WO2022044801A1 - 制御システム、制御方法、及び、プログラム - Google Patents

制御システム、制御方法、及び、プログラム Download PDF

Info

Publication number
WO2022044801A1
WO2022044801A1 PCT/JP2021/029593 JP2021029593W WO2022044801A1 WO 2022044801 A1 WO2022044801 A1 WO 2022044801A1 JP 2021029593 W JP2021029593 W JP 2021029593W WO 2022044801 A1 WO2022044801 A1 WO 2022044801A1
Authority
WO
WIPO (PCT)
Prior art keywords
room
ventilation
infectious
mode
supply device
Prior art date
Application number
PCT/JP2021/029593
Other languages
English (en)
French (fr)
Inventor
勝彦 平松
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180058397.8A priority Critical patent/CN116057327A/zh
Priority to JP2022545627A priority patent/JP7418049B2/ja
Priority to US18/019,296 priority patent/US20230277709A1/en
Publication of WO2022044801A1 publication Critical patent/WO2022044801A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/11Apparatus for controlling air treatment
    • A61L2209/111Sensor means, e.g. motion, brightness, scent, contaminant sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/10Apparatus features
    • A61L2209/16Connections to a HVAC unit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2209/00Aspects relating to disinfection, sterilisation or deodorisation of air
    • A61L2209/20Method-related aspects
    • A61L2209/21Use of chemical compounds for treating air or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to a control system that controls various devices for suppressing infection of an infectious object.
  • Patent Document 1 discloses a system for monitoring the implementation of hand disinfection of a subject belonging to a predetermined facility such as a hospital.
  • the control system includes a ventilation device that exchanges indoor gas including an infectious object with outdoor gas to discharge and remove the infectious object, and the infectious object in the room.
  • the control device comprises a supply device that supplies an inactivating substance that inactivates an object and inactivates and removes the infectious object, and a control device that controls the ventilation device and the supply device.
  • control method includes a ventilation device that exchanges indoor gas containing an infectious object with outdoor gas to discharge and remove the infectious object, and the infection in the room. It is a control method that controls a supply device that supplies an inactivating substance that inactivates a sex object and inactivates and removes the infectious object, and when the removal capacity by the ventilation device is increased.
  • one aspect of the present disclosure can be realized as a program for causing a computer to execute the above control method.
  • it can be realized as a computer-readable non-temporary recording medium in which the program is stored.
  • FIG. 1 is an overview diagram showing a usage example of the control system according to the embodiment.
  • FIG. 2 is a block diagram showing a functional configuration of the control system according to the embodiment.
  • FIG. 3A is a flowchart showing an operation example including the first operation of the control system according to the embodiment.
  • FIG. 3B is a flowchart showing an operation example including the second operation of the control system according to the embodiment.
  • FIG. 4 is a diagram illustrating a specific operation according to the embodiment.
  • FIG. 5 is a second diagram illustrating a specific operation according to the embodiment.
  • FIG. 6 is a diagram showing the amount of proliferation in major viruses.
  • FIG. 7 is a first graph showing the transition of the infection probability with respect to the elapsed time.
  • FIG. 7 is a first graph showing the transition of the infection probability with respect to the elapsed time.
  • FIG. 8 is a second graph showing the transition of the infection probability with respect to the elapsed time.
  • FIG. 9 is a third diagram illustrating a specific operation according to the embodiment.
  • FIG. 10 is a graph showing the relationship between the elapsed time and the ventilation volume.
  • FIG. 11 is a block diagram showing a functional configuration of a control device incorporating the reservation management device according to the embodiment.
  • FIG. 12 is a flowchart showing an operation relating to a proposal of a method of using the indoor use reservation management system according to the embodiment.
  • each figure is a schematic diagram and is not necessarily exactly illustrated. Therefore, for example, the scales and the like do not always match in each figure. Further, in each figure, substantially the same configuration is designated by the same reference numeral, and duplicate description will be omitted or simplified.
  • FIG. 1 is an overview diagram showing a usage example of the control system according to the embodiment.
  • FIG. 1 shows a room 98 in which each device related to the control system 500 is installed.
  • the indoor 98 here means a space configured semi-sealed by a plurality of walls, floors, and ceilings, and fittings and the like that can open and close the inside and outside of the room 98. Therefore, the room 98 may be the inner space of one room as shown in FIG. 1, or may be, for example, the inner space of the entire building composed of a plurality of rooms.
  • the control system 500 includes a ventilation device 110, a supply device 120, and a control device 100.
  • the ventilation device 110 is a device that exchanges the gas in the indoor 98 with the gas in the outdoor 97 (see FIG. 2 described later). That is, the ventilation device 110 is a device for ventilating. In the present embodiment, the ventilation device 110 is a device installed on the ceiling of the room 98 and sucking the gas in the room 98. The gas in the room 98 may contain an infectious object.
  • infectious objects classified into, for example, particles such as bacteria, viruses, nucleic acids, and proteins. Of these, some types are transmitted from person to person, so suppression of infection is required.
  • FIG. 1 in a situation where a plurality of people 99 talk in the same room 98, an infectious object infected with one person 99 is transmitted to the other person 99 through a space.
  • the possibility of infection increases, such as by scattering to.
  • the person 99 infected with the infectious object does not take sufficient measures due to unawareness or the like, an explosive spread of infection may occur.
  • the ventilator 110 blows the gas in the indoor 98 to the outdoor 97 by a blower or the like, and at the same time, introduces the gas in the outdoor 97 into the indoor 98 to exchange the gas.
  • a so-called type 3 ventilation system in which the gas in the indoor 98 is only blown to the outdoor 97, and the indoor 98, which has become negative pressure, naturally sucks the gas in the outdoor 97 to exchange the gas.
  • An example of is shown.
  • the contents of the present disclosure are not particularly limited in the ventilation method including the first-class ventilation method and the second-class ventilation method, and the configuration of the device related to ventilation. Therefore, any ventilation device may be used as long as the gas is exchanged between the indoor 98 and the outdoor 97.
  • the supply device 120 is a device that is placed on the floor of the room 98 and supplies the inactivating substance that inactivates the infectious object to the room 98.
  • the inactivating substances include, for example, alcohols such as ethanol, which have an inactivating effect by disrupting the cell membrane structure of bacteria and denaturing the polymer structure, inverted soap such as benzalkonium chloride, and the following. It is a substance such as chloric acid.
  • the supply device 120 volatilizes the hypochlorite water obtained by, for example, electrolyzing the saline solution with a blower, a water absorption filter, or the like, and sprays it in the space of the room 98 as the above-mentioned inactivating substance.
  • the sprayed hypochlorous acid comes into contact with the infectious object existing in the space, disrupts the structure of the cell membrane, the outer shell protein, etc., and denatures the nucleic acid, the enzyme protein, etc., thereby infecting the infectious object. It loses its function (inactivates). In this way, removing the infectious object in the active state from the room 98 by inactivating the infectious object in the active state is called inactivation removal.
  • the supply device 120 is not limited to the above configuration.
  • the supply device 120 can achieve the same effect even if the supply device 120 is configured to suck the gas in the room 98 into the main body, forcibly bring it into contact with the inactivating substance, and then release the sucked gas.
  • "supplying the inactivating substance to the room 98" means a configuration in which the inactivating substance is brought into contact with at least the gas in the room 98. That is, the supply of the inactivating substance by the supply device 120 is a concept including bringing the inactivating substance into contact with at least the gas in the room 98.
  • the supply device 120 brings the inactivating substance into contact with the gas in the room 98 by spraying the inactivating substance, and at the same time, the wall portion, the floor portion, and the object such as furniture or home appliances in the room 98.
  • the structure is such that the inactivating substance is brought into contact with the infectious object adhering to the furniture. Therefore, the effect of suppressing the infection of a higher infectious object can be obtained with respect to the configuration of the above-mentioned example in which the inactivating substance is brought into contact with only the gas in the room 98.
  • the control device 100 is a device that controls the ventilation device 110 and the supply device 120 to switch between these modes of operation and appropriately perform discharge removal and inactivation removal.
  • the control device 100 controls these devices by, for example, wirelessly communicating with the ventilation device 110 and the supply device 120.
  • the control device 100 is, for example, a device installed on a wall portion and having an operation panel.
  • the control device 100 has a built-in processor and a storage device.
  • the control device 100 controls the ventilation device 110 and the supply device 120 by a predetermined control algorithm by executing a program stored in the storage device by a processor. The details of the predetermined control algorithm will be described later.
  • the operation panel of the control device 100 is, for example, a device that accepts the input of the person 99 in the room 98. This input is used, for example, to input some modifiable parameters to an algorithm for controlling the ventilator 110 and the supply device 120.
  • control device 100 does not have to be a single device as described above.
  • the control device 100 may be built in either the ventilation device 110 or the supply device 120, or may be constructed in a place away from the room 98 by a cloud server, an edge server, or the like.
  • the ventilation device 110 and the supply device 120 and the control device 100 may be communicably connected via a wide area communication network such as the Internet or a local communication network in a building.
  • FIG. 2 is a block diagram showing a functional configuration of the control system according to the embodiment.
  • the control device 100 includes a control unit 101, a first acquisition unit 102, a second acquisition unit 103, and an infection probability estimation unit 104.
  • the control unit 101 is a functional unit that controls the ventilation device 110 and the supply device 120.
  • the control unit 101 is realized by executing a program for performing a predetermined process using a processor and a storage device.
  • the control unit 101 determines the ability of the ventilation device 110 to remove the infectious object according to a predetermined control algorithm.
  • the removal ability here means the amount of the infectious object removed by the discharge removal.
  • infectious objects floating in gas are targeted, and the amount of removal is the dispersibility of infectious objects in gas and the amount of gas emissions (that is, ventilation volume).
  • the amount removed is simply an amount that is directly proportional to the amount of ventilation.
  • the ventilation volume means the amount of gas exchanged between the indoor 98 and the outdoor 97 per unit time.
  • control device 100 generates a control signal for designating the ventilation volume by the ventilation device 110 and transmits it to the ventilation device 110.
  • the ventilation device 110 receives the control signal and operates according to the control signal.
  • control unit 101 determines the ability of the supply device 120 to remove the infectious object according to a predetermined control algorithm.
  • the removal ability here means the amount of infectious object removed by inactivation removal.
  • infectious objects floating in the gas and infectious objects adhering to the object are targeted, and the amount of removal is the dispersibility of the inactivating substance in the gas and the dispersibility of the infectious substance in the gas.
  • the supply amount of inactivating substances it depends on various conditions related to the reaction such as the contact rate between the infectious object and the inactivating substance in the space, and the reaction rate of each reaction until inactivation after contact. ..
  • the removal amount is simply directly proportional to the supply amount (spraying amount) of the inactivating substance.
  • the amount to do is simply directly proportional to the supply amount (spraying amount) of the inactivating substance. The amount to do.
  • the above assumptions are followed for the sake of simplification of the calculation, but for example, the calculation considering the dispersion rate of the inactivated substance, the installation position of the supply device 120, various conditions related to the reaction, etc. is further carried out. It may be done.
  • control device 100 generates a control signal that specifies the supply amount of the inactivated substance by the supply device 120, and transmits the control signal to the supply device 120.
  • the supply device 120 receives the control signal and operates according to the control signal.
  • the first acquisition unit 102 is a communication module for acquiring the CO 2 concentration in the space of the room 98 from the CO 2 sensor 141 which is a detector for detecting the CO 2 concentration in the space of the room 98.
  • the first acquisition unit 102 is communicably connected to the CO 2 sensor 141. Since the acquired CO 2 concentration in space in the room 98 is used in one operation of a predetermined control algorithm described later, it will be described later together with a description of the predetermined control algorithm.
  • the second acquisition unit 103 is a communication module for acquiring information on the presence / absence of a person in the room 98 from the presence / absence sensor 142 which is a detector for detecting the presence / absence of a person in the room 98.
  • the second acquisition unit 103 is communicably connected to the presence / absence sensor 142. Since the acquired information on the presence / absence of a person in the room 98 is used in one operation of a predetermined control algorithm described later, it will be described later together with a description of the predetermined control algorithm.
  • the infection probability estimation unit 104 is a functional unit for calculating the infection probability of an infectious object to human 99 based on the estimation.
  • the infection probability estimation unit 104 is realized by executing a program for performing a predetermined process using a processor and a memory.
  • the infection probability estimation unit 104 receives, for example, various parameters input to the operation panel or the like and contributes to the estimation, and calculates the infection probability of the person 99 in the room 98 to the infectious object by the calculation using the parameters. .. Since the calculated infection probability is used in one operation of the predetermined control algorithm described later, it will be described together with the description of the predetermined control algorithm.
  • Control algorithm a predetermined control algorithm for controlling the ventilation device 110 and the supply device 120 by the control device 100 according to the present embodiment will be described.
  • the balance between the operating amounts of the ventilation device 110 and the supply device 120 for achieving a constant removal ability while maintaining a constant ability to remove the infectious object also referred to as a removal ability). Is changed as needed. In this way, it is possible to more effectively control the transmission of infectious objects to humans.
  • the control algorithm described above is used to determine the respective operating amounts of the ventilator 110 and the supply device 120.
  • t indicates the elapsed time [h]
  • C (t) indicates the concentration [mg / m 3 ] of the infectious object in the room 98 at time t
  • Co is , Indicates the concentration [mg / m 3 ] of the infectious object in the outdoor 97
  • V indicates the volume [m 3 ] of the indoor 98.
  • Co is infinitely diluted and has a constant value even if the infectious object is discharged from the room 98.
  • the removal ability by the ventilation device 110 is considered to be the amount of change in the concentration of the infectious object with respect to the elapsed time.
  • Q indicates the amount of gas exchanged per unit time (here, 1 hour), that is, the ventilation volume [m 3 / h]. Therefore, Q ⁇ t / V in the above equation (4) indicates the ventilation rate in the space of volume V.
  • the removal capacity by the supply device 120 can be considered as the accumulated amount of some infectious objects inactivated by the inactivated substance sprayed within the elapsed time. To put it the other way around, this is the value obtained by multiplying the concentration of the infectious object in the original active state by the elapsed time as the ratio of the infectious object in the active state remaining by partial inactivation every unit time. It is formulated. That is, the residual ratio X 2 (t), which is the inside out of the removal capacity of the supply device 120, is expressed by the following equation (5).
  • indicates the residual rate of the infectious object per unit time.
  • is a numerical value larger than 0 and smaller than 1 (0 ⁇ ⁇ 1).
  • is 0.464. That is, under the conditions shown in the above example, it can be seen that 53.6% of the infectious substances are inactivated and removed per unit time by the inactivating substance.
  • the residual rate X 1 (t) and the residual rate X 2 (t) are due to the removal of the infectious object, which are performed by independent effects. Therefore, when the ventilation device 110 and the supply device 120 are operated at the same time, the total ability to remove the infectious object is as the residual rate X t (t) of the infectious object as shown in the following equation (6). Become.
  • the control device 100 increases the removal capacity of one of the ventilation device 110 and the supply device 120 according to the above formula (8), the control device 100 reduces the removal capacity of the ventilation device 110 and the supply device 120 by the other. Control to perform at least one of the operation and the second operation of increasing the removal efficiency of the ventilation device 110 and the supply device 120 when the removal efficiency of one of the ventilation device 110 and the supply device 120 is reduced.
  • the mode (first mode) can be executed.
  • control device 100 monotonically controls the above-mentioned mode and each device so as to operate with a constant removal capacity (an example of the second mode), or one of the devices has a constant removal capacity. It can also be combined with a mode (an example of the second mode) that is monotonically controlled so as to operate in.
  • a mode an example of the second mode
  • the removal capacity of the other device is maintained constant even if the removal capacity of one device increases, and the removal capacity of the other device decreases. Only when this is done, a certain removal capacity may be maintained according to the above formula (8). That is, even in the second mode, the operation according to the above equation (8) may be controlled.
  • FIG. 3A is a flowchart showing an operation example including the first operation of the control system according to the embodiment.
  • FIG. 3B is a flowchart showing an operation example including the second operation of the control system according to the embodiment.
  • FIGS. 3A and 3B there is a difference in the operation in the steps related to the first operation and the second operation, and the same operation is performed in the other steps. Therefore, in the following description, the description will be omitted by assigning the same reference numerals to the steps of the overlapping operations.
  • the first mode is first implemented.
  • the control when the removal capacity of one of the ventilation device 110 and the supply device 120 decreases, the control is performed to increase the removal capacity of the other.
  • the control device 100 when controlling the ventilation device 110 and the supply device 120, it may be necessary to reduce the removal capacity of one device by, for example, another control factor. That is, the control device 100 controls the operation of the one device to determine whether or not the removal capacity is reduced (step S101). When the control device 100 determines that the removal capacity is reduced by controlling the operation of one device (Yes in step S101), the removal capacity reduced by one device is increased by increasing the removal capacity of the other device.
  • step S102 Each device is controlled so as to compensate for the above (step S102). After that, the control device 100 determines whether or not to terminate the first mode (step S103). Further, when the control device 100 controls the operation of one device and determines that the removal capacity is not reduced (No in step S101), the control device 100 skips step S102 and executes the process of step S103.
