WO2021140794A1 - 空間環境制御システム - Google Patents

空間環境制御システム Download PDF

Info

Publication number
WO2021140794A1
WO2021140794A1 PCT/JP2020/045038 JP2020045038W WO2021140794A1 WO 2021140794 A1 WO2021140794 A1 WO 2021140794A1 JP 2020045038 W JP2020045038 W JP 2020045038W WO 2021140794 A1 WO2021140794 A1 WO 2021140794A1
Authority
WO
WIPO (PCT)
Prior art keywords
odor
control system
spatial environment
environment control
generator
Prior art date
Application number
PCT/JP2020/045038
Other languages
English (en)
French (fr)
Inventor
直弘 高武
宣明 馬場
伊藤 誠
邦人 川村
洋 宮本
Original Assignee
日立グローバルライフソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立グローバルライフソリューションズ株式会社 filed Critical 日立グローバルライフソリューションズ株式会社
Publication of WO2021140794A1 publication Critical patent/WO2021140794A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • F24F11/59Remote control for presetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/60Odour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • F24F2120/14Activity of occupants

Definitions

  • the present invention relates to a spatial environment control system.
  • Offices are required to improve employee comfort and productivity, and commercial facilities are required to improve customers' purchasing motivation and satisfaction. Therefore, there is an increasing demand for spatial environment control services that provide an environment that suits the purpose of people in spaces such as offices and commercial facilities.
  • a service that controls the odor in the space is also considered. This is because the sensory cells are directly connected to the limbic system, and the odor easily affects human emotions and behaviors.
  • Patent Document 1 it is possible to grasp the arousal level of a person in a room by a biological sensor and control an environmental control means (including an aroma device that sprays an aroma component) so as to reach or approach the target arousal level.
  • An object of the present invention is to provide a spatial environment control system capable of maintaining the effect of odor for a long period of time.
  • the present invention provides a spatial environment control system including an odor generator, an odor suppressing device that suppresses an odor, and a control device that controls the odor generator and the odor suppressing device.
  • the control device operates the odor suppressing device and then generates the odor again by the odor generator.
  • the control device in addition to the above, in a spatial environment control system provided with an activity sensor for measuring a person's activity, the control device generates an odor with the odor generator and then measures the activity with the activity sensor.
  • the odor suppressing device is operated, and then the odor is generated again by the odor generator.
  • FIG. 1 The block diagram which shows the functional structure of the space environment control system which concerns on Example 1.
  • the processing flow diagram of the space environment control system which concerns on Example 6 The block diagram which shows the functional structure of the space environment control system which concerns on Example 7.
  • the processing flow diagram of the space environment control system which concerns on Example 7. The block diagram which shows the functional structure of the space environment control system which concerns on Example 8.
  • the processing flow diagram of the space environment control system which concerns on Example 8. The block diagram which shows the functional structure of the space environment control system which concerns on Example 9.
  • Example 1 will be described with reference to FIGS. 1 and 2.
  • FIG. 1 is a block diagram showing a functional configuration of the spatial environment control system according to this embodiment.
  • the spatial environment control system of this embodiment includes an action target setting means 1, a control target table 12, an environment sensor 2, an activity sensor 6, a control unit 16, and an air conditioner 17. , A deodorizing / deodorizing machine 18 and an odor generator 19 are provided.
  • the action goal setting means 1 has an interface such as a touch panel so that a space manager or the like can input a desired goal.
  • the operation mode of the spatial environment control system is composed of a plurality of operation modes such as "productivity improvement”, “comfort improvement”, and “fatigue reduction”, and the administrator sets a desired operation mode using the touch panel.
  • the action goal setting means 1 is not limited to the one set by the input of the administrator, and may be automatically set based on the agenda of the meeting held in the space.
  • the control target table 12 stores target values of temperature, humidity, and odor concentration for each operation mode.
  • the environment sensor 2 is composed of a temperature sensor 3, a humidity sensor 4, an odor sensor 5, and the like.
  • the temperature sensor 3 and the humidity sensor 4 may be provided in the air conditioner 17, or may be separately provided.
  • the odor sensor 5 may be provided in the odor generator 19 or may be separately provided.
  • the spatial environment control system also controls the illuminance of the space
  • the illuminance sensor is also included as the environment sensor 2.
  • the environmental data acquired by the environmental sensor 2 is processed by the environmental data processing unit 10 and then used for the calculation by the environmental difference calculation unit 11.
  • the activity sensor 6 is composed of a pulse sensor 7, an electroencephalogram sensor 8, a pupil sensor 9, and the like.
  • the pulse sensor 7 is attached to the human arm
  • the brain wave sensor 8 is attached to the human head
  • the pupil sensor 9 measures the activity of the human by image recognition of the camera.
  • a plurality of sensors are basically required, but if it is a pulse sensor using millimeter waves, it is possible to measure with one sensor.
  • the activity sensor 6 may be another sensor as long as it can measure the activity of a person.
  • the activity data acquired by the activity sensor 6 is processed by the activity data processing unit 13 and then used for the calculation in the activity difference calculation unit 15.
  • the control unit 16 controls the air conditioner 17, the deodorant / deodorizer 18, and the odor generator 19 by using the calculation results of the environment difference calculation unit 11 and the activity difference calculation unit 15.
  • the deodorizing / deodorizing machine 18 may be any odor suppressing device that suppresses odors, and includes not only a deodorizing device and a deodorizing device but also a ventilation device that introduces outside air into a space. Examples of the method for suppressing the odor include a ventilation / dilution method, an ozone oxidation method, and a composite adsorption method.
  • the deodorizing / deodorizing machine 18 may be mounted on the air conditioner 17, or may be mounted on an air purifier different from the air conditioner 17. Although an aroma diffuser is used as the odor generator 19 in this embodiment, any other device may be used as long as it is a device for generating an odor.
  • the effect of the odor generated by the odor generator 19 will be described. Since the human sense of smell adapts when exposed to the odor for 3 to 5 minutes, the effect gradually diminishes even if the odor effective for "improvement of productivity" is continued at a predetermined concentration or higher. Therefore, in this embodiment, after the odor is generated by the odor generator 19, the generation of the odor is temporarily stopped when the effect is diminished, and the odor is deodorized by the deodorizing / deodorizing machine 18 (including ventilation). ) Or by deodorizing, the sense of smell is rested.
  • the odor generator 19 generates the odor again to restore the effect of the odor on the human sense of smell. By repeating the control of the odor generator 19 in this way, the effect of the odor can be maintained for a long period of time.
  • FIG. 2 is a processing flow diagram of the spatial environment control system according to this embodiment.
