WO2021143502A1 - 相移键控调制解调方法及设备 - Google Patents

相移键控调制解调方法及设备 Download PDF

Info

Publication number
WO2021143502A1
WO2021143502A1 PCT/CN2020/140069 CN2020140069W WO2021143502A1 WO 2021143502 A1 WO2021143502 A1 WO 2021143502A1 CN 2020140069 W CN2020140069 W CN 2020140069W WO 2021143502 A1 WO2021143502 A1 WO 2021143502A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
phase
modulation
radio frequency
shift keying
Prior art date
Application number
PCT/CN2020/140069
Other languages
English (en)
French (fr)
Inventor
徐斌
Original Assignee
南京中感微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京中感微电子有限公司 filed Critical 南京中感微电子有限公司
Publication of WO2021143502A1 publication Critical patent/WO2021143502A1/zh
Priority to US17/865,391 priority Critical patent/US11962442B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits

Definitions

  • the present disclosure relates to the field of wireless communication, and more specifically, to a phase shift keying modulation and demodulation method and device.
  • the Internet of Things is the foundation of the intelligent age, and wireless connection technology is the core of the Internet of Things.
  • various wireless connection technologies have been widely used, such as Classic Bluetooth and Bluetooth Low Energy (BLE).
  • BLE Bluetooth Low Energy
  • BLE 2M GFSK modulation technology the biggest advantage of BLE 2M GFSK modulation technology is that GFSK is a constant envelope modulation technology.
  • the RF transmitter with constant envelope modulation has lower complexity and higher power efficiency.
  • BLE 2M GFSK modulation has low bandwidth efficiency and poor performance in anti-multipath inter-symbol interference.
  • Classical phase shift keying modulation technology for example, DQPSK
  • DQPSK due to the sudden change in phase, after the signal passes through a filter with a limited bandwidth, the signal amplitude has large fluctuations or a large peak-to-average power ratio.
  • the signal of the peak-to-average power ratio requires high linearity of the power amplifier, so the implementation complexity is high and the power efficiency is low.
  • the present disclosure discloses a phase shift keying modulation method, which adopts a method of continuously changing the phase to avoid sudden phase changes to reduce the out-of-band spectrum, and improves the spectrum efficiency while maintaining the characteristics of constant envelope modulation with low complexity and high power amplification efficiency.
  • the technical solution adopted by the present disclosure to solve the above-mentioned technical problems is to provide a phase shift keying modulation method on the one hand, in which:
  • a radio frequency signal is obtained based on the phase signal.
  • obtaining a radio frequency signal based on the phase signal includes obtaining a baseband signal based on the phase signal, and obtaining a radio frequency signal based on the baseband signal;
  • the baseband signal is:
  • v(t) is the baseband signal
  • A is the signal amplitude
  • j is the symbol of the imaginary part
  • the radio frequency signal is:
  • S(t) is the radio frequency signal
  • F c is the radio frequency carrier frequency
  • Re[] is the sign of the real part.
  • the derivative of the phase function p(t) is a continuous function.
  • the modulation method Preferably, the modulation method, the modulation method, and
  • T is the symbol period.
  • obtaining the radio frequency signal based on the phase signal includes taking the derivative function of the phase signal as a frequency function, and obtaining the radio frequency signal by using the frequency modulation method by using the frequency function.
  • the binary data stream ⁇ b n ⁇ is mapped into a phase sequence ⁇ according to the mapping relationship corresponding to one or more of the ⁇ /2 BPSK modulation, ⁇ /4 QPSK modulation, and ⁇ /8 8PSK modulation ⁇ k ⁇ .
  • phase shift keying signal modulation method including:
  • the step of acquiring the phase sequence includes mapping the binary data stream to be modulated into a phase sequence composed of phase symbols according to a predetermined phase shift keying modulation mode;
  • the step of obtaining a phase signal includes modulating the phase symbol by using a preset phase function to obtain a phase signal whose value changes continuously with time, and in each symbol period, the phase signal value at the beginning of the symbol period is equal to the value at the end of the symbol period.
  • the difference between the phase signal values is equal to the phase symbol modulated in the symbol period;
  • the step of modulating a radio frequency signal includes obtaining a radio frequency signal based on the phase signal modulation.
  • t is the time variable and T is the symbol period.
  • the derivative of the phase function p(t) is a continuous function.
  • phase signal obtained in the step of obtaining the phase signal for:
  • is the phase symbol
  • phase function is,
  • the step of modulating the radio frequency signal includes modulating the phase signal of the current symbol period to a baseband signal v(t), and modulating the baseband signal to a radio frequency signal at a predetermined radio frequency carrier frequency, wherein,
  • A is the signal amplitude and j is the symbol of the imaginary part.
  • the derivative function of the phase signal is used as a frequency function, and a frequency modulation method is adopted to obtain the radio frequency signal.
  • the predetermined phase shift keying modulation mode includes one or more of ⁇ /2 BPSK modulation, ⁇ /4 QPSK modulation, and ⁇ /8 8PSK modulation.
  • Another aspect provides a phase shift keying demodulation method.
  • the signal modulated by the above modulation method is demodulated, which includes:
  • a differential signal is obtained based on the baseband sampling signal; and binary data is demodulated based on the differential signal.
  • the baseband signal is:
  • Is the baseband signal Is the amplitude of the received signal
  • n(t) is additive noise
  • ⁇ f(t) is the residual frequency deviation
  • ⁇ (t) is the phase noise
  • is the sign of the processed value
  • the baseband sampling signal is:
  • ⁇ (k*T) is the phase error after frequency synchronization or calibration
  • the differential signal is calculated Phase According to the phase Demodulate binary data, where,
  • angle ⁇ is an angle or phase calculation.
  • Another aspect provides a phase shift keying modulator, the modulator is a digital baseband modulator, and realizes the above-mentioned signal modulation method.
  • phase shift keying demodulator which is a digital baseband demodulator, and realizes the above-mentioned signal demodulation method.
  • phase shift keying transmitter including a processor and a memory, a digital baseband modulator, a digital-to-analog converter, and a radio frequency transmitter; the digital baseband modulator is the constant envelope continuous phase phase shift key Control modulator.
  • phase shift keying receiver including a processor and a memory, a digital baseband demodulator, an analog-to-digital converter, and a radio frequency receiver; the digital baseband demodulator is the above-mentioned phase shift keying demodulation Device.
  • the embodiment of the present disclosure provides a phase shift keying modulation and demodulation method and device, which adopts the method of continuously changing the phase to avoid sudden phase changes to reduce the out-of-band spectrum and improve the spectrum efficiency; while maintaining low complexity and high power amplification efficiency Characteristics of constant envelope modulation.
  • FIG. 1 is a flowchart of a phase shift keying modulation method provided by an embodiment of the disclosure
  • Figure 2 is a diagram of the data packet structure in the first embodiment of the present disclosure