  • the end condition of the first mode differs depending on the control algorithm realized by the control system 500. For example, the process of changing the control capability a predetermined number of times is performed, and the first mode is continued for a predetermined period. , And the input related to the mode switching is performed on the operation panel.
  • control device 100 determines that the end condition is not achieved and the first mode is not terminated (No in step S103).
  • the control device 100 returns to step S101 and continuously executes the first mode.
  • the control device 100 determines that the termination condition is achieved and the first mode is terminated (Yes in step S103)
  • the control device 100 controls the ventilation device 110 and the supply device 120 to switch to the second mode (Yes).
  • Step S104 In the second mode, as described above, each device is monotonically controlled to operate with a constant removal capacity, or one of the devices is monotonically controlled to operate with a constant removal capacity. Implement control.
  • control device 100 determines whether or not to terminate the second mode (step S105).
  • the conditions for terminating the second mode differ depending on the control algorithm implemented by the control system 500, and for example, the second mode has been continued for a predetermined period of time, and the input regarding the mode switching to the operation panel is input. It can be mentioned.
  • control device 100 determines that the end condition is not achieved and the second mode is not terminated (No in step S105).
  • the control device 100 repeats step S105 and continues the second mode until the end condition is achieved. Execute.
  • the control device 100 determines that the termination condition is achieved and the second mode is terminated (Yes in step S105)
  • the control device 100 controls the ventilation device 110 and the supply device 120 to switch to the first mode (Yes). Step S106). After that, the control device 100 returns to step S101 and repeats the above operation in the first mode again.
  • the operation example including the second operation is different from the operation example including the first operation in that the increase / decrease of the removal capacity in the first mode is reversed.
  • the control device 100 of this operation example controls the operation of the one device to determine whether or not to increase the removal capacity (step S201). .. Further, when it is determined that the control device 100 of this operation example controls the operation of one device to increase the removal capacity (Yes in step S201), the control device 100 reduces the removal capacity of the other device to increase the removal capacity of one of the devices. Each device is controlled so as to cut (labor saving) the amount of removal capacity corresponding to the increased removal capacity of the device (step S202).
  • a first mode for carrying out a first step including a plurality of steps including steps S101 to S103, and for example, a second step for carrying out a second step including step S105 are carried out.
  • Mode is switched and executed.
  • each mode is selectively executed in order to carry out appropriate control of each device.
  • FIG. 4 is a diagram illustrating a specific operation according to the embodiment.
  • FIG. 4 shows the removal capacity of each device in chronological order.
  • the control mode of each device is switched at the elapsed time t 1 and t 2 .
  • the removal capacity by the ventilation device 110 is increased at the elapsed time t1 .
  • the removal capacity by the supply device 120 is reduced corresponding to the second operation.
  • the control device 100 increases the ventilation volume of the ventilation device 110 triggered by a predetermined time in the day. As a result, ventilation is performed at least once in a day, and infectious objects are removed.
  • the above control mode is continued during the period from the elapsed time t 1 to the elapsed time t 2 , and the removal capacity by the supply device 120 is increased at the elapsed time t 2 .
  • the removal capacity by the ventilation device 110 is reduced corresponding to the first operation.
  • the control device 100 continues to remove the infectious object predominantly in the ventilator 110 for a predetermined period (t 1 to t 2 ), and then continues to remove the infectious object predominantly in the supply device 120. implement.
  • the ventilation volume of the ventilation device 110 is reduced.
  • the inactivating substance can be sprayed by the supply device 120 while suppressing the discharge from the system due to ventilation.
  • the first mode including the first operation is continuously carried out.
  • FIG. 4 shows a higher ability to remove inactivated substances during the period from the elapsed time t 0 to the elapsed time t 1.
  • a person 99 operates the operation panel before the elapsed time t 1 . This is because the ability to remove inactivated substances was increased by manual operations such as. Therefore, before the elapsed time t1, the second mode in which each device is independently controlled is implemented.
  • the order in which the first mode and the second mode are carried out is not limited to the examples described in FIGS. 3A and 3B, and for example, the first mode is executed after the second mode is executed.
  • the mode may be executed.
  • the control of the supply device 120 is changed according to the control change of the ventilation device 110 as shown in the following equation (10).
  • ⁇ 1 indicates the residual rate of the infectious object per unit time after the change at the elapsed time t 1
  • Q 1 indicates the ventilation after the change at the elapsed time t 1 .
  • the amount [m 3 / h] is shown.
  • the ventilation device 110 is controlled and changed as shown in the following equation (11) as the control of the supply device 120 is changed.
  • ⁇ 2 indicates the residual rate of the infectious object per unit time after the change at the elapsed time t 2
  • Q 2 indicates the ventilation after the change at the elapsed time t 2 .
  • the amount [m 3 / h] is shown.
  • FIG. 5 is a second diagram illustrating a specific operation according to the embodiment.
  • the CO 2 concentration acquired from the CO 2 sensor 141 is shown in chronological order.
  • an example will be described in which the ventilation volume in the ventilation device 110 is changed depending on the CO 2 concentration in the space, and the inactivating substance is sprayed by the supply device 120 accordingly.
  • the ventilator 110 is controlled so that the CO 2 concentration is maintained at an appropriate value.
  • the appropriate CO 2 concentration is, for example, preferably less than about 1000 ppm when the indoor 98 is used for a conference or the like. Therefore, in this operation example, the CO 2 concentration detected by the CO 2 sensor 141 is controlled so as to be lower than the CO 2 threshold value based on, for example, 1000 ppm.
  • the operation amount of the supply device 120 controlled at the same time is operated so as to maintain the above equation (8) and the above equation (9) above a certain level.
  • each device is controlled in the second mode.
  • the control device 100 increases the ventilation volume by the ventilation device 110.
  • the CO 2 concentration in the room 98 starts to decrease due to ventilation.
  • the control device 100 reduces the ventilation volume by the ventilation device 110.
  • the removal capacity of the ventilator 110 arbitrarily set in the period from the elapsed time t 0 to t 1 is increased in the period from the elapsed time t 1 to t 2 , and is increased from the elapsed time t 2 . It will be less than that in the later period.
  • the removal capacity by the supply device 120 is kept constant in this example, but the removal capacity may be reduced from the viewpoint of energy saving.
  • two patterns of control are performed according to the removal capacity of the ventilation device 110.
  • the removal capacity by the ventilator 110 after the elapsed time t 2 decreases with respect to the removal capacity from the elapsed time t 0 to t 1 , the decrease is shown in the figure.
  • the removal capacity by the supply device 120 is increased so as to supplement the removal capacity of the above.
  • the removal capacity by the ventilation device 110 after the elapsed time t 2 is equal to or increased with respect to the removal capacity from the elapsed time t 0 to t 1 , the supply is performed.
  • the removal capacity of the device 120 is maintained (or may be reduced).
  • each device is controlled according to the following equation (12) and the following equation (13).
  • the upper limit of the removal capacity of the ventilation device 110 is determined by the maximum value of the ventilation volume of the ventilation device 110. That is, in order to realize the total removal capacity, it is necessary to consider the maximum value and the minimum value of the removal capacity of the ventilation device 110 and the supply device 120, respectively.
  • the maximum value of the removal capacity by the ventilation device 110 corresponds to the minimum value of the removal capacity by the supply device 120.
  • the Q / V term becomes the maximum when the ⁇ ln ⁇ term is the minimum.
  • V is a constant positive numerical value, so when the Q / V term is maximum, Q is the maximum value. Due to its nature, ⁇ takes a value within the range of 0 ⁇ ⁇ 1. Therefore, -ln ⁇ becomes the minimum value when ⁇ is the maximum value. That is, when Q becomes the maximum value Q max , ⁇ takes the maximum value ⁇ max . Therefore, the following equation (14) is obtained.
  • the upper limit of the removal capacity by the supply device 120 is determined by the maximum value of the supply amount of the inactivated substance of the supply device 120. Similar to the above, if the maximum and minimum values of the removal capacity of the ventilation device 110 and the supply device 120 are taken into consideration, the maximum value of the removal capacity of the supply device 120 becomes the minimum value of the removal capacity of the ventilation device 110. It corresponds.
  • the Q / V term becomes the minimum when the ⁇ ln ⁇ term is the maximum.
  • Q becomes the minimum value.
  • -ln ⁇ becomes the maximum value when ⁇ is the minimum value. That is, when Q becomes the minimum value Q min , ⁇ takes the minimum value ⁇ min . Therefore, the following equation (15) is obtained.
  • Non-Patent Document 1 It is also possible to estimate the probability of infection of an infectious object to human 99 from numerical values such as the CO 2 concentration in the room 98. If the CO 2 threshold is set based on this estimation, the estimated infection probability can be suppressed to a certain level. Specifically, the following formula (16) disclosed in Non-Patent Document 1 is applied to the contents of the present application.
  • P indicates the infection probability of the infectious substance estimated from the CO 2 concentration
  • I indicates the number of infected persons infected with the infectious object
  • q indicates the number of infected persons.
  • the amount of new infectious substance generated per unit time such as the amount of virus growth [/ h] is shown
  • C g is the CO 2 concentration [ppm] in the room 98
  • C go is the outdoor.
  • the CO 2 concentration [ppm] of 97 is shown
  • Ca indicates the ratio of the amount of CO 2 to the exhaled breath of the person 99
  • n indicates the number of people 99 present in the room 98.
  • the elapsed time indicated by t can be regarded as the staying time of the person 99 in the room 98 in which the infectious object floats, that is, the exposure time of the person 99 to the infectious object. Can be caught.
  • FIG. 6 is a diagram showing the amount of proliferation in major viruses.
  • the name of the infectious disease related to the infection of a major virus and the amount of proliferation of the virus involved in the infectious disease are shown in association with each other.
  • FIG. 7 is a first graph showing the transition of the infection probability with respect to the elapsed time.
  • FIG. 7 shows, as an example, the result of calculating the relationship between the elapsed time and the infection probability in a room 97 in which eight people 99 including one SARS-CoV-2 infected person are present.
  • a CO 2 threshold value of 825 ppm may be set.
  • p indicates the respiratory volume of human 99.
  • the elapsed time indicated by t can be regarded as the staying time of the person 99 in the room 98 in which the infectious object floats, that is, the exposure time of the person 99 to the infectious object. Can be caught.
  • FIG. 8 is a second graph showing the transition of the infection probability with respect to the elapsed time.
  • FIG. 8 shows, as an example, the result of calculating the relationship between the elapsed time and the infection probability in a room in which one person 99 who is infected with SARS-CoV-2 is present, as in FIG. 7 above. ing.
  • the calculation of the relationship between the elapsed time and the infection probability in FIG. 8 assumes, for example, a case where the person 99 in a conference or the like spends a rest in the room 98 (in this case, the conference room or the like). It is done. Therefore, p here adopts 0.3 [m 3 / h] as the general respiration volume of the person 99 at rest.
  • the ventilation volume of less than 600 [m 3 / h] is not enough, and 900 [m 3 / h]. It turns out that the above ventilation volume is sufficient. Therefore, if the ventilation device 110 is controlled with a ventilation volume of 900 [m 3 / h] or more, the infection probability can be suppressed to 0.5% or less by using it for one hour.
  • the ventilation device 110 changes the ventilation volume so as to be equal to or higher than a threshold value set according to the infection probability estimated in advance, and thereafter, for example, is controlled to be constant.
  • the supply device 120 changes the supply amount of the inactivating substance according to the operating amount of the ventilation device 110, and thereafter, it is controlled to maintain a constant amount of supply, for example.
  • the adjustment is made each time according to the state of the room 98, so that the optimum infectious target is always obtained. It has the effect of removing objects.
  • the calculation cost such as the equipment and processing capacity required for the calculation becomes bloated.
  • control patterns having a trade-off relationship may be arbitrarily switched by the administrator of the control system 500 or the like, or may be automatically switched by monitoring the usage state of the room 98.
  • the latter process is performed with the calculation cost reduced, and the number of users on the schedule matches. If not, the former optimal removal of infectious objects may be performed. Further, when the usage mode of the room 98 is assumed in advance, it may be set so that the control is performed according to the usage mode.
  • ⁇ min described by the above equation (15) is due to the maximum removal capacity.
  • This maximum sterilizing ability varies depending on whether or not a person 99 is present in the room 98. That is, when the person 99 is present in the room 98, it is not possible to spray an amount of the inactivating substance that can affect the person 99, and as a result, ⁇ min becomes large. On the other hand, when the person 99 is not present in the room 98, the inactivating substance can be sprayed up to the limit of the capacity of the supply device 120, and a smaller ⁇ min can be applied.
  • FIG. 9 is a third diagram illustrating a specific operation according to the embodiment.
  • FIG. 9 shows the removal capacity of each device in chronological order and the CO 2 concentration acquired from the CO 2 sensor 141 in chronological order, as in FIG. Further,
  • FIG. 10 is a graph showing the relationship between the elapsed time and the ventilation volume.
  • the supply amount of the inactivated substance is increased and the removal by the supply device 120 is triggered by the change from the state in which the person 99 is present to the state in which the person 99 is absent. Increase capacity.
  • the presence / absence of the person 99 is determined based on the presence / absence information acquired from the presence / absence sensor 142 as described above.
  • the inactivating substance supplied here may be based on ⁇ min in the absence of human 99, as described above. As a result, the effect on the person 99 is suppressed to a low level while obtaining a higher effect of removing inactivation.
  • the supply of the inactivating substance will be reduced by the time the person 99 enters the room 98 next time.
  • control device 100 cooperates with a locking device for fittings used for entering and exiting the room 98 so that the room 98 is not entered during the period when the supply amount of the inactivating substance is increasing. Is locked. Further, in this example, the control device 100 acquires the timing when the room 98 is next started to be used by accessing the schedule management server or the like, and reduces the supply amount of the inactivated substance according to the schedule.
  • the remaining inactivating substance in consideration of the influence of the remaining inactivating substance on the person 99, for example, the remaining inactivating substance to a level that does not cause actual harm to the person 99 or a level that does not give a discomfort such as an odor to the person 99.
  • the ventilation volume of the ventilation device 110 is increased before the start of use of the next room 98 so as to remove the above.
  • this ventilation simultaneously reduces the CO 2 concentration in the indoor 98 to a predetermined level (for example, equivalent to the outdoor 97).
  • a larger numerical value may be selected from the ventilation volumes required for each of them so that all of these objectives can be achieved.
  • t 2 is a timing for reducing the supply amount of the inactivating substance and increasing the ventilation volume by back-calculating from t 3 which is the timing for starting the use of the next room 98. decide.
  • equation (20) and the following equation (21) are used.
  • C g (t 2 ) indicates the CO 2 concentration [ppm] in the indoor 98 at the elapsed time t 2
  • C go indicates the CO 2 concentration [ppm] in the outdoor 97
  • C g (t 1 ) indicate the CO 2 concentration [ppm] in the room 98 at the elapsed time t 1
  • Q 1 is the ventilation volume [m 3 / h] during the period from the elapsed time t 1 to t 2 . Is shown.
  • C g (t 3 ) indicates the CO 2 concentration [ppm] in the room 98 at the elapsed time t 3
  • Q 2 is the period from the elapsed time t 2 to t 3 . It shows the ventilation volume [m 3 / h].
  • the ventilation device 110 At the timing of actively spraying the inactivated substance (here, the elapsed time from t 1 to t 2 ), the ventilation device 110 The operation may be stopped, or a larger amount of the inactivating substance may be sprayed.
  • the former will be described as being performed.
  • the ventilation volume selected so as to maximize the elapsed time may be adopted as Q 1 with reference to the graph shown in FIG.
  • the period of spraying the inactivating substance can be set longer, so that the effect of inactivating removal can be fully enjoyed.
  • the timings of t 1 and t 3 may be input by the person 99. That is, t 1 may be determined by operating the "use end button” or the like displayed on the operation panel. Similarly, t 3 may be determined by operating the "use start button” or the like. At this time, for example, the operation panel may be installed in the outdoor 97 as well , and t3 may be configured to be configurable without entering the indoor 98 filled with the inactivating substance. Further, as described above, a system for managing the schedule of the use of the indoor 98 by reservation may be linked. Hereinafter, the system for managing this schedule and the like will be described in detail.
  • FIG. 11 is a block diagram showing a functional configuration of a control device incorporating the reservation management device according to the embodiment.
  • the control device 100a is shown in the control system 500, but as described above, the control device 100a is connected to the ventilation device 110 and the supply device 120 and is used for controlling these devices. ..
  • control device 100a in this example, the configurations of the control unit 101, the first acquisition unit 102, and the second acquisition unit 103 are the same as those of the control device 100 described above, and thus the description thereof will be omitted. Since the control device 100a is different from the control device 100 described above in that the reservation management device 130 is built in, this point will be mainly described.
  • the reservation management device 130 is a device that manages the usage schedule of the room 98 by a reservation made by a person 99 (hereinafter, also referred to as a user who uses the room 98), and a predetermined program is provided by using a processor, a memory, or the like. It is realized by being executed.
  • the reservation management device 130 includes a management unit 131, a third acquisition unit 132, and a proposal unit 133.
  • the proposal unit 133 has an infection probability estimation unit 104a corresponding to the infection probability estimation unit 104 in the control device 100 described above. That is, the function of the infection probability estimation unit 104 in the control device 100 is realized by the infection probability estimation unit 104a of the proposal unit 133 in this example. That is, the infection probability estimation unit 104a is shared between the control device 100a and the reservation management device 130.
  • the common configuration of the infection probability estimation unit 104a is not essential, and the infection probability estimation unit for the control device 100a and the infection probability estimation unit 104a for the reservation management device 130 may be provided separately.
  • the reservation management device 130 can be realized as an individual device without being built in the control device 100a. For example, as the reservation management device 130, an information terminal such as a smartphone owned by the user may be used.
  • the management unit 131 is a database for integrated management of reservation information for the user to use the room 98.