  • the manager operates the action goal setting means 1 to set a goal (for example, "improvement of productivity") (step 102).
  • the environmental data such as temperature, humidity and odor acquired by the environmental sensor 2 is transmitted to the environmental data processing unit 10 (step 103).
  • the environment difference calculation unit 11 refers to the control target table 12 (step 104), and sets the target value of each environment data corresponding to the set target and the measured value of each environment data acquired by the environment sensor 2. , And the difference is calculated (step 105).
  • the activity data is acquired by the activity sensor 6 in parallel with the acquisition of the environmental data by the environment sensor 2 (step 106).
  • the activity data acquired by the activity sensor 6 is transmitted to the activity data processing unit 13, and is stored in the memory 14 by the activity data processing unit 13 (step 107).
  • the average value of the activity data acquired from each person is calculated and stored in the memory 14.
  • control unit 16 operates the air conditioner 17, the deodorant / deodorizer, and the odor generator 19 so as to fill the difference between the target value and the measured value of each environmental data calculated in step 105 (step 108). ).
  • the activity sensor 6 acquires the activity data again, and the data is processed by the activity data processing unit 13 (step 109). If the predetermined time is too short, the activity may be measured again before the effect of the odor on the human sense of smell occurs, so it is desirable to set it to 2 minutes or more.
  • the activity difference calculation unit 15 calculates the difference between the activity stored in the memory 14 and measured in advance before the operation of the odor generator 19 and the like and the newly measured activity (step 110). ..
  • step 110 when the difference is larger than a predetermined threshold value, it is considered that the effect of the odor on the human sense of smell is still continuing. Therefore, after a certain period of time, the process returns to step 109 and the activity is increased. Try to get the data.
  • the difference becomes smaller than the predetermined threshold value in step 110 it is considered that the effect of the odor on the human sense of smell has already diminished, so that the odor generator 19 stops generating the odor, and the control unit 16 Operates the deodorizing / deodorizing machine 18 (step 111).
  • the control unit 16 stops the deodorizing / deodorizing machine 18 and waits for a predetermined time (step 112). Then, it is confirmed whether or not a new action goal has been set (step 113), and if a new action goal (for example, a goal different from “productivity improvement”) has not been set, the process returns to step 108. , The odor generator 19 and the like are operated again.
  • the waiting time after stopping the deodorizing / deodorizing machine 18 is 3 minutes or more and 5 minutes or less. This is because when the odor is generated again with a waiting time shorter than 3 minutes, the time for the human sense of smell to refresh is too short, and the effect of the odor on the sense of smell may not be restored. This is because when the odor is generated again with a waiting time longer than 5 minutes, the effect of the odor on the human sense of smell is restored, but the waiting time is too long and efficient control cannot be performed.
  • Example 2 will be described with reference to FIGS. 3 and 4.
  • FIG. 3 is a block diagram showing a functional configuration of the spatial environment control system according to this embodiment.
  • the spatial environment control system of the present embodiment differs from the first embodiment in that the odor emission pattern is stored in the control target table 20 as shown in FIG.
  • FIG. 4 is a diagram showing an odor injection pattern in the odor generator 19.
  • FIG. 4A shows a standard injection pattern, in which an odor is emitted at a constant concentration over a predetermined time.
  • FIG. 4B shows that a high-concentration odor is instantaneously generated at the beginning of each period in which the odor is generated, and is suitable for emitting an odor effective for improving drowsiness (improving alertness).
  • FIG. 4C shows the injection so as to gradually increase the concentration of the odor.
  • FIG. 4D the odor is ejected so as to gradually reduce the concentration of the odor, and an effect close to that in FIG. 4A can be expected.
  • the odor emission pattern can be changed to a suitable one according to the type of the target set by the action goal setting means 1, it is possible to further enhance the effect of the odor on the human sense of smell. Become.
  • the odor injection pattern may be changed according to the type of odor.
  • FIG. 5 is a block diagram showing a functional configuration of the spatial environment control system according to this embodiment.
  • the difference between the spatial environment control system of the present embodiment and that of the first embodiment is that, as shown in FIG. 5, the control target table 21 stores targets corresponding to a plurality of odors.
  • the first odor that affects the "productivity improvement" goal (first goal) is odor A (for example, orange sweet), and the "comfort improvement” goal (second goal) is set.
  • the second odor that affects is odor N (for example, peppermint).
  • the control target table 21 stores the type of odor, the target concentration of the odor, and the like for each of these targets.
  • the spatial environment control system of the present embodiment includes an odor generator 19 that generates a first odor and an odor generator 22 that generates a second odor. Note that these odor generators may be one odor generator capable of selectively generating a plurality of odors. Further, as the odor sensor 5, a plurality of sensors corresponding to each odor and one sensor capable of measuring the concentration of each odor are used.
  • the action goal setting means 1 sets the first target
  • the target is to make the first odor a predetermined concentration, so that the second odor is not only an unnecessary odor but also the first odor.
  • the deodorizing / deodorizing machine 18 is operated in step 108 to perform the second odor. Deodorize all odors including odors. Then, when the odor sensor 5 detects that the second odor has become less than a predetermined concentration, the odor generator 19 generates the first odor.
  • Example 4 will be described with reference to FIGS. 6 and 7.
  • FIG. 6 is a block diagram showing a functional configuration of the spatial environment control system according to this embodiment.
  • the difference between the spatial environment control system of the present embodiment and that of the first embodiment is that, as shown in FIG. 6, processing is performed only by the environmental sensor 2 without using the activity data.
  • FIG. 7 is a processing flow diagram of the spatial environment control system according to the present embodiment, assuming that the measured value of the odor sensor 5 acquired in step 203 is lower than the target value stored in the control target table 12. It is a thing.
  • the control unit 16 stops the generation of the odor by the odor generator 19 and operates the deodorizing / deodorizing machine 18.
  • this predetermined time is too short, there is a possibility that the odor will be deodorized even though the effect of the odor on the human sense of smell is continuing, so it is desirable to set it to 3 minutes or more.
  • this predetermined time is too long, the effect of the odor on the human sense of smell may have already diminished, but the odor may continue to be generated, so it is desirable to set it to 5 minutes or less.
  • the accuracy of the time for continuing the generation of the odor is inferior to that of the first embodiment, but the processing using the activity sensor 6 is not required as compared with the first embodiment.
  • a spatial environment control system can be realized at low cost.