  • FIG. 3 is a structural diagram of a transmitter using the phase shift keying modulation method of the present disclosure provided by an embodiment of the present disclosure
  • FIG. 4 is a structural diagram of a receiver using the phase shift keying demodulation method of the present disclosure provided by an embodiment of the present disclosure
  • FIG. 5 is a spectrum comparison diagram including two modulation methods in the present disclosure and other related technologies
  • radio frequency transmitters using constant envelope modulation techniques have lower complexity and higher power efficiency.
  • BLE 2M GFSK constant envelope modulation techniques
  • problems such as low modulation bandwidth efficiency and poor performance against multipath inter-symbol interference.
  • the classic phase shift keying modulation technology such as DQPSK
  • DQPSK the classic phase shift keying modulation technology
  • the peak-to-average power ratio signal requires high linearity of the power amplifier, so the implementation complexity is high and the power efficiency is low.
  • the present disclosure combines the characteristics of phase shift keying modulation and constant envelope modulation, and adopts a method of gradually and continuously changing the phase to avoid a sudden change in phase to reduce the out-of-band spectrum, while having low complexity and high power amplification efficiency.
  • the advantages of constant envelope modulation are the advantages of constant envelope modulation.
  • phase shift keying modulation method adopted in the present disclosure is based on the constant envelope continuous phase (CECP: Constant Envelope and Continuous Phase) phase shift keying (PSK: Phase Shift Keying) modulation idea, as shown in Figure 1, and includes the following steps:
  • Step S110 a step of acquiring a phase sequence, mapping the binary data stream to be modulated into a phase sequence composed of phase symbols according to a predetermined phase shift keying modulation method
  • Step S120 obtaining a phase signal step, modulate the phase symbol with a preset phase function to obtain a phase signal whose value changes continuously with time, and in each symbol period, the value of the phase signal at the beginning of the symbol period and the symbol period The difference between the end-point phase signal values is equal to the phase symbol modulated in the symbol period;
  • Step S130 the step of modulating the radio frequency signal includes modulating the radio frequency signal based on the obtained phase signal.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • the signal modulation and demodulation steps based on the core idea of the present disclosure include:
  • the phase of the modulation signal is,
  • T is the symbol period
  • the phase sequence ⁇ k ⁇ is the digital phase that digital communication needs to transmit
  • multiple digital phases are modulated into a continuous phase signal by the phase function p(t)
  • the modulation of the signal phase is the core of the present disclosure. It is different from the classical phase shift keying modulation. It changes the phase slowly. It can be seen from the above formula that this progress can be set according to the period T, thus avoiding the traditional In the method, the out-of-band spectrum of the signal becomes higher after the phase mutation, which needs to be filtered by a wave filter, but the signal amplitude after filtering has a problem of great fluctuations.
  • the modulated baseband signal is,
  • A is the signal amplitude, continuous phase signal According to this formula, it is modulated into an analog baseband signal.
  • the modulated radio frequency signal is,
  • F c is the radio frequency carrier frequency
  • Re[] is the real part symbol
  • continuous phase signal The modulated analog baseband signal v(t) is modulated on the carrier F c for easy transmission.
  • the method for demodulating the signal modulated by the above modulation method is: down-converting the received radio frequency signal into a baseband signal; performing frequency and time synchronization and sampling on the baseband signal to obtain a baseband sampling signal; The baseband sampling signal obtains the differential signal; the binary data is demodulated according to the differential signal.
  • the specific steps may include,
  • the first step is to down-convert the RF signal to a baseband signal:
  • the second step is to synchronize and sample the frequency and time of the signal obtained in the first step to obtain the baseband sampling signal
  • ⁇ (k*T) is the phase error after frequency synchronization or calibration.
  • the third step is to find the differential signal of the baseband sampled signal obtained in the second step
  • the fourth step is to find the phase according to the above differential signal:
  • ⁇ k is the phase estimation error.
  • angle ⁇ is the calculation of the angle or phase.
  • the fifth step is to find the mapped binary data based on the phase obtained in the fourth step.
  • the first embodiment is a first embodiment.
  • phase function of CECP PSK modulation is defined as follows:
  • T is the symbol period.
  • the M of CECP PSK is 2, 4, and 8, corresponding to ⁇ /2 BPSK, ⁇ /4 QPSK, and ⁇ /8 8PSK modulation respectively.
  • the mapping relationship between the binary data stream ⁇ b n ⁇ and the phase sequence ⁇ k ⁇ is as follows: Tab.1, Tab.2, Tab.3.
  • the data packet format adopting the CECP PSK modulation method of the present disclosure is shown in FIG. 2. As shown in the figure, it includes preamble symbols, sync words, packet headers, and data payload.
  • the preamble, synchronization word, and packet header are modulated by ⁇ /2 BPSK
  • the data load is modulated by ⁇ /2 BPSK, ⁇ /4 QPSK, or ⁇ /8 8PSK.
  • the preamble symbol is used for automatic gain control (AGC), frequency and symbol time synchronization, and the synchronization word is used for packet synchronization or connection identification.
  • the packet header includes the modulation format of the data load, the length of the data load, the coding rate, and the sequence number (SEQN) And automatic retransmission (ARQ) and other control information.
  • the length of the preamble symbol is 8 symbols
  • the length of the sync word is 32 symbols
  • the packet header is 16 symbols.
  • the symbol period T is 1 us.
  • the first bit of the sync word is 0, and the preamble symbol is 0 1 0 1 0 1 0 1 0 1; the first bit of the sync word is 1, and the preamble symbol is 1 0 1 0 1 0 1 0.
  • the structure of the transmitter adopting the phase shift keying modulation method of the present disclosure in this embodiment is shown in FIG. 3, and includes a microprocessor and a memory, a digital baseband modulator, a digital-to-analog converter, a radio frequency transmitter, and an antenna.
  • Microprocessor and memory are used to store and execute programs, process communication protocols, configure and control digital baseband modulators and radio frequency transmitters, for example, prepare and send data to digital baseband processors, configure synchronization words and modulation formats, and configure radio frequency transmission Channel and power, etc.
  • the digital baseband modulator first encrypts the binary data sequence, adds Cyclic Redundancy Check (CRC: Cyclic Redundancy Check), whitening, channel coding, etc., and then maps it into a phase sequence according to the mapping table of Tab.1-Tab.3 , And then map the digital phase of oversampling according to the waveforms of EQ.08 and EQ.01, the oversampling rate is 32 times, that is, 32Msps. Then, according to EQ.02 to generate over-sampled I/Q two digital signals (corresponding to and ), each signal is quantized to 8bits.
  • CRC Cyclic Redundancy Check