  • the management unit 131 is realized by a storage unit and a controller (not shown), and as an example, the usage time is set in chronological order based on the usage start time and the usage end time shown in the reservation information input by the user. Manage so that overlapping periods do not occur.
  • the acquisition of the reservation information may be realized, for example, by the user operating the operation panel of the control device 100a, or the reservation information input via the information terminal such as a smartphone is acquired through the network. May be good.
  • the management unit 131 presents the management reservation information in response to the request from the user. By inputting a new reservation in the vacant time frame while referring to the presented reservation information, the user can smoothly use the room 98 to multiple users or multiple user groups without duplication. Be shared.
  • the indoor use reservation management system further includes a third acquisition unit 132 and a proposal unit 133, so that when the user inputs a reservation, the infectious object due to the use of the indoor use 98 in the reservation is provided. It is possible to calculate the infection probability of the disease based on the estimation and propose a usage method in which the infection probability is lower.
  • the third acquisition unit 132 is a functional unit that acquires user information about the user included in the reservation information.
  • the third acquisition unit 132 may directly acquire the reservation information and extract the user information in the same manner as the management unit 131, or only the extracted user information among the reservation information acquired by the management unit 131. May be obtained. In this way, the third acquisition unit 132 is realized as a communication module for acquiring user information.
  • the user information includes the number of people using the room 98, the usage time of the room 98, the usage pattern of the room 98, and the like.
  • the proposal unit 133 is a processing unit that calculates the infection probability based on the acquired user information and proposes a usage method in which the infection probability is low.
  • the proposal unit 133 is realized by executing a predetermined program using a processor and a memory.
  • the proposal unit 133 calculates the infection probability to the user of the infectious object estimated when the room 98 is used according to the contents of the user information by using the infection probability estimation unit 104a. By comparing this calculated infection probability with the reference infection probability, it is determined whether or not a proposal is necessary.
  • the reference infection probability is the upper limit of the infection probability, which is recommended not to be higher than that.
  • the infection probability that is the upper limit is also referred to as the infection probability upper limit.
  • the proposal unit 133 proposes a usage method in which the infection probability is lower than the infection probability upper limit when the infection probability calculated by estimation exceeds the infection probability upper limit.
  • the indoor use reservation management system in the present embodiment can even propose a usage method based on the user information, and can share and use the indoor 98 in a state where the infection probability is appropriately managed. ..
  • the indoor use reservation management system is an example of the proposal system.
  • FIG. 12 is a flowchart showing an operation relating to a proposal of a method of using the indoor use reservation management system according to the embodiment.
  • the proposal unit 133 acquires various information necessary for calculating the infection probability.
  • the proposal unit 133 acquires the room information (step S301).
  • the room information is information about the situation in the room 98, including parameters that contribute to the calculation of the infection probability.
  • the indoor information includes the design volume of the indoor 98, the ventilation volume by the ventilation device 110 installed in the indoor 98, and the supply amount of the inactivated substance by the supply device 120 installed in the indoor 98. Includes parameters.
  • the indoor information may include information on the installation status of the ventilation device 110 and the supply device 120 in the room 98. That is, the room 98 includes a case where at least one of the ventilation device 110 and the supply device 120 is not installed.
  • the effective ventilation volume may be calculated using the change in the CO 2 concentration detected by the CO 2 sensor 141 or the like during the period when the room 98 is vacant. The effective ventilation volume is calculated using the following equation (23).
  • Q e indicates an effective ventilation volume [m 3 / h]
  • T indicates an elapsed time [h] from the time when the room becomes vacant
  • C gs is empty.
  • the CO 2 concentration [ppm] at the time of becoming a chamber is shown, and Cge shows the CO 2 concentration [ppm] at a time point after the elapsed time T from the time of becoming a vacant room. Since the effective ventilation volume here corresponds to Q in the above equation (9), the following equation (24) holds.
  • the proposal unit 133 acquires the infectious object information which is the information about the infectious object which is the estimation target of the infection probability (step S302).
  • the infectious object information obtains parameters specific to the infectious object from, for example, a database, etc., so that information for identifying the infectious object, an infection probability obtained by referring to the database by identification. It includes the upper limit, the number of proliferations per unit time, the number of users infected with the infectious object (the number of infected persons), and the like.
  • the proposal unit 133 calculates the total removal capacity of the ventilation device 110 and the supply device 120 by using the above formula (8) based on various information obtained in steps S301 and S302 (step S303). ..
  • the acquired and calculated numerical values can be used repeatedly as long as the room 98 and the infectious object are not changed, and therefore may be stored in a storage unit or the like.
  • the operation can be started from the subsequent step S304 by referring to this storage unit.
  • the proposal unit 133 subsequently acquires user information (step S304).
  • the proposal unit 133 calculates the infection probability associated with the use of the room 98 based on the acquired user information and various information obtained in steps S301 and S302 (step S305).
  • ft indicates the difference in CO 2 concentration between indoors and outdoors with respect to the ratio of the amount of CO 2 to the exhaled breath of the user
  • C gt is the CO 2 concentration in the room 98 at the elapsed time T. Is shown.
  • the proposal unit 133 compares the calculated infection probability with the infection probability upper limit set for each type of infectious object, and determines whether or not the infection probability exceeds the infection probability upper limit (step). S306). When it is determined that the infection probability does not exceed the infection probability upper limit (No in step S306), the proposal unit 133 ends the process. On the other hand, when it is determined that the infection probability exceeds the infection probability upper limit (Yes in step S306), the proposal unit 133 indicates that the room 98 cannot be used in the reservation usage mode. Is presented (step S307).
  • This may be, for example, a push notification to the information terminal used by the user to make a reservation, or may be displayed on the display surface of the control terminal or the like. Further, the presentation here may be displayed as an image in which characters, figures, symbols and the like are combined, or a voice meaning "unusable” may be reproduced from a speaker or the like.
  • the proposal unit 133 proposes a method of using the indoor 98 that reduces the infection probability so as to be below the upper limit of the infection probability (step S308).
  • the proposal unit 133 suppresses an increase in the infection probability in the use by shortening the use time of the room 98.
  • the proposed utilization time is determined based on the following formula (26).
  • tp indicates the proposed utilization time
  • Pt indicates the infection probability when the proposed utilization time is adopted.
  • the proposed usage time is determined based on the following formula (27).
  • the proposal unit 133 suppresses an increase in the infection probability in the use by changing the usage mode of the room 98. For example, it is known that the amount of CO 2 emitted by a user increases about five times depending on whether the activity performed by the user in the room 98 is about general office work or normal sports. ing. This is due to an increase in the amount of breathing by the user, and the increase in the amount of breathing is a factor that increases the probability of infection. Therefore, the proposal unit 133 proposes a usage method so as to change to a usage mode in which the respiratory volume can be reduced more than the usage mode planned by the user.
  • the proposal unit 133 suppresses an increase in the infection probability in the use by increasing the operating amount of the supply device 120 in the room 98 (that is, increasing the spraying amount of the inactivating substance). For example, when the infection probability is calculated based on the above formula (16), the supply amount of the proposed inactivating substance is determined based on the following formula (28).
  • Qp indicates the ventilation volume when the proposed supply amount of the inactivating substance is adopted.
  • An approximate value of Qp is calculated by expanding the above formula (28) by McLaughlin, and the proposed inactivating substance supply amount is adopted according to the following formula (29) based on the approximate value. Calculate the residual rate of infectious objects.
  • ⁇ p indicates the residual rate of the infectious substance per unit time when the proposed supply amount of the inactivating substance is adopted.
  • the supply amount of the proposed inactivating substance is determined based on the following formula (30).
  • the residual rate of the infectious substance per unit time is calculated by the above formula (29) when the supplied amount of the proposed inactivating substance is adopted.
  • the proposal of the supply amount of the inactivated substance includes proposing a change from the state where the supply amount is 0 to the supply amount larger than 0. That is, it includes a proposal to change the supply device 120 from the operation off state to the on state, or a proposal to newly install the supply device 120 from the state where the supply device 120 does not exist in the room 98. May be good.
  • the proposal unit 133 suppresses an increase in the infection probability in the use by increasing the operating amount of the ventilation device 110 in the room 98 (that is, increasing the ventilation amount). For example, if the infection probability is calculated based on the above formula (16), the proposed ventilation volume is determined based on the above formula (28). That is, by expanding the above equation (28) by McLaughlin, an approximate value of Qp calculated is proposed.
  • the proposed ventilation volume is determined based on the above formula (30). That is, the value of Qp calculated by the above equation (30) is proposed.
  • the proposal unit 133 increases the ventilation volume by lowering the CO 2 concentration as a target value during ventilation by the ventilation device 110 (that is, by reducing the difference in CO 2 concentration between the inside and outside), and the use thereof. Suppresses the increase in infection probability in. For example, when the infection probability is calculated based on the above formula (16), the proposed CO 2 concentration difference is determined based on the following formula (31).
  • C gp indicates the CO 2 concentration on the indoor 98 side in the proposed CO 2 concentration difference.
  • the indoor 98 instead of the indoor 98 that the user is supposed to use, it may be proposed to use another indoor 98 with appropriate conditions in which the infection probability is lower than the upper limit of the infection probability.
  • only one of the proposals of the plurality of usage methods described above may be proposed, or may be proposed in a plurality of combinations.
  • the above proposal is made at the time of inputting the reservation for using the room 98, the proposal may be made in real time based on the actually measured value at the time of actual use.
  • the control system 500 is a ventilation device 110 that exchanges the gas in the room 98 including the infectious object with the gas in the outdoor 97 and discharges and removes the infectious object.
  • a supply device 120 that supplies an inactivating substance that inactivates an infectious object to the room 98 to inactivate and remove the infectious object, and a control device 100 that controls the ventilation device 110 and the supply device 120.
  • the control device 100 includes, when the removal capacity by one of the ventilation device 110 and the supply device 120 is increased, the first operation of decreasing the removal capacity by the other, and the removal by one of the ventilation device 110 and the supply device 120.
  • the mode is switched between a first mode in which at least one of the second operations of increasing the removal efficiency by the other is performed and a second mode different from the first mode.
  • Such a control system 500 can compensate for the decrease in the removal capacity of one of the removal capacity of the ventilation device 110 and the removal performance of the supply device 120 by increasing the removal capacity of the other. can.
  • the control device 100 sets the volume of the room 98 to V, the ventilation volume which is the exchange amount of gas per unit time by the ventilation device 110 to Q, and the inactivation removal by the inactivating substance.
  • the residual rate of the infectious object remaining per unit time is ⁇
  • the value of the total removal ability of the infectious object defined by the above formula (8) is equal to or more than the removal threshold.
  • the ventilation device 110 and the supply device 120 may be controlled.
  • the total removal capacity of the ventilation device 110 and the supply device 120 is maintained above the removal threshold value. That is, since it does not fall below the set removal threshold value, the removal capacity can be defined more strictly. Therefore, it is possible to more effectively suppress the infection of the infectious object to human 99.
  • control device 100 increases the removal capacity of one of the ventilation device 110 and the supply device 120 in the second mode, the removal capacity of the ventilation device 110 and the supply device 120 is maintained constant.
  • the third operation may be performed.
  • the removal ability of one when the removal ability of one is increased, the ability of the other is not decreased, so that the total removal ability can be increased. That is, since the removal effect can be further enhanced, the infection of the infectious object to the human 99 can be suppressed more effectively.
  • the control device 100 acquires the CO 2 concentration of the room 98 from the CO 2 sensor 141 that detects the CO 2 concentration of the room 98, and controls the ventilation device 110 to obtain the acquired room.
  • the gas may be exchanged so that the CO 2 concentration of 98 is equal to or less than the CO 2 threshold.
  • the supply device 120 can exert the removing ability without excess or deficiency. Further, by this operation, the CO 2 concentration in the room 98 is appropriately maintained, so that the room 98 is maintained in a space more suitable for use. Therefore, it is possible to more effectively suppress the infection of the infectious object to human 99.
  • the CO 2 threshold is determined by the exposure time of a person 99 existing in the room 98 to an infectious object and the upper limit of the infection probability which is the upper limit of the infection probability of the infectious object to the person 99. It may be a target CO 2 concentration of 98.
  • the infection probability can be monitored in real time, so that another measure can be taken when the infection probability temporarily increases. Therefore, it is possible to more effectively suppress the infection of the infectious object to human 99.
  • the control device 100 determines the exposure time of the person 99 present in the room 98 to the infectious object and the upper limit of the infection probability which is the upper limit of the infection probability of the infectious object to the person 99.
  • a fixed ventilation threshold may be calculated, and the ventilation device 110 may be controlled to exchange the gas so as to be equal to or higher than the ventilation threshold.
  • the ventilation device 110 is controlled with a sufficient ventilation volume based on the exposure time to the infectious object and the infection probability. Therefore, it is possible to more appropriately and more effectively suppress the infection of the infectious object to human 99.
  • the control device 100 acquires the presence / absence information regarding the presence / absence of the person 99 in the room 98 from the presence / absence sensor 142 that detects the presence / absence of the person 99 in the room 98, and based on the acquired presence / absence information, the person 99 in the room 98.
  • the first mode is started in the second operation, and the first mode is continued in the first operation after a predetermined time has elapsed. May be good.
  • the first mode in which the first operation and the second operation are appropriately combined according to the presence or absence of the person 99.
  • the inactivating substance is sprayed from the supply device 120 in the first operation.
  • the safety is ensured because the human 99 is absent.
  • the first mode is terminated after the residual inactivating substance is ventilated and discharged by the subsequent operation of the ventilation device 110, the inactivating substance is transmitted to the person the next time the person 99 enters the room 98. The impact is sufficiently suppressed. Therefore, it is possible to more effectively suppress the infection of the infectious object to human 99.
  • control method is a ventilation device that exchanges indoor gas including an infectious object with an outdoor gas to discharge and remove the infectious object, and an infectious object in the room. It is a control method that controls a supply device that supplies inactivating substances and inactivates and removes infectious objects, and when the removal capacity by the ventilation device is increased, the removal capacity by the supply device.
  • the first step of performing at least one of the first operation of reducing the amount of gas and the second operation of increasing the removal efficiency of the supply device when the removal efficiency of the ventilation device is reduced, and the first mode different from the first mode. Includes 2 steps.
  • the content of the above embodiment is a control device connected to the ventilation device 110 and the supply device 120, and when the removal capacity of one of the ventilation device and the supply device is increased, the removal capacity of the other is decreased.
  • a first mode in which at least one of the first operation of causing the ventilation device and the removal efficiency of the ventilation device and the supply device is reduced and at least one of the second operations of increasing the removal efficiency of the ventilation device and the supply device are performed, and the first mode.
  • control device alone can achieve the same effect as the above control system.
  • control system and the like according to the present disclosure have been described above based on the above-described embodiment, but the present disclosure is not limited to the above-described embodiment.
  • another processing unit may execute the processing executed by the specific processing unit. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel. Further, the distribution of the components of the control system to a plurality of devices is an example. For example, the components of one device may be included in another device.
  • the processing described in the above embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. good.
  • the number of processors that execute the above program may be singular or plural. That is, centralized processing may be performed, or distributed processing may be performed.
  • control unit may be configured by dedicated hardware, or may be realized by executing a software program suitable for each component. May be good.
  • Each component may be realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD or a semiconductor memory.
  • program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD or a semiconductor memory.
  • a component such as a control unit may be composed of one or a plurality of electronic circuits.
  • the one or more electronic circuits may be general-purpose circuits or dedicated circuits, respectively.
  • One or more electronic circuits may include, for example, a semiconductor device, an IC, an LSI, or the like.
  • the IC or LSI may be integrated on one chip or may be integrated on a plurality of chips. Here, it is called IC or LSI, but the name changes depending on the degree of integration, and it may be called system LSI, VLSI (Very Large Scale Integration), or ULSI (Ultra Large Scale Integration).
  • FPGAs programmed after the LSI are manufactured can be used for the same purpose.
  • the general or specific aspects of the present disclosure may be realized by a system, an apparatus, a method, an integrated circuit or a computer program.
  • a computer-readable non-temporary recording medium such as an optical disk, HDD or semiconductor memory in which the computer program is stored.
  • it may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program and a recording medium.
  • Control device 110 Ventilation device 120 Supply device 141 CO 2 sensor 142 Presence / absence sensor 500 Control system