  • Example 5 will be described with reference to FIGS. 8 and 9.
  • FIG. 8 is a block diagram showing a functional configuration of the spatial environment control system according to this embodiment.
  • the spatial environment control system of this embodiment differs from the first embodiment in that the environment data processing unit 10, the environment difference calculation unit 11, the control target table 12, the activity data processing unit 13, and the memory. 14 and the activity difference calculation unit 15 are installed in the server / cloud environment 24.
  • a wired or wireless communication module 23 is mounted on the action target setting means 1, the environment sensor 2, the activity sensor 6, and the control unit 16.
  • FIG. 9 is a processing flow diagram of the spatial environment control system according to this embodiment.
  • the action goal setting means 1 transmits information about the set goal to the environment difference calculation unit 11 via the communication module 23 (step 302).
  • the environment sensor 2 transmits the acquired environment data to the environment data processing unit 10 via the communication module 23 (step 304).
  • the activity sensor 6 transmits the activity data to the activity data processing unit 13 via the communication module 23 (step 309).
  • the control unit 16 receives information regarding the difference in the environmental data from the environment difference calculation unit 11 via the communication module 23 (step 312).
  • the control unit 16 also receives information regarding the difference in activity data from the activity difference calculation unit 15 via the communication module 23 (step 315).
  • Example 6 will be described with reference to FIGS. 10 and 11.
  • FIG. 10 is a block diagram showing a functional configuration of the spatial environment control system according to the present embodiment.
  • the difference between the spatial environment control system of this embodiment and the fifth embodiment is that the control unit 16 is also installed in the server / cloud environment 25, as shown in FIG.
  • the air conditioner 17, the deodorizing / deodorizing machine 18, and the odor generator 19 are also equipped with the wired or wireless communication module 23.
  • FIG. 11 is a processing flow diagram of the spatial environment control system according to this embodiment.
  • the settings determined by the control unit 16 in step 412 are transmitted to the air conditioner 17, the deodorizing / deodorizing machine 18, and the odor generator 19 via the communication module 23 (step 413).
  • the spatial environment control system can be realized more easily as compared with the fifth embodiment.
  • Example 7 will be described with reference to FIGS. 12 and 13.
  • FIG. 12 is a block diagram showing a functional configuration of the spatial environment control system according to the present embodiment.
  • the spatial environment control system of this embodiment differs from that of the first embodiment in that it has a discomfort determination table 26 as shown in FIG.
  • FIG. 13 is a processing flow diagram of the spatial environment control system according to this embodiment.
  • the difference between the activity data measured in advance in step 506 before the operation of the odor generator 19 and the activity data newly measured in step 509 is before being compared with the threshold value in step 514.
  • step 511 it is compared with a discomfort determination value (discomfort table) different from the threshold value.
  • the discomfort determination value in step 511 is a predetermined value larger than the threshold value in step 514, and if it exceeds this value, the effect of the odor on the human sense of smell is too strong, and it is considered that the person may feel uncomfortable. Is the value to be. Therefore, in step 511, when the difference exceeds this discomfort determination value, the generation of the odor by the odor generator 19 is immediately stopped (step 512), and the deodorizing / deodorizing machine 18 is operated (step 513). ).
  • Example 8 will be described with reference to FIGS. 14 and 15.
  • FIG. 14 is a block diagram showing a functional configuration of the spatial environment control system according to the present embodiment.
  • the difference between the spatial environment control system of the present embodiment and that of the seventh embodiment is that, as shown in FIG. 14, when the discomfort determination value is exceeded, an alarm 27 is issued.
  • FIG. 15 is a processing flow diagram of the spatial environment control system according to this embodiment.
  • a warning is issued by an alarm 27 before the odor generation by the odor generator 19 is stopped (step 612).
  • the warning method is not limited to voice and lighting, but may be other means, but it is important to convey the warning to a third party other than the person who feels uncomfortable.
  • Example 9 will be described with reference to FIGS. 16 and 17.
  • FIG. 16 is a block diagram showing a functional configuration of the spatial environment control system according to the present embodiment.
  • the difference between the spatial environment control system of this embodiment and that of Example 8 is that, as shown in FIG. 16, the virus sensor 28 is provided as the environment sensor 2, and the virus sensor 28 is detected in the control target table 29.
  • the point is that different targets are stored depending on the concentration of the virus.
  • a virus sensor 28 for detecting influenza virus is used will be described.
  • FIG. 17 is a processing flow diagram of the spatial environment control system according to this embodiment.
  • step 704 it is determined whether or not the virus concentration detected by the virus sensor 28 exceeds a predetermined determination threshold value. If this determination threshold is exceeded, the control unit 16 immediately issues a warning by an alarm 27 because it is in a state of being easily infected with influenza virus (step 705).
  • the control target table 29 is referred to (step 707). Although it is not enough to give a warning, when the virus concentration is high, the target value of humidity is set higher than usual (when the virus concentration is low), and the control unit 16 operates the air conditioner 17.
  • the control unit 16 operates the odor generator 19 to generate an odor that is effective for productivity and comfort.
  • the virus sensor 28 may be provided in the air conditioner 17 in the same manner as the temperature sensor 3 or the like, or may be provided separately from the air conditioner 17. Further, the virus sensor 28 is not limited to one that can detect the concentration, and may simply detect the presence or absence of a virus. Further, in this embodiment, the influenza virus has been described, but other viruses may be used, and depending on the type of virus, the humidity is lowered or the temperature is changed.
  • the spatial environment control system may include an air purifier having a humidity control function instead of the air conditioner 17.
  • the air purifier may have a deodorizing / deodorizing function and an odor generating function.
  • Examples 1 to 9 have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations. It is also possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
  • Action target setting means 2 ... Environmental sensor, 3 ... Temperature sensor, 4 ... Humidity sensor, 5 ... Smell sensor, 6 ... Activity sensor, 7 ... Pulse sensor, 8 ... Brain wave sensor, 9 ... Eye hole sensor, 10 ... Environmental data processing unit, 11 ... Environmental difference calculation unit, 12 ... Control target table, 13 ... Activity data processing unit, 14 ... Memory, 15 ... Activity difference calculation unit, 16 ... Control unit, 17 ... Air conditioner, 18 ... Deodorizer / deodorizer, 19 ... Smell generator, 20 ... Control target table, 21 ... Control target table, 22 ... Smell generator, 23 ... Communication module, 24 ... Server / cloud environment, 25 ... Server / cloud environment, 26 ... discomfort judgment table, 27 ... alarm, 28 ... virus sensor, 29 ... control target table