  • the 32Msps I/Q two-channel digital signal is sent to the digital-to-analog converter to be converted into an analog signal, and then sent to the radio frequency transmitter for processing.
  • the radio frequency transmitter first low-pass filters, amplifies, and mixes the analog baseband signal to a 2.4GHz carrier to form a radio frequency signal. After the radio frequency signal is amplified by a power amplifier, it is sent to the air through an antenna. It can be seen that the radio frequency transmitter in this embodiment adopts a typical I/Q quadrature modulation structure.
  • the structure of the receiver adopting the phase shift keying demodulation method of the present disclosure in this embodiment is shown in FIG. 4, and includes an antenna, a radio frequency receiver, an analog-to-digital converter, a digital baseband demodulator, a microprocessor, and a memory.
  • the microprocessor and memory are used to store and execute programs, configure and control the digital baseband demodulator and radio frequency receiver, for example, configure the radio frequency receiving channel and preset synchronization word, receive and process the demodulated signal of the digital baseband demodulator The results or output data, execute the communication protocol to process these results or data.
  • the aerial RF signal received by the antenna is amplified by the RF receiver, down-converted into a low-IF or baseband analog signal, filtered, etc., and then sent to the analog-to-digital converter to be converted into a digital signal. Then send it to the digital baseband demodulator.
  • the digital baseband demodulator first detects the preamble symbol shown in Figure 2, and uses the preamble symbol for AGC, frequency synchronization and symbol time synchronization, and then demodulates and matches the synchronization word. If the demodulated sync word matches the locally preset sync word, the packet header is demodulated.
  • demodulate the data load according to the modulation format, data load length, coding rate and other parameters transmitted by the header.
  • the process of demodulating the data load includes restoring the estimation of the sent binary data according to the mapping table of EQ.08 and Tab.1-Tab.3, channel decoding, de-whitening, CRC detection, and decryption.
  • the binary data passed the CRC test or the status information of the failed CRC test is sent to the microprocessor for further processing.
  • the transmitter implements the modulation idea of the present disclosure by means of frequency modulation, including direct frequency modulation or frequency two-point modulation (I/Q modulation). )method.
  • frequency modulation including direct frequency modulation or frequency two-point modulation (I/Q modulation).
  • I/Q modulation frequency two-point modulation
  • the derivative function is a frequency function, and f(t) is used to modulate the baseband signal using a frequency modulation method.
  • the transmitter structure using direct frequency modulation or two-point modulation is shown in Figure 3, including a microprocessor and memory, a digital baseband modulator, a digital-to-analog converter, a radio frequency transmitter, and an antenna.
  • Microprocessor and memory are used to store and execute programs, process communication protocols, configure and control digital baseband modulators and radio frequency transmitters, for example, prepare and send data to digital baseband processors, configure synchronization words and modulation formats, and configure radio frequency transmission Channel and power, etc.
  • the digital baseband modulator first encrypts the binary data sequence, adds Cyclic Redundancy Check (CRC: Cyclic Redundancy Check), whitening, channel coding, etc., and then maps it as The phase sequence is mapped to the over-sampled digital phase according to the waveforms of EQ.08 and EQ.01, and the over-sampling rate is 32 times, that is, 32Msps. Then, according to EQ.09, an over-sampled digital frequency signal is generated, and each signal is quantized to 8 bits. The 32Msps digital frequency signal is sent to the digital-to-analog converter to be converted into an analog signal, and then sent to the radio frequency transmitter for processing.
  • CRC Cyclic Redundancy Check
  • the RF transmitter first performs low-pass filtering and gain amplification on the analog baseband signal, and then sends it to a two-point modulated phase-locked loop (PLL) and voltage-controlled oscillator (VCO), which is directly modulated to a 2.4GHz carrier to form a RF signal.
  • PLL phase-locked loop
  • VCO voltage-controlled oscillator
  • the RF signal passes through After the power amplifier is amplified, it is sent to the air through the antenna.
  • the radio frequency transmitter in this embodiment adopts a typical two-point direct modulation structure.
  • the differential signal in demodulation is Signal component It can be separated.
  • the demodulation method of this embodiment is simpler and has better performance.
  • the method for the digital baseband demodulator to recover the transmitted binary data is as follows. Rewrite EQ.06 as
  • phase function is used for phase shift keying modulation
  • T is the symbol period.
  • phase function is used for phase shift keying modulation
  • T is the symbol period.
  • the inventor found that the 2Mbps ⁇ /4 QPSK signal modulated by the phase shift keying modulation method of the present disclosure occupies a lower signal bandwidth and a longer symbol period than a BLE 2M GFSK modulated signal. Therefore, it has better performance against multi-path inter-symbol interference.
  • FIG. 5 is a comparison diagram for testing the effect of the modulation method provided by the embodiments of the present disclosure and other modulation methods.
  • the transmission rate is the same, both are 2Mbps, and both use constant envelope signals
  • light gray is the spectrum of the ⁇ /4 QPSK modulated signal modulated by the present disclosure
  • black is the modulation index used by LE 2M
  • the spectrum of the GFSK modulated signal is 0.5
  • the dark gray is the spectrum of the constant envelope ⁇ /4 DQPSK modulated signal.
  • the ⁇ /4 QPSK modulation signal of the present disclosure occupies less frequency spectrum than GFSK when transmitting data at the same rate, and it is also much smaller than the frequency spectrum of the constant envelope ⁇ /4 DQPSK modulation signal.
  • it can be filtered.
  • the ⁇ /4 DQPSK adopted by Bluetooth EDR2 but the filtered signal is not a constant envelope signal.
  • the symbol period of the ⁇ /4 QPSK modulation signal of the present disclosure is 1 us, and the symbol period of the LE 2M GFSK modulation is 0.5 us.
  • the ⁇ /4 QPSK modulation signal of the present disclosure is more resistant to multipath interference than the LE 2M GFSK modulation signal.
  • phase shift keying modulation method disclosed in the present disclosure and the corresponding modem are adopted, and the method of continuously changing the phase is adopted to avoid sudden phase changes to reduce the out-of-band spectrum and improve the spectrum efficiency; while maintaining a constant envelope Features to improve the efficiency of RF signal power amplification.
  • the steps of the method or algorithm described in combination with the embodiments disclosed in this document can be implemented by hardware, a software module executed by a processor, or a combination of the two.
  • the software module can be placed in random access memory (RAM), internal memory, read-only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disks, removable disks, CD-ROMs, or all areas in the technical field. Any other known storage media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本公开提供一种相移键控调制方式,将待调制的二元数据流映射为由相位符号构成的相位序列,采用预设的相位函数对相位符号进行调制得到其值随时间连续变化的相位信号,基于所述相位信号获得射频信号。