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Ventilation (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

制御システムは、感染性対象物を含む室内(98)の気体と室外の気体との交換を行い、感染性対象物を排出除去する換気装置(110)と、室内(98)に感染性対象物を不活化する不活化物質の供給を行い、感染性対象物を不活化除去する供給装置(120)と、換気装置(110)及び供給装置(120)を制御する制御装置(100)と、を備え、制御装置(100)は、換気装置(110)及び供給装置(120)の一方による除去能力を増加させた際に、他方による除去能力を減少させる第1動作、ならびに、換気装置(110)及び供給装置(120)の一方による除去効率を減少させた際に、他方による除去効率を増加させる第2動作の少なくとも一方を行う第1のモードと、第1のモードとは異なる第2のモードと、を切り替える。

Description

制御システム、制御方法、及び、プログラム
 本開示は、感染性対象物の感染を抑制するための各種装置を制御する制御システムに関する。
 昨今、病原性ウイルス等の感染性物質(又は、感染性対象物ともいう)の人への感染を抑制するために様々な技術が開発されている。例えば、特許文献1には、病院など所定の施設に所属する対象者の手指消毒の実施をモニタリングするためのシステムが開示されている。
特開2019-096145号公報
S. N. Rudnick et al. Indoor Air; 13: 237-245(2003) Hui Dai et al. medRxiv; 2020.04.21.20072397(2020) E. C. Riley et al. American Journal of Epidemiology; 107, Issue 5: 421-432(1978)
 ところで、感染性対象物の人への感染を抑制するためには、上記特許文献1に開示された消毒等による、感染性対象物の不活化による不活化除去の他、感染性対象物を室外へと排出する排出除去も効果的であることが知られている。
 本開示は、上記に鑑みて、より効果的に感染性対象物の人への感染を抑制できる制御システム等を提供することを目的とする。
 本開示の一態様に係る制御システムは、感染性対象物を含む室内の気体と室外の気体との交換を行い、前記感染性対象物を排出除去する換気装置と、前記室内に前記感染性対象物を不活化する不活化物質の供給を行い、前記感染性対象物を不活化除去する供給装置と、前記換気装置及び前記供給装置を制御する制御装置と、を備え、前記制御装置は、前記換気装置及び前記供給装置の一方による除去能力を増加させた際に、他方による除去能力を減少させる第1動作、ならびに、前記換気装置及び前記供給装置の一方による除去効率を減少させた際に、他方による除去効率を増加させる第2動作の少なくとも一方を行う第1のモードと、前記第1のモードとは異なる第2のモードと、を切り替える。
 また、本開示の一態様に係る制御方法は、感染性対象物を含む室内の気体と室外の気体との交換を行い、前記感染性対象物を排出除去する換気装置と、前記室内に前記感染性対象物を不活化する不活化物質の供給を行い、前記感染性対象物を不活化除去する供給装置と、を制御する制御方法であって、前記換気装置による除去能力を増加させた際に、前記供給装置による除去能力を減少させる第1動作、及び、前記換気装置による除去効率を減少させた際に、前記供給装置による除去効率を増加させる第2動作の少なくとも一方を行う第1ステップと、前記第1のモードとは異なる第2ステップと、を含む。
 また、本開示の一態様は、上記制御方法をコンピュータに実行させるプログラムとして実現することができる。あるいは、当該プログラムを格納したコンピュータ読み取り可能な非一時的な記録媒体として実現することもできる。
 本開示によれば、より効果的に感染性対象物の人への感染を抑制できる。
図1は、実施の形態に係る制御システムの使用例を示す概観図である。 図2は、実施の形態に係る制御システムの機能構成を示すブロック図である。 図3Aは、実施の形態に係る制御システムの第1動作を含む動作例を示すフローチャートである。 図3Bは、実施の形態に係る制御システムの第2動作を含む動作例を示すフローチャートである。 図4は、実施の形態に係る具体的な動作を説明する第1図である。 図5は、実施の形態に係る具体的な動作を説明する第2図である。 図6は、主要なウイルスにおける増殖量を示す図である。 図7は、経過時間に対する感染確率の遷移を示す第1グラフである。 図8は、経過時間に対する感染確率の遷移を示す第2グラフである。 図9は、実施の形態に係る具体的な動作を説明する第3図である。 図10は、経過時間と換気量との関係を示すグラフである。 図11は、実施の形態に係る予約管理装置を内蔵する制御装置の機能構成を示すブロック図である。 図12は、実施の形態に係る室内利用予約管理システムの利用方法の提案に関する動作を示すフローチャートである。
 以下では、本開示の実施の形態に係る制御システム等について、図面を参照して詳細に説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する趣旨ではない。よって、以下の実施の形態に係る構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。
 (実施の形態)
 [概要]
 まず、実施の形態に係る制御システムの概要について、図1を参照して説明する。図1は、実施の形態に係る制御システムの使用例を示す概観図である。図1では、制御システム500に係る各装置が設置された室内98が示されている。なお、ここでの室内98とは、複数の壁部、床部、及び、天井部と、室内98の内外を開閉可能に仕切る建具等によって準密閉に構成された空間を意味する。したがって、室内98とは、図1に示すように1つの部屋の内空間であってもよいし、例えば、複数の部屋から成る1棟の建築物全体の内空間であってもよい。
 図1に示すように、制御システム500は、換気装置110と、供給装置120と、制御装置100とを備える。
 換気装置110は、室内98の気体と室外97(後述する図2参照)の気体との交換を行う装置である。すなわち、換気装置110は、換気を行う装置である。本実施の形態において、換気装置110は、室内98の天井部に設置され、室内98の気体を吸引する装置である。室内98の気体には、感染性対象物が含まれる場合がある。
 ここで、感染性対象物は、例えば、細菌、ウイルス、核酸及びタンパク質等の粒子などに分類される多くの種類がある。このうち、一部の種類では、人から人へと感染するため、感染の抑制が求められている。特に、図1に示すように、複数の人99が同じ室内98で話をするなどの状況においては、一方の人99が感染している感染性対象物が、空間を介して他方の人99に飛散するなどして感染する可能性が高まる。特に、感染性対象物に感染している人99が無自覚等により十分な対策を行わない場合、爆発的な感染の拡大が生じる可能性がある。
 このような感染性対象物は、比較的軽い物質であることが多く、室内98の空間中を浮遊する等して長期的に室内98に滞留することが知られている。例えば、換気装置110によって感染性対象物を含む室内98の気体を室外97の気体と交換することにより、感染性対象物を室外97に排出して人99への感染を抑制することができる。以下、このように室外97等の系外への排出によって感染性対象物を室内98から除去することを排出除去という。
 換気装置110は、送風器等により室内98の気体を室外97へと送風し、同時に室外97の気体を室内98へと導入することで気体の交換を行う。ここでは、室内98の気体を室外97へと送風のみを行うことで、負圧になった室内98が自然に室外97の気体を吸引することで気体の交換を行う、いわゆる第3種換気方式の例が示されている。本開示の内容は、第1種換気方式及び第2種換気方式含め、換気の方式、ならびに、換気に係る装置の構成に特に限定はない。したがって、室内98と室外97との気体の交換が行われる構成であれば、どのような換気装置が用いられてもよい。
 供給装置120は、室内98の床部に置かれ、室内98に感染性対象物を不活化する不活化物質の供給を行う装置である。不活化物質とは、例えば、細菌の細胞膜構造の崩壊、及び、高分子構造の変性をさせるなどによって不活化作用を示すエタノール等のアルコール類、塩化ベンザルコニウム等の逆性石鹸、及び、次亜塩素酸等の物質である。
 供給装置120は、例えば、食塩水を電気分解するなどによって得られた次亜塩素水を送風器及び吸水フィルタなどにより揮発させて、上記の不活化物質として室内98の空間中に散布する。散布された次亜塩素酸は、空間中に存在する感染性対象物に接触し、細胞膜、外殻タンパク質等の構造を崩壊させ、核酸及び酵素タンパク質等を変性させることにより、感染性対象物の機能を失わせる(不活化する)。このように、活性状態の感染性対象物を不活化させることにより、活性状態の感染性対象物を室内98から除去することを不活化除去という。
 なお、供給装置120は、上記構成に限らない。例えば、供給装置120は、室内98の気体を本体内に吸引し、強制的に不活化物質に接触させた後に吸引した気体を放出する構成であっても同様の効果を奏することができる。この場合、「不活化物質を室内98に供給する」とは、室内98の少なくとも気体に対して不活化物質を接触させる構成を意味する。すなわち、供給装置120による不活化物質の供給は、室内98の少なくとも気体に対して不活化物質を接触させることを含む概念である。
 本実施の形態においては、供給装置120は、不活化物質を散布することにより室内98の気体に不活化物質を接触させるとともに、室内98の壁部、床部、及び、家具又は家電などの物体に付着した感染性対象物にも不活化物質を接触させる構成である。このため、室内98の気体のみに対して不活化物質を接触させる上記別例の構成に対して、より高い感染性対象物の感染を抑制する効果が得られる。
 制御装置100は、換気装置110と供給装置120とを制御することにより、これらの動作の態様を切り替え、適切に排出除去と不活化除去とを実施させる装置である。制御装置100は、例えば、換気装置110及び供給装置120と無線通信することにより、これらの装置の制御を行う。制御装置100は、一例として、壁部に設置され、操作パネルを有する装置である。制御装置100は、プロセッサ及び記憶装置が内蔵されている。制御装置100は、記憶装置に格納されたプログラムをプロセッサによって実行することにより、所定の制御アルゴリズムで換気装置110及び供給装置120を制御する。所定の制御アルゴリズムの詳細については後述する。
 なお、制御装置100の操作パネルには、例えば室内98の中に居る人99の入力を受け付ける装置である。この入力は、例えば、換気装置110及び供給装置120を制御するためのアルゴリズムに対して、一部の変更可能なパラメータを入力するため等に使用される。
 以上では、制御装置100が室内98に設置される例を説明したが、制御装置100は、上記説明のように単独の装置でなくてもよい。例えば、制御装置100は、換気装置110及び供給装置120のいずれか一方に内蔵されてもよいし、クラウドサーバ又はエッジサーバ等によって、室内98とは離れた場所に構築されてもよい。この場合、換気装置110及び供給装置120と、制御装置100とは、インターネット等の広域通信網又は建築物内の局所通信網等を介して通信可能に接続されればよい。
 次に、制御装置100を中心として、各部のより詳細な構成について図2を参照して説明する。図2は、実施の形態に係る制御システムの機能構成を示すブロック図である。図2に示すように、本実施の形態に係る制御装置100は、制御部101と、第1取得部102と、第2取得部103と、感染確率推定部104とを備える。制御部101は、換気装置110及び供給装置120の制御を行う機能部である。制御部101は、プロセッサ及び記憶装置を用いて所定の処理を行うためのプログラムが実行されることで実現される。
 制御部101は、所定の制御アルゴリズムに従って換気装置110による感染性対象物の除去能力を決定する。ここでの除去能力は、排出除去による感染性対象物の除去量を意味する。排出除去による感染性対象物の除去では、気体中に浮遊する感染性対象物が対象となり、除去量は、気体中への感染性対象物の分散性及び気体の排出量(つまり換気量)に依存する。例えば、感染性対象物が瞬間的に気体中に均一に分散すると仮定すれば、除去量は、単に換気量に正比例する量である。本開示においては、計算の簡略化のため、上記の仮定に従うものとするが、例えば、感染性対象物の分散速度及び換気装置110の設置位置等を考慮した計算がさらに行われてもよい。なお、換気量とは、単位時間あたりの室内98と室外97との間での気体の交換量を意味する。
 このようにして、制御装置100は、換気装置110による換気量を指定する制御信号を生成して、換気装置110へと送信する。換気装置110は、制御信号を受信して、当該制御信号に従って動作する。
 また、制御部101は、所定の制御アルゴリズムに従って供給装置120による感染性対象物の除去能力を決定する。ここでの除去能力は、不活化除去による感染性対象物の除去量を意味する。不活化除去による感染性対象物の除去では、気体中に浮遊する感染性対象物及び物体に付着する感染性対象物が対象となり、除去量は、気体中への不活化物質の分散性、及び、不活化物質の供給量の他、空間中での感染性対象物と不活化物質との接触率、接触後の不活化までの各反応の反応速度等の反応に係る様々な条件に依存する。例えば、不活化物質が瞬間的に気体中に均一に分散し、かつ、反応に係る様々な条件が常に一定と仮定すれば、除去量は、単に不活化物質の供給量(散布量)に正比例する量である。本開示においては、計算の簡略化のため、上記の仮定に従うものとするが、例えば、不活化物質の分散速度及び供給装置120の設置位置、反応に係る様々な条件等を考慮した計算がさらに行われてもよい。
 このようにして、制御装置100は、供給装置120による不活化物質の供給量を指定する制御信号を生成して、供給装置120へと送信する。供給装置120は、制御信号を受信して、当該制御信号に従って動作する。
 第1取得部102は、室内98の空間中CO濃度を検知するための検知器であるCOセンサ141から、室内98の空間中CO濃度を取得するための通信モジュールである。第1取得部102は、COセンサ141と通信可能に接続される。取得された、室内98の空間中CO濃度は、後述する所定の制御アルゴリズムの一動作において使用されるため、所定の制御アルゴリズムについての説明とともに後述する。
 第2取得部103は、室内98における人の存否を検知するための検知器である存否センサ142から、室内98における人の存否に関する存否情報を取得するための通信モジュールである。第2取得部103は、存否センサ142と通信可能に接続される。取得された、室内98における人の存否に関する存否情報は、後述する所定の制御アルゴリズムの一動作において使用されるため、所定の制御アルゴリズムについての説明とともに後述する。
 感染確率推定部104は、人99への感染性対象物の感染確率を推定に基づいて算出するための機能部である。感染確率推定部104は、プロセッサ及びメモリを用いて所定の処理を行うためのプログラムが実行されることで実現される。感染確率推定部104は、例えば、操作パネル等に入力された、推定に資する各種パラメータを受け付け、当該パラメータを用いた計算によって、室内98における人99の感染性対象物への感染確率を算出する。算出された感染確率は、後述する所定の制御アルゴリズムの一動作において使用されるため、所定の制御アルゴリズムについての説明とともに説明する。
 [制御アルゴリズム]
 以下、本実施の形態に係る、制御装置100が換気装置110及び供給装置120を制御するための所定の制御アルゴリズムについて説明する。本実施の形態では、感染性対象物を除去する能力(除去能力ともいう)を一定に維持しつつ、一定の除去能力を実現するための換気装置110及び供給装置120のそれぞれの動作量のバランスを必要に応じて変化させる。このようにして、より効果的に感染性対象物の人への感染の抑制を実施する。上記に説明した制御アルゴリズムは、換気装置110及び供給装置120のそれぞれの動作量を決定するために使用される。
 まず、換気装置110による除去能力について考える。換気における室内外での気体の交換によって、感染性対象物の濃度は、以下式(1)のように変化する。
Figure JPOXMLDOC01-appb-M000002
 なお、上記式(1)では、tが経過時間[h]を示し、C(t)が、時間tにおける室内98での感染性対象物の濃度[mg/m]を示し、Cが、室外97での感染性対象物の濃度[mg/m]を示し、Vが、室内98の容積[m]を示している。ただし、Cは、室内98からの感染性対象物の排出があったとしても無限に希釈され一定の値であると仮定する。上記式(1)を整理することにより、以下式(2)の微分方程式が得られる。