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Fuzzy Systems (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Air Conditioning Control Device (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

本発明の目的は、匂いの効能を長時間に亘って保つことのできる空間環境制御システムを提供することにある。そのために、本発明は、匂い発生機と、匂いを抑制する匂い抑制装置と、前記匂い発生機及び前記匂い抑制装置を制御する制御装置と、を備えた空間環境制御システムにおいて、前記制御装置は、前記匂い発生機で匂いを発生させて所定時間が経過すると、前記匂い抑制装置を動作させた後、再び前記匂い発生機で匂いを発生させる。あるいは、上記の他、人の活性度を計測する活性度センサを備えた空間環境制御システムにおいて、前記制御装置は、前記匂い発生機で匂いを発生させた後、前記活性度センサで計測した活性度と匂いの発生前に計測した活性度との差分が所定の閾値より小さくなったとき、前記匂い抑制装置を動作させた後、再び前記匂い発生機で匂いを発生させる。

Description

空間環境制御システム
 本発明は、空間環境制御システムに関する。
 オフィスでは、社員の快適性や生産性向上が求められており、商業施設では、顧客の購買意欲や満足度向上のニーズが高まっている。そのため、オフィスや商業施設などの空間にいる人の目的に応じた環境を提供する空間環境制御サービスの需要が高まっている。このようなサービスの一つとして、空間内の匂いを制御対象としたものも考えられている。
嗅覚細胞は、大脳辺縁系に直接接続されており、匂いは人の感情や行動に作用しやすいためである。例えば、特許文献1には、室内の人の覚醒度を生体センサによって把握し、目標の覚醒度となる又は近づくように環境制御手段(芳香成分を噴霧する芳香装置を含む)を制御することが記載されている。
国際公開第2019/066035号
 しかし、人の嗅覚は一定時間匂いに曝露されと順応するため、そのまま匂いを発生させ続けても、人の覚醒度等への影響が小さくなっていってしまう。
 本発明の目的は、匂いの効能を長時間に亘って保つことのできる空間環境制御システムを提供することにある。
 上記課題を解決するために、本発明は、匂い発生機と、匂いを抑制する匂い抑制装置と、前記匂い発生機及び前記匂い抑制装置を制御する制御装置と、を備えた空間環境制御システムにおいて、前記制御装置は、前記匂い発生機で匂いを発生させて所定時間が経過すると、前記匂い抑制装置を動作させた後、再び前記匂い発生機で匂いを発生させる。あるいは、上記の他、人の活性度を計測する活性度センサを備えた空間環境制御システムにおいて、前記制御装置は、前記匂い発生機で匂いを発生させた後、前記活性度センサで計測した活性度と匂いの発生前に計測した活性度との差分が所定の閾値より小さくなったとき、前記匂い抑制装置を動作させた後、再び前記匂い発生機で匂いを発生させる。
 本発明によれば、匂いの効能を長時間に亘って保つことのできる空間環境制御システムを提供できる。
実施例1に係る空間環境制御システムの機能構成を示すブロック図。 実施例1に係る空間環境制御システムの処理フロー図。 実施例2に係る空間環境制御システムの機能構成を示すブロック図。 実施例2に係る匂い発生機の匂い射出パターンを示す図。 実施例3に係る空間環境制御システムの機能構成を示すブロック図。 実施例4に係る空間環境制御システムの機能構成を示すブロック図。 実施例4に係る空間環境制御システムの処理フロー図。 実施例5に係る空間環境制御システムの機能構成を示すブロック図。 実施例5に係る空間環境制御システムの処理フロー図。 実施例6に係る空間環境制御システムの機能構成を示すブロック図。 実施例6に係る空間環境制御システムの処理フロー図。 実施例7に係る空間環境制御システムの機能構成を示すブロック図。 実施例7に係る空間環境制御システムの処理フロー図。 実施例8に係る空間環境制御システムの機能構成を示すブロック図。 実施例8に係る空間環境制御システムの処理フロー図。 実施例9に係る空間環境制御システムの機能構成を示すブロック図。 実施例9に係る空間環境制御システムの処理フロー図。
 以下、本発明の実施形態を説明する。
 実施例1について、図1及び図2を用いて説明する。
 図1は、本実施例に係る空間環境制御システムの機能構成を示すブロック図である。図1に示すように、本実施例の空間環境制御システムは、行動目標設定手段1と、制御目標テーブル12と、環境センサ2と、活性度センサ6と、制御部16と、空調機17と、消臭・脱臭機18と、匂い発生機19と、を備えている。
 行動目標設定手段1は、タッチパネルなどのインターフェースを有しており、空間の管理者などが所望の目標を入力できるようになっている。例えば、空間環境制御システムの運転モードが、「生産性改善」、「快適度改善」、「疲労低減」といった複数から構成されており、管理者がタッチパネルを使って所望の運転モードを設定する。なお、行動目標設定手段1は、管理者の入力により設定するものに限られず、当該空間で開催される会議のアジェンダ等に基づいて自動で設定されるようにしても良い。なお、制御目標テーブル12には、運転モード毎に、温度、湿度及び匂い濃度の目標値が格納されている。
 環境センサ2は、温度センサ3、湿度センサ4、匂いセンサ5などで構成される。ここで、温度センサ3や湿度センサ4は、空調機17に設けられたものでも良いし、別途設けられたものでも良い。また、匂いセンサ5は、匂い発生機19に設けられたものでも良いし、別途設けたものであっても良い。なお、空間環境制御システムが空間の照度も制御対象とする場合には、環境センサ2として、照度センサも有することになる。環境センサ2で取得した環境データは、環境データ処理部10で処理された後、環境差分計算部11における計算に用いられる。
 活性度センサ6は、脈拍センサ7、脳波センサ8、瞳孔センサ9などで構成される。ここで、脈拍センサ7は人の腕に装着され、脳波センサ8は人の頭部に装着され、瞳孔センサ9はカメラの画像認識により、人の活性度が計測される。空間内に複数の人がいる場合には、基本的に複数のセンサが必要となるが、ミリ波を用いた脈拍センサであれば、1つのセンサでも計測が可能である。なお、活性度センサ6は、人の活性度を計測できるものであれば、他のセンサであっても構わない。活性度センサ6で取得した活性度データは、活性度データ処理部13で処理された後、活性度差分計算部15における計算に用いられる。
 また、制御部16は、環境差分計算部11及び活性度差分計算部15での計算結果を用いて、空調機17、消臭・脱臭機18及び匂い発生機19を制御する。消臭・脱臭機18は、匂いを抑制する匂い抑制装置であれば良く、消臭装置や脱臭装置に限らず、空間内に外気を導入する換気装置を含むものである。匂いを抑制する方式としては、換気・希釈方式、オゾン酸化方式、複合吸着方式などが挙げられる。なお、この消臭・脱臭機18は、空調機17に搭載されたものでも良いし、空調機17とは別の空気清浄機に搭載されたものであっても良い。なお、匂い発生機19として、本実施例ではアロマディフューザを用いるが、匂いを発生させる装置であれば他のものでも良い。
 ここで、匂い発生機19で発生させる匂いの効能について説明する。人の嗅覚は、3~5分その匂いに暴露されると順応してしまうため、「生産性改善」等に効く匂いを所定の濃度以上で継続させても、その効能は次第に薄れてしまう。このため、本実施例では、匂い発生機19で匂いを発生させた後、効能が薄まった時点で一旦匂いの発生を停止させ、その匂いを消臭・脱臭機18で消臭(換気を含む)又は脱臭することで、嗅覚を休ませる。そして、匂いが消臭又は脱臭されてから3分以上経過してから、再び匂い発生機19で匂いを発生させることで、人の嗅覚に対する匂いの効能を復活させる。このような匂い発生機19の制御を繰り返すことにより、匂いの効能を長時間に亘って保つことが可能となる。