Description

相移键控调制解调方法及设备
相关申请的交叉引用
本申请主张在2020年1月17日在中国提交的中国专利申请号No.202010054013.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信领域,更具体地,涉及一种相移键控调制解调方法及设备。
背景技术
物联网是智能时代的基础,无线连接技术是物联网的核心。随着物联网的发展,各种无线连接技术得到了广泛的应用,如Classic Bluetooth和Bluetooth Low Energy(BLE)。尤其在大量的传感器和控制应用领域,人们也对无线连接技术的功耗、成本和性能提出越来越高的要求。BLE 2M GFSK调制技术相对于Classic Bluetooth EDR2 DQPSK调制技术,最大的优点在于GFSK是恒定包络调制技术。恒定包络调制的射频发射机具有更低的复杂度和更高的功率效率。但是,BLE 2M GFSK调制相对于Classic Bluetooth EDR2 DQPSK调制带宽效率低,抗多路径码间干扰性能差。经典的相移键控调制技术,例如,DQPSK,由于存在相位突变,信号经过带宽有限的滤波器后,信号幅度存在很大的起伏,或较大的峰均功率比。高峰均功率比的信号对功率放大器的线性度要求很高,因而实现复杂度高且功率效率低。
发明内容
本公开公开一种相移键控调制方法,采用连续改变相位的方法避免相位突变以降低带外频谱,提高频谱效率的同时保持了复杂度低和功率放大效率高的恒包络调制的特征。
本公开为解决上述技术问题采用的技术方案为,一方面提供一种相移键控调制方法,其中:
将二元数据流{b n},n=0,1,2,3,…N-1,映射为由相位符号构成的相位序列{θ k},k=0,1,2,…,K-1,其中N、K为正整数;
将所述相位序列中的相位符号通过相位函数调制为连续的相位信号
Figure PCTCN2020140069-appb-000001
即:
Figure PCTCN2020140069-appb-000002
其中p(t)为相位函数,且p(t≤0)=0,p(t≥T)=1,p(0≤t≤T)的值在0到1之间连续变化,T为符号周期;
基于所述相位信号获得射频信号。
优选地,基于相位信号获得射频信号包括,基于相位信号获得基带信号,并基于所述基带信号获得射频信号;其中,
所述基带信号为:
Figure PCTCN2020140069-appb-000003
其中v(t)为基带信号,A为信号幅度,j为虚部符号;
所述射频信号为:
Figure PCTCN2020140069-appb-000004
其中S(t)为射频信号,F c为射频载波频率,Re[]为取实部符号。
优选地,所述相位函数p(t)的导数为连续函数。
优选地,所述调制方法,
其采用的相位函数为,
Figure PCTCN2020140069-appb-000005
或者,
Figure PCTCN2020140069-appb-000006
或者,
Figure PCTCN2020140069-appb-000007
其中,T为符号周期。
优选地,基于相位信号获得射频信号包括,将所述相位信号的导函数作 为频率函数,利用所述频率函数,采用频率调制方法获得所述射频信号。
优选地,根据π/2 BPSK调制、π/4 QPSK调制、π/8 8PSK调制中的一种或多种调制方式所对应的映射关系,将二元数据流{b n}映射为相位序列{θ k}。
另一方面提供一种相移键控信号调制方法,包括:
获取相位序列步骤,包括根据预定的相移键控调制方式将待调制的二元数据流映射为由相位符号构成的相位序列;
获取相位信号步骤,包括采用预设的相位函数对相位符号进行调制得到其值随时间连续变化的相位信号,且在每个符号周期内,该符号周期起点的相位信号值与该符号周期终点的相位信号值之间的差值等于在该符号周期内调制的相位符号;
调制射频信号步骤,包括基于所述相位信号调制获得射频信号。
优选地,相位函数p(t)为连续函数,并且p(t≤0)=0,p(t≥T)=1,p(0≤t≤T)的值在0到1之间连续变化,其中t为时间变量,T为符号周期。
优选地,所述相位函数p(t)的导数为连续函数。
具体地,所述获取相位信号步骤中所获得的相位信号
Figure PCTCN2020140069-appb-000008
为:
Figure PCTCN2020140069-appb-000009
其中θ为相位符号,相位序列表示为{θ k},k=0,1,2,…,K-1;且K为整数,t为时间变量,T为符号周期。
进一步的,对于M级相移键控调制,K=N/log 2(M),其中M取值为2、4或8,且M=2时,为二元相移键控调制;M=4时,为正交相移动键控调制,M=8时,为8-ary相移动键控调制。
进一步具体地,所述相位函数为,
Figure PCTCN2020140069-appb-000010
或者,
Figure PCTCN2020140069-appb-000011
或者,
Figure PCTCN2020140069-appb-000012
进一步具体地,所述调制射频信号步骤中包括,将所述当前符号周期的相位信号调制为基带信号v(t),并将所述基带信号以预定的射频载波频率调制为射频信号,其中,
Figure PCTCN2020140069-appb-000013
其中A为信号幅度,j为虚部符号。
进一步具体地,所述调制射频信号步骤中,将所述相位信号的导函数作为频率函数,采用频率调制方法获得射频信号。
优选地,所述预定的相移键控调制方式包括π/2 BPSK调制、π/4 QPSK调制、π/8 8PSK调制中的一种或多种。
另一方面提供一种相移键控解调方法,上述调制方法调制的信号进行解调,其中包括,
将接收到的射频信号下变频为基带信号;
对所述基带信号进行频率和时间同步并采样后得到基带采样信号;
基于所述基带采样信号获得差分信号;根据所述差分信号解调出二元数据。
优选地,所述基带信号为:
Figure PCTCN2020140069-appb-000014
其中
Figure PCTCN2020140069-appb-000015
为基带信号,
Figure PCTCN2020140069-appb-000016
为接收信号的幅度,n(t)为加性噪声,Δf(t)为残留频率偏差,ε(t)为相位噪声,~为处理值符号;
所述基带采样信号为:
Figure PCTCN2020140069-appb-000017
其中
Figure PCTCN2020140069-appb-000018
为基带采样信号,∈(k*T)为经过频率同步或校准后的相位误差;
基于所述基带采样信号
Figure PCTCN2020140069-appb-000019
计算差分信号
Figure PCTCN2020140069-appb-000020
其中,
Figure PCTCN2020140069-appb-000021
具体地,计算所述差分信号
Figure PCTCN2020140069-appb-000022
的相位
Figure PCTCN2020140069-appb-000023
根据所述相位
Figure PCTCN2020140069-appb-000024
解调出二元数 据,其中,
Figure PCTCN2020140069-appb-000025
其中,angle{}为求角度或相位运算。
具体地,基于所述差分信号
Figure PCTCN2020140069-appb-000026
所包含的实部信号
Figure PCTCN2020140069-appb-000027
和虚部信号
Figure PCTCN2020140069-appb-000028
解调获得二元数据,其中,
对于采用π/2 BPSK调制技术调制的射频信号,恢复二元数据的估值
Figure PCTCN2020140069-appb-000029
的方法为,
Figure PCTCN2020140069-appb-000030
对于采用π/4 QPSK调制技术调制的射频信号,恢复二元数据的估值
Figure PCTCN2020140069-appb-000031
Figure PCTCN2020140069-appb-000032
的方法为,
Figure PCTCN2020140069-appb-000033
Figure PCTCN2020140069-appb-000034
对于采用π/8 8PSK调制技术调制的射频信号,恢复二元数据的估值
Figure PCTCN2020140069-appb-000035
Figure PCTCN2020140069-appb-000036
Figure PCTCN2020140069-appb-000037
的方法为,
