1~4において、夏期に、屋外の気温が一定温度よりも高い場合で、且つ、人検出装置10が、一定期間の間、在室者9を検出しなかった場合に、人検出装置10が、新たに、在室者9を検出した場合の変形例について説明する。この場合、第1制御部11は、検出された在室者9は屋外から来た人であると認識する。第1制御部11は、送風装置3の送風モードを風あてにし、且つ、風量を大に設定して、当該在室者9に対する送風を行う。また、当該送風は、一定時間、連続して行う。これにより、当該在室者9の表面温度は低下する。この場合、温度検出装置2の検出温度と室内ユニット4の設定温度との差に関係なく、第1制御部11が、当該送風を行うようにしてもよい。あるいは、上記レベルの設定とは別に、夏期専用のレベルを設定しておいてもよい。その場合、温度検出装置2の検出温度と室内ユニット4の設定温度との差が小さくても、第1制御部11が、送風装置3の送風モードを風あてにし、且つ、風量を大に設定して、当該在室者9に対する送風を行う。すなわち、夏期専用のレベルは、例えば、レベルを5段階としたとき、温度検出装置2の検出温度と室内ユニット4の設定温度との差が2℃の場合をレベル5とする。また、当該差が1.5℃の場合をレベル4とし、当該差が1℃の場合をレベル3とし、当該差が0.5℃の場合をレベル2とし、当該差が0℃の場合をレベル1とする。なお、当該変形例は、夏期において、屋外の気温が一定温度よりも高い場合で、且つ、人検出装置10が検出した在室者の表面温度が一定値よりも高い場合にも適用可能である。
上記の実施の形態1~4では、空気調和システムが冷房運転を行う場合について説明した。しかしながら、実施の形態1~4に係る空気調和システムは、暖房運転を行う場合にも適用可能である。但し、その場合には、図7のステップS2において、第1制御部11が、検出温度が第1閾値を下回る温度検出装置があるか否かを判定する。図9のステップS11、図11のステップS22、および、図15のステップS31においても同様である。従って、実施の形態1~4の説明を、「閾値超え温度検出装置」を、「閾値を下回る温度検出装置」と読み替えて参照する。さらに、実施の形態1~4に係る空気調和システムを暖房運転を行う場合に適用する場合には、送風装置3にヒータを内蔵しておく。第1制御部11は、送風装置3からの送風を行う際に、当該ヒータの電源をONにして、送風装置3から温風を各エリアA、BおよびCに送る。送風装置3は、温風を供給する温風機から構成してもよい。他の構成および動作については、冷房時と同じであるため、説明を省略する。
また、上記の実施の形態1~4において、冬期に、屋外の気温が一定温度よりも低い場合で、且つ、人検出装置10が、一定期間の間、在室者9を検出しなかった場合に、人検出装置10が、新たに、在室者9を検出した場合の変形例について説明する。この場合、第1制御部11は、検出された在室者9は屋外から来た人であると認識する。第1制御部11は、送風装置3のヒータの電源をONにし、送風モードを風あてにし、且つ、風量を大に設定して、当該在室者9に対する温風の送風を行う。また、当該送風は、一定時間、連続して行う。これにより、当該在室者9の表面温度は上昇する。この場合、温度検出装置2の検出温度と室内ユニット4の設定温度との差に関係なく、第1制御部11が、当該送風を行うようにしてもよい。あるいは、上記レベルの設定とは別に、冬期専用のレベルを設定しておいてもよい。その場合、温度検出装置2の検出温度と室内ユニット4の設定温度との差が小さくても、第1制御部11が、送風装置3の送風モードを風あてにし、且つ、風量を大に設定して、当該在室者9に対する温風の送風を行う。すなわち、冬期専用のレベルは、例えば、レベルを5段階としたとき、温度検出装置2の検出温度と室内ユニット4の設定温度との差が2℃の場合をレベル5とする。また、当該差が1.5℃の場合をレベル4とし、当該差が1℃の場合をレベル3とし、当該差が0.5℃の場合をレベル2とし、当該差が0℃の場合をレベル1とする。なお、当該変形例は、冬期において、屋外の気温が一定温度よりも低い場合で、且つ、人検出装置10が検出した在室者9の表面温度が一定値よりも低い場合にも適用可能である。