 図2は、本実施例に係る空間環境制御システムの処理フロー図である。
 まず、管理者が、行動目標設定手段1を操作して目標(例えば「生産性改善」)を設定する(ステップ102)。すると、環境センサ2が取得した温度、湿度及び匂い等の環境データが、環境データ処理部10へ送信される(ステップ103)。次に、環境差分計算部11は、制御目標テーブル12を参照し(ステップ104)、設定された目標に対応する各環境データの目標値と、環境センサ2で取得した各環境データの計測値と、の差分を計算する(ステップ105)。
 ここで、行動目標設定手段1によって目標が設定されると、環境センサ2による環境データの取得と並行して、活性度センサ6による活性度データ取得も行われる(ステップ106)。活性度センサ6で取得した活性度データは、活性度データ処理部13へ送信され、この活性度データ処理部13によってメモリ14に保存される(ステップ107)。なお、制御対象の空間内に複数の人がいる場合には、各人から取得した活性度データの平均値が算出されて、このメモリ14に保存される。
 その後、ステップ105で計算された、各環境データの目標値と計測値との差分を埋めるよう、制御部16は、空調機17、消臭・脱臭機及び匂い発生機19を動作する(ステップ108)。空調機17等の動作後、所定時間が経過すると、活性度センサ6が活性度データを再度取得し、そのデータが活性度データ処理部13で処理される(ステップ109)。なお、所定時間は、短すぎると、人の嗅覚に対する匂いの効能が生じる前に再度活性度を計測してしまう可能性があるので、2分以上とするのが望ましい。そして、活性度差分計算部15が、メモリ14に保存してある、匂い発生機19等の動作前に予め計測した活性度と、新たに計測した活性度との差分を計算する(ステップ110)。
 ステップ110で、上記差分が所定の閾値よりも大きいときは、人の嗅覚に対する匂いの効能が依然として継続していると考えられるため、一定時間が経過してから、再びステップ109に戻って活性度データを取得するようにする。一方、ステップ110で上記差分が所定の閾値より小さくなったときは、人の嗅覚に対する匂いの効能が既に薄まってしまったと考えられるため、匂い発生機19による匂いの発生は停止し、制御部16は消臭・脱臭機18を動作させる(ステップ111)。そして、当該匂いの濃度が所定以下となったことを匂いセンサ5によって検知すると、制御部16は、消臭・脱臭機18を停止し、所定時間待機する(ステップ112)。そして、新たな行動目標が設定されていないかの確認を行い(ステップ113)、新たな行動目標(例えば「生産性改善」とは別の目標)が設定されていなければ、ステップ108に戻って、再び匂い発生機19等を動作させる。
 ここで、消臭・脱臭機18を停止してから待機する時間は、3分以上5分以内が望ましい。3分より短い待機時間で再び当該匂いを発生させる場合、人の嗅覚がリフレッシュする時間が短すぎて、嗅覚に対する匂いの効能が復活しない可能性があるためである。5分より長い待機時間で再び当該匂いを発生させる場合、人の嗅覚に対する匂いの効能は復活するものの、待機時間が長すぎて、効率的な制御ができなくなるためである。
 このように、本実施例によれば、人の嗅覚が匂いに順応してしまうのを防ぎ、匂いの効能を長時間に亘って保つことが可能となる。
 実施例2について、図3及び図4を用いて説明する。
 図3は、本実施例に係る空間環境制御システムの機能構成を示すブロック図である。本実施例の空間環境制御システムが、実施例1と異なる点は、図3に示すように、制御目標テーブル20に匂いの射出パターンが格納されている点である。
 図4は、匂い発生機19における匂いの射出パターンを示す図である。図4(a)は、標準的な射出パターンを示しており、所定時間に亘り一定の濃度で匂いを射出するものである。図4(b)は、匂いを発生させる各期間の最初に、高い濃度の匂いを瞬間的に発生させるものであり、眠気改善(覚醒度向上)に効く匂いを射出する場合に適している。図4(c)は、匂いの濃度を徐々に高めるように射出するものである。逆に、図4(d)は、匂いの濃度を徐々に低めるように射出するものであり、図4(a)に近い効果が期待できる。
 本実施例によれば、行動目標設定手段1で設定される目標の種類に応じて、匂いの射出パターンを適したものに変更できるため、人の嗅覚に対する匂いの効能をより高めることが可能となる。なお、匂いの射出パターンは、匂いの種類に応じて変更しても良い。
 実施例3について、図5を用いて説明する。
 図5は、本実施例に係る空間環境制御システムの機能構成を示すブロック図である。本実施例の空間環境制御システムが、実施例1と異なる点は、図5に示すように、制御目標テーブル21に複数の匂いに対応した目標が格納されている点である。
 本実施例では、「生産性改善」の目標(第1の目標)に影響する第1の匂いを匂いA(例えばオレンジスイート等)とし、「快適度改善」の目標(第2の目標)に影響する第2の匂いを匂いN(例えばペパーミント等)とする。そして、制御目標テーブル21には、これらの目標毎に、匂いの種類及びその匂いの目標濃度等が格納されている。また、本実施例の空間環境制御システムは、第1の匂いを発生させる匂い発生機19と、第2の匂いを発生させる匂い発生機22と、を備えている。なお、これらの匂い発生機は、複数の匂いを選択的に発生させることのできる1つの匂い発生機であっても良い。さらに、匂いセンサ5も、各匂いに対応した複数のセンサや、各匂いの濃度をそれぞれ計測できる1つのセンサが用いられる。
 次に、本実施例に特有の処理について説明する。行動目標設定手段1が第1の目標を設定した場合、第1の匂いを所定の濃度にすることが目標となるため、第2の匂いは不要な匂いとなるだけでなく、第1の匂いと第2の匂いが混在していると、人の嗅覚に対する第1の匂いの効能が十分に得られない可能性がある。そこで、本実施例では、図2のステップ103において、第2の匂いが所定濃度以上あることを匂いセンサ5で検知したとき、ステップ108において、消臭・脱臭機18を動作させ、第2の匂いを含む全ての匂いの消臭等を行う。そして、第2の匂いが所定濃度未満となったことを匂いセンサ5が検知すると、匂い発生機19から第1の匂いを発生させる。
 本実施例によれば、設定された目標に応じて、効能の異なる匂いを適切に使い分けることで、空間環境をきめ細やかに制御することが可能となる。
 実施例4について、図6及び図7を用いて説明する。
 図6は、本実施例に係る空間環境制御システムの機能構成を示すブロック図である。本実施例の空間環境制御システムが、実施例1と異なる点は、図6に示すように、活性度データを用いず、環境センサ2のみで処理を行う点である。
 図7は、本実施例に係る空間環境制御システムの処理フロー図であり、ステップ203で取得した匂いセンサ5の計測値が、制御目標テーブル12に格納された目標値よりも低い場合を想定したものである。図7に示すように、制御部16は、ステップ207において匂い発生機19を動作させてから所定時間が経過すると、匂い発生機19による匂いの発生は停止し、消臭・脱臭機18を動作させる(ステップ208)。ここで、この所定時間は、短すぎると、人の嗅覚に対する匂いの効能が継続しているのに消臭等してしまう可能性があるので、3分以上とするのが望ましい。一方で、この所定時間は、長すぎると、人の嗅覚に対する匂いの効能が既に薄まっているのに匂いを発生し続けてしまう可能性があるので、5分以下とするのが望ましい。
 本実施例によれば、実施例1と比べて、匂いの発生を継続させる時間の精度が劣ることになるものの、実施例1と比べて、活性度センサ6を用いた処理が不要となるため、低コストで空間環境制御のシステムを実現できる利点がある。