Figure PCTCN2020140069-appb-000038
Figure PCTCN2020140069-appb-000039
Figure PCTCN2020140069-appb-000040
其中,||为绝对值符号。
另一方面提供一种相移键控调制器,所述调制器为数字基带调制器,实现上述信号调制方法。
另一方面提供一种相移键控解调器,所述解调器为数字基带解调器,实现上述信号解调方法。
另一方面提供一种相移键控发射机,包括处理器及存储器、数字基带调制器、数模转化器、射频发射器;所述数字基带调制器,为上述恒定包络连续相位相移键控调制器。
另一方面提供一种相移键控接收机,包括处理器及存储器、数字基带解调器、模数转化器、射频接收机;所述数字基带解调器,为上述相移键控解调器。
本公开实施例提供的一种相移键控调制解调方法及设备,采用连续改变相位的方法避免相位突变以降低带外频谱,提高频谱效率;同时保持了复杂度低和功率放大效率高的恒包络调制的特征。
附图说明
图1为本公开实施例提供的一种相移键控调制方法的流程图;
图2为本公开第一实施例中的数据包结构图;
图3为本公开实施例提供的采用本公开的相移键控调制方法的发射机结构图;
图4为本公开实施例提供的采用本公开的相移键控解调方法的接收机结构图;
图5为包括本公开与其它相关技术中的两种调制方法的频谱对比图;
下面通过附图和实施例,对本公开的技术方案做进一步的详细描述。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面结合附图及实施例对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它的实施例,都属于本公开保护的范围。
在无线信号调制中,采用恒定包络的调制技术(如BLE 2M GFSK)的 射频发射机具有更低的复杂度和更高的功率效率。但是其存在调制带宽效率低,抗多路径码间干扰性能差等问题。而经典的相移键控调制技术(例如DQPSK)由于存在相位突变,信号经过带宽有限的滤波器后,信号幅度存在很大的起伏,或具体有较大的峰均功率比。而高峰均功率比的信号对功率放大器的线性度要求很高,因而实现复杂度高且功率效率低。
为解决这个问题,本公开结合相移键控调制与恒包络调制的特征,采用渐变地、连续地改变相位的方法避免相位突变以降低带外频谱,同时具有复杂度低和功率放大效率高的恒包络调制的优点。
本公开采用的相移键控调制方法基于恒定包络连续相位(CECP:Constant Envelope and Continuous Phase)相移键控(PSK:Phase Shift Keying)调制思想,如图1所示,包括如下步骤:
步骤S110,获取相位序列步骤,根据预定的相移键控调制方式将待调制的二元数据流映射为由相位符号构成的相位序列;
步骤S120,获取相位信号步骤,采用预设的相位函数对相位符号进行调制得到其值随时间连续变化的相位信号,且在每个符号周期内,该符号周期起点的相位信号值与该符号周期终点的相位信号值之间的差值等于在该符号周期内调制的相位符号;
步骤S130,调制射频信号步骤,包括基于所得相位信号调制获得射频信号。
具体的,本公开实施例中的相位函数为p(t),其中,p(t≤0)=0;p(t≥T)=1;p(0≤t≤T)的值在0到1之间单调连续变化,p(t)的导数为连续函数,T为符号周期。
在获取相位序列步骤中,将二元数据流{b n},n=0,1,2,3,…N-1,映射为由相位符号θ构成的相位序列{θ k},k=0,1,2,…,K-1,其中K和N均为正整数。
在一种具体实施方式中,对于M级相移键控调制,可以使K=N/log 2(M)。其中M可以取值2、4或8,即当M=2时,所述调制为二元相移键控(BPSK:Binary Phase Shift Keying)调制;当M=4时,所述调制为正交相移动键控(QPSK:Quadrature Phase Shift Keying)调制;当M=8时,所述调制为8-ary相 移动键控(8PSK:8 Phase Shift Keying)调制。
基于本公开核心思想的信号调制和解调步骤包括:
在发射机端,
调制信号相位为,
Figure PCTCN2020140069-appb-000041
其中,T为符号周期,相位序列{θ k}即数字通信需要传递的数字相位,多个数字相位通过相位函数p(t)调制为连续的相位信号
Figure PCTCN2020140069-appb-000042
信号相位的调制是本公开核心,与经典相移键控调制不同,其对于相位的改变是缓慢进行的,从上述公式中可以看到,这个进度可以根据周期T来设置,这样就避免了传统方法中相位突变后信号带外频谱变高,需要通过波器滤波,但滤波后信号幅度存在很大的起伏的问题。
在本公开的一些实施例中,调制基带信号为,
Figure PCTCN2020140069-appb-000043
其中,A为信号幅度,连续的相位信号
Figure PCTCN2020140069-appb-000044
根据该公式调制为模拟基带信号。
在本公开的一些实施例中,调制射频信号为,
Figure PCTCN2020140069-appb-000045
其中,F c为射频载波频率,Re[]为取实部符号,连续的相位信号
Figure PCTCN2020140069-appb-000046
调制的模拟基带信号v(t)被调制在载波F c上便于发送。
在接收机端,对上述调制方法调制的信号进行解调的方法为:将接收到的射频信号下变频为基带信号;对基带信号进行频率和时间同步并采样后得到基带采样信号;基于所述基带采样信号获得差分信号;根据差分信号解调出二元数据。
在本公开的一些实施例中,其具体的步骤可以包括,
第一步,把射频信号下变频为基带信号:
Figure PCTCN2020140069-appb-000047
其中,
Figure PCTCN2020140069-appb-000048
为接收信号的幅度,n(t)为加性噪声,Δf(t)为残留频率偏差,ε(t)为相位噪声,~为处理值符号。
第二步,将第一步得到的信号经过频率和时间同步并采样后,得到基带 采样信号
Figure PCTCN2020140069-appb-000049
其中,∈(k*T)为经过频率同步或校准后的相位误差。
第三步,求第二步得到的基带采样信号的差分信号
Figure PCTCN2020140069-appb-000050
其中,
Figure PCTCN2020140069-appb-000051
k=∈((k+1)*T)-∈(k*T),
Figure PCTCN2020140069-appb-000052
Figure PCTCN2020140069-appb-000053
Figure PCTCN2020140069-appb-000054
() *为复共轭。
第四步,根据上述差分信号求相位:
Figure PCTCN2020140069-appb-000055
其中,γ k为相位估计误差。angle{}为求角度或相位运算。
第五步,根据第四步得到的相位求其映射的二元数据。
第一实施例,
该实施例中,CECP PSK调制的相位函数定义如下,
Figure PCTCN2020140069-appb-000056
其中,T为符号周期。
本实施例CECP PSK的M取2,4,8,分别对应π/2 BPSK,π/4 QPSK,π/8 8PSK调制。二元数据流{b n}与相位序列{θ k}的映射关系如下表Tab.1,Tab.2,Tab.3。
b k θ k
0 +π/2
1 -π/2
Tab.1 π/2 BPSK映射表
b 2k b 2k+1 θ k
0 0 +π/4
0 1 +3π/4
1 1 -3π/4
1 0 -π/4
Tab.2 π/4 QPSK映射表
b 3k b 3k+1 b 3k+2 θ k
0 0 0 +π/8
0 0 1 +3π/8
0 1 1 +5π/8
0 1 0 +7π/8
1 1 0 -7π/8
1 1 1 -5π/8
1 0 1 -3π/8
1 0 0 -π/8
Tab.3 π/8 8PSK映射表
在本实施例中,采用本公开的CECP PSK调制方法的数据包格式如图2所示。如图所示,其中包括前导符号,同步字,包头,数据负载。在本公开的一些实施例中,前导符、同步字和包头采用π/2 BPSK调制,数据负载采用π/2 BPSK、π/4 QPSK或π/8 8PSK调制。
其中,前导符号用于自动增益控制(AGC),频率和符号时间同步,同步字用于包同步或连接识别,包头包括数据负载的调制格式、数据负载长度、 编码速率,及序列号(SEQN)和自动重传(ARQ)等控制信息。在本实施例中,前导符号长度为8个符号,同步字长度为32个符号,包头为16个符号。符号周期T为1us。同步字第1bit为0,前导符号为0 1 0 1 0 1 0 1;同步字第1bit为1,前导符号为1 0 1 0 1 0 1 0。