Figure JPOXMLDOC01-appb-M000003
 上記式(2)をt=0のときのC(t)をCとして解くと、以下式(3)のようになる。
Figure JPOXMLDOC01-appb-M000004
 ここで、換気装置110による除去能力とは、経過時間に対する感染性対象物の濃度の変化量と考えられる。ただし、この数値には室内外での感染性対象物の濃度の差が寄与するため、当該濃度の差によって正規化すれば、換気装置110による除去能力の裏返しである残存率X(t)は、以下式(4)のように表現される。
Figure JPOXMLDOC01-appb-M000005
 なお、上記式(4)では、Qが、単位時間(ここでは1時間)あたりの気体の交換量、すなわち、換気量[m/h]を示している。したがって、上記式(4)のQ×t/Vは、容積Vの空間における換気回数を示している。
 一方で、供給装置120による除去能力は、経過時間内で散布された不活化物質によって不活化された一部の感染性対象物の蓄積量として考えることができる。これは裏を返せば、元の活性状態の感染性対象物の濃度に対する、単位時間ごとの一部の不活化によって残存する活性状態の感染性対象物の割合を経過時間分だけ累乗した値として定式化される。すなわち、供給装置120による除去能力の裏返しである残存率X(t)は、以下式(5)のように表現される。
Figure JPOXMLDOC01-appb-M000006
 なお、上記式(5)では、βが、単位時間あたりの感染性対象物の残存率を示している。ただし、βは、0より大きく1より小さい数値(0<β<1)となる。ここで、例えば、不活化物質を所定条件で散布すると、12時間経過後に、感染性対象物が99.99%除去されると仮定すると、X(12)=β12=0.0001となり、このときのβは、0.464となる。すなわち、上記一例に示す条件では、不活化物質によって単位時間あたりに53.6%の感染性対象物が不活化除去されることがわかる。
 ここで、残存率X(t)及び残存率X(t)は、それぞれ独立した効果によってなされる感染性対象物の除去による。したがって、換気装置110及び供給装置120を同時に動作させた場合、総合的な感染性対象物の除去能力は、感染性対象物の残存率X(t)として、以下式(6)のようになる。
Figure JPOXMLDOC01-appb-M000007
 つまり、上記式(4)及び式(5)を用いれば、以下式(7)となる。
Figure JPOXMLDOC01-appb-M000008
 上記式(7)は、定数を整理することにより、以下式(8)及び以下式(9)となる。
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
 なお、上記式(8)及び上記式(9)では、Qが、換気装置110及び供給装置120の両方による総合的な除去能力を換気のみで実現したと仮定した場合の換気量(言い換えると等価的な換気量)[m/h]を示しており、X(t)の自然対数を-(1/t)倍した値に対応している。
 一定の感染性対象物の除去効果を持続するためには、上記式(8)又は上記式(9)によって算出される数値が一定以上に維持されることが必要となる。言い換えると、上記式(8)によって算出される数値が一定以上に維持される範囲内であれば、換気装置110及び供給装置120の一方による除去能力を低下させても、一定の感染性対象物の除去効果を持続させることができる。つまり、制御装置100は、上記式(8)に従って、換気装置110及び供給装置120の一方による除去能力を増加させた際に、換気装置110及び供給装置120の他方による除去能力を減少させる第1動作、及び、換気装置110及び供給装置120の一方による除去効率を減少させた際に、換気装置110及び供給装置120の他方による除去効率を増加させる第2動作の少なくとも一方を行うように制御するモード(第1のモード)を実行することができる。
 また、制御装置100は、上記のモードと、それぞれの装置を一定の除去能力で動作するように単調制御するモード(第2のモードの一例)、又は、いずれか一方の装置を一定の除去能力で動作するように単調制御するモード(第2のモードの一例)とを組み合わせることもできる。いずれか一方の装置を一定の除去能力で動作するように制御する場合、一方の装置の除去能力が増加しても他方の装置の除去能力を一定に維持し、一方の装置の除去能力が低下した際にのみ、上記式(8)に従って、一定の除去能力を維持してもよい。つまり、第2のモードにおいても、上記式(8)に従う動作の制御を行ってもよい。
 [動作例]
 上記構成による制御システム500の動作について図3A及び図3Bを参照して説明する。図3Aは、実施の形態に係る制御システムの第1動作を含む動作例を示すフローチャートである。また、図3Bは、実施の形態に係る制御システムの第2動作を含む動作例を示すフローチャートである。図3A及び図3Bの動作例では、第1動作及び第2動作に係るステップにおける動作に差異があり、その他のステップでは同一の動作が行われる。したがって、以下の説明では、重複する動作のステップに同じ符号を付すことにより、説明を省略する。
 図3Aに示すように、本実施の形態に係る制御システム500では、はじめに第1のモードが実施される。第1のモードでは、上記したように、換気装置110及び供給装置120の一方の除去能力が減少した際に他方の除去能力を増加させる制御を行うモードである。制御システム500では、換気装置110及び供給装置120を制御する際に、例えば、他の制御因子によって一方の装置の除去能力を減少させる必要が生じる場合がある。すなわち、制御装置100は、当該一方の装置の動作を制御して除去能力を減少させるか否かを判定する(ステップS101)。制御装置100は、一方の装置の動作を制御して除去能力を減少させると判定した場合(ステップS101でYes)、他方の装置の除去能力を増加させることで、一方の装置で減少した除去能力を補填するように、各装置を制御する(ステップS102)。その後、制御装置100は、第1のモードを終了させるか否かを判定する(ステップS103)。また、制御装置100は、一方の装置の動作を制御して除去能力を減少させないと判定した場合(ステップS101でNo)、ステップS102をスキップしてステップS103の処理を実行する。
 第1のモードの終了条件は、制御システム500によって実現される制御アルゴリズムによって異なるが、例えば、所定の回数だけ制御能力を変更する処理を行うこと、所定の期間第1のモードが継続されたこと、及び、操作パネルへの、モード切り替えに関する入力が行われること等が挙げられる。
 制御装置100は、終了条件が達成されず、第1のモードを終了させないと判定した場合(ステップS103でNo)、ステップS101に戻り、第1のモードを継続して実行する。一方で、制御装置100は、終了条件が達成され、第1のモードを終了させると判定した場合(ステップS103でYes)、換気装置110及び供給装置120を制御して第2のモードに切り替える(ステップS104)。第2のモードでは、上記のように、それぞれの装置を一定の除去能力で動作するように単調制御する、又は、いずれか一方の装置を一定の除去能力で動作するように単調制御する等の制御を実施する。
 その後、制御装置100は、第2のモードを終了させるか否かを判定する(ステップS105)。第2のモードの終了条件は、制御システム500によって実現される制御アルゴリズムによって異なるが、例えば、所定の期間第2のモードが継続されたこと、及び、操作パネルへの、モード切り替えに関する入力が行われること等が挙げられる。
 制御装置100は、終了条件が達成されず、第2のモードを終了させないと判定した場合(ステップS105でNo)、ステップS105を繰り返し、終了条件が達成されるまで第2のモードを継続して実行する。一方で、制御装置100は、終了条件が達成され、第2のモードを終了させると判定した場合(ステップS105でYes)、換気装置110及び供給装置120を制御して第1のモードに切り替える(ステップS106)。その後、制御装置100は、ステップS101に戻り、再び第1のモードで上記の動作を繰り返す。
 また、図3Bに示すように、第2動作を含む動作例は、第1のモードにおける除去能力の増減が反転している点で、上記第1動作を含む動作例と異なっている。具体的には、上記図3AのステップS101に代えて、本動作例の制御装置100は、当該一方の装置の動作を制御して除去能力を増加させるか否かの判定を行う(ステップS201)。また、本動作例の制御装置100は、一方の装置の動作を制御して除去能力を増加させると判定した場合(ステップS201でYes)、他方の装置の除去能力を減少させることで、一方の装置で増加した除去能力に対応する量の除去能力をカット(省力化)するように、各装置を制御する(ステップS202)。
 このように、本実施の形態では、例えば、ステップS101~ステップS103を含む複数のステップから成る第1ステップを実施する第1のモードと、例えば、ステップS105を含む第2ステップを実施する第2のモードとが切り替わり実行される。これにより、各装置の適切な制御を実施するために、選択的に各モードが実行される。
 以下、さらに、制御アルゴリズムの具体的な内容を含め、より詳細な動作例について図4~図10を参照して説明する。図4は、実施の形態に係る具体的な動作を説明する第1図である。図4では、時系列に沿う装置ごとの除去能力が示されている。図4に示す例では、経過時間t及びtにおいて各装置の制御態様が切り替わっている。具体的には、経過時間tにおいて、換気装置110による除去能力を増加させている。これに伴い、第2動作に対応して供給装置120による除去能力が減少されている。例えば、経過時間tでは、制御装置100が、一日の中であらかじめ定められた時刻となったことをトリガとして、換気装置110の換気量を増加させている。これにより、一日の中で1回以上の換気が行われ、感染性対象物の除去が実施される。
 また、経過時間tから経過時間tまでの期間では上記の制御態様を継続し、経過時間tにおいて、供給装置120による除去能力を増加させている。これに伴い、第1動作に対応して換気装置110による除去能力が減少されている。例えば、制御装置100は、あらかじめ定められた期間(tからt)この換気装置110優位の感染性対象物の除去を継続した後、引き続き、供給装置120優位の感染性対象物の除去を実施する。この際、換気装置110の換気量を低下させる。これにより、換気による系外排出を抑制しながら、供給装置120による不活化物質の散布を行うことができる。すなわち、この例では、第1動作を含む第1のモードが連続して実施されている。なお、図4では、経過時間tから経過時間tまでの期間で、より高い不活化物質による除去能力が示されているが、例えば、経過時間t以前に人99が操作パネルを操作する等の手動操作で不活化物質による除去能力が増加されていたためである。したがって、経過時間t以前は、各装置が独立に制御された第2のモードが実施されている。
 このように第1のモードと第2のモードとの実施される順序は、上記図3A及び図3Bにおいて説明した例のみに限定されず、例えば、第2のモードが実行された後に第1のモードが実行されてもよい。
 本例では、経過時間tにおいて、換気装置110の制御変更に伴って供給装置120が、以下式(10)のように制御変更される。
Figure JPOXMLDOC01-appb-M000011
 なお、上記式(10)では、βが、経過時間tにおける変更後の、単位時間あたりの感染性対象物の残存率を示し、Qが、経過時間tにおける変更後の、換気量[m/h」を示している。
 また、本例では、経過時間tにおいて、供給装置120の制御変更に伴って換気装置110が、以下式(11)のように制御変更される。
Figure JPOXMLDOC01-appb-M000012
 なお、上記式(11)では、βが、経過時間tにおける変更後の、単位時間あたりの感染性対象物の残存率を示し、Qが、経過時間tにおける変更後の、換気量[m/h」を示している。
 図5は、実施の形態に係る具体的な動作を説明する第2図である。図5では、図4と同様の図に加え、時系列に沿ってCOセンサ141から取得されたCO濃度が示されている。本例では、換気装置110における換気量が、空間中のCO濃度に依存して変更され、これに伴い、供給装置120による不活化物質の散布が行われる例を説明する。
 図5に示すように、本例では、CO濃度が適切な数値に維持されるように換気装置110が制御される。適切なCO濃度とは、例えば、室内98を会議などに使用する場合、1000ppm程度を下回ることがよいとされる。そこで、この動作例では、COセンサ141によって検知されたCO濃度が、例えば、上記の1000ppmを基準とするCO閾値を下回るように制御を行う。このとき、本例では、同時に制御される供給装置120の動作量を上記式(8)及び上記式(9)を一定以上に維持するように動作する。
 例えば、CO濃度が、1000ppm等に設定された第1CO閾値を下回る期間(経過時間tまで)は、第2のモードで各装置が制御される。ここで、CO濃度が第1CO閾値を超える(経過時間t時点)と、制御装置100は、換気装置110による換気量を増加させる。経過時間tからあとの期間においては、換気により室内98のCO濃度が減少に転じる。CO濃度が第1CO閾値よりも十分に低い、600ppmなどのCO濃度に設定された第2CO閾値を下回ると、制御装置100は、換気装置110による換気量を減少させる。
 以上の動作に伴って、経過時間tからtまでの期間では任意に設定された換気装置110による除去能力が、経過時間tからtまでの期間では増加され、経過時間tよりあとの期間ではそれよりも減少される。経過時間tからtまでの期間では供給装置120による除去能力は、本例では一定に保たれているが、省エネルギー化の観点では除去能力が減少されてもよい。
 また、経過時間がtよりあとの期間では換気装置110による除去能力に応じて2パターンの制御が行われる。2パターンのうち1つでは、経過時間tよりあとの換気装置110による除去能力が、経過時間tからtまでの除去能力に対して減少した場合において、図中に示すように減少分の除去能力を補填するように供給装置120による除去能力を増加させる。また、2パターンのうちの他の1つでは、経過時間tよりあとの換気装置110による除去能力が、経過時間tからtまでの除去能力に対して同等又は増加した場合において、供給装置120による除去能力を維持(又は、減少でもよい)させる。
 つまり、ここでは以下式(12)及び以下式(13)に従って各装置が制御される。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 なお、換気装置110による除去能力の上限は、換気装置110の換気量の最大値によって決定される。すなわち、総合的な除去能力を実現するためには、換気装置110と供給装置120との各々の除去能力の最大値及び最小値を考慮する必要がある。換気装置110による除去能力の最大値は、供給装置120による除去能力の最小値に対応している。上記式(8)にあてはめると、-lnβの項が最小のときに、Q/Vの項が最大となる。ここでVは、一定の正の数値なので、Q/Vの項が最大のとき、Qが最大値となる。βは、その性質上0<β<1の範囲内の値をとる。したがって、-lnβは、βが最大値のときに最小値となる。すなわち、Qが最大値Qmaxとなるとき、βは、最大値βmaxをとる。よって、以下式(14)のようになる。
Figure JPOXMLDOC01-appb-M000015
 同様に、供給装置120による除去能力の上限は、供給装置120の不活化物質の供給量の最大値によって決定される。上記と同様に、換気装置110と供給装置120との各々の除去能力の最大値及び最小値を考慮すれば、供給装置120による除去能力の最大値は、換気装置110による除去能力の最小値に対応している。上記式(8)にあてはめると、-lnβの項が最大のときに、Q/Vの項が最小となる。上記と同様に、Q/Vの項が最小のとき、Qが最小値となる。0<β<1の範囲内において、-lnβは、βが最小値のときに最大値となる。すなわち、Qが最小値Qminとなるとき、βは、最小値βminをとる。よって、以下式(15)のようになる。
Figure JPOXMLDOC01-appb-M000016
 また、室内98のCO濃度等の数値から、感染性対象物の人99への感染確率を推定することもできる。この推定に基づいてCO閾値を設定すれば、当該推定感染確率を一定に抑制することが可能となる。具体的には、非特許文献1に開示された以下式(16)を本願内容に適用する。
Figure JPOXMLDOC01-appb-M000017