 実施例5について、図8及び図9を用いて説明する。
 図8は、本実施例に係る空間環境制御システムの機能構成を示すブロック図である。本実施例の空間環境制御システムが、実施例1と異なる点は、図8に示すように、環境データ処理部10、環境差分計算部11、制御目標テーブル12、活性度データ処理部13、メモリ14及び活性度差分計算部15が、サーバ/クラウド環境24に設置されている点である。そして、行動目標設定手段1、環境センサ2、活性度センサ6及び制御部16には、有線又は無線の通信モジュール23が搭載されている。
 図9は、本実施例に係る空間環境制御システムの処理フロー図である。行動目標設定手段1は、通信モジュール23を介して、設定された目標に関する情報を環境差分計算部11へ送信する(ステップ302)。環境センサ2は、通信モジュール23を介して、取得した環境データを環境データ処理部10へ送信する(ステップ304)。活性度センサ6は、通信モジュール23を介して、活性度データを活性度データ処理部13へ送信する(ステップ309)。制御部16は、通信モジュール23を介して、環境データの差分に関する情報を環境差分計算部11から受信する(ステップ312)。この制御部16は、通信モジュール23を介して、活性度データの差分に関する情報も活性度差分計算部15から受信する(ステップ315)。
 本実施例によれば、各センサデータの処理や計算をサーバ又はクラウドの環境下で行うことができるので、空間環境制御システム自体にデータ処理等のための端末を設置しなくて良くなり、空間環境制御システムが簡易に実現できる利点がある。
 実施例6について、図10及び図11を用いて説明する。
 図10は、本実施例に係る空間環境制御システムの機能構成を示すブロック図である。
本実施例の空間環境制御システムが、実施例5と異なる点は、図10に示すように、制御部16についても、サーバ/クラウド環境25に設置されている点である。そして、本実施例では、空調機17、消臭・脱臭機18及び匂い発生機19にも、有線又は無線の通信モジュール23が搭載されている。
 図11は、本実施例に係る空間環境制御システムの処理フロー図である。本実施例では、ステップ412において制御部16で決められた設定が、通信モジュール23を介して、空調機17、消臭・脱臭機18及び匂い発生機19へ送信される(ステップ413)。
 本実施例によれば、実施例5と比べて、空間環境制御システムを更に簡易に実現できる利点がある。
 実施例7について、図12及び図13を用いて説明する。
 図12は、本実施例に係る空間環境制御システムの機能構成を示すブロック図である。
本実施例の空間環境制御システムが、実施例1と異なる点は、図12に示すように、不快度判定テーブル26を有している点である。
 図13は、本実施例に係る空間環境制御システムの処理フロー図である。本実施例では、匂い発生機19の動作前にステップ506で予め計測した活性度データと、ステップ509で新たに計測した活性度データと、の差分について、ステップ514において閾値と比較する前に、ステップ511において閾値とは別の不快度判定値(不快度テーブル)と比較する。ステップ511の不快度判定値は、ステップ514の閾値よりも大きな所定の値であり、これを超えると、人の嗅覚に対する匂いの効能が強すぎて、人が不快に感じる可能性があると考えられる値である。したがって、ステップ511において、差分がこの不快度判定値を超えた場合は、匂い発生機19による匂いの発生を即座に停止(ステップ512)すると共に、消臭・脱臭機18を動作させる(ステップ513)。
 本実施例によれば、発生させた匂いを不快に感じる人がいた場合には、当該匂いを即座に抑制することで、信頼性の高い空間環境制御システムを実現することが可能となる。匂いの嗅覚に対する効能は人によって差異があるところ、本実施例は、当該匂いを不快に感じる人がいた場合には、その不快の軽減を優先させたものである。
 実施例8について、図14及び図15を用いて説明する。
 図14は、本実施例に係る空間環境制御システムの機能構成を示すブロック図である。
本実施例の空間環境制御システムが、実施例7と異なる点は、図14に示すように、不快度判定値を超えた場合には、アラーム27を発する点である。
 図15は、本実施例に係る空間環境制御システムの処理フロー図である。本実施例では、ステップ611において活性度データの差分が不快度判定値を超えた場合には、匂い発生機19による匂いの発生を停止する前に、アラーム27により警告を発報する(ステップ612)。警告の方法は、音声や照明に限らず、その他の手段であっても良いが、不快に感じた人以外の第三者に対して、伝わるようにすることが重要である。
 実施例9について、図16及び図17を用いて説明する。
 図16は、本実施例に係る空間環境制御システムの機能構成を示すブロック図である。
本実施例の空間環境制御システムが、実施例8と異なる点は、図16に示すように、環境センサ2としてウイルスセンサ28を有しており、制御目標テーブル29にウイルスセンサ28で検出されたウイルスの濃度に応じて異なる目標が格納されている点である。本実施例では、インフルエンザウイルスを検出するウイルスセンサ28を用いた場合について説明する。
 図17は、本実施例に係る空間環境制御システムの処理フロー図である。本実施例では、ステップ704において、ウイルスセンサ28で検出されたウイルス濃度が、所定の判定閾値を超えたか否かが判定される。この判定閾値を超えている場合は、インフルエンザウイルスに感染しやすい状態にあることから、制御部16は、すぐにアラーム27により警告を発報する(ステップ705)。一方、ウイルス濃度が判定閾値より低い場合は、制御目標テーブル29を参照する(ステップ707)。警告を出すほどではないが、ウイルス濃度が高めの場合は、湿度の目標値が通常(ウイルス濃度が低めの場合)より高く設定されており、制御部16は、空調機17を動作する。空調機17の動作により、空間内の湿度が上昇し、湿度が目標値(例えば40%以上、望ましくは50%以上)に達すると、インフルエンザウイルスの生存率を下げることができる。しかし、湿度が上昇すると、空間内の人の生産性や快適度は低下してしまう可能性がある。そこで、本実施例では、制御部16が匂い発生機19を動作させ、生産性や快適度に効く匂いを発生させるようにした。
 なお、ウイルスセンサ28は、温度センサ3等と同様に空調機17に設けても良いし、空調機17とは別に設けても良い。また、ウイルスセンサ28は、濃度まで検出できるものに限られず、単にウイルスの有無を検出するものであっても良い。さらに、本実施例では、インフルエンザウイルスについて説明したが、他のウイルスであっても良く、ウイルスの種類によっては、湿度を下げたり、温度を変えたりする制御を行う。
 本発明は、上述の実施例1~9に限定されるものではなく、様々な変形例が含まれる。
例えば、空間環境制御システムは、空調機17の代わりに、湿度調整機能を有する空気清浄機を備えていても良い。また、その空気清浄機は、消臭・脱臭機能や匂い発生機能を有するものであっても良い。
 また、上述の実施例1~9は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
1…行動目標設定手段、2…環境センサ、3…温度センサ、4…湿度センサ、5…匂いセンサ、6…活性度センサ、7…脈拍センサ、8…脳波センサ、9…瞳孔センサ、10…環境データ処理部、11…環境差分計算部、12…制御目標テーブル、13…活性度データ処理部、14…メモリ、15…活性度差分計算部、16…制御部、17…空調機、18…消臭・脱臭機、19…匂い発生機、20…制御目標テーブル、21…制御目標テーブル、22…匂い発生機、23…通信モジュール、24…サーバ/クラウド環境、25…サーバ/クラウド環境、26…不快度判定テーブル、27…アラーム、28…ウイルスセンサ、29…制御目標テーブル