本实施例中采用本公开的相移键控调制方法的发射机结构如图3所示,包括微处理器及存储器、数字基带调制器、数模转换器、射频发射机和天线。微处理器及存储器用于储存和执行程序,处理通信协议,配置和控制数字基带调制器和射频发射机,例如,准备和发送数据到数字基带处理器,配置同步字和调制格式,配置射频发射信道和功率等。数字基带调制器先把二元数据序列进行加密、加循环冗余校验(CRC:Cyclic Redundancy Check)、白化、信道编码等处理后,根据Tab.1-Tab.3的映射表映射为相位序列,再根据EQ.08和EQ.01的波形映射为过采样的数字相位,过采样率32倍,即32Msps。然后,根据EQ.02生成过采样的I/Q两路数字信号(分别对应
Figure PCTCN2020140069-appb-000057
Figure PCTCN2020140069-appb-000058
),每路信号量化为8bits。然后,将32Msps的I/Q两路数字信号送给数模转换器转换为模拟信号,再送给射频发射机处理。射频发射机先对模拟基带信号低通滤波、增益放大、混频到2.4GHz载波上形成射频信号,射频信号经过功率放大器放大后,通过天线发送到空中。可见,本实施例中的射频发射机采用典型的I/Q正交调制结构。
本实施例中采用本公开的相移键控解调方法的接收机结构如图4所示,包括天线、射频接收机、模数转换器,数字基带解调器和微处理器及存储器。微处理器及存储器用于储存和执行程序,配置和控制数字基带解调器和射频接收机,例如,配置射频接收信道和预设的同步字,接收并处理数字基带解调器解调信号的结果或输出的数据,执行通信协议处理这些结果或数据。微处理器配置接收信道和接收时间后,天线接收的空中射频信号,通过射频接收机放大、下变频为低中频或基带模拟信号、滤波等处理后,送给模数转换器转换为数字信号,再送给数字基带解调器。数字基带解调器先检测图2所示中的前导符号,并用前导符号做AGC、频率同步和符号时间同步,再解调和匹配同步字。如果解调的同步字同本地预设的同步字匹配,则解调包头。再根据包头传输的调制格式、数据负载长度、编码速率等参数解调数据负载。 解调数据负载的过程包括,根据EQ.08和Tab.1-Tab.3的映射表恢复发送的二元数据的估计,信道解码、解白化,CRC检测,及解密等。最后,把CRC检测通过的二元数据或CRC检测失败的状态信息送给微处理器做进一步的处理。
第二实施例:
除了上述实施例中的I/Q正交调制(调相)之外,本实施例中,发射机以调频方法实现本公开的调制思路,包括采用频率直接调制或频率两点调制(I/Q)方法。具体地,对EQ.01里采用本公开的相移键控调制方法获得的信号相位
Figure PCTCN2020140069-appb-000059
求导数,即:
Figure PCTCN2020140069-appb-000060
该导函数为频率函数,利用f(t),使用频率调制方法调制所述基带信号。采用频率直接调制或两点调制的发射机结构如图3所示,包括微处理器及存储器、数字基带调制器、数模转换器、射频发射机和天线。微处理器及存储器用于储存和执行程序,处理通信协议,配置和控制数字基带调制器和射频发射机,例如,准备和发送数据到数字基带处理器,配置同步字和调制格式,配置射频发射信道和功率等。数字基带调制器先把二元数据序列进行加密、加循环冗余校验(CRC:Cyclic Redundancy Check)、白化、信道编码等处理后,根据Tab.1-Tab.3的CECP PSK映射表映射为相位序列,再根据EQ.08和EQ.01的波形映射为过采样的数字相位,过采样率32倍,即32Msps。然后,根据EQ.09生成过采样的一路数字频率信号,每路信号量化为8bits。32Msps的数字频率信号送给数模转换器转换为模拟信号,再送给射频发射机处理。射频发射机先对模拟基带信号低通滤波和增益放大,再送给两点调制的锁相环(PLL)和压控振荡器(VCO),直接调制到2.4GHz载波上形成射频信号,射频信号经过功率放大器放大后,通过天线发送到空中。本实施例中的射频发射机采用典型的两点直接调制结构。
第三实施例,
在该实施例里,解调中求差分信号为
Figure PCTCN2020140069-appb-000061
信号分量
Figure PCTCN2020140069-appb-000062
可以分开,相对前述第一实施例,本实施例解调方法更简单,且性能更好。
具体的,基于差分信号
Figure PCTCN2020140069-appb-000063
所包含的实部信号
Figure PCTCN2020140069-appb-000064
和虚部信号
Figure PCTCN2020140069-appb-000065
解调获得 二元数据。在该实施例中,如图4所示的采用本公开的相移键控调制方法的接收机,数字基带解调器恢复发送的二元数据的方法如下。改写EQ.06为
Figure PCTCN2020140069-appb-000066
其中,
Figure PCTCN2020140069-appb-000067
Figure PCTCN2020140069-appb-000068
使用π/2 BPSK调制技术调制的射频信号,恢复二元数据b k的估值
Figure PCTCN2020140069-appb-000069
的方法如下,
Figure PCTCN2020140069-appb-000070
使用π/4 QPSK调制技术调制的射频信号,恢复二元数据b 2k和b 2k+1的估值
Figure PCTCN2020140069-appb-000071
Figure PCTCN2020140069-appb-000072
的方法如下,
Figure PCTCN2020140069-appb-000073
Figure PCTCN2020140069-appb-000074
使用π/8 8PSK调制技术调制的射频信号,恢复二元数据b 3k,b 3k+1和b 3k+2的估值
Figure PCTCN2020140069-appb-000075
Figure PCTCN2020140069-appb-000076
的方法如下,
Figure PCTCN2020140069-appb-000077
Figure PCTCN2020140069-appb-000078
Figure PCTCN2020140069-appb-000079
其中,||为绝对值符号。
第四实施例,
在本实施例中,采用如下相位函数进行相移键控调制,
Figure PCTCN2020140069-appb-000080
其中,T为符号周期。
第五实施例,
在本实施例中,采用如下相位函数进行相移键控调制,
Figure PCTCN2020140069-appb-000081
其中,T为符号周期。
在具体实施例时,发明人发现采用本公开的相移键控调制方法调制的2Mbps速率的π/4 QPSK信号,相对于BLE 2M GFSK调制的信号,占用更低的信号带宽,符号周期更长因而具有更好的抗多路径码间干扰的性能。
图5即为检验本公开实施例提供的调制方法和其他调制方法的效果对比图。如图5所示,其中,假设传输速率相同,都是2Mbps,且都采用恒定包络信号,浅灰色为采用本公开调制的π/4 QPSK调制信号的频谱,黑色为LE 2M采用的调制指数为0.5的GFSK调制信号的频谱,深灰色为恒包络π/4 DQPSK调制信号的频谱。从图中可以发现,传输相同速率的数据,本公开的π/4 QPSK调制信号占用的频谱比GFSK少,也远远小于恒包络π/4 DQPSK调制信号的频谱。为了减少π/4 DQPSK调制信号占用的频谱,可以对其滤波,例如,Bluetooth EDR2采用的π/4 DQPSK,但是,滤波后的信号就不是恒定包络信号了。本公开π/4 QPSK调制信号的符号周期为1us,而LE 2M GFSK调制的符号周期为0.5us,本公开π/4 QPSK调制信号比LE 2M GFSK调制信号更加抗多路径干扰。
从以上实施例可以看出,采用本公开公开的一种相移键控调制方法以及相应的调制解调器,采用连续改变相位的方法避免相位突变以降低带外频谱, 提高频谱效率;同时保持恒定包络的特征以提高射频信号功率放大的效率。
上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上所述的具体实施方式,对本公开的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本公开的具体实施方式而已,并不用于限定本公开的保护范围,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (23)