 なお、上記式(16)では、Pが、CO濃度から推定される感染性物質の感染確率を示し、Iが、感染性対象物に感染している感染者の人数を示し、qが、例えば、ウイルスの増殖量等の、単位時間あたりの感染性対象物の新たな発生量[/h」を示し、Cが、室内98のCO濃度[ppm]を示し、Cgoが、室外97のCO濃度[ppm]を示し、Cが、人99の呼気に占めるCO量の割合を示し、nが、室内98に存在する人99の人数を示している。また、上記式(16)では、tが示す経過時間は、感染性対象物が浮遊する室内98における人99の滞在時間とみなすことができ、すなわち、人99の感染性対象物への暴露時間ととらえることができる。
 上記式(16)をCについて整理すると、以下式(17)のようになる。
Figure JPOXMLDOC01-appb-M000018
 ここで、図6は、主要なウイルスにおける増殖量を示す図である。図6では、主要なウイルスの感染に関する感染症名と当該感染症に関与するウイルスの増殖量とが対応付けられて示されている。
 例えば、2019年末を皮切りに世界的に急速な拡大を見せた感染症である「COVID-19」に関与する「SARS-CoV-2」では、1時間あたりに14から48の増殖量を示すことが報告されている(非特許文献2参照)。図7は、経過時間に対する感染確率の遷移を示す第1グラフである。図7では、一例として、1人のSARS-CoV-2感染者を含む8人の人99が存在する室内97において、経過時間と感染確率との関係を算出した結果が示されている。例えば、上記の条件で、室内98を1時間利用し、感染確率を0.5%以下に抑制するには、825ppmのCO閾値を設定すればよい。
 次に、上記のCO閾値を介することなく直接的に、感染性対象物の感染確率を抑制するための制御について説明する。ここでは、非特許文献3に開示された以下式(18)を本願内容に適用する。
Figure JPOXMLDOC01-appb-M000019
 なお、上記式(18)では、pが、人99の呼吸量を示している。また、上記式(18)では、tが示す経過時間は、感染性対象物が浮遊する室内98における人99の滞在時間とみなすことができ、すなわち、人99の感染性対象物への暴露時間ととらえることができる。
 上記式(18)をQについて整理すると、以下式(19)のようになる。
Figure JPOXMLDOC01-appb-M000020
 ここで、図8は、経過時間に対する感染確率の遷移を示す第2グラフである。図8では、上記の図7と同様に、一例として、1人のSARS-CoV-2感染者である人99が存在する室内において、経過時間と感染確率との関係を算出した結果が示されている。なお、図8における経過時間と感染確率との関係の算出は、例えば、会議などの人99が安静に過ごす利用形態で室内98(この場合、会議室等)を利用している場合を想定して行われている。したがって、ここでのpは、人99の安静時における一般的な呼吸量として0.3[m/h」を採用している。
 例えば、上記の条件で、室内98を1時間利用し、感染確率を0.5%以下に抑制するには、600[m/h」未満の換気量では足りず、900[m/h」以上の換気量では十分であることがわかる。したがって、900[m/h」以上の換気量で換気装置110が制御されれば、1時間の利用で感染確率を0.5%以下に抑制することが可能となる。
 換気装置110は、あらかじめ推定された感染確率に応じて設定された閾値以上となるように換気量を変更し、以降では、例えば、一定に制御される。このとき、供給装置120は、換気装置110の動作量に合せて不活化物質の供給量を変更し、以降では、例えば、一定量の供給を維持するように制御される。
 先に説明したようにCO濃度を検知して、逐一換気装置110及び供給装置120の制御を変更する構成では、室内98の状態に応じて都度調整が行われるため、常に最適な感染性対象物の除去効果が得られる効果がある。一方で、逐一制御を変更するためには計算処理の数が増大するため、計算に要する設備、処理能力等の計算コストが肥大化してしまう。
 これに対して、ここで説明した制御システム500の動作においては、室内98の利用人数及び利用時間に関してあらかじめ情報を取得可能な場合に、感染確率が一度定まれば、それ以降に複雑な計算処理が必要とならない。すなわち、計算コストを削減することができるため、効率的に感染性対象物の感染の抑制を実施することができる。これらトレードオフの関係にある制御パターンは、制御システム500の管理者等が任意に切り替え可能であってもよいし、室内98の利用状態をモニタすることで自動的に切り替えられてもよい。
 例えば、人感センサなどによって検知された室内98の人数が、予定されたスケジュール上の利用人数と一致していれば後者の計算コストが削減された処理を行い、スケジュール上の利用人数と一致していなければ前者の最適な感染性対象物の除去を行ってもよい。また、室内98の利用形態があらかじめ想定される場合には、当該利用形態に応じた制御が行われるように設定してもよい。
 ここで、さらに、上記式(15)で説明したβminは、最大の除去能力によるものである。この最大の除菌能力は、室内98に人99が存在するか否かによって変化する。すなわち、人99が室内98に存在する状態では、人99に影響を与えうる量の不活化物質を散布することはできず、結果として、βminが大きくなってしまう。一方で、人99が室内98に存在しない状態では、供給装置120の能力の限界まで不活化物質を散布することが可能となり、より小さいβminを適用することができる。
 そこで、この動作例では、人99が室内98に存在するか否かを示す存否情報を取得して、人99が室内98に存在しない状態において、より高濃度の不活化物質の散布を行う動作について説明する。
 図9は、実施の形態に係る具体的な動作を説明する第3図である。図9では、図5と同様に、時系列に沿う装置ごとの除去能力と、時系列に沿ってCOセンサ141から取得されたCO濃度とが示されている。また、図10は、経過時間と換気量との関係を示すグラフである。
 図9に示すように、本例では、人99が存在している状態から、人99が不在の状態に変化したことを契機に、不活化物質の供給量を増加させ、供給装置120による除去能力を増加させる。人99の存否は、上記したように存否センサ142から取得される存否情報に基づいて判定される。また、ここで供給される不活化物質は上記したように、人99が存在しない場合のβminに基づいてもよい。これにより、より高い不活化除去の効果を得つつも、人99に与えられる影響は、低く抑制される。なお、不活化物質の供給は、次に室内98に人99が入室するまでに減少される。
 例えば、制御装置100は、室内98への入退室に用いられる建具の施錠装置と連携することで、不活化物質の供給量が増加している期間中は、当該室内98への入室がされないように施錠が行われる。また、本例では、制御装置100は、次に室内98が使用開始されるタイミングを、スケジュール管理サーバ等にアクセスすることで取得し、当該スケジュールに沿って不活化物質の供給量を減少させる。
 また、このとき、残留する不活化物質が人99に与える影響を鑑みて、例えば、人99に実害のないレベル、又は、人99に臭い等の違和感を与えないレベルまで、残留する不活化物質を取り除くように、次の室内98の利用開始前に、換気装置110の換気量を増加させる。また、この換気により、同時に室内98におけるCO濃度を所定(例えば室外97と同等)のレベルまで低下させる。このとき、これらいずれの目的も達成されるよう、それぞれに必要な換気量のうち、より大きい数値が選択されればよい。このとき、例えば、図中で、次の室内98の利用開始タイミングであるtから逆算することで、不活化物質の供給量を減少させ、かつ、換気量を増加させるタイミングであるtを決定する。ここで、以下式(20)及び以下式(21)を用いる。
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
 なお、上記式(20)では、C(t)が、経過時間tにおける室内98でのCO濃度[ppm]を示し、Cgoが、室外97におけるCO濃度[ppm]を示し、C(t)が、経過時間tにおける室内98でのCO濃度[ppm]を示し、Qが、経過時間tからtまでの期間の換気量[m/h」を示している。また、上記式(21)では、C(t)が、経過時間tにおける室内98でのCO濃度[ppm]を示し、Qが、経過時間tからtまでの期間の換気量[m/h」を示している。
 ここで、CO及び残留する不活化物質の排出を短期間で行うために、経過時間tからtまでの期間の換気量は、最大の換気量が適用されればよい(つまり、Q=Qmax)。例えば、換気による不活化物質の系外排出及び気流の乱れによる作用むらを抑制するために、不活化物質を積極散布するタイミング(ここでは経過時間tからtまで)において、換気装置110の動作を停止させてもよいし、より多量の不活化物質の散布を行ってもよい。ここでは、前者が行われるものとして説明する。
 この場合、Q=0となるため、上記式(20)及び上記式(21)をtについて整理すれば、以下式(22)のようになる。
Figure JPOXMLDOC01-appb-M000023
 一方で、たとえば、Q>0とする場合には、図10に示すグラフを参照して、経過時間が最大となるように選択された換気量が、Qとして採用されればよい。これにより、不活化物質の散布の期間をより長く設定できるため、不活化除去の効果を最大限享受できるようになる。
 なお、上記のt及びt3のタイミングは、人99の入力によって行われてもよい。すなわち、操作パネルに表示された「利用終了ボタン」等を操作することにより、tが決定されてもよい。同様に、「利用開始ボタン」等を操作することにより、tが決定されてもよい。このとき、例えば、操作パネルは、室外97にも設置され、不活化物質が充満している室内98に入室することなくtが設定可能に構成されてもよい。また、先に説明したように、室内98の利用を予約によってスケジュール管理するシステムが連携されていてもよい。以下では、このスケジュールの管理を行うシステム等について詳細に説明する。
 [室内利用予約管理システム]
 図11は、実施の形態に係る予約管理装置を内蔵する制御装置の機能構成を示すブロック図である。図11では、制御システム500のうち、制御装置100aのみが示されているが、上記のように、制御装置100aは、換気装置110及び供給装置120に接続され、これらの装置の制御に用いられる。
 この例における制御装置100aでは、制御部101、第1取得部102、及び、第2取得部103の構成については、先に説明した制御装置100と同様のため説明を省略する。制御装置100aは、予約管理装置130を内蔵している点で、先に説明した制御装置100と異なるため、この点について中心に説明する。
 予約管理装置130は、室内98の利用予定を人99(以下、室内98を利用する利用者ともいう)によってなされた予約によって管理する装置であり、プロセッサ及びメモリ等を用いて、所定のプログラムが実行されることで実現される。予約管理装置130は、管理部131と、第3取得部132と、提案部133とを備える。
 ここで、提案部133は、先に説明した制御装置100における感染確率推定部104に対応する感染確率推定部104aを有する。つまり、制御装置100における感染確率推定部104の機能は、本例においては、提案部133が有する感染確率推定部104aによって実現されている。すなわち、制御装置100aと予約管理装置130とで、感染確率推定部104aが共通化されている。なお、共通化された感染確率推定部104aの構成は必須ではなく、制御装置100a用の感染確率推定部と、予約管理装置130用の感染確率推定部104aとが個別に設けられてもよい。また、この感染確率推定部が個別に設けられる場合には、予約管理装置130は、制御装置100aに内蔵されることなく個別の装置として実現することもできる。例えば、予約管理装置130として、利用者が所有するスマートフォン等の情報端末が用いられてもよい。
 管理部131は、利用者が室内98を利用するための予約情報を統合管理するデータベースである。管理部131は、図示しない記憶部とコントローラとで実現され、一例として、利用者が入力した予約情報に示された利用開始時刻と利用終了時刻とに基づいて、当該利用時間を時系列に沿って重複する期間が生じないように管理する。この予約情報の取得は、例えば、利用者が制御装置100aの操作パネルを操作するなどによって実現されてもよいし、スマートフォン等の情報端末を介して入力された予約情報を、ネットワークを通じて取得してもよい。
 また、管理部131は、利用者からの要求に応じて、管理している予約情報を提示する。利用者は、提示された予約情報を参照しながら、空いた時間枠に新たな予約を入力することで、室内98の利用が重複することなく複数の利用者又は複数の利用者グループに円滑に共有される。
 本実施の形態における室内利用予約管理システムでは、さらに、第3取得部132及び提案部133を備えることにより、利用者が予約を入力した段階で、当該予約における室内98の利用による感染性対象物の感染確率を推定に基づいて算出し、この感染確率がより低くなる利用方法についての提案を行うことができる。
 第3取得部132は、予約情報に含まれる利用者に関する利用者情報を取得する機能部である。第3取得部132は、管理部131と同様に予約情報を直接取得して利用者情報を抽出してもよいし、管理部131によって取得された予約情報のうち、抽出された利用者情報のみを取得してもよい。このように、第3取得部132は、利用者情報を取得するための通信モジュールとして実現される。
 利用者情報には、室内98の利用人数、室内98の利用時間、室内98の利用形態等が含まれる。
 提案部133は、取得された利用者情報に基づいて感染確率の算出を行い、感染確率が低くなる利用方法を提案する処理部である。提案部133は、プロセッサ及びメモリを用いて、所定のプログラムが実行されることで実現される。提案部133は、まず、感染確率推定部104aを用いて利用者情報の内容に沿って室内98を利用した場合に推定される感染性対象物の利用者への感染確率を算出する。この算出された感染確率を、基準となる感染確率との比較により、提案が必要か否か判定する。具体的には、基準となる感染確率は、それ以上に高い感染確率とならないことが推奨される、感染確率の上限である。以降では、この上限となる感染確率を感染確率上限ともいう。提案部133は、推定により算出された感染確率が、この感染確率上限を超える場合に、この感染確率上限よりも感染確率が低い利用方法を提案する。
 本実施の形態における室内利用予約管理システムは、このように、利用者情報に基づき、利用方法の提案までをも行い、適切に感染確率が管理された状態で室内98を共有利用させることができる。このように、室内利用予約管理システムは、提案システムの一例である。
 以下、室内利用予約管理システムの動作について、図12を参照して説明する。図12は、実施の形態に係る室内利用予約管理システムの利用方法の提案に関する動作を示すフローチャートである。図12に示すように、はじめに、提案部133は、感染確率の算出に必要な各種の情報の取得を行う。具体的には、提案部133は、室内情報を取得する(ステップS301)。室内情報は、感染確率の算出に寄与するパラメータを含む、室内98の状況に関する情報である。室内情報は、具体的には、室内98の設計上の容積、室内98に設置された換気装置110による換気量、及び、室内98に設置された供給装置120による不活化物質の供給量等のパラメータを含む。
 なお、室内情報には、室内98に換気装置110及び供給装置120の設置状況に関する情報が含まれてもよい。すなわち、室内98には、換気装置110及び供給装置120の少なくとも一方が設置されていない場合が含まれる。このような場合、例えば、室内98が空室の期間におけるCOセンサ141等で検知されたCO濃度の変化を用いて実効的な換気量が算出されてもよい。実効的な換気量は、以下式(23)を用いて算出される。
Figure JPOXMLDOC01-appb-M000024
 なお、上記式(23)では、Qが、実効的な換気量[m/h」を示し、Tが空室になった時点からの経過時間[h]を示し、Cgsが、空室になった時点でのCO濃度[ppm]を示し、Cgeが、空室になった時点から経過時間Tだけ後の時点でのCO濃度[ppm]を示している。ここでの実効的な換気量は、上記式(9)におけるQに対応しているため、以下式(24)が成り立つ。
Figure JPOXMLDOC01-appb-M000025
 また、提案部133は、感染確率の推定対象である感染性対象物に関する情報である感染性対象物情報を取得する(ステップS302)。感染性対象物情報は、感染性対象物特有のパラメータを、例えば、データベース等から取得するため、当該感染性対象物を特定するための情報、特定によってデータベースを参照することで得られた感染確率上限及び単位時間あたりの増殖数、ならびに、当該感染性対象物に感染している利用者の数(感染者数)等を含む。