なお、室内空間が飲食店の店内の場合、在室者9がテーブル8a、8bおよび8cに着席した途端に、第1制御部11が、送風装置3からの送風を急に開始すると、当該在室者9が違和感を覚える、あるいは、在室者9が警戒する場合が想定される。そのため、図16に示すように、各テーブル8a、8bおよび8cのそれぞれに、タブレット80a、80bおよび80cを設置して、メッセージを表示するようにしてもよい。図16は、実施の形態1~4の変形例に係る空調調和システムが設置された室内の様子の一例を模式的に示した側面図である。当該メッセージの例としては、夏期の場合は、例えば「温度が高いため、冷風を送っています。温度が低下すれば自動で停止します。」とし、冬期の場合は、例えば「温度が低いため、温風を送っています。温度が低下すれば自動で停止します。」とする。
さらに、第1制御部11が、送風装置3からの送風を行うときに、タブレット80a、80bおよび80cの画面に、「暑い」、「寒い」、「風あて」、「風よけ」、「停止」などの操作メニューを表示させてもよい。その場合、在室者9は、操作メニューを用いて、送風装置3の駆動方式を微調整することができる。この場合、第1制御部11は、在室者9が、当該操作メニューを用いて、タブレット80a、80bおよび80cに入力した情報に基づいて、送風装置3または室内ユニット4を制御する。
また、タブレット80a、80bおよび80cを設置する代わりに、各テーブル8a、8bおよび8cに、「暑い」、「寒い」、「風あて」、「風よけ」、「停止」等のボタンまたはスイッチを設けるようにしてもよい。この場合、第1制御部11は、在室者9が、当該ボタンまたはスイッチを用いて入力した情報に基づいて、送風装置3または室内ユニット4を制御する。
さらに、各テーブル8a、8bおよび8cに、図16に示すマイク81a、81bおよび81cを設けるようにしてもよい。その場合、第1制御部11は、音声認識などを用いて、マイク81a、81bおよび81cで集音した音の情報に基づいて、送風装置3の動作を制御する。当該動作には、送風装置3の稼働/停止の切り替え、風向、風量などが含まれる。第1制御部11が音声認識を行う場合、第1制御部11は、第1記憶部14に予め音声のパターンを記憶させておく。第1制御部11は、当該パターンを用いてマイク81a、81bおよび81cで集音した音の分析を行う。例えば、マイク81a、81bおよび81cが、在室者9が室温を寒いと感じたときに発する音を集音した場合、第1制御部11は、室内ユニット4の設定温度を上げる、あるいは、送風装置3の送風モードを風よけにする、あるいは、送風装置3の風量を小にする。在室者9が室温を寒いと感じたときに発する音の例としては、例えば、在室者9が体をさする音、鼻をすする音、「寒い」という声などが挙げられる。また、マイク81a、81bおよび81cが、在室者9が室温を暑いと感じたときに発する音を集音した場合、第1制御部11は、室内ユニット4の設定温度を下げる、あるいは、送風装置3の送風モードを風あてにする、あるいは、送風装置3の風量を大にする。在室者9が室温を暑いと感じたときに発する音の例としては、例えば、在室者9がコップの水を飲む音、「暑い」という声などが挙げられる。なお、図16においては、各テーブル8a、8bおよび8cに、タブレット80とマイク81との両方が設置されている。しかしながら、この場合に限らず、タブレット80とマイク81のいずれか一方を設置するようにしてもよい。
また、上記の実施の形態1~4では、送風装置3の稼働開始から第1時間経過した場合に、送風装置3を停止させる場合について説明した。しかしながら、この場合に限らず、温度検出装置2が検出する温度に基づいて、送風装置3を停止させるようにしてもよい。その場合には、例えば、第制御部11が、すべての温度検出装置2が検出した温度が第1閾値未満で、且つ、動作中の送風装置3が有った場合に、当該送風装置3を停止させる。具体的な処理の流れは、図7の処理フローのステップS5を削除した処理フローとなり、同様に、図9の処理フローのステップS17を削除した処理フローとなる。
1 リモートコントローラ、2 温度検出装置、2a 温度検出装置、2b 温度検出装置、2c 温度検出装置、3 送風装置、3a 送風装置、3b 送風装置、3c 送風装置、4 室内ユニット、5 室外ユニット、6a 無線通信路、6b 無線通信路、7a 通信配線、7b 通信配線、8a テーブル、8b テーブル、8c テーブル、9 在室者、9a 在室者、9c 在室者、10 人検出装置、10a 人検出装置、10b 人検出装置、10c 人検出装置、11 第1制御部、12 第1無線通信部、13 第1有線通信部、14 第1記憶部、15 第1操作部、16 第1表示部、21 第2制御部、22 温度検出部、23 第2無線通信部、31 第3制御部、32 送風部、33 第3無線通信部、41 室内側熱交換器、51 室外側熱交換器、52 圧縮機、53 流路切替装置、54 膨張弁、55 制御部、60 冷媒配管、70 通常運転状態、71 送風装置運転状態、72 送風装置+室内ユニット運転状態、80 タブレット、80a タブレット、80b タブレット、80c タブレット、81 マイク、81a マイク、81b マイク、81c マイク、100 関係テーブル、100A 第2関係テーブル。