  1. 一种相移键控调制方法,其中,
    将二元数据流{b n},n=0,1,2,3,…N-1,映射为由相位符号构成的相位序列{θ k},k=0,1,2,…,K-1,其中N、K为正整数;
    将所述相位序列中的相位符号通过相位函数调制为连续的相位信号
    Figure PCTCN2020140069-appb-100001
    即:
    Figure PCTCN2020140069-appb-100002
    其中p(t)为相位函数,且p(t≤0)=0,p(t≥T)=1,p(0≤t≤T)的值在0到1之间连续变化,T为符号周期;
    基于所述相位信号获得射频信号。
  2. 根据权利要求1所述的调制方法,其中,基于相位信号获得射频信号包括,基于相位信号获得基带信号,并基于所述基带信号获得射频信号;其中,
    所述基带信号为:
    Figure PCTCN2020140069-appb-100003
    其中v(t)为基带信号,A为信号幅度,j为虚部符号;
    所述射频信号为:
    Figure PCTCN2020140069-appb-100004
    其中S(t)为射频信号,F c为射频载波频率,Re[]为取实部符号。
  3. 根据权利要求1所述的调制方法,其中,所述相位函数p(t)的导数为连续函数。
  4. 根据权利要求1所述的调制方法,其中,
    其采用的相位函数为,
    Figure PCTCN2020140069-appb-100005
    或者,
    Figure PCTCN2020140069-appb-100006
    或者,
    Figure PCTCN2020140069-appb-100007
    其中,T为符号周期。
  5. 根据权利要求1所述的调制方法,其中,基于相位信号获得射频信号包括,将所述相位信号的导函数作为频率函数,利用所述频率函数,采用频率调制方法获得所述射频信号。
  6. 根据权利要求1所述的调制方法,其中,根据π/2 BPSK调制、π/4 QPSK调制、π/8 8PSK调制中的一种或多种调制方式所对应的映射关系,将二元数据流{b n}映射为相位序列{θ k}。
  7. 一种相移键控信号调制方法,包括:
    获取相位序列步骤,包括根据预定的相移键控调制方式将待调制的二元数据流映射为由相位符号构成的相位序列;
    获取相位信号步骤,包括采用预设的相位函数对相位符号进行调制得到其值随时间连续变化的相位信号,且在每个符号周期内,该符号周期起点的相位信号值与该符号周期终点的相位信号值之间的差值等于在该符号周期内调制的相位符号;
    调制射频信号步骤,包括基于所述相位信号调制获得射频信号。
  8. 如权利要求7所述方法,其中,相位函数p(t)为连续函数,并且p(t≤0)=0,p(t≥T)=1,p(0≤t≤T)的值在0到1之间连续变化,其中t为时间变量,T为符号周期。
  9. 如权利要求8所述方法,其中,所述相位函数p(t)的导数为连续函数。
  10. 如权利要求8或9所述方法,其中,所述获取相位信号步骤中所获得的相位信号
    Figure PCTCN2020140069-appb-100008
    为:
    Figure PCTCN2020140069-appb-100009
    其中θ为相位符号,相位序列表示为{θ k},k=0,1,2,…,K-1;且K为整数,t为时间变量,T为符号周期。
  11. 如权利要求10所述方法,其中,对于M级相移键控调制,K=N/log 2(M),其中M取值为2、4或8,且M=2时,为二元相移键控调制;M=4 时,为正交相移动键控调制,M=8时,为8-ary相移动键控调制。
  12. 如权利要求10所述方法,其中,
    所述相位函数为,
    Figure PCTCN2020140069-appb-100010
    或者,
    Figure PCTCN2020140069-appb-100011
    或者,
    Figure PCTCN2020140069-appb-100012
    其中T为符号周期。
  13. 如权利要求10所述方法,其中,所述调制射频信号步骤中包括,将所述相位信号调制为基带信号v(t),并将所述基带信号以预定的射频载波频率调制为射频信号,其中,
    Figure PCTCN2020140069-appb-100013
    其中A为信号幅度,j为虚部符号。
  14. 如权利要求10所述方法,其中,所述调制射频信号步骤中,将所述相位信号的导函数作为频率函数,采用频率调制方法获得射频信号。
  15. 如权利要求7所述方法,其中,所述预定的相移键控调制方式包括π/2 BPSK调制、π/4 QPSK调制、π/8 8PSK调制中的一种或多种。
  16. 一种相移键控解调方法,用于对权利要求1至15中之一所述调制方法调制的信号进行解调,包括,
    将接收到的射频信号下变频为基带信号;
    对所述基带信号进行频率和时间同步并采样后得到基带采样信号;
    基于所述基带采样信号获得差分信号;
    根据所述差分信号解调出二元数据。
  17. 根据权利要求16所述的解调方法,其中,
    所述基带信号为:
    Figure PCTCN2020140069-appb-100014
    其中
    Figure PCTCN2020140069-appb-100015
    为基带信号,
    Figure PCTCN2020140069-appb-100016
    为接收信号的幅度,n(t)为加性噪声,Δf(t)为残留频率偏差,ε(t)为相位噪声,~为处理值符号;
    所述基带采样信号为:
    Figure PCTCN2020140069-appb-100017
    其中
    Figure PCTCN2020140069-appb-100018
    为基带采样信号,ε(k*T)为经过频率同步或校准后的相位误差;
    基于所述基带采样信号
    Figure PCTCN2020140069-appb-100019
    计算差分信号
    Figure PCTCN2020140069-appb-100020
    其中,
    Figure PCTCN2020140069-appb-100021
  18. 根据权利要求17所述的解调方法,其中,
    计算所述差分信号
    Figure PCTCN2020140069-appb-100022
    的相位
    Figure PCTCN2020140069-appb-100023
    根据所述相位
    Figure PCTCN2020140069-appb-100024
    解调出二元数据,其中,
    Figure PCTCN2020140069-appb-100025
    其中,angle{}为求角度或相位运算。
  19. 根据权利要求17所述的解调方法,其中,基于所述差分信号
    Figure PCTCN2020140069-appb-100026
    所包含的实部信号
    Figure PCTCN2020140069-appb-100027
    和虚部信号
    Figure PCTCN2020140069-appb-100028
    解调获得二元数据,其中,
    对于采用π/2 BPSK调制技术调制的射频信号,恢复二元数据的估值
    Figure PCTCN2020140069-appb-100029
    的方法为,
    Figure PCTCN2020140069-appb-100030
    对于采用π/4 QPSK调制技术调制的射频信号,恢复二元数据的估值
    Figure PCTCN2020140069-appb-100031
    Figure PCTCN2020140069-appb-100032
    的方法为,
    Figure PCTCN2020140069-appb-100033
    Figure PCTCN2020140069-appb-100034
    对于采用π/8 8PSK调制技术调制的射频信号,恢复二元数据的估值
    Figure PCTCN2020140069-appb-100035
    Figure PCTCN2020140069-appb-100036
    Figure PCTCN2020140069-appb-100037
    的方法为,
    Figure PCTCN2020140069-appb-100038
    Figure PCTCN2020140069-appb-100039
    Figure PCTCN2020140069-appb-100040
    其中,||为绝对值符号。
  20. 一种相移键控调制器,其中,所述调制器为数字基带调制器,实现权利要求1-15中任一项所述的方法。
  21. 一种相移键控解调器,其中,所述解调器为数字基带解调器,实现权利要求16-19中任一项所述的方法。
  22. 一种相移键控发射机,包括处理器及存储器、数字基带调制器、数模转化器、射频发射器;所述数字基带调制器,为权利要求20所述相移键控调制器。
  23. 一种相移键控接收机,包括处理器及存储器、数字基带解调器、模数转化器、射频接收机;所述数字基带解调器,为权利要求21所述相移键控解调器。
PCT/CN2020/140069 2019-11-04 2020-12-28 相移键控调制解调方法及设备 WO2021143502A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/865,391 US11962442B2 (en) 2019-11-04 2022-07-15 Phase shift keying modulation and demodulation methods and devices