 提案部133は、ステップS301及びステップS302において得られた各種の情報に基づいて、上記式(8)を用いて、換気装置110及び供給装置120による総合的な除去能力を算出する(ステップS303)。なお、以上の動作において、取得及び算出された数値は、室内98及び感染性対象物が変更されない限り繰り返し使用可能であるため、記憶部等に格納しておいてもよい。次回以降の動作においては、この記憶部を参照することで、後続するステップS304から動作を開始できる。
 提案部133は、続いて、利用者情報を取得する(ステップS304)。提案部133は、取得された利用者情報と、ステップS301及びステップS302において得られた各種の情報とに基づいて、この室内98の利用に伴う感染確率を算出する(ステップS305)。
 ここでの感染確率の算出には、上記式(16)を用いる場合と、上記式(18)を用いる場合とが考えられる。上記式(16)を用いる場合には、(C-Cgo)/Cによって表される、利用者の呼気に占めるCO量の割合に対する、室内外のCO濃度の差の値が必要となる。この値は、以下式(25)によって算出可能である。
Figure JPOXMLDOC01-appb-M000026
 なお、上記式(25)では、fが利用者の呼気に占めるCO量の割合に対する、室内外のCO濃度の差を示し、Cgtが、経過時間Tにおける室内98のCO濃度を示している。
 図12に戻り、提案部133は、算出した感染確率が、感染性対象物の種別ごとに設定された感染確率上限と比較し、感染確率が感染確率上限を超えるか否かを判定する(ステップS306)。感染確率が感染確率上限を超えていないと判定した場合(ステップS306でNo)、提案部133は、処理を終了する。一方、感染確率が感染確率上限を超えていると判定した場合(ステップS306でYes)、提案部133は、当該予約の利用形態では、室内98の利用が不可であることを示す「利用不可」を提示する(ステップS307)。
 これは、例えば、利用者が予約を行うために使用した情報端末にプッシュ通知されてもよいし、制御端末の表示面等に表示されてもよい。また、ここでの提示は、文字、図形、及び、記号等を組み合わせた画像として表示されてもよいし、「利用不可」を意味する音声がスピーカ等から再生されてもよい。
 その後、提案部133は、感染確率上限を下回るように感染確率を低下させる室内98の利用方法の提案を行う(ステップS308)。
 以下、提案部133によって行われる利用方法の提案を種類ごとに列挙する。
 まず、提案部133は、室内98の利用時間を短縮することで、当該利用における感染確率の上昇を抑制する。例えば、感染確率が、上記式(16)に基づいて算出された場合、提案される利用時間は、以下式(26)に基づいて決定される。
Figure JPOXMLDOC01-appb-M000027
 なお、上記式(26)では、tが提案される利用時間を示し、Pが、提案される利用時間を採用した場合の感染確率を示している。
 また、例えば、感染確率が、上記式(18)に基づいて算出された場合、提案される利用時間は、以下式(27)に基づいて決定される。
Figure JPOXMLDOC01-appb-M000028
 また、提案部133は、室内98の利用形態を変更することで、当該利用における感染確率の上昇を抑制する。例えば、利用者が室内98において行う活動が、一般的な事務作業程度の場合と、通常のスポーツ等の場合とでは、利用者が排出するCO量が5倍程度に上昇することが知られている。これは、利用者による呼吸量が増加することに起因し、呼吸量の増加は、感染確率を上昇させる要因となる。そこで、提案部133は、利用者が予定している利用形態よりも呼吸量を低減できる利用形態に変更するように利用方法を提案する。
 また、提案部133は、室内98における供給装置120の動作量を増加させる(つまり、不活化物質の散布量を増加させる)ことで、当該利用における感染確率の上昇を抑制する。例えば、感染確率が、上記式(16)に基づいて算出された場合、提案される不活化物質の供給量は、以下式(28)に基づいて決定される。
Figure JPOXMLDOC01-appb-M000029
 なお、上記式(28)では、Qが、提案される不活化物質の供給量を採用した場合の換気量を示している。上記式(28)をマクローリン展開することにより、Qの近似値を算出し、当該近似値によって以下式(29)により、提案される不活化物質の供給量を採用した場合の単位時間当たりの感染性対象物の残存率を算出する。
Figure JPOXMLDOC01-appb-M000030
 なお、上記式(29)では、βが、提案される不活化物質の供給量を採用した場合の単位時間当たりの感染性対象物の残存率を示している。
 また、例えば、感染確率が、上記式(18)に基づいて算出された場合、提案される不活化物質の供給量は、以下式(30)に基づいて決定される。
Figure JPOXMLDOC01-appb-M000031
 ここで得られたQの値を用いて、上記式(29)により、提案される不活化物質の供給量を採用した場合の単位時間当たりの感染性対象物の残存率を算出する。また、ここでの不活化物質の供給量の提案は、供給量が0の状態から0より大きい供給量への変更を提案することを含む。すなわち、供給装置120が動作オフの状態からオンの状態に変更する提案、又は、室内98に供給装置120が存在しない状態から、新たに供給装置120を設置することを推奨する提案が含まれてもよい。
 また、提案部133は、室内98における換気装置110の動作量を増加させる(つまり、換気量を増加させる)ことで、当該利用における感染確率の上昇を抑制する。例えば、感染確率が、上記式(16)に基づいて算出された場合、提案される換気量は、上記式(28)に基づいて決定される。すなわち、上記式(28)をマクローリン展開することにより、算出されたQの近似値が提案される。
 また、例えば、感染確率が、上記式(18)に基づいて算出された場合、提案される換気量は、上記式(30)に基づいて決定される。すなわち、上記式(30)により算出されたQの値が提案される。
 また、提案部133は、換気装置110による換気の際の目標値としてのCO濃度を低下させることで(つまり、内外のCO濃度差を縮小することで)、換気量を増加させ当該利用における感染確率の上昇を抑制する。例えば、感染確率が、上記式(16)に基づいて算出された場合、提案されるCO濃度差は、以下式(31)に基づいて決定される。
Figure JPOXMLDOC01-appb-M000032
 上記式(31)は、以下式(32)に代入される。
Figure JPOXMLDOC01-appb-M000033
 なお、上記式(32)では、Cgpが、提案されるCO濃度差における室内98側のCO濃度を示している。
 また、利用者が利用を想定する室内98に代えて、感染確率が感染確率上限を下回る適切な条件の他の室内98を利用することが提案されてもよい。なお、以上に説明した複数の利用方法の提案のうち、いずれか1つのみが提案されてもよいし、複数の組み合わせで提案されてもよい。また、上記の提案は、室内98を利用するための予約の入力時に行われるとしたが、実際の使用時において、実測の値に基づき、リアルタイムで提案が行われる構成であってもよい。
 [効果等]
 以上説明したように、本実施の形態に係る制御システム500は、感染性対象物を含む室内98の気体と室外97の気体との交換を行い、感染性対象物を排出除去する換気装置110と、室内98に感染性対象物を不活化する不活化物質の供給を行い、感染性対象物を不活化除去する供給装置120と、換気装置110及び供給装置120を制御する制御装置100と、を備え、制御装置100は、換気装置110及び供給装置120の一方による除去能力を増加させた際に、他方による除去能力を減少させる第1動作、ならびに、換気装置110及び供給装置120の一方による除去効率を減少させた際に、他方による除去効率を増加させる第2動作の少なくとも一方を行う第1のモードと、第1のモードとは異なる第2のモードと、を切り替える。
 このような制御システム500は、換気装置110による除去能力と供給装置120による除去性能とのうち、一方の除去能力が低下した際に、他方の除去能力が増加されることでこれを補うことができる。一方で、換気装置110による除去能力と供給装置120による除去性能とのうち、一方の除去能力が増加した際に、他方の除去能力を低下させることで最低限の除去能力を維持しながら、必要以上の除去能力が発揮されることを抑制できる。したがって、各装置に、必要に応じて除去能力を補い合わせ、かつ、余剰な除去能力の発揮に資するコストを抑制できる。よって、より効果的に感染性対象物の人99への感染を抑制できる。
 また、例えば、制御装置100は、第1のモードにおいて、室内98の容積をV、換気装置110による単位時間あたりの気体の交換量である換気量をQ、及び、不活化物質による不活化除去において単位時間あたりに残存する感染性対象物の残存率をβとした場合に、上記式(8)によって定義される、感染性対象物の総合的な除去能力の値が除去閾値以上となるように、換気装置110及び供給装置120を制御してもよい。
 これによれば、換気装置110及び供給装置120による総合的な除去能力が、除去閾値以上に保たれる。すなわち、設定された除去閾値を下回ることが無くなるため、より厳密に除去能力を規定することができる。よって、より効果的に感染性対象物の人99への感染を抑制できる。
 また、例えば、制御装置100は、第2のモードにおいて、換気装置110及び供給装置120の一方による除去能力を増加させた際に、換気装置110及び供給装置120の他方による除去能力を一定に維持する第3動作を行ってもよい。
 これによれば、一方の除去能力が上昇された際に他方の能力を低下させないので、総合的な除去能力を増加させることができる。つまり、除去効果をより高めることができるので、より効果的に感染性対象物の人99への感染を抑制できる。
 また、例えば、制御装置100は、第1のモードにおいて、室内98のCO濃度を検知するCOセンサ141から室内98のCO濃度を取得し、換気装置110を制御して、取得した室内98のCO濃度がCO閾値以下となるように気体を交換させてもよい。
 これによれば、換気装置110が独立にCO濃度を低下させる動作を行っていても、供給装置120によって過不足なく除去能力を発揮することができる。また、この動作によって、室内98のCO濃度が適切に維持されるため、室内98がより利用に適した空間に維持される。よって、より効果的に感染性対象物の人99への感染を抑制できる。
 また、例えば、CO閾値は、室内98に存在する人99の、感染性対象物への暴露時間と、人99への感染性対象物の感染確率の上限である感染確率上限とによって定まる室内98の目標CO濃度であってもよい。
 これによれば、室内98のCO濃度を指標として、感染確率を管理し、CO濃度を適切に維持するのみで、感染性対象物の人99への感染を抑制できる。また、このような管理では、リアルタイムに感染確率をモニタ出来るので、感染確率が一時的に上昇した場合などに別の対策を講じることができる。よって、より効果的に感染性対象物の人99への感染を抑制できる。
 制御装置100は、第1のモードにおいて、室内98に存在する人99の、感染性対象物への暴露時間と、人99への感染性対象物の感染確率の上限である感染確率上限とによって定まる換気量閾値を算出し、換気装置110を制御して、換気量閾値以上となるように気体を交換させてもよい。
 これによれば、感染性対象物への暴露時間と、感染確率とに基づいて、十分な換気量で換気装置110が制御される。よって、より適切かつより効果的に感染性対象物の人99への感染を抑制できる。
 また、例えば、制御装置100は、室内98における人99の存否を検知する存否センサ142から室内98における人99の存否に関する存否情報を取得し、取得した存否情報に基づいて、室内98に人99が存在する状態から室内98に人99が不在の状態に変化したことを契機に、第2動作で第1のモードを開始し、所定時間経過後に第1動作で第1のモードを継続してもよい。
 これによれば、人99の存否に応じて第1動作及び第2動作を適切に組み合わせた第1のモードを実行することができる。例えば、人99が不在の状態の室内98において、第1動作で、供給装置120から不活化物質を散布させる。このとき、人体に影響あるレベルまで高濃度に不活化物質を散布させ、不活化による除去効果を高めたとしても、人99が不在であるため、安全性が確保される。また、その後の換気装置110の動作により、残留する不活化物質を換気排出した後に第1のモードが終了するため、次に人99が室内98に入室した際にも、不活化物質が人に与える影響は十分に抑えられる。よって、より効果的に感染性対象物の人99への感染を抑制できる。
 また、本実施の形態に係る制御方法は、感染性対象物を含む室内の気体と室外の気体との交換を行い、感染性対象物を排出除去する換気装置と、室内に感染性対象物を不活化する不活化物質の供給を行い、感染性対象物を不活化除去する供給装置と、を制御する制御方法であって、換気装置による除去能力を増加させた際に、供給装置による除去能力を減少させる第1動作、及び、換気装置による除去効率を減少させた際に、供給装置による除去効率を増加させる第2動作の少なくとも一方を行う第1ステップと、第1のモードとは異なる第2ステップと、を含む。
 これによれば、上記に記載の制御システム500と同様の効果を奏することができる。
 また、上記に記載の制御方法をコンピュータに実行させるためのプログラムとしても実現できる。
 これによれば、コンピュータを用いて、上記に記載の制御方法と同様の効果を奏することができる。
 また、上記実施の形態の内容を、換気装置110及び供給装置120に接続された制御装置であって、換気装置及び供給装置の一方による除去能力を増加させた際に、他方による除去能力を減少させる第1動作、ならびに、換気装置及び供給装置の一方による除去効率を減少させた際に、他方による除去効率を増加させる第2動作の少なくとも一方を行う第1のモードと、第1のモードとは異なる第2のモードと、を切り替える制御装置としても実現することができる。
 これによれば、制御装置単独でも上記の制御システムと同様の効果を奏することができる。
 (その他の実施の形態)
 以上、本開示に係る制御システム等について、上記の実施の形態に基づいて説明したが、本開示は、上記の実施の形態に限定されるものではない。
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよく、あるいは、複数の処理が並行して実行されてもよい。また、制御システムが備える構成要素の複数の装置への振り分けは、一例である。例えば、一の装置が備える構成要素を他の装置が備えてもよい。
 例えば、上記実施の形態において説明した処理は、単一の装置(システム)を用いて集中処理することによって実現してもよく、又は、複数の装置を用いて分散処理することによって実現してもよい。また、上記プログラムを実行するプロセッサは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、又は分散処理を行ってもよい。
 また、上記実施の形態において、制御部などの構成要素の全部又は一部は、専用のハードウェアで構成されてもよく、あるいは、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU(Central Processing Unit)又はプロセッサなどのプログラム実行部が、HDD又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、制御部などの構成要素は、1つ又は複数の電子回路で構成されてもよい。1つ又は複数の電子回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。
 1つ又は複数の電子回路には、例えば、半導体装置、IC又はLSIなどが含まれてもよい。IC又はLSIは、1つのチップに集積されてもよく、複数のチップに集積されてもよい。ここでは、IC又はLSIと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integraion)、又は、ULSI(Ultra Large Scale Integration)と呼ばれるかもしれない。また、LSIの製造後にプログラムされるFPGAも同じ目的で使うことができる。
 また、本開示の全般的又は具体的な態様は、システム、装置、方法、集積回路又はコンピュータプログラムで実現されてもよい。あるいは、当該コンピュータプログラムが記憶された光学ディスク、HDD若しくは半導体メモリなどのコンピュータ読み取り可能な非一時的記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本開示の趣旨を逸脱しない範囲で各実施の形態に係る構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
  97 室外
  98 室内
  99 人
 100、100a 制御装置
 110 換気装置
 120 供給装置
 141 COセンサ
 142 存否センサ
 500 制御システム