Claims (10)
- 室内空間に設置された室内ユニットと、
前記室内空間の外部に設置され、前記室内ユニットに冷媒配管を介して接続された室外ユニットと、
前記室内空間の複数のエリアのそれぞれの温度を検出する温度検出装置と、
前記複数のエリアのそれぞれに対する送風を行う複数の送風装置と、
前記温度検出装置が検出した前記温度に基づいて前記送風装置の動作を制御するリモートコントローラと
を備え、
前記リモートコントローラは、
前記エリアごとに前記温度検出装置と前記送風装置との対応関係を定義した関係テーブルを有し、
前記温度検出装置の中に、検出した前記温度が第1閾値を超えている閾値超え温度検出装置が有る場合に、前記関係テーブルを参照して、前記閾値超え温度検出装置に対応する前記送風装置に対して、送風を開始させる制御信号を送信する、
空気調和システム。 - 前記温度検出装置は、前記リモートコントローラに対して、検出した前記温度を無線通信により送信する、
請求項1に記載の空気調和システム。 - 前記リモートコントローラは、前記送風装置に対して、前記制御信号を無線通信により送信する、
請求項1または2に記載の空気調和システム。 - 前記リモートコントローラは、
前記閾値超え温度検出装置に対応する前記送風装置が前記送風を開始した時点から、前記温度検出装置が検出した各エリアの前記温度が前記第1閾値以下の状態が連続して第1時間続いた場合に、前記送風を行っている前記送風装置を停止させる、
請求項1~3のいずれか1項に記載の空気調和システム。 - 前記リモートコントローラは、
前記温度検出装置の中に、検出した前記温度が第1閾値を超えている閾値超え温度検出装置が無く、且つ、前記送風装置の中に動作中の送風装置が有った場合に、前記動作中の前記送風装置を停止させる、
請求項1~3のいずれか1項に記載の空気調和システム。 - 前記リモートコントローラは、
前記温度検出装置の全個数に対する前記閾値超え温度検出装置の個数の割合が50%以上の場合に、前記室内ユニットの設定温度の値を低下させる、
請求項1~5のいずれか1項に記載の空気調和システム。 - 前記リモートコントローラは、
前記室内ユニットの前記設定温度の値を低下させた後に、
前記閾値超え温度検出装置に対応する前記送風装置が前記送風を開始した時点から、前記温度検出装置が検出した各エリアの前記温度が前記第1閾値以下の状態が連続して第1時間続いた場合に、前記室内ユニットの前記設定温度の値を元に戻す、
請求項6に記載の空気調和システム。 - 前記リモートコントローラは、
前記室内ユニットの前記設定温度の値を低下させた後に、前記温度検出装置の全個数に対する前記閾値超え温度検出装置の個数の割合が50%未満になった場合に、前記室内ユニットの前記設定温度の値を元に戻す、
請求項6に記載の空気調和システム。 - 前記複数のエリアのそれぞれの在室者を検出する人検出装置をさらに備え、
前記リモートコントローラは、
前記エリアごとに前記温度検出装置と前記送風装置と前記人検出装置との対応関係を定義した第2関係テーブルを有し、
検出した前記温度が第1閾値を超えている閾値超え温度検出装置が有る場合に、前記第2関係テーブルを参照して、前記閾値超え温度検出装置に対応する前記人検出装置の検出結果を取得し、
前記検出結果に基づいて、前記閾値超え温度検出装置に対応する前記人検出装置が前記在室者を検出したエリアが有った場合に、前記第2関係テーブルを参照して、前記エリアに対応する前記送風装置に対して、送風を開始させる制御信号を送信する、
請求項1~3のいずれか1項に記載の空気調和システム。 - 前記リモートコントローラは、
前記温度検出装置の全個数に対する前記閾値超え温度検出装置の個数の割合が50%以上の場合に、前記室内ユニットの設定温度の値を低下させる、
請求項9に記載の空気調和システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112020006516.2T DE112020006516T5 (de) | 2020-01-14 | 2020-01-14 | Klimaanlage |
JP2021571080A JP7383055B2 (ja) | 2020-01-14 | 2020-01-14 | 空気調和システム |