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201911067604 2019-11-04
CN202010054013.2A CN111245757B (zh) 2019-11-04 2020-01-17 一种相移键控调制解调方法及设备
CN202010054013.2 2020-01-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/865,391 Continuation US11962442B2 (en) 2019-11-04 2022-07-15 Phase shift keying modulation and demodulation methods and devices

Publications (1)

Publication Number Publication Date
WO2021143502A1 true WO2021143502A1 (zh) 2021-07-22

Family

ID=70877950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140069 WO2021143502A1 (zh) 2019-11-04 2020-12-28 相移键控调制解调方法及设备

Country Status (3)

Country Link
US (1) US11962442B2 (zh)
CN (1) CN111245757B (zh)
WO (1) WO2021143502A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113890809A (zh) * 2021-10-29 2022-01-04 中国电子科技集团公司第五十四研究所 调制解调方法、物端节点、接收机、通信系统
CN114124632A (zh) * 2021-11-23 2022-03-01 江苏势通生物科技有限公司 用于频移键控信号的自适应解调系统、自适应解调方法
CN115776429A (zh) * 2022-11-23 2023-03-10 苏州市江海通讯发展实业有限公司 406MHz示位标中频调相信号生成方法和系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245757B (zh) * 2019-11-04 2021-07-02 南京中感微电子有限公司 一种相移键控调制解调方法及设备
CN111431828B (zh) * 2020-06-09 2020-10-16 南京中感微电子有限公司 一种低功耗蓝牙恒定包络相位调制和解调方法及设备
CN112350970B (zh) * 2020-10-12 2023-05-26 南京中感微电子有限公司 一种多相位频移键控调制、解调方法及设备
CN112600781B (zh) * 2020-11-08 2023-07-11 南京中感微电子有限公司 一种变包络频移键控调制、解调方法及设备
CN115913826A (zh) * 2021-08-05 2023-04-04 华为技术有限公司 一种通信方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902420A (zh) * 2010-03-08 2010-12-01 中国电子科技集团公司第十研究所 符号内连续相位差分相移键控调制与解调方法
CN103067323A (zh) * 2012-12-23 2013-04-24 杭州宏睿通信技术有限公司 一种应用于对讲机的中频解调装置
CN108023847A (zh) * 2017-11-22 2018-05-11 西南电子技术研究所(中国电子科技集团公司第十研究所) 调制符号间相位交错bpsk调制方法
US20190260619A1 (en) * 2016-10-03 2019-08-22 Keyssa Systems, Inc. Bpsk demodulation
CN111245757A (zh) * 2019-11-04 2020-06-05 南京中感微电子有限公司 一种相移键控调制解调方法及设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7561634B2 (en) * 2004-06-15 2009-07-14 Harris Corporation Continuous phase modulation system and method with added orthogonal signals
CN101902244B (zh) * 2009-05-27 2013-08-28 北京威讯紫晶科技有限公司 一种短程无线网络中扩频解码方法
US8774315B2 (en) * 2009-08-25 2014-07-08 The Aerospace Corporation Phase-optimized constant envelope transmission (POCET) method, apparatus and system
US20130279548A1 (en) * 2012-04-20 2013-10-24 Abu S. Amanullah Differential phase shift keying system and method
CN103873160B (zh) * 2012-12-12 2017-12-26 北京普源精电科技有限公司 一种改善数字相位调制的相位跳变的方法及装置
CN103812810B (zh) * 2014-01-27 2017-03-08 中国电子科技集团公司第十研究所 四进制连续相位调制解调方法
US10339623B2 (en) * 2017-08-11 2019-07-02 Harris Corporation Phase rotation watermarking for phase modulation
US10965507B1 (en) * 2020-01-31 2021-03-30 Qualcomm Incorporated Constant envelope barker-modulated WLAN waveform

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902420A (zh) * 2010-03-08 2010-12-01 中国电子科技集团公司第十研究所 符号内连续相位差分相移键控调制与解调方法
CN103067323A (zh) * 2012-12-23 2013-04-24 杭州宏睿通信技术有限公司 一种应用于对讲机的中频解调装置
US20190260619A1 (en) * 2016-10-03 2019-08-22 Keyssa Systems, Inc. Bpsk demodulation
CN108023847A (zh) * 2017-11-22 2018-05-11 西南电子技术研究所(中国电子科技集团公司第十研究所) 调制符号间相位交错bpsk调制方法
CN111245757A (zh) * 2019-11-04 2020-06-05 南京中感微电子有限公司 一种相移键控调制解调方法及设备

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113890809A (zh) * 2021-10-29 2022-01-04 中国电子科技集团公司第五十四研究所 调制解调方法、物端节点、接收机、通信系统
CN114124632A (zh) * 2021-11-23 2022-03-01 江苏势通生物科技有限公司 用于频移键控信号的自适应解调系统、自适应解调方法
CN114124632B (zh) * 2021-11-23 2024-01-23 江苏势通生物科技有限公司 用于频移键控信号的自适应解调系统、自适应解调方法
CN115776429A (zh) * 2022-11-23 2023-03-10 苏州市江海通讯发展实业有限公司 406MHz示位标中频调相信号生成方法和系统
CN115776429B (zh) * 2022-11-23 2024-04-30 苏州市江海通讯发展实业有限公司 406MHz示位标中频调相信号生成方法和系统

Also Published As

Publication number Publication date
CN111245757A (zh) 2020-06-05
CN111245757B (zh) 2021-07-02
US20220360480A1 (en) 2022-11-10
US11962442B2 (en) 2024-04-16

Similar Documents

Publication Publication Date Title
WO2021143502A1 (zh) 相移键控调制解调方法及设备
US8098772B2 (en) Method for digital wireless communications
WO2021249139A1 (zh) 低功耗蓝牙恒定包络相位调制和解调方法及设备
CN112398770B (zh) 一种蓝牙低功耗多相位频移键控调制、解调方法及设备
US6560294B1 (en) Phase estimation in carrier recovery of phase-modulated signals such as QAM signals
JP2003500931A (ja) 直交復調器における微分および乗算ベースのタイミング回復
US8050368B2 (en) Nonlinear adaptive phase domain equalization for multilevel phase coded demodulators
JP3166705B2 (ja) 無線装置及び送信方法
CN111901269B (zh) 可变调制指数的高斯频移键控调制方法、装置及系统
US7643571B2 (en) Wireless communication system and method
CN114448763B (zh) 一种任意码率通用mpsk解调系统及其解调方法
US8971450B2 (en) Transmission device, reception device, transmission method and reception method for wireless communication system
US20130279548A1 (en) Differential phase shift keying system and method
CN112600781B (zh) 一种变包络频移键控调制、解调方法及设备
Zhang et al. Simulation and Performance Study of Quadrature Amplitude Modulation and Demodulation System
JP3563346B2 (ja) 送信方法及び送信装置
JP3233092B2 (ja) 変調方式とそれを用いた無線通信システム
JP3563345B2 (ja) 送信方法及び送信装置
JP2000083071A (ja) 変調方式
CN114553646B (zh) 一种基于wban窄带物理层的可重构调制解调系统
Udawant et al. Digital image processing by using GMSK
JP3489574B2 (ja) 受信装置
Kaul QPSK, OQPSK, CPM probability of error for AWGN and flat fading channels
JP2001103113A (ja) ディジタル無線通信装置及び方法
Panchal et al. INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY SIMULATED RESULTS OF FOUR CHANNEL BPSK DEMODULATOR USING COSTAS LOOP FOR MOBILE SATELLITE SERVICES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914566

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20914566

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/10/2023)