Claims (11)

  1.  匂い発生機と、匂いを抑制する匂い抑制装置と、前記匂い発生機及び前記匂い抑制装置を制御する制御装置と、を備えた空間環境制御システムにおいて、
     前記制御装置は、前記匂い発生機で匂いを発生させて所定時間が経過すると、前記匂い抑制装置を動作させた後、再び前記匂い発生機で匂いを発生させることを特徴とする空間環境制御システム。
  2.  匂い発生機と、匂いを抑制する匂い抑制装置と、人の活性度を計測する活性度センサと、前記匂い発生機,前記匂い抑制装置及び前記活性度センサを制御する制御装置と、を備えた空間環境制御システムにおいて、
     前記制御装置は、前記匂い発生機で匂いを発生させた後、前記活性度センサで計測した活性度と匂いの発生前に計測した活性度との差分が所定の閾値より小さくなったとき、前記匂い抑制装置を動作させた後、再び前記匂い発生機で匂いを発生させることを特徴とする空間環境制御システム。
  3.  請求項1又は2に記載の空間環境制御システムにおいて、
     前記匂い抑制装置は、消臭装置,脱臭装置又は換気装置を有することを特徴とする空間環境制御システム。
  4.  請求項1に記載の空間環境制御システムにおいて、
     前記所定時間は、3分以上であることを特徴とする空間環境制御システム。
  5.  請求項1又は2に記載の空間環境制御システムにおいて、
     匂いの濃度を計測する匂いセンサを更に備え、
     前記制御装置は、前記匂い抑制装置を動作させた後、前記匂いセンサが所定の濃度以下となったことを検知してから3分以上経過した後、再び前記匂い発生機で匂いを発生させることを特徴とする空間環境制御システム。
  6.  請求項5に記載の空間環境制御システムにおいて、
     前記匂いセンサが所定の濃度以下となったことを検知してから5分以内に、再び前記匂い発生機で匂いを発生させることを特徴とする空間環境制御システム。
  7.  請求項1又は2に記載の空間環境制御システムにおいて、
     目標設定手段と、前記目標設定手段で設定された目標毎に匂いの種類及びその匂いの目標濃度を格納する目標テーブルと、複数の匂いの濃度を計測する匂いセンサと、を更に備え、
     前記目標設定手段によって第1の目標が設定されている場合に、第2の目標に対応する第2の匂いが所定濃度以上あることを前記匂いセンサで検知したとき、
     前記制御装置は、前記匂い抑制装置を動作させ、前記第2の匂いが所定濃度未満となったことを前記匂いセンサが検知した後、前記第1の目標に対応する第1の匂いを前記匂い発生機で発生させることを特徴とする空間環境制御システム。
  8.  請求項7に記載の空間環境制御システムおいて、
     前記目標テーブルには、匂いの種類毎に、匂いの射出パターンが格納されていることを特徴とする空間環境制御システム。
  9.  請求項2に記載の空間環境制御システムにおいて、
     前記制御装置は、前記匂い発生機で匂いを発生させた後、前記活性度センサで計測した活性度と匂いの発生前に計測した活性度との差分が所定の判定値を超えた場合には、前記匂い発生機を停止して前記匂い抑制装置を動作させることを特徴とする空間環境制御システム。
  10.  請求項9に記載の空間環境制御システムにおいて、
     前記制御装置は、前記匂い発生機で匂いを発生させた後、前記活性度センサで計測した活性度と匂いの発生前に計測した活性度との差分が所定の判定値を超えた場合には、アラームを発することを特徴とする空間環境制御システム。
  11.  空調機と、匂い発生機と、前記空調機及び前記匂い発生機を制御する制御装置と、ウイルスセンサと、を備えた空間環境制御システムにおいて、
     前記ウイルスセンサが所定のウイルスを検出した場合、前記制御装置は、所定の温度又は湿度になるよう前記空調機を制御するとともに、前記匂い発生機で匂いを発生させることを特徴とする空間環境制御システム。
PCT/JP2020/045038 2020-01-09 2020-12-03 空間環境制御システム WO2021140794A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-002024 2020-01-09
JP2020002024A JP7383494B2 (ja) 2020-01-09 2020-01-09 空間環境制御システム