CN202080091497.6A CN114930094A (zh) | 2020-01-14 | 2020-01-14 | 空调系统 |
PCT/JP2020/000872 WO2021144845A1 (ja) | 2020-01-14 | 2020-01-14 | 空気調和システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/000872 WO2021144845A1 (ja) | 2020-01-14 | 2020-01-14 | 空気調和システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021144845A1 true WO2021144845A1 (ja) | 2021-07-22 |
Family
ID=76863966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/000872 WO2021144845A1 (ja) | 2020-01-14 | 2020-01-14 | 空気調和システム |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7383055B2 (ja) |
CN (1) | CN114930094A (ja) |
DE (1) | DE112020006516T5 (ja) |
WO (1) | WO2021144845A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005201509A (ja) * | 2004-01-15 | 2005-07-28 | Daikin Ind Ltd | エリア別環境提供制御システム、アンビエント環境提供装置、タスク環境提供装置、エリア別環境提供制御方法及びエリア別環境提供制御プログラム |
JP2007192530A (ja) * | 2005-12-20 | 2007-08-02 | Fuji Electric Systems Co Ltd | 大空間用送風ユニット |
JP2014240729A (ja) * | 2013-06-12 | 2014-12-25 | 株式会社東芝 | 空調エネルギー管理システム、方法、およびプログラム |
JP2016035371A (ja) * | 2014-08-04 | 2016-03-17 | 戸田建設株式会社 | 空気調和システム |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008157548A (ja) | 2006-12-25 | 2008-07-10 | Tokyo Electric Power Co Inc:The | 空調システム |
JP5127871B2 (ja) * | 2010-04-09 | 2013-01-23 | 三菱電機株式会社 | 空気調和システム |
JP5289392B2 (ja) * | 2010-07-16 | 2013-09-11 | 三菱電機株式会社 | 空気調和機 |
JP2015055424A (ja) * | 2013-09-12 | 2015-03-23 | パナソニックIpマネジメント株式会社 | 空気調和機 |
JP6038264B1 (ja) * | 2015-11-04 | 2016-12-07 | 三菱電機株式会社 | 空気調和システム |
WO2018211619A1 (ja) * | 2017-05-17 | 2018-11-22 | 三菱電機株式会社 | 空調制御装置、空調システム、空調制御方法及びプログラム |
-
2020
- 2020-01-14 WO PCT/JP2020/000872 patent/WO2021144845A1/ja active Application Filing
- 2020-01-14 JP JP2021571080A patent/JP7383055B2/ja active Active
- 2020-01-14 DE DE112020006516.2T patent/DE112020006516T5/de active Pending
- 2020-01-14 CN CN202080091497.6A patent/CN114930094A/zh not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005201509A (ja) * | 2004-01-15 | 2005-07-28 | Daikin Ind Ltd | エリア別環境提供制御システム、アンビエント環境提供装置、タスク環境提供装置、エリア別環境提供制御方法及びエリア別環境提供制御プログラム |