Claims (9)

  1.  感染性対象物を含む室内の気体と室外の気体との交換を行い、前記感染性対象物を排出除去する換気装置と、
     前記室内に前記感染性対象物を不活化する不活化物質の供給を行い、前記感染性対象物を不活化除去する供給装置と、
     前記換気装置及び前記供給装置を制御する制御装置と、を備え、
     前記制御装置は、
     前記換気装置及び前記供給装置の一方による除去能力を増加させた際に、他方による除去能力を減少させる第1動作、ならびに、前記換気装置及び前記供給装置の一方による除去効率を減少させた際に、他方による除去効率を増加させる第2動作の少なくとも一方を行う第1のモードと、
     前記第1のモードとは異なる第2のモードと、を切り替える
     制御システム。
  2.  前記制御装置は、前記第1のモードにおいて、
     前記室内の容積をV、前記換気装置による単位時間あたりの気体の交換量である換気量をQ、及び、前記不活化物質による不活化除去において単位時間あたりに残存する前記感染性対象物の残存率をβとした場合に、
    Figure JPOXMLDOC01-appb-M000001
     によって定義される、前記感染性対象物の総合的な除去能力の値が除去閾値以上となるように、前記換気装置及び前記供給装置を制御する
     請求項1に記載の制御システム。
  3.  前記制御装置は、前記第2のモードにおいて、前記換気装置及び前記供給装置の一方による除去能力を増加させた際に、前記換気装置及び前記供給装置の他方による除去能力を一定に維持する第3動作を行う
     請求項1又は2に記載の制御システム。
  4.  前記制御装置は、前記第1のモードにおいて、
     前記室内のCO濃度を検知するCOセンサから前記室内のCO濃度を取得し、
     前記換気装置を制御して、取得した前記室内のCO濃度がCO閾値以下となるように気体を交換させる
     請求項1~3のいずれか一項に記載の制御システム。
  5.  前記CO閾値は、前記室内に存在する人の、前記感染性対象物への暴露時間と、前記人への前記感染性対象物の感染確率の上限である感染確率上限とによって定まる前記室内の目標CO濃度である
     請求項4に記載の制御システム。
  6.  前記制御装置は、前記第1のモードにおいて、
     前記室内に存在する人の、前記感染性対象物への暴露時間と、前記人への前記感染性対象物の感染確率の上限である感染確率上限とによって定まる換気量閾値を算出し、
     前記換気装置を制御して、前記換気量閾値以上となるように気体を交換させる
     請求項1~3のいずれか一項に記載の制御システム。
  7.  前記制御装置は、
     前記室内における人の存否を検知する存否センサから前記室内における人の存否に関する存否情報を取得し、
     取得した前記存否情報に基づいて、前記室内に人が存在する状態から前記室内に人が不在の状態に変化したことを契機に、前記第2動作で前記第1のモードを開始し、所定時間経過後に前記第1動作で前記第1のモードを継続する
     請求項1に記載の制御システム。
  8.  感染性対象物を含む室内の気体と室外の気体との交換を行い、前記感染性対象物を排出除去する換気装置と、前記室内に前記感染性対象物を不活化する不活化物質の供給を行い、前記感染性対象物を不活化除去する供給装置と、を制御する制御方法であって、
     前記換気装置による除去能力を増加させた際に、前記供給装置による除去能力を減少させる第1動作、及び、前記換気装置による除去効率を減少させた際に、前記供給装置による除去効率を増加させる第2動作の少なくとも一方を行う第1ステップと、
     前記第1のモードとは異なる第2ステップと、を含む
     制御方法。
  9.  請求項8に記載の制御方法をコンピュータに実行させるための
     プログラム。
PCT/JP2021/029593 2020-08-31 2021-08-11 制御システム、制御方法、及び、プログラム WO2022044801A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180058397.8A CN116057327A (zh) 2020-08-31 2021-08-11 控制系统、控制方法以及程序
JP2022545627A JP7418049B2 (ja) 2020-08-31 2021-08-11 制御システム、制御方法、及び、プログラム
US18/019,296 US20230277709A1 (en) 2020-08-31 2021-08-11 Control system, control method, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-145365 2020-08-31
JP2020145365 2020-08-31

Publications (1)

Publication Number Publication Date
WO2022044801A1 true WO2022044801A1 (ja) 2022-03-03

Family

ID=80353111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029593 WO2022044801A1 (ja) 2020-08-31 2021-08-11 制御システム、制御方法、及び、プログラム

Country Status (4)

Country Link
US (1) US20230277709A1 (ja)
JP (1) JP7418049B2 (ja)
CN (1) CN116057327A (ja)
WO (1) WO2022044801A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243071A1 (ja) * 2022-06-17 2023-12-21 三菱電機株式会社 換気システムおよびこれを備えた空気調和システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142647A1 (ja) * 2018-01-22 2019-07-25 パナソニックIpマネジメント株式会社 空間環境制御システム、空間環境制御装置及び空間環境制御方法
WO2019142599A1 (ja) * 2018-01-22 2019-07-25 パナソニックIpマネジメント株式会社 空間環境制御システム、空間環境制御装置及び空間環境制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142647A1 (ja) * 2018-01-22 2019-07-25 パナソニックIpマネジメント株式会社 空間環境制御システム、空間環境制御装置及び空間環境制御方法
WO2019142599A1 (ja) * 2018-01-22 2019-07-25 パナソニックIpマネジメント株式会社 空間環境制御システム、空間環境制御装置及び空間環境制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243071A1 (ja) * 2022-06-17 2023-12-21 三菱電機株式会社 換気システムおよびこれを備えた空気調和システム

Also Published As

Publication number Publication date
US20230277709A1 (en) 2023-09-07
JPWO2022044801A1 (ja) 2022-03-03
JP7418049B2 (ja) 2024-01-19
CN116057327A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
JP6872708B2 (ja) 空間環境制御システム、空間環境制御装置及び空間環境制御方法
JP6876747B2 (ja) 香り調整システム及び香料カートリッジ
WO2022044801A1 (ja) 制御システム、制御方法、及び、プログラム
WO2019106980A1 (ja) 自走式病原体検出装置、病原体検出システム、及び、制御方法
KR102204837B1 (ko) 공간살균 기능을 가지는 공조 장치
CN113531851B (zh) 辅助治疗的空调控制方法、空调器和存储介质
WO2022044800A1 (ja) 提案システム、提案方法、及び、プログラム
WO2023060886A1 (zh) 消毒器及其控制方法、电子设备和可读存储介质
JP2018093918A (ja) 脱臭装置及び脱臭システム
JP6650603B2 (ja) 湿度制御装置及びプログラム
US20230190979A1 (en) Scent control device and methods for treating an environment
JP2019196876A (ja) 空気調和機、空気調和機の制御方法、および制御プログラム
CN113685990A (zh) 空调控制方法、装置、空调器和存储介质
JP7425807B2 (ja) オゾン除菌システム、オゾン除菌装置、空気調和機、オゾン除菌方法およびコンピュータプログラム
JP7383494B2 (ja) 空間環境制御システム
WO2022163145A1 (ja) 情報出力装置、提示システム、情報出力方法、及び、プログラム
KR102505837B1 (ko) 감염성 바이러스의 전파를 억제하는 실내 공기 제어 시스템 및 그의 구동 방법
KR102631757B1 (ko) 호흡기 감염병의 공기전파 감염위험도에 기반한 복수개의 개별 환기대상 실내공간의 차압 환기제어 구성을 가지는 환기시스템 및 그 제어방법
WO2022163149A1 (ja) 空間提示システム、空間提示方法、及び、プログラム
Wang et al. Energy-saving and IAQ control in hospital patient room by bed-integrated ventilation
JP2022101423A (ja) オゾン発生装置及びオゾン発生管理システム
JP2022069778A (ja) 空間浄化装置
WO2024129153A1 (en) Continuous disinfection of human occupied space
JP2023133075A (ja) 個室ブース
JP2022029130A (ja) 消毒システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022545627

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861229

Country of ref document: EP

Kind code of ref document: A1