Publications (1)

Publication Number Publication Date
WO2021140794A1 true WO2021140794A1 (ja) 2021-07-15

Family

ID=76788564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045038 WO2021140794A1 (ja) 2020-01-09 2020-12-03 空間環境制御システム

Country Status (2)

Country Link
JP (1) JP7383494B2 (ja)
WO (1) WO2021140794A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281124A (ja) * 1991-03-07 1992-10-06 Matsushita Refrig Co Ltd 脱臭機能付き香り供給装置
JPH05118627A (ja) * 1991-10-30 1993-05-14 Matsushita Electric Ind Co Ltd 香り発生装置
JPH0658573A (ja) * 1992-08-10 1994-03-01 Takasago Thermal Eng Co Ltd 香り空調方法
JPH0632931U (ja) * 1992-09-17 1994-04-28 高砂熱学工業株式会社 空調対象室の空気質判別装置
JPH0947499A (ja) * 1995-06-02 1997-02-18 Mutsuo Hirano 芳香消臭器及びこれを用いた芳香消臭方法
JP2017003200A (ja) * 2015-06-11 2017-01-05 株式会社豊田中央研究所 匂い制御装置および匂い制御方法
WO2019142647A1 (ja) * 2018-01-22 2019-07-25 パナソニックIpマネジメント株式会社 空間環境制御システム、空間環境制御装置及び空間環境制御方法
WO2019188791A1 (ja) * 2018-03-30 2019-10-03 ダイキン工業株式会社 香り放出システム
WO2019240100A1 (ja) * 2018-06-12 2019-12-19 ダイキン工業株式会社 香り調整システム及び香料カートリッジ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2777977B2 (ja) * 1995-02-22 1998-07-23 工業技術院長 供香方法及び供香装置
JPH11278048A (ja) * 1998-03-27 1999-10-12 Denso Corp 車両用芳香制御装置
CA2632559C (en) 2005-12-01 2014-05-27 Sara Lee/De N.V. Fragrance delivery system
US8955765B2 (en) 2008-08-20 2015-02-17 S.C. Johnson & Son, Inc. Diffusion device with odor sensor
CN111133256B (zh) 2017-09-28 2022-03-29 大金工业株式会社 环境控制单元的控制装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04281124A (ja) * 1991-03-07 1992-10-06 Matsushita Refrig Co Ltd 脱臭機能付き香り供給装置
JPH05118627A (ja) * 1991-10-30 1993-05-14 Matsushita Electric Ind Co Ltd 香り発生装置
JPH0658573A (ja) * 1992-08-10 1994-03-01 Takasago Thermal Eng Co Ltd 香り空調方法
JPH0632931U (ja) * 1992-09-17 1994-04-28 高砂熱学工業株式会社 空調対象室の空気質判別装置
JPH0947499A (ja) * 1995-06-02 1997-02-18 Mutsuo Hirano 芳香消臭器及びこれを用いた芳香消臭方法
JP2017003200A (ja) * 2015-06-11 2017-01-05 株式会社豊田中央研究所 匂い制御装置および匂い制御方法
WO2019142647A1 (ja) * 2018-01-22 2019-07-25 パナソニックIpマネジメント株式会社 空間環境制御システム、空間環境制御装置及び空間環境制御方法
WO2019188791A1 (ja) * 2018-03-30 2019-10-03 ダイキン工業株式会社 香り放出システム
WO2019240100A1 (ja) * 2018-06-12 2019-12-19 ダイキン工業株式会社 香り調整システム及び香料カートリッジ

Also Published As

Publication number Publication date
JP2021110494A (ja) 2021-08-02
JP7383494B2 (ja) 2023-11-20

Similar Documents

Publication Publication Date Title
JP6614517B2 (ja) 環境制御システム
JP6876747B2 (ja) 香り調整システム及び香料カートリッジ
CN111867459B (zh) 晕车症估计系统、移动车辆、晕车症估计方法和晕车症估计程序
CN112601914A (zh) 空间净化系统和空间净化方法
JP2010512216A (ja) ストレス軽減
CN113531851B (zh) 辅助治疗的空调控制方法、空调器和存储介质
CN113757845A (zh) 卫生间空调的控制方法、电子设备以及存储介质
WO2021140794A1 (ja) 空間環境制御システム
CN113960936A (zh) 消毒器及其控制方法、电子设备和可读存储介质
WO2020121786A1 (ja) 薬液噴霧装置
WO2022044801A1 (ja) 制御システム、制御方法、及び、プログラム
JPH0570475B2 (ja)
JP2007054445A (ja) 香料吹き出し制御装置及び方法
KR20220024026A (ko) 냄새 자극을 선택적으로 제공하는 디바이스 및 방법
KR20220095474A (ko) 실내 공간방역 시스템
JPH05118627A (ja) 香り発生装置
CN218895470U (zh) Hvac设备和用于操作hvac设备的主控制设备
JP2021069712A (ja) 機能性成分放出システム、建物、及び、機能性成分放出方法
WO2023276749A1 (ja) 香り気流発生装置、及び、香り気流発生方法
WO2022044800A1 (ja) 提案システム、提案方法、及び、プログラム
WO2022024629A1 (ja) 密集度監視装置
CN110023119A (zh) 使空气富含至少一种芳香物质的方法
JP2022131142A (ja) 香り発生システム、香り発生装置、香り発生方法、および、プログラム
JP2021053225A (ja) 拡散対象制御方法、拡散対象制御プログラムおよび拡散対象制御装置
JP4648040B2 (ja) 生体機能改善空気の生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912247

Country of ref document: EP

Kind code of ref document: A1