JP2007192530A (ja) * | 2005-12-20 | 2007-08-02 | Fuji Electric Systems Co Ltd | 大空間用送風ユニット |
JP2014240729A (ja) * | 2013-06-12 | 2014-12-25 | 株式会社東芝 | 空調エネルギー管理システム、方法、およびプログラム |
JP2016035371A (ja) * | 2014-08-04 | 2016-03-17 | 戸田建設株式会社 | 空気調和システム |
Also Published As
Publication number | Publication date |
---|---|
DE112020006516T5 (de) | 2022-12-01 |
CN114930094A (zh) | 2022-08-19 |
JP7383055B2 (ja) | 2023-11-17 |
JPWO2021144845A1 (ja) | 2021-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101706142B (zh) | 基于人体活动量检测的温度调节方法及其装置和系统 | |
EP2206983B1 (en) | Air conditioner and method of operating the same | |
US7643908B2 (en) | Occupant controlled energy management system and method for managing energy consumption in a multi-unit building | |
JP6260909B2 (ja) | 空気調和機 | |
JP6494562B2 (ja) | 制御装置、空調システム、制御方法、及び、プログラム | |
JP6320528B2 (ja) | 空気調和システム | |
JP6430101B2 (ja) | 空気調和機の制御装置および空気調和機の制御方法 | |
JP2013204835A (ja) | 空気調和機 | |
JP2016038159A (ja) | 空気調和機 | |
JPWO2021019761A1 (ja) | 空気調和システムおよびシステム制御装置 | |
JP6472234B2 (ja) | 空気調和システム | |
JP2015206483A (ja) | 空気調和機 | |
JP6625233B2 (ja) | コントローラ、空気調和システムおよび空気調和機の制御方法 | |
JP5459151B2 (ja) | 空気調和機 | |
WO2021144845A1 (ja) | 空気調和システム | |
JP2014145488A (ja) | 空気調和機 | |
JP4417672B2 (ja) | 空気調和機 | |
JP6746246B2 (ja) | 空気調和機 | |
US11566804B2 (en) | Control system, air conditioner, and control method based on lifestyle log | |
JPH0552379A (ja) | 空気調和機の制御方法 | |
WO2018207237A1 (ja) | 空気調和機及び空気調和システム | |
KR20080001293A (ko) | 공기 조화기의 슬립 모드 제어 장치 및 방법 | |
WO2018025371A1 (ja) | 空気調和機 | |
KR102192787B1 (ko) | 공기조화기 및 그 동작방법 | |
KR100765165B1 (ko) | 공기조화기의 제어방법 및 이를 적용한 공기조화기 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20913298 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021571080 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20913298 Country of ref document: EP Kind code of ref document: A